License cleanup: add SPDX GPL-2.0 license identifier to files with no license
[linux-block.git] / drivers / md / bcache / bset.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
cafe5635
KO
2#ifndef _BCACHE_BSET_H
3#define _BCACHE_BSET_H
4
89ebb4a2
KO
5#include <linux/bcache.h>
6#include <linux/kernel.h>
7#include <linux/types.h>
c37511b8 8
67539e85
KO
9#include "util.h" /* for time_stats */
10
cafe5635
KO
11/*
12 * BKEYS:
13 *
14 * A bkey contains a key, a size field, a variable number of pointers, and some
15 * ancillary flag bits.
16 *
17 * We use two different functions for validating bkeys, bch_ptr_invalid and
18 * bch_ptr_bad().
19 *
20 * bch_ptr_invalid() primarily filters out keys and pointers that would be
21 * invalid due to some sort of bug, whereas bch_ptr_bad() filters out keys and
22 * pointer that occur in normal practice but don't point to real data.
23 *
24 * The one exception to the rule that ptr_invalid() filters out invalid keys is
25 * that it also filters out keys of size 0 - these are keys that have been
26 * completely overwritten. It'd be safe to delete these in memory while leaving
27 * them on disk, just unnecessary work - so we filter them out when resorting
28 * instead.
29 *
30 * We can't filter out stale keys when we're resorting, because garbage
31 * collection needs to find them to ensure bucket gens don't wrap around -
32 * unless we're rewriting the btree node those stale keys still exist on disk.
33 *
34 * We also implement functions here for removing some number of sectors from the
35 * front or the back of a bkey - this is mainly used for fixing overlapping
36 * extents, by removing the overlapping sectors from the older key.
37 *
38 * BSETS:
39 *
40 * A bset is an array of bkeys laid out contiguously in memory in sorted order,
41 * along with a header. A btree node is made up of a number of these, written at
42 * different times.
43 *
44 * There could be many of them on disk, but we never allow there to be more than
45 * 4 in memory - we lazily resort as needed.
46 *
47 * We implement code here for creating and maintaining auxiliary search trees
48 * (described below) for searching an individial bset, and on top of that we
49 * implement a btree iterator.
50 *
51 * BTREE ITERATOR:
52 *
53 * Most of the code in bcache doesn't care about an individual bset - it needs
54 * to search entire btree nodes and iterate over them in sorted order.
55 *
56 * The btree iterator code serves both functions; it iterates through the keys
57 * in a btree node in sorted order, starting from either keys after a specific
58 * point (if you pass it a search key) or the start of the btree node.
59 *
60 * AUXILIARY SEARCH TREES:
61 *
62 * Since keys are variable length, we can't use a binary search on a bset - we
63 * wouldn't be able to find the start of the next key. But binary searches are
64 * slow anyways, due to terrible cache behaviour; bcache originally used binary
65 * searches and that code topped out at under 50k lookups/second.
66 *
67 * So we need to construct some sort of lookup table. Since we only insert keys
68 * into the last (unwritten) set, most of the keys within a given btree node are
69 * usually in sets that are mostly constant. We use two different types of
70 * lookup tables to take advantage of this.
71 *
72 * Both lookup tables share in common that they don't index every key in the
73 * set; they index one key every BSET_CACHELINE bytes, and then a linear search
74 * is used for the rest.
75 *
76 * For sets that have been written to disk and are no longer being inserted
77 * into, we construct a binary search tree in an array - traversing a binary
78 * search tree in an array gives excellent locality of reference and is very
79 * fast, since both children of any node are adjacent to each other in memory
80 * (and their grandchildren, and great grandchildren...) - this means
81 * prefetching can be used to great effect.
82 *
83 * It's quite useful performance wise to keep these nodes small - not just
84 * because they're more likely to be in L2, but also because we can prefetch
85 * more nodes on a single cacheline and thus prefetch more iterations in advance
86 * when traversing this tree.
87 *
88 * Nodes in the auxiliary search tree must contain both a key to compare against
89 * (we don't want to fetch the key from the set, that would defeat the purpose),
90 * and a pointer to the key. We use a few tricks to compress both of these.
91 *
92 * To compress the pointer, we take advantage of the fact that one node in the
93 * search tree corresponds to precisely BSET_CACHELINE bytes in the set. We have
94 * a function (to_inorder()) that takes the index of a node in a binary tree and
95 * returns what its index would be in an inorder traversal, so we only have to
96 * store the low bits of the offset.
97 *
98 * The key is 84 bits (KEY_DEV + key->key, the offset on the device). To
99 * compress that, we take advantage of the fact that when we're traversing the
100 * search tree at every iteration we know that both our search key and the key
101 * we're looking for lie within some range - bounded by our previous
102 * comparisons. (We special case the start of a search so that this is true even
103 * at the root of the tree).
104 *
105 * So we know the key we're looking for is between a and b, and a and b don't
106 * differ higher than bit 50, we don't need to check anything higher than bit
107 * 50.
108 *
109 * We don't usually need the rest of the bits, either; we only need enough bits
110 * to partition the key range we're currently checking. Consider key n - the
111 * key our auxiliary search tree node corresponds to, and key p, the key
112 * immediately preceding n. The lowest bit we need to store in the auxiliary
113 * search tree is the highest bit that differs between n and p.
114 *
115 * Note that this could be bit 0 - we might sometimes need all 80 bits to do the
116 * comparison. But we'd really like our nodes in the auxiliary search tree to be
117 * of fixed size.
118 *
119 * The solution is to make them fixed size, and when we're constructing a node
120 * check if p and n differed in the bits we needed them to. If they don't we
121 * flag that node, and when doing lookups we fallback to comparing against the
122 * real key. As long as this doesn't happen to often (and it seems to reliably
123 * happen a bit less than 1% of the time), we win - even on failures, that key
124 * is then more likely to be in cache than if we were doing binary searches all
125 * the way, since we're touching so much less memory.
126 *
127 * The keys in the auxiliary search tree are stored in (software) floating
128 * point, with an exponent and a mantissa. The exponent needs to be big enough
129 * to address all the bits in the original key, but the number of bits in the
130 * mantissa is somewhat arbitrary; more bits just gets us fewer failures.
131 *
132 * We need 7 bits for the exponent and 3 bits for the key's offset (since keys
133 * are 8 byte aligned); using 22 bits for the mantissa means a node is 4 bytes.
134 * We need one node per 128 bytes in the btree node, which means the auxiliary
135 * search trees take up 3% as much memory as the btree itself.
136 *
137 * Constructing these auxiliary search trees is moderately expensive, and we
138 * don't want to be constantly rebuilding the search tree for the last set
139 * whenever we insert another key into it. For the unwritten set, we use a much
140 * simpler lookup table - it's just a flat array, so index i in the lookup table
141 * corresponds to the i range of BSET_CACHELINE bytes in the set. Indexing
142 * within each byte range works the same as with the auxiliary search trees.
143 *
144 * These are much easier to keep up to date when we insert a key - we do it
145 * somewhat lazily; when we shift a key up we usually just increment the pointer
146 * to it, only when it would overflow do we go to the trouble of finding the
147 * first key in that range of bytes again.
148 */
149
a85e968e
KO
150struct btree_keys;
151struct btree_iter;
152struct btree_iter_set;
ee811287 153struct bkey_float;
cafe5635 154
c37511b8
KO
155#define MAX_BSETS 4U
156
cafe5635
KO
157struct bset_tree {
158 /*
159 * We construct a binary tree in an array as if the array
160 * started at 1, so that things line up on the same cachelines
161 * better: see comments in bset.c at cacheline_to_bkey() for
162 * details
163 */
164
165 /* size of the binary tree and prev array */
ee811287 166 unsigned size;
cafe5635
KO
167
168 /* function of size - precalculated for to_inorder() */
ee811287 169 unsigned extra;
cafe5635
KO
170
171 /* copy of the last key in the set */
ee811287
KO
172 struct bkey end;
173 struct bkey_float *tree;
cafe5635
KO
174
175 /*
176 * The nodes in the bset tree point to specific keys - this
177 * array holds the sizes of the previous key.
178 *
179 * Conceptually it's a member of struct bkey_float, but we want
180 * to keep bkey_float to 4 bytes and prev isn't used in the fast
181 * path.
182 */
ee811287 183 uint8_t *prev;
cafe5635
KO
184
185 /* The actual btree node, with pointers to each sorted set */
ee811287 186 struct bset *data;
cafe5635
KO
187};
188
a85e968e
KO
189struct btree_keys_ops {
190 bool (*sort_cmp)(struct btree_iter_set,
191 struct btree_iter_set);
192 struct bkey *(*sort_fixup)(struct btree_iter *, struct bkey *);
829a60b9
KO
193 bool (*insert_fixup)(struct btree_keys *, struct bkey *,
194 struct btree_iter *, struct bkey *);
a85e968e
KO
195 bool (*key_invalid)(struct btree_keys *,
196 const struct bkey *);
197 bool (*key_bad)(struct btree_keys *, const struct bkey *);
198 bool (*key_merge)(struct btree_keys *,
199 struct bkey *, struct bkey *);
dc9d98d6
KO
200 void (*key_to_text)(char *, size_t, const struct bkey *);
201 void (*key_dump)(struct btree_keys *, const struct bkey *);
a85e968e
KO
202
203 /*
204 * Only used for deciding whether to use START_KEY(k) or just the key
205 * itself in a couple places
206 */
207 bool is_extents;
208};
209
210struct btree_keys {
211 const struct btree_keys_ops *ops;
212 uint8_t page_order;
213 uint8_t nsets;
214 unsigned last_set_unwritten:1;
215 bool *expensive_debug_checks;
216
217 /*
218 * Sets of sorted keys - the real btree node - plus a binary search tree
219 *
220 * set[0] is special; set[0]->tree, set[0]->prev and set[0]->data point
221 * to the memory we have allocated for this btree node. Additionally,
222 * set[0]->data points to the entire btree node as it exists on disk.
223 */
224 struct bset_tree set[MAX_BSETS];
225};
226
227static inline struct bset_tree *bset_tree_last(struct btree_keys *b)
228{
229 return b->set + b->nsets;
230}
231
232static inline bool bset_written(struct btree_keys *b, struct bset_tree *t)
233{
234 return t <= b->set + b->nsets - b->last_set_unwritten;
235}
236
237static inline bool bkey_written(struct btree_keys *b, struct bkey *k)
238{
239 return !b->last_set_unwritten || k < b->set[b->nsets].data->start;
240}
241
242static inline unsigned bset_byte_offset(struct btree_keys *b, struct bset *i)
243{
244 return ((size_t) i) - ((size_t) b->set->data);
245}
246
247static inline unsigned bset_sector_offset(struct btree_keys *b, struct bset *i)
248{
249 return bset_byte_offset(b, i) >> 9;
250}
251
ee811287
KO
252#define __set_bytes(i, k) (sizeof(*(i)) + (k) * sizeof(uint64_t))
253#define set_bytes(i) __set_bytes(i, i->keys)
254
255#define __set_blocks(i, k, block_bytes) \
256 DIV_ROUND_UP(__set_bytes(i, k), block_bytes)
257#define set_blocks(i, block_bytes) \
258 __set_blocks(i, (i)->keys, block_bytes)
259
59158fde
KO
260static inline size_t bch_btree_keys_u64s_remaining(struct btree_keys *b)
261{
262 struct bset_tree *t = bset_tree_last(b);
263
264 BUG_ON((PAGE_SIZE << b->page_order) <
265 (bset_byte_offset(b, t->data) + set_bytes(t->data)));
266
267 if (!b->last_set_unwritten)
268 return 0;
269
270 return ((PAGE_SIZE << b->page_order) -
271 (bset_byte_offset(b, t->data) + set_bytes(t->data))) /
272 sizeof(u64);
273}
274
a85e968e
KO
275static inline struct bset *bset_next_set(struct btree_keys *b,
276 unsigned block_bytes)
277{
278 struct bset *i = bset_tree_last(b)->data;
279
280 return ((void *) i) + roundup(set_bytes(i), block_bytes);
281}
282
283void bch_btree_keys_free(struct btree_keys *);
284int bch_btree_keys_alloc(struct btree_keys *, unsigned, gfp_t);
285void bch_btree_keys_init(struct btree_keys *, const struct btree_keys_ops *,
286 bool *);
ee811287 287
a85e968e
KO
288void bch_bset_init_next(struct btree_keys *, struct bset *, uint64_t);
289void bch_bset_build_written_tree(struct btree_keys *);
290void bch_bset_fix_invalidated_key(struct btree_keys *, struct bkey *);
0f49cf3d 291bool bch_bkey_try_merge(struct btree_keys *, struct bkey *, struct bkey *);
a85e968e 292void bch_bset_insert(struct btree_keys *, struct bkey *, struct bkey *);
829a60b9
KO
293unsigned bch_btree_insert_key(struct btree_keys *, struct bkey *,
294 struct bkey *);
295
296enum {
297 BTREE_INSERT_STATUS_NO_INSERT = 0,
298 BTREE_INSERT_STATUS_INSERT,
299 BTREE_INSERT_STATUS_BACK_MERGE,
300 BTREE_INSERT_STATUS_OVERWROTE,
301 BTREE_INSERT_STATUS_FRONT_MERGE,
302};
a85e968e 303
ee811287
KO
304/* Btree key iteration */
305
306struct btree_iter {
307 size_t size, used;
308#ifdef CONFIG_BCACHE_DEBUG
c052dd9a 309 struct btree_keys *b;
ee811287
KO
310#endif
311 struct btree_iter_set {
312 struct bkey *k, *end;
313 } data[MAX_BSETS];
314};
315
a85e968e 316typedef bool (*ptr_filter_fn)(struct btree_keys *, const struct bkey *);
ee811287
KO
317
318struct bkey *bch_btree_iter_next(struct btree_iter *);
319struct bkey *bch_btree_iter_next_filter(struct btree_iter *,
a85e968e 320 struct btree_keys *, ptr_filter_fn);
ee811287
KO
321
322void bch_btree_iter_push(struct btree_iter *, struct bkey *, struct bkey *);
c052dd9a 323struct bkey *bch_btree_iter_init(struct btree_keys *, struct btree_iter *,
ee811287
KO
324 struct bkey *);
325
c052dd9a
KO
326struct bkey *__bch_bset_search(struct btree_keys *, struct bset_tree *,
327 const struct bkey *);
ee811287
KO
328
329/*
330 * Returns the first key that is strictly greater than search
331 */
c052dd9a
KO
332static inline struct bkey *bch_bset_search(struct btree_keys *b,
333 struct bset_tree *t,
ee811287
KO
334 const struct bkey *search)
335{
336 return search ? __bch_bset_search(b, t, search) : t->data->start;
337}
338
c052dd9a
KO
339#define for_each_key_filter(b, k, iter, filter) \
340 for (bch_btree_iter_init((b), (iter), NULL); \
341 ((k) = bch_btree_iter_next_filter((iter), (b), filter));)
342
343#define for_each_key(b, k, iter) \
344 for (bch_btree_iter_init((b), (iter), NULL); \
345 ((k) = bch_btree_iter_next(iter));)
346
67539e85
KO
347/* Sorting */
348
349struct bset_sort_state {
350 mempool_t *pool;
351
352 unsigned page_order;
353 unsigned crit_factor;
354
355 struct time_stats time;
356};
357
358void bch_bset_sort_state_free(struct bset_sort_state *);
359int bch_bset_sort_state_init(struct bset_sort_state *, unsigned);
89ebb4a2
KO
360void bch_btree_sort_lazy(struct btree_keys *, struct bset_sort_state *);
361void bch_btree_sort_into(struct btree_keys *, struct btree_keys *,
67539e85 362 struct bset_sort_state *);
a85e968e 363void bch_btree_sort_and_fix_extents(struct btree_keys *, struct btree_iter *,
67539e85 364 struct bset_sort_state *);
89ebb4a2 365void bch_btree_sort_partial(struct btree_keys *, unsigned,
67539e85
KO
366 struct bset_sort_state *);
367
89ebb4a2 368static inline void bch_btree_sort(struct btree_keys *b,
67539e85
KO
369 struct bset_sort_state *state)
370{
371 bch_btree_sort_partial(b, 0, state);
372}
373
f67342dd
KO
374struct bset_stats {
375 size_t sets_written, sets_unwritten;
376 size_t bytes_written, bytes_unwritten;
377 size_t floats, failed;
378};
379
380void bch_btree_keys_stats(struct btree_keys *, struct bset_stats *);
381
ee811287
KO
382/* Bkey utility code */
383
384#define bset_bkey_last(i) bkey_idx((struct bkey *) (i)->d, (i)->keys)
385
386static inline struct bkey *bset_bkey_idx(struct bset *i, unsigned idx)
387{
388 return bkey_idx(i->start, idx);
389}
390
391static inline void bkey_init(struct bkey *k)
392{
393 *k = ZERO_KEY;
394}
395
396static __always_inline int64_t bkey_cmp(const struct bkey *l,
397 const struct bkey *r)
398{
399 return unlikely(KEY_INODE(l) != KEY_INODE(r))
400 ? (int64_t) KEY_INODE(l) - (int64_t) KEY_INODE(r)
401 : (int64_t) KEY_OFFSET(l) - (int64_t) KEY_OFFSET(r);
402}
403
404void bch_bkey_copy_single_ptr(struct bkey *, const struct bkey *,
405 unsigned);
406bool __bch_cut_front(const struct bkey *, struct bkey *);
407bool __bch_cut_back(const struct bkey *, struct bkey *);
408
409static inline bool bch_cut_front(const struct bkey *where, struct bkey *k)
410{
411 BUG_ON(bkey_cmp(where, k) > 0);
412 return __bch_cut_front(where, k);
413}
414
415static inline bool bch_cut_back(const struct bkey *where, struct bkey *k)
416{
417 BUG_ON(bkey_cmp(where, &START_KEY(k)) < 0);
418 return __bch_cut_back(where, k);
419}
420
421#define PRECEDING_KEY(_k) \
422({ \
423 struct bkey *_ret = NULL; \
424 \
425 if (KEY_INODE(_k) || KEY_OFFSET(_k)) { \
426 _ret = &KEY(KEY_INODE(_k), KEY_OFFSET(_k), 0); \
427 \
428 if (!_ret->low) \
429 _ret->high--; \
430 _ret->low--; \
431 } \
432 \
433 _ret; \
434})
435
a85e968e
KO
436static inline bool bch_ptr_invalid(struct btree_keys *b, const struct bkey *k)
437{
438 return b->ops->key_invalid(b, k);
439}
440
441static inline bool bch_ptr_bad(struct btree_keys *b, const struct bkey *k)
442{
443 return b->ops->key_bad(b, k);
444}
445
dc9d98d6
KO
446static inline void bch_bkey_to_text(struct btree_keys *b, char *buf,
447 size_t size, const struct bkey *k)
448{
449 return b->ops->key_to_text(buf, size, k);
450}
451
3bdad1e4
NS
452static inline bool bch_bkey_equal_header(const struct bkey *l,
453 const struct bkey *r)
454{
455 return (KEY_DIRTY(l) == KEY_DIRTY(r) &&
456 KEY_PTRS(l) == KEY_PTRS(r) &&
8e094808 457 KEY_CSUM(l) == KEY_CSUM(r));
3bdad1e4
NS
458}
459
cafe5635
KO
460/* Keylists */
461
462struct keylist {
cafe5635 463 union {
c2f95ae2
KO
464 struct bkey *keys;
465 uint64_t *keys_p;
466 };
467 union {
468 struct bkey *top;
469 uint64_t *top_p;
cafe5635
KO
470 };
471
472 /* Enough room for btree_split's keys without realloc */
473#define KEYLIST_INLINE 16
c2f95ae2 474 uint64_t inline_keys[KEYLIST_INLINE];
cafe5635
KO
475};
476
477static inline void bch_keylist_init(struct keylist *l)
478{
c2f95ae2 479 l->top_p = l->keys_p = l->inline_keys;
cafe5635
KO
480}
481
c13f3af9
KO
482static inline void bch_keylist_init_single(struct keylist *l, struct bkey *k)
483{
484 l->keys = k;
485 l->top = bkey_next(k);
486}
487
cafe5635
KO
488static inline void bch_keylist_push(struct keylist *l)
489{
490 l->top = bkey_next(l->top);
491}
492
493static inline void bch_keylist_add(struct keylist *l, struct bkey *k)
494{
495 bkey_copy(l->top, k);
496 bch_keylist_push(l);
497}
498
499static inline bool bch_keylist_empty(struct keylist *l)
500{
c2f95ae2
KO
501 return l->top == l->keys;
502}
503
504static inline void bch_keylist_reset(struct keylist *l)
505{
506 l->top = l->keys;
cafe5635
KO
507}
508
509static inline void bch_keylist_free(struct keylist *l)
510{
c2f95ae2
KO
511 if (l->keys_p != l->inline_keys)
512 kfree(l->keys_p);
513}
514
515static inline size_t bch_keylist_nkeys(struct keylist *l)
516{
517 return l->top_p - l->keys_p;
518}
519
520static inline size_t bch_keylist_bytes(struct keylist *l)
521{
522 return bch_keylist_nkeys(l) * sizeof(uint64_t);
cafe5635
KO
523}
524
cafe5635 525struct bkey *bch_keylist_pop(struct keylist *);
26c949f8 526void bch_keylist_pop_front(struct keylist *);
085d2a3d 527int __bch_keylist_realloc(struct keylist *, unsigned);
cafe5635 528
dc9d98d6
KO
529/* Debug stuff */
530
531#ifdef CONFIG_BCACHE_DEBUG
532
533int __bch_count_data(struct btree_keys *);
534void __bch_check_keys(struct btree_keys *, const char *, ...);
535void bch_dump_bset(struct btree_keys *, struct bset *, unsigned);
536void bch_dump_bucket(struct btree_keys *);
537
538#else
539
540static inline int __bch_count_data(struct btree_keys *b) { return -1; }
541static inline void __bch_check_keys(struct btree_keys *b, const char *fmt, ...) {}
542static inline void bch_dump_bucket(struct btree_keys *b) {}
543void bch_dump_bset(struct btree_keys *, struct bset *, unsigned);
544
545#endif
546
547static inline bool btree_keys_expensive_checks(struct btree_keys *b)
548{
549#ifdef CONFIG_BCACHE_DEBUG
550 return *b->expensive_debug_checks;
551#else
552 return false;
553#endif
554}
555
556static inline int bch_count_data(struct btree_keys *b)
557{
558 return btree_keys_expensive_checks(b) ? __bch_count_data(b) : -1;
559}
560
561#define bch_check_keys(b, ...) \
562do { \
563 if (btree_keys_expensive_checks(b)) \
564 __bch_check_keys(b, __VA_ARGS__); \
565} while (0)
cafe5635 566
cafe5635 567#endif