bcache: replace Symbolic permissions by octal permission numbers
[linux-block.git] / drivers / md / bcache / bset.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
cafe5635
KO
2/*
3 * Code for working with individual keys, and sorted sets of keys with in a
4 * btree node
5 *
6 * Copyright 2012 Google, Inc.
7 */
8
89ebb4a2
KO
9#define pr_fmt(fmt) "bcache: %s() " fmt "\n", __func__
10
11#include "util.h"
12#include "bset.h"
cafe5635 13
dc9d98d6 14#include <linux/console.h>
e6017571 15#include <linux/sched/clock.h>
cafe5635 16#include <linux/random.h>
cd953ed0 17#include <linux/prefetch.h>
cafe5635 18
dc9d98d6
KO
19#ifdef CONFIG_BCACHE_DEBUG
20
6f10f7d1 21void bch_dump_bset(struct btree_keys *b, struct bset *i, unsigned int set)
dc9d98d6
KO
22{
23 struct bkey *k, *next;
24
25 for (k = i->start; k < bset_bkey_last(i); k = next) {
26 next = bkey_next(k);
27
85cbe1f8 28 printk(KERN_ERR "block %u key %u/%u: ", set,
6f10f7d1 29 (unsigned int) ((u64 *) k - i->d), i->keys);
dc9d98d6
KO
30
31 if (b->ops->key_dump)
32 b->ops->key_dump(b, k);
33 else
34 printk("%llu:%llu\n", KEY_INODE(k), KEY_OFFSET(k));
35
36 if (next < bset_bkey_last(i) &&
37 bkey_cmp(k, b->ops->is_extents ?
38 &START_KEY(next) : next) > 0)
39 printk(KERN_ERR "Key skipped backwards\n");
40 }
41}
42
43void bch_dump_bucket(struct btree_keys *b)
44{
6f10f7d1 45 unsigned int i;
dc9d98d6
KO
46
47 console_lock();
48 for (i = 0; i <= b->nsets; i++)
49 bch_dump_bset(b, b->set[i].data,
50 bset_sector_offset(b, b->set[i].data));
51 console_unlock();
52}
53
54int __bch_count_data(struct btree_keys *b)
55{
6f10f7d1 56 unsigned int ret = 0;
dc9d98d6
KO
57 struct btree_iter iter;
58 struct bkey *k;
59
60 if (b->ops->is_extents)
61 for_each_key(b, k, &iter)
62 ret += KEY_SIZE(k);
63 return ret;
64}
65
66void __bch_check_keys(struct btree_keys *b, const char *fmt, ...)
67{
68 va_list args;
69 struct bkey *k, *p = NULL;
70 struct btree_iter iter;
71 const char *err;
72
73 for_each_key(b, k, &iter) {
74 if (b->ops->is_extents) {
75 err = "Keys out of order";
76 if (p && bkey_cmp(&START_KEY(p), &START_KEY(k)) > 0)
77 goto bug;
78
79 if (bch_ptr_invalid(b, k))
80 continue;
81
82 err = "Overlapping keys";
83 if (p && bkey_cmp(p, &START_KEY(k)) > 0)
84 goto bug;
85 } else {
86 if (bch_ptr_bad(b, k))
87 continue;
88
89 err = "Duplicate keys";
90 if (p && !bkey_cmp(p, k))
91 goto bug;
92 }
93 p = k;
94 }
95#if 0
96 err = "Key larger than btree node key";
97 if (p && bkey_cmp(p, &b->key) > 0)
98 goto bug;
99#endif
100 return;
101bug:
102 bch_dump_bucket(b);
103
104 va_start(args, fmt);
105 vprintk(fmt, args);
106 va_end(args);
107
108 panic("bch_check_keys error: %s:\n", err);
109}
110
111static void bch_btree_iter_next_check(struct btree_iter *iter)
112{
113 struct bkey *k = iter->data->k, *next = bkey_next(k);
114
115 if (next < iter->data->end &&
116 bkey_cmp(k, iter->b->ops->is_extents ?
117 &START_KEY(next) : next) > 0) {
118 bch_dump_bucket(iter->b);
119 panic("Key skipped backwards\n");
120 }
121}
122
123#else
124
125static inline void bch_btree_iter_next_check(struct btree_iter *iter) {}
126
127#endif
128
cafe5635
KO
129/* Keylists */
130
6f10f7d1 131int __bch_keylist_realloc(struct keylist *l, unsigned int u64s)
cafe5635 132{
c2f95ae2 133 size_t oldsize = bch_keylist_nkeys(l);
085d2a3d 134 size_t newsize = oldsize + u64s;
c2f95ae2
KO
135 uint64_t *old_keys = l->keys_p == l->inline_keys ? NULL : l->keys_p;
136 uint64_t *new_keys;
cafe5635 137
cafe5635
KO
138 newsize = roundup_pow_of_two(newsize);
139
140 if (newsize <= KEYLIST_INLINE ||
141 roundup_pow_of_two(oldsize) == newsize)
142 return 0;
143
c2f95ae2 144 new_keys = krealloc(old_keys, sizeof(uint64_t) * newsize, GFP_NOIO);
cafe5635 145
c2f95ae2 146 if (!new_keys)
cafe5635
KO
147 return -ENOMEM;
148
c2f95ae2
KO
149 if (!old_keys)
150 memcpy(new_keys, l->inline_keys, sizeof(uint64_t) * oldsize);
cafe5635 151
c2f95ae2
KO
152 l->keys_p = new_keys;
153 l->top_p = new_keys + oldsize;
cafe5635
KO
154
155 return 0;
156}
157
158struct bkey *bch_keylist_pop(struct keylist *l)
159{
c2f95ae2 160 struct bkey *k = l->keys;
cafe5635
KO
161
162 if (k == l->top)
163 return NULL;
164
165 while (bkey_next(k) != l->top)
166 k = bkey_next(k);
167
168 return l->top = k;
169}
170
26c949f8
KO
171void bch_keylist_pop_front(struct keylist *l)
172{
c2f95ae2 173 l->top_p -= bkey_u64s(l->keys);
26c949f8 174
c2f95ae2
KO
175 memmove(l->keys,
176 bkey_next(l->keys),
177 bch_keylist_bytes(l));
26c949f8
KO
178}
179
cafe5635
KO
180/* Key/pointer manipulation */
181
182void bch_bkey_copy_single_ptr(struct bkey *dest, const struct bkey *src,
6f10f7d1 183 unsigned int i)
cafe5635
KO
184{
185 BUG_ON(i > KEY_PTRS(src));
186
187 /* Only copy the header, key, and one pointer. */
188 memcpy(dest, src, 2 * sizeof(uint64_t));
189 dest->ptr[0] = src->ptr[i];
190 SET_KEY_PTRS(dest, 1);
191 /* We didn't copy the checksum so clear that bit. */
192 SET_KEY_CSUM(dest, 0);
193}
194
195bool __bch_cut_front(const struct bkey *where, struct bkey *k)
196{
6f10f7d1 197 unsigned int i, len = 0;
cafe5635
KO
198
199 if (bkey_cmp(where, &START_KEY(k)) <= 0)
200 return false;
201
202 if (bkey_cmp(where, k) < 0)
203 len = KEY_OFFSET(k) - KEY_OFFSET(where);
204 else
205 bkey_copy_key(k, where);
206
207 for (i = 0; i < KEY_PTRS(k); i++)
208 SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + KEY_SIZE(k) - len);
209
210 BUG_ON(len > KEY_SIZE(k));
211 SET_KEY_SIZE(k, len);
212 return true;
213}
214
215bool __bch_cut_back(const struct bkey *where, struct bkey *k)
216{
6f10f7d1 217 unsigned int len = 0;
cafe5635
KO
218
219 if (bkey_cmp(where, k) >= 0)
220 return false;
221
222 BUG_ON(KEY_INODE(where) != KEY_INODE(k));
223
224 if (bkey_cmp(where, &START_KEY(k)) > 0)
225 len = KEY_OFFSET(where) - KEY_START(k);
226
227 bkey_copy_key(k, where);
228
229 BUG_ON(len > KEY_SIZE(k));
230 SET_KEY_SIZE(k, len);
231 return true;
232}
233
ee811287
KO
234/* Auxiliary search trees */
235
236/* 32 bits total: */
237#define BKEY_MID_BITS 3
238#define BKEY_EXPONENT_BITS 7
239#define BKEY_MANTISSA_BITS (32 - BKEY_MID_BITS - BKEY_EXPONENT_BITS)
240#define BKEY_MANTISSA_MASK ((1 << BKEY_MANTISSA_BITS) - 1)
241
242struct bkey_float {
6f10f7d1
CL
243 unsigned int exponent:BKEY_EXPONENT_BITS;
244 unsigned int m:BKEY_MID_BITS;
245 unsigned int mantissa:BKEY_MANTISSA_BITS;
ee811287
KO
246} __packed;
247
248/*
249 * BSET_CACHELINE was originally intended to match the hardware cacheline size -
250 * it used to be 64, but I realized the lookup code would touch slightly less
251 * memory if it was 128.
252 *
253 * It definites the number of bytes (in struct bset) per struct bkey_float in
254 * the auxiliar search tree - when we're done searching the bset_float tree we
255 * have this many bytes left that we do a linear search over.
256 *
257 * Since (after level 5) every level of the bset_tree is on a new cacheline,
258 * we're touching one fewer cacheline in the bset tree in exchange for one more
259 * cacheline in the linear search - but the linear search might stop before it
260 * gets to the second cacheline.
261 */
262
263#define BSET_CACHELINE 128
264
265/* Space required for the btree node keys */
a85e968e 266static inline size_t btree_keys_bytes(struct btree_keys *b)
ee811287
KO
267{
268 return PAGE_SIZE << b->page_order;
269}
270
a85e968e 271static inline size_t btree_keys_cachelines(struct btree_keys *b)
ee811287
KO
272{
273 return btree_keys_bytes(b) / BSET_CACHELINE;
274}
275
276/* Space required for the auxiliary search trees */
a85e968e 277static inline size_t bset_tree_bytes(struct btree_keys *b)
ee811287
KO
278{
279 return btree_keys_cachelines(b) * sizeof(struct bkey_float);
280}
281
282/* Space required for the prev pointers */
a85e968e 283static inline size_t bset_prev_bytes(struct btree_keys *b)
ee811287
KO
284{
285 return btree_keys_cachelines(b) * sizeof(uint8_t);
286}
287
288/* Memory allocation */
289
a85e968e 290void bch_btree_keys_free(struct btree_keys *b)
ee811287 291{
a85e968e 292 struct bset_tree *t = b->set;
ee811287
KO
293
294 if (bset_prev_bytes(b) < PAGE_SIZE)
295 kfree(t->prev);
296 else
297 free_pages((unsigned long) t->prev,
298 get_order(bset_prev_bytes(b)));
299
300 if (bset_tree_bytes(b) < PAGE_SIZE)
301 kfree(t->tree);
302 else
303 free_pages((unsigned long) t->tree,
304 get_order(bset_tree_bytes(b)));
305
306 free_pages((unsigned long) t->data, b->page_order);
307
308 t->prev = NULL;
309 t->tree = NULL;
310 t->data = NULL;
311}
a85e968e 312EXPORT_SYMBOL(bch_btree_keys_free);
ee811287 313
b0d30981
CL
314int bch_btree_keys_alloc(struct btree_keys *b,
315 unsigned int page_order,
316 gfp_t gfp)
ee811287 317{
a85e968e 318 struct bset_tree *t = b->set;
ee811287
KO
319
320 BUG_ON(t->data);
321
322 b->page_order = page_order;
323
324 t->data = (void *) __get_free_pages(gfp, b->page_order);
325 if (!t->data)
326 goto err;
327
328 t->tree = bset_tree_bytes(b) < PAGE_SIZE
329 ? kmalloc(bset_tree_bytes(b), gfp)
330 : (void *) __get_free_pages(gfp, get_order(bset_tree_bytes(b)));
331 if (!t->tree)
332 goto err;
333
334 t->prev = bset_prev_bytes(b) < PAGE_SIZE
335 ? kmalloc(bset_prev_bytes(b), gfp)
336 : (void *) __get_free_pages(gfp, get_order(bset_prev_bytes(b)));
337 if (!t->prev)
338 goto err;
339
340 return 0;
341err:
342 bch_btree_keys_free(b);
343 return -ENOMEM;
344}
a85e968e
KO
345EXPORT_SYMBOL(bch_btree_keys_alloc);
346
347void bch_btree_keys_init(struct btree_keys *b, const struct btree_keys_ops *ops,
348 bool *expensive_debug_checks)
349{
6f10f7d1 350 unsigned int i;
a85e968e
KO
351
352 b->ops = ops;
353 b->expensive_debug_checks = expensive_debug_checks;
354 b->nsets = 0;
355 b->last_set_unwritten = 0;
356
357 /* XXX: shouldn't be needed */
358 for (i = 0; i < MAX_BSETS; i++)
359 b->set[i].size = 0;
360 /*
361 * Second loop starts at 1 because b->keys[0]->data is the memory we
362 * allocated
363 */
364 for (i = 1; i < MAX_BSETS; i++)
365 b->set[i].data = NULL;
366}
367EXPORT_SYMBOL(bch_btree_keys_init);
ee811287 368
cafe5635
KO
369/* Binary tree stuff for auxiliary search trees */
370
b467a6ac
CL
371/*
372 * return array index next to j when does in-order traverse
373 * of a binary tree which is stored in a linear array
374 */
6f10f7d1 375static unsigned int inorder_next(unsigned int j, unsigned int size)
cafe5635
KO
376{
377 if (j * 2 + 1 < size) {
378 j = j * 2 + 1;
379
380 while (j * 2 < size)
381 j *= 2;
382 } else
383 j >>= ffz(j) + 1;
384
385 return j;
386}
387
b467a6ac
CL
388/*
389 * return array index previous to j when does in-order traverse
390 * of a binary tree which is stored in a linear array
391 */
6f10f7d1 392static unsigned int inorder_prev(unsigned int j, unsigned int size)
cafe5635
KO
393{
394 if (j * 2 < size) {
395 j = j * 2;
396
397 while (j * 2 + 1 < size)
398 j = j * 2 + 1;
399 } else
400 j >>= ffs(j);
401
402 return j;
403}
404
405/* I have no idea why this code works... and I'm the one who wrote it
406 *
407 * However, I do know what it does:
408 * Given a binary tree constructed in an array (i.e. how you normally implement
409 * a heap), it converts a node in the tree - referenced by array index - to the
410 * index it would have if you did an inorder traversal.
411 *
412 * Also tested for every j, size up to size somewhere around 6 million.
413 *
414 * The binary tree starts at array index 1, not 0
415 * extra is a function of size:
416 * extra = (size - rounddown_pow_of_two(size - 1)) << 1;
417 */
6f10f7d1
CL
418static unsigned int __to_inorder(unsigned int j,
419 unsigned int size,
420 unsigned int extra)
cafe5635 421{
6f10f7d1
CL
422 unsigned int b = fls(j);
423 unsigned int shift = fls(size - 1) - b;
cafe5635
KO
424
425 j ^= 1U << (b - 1);
426 j <<= 1;
427 j |= 1;
428 j <<= shift;
429
430 if (j > extra)
431 j -= (j - extra) >> 1;
432
433 return j;
434}
435
b467a6ac
CL
436/*
437 * Return the cacheline index in bset_tree->data, where j is index
438 * from a linear array which stores the auxiliar binary tree
439 */
6f10f7d1 440static unsigned int to_inorder(unsigned int j, struct bset_tree *t)
cafe5635
KO
441{
442 return __to_inorder(j, t->size, t->extra);
443}
444
6f10f7d1
CL
445static unsigned int __inorder_to_tree(unsigned int j,
446 unsigned int size,
447 unsigned int extra)
cafe5635 448{
6f10f7d1 449 unsigned int shift;
cafe5635
KO
450
451 if (j > extra)
452 j += j - extra;
453
454 shift = ffs(j);
455
456 j >>= shift;
457 j |= roundup_pow_of_two(size) >> shift;
458
459 return j;
460}
461
b467a6ac
CL
462/*
463 * Return an index from a linear array which stores the auxiliar binary
464 * tree, j is the cacheline index of t->data.
465 */
6f10f7d1 466static unsigned int inorder_to_tree(unsigned int j, struct bset_tree *t)
cafe5635
KO
467{
468 return __inorder_to_tree(j, t->size, t->extra);
469}
470
471#if 0
472void inorder_test(void)
473{
474 unsigned long done = 0;
475 ktime_t start = ktime_get();
476
6f10f7d1 477 for (unsigned int size = 2;
cafe5635
KO
478 size < 65536000;
479 size++) {
b0d30981
CL
480 unsigned int extra =
481 (size - rounddown_pow_of_two(size - 1)) << 1;
6f10f7d1 482 unsigned int i = 1, j = rounddown_pow_of_two(size - 1);
cafe5635
KO
483
484 if (!(size % 4096))
485 printk(KERN_NOTICE "loop %u, %llu per us\n", size,
486 done / ktime_us_delta(ktime_get(), start));
487
488 while (1) {
489 if (__inorder_to_tree(i, size, extra) != j)
490 panic("size %10u j %10u i %10u", size, j, i);
491
492 if (__to_inorder(j, size, extra) != i)
493 panic("size %10u j %10u i %10u", size, j, i);
494
495 if (j == rounddown_pow_of_two(size) - 1)
496 break;
497
498 BUG_ON(inorder_prev(inorder_next(j, size), size) != j);
499
500 j = inorder_next(j, size);
501 i++;
502 }
503
504 done += size - 1;
505 }
506}
507#endif
508
509/*
48a73025 510 * Cacheline/offset <-> bkey pointer arithmetic:
cafe5635
KO
511 *
512 * t->tree is a binary search tree in an array; each node corresponds to a key
513 * in one cacheline in t->set (BSET_CACHELINE bytes).
514 *
515 * This means we don't have to store the full index of the key that a node in
516 * the binary tree points to; to_inorder() gives us the cacheline, and then
517 * bkey_float->m gives us the offset within that cacheline, in units of 8 bytes.
518 *
48a73025 519 * cacheline_to_bkey() and friends abstract out all the pointer arithmetic to
cafe5635
KO
520 * make this work.
521 *
522 * To construct the bfloat for an arbitrary key we need to know what the key
523 * immediately preceding it is: we have to check if the two keys differ in the
524 * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size
525 * of the previous key so we can walk backwards to it from t->tree[j]'s key.
526 */
527
6f10f7d1
CL
528static struct bkey *cacheline_to_bkey(struct bset_tree *t,
529 unsigned int cacheline,
530 unsigned int offset)
cafe5635
KO
531{
532 return ((void *) t->data) + cacheline * BSET_CACHELINE + offset * 8;
533}
534
6f10f7d1 535static unsigned int bkey_to_cacheline(struct bset_tree *t, struct bkey *k)
cafe5635
KO
536{
537 return ((void *) k - (void *) t->data) / BSET_CACHELINE;
538}
539
6f10f7d1
CL
540static unsigned int bkey_to_cacheline_offset(struct bset_tree *t,
541 unsigned int cacheline,
9dd6358a 542 struct bkey *k)
cafe5635 543{
9dd6358a 544 return (u64 *) k - (u64 *) cacheline_to_bkey(t, cacheline, 0);
cafe5635
KO
545}
546
6f10f7d1 547static struct bkey *tree_to_bkey(struct bset_tree *t, unsigned int j)
cafe5635
KO
548{
549 return cacheline_to_bkey(t, to_inorder(j, t), t->tree[j].m);
550}
551
6f10f7d1 552static struct bkey *tree_to_prev_bkey(struct bset_tree *t, unsigned int j)
cafe5635
KO
553{
554 return (void *) (((uint64_t *) tree_to_bkey(t, j)) - t->prev[j]);
555}
556
557/*
558 * For the write set - the one we're currently inserting keys into - we don't
559 * maintain a full search tree, we just keep a simple lookup table in t->prev.
560 */
6f10f7d1 561static struct bkey *table_to_bkey(struct bset_tree *t, unsigned int cacheline)
cafe5635
KO
562{
563 return cacheline_to_bkey(t, cacheline, t->prev[cacheline]);
564}
565
566static inline uint64_t shrd128(uint64_t high, uint64_t low, uint8_t shift)
567{
cafe5635
KO
568 low >>= shift;
569 low |= (high << 1) << (63U - shift);
cafe5635
KO
570 return low;
571}
572
b467a6ac
CL
573/*
574 * Calculate mantissa value for struct bkey_float.
575 * If most significant bit of f->exponent is not set, then
576 * - f->exponent >> 6 is 0
577 * - p[0] points to bkey->low
578 * - p[-1] borrows bits from KEY_INODE() of bkey->high
579 * if most isgnificant bits of f->exponent is set, then
580 * - f->exponent >> 6 is 1
581 * - p[0] points to bits from KEY_INODE() of bkey->high
582 * - p[-1] points to other bits from KEY_INODE() of
583 * bkey->high too.
584 * See make_bfloat() to check when most significant bit of f->exponent
585 * is set or not.
586 */
6f10f7d1 587static inline unsigned int bfloat_mantissa(const struct bkey *k,
cafe5635
KO
588 struct bkey_float *f)
589{
590 const uint64_t *p = &k->low - (f->exponent >> 6);
1fae7cf0 591
cafe5635
KO
592 return shrd128(p[-1], p[0], f->exponent & 63) & BKEY_MANTISSA_MASK;
593}
594
6f10f7d1 595static void make_bfloat(struct bset_tree *t, unsigned int j)
cafe5635
KO
596{
597 struct bkey_float *f = &t->tree[j];
598 struct bkey *m = tree_to_bkey(t, j);
599 struct bkey *p = tree_to_prev_bkey(t, j);
600
601 struct bkey *l = is_power_of_2(j)
602 ? t->data->start
603 : tree_to_prev_bkey(t, j >> ffs(j));
604
605 struct bkey *r = is_power_of_2(j + 1)
fafff81c 606 ? bset_bkey_idx(t->data, t->data->keys - bkey_u64s(&t->end))
cafe5635
KO
607 : tree_to_bkey(t, j >> (ffz(j) + 1));
608
609 BUG_ON(m < l || m > r);
610 BUG_ON(bkey_next(p) != m);
611
b467a6ac
CL
612 /*
613 * If l and r have different KEY_INODE values (different backing
614 * device), f->exponent records how many least significant bits
615 * are different in KEY_INODE values and sets most significant
616 * bits to 1 (by +64).
617 * If l and r have same KEY_INODE value, f->exponent records
618 * how many different bits in least significant bits of bkey->low.
619 * See bfloat_mantiss() how the most significant bit of
620 * f->exponent is used to calculate bfloat mantissa value.
621 */
cafe5635
KO
622 if (KEY_INODE(l) != KEY_INODE(r))
623 f->exponent = fls64(KEY_INODE(r) ^ KEY_INODE(l)) + 64;
624 else
625 f->exponent = fls64(r->low ^ l->low);
626
627 f->exponent = max_t(int, f->exponent - BKEY_MANTISSA_BITS, 0);
628
629 /*
630 * Setting f->exponent = 127 flags this node as failed, and causes the
631 * lookup code to fall back to comparing against the original key.
632 */
633
634 if (bfloat_mantissa(m, f) != bfloat_mantissa(p, f))
635 f->mantissa = bfloat_mantissa(m, f) - 1;
636 else
637 f->exponent = 127;
638}
639
a85e968e 640static void bset_alloc_tree(struct btree_keys *b, struct bset_tree *t)
cafe5635 641{
a85e968e 642 if (t != b->set) {
6f10f7d1 643 unsigned int j = roundup(t[-1].size,
cafe5635
KO
644 64 / sizeof(struct bkey_float));
645
646 t->tree = t[-1].tree + j;
647 t->prev = t[-1].prev + j;
648 }
649
a85e968e 650 while (t < b->set + MAX_BSETS)
cafe5635
KO
651 t++->size = 0;
652}
653
a85e968e 654static void bch_bset_build_unwritten_tree(struct btree_keys *b)
cafe5635 655{
ee811287 656 struct bset_tree *t = bset_tree_last(b);
cafe5635 657
a85e968e
KO
658 BUG_ON(b->last_set_unwritten);
659 b->last_set_unwritten = 1;
660
cafe5635
KO
661 bset_alloc_tree(b, t);
662
a85e968e 663 if (t->tree != b->set->tree + btree_keys_cachelines(b)) {
9dd6358a 664 t->prev[0] = bkey_to_cacheline_offset(t, 0, t->data->start);
cafe5635
KO
665 t->size = 1;
666 }
667}
668
a85e968e 669void bch_bset_init_next(struct btree_keys *b, struct bset *i, uint64_t magic)
ee811287 670{
a85e968e
KO
671 if (i != b->set->data) {
672 b->set[++b->nsets].data = i;
673 i->seq = b->set->data->seq;
ee811287
KO
674 } else
675 get_random_bytes(&i->seq, sizeof(uint64_t));
676
677 i->magic = magic;
678 i->version = 0;
679 i->keys = 0;
680
681 bch_bset_build_unwritten_tree(b);
682}
a85e968e 683EXPORT_SYMBOL(bch_bset_init_next);
ee811287 684
b467a6ac
CL
685/*
686 * Build auxiliary binary tree 'struct bset_tree *t', this tree is used to
687 * accelerate bkey search in a btree node (pointed by bset_tree->data in
688 * memory). After search in the auxiliar tree by calling bset_search_tree(),
689 * a struct bset_search_iter is returned which indicates range [l, r] from
690 * bset_tree->data where the searching bkey might be inside. Then a followed
691 * linear comparison does the exact search, see __bch_bset_search() for how
692 * the auxiliary tree is used.
693 */
a85e968e 694void bch_bset_build_written_tree(struct btree_keys *b)
cafe5635 695{
ee811287 696 struct bset_tree *t = bset_tree_last(b);
9dd6358a 697 struct bkey *prev = NULL, *k = t->data->start;
6f10f7d1 698 unsigned int j, cacheline = 1;
cafe5635 699
a85e968e
KO
700 b->last_set_unwritten = 0;
701
cafe5635
KO
702 bset_alloc_tree(b, t);
703
6f10f7d1 704 t->size = min_t(unsigned int,
fafff81c 705 bkey_to_cacheline(t, bset_bkey_last(t->data)),
a85e968e 706 b->set->tree + btree_keys_cachelines(b) - t->tree);
cafe5635
KO
707
708 if (t->size < 2) {
709 t->size = 0;
710 return;
711 }
712
713 t->extra = (t->size - rounddown_pow_of_two(t->size - 1)) << 1;
714
715 /* First we figure out where the first key in each cacheline is */
716 for (j = inorder_next(0, t->size);
717 j;
718 j = inorder_next(j, t->size)) {
9dd6358a
KO
719 while (bkey_to_cacheline(t, k) < cacheline)
720 prev = k, k = bkey_next(k);
cafe5635 721
9dd6358a
KO
722 t->prev[j] = bkey_u64s(prev);
723 t->tree[j].m = bkey_to_cacheline_offset(t, cacheline++, k);
cafe5635
KO
724 }
725
fafff81c 726 while (bkey_next(k) != bset_bkey_last(t->data))
cafe5635
KO
727 k = bkey_next(k);
728
729 t->end = *k;
730
731 /* Then we build the tree */
732 for (j = inorder_next(0, t->size);
733 j;
734 j = inorder_next(j, t->size))
735 make_bfloat(t, j);
736}
a85e968e 737EXPORT_SYMBOL(bch_bset_build_written_tree);
cafe5635 738
829a60b9
KO
739/* Insert */
740
a85e968e 741void bch_bset_fix_invalidated_key(struct btree_keys *b, struct bkey *k)
cafe5635
KO
742{
743 struct bset_tree *t;
6f10f7d1 744 unsigned int inorder, j = 1;
cafe5635 745
a85e968e 746 for (t = b->set; t <= bset_tree_last(b); t++)
fafff81c 747 if (k < bset_bkey_last(t->data))
cafe5635
KO
748 goto found_set;
749
750 BUG();
751found_set:
752 if (!t->size || !bset_written(b, t))
753 return;
754
755 inorder = bkey_to_cacheline(t, k);
756
757 if (k == t->data->start)
758 goto fix_left;
759
fafff81c 760 if (bkey_next(k) == bset_bkey_last(t->data)) {
cafe5635
KO
761 t->end = *k;
762 goto fix_right;
763 }
764
765 j = inorder_to_tree(inorder, t);
766
767 if (j &&
768 j < t->size &&
769 k == tree_to_bkey(t, j))
770fix_left: do {
771 make_bfloat(t, j);
772 j = j * 2;
773 } while (j < t->size);
774
775 j = inorder_to_tree(inorder + 1, t);
776
777 if (j &&
778 j < t->size &&
779 k == tree_to_prev_bkey(t, j))
780fix_right: do {
781 make_bfloat(t, j);
782 j = j * 2 + 1;
783 } while (j < t->size);
784}
a85e968e 785EXPORT_SYMBOL(bch_bset_fix_invalidated_key);
cafe5635 786
a85e968e 787static void bch_bset_fix_lookup_table(struct btree_keys *b,
ee811287
KO
788 struct bset_tree *t,
789 struct bkey *k)
cafe5635 790{
6f10f7d1
CL
791 unsigned int shift = bkey_u64s(k);
792 unsigned int j = bkey_to_cacheline(t, k);
cafe5635
KO
793
794 /* We're getting called from btree_split() or btree_gc, just bail out */
795 if (!t->size)
796 return;
797
798 /* k is the key we just inserted; we need to find the entry in the
799 * lookup table for the first key that is strictly greater than k:
800 * it's either k's cacheline or the next one
801 */
9dd6358a
KO
802 while (j < t->size &&
803 table_to_bkey(t, j) <= k)
cafe5635
KO
804 j++;
805
806 /* Adjust all the lookup table entries, and find a new key for any that
807 * have gotten too big
808 */
809 for (; j < t->size; j++) {
810 t->prev[j] += shift;
811
812 if (t->prev[j] > 7) {
813 k = table_to_bkey(t, j - 1);
814
815 while (k < cacheline_to_bkey(t, j, 0))
816 k = bkey_next(k);
817
9dd6358a 818 t->prev[j] = bkey_to_cacheline_offset(t, j, k);
cafe5635
KO
819 }
820 }
821
a85e968e 822 if (t->size == b->set->tree + btree_keys_cachelines(b) - t->tree)
cafe5635
KO
823 return;
824
825 /* Possibly add a new entry to the end of the lookup table */
826
827 for (k = table_to_bkey(t, t->size - 1);
fafff81c 828 k != bset_bkey_last(t->data);
cafe5635
KO
829 k = bkey_next(k))
830 if (t->size == bkey_to_cacheline(t, k)) {
b0d30981
CL
831 t->prev[t->size] =
832 bkey_to_cacheline_offset(t, t->size, k);
cafe5635
KO
833 t->size++;
834 }
835}
836
0f49cf3d
NS
837/*
838 * Tries to merge l and r: l should be lower than r
839 * Returns true if we were able to merge. If we did merge, l will be the merged
840 * key, r will be untouched.
841 */
842bool bch_bkey_try_merge(struct btree_keys *b, struct bkey *l, struct bkey *r)
843{
844 if (!b->ops->key_merge)
845 return false;
846
847 /*
848 * Generic header checks
849 * Assumes left and right are in order
850 * Left and right must be exactly aligned
851 */
3bdad1e4
NS
852 if (!bch_bkey_equal_header(l, r) ||
853 bkey_cmp(l, &START_KEY(r)))
0f49cf3d
NS
854 return false;
855
856 return b->ops->key_merge(b, l, r);
857}
858EXPORT_SYMBOL(bch_bkey_try_merge);
859
a85e968e 860void bch_bset_insert(struct btree_keys *b, struct bkey *where,
ee811287 861 struct bkey *insert)
cafe5635 862{
ee811287 863 struct bset_tree *t = bset_tree_last(b);
cafe5635 864
a85e968e 865 BUG_ON(!b->last_set_unwritten);
ee811287
KO
866 BUG_ON(bset_byte_offset(b, t->data) +
867 __set_bytes(t->data, t->data->keys + bkey_u64s(insert)) >
868 PAGE_SIZE << b->page_order);
cafe5635 869
ee811287
KO
870 memmove((uint64_t *) where + bkey_u64s(insert),
871 where,
872 (void *) bset_bkey_last(t->data) - (void *) where);
cafe5635 873
ee811287
KO
874 t->data->keys += bkey_u64s(insert);
875 bkey_copy(where, insert);
876 bch_bset_fix_lookup_table(b, t, where);
cafe5635 877}
a85e968e 878EXPORT_SYMBOL(bch_bset_insert);
cafe5635 879
6f10f7d1 880unsigned int bch_btree_insert_key(struct btree_keys *b, struct bkey *k,
829a60b9
KO
881 struct bkey *replace_key)
882{
6f10f7d1 883 unsigned int status = BTREE_INSERT_STATUS_NO_INSERT;
829a60b9
KO
884 struct bset *i = bset_tree_last(b)->data;
885 struct bkey *m, *prev = NULL;
886 struct btree_iter iter;
887
888 BUG_ON(b->ops->is_extents && !KEY_SIZE(k));
889
890 m = bch_btree_iter_init(b, &iter, b->ops->is_extents
891 ? PRECEDING_KEY(&START_KEY(k))
892 : PRECEDING_KEY(k));
893
894 if (b->ops->insert_fixup(b, k, &iter, replace_key))
895 return status;
896
897 status = BTREE_INSERT_STATUS_INSERT;
898
899 while (m != bset_bkey_last(i) &&
900 bkey_cmp(k, b->ops->is_extents ? &START_KEY(m) : m) > 0)
901 prev = m, m = bkey_next(m);
902
903 /* prev is in the tree, if we merge we're done */
904 status = BTREE_INSERT_STATUS_BACK_MERGE;
905 if (prev &&
906 bch_bkey_try_merge(b, prev, k))
907 goto merged;
908#if 0
909 status = BTREE_INSERT_STATUS_OVERWROTE;
910 if (m != bset_bkey_last(i) &&
911 KEY_PTRS(m) == KEY_PTRS(k) && !KEY_SIZE(m))
912 goto copy;
913#endif
914 status = BTREE_INSERT_STATUS_FRONT_MERGE;
915 if (m != bset_bkey_last(i) &&
916 bch_bkey_try_merge(b, k, m))
917 goto copy;
918
919 bch_bset_insert(b, m, k);
920copy: bkey_copy(m, k);
921merged:
922 return status;
923}
924EXPORT_SYMBOL(bch_btree_insert_key);
925
926/* Lookup */
927
cafe5635
KO
928struct bset_search_iter {
929 struct bkey *l, *r;
930};
931
a85e968e 932static struct bset_search_iter bset_search_write_set(struct bset_tree *t,
cafe5635
KO
933 const struct bkey *search)
934{
6f10f7d1 935 unsigned int li = 0, ri = t->size;
cafe5635 936
cafe5635 937 while (li + 1 != ri) {
6f10f7d1 938 unsigned int m = (li + ri) >> 1;
cafe5635
KO
939
940 if (bkey_cmp(table_to_bkey(t, m), search) > 0)
941 ri = m;
942 else
943 li = m;
944 }
945
946 return (struct bset_search_iter) {
947 table_to_bkey(t, li),
fafff81c 948 ri < t->size ? table_to_bkey(t, ri) : bset_bkey_last(t->data)
cafe5635
KO
949 };
950}
951
a85e968e 952static struct bset_search_iter bset_search_tree(struct bset_tree *t,
cafe5635
KO
953 const struct bkey *search)
954{
955 struct bkey *l, *r;
956 struct bkey_float *f;
6f10f7d1 957 unsigned int inorder, j, n = 1;
cafe5635
KO
958
959 do {
b467a6ac
CL
960 /*
961 * A bit trick here.
962 * If p < t->size, (int)(p - t->size) is a minus value and
963 * the most significant bit is set, right shifting 31 bits
964 * gets 1. If p >= t->size, the most significant bit is
965 * not set, right shifting 31 bits gets 0.
966 * So the following 2 lines equals to
967 * if (p >= t->size)
968 * p = 0;
969 * but a branch instruction is avoided.
970 */
6f10f7d1 971 unsigned int p = n << 4;
1fae7cf0 972
cafe5635
KO
973 p &= ((int) (p - t->size)) >> 31;
974
975 prefetch(&t->tree[p]);
976
977 j = n;
978 f = &t->tree[j];
979
980 /*
b467a6ac
CL
981 * Similar bit trick, use subtract operation to avoid a branch
982 * instruction.
983 *
cafe5635
KO
984 * n = (f->mantissa > bfloat_mantissa())
985 * ? j * 2
986 * : j * 2 + 1;
987 *
988 * We need to subtract 1 from f->mantissa for the sign bit trick
989 * to work - that's done in make_bfloat()
990 */
991 if (likely(f->exponent != 127))
6f10f7d1 992 n = j * 2 + (((unsigned int)
cafe5635
KO
993 (f->mantissa -
994 bfloat_mantissa(search, f))) >> 31);
995 else
996 n = (bkey_cmp(tree_to_bkey(t, j), search) > 0)
997 ? j * 2
998 : j * 2 + 1;
999 } while (n < t->size);
1000
1001 inorder = to_inorder(j, t);
1002
1003 /*
1004 * n would have been the node we recursed to - the low bit tells us if
1005 * we recursed left or recursed right.
1006 */
1007 if (n & 1) {
1008 l = cacheline_to_bkey(t, inorder, f->m);
1009
1010 if (++inorder != t->size) {
1011 f = &t->tree[inorder_next(j, t->size)];
1012 r = cacheline_to_bkey(t, inorder, f->m);
1013 } else
fafff81c 1014 r = bset_bkey_last(t->data);
cafe5635
KO
1015 } else {
1016 r = cacheline_to_bkey(t, inorder, f->m);
1017
1018 if (--inorder) {
1019 f = &t->tree[inorder_prev(j, t->size)];
1020 l = cacheline_to_bkey(t, inorder, f->m);
1021 } else
1022 l = t->data->start;
1023 }
1024
1025 return (struct bset_search_iter) {l, r};
1026}
1027
c052dd9a 1028struct bkey *__bch_bset_search(struct btree_keys *b, struct bset_tree *t,
cafe5635
KO
1029 const struct bkey *search)
1030{
1031 struct bset_search_iter i;
1032
1033 /*
1034 * First, we search for a cacheline, then lastly we do a linear search
1035 * within that cacheline.
1036 *
1037 * To search for the cacheline, there's three different possibilities:
1038 * * The set is too small to have a search tree, so we just do a linear
1039 * search over the whole set.
1040 * * The set is the one we're currently inserting into; keeping a full
1041 * auxiliary search tree up to date would be too expensive, so we
1042 * use a much simpler lookup table to do a binary search -
1043 * bset_search_write_set().
1044 * * Or we use the auxiliary search tree we constructed earlier -
1045 * bset_search_tree()
1046 */
1047
1048 if (unlikely(!t->size)) {
1049 i.l = t->data->start;
fafff81c 1050 i.r = bset_bkey_last(t->data);
c052dd9a 1051 } else if (bset_written(b, t)) {
cafe5635
KO
1052 /*
1053 * Each node in the auxiliary search tree covers a certain range
1054 * of bits, and keys above and below the set it covers might
1055 * differ outside those bits - so we have to special case the
1056 * start and end - handle that here:
1057 */
1058
1059 if (unlikely(bkey_cmp(search, &t->end) >= 0))
fafff81c 1060 return bset_bkey_last(t->data);
cafe5635
KO
1061
1062 if (unlikely(bkey_cmp(search, t->data->start) < 0))
1063 return t->data->start;
1064
a85e968e
KO
1065 i = bset_search_tree(t, search);
1066 } else {
c052dd9a 1067 BUG_ON(!b->nsets &&
a85e968e
KO
1068 t->size < bkey_to_cacheline(t, bset_bkey_last(t->data)));
1069
1070 i = bset_search_write_set(t, search);
1071 }
cafe5635 1072
c052dd9a
KO
1073 if (btree_keys_expensive_checks(b)) {
1074 BUG_ON(bset_written(b, t) &&
280481d0
KO
1075 i.l != t->data->start &&
1076 bkey_cmp(tree_to_prev_bkey(t,
1077 inorder_to_tree(bkey_to_cacheline(t, i.l), t)),
1078 search) > 0);
cafe5635 1079
fafff81c 1080 BUG_ON(i.r != bset_bkey_last(t->data) &&
280481d0
KO
1081 bkey_cmp(i.r, search) <= 0);
1082 }
cafe5635
KO
1083
1084 while (likely(i.l != i.r) &&
1085 bkey_cmp(i.l, search) <= 0)
1086 i.l = bkey_next(i.l);
1087
1088 return i.l;
1089}
a85e968e 1090EXPORT_SYMBOL(__bch_bset_search);
cafe5635
KO
1091
1092/* Btree iterator */
1093
911c9610
KO
1094typedef bool (btree_iter_cmp_fn)(struct btree_iter_set,
1095 struct btree_iter_set);
1096
cafe5635
KO
1097static inline bool btree_iter_cmp(struct btree_iter_set l,
1098 struct btree_iter_set r)
1099{
911c9610 1100 return bkey_cmp(l.k, r.k) > 0;
cafe5635
KO
1101}
1102
1103static inline bool btree_iter_end(struct btree_iter *iter)
1104{
1105 return !iter->used;
1106}
1107
1108void bch_btree_iter_push(struct btree_iter *iter, struct bkey *k,
1109 struct bkey *end)
1110{
1111 if (k != end)
1112 BUG_ON(!heap_add(iter,
1113 ((struct btree_iter_set) { k, end }),
1114 btree_iter_cmp));
1115}
1116
c052dd9a 1117static struct bkey *__bch_btree_iter_init(struct btree_keys *b,
911c9610
KO
1118 struct btree_iter *iter,
1119 struct bkey *search,
1120 struct bset_tree *start)
cafe5635
KO
1121{
1122 struct bkey *ret = NULL;
1fae7cf0 1123
cafe5635
KO
1124 iter->size = ARRAY_SIZE(iter->data);
1125 iter->used = 0;
1126
280481d0
KO
1127#ifdef CONFIG_BCACHE_DEBUG
1128 iter->b = b;
1129#endif
1130
c052dd9a 1131 for (; start <= bset_tree_last(b); start++) {
cafe5635 1132 ret = bch_bset_search(b, start, search);
fafff81c 1133 bch_btree_iter_push(iter, ret, bset_bkey_last(start->data));
cafe5635
KO
1134 }
1135
1136 return ret;
1137}
1138
c052dd9a 1139struct bkey *bch_btree_iter_init(struct btree_keys *b,
911c9610
KO
1140 struct btree_iter *iter,
1141 struct bkey *search)
1142{
c052dd9a 1143 return __bch_btree_iter_init(b, iter, search, b->set);
911c9610 1144}
a85e968e 1145EXPORT_SYMBOL(bch_btree_iter_init);
911c9610
KO
1146
1147static inline struct bkey *__bch_btree_iter_next(struct btree_iter *iter,
1148 btree_iter_cmp_fn *cmp)
cafe5635 1149{
42361469 1150 struct btree_iter_set b __maybe_unused;
cafe5635
KO
1151 struct bkey *ret = NULL;
1152
1153 if (!btree_iter_end(iter)) {
280481d0
KO
1154 bch_btree_iter_next_check(iter);
1155
cafe5635
KO
1156 ret = iter->data->k;
1157 iter->data->k = bkey_next(iter->data->k);
1158
1159 if (iter->data->k > iter->data->end) {
cc0f4eaa 1160 WARN_ONCE(1, "bset was corrupt!\n");
cafe5635
KO
1161 iter->data->k = iter->data->end;
1162 }
1163
1164 if (iter->data->k == iter->data->end)
42361469 1165 heap_pop(iter, b, cmp);
cafe5635 1166 else
911c9610 1167 heap_sift(iter, 0, cmp);
cafe5635
KO
1168 }
1169
1170 return ret;
1171}
1172
911c9610
KO
1173struct bkey *bch_btree_iter_next(struct btree_iter *iter)
1174{
1175 return __bch_btree_iter_next(iter, btree_iter_cmp);
1176
1177}
a85e968e 1178EXPORT_SYMBOL(bch_btree_iter_next);
911c9610 1179
cafe5635 1180struct bkey *bch_btree_iter_next_filter(struct btree_iter *iter,
a85e968e 1181 struct btree_keys *b, ptr_filter_fn fn)
cafe5635
KO
1182{
1183 struct bkey *ret;
1184
1185 do {
1186 ret = bch_btree_iter_next(iter);
1187 } while (ret && fn(b, ret));
1188
1189 return ret;
1190}
1191
cafe5635
KO
1192/* Mergesort */
1193
67539e85
KO
1194void bch_bset_sort_state_free(struct bset_sort_state *state)
1195{
d19936a2 1196 mempool_exit(&state->pool);
67539e85
KO
1197}
1198
6f10f7d1
CL
1199int bch_bset_sort_state_init(struct bset_sort_state *state,
1200 unsigned int page_order)
67539e85
KO
1201{
1202 spin_lock_init(&state->time.lock);
1203
1204 state->page_order = page_order;
1205 state->crit_factor = int_sqrt(1 << page_order);
1206
d19936a2 1207 return mempool_init_page_pool(&state->pool, 1, page_order);
67539e85 1208}
a85e968e 1209EXPORT_SYMBOL(bch_bset_sort_state_init);
67539e85 1210
a85e968e 1211static void btree_mergesort(struct btree_keys *b, struct bset *out,
cafe5635
KO
1212 struct btree_iter *iter,
1213 bool fixup, bool remove_stale)
1214{
911c9610 1215 int i;
cafe5635 1216 struct bkey *k, *last = NULL;
ef71ec00 1217 BKEY_PADDED(k) tmp;
a85e968e 1218 bool (*bad)(struct btree_keys *, const struct bkey *) = remove_stale
cafe5635
KO
1219 ? bch_ptr_bad
1220 : bch_ptr_invalid;
1221
911c9610
KO
1222 /* Heapify the iterator, using our comparison function */
1223 for (i = iter->used / 2 - 1; i >= 0; --i)
65d45231 1224 heap_sift(iter, i, b->ops->sort_cmp);
911c9610 1225
cafe5635 1226 while (!btree_iter_end(iter)) {
65d45231
KO
1227 if (b->ops->sort_fixup && fixup)
1228 k = b->ops->sort_fixup(iter, &tmp.k);
ef71ec00
KO
1229 else
1230 k = NULL;
1231
1232 if (!k)
65d45231 1233 k = __bch_btree_iter_next(iter, b->ops->sort_cmp);
cafe5635 1234
cafe5635
KO
1235 if (bad(b, k))
1236 continue;
1237
1238 if (!last) {
1239 last = out->start;
1240 bkey_copy(last, k);
65d45231 1241 } else if (!bch_bkey_try_merge(b, last, k)) {
cafe5635
KO
1242 last = bkey_next(last);
1243 bkey_copy(last, k);
1244 }
1245 }
1246
1247 out->keys = last ? (uint64_t *) bkey_next(last) - out->d : 0;
1248
1249 pr_debug("sorted %i keys", out->keys);
cafe5635
KO
1250}
1251
a85e968e 1252static void __btree_sort(struct btree_keys *b, struct btree_iter *iter,
6f10f7d1 1253 unsigned int start, unsigned int order, bool fixup,
67539e85 1254 struct bset_sort_state *state)
cafe5635
KO
1255{
1256 uint64_t start_time;
0a451145 1257 bool used_mempool = false;
501d52a9 1258 struct bset *out = (void *) __get_free_pages(__GFP_NOWARN|GFP_NOWAIT,
cafe5635
KO
1259 order);
1260 if (!out) {
3572324a
KO
1261 struct page *outp;
1262
67539e85
KO
1263 BUG_ON(order > state->page_order);
1264
d19936a2 1265 outp = mempool_alloc(&state->pool, GFP_NOIO);
3572324a 1266 out = page_address(outp);
0a451145 1267 used_mempool = true;
a85e968e 1268 order = state->page_order;
cafe5635
KO
1269 }
1270
1271 start_time = local_clock();
1272
67539e85 1273 btree_mergesort(b, out, iter, fixup, false);
cafe5635
KO
1274 b->nsets = start;
1275
cafe5635
KO
1276 if (!start && order == b->page_order) {
1277 /*
1278 * Our temporary buffer is the same size as the btree node's
1279 * buffer, we can just swap buffers instead of doing a big
1280 * memcpy()
1281 */
1282
a85e968e
KO
1283 out->magic = b->set->data->magic;
1284 out->seq = b->set->data->seq;
1285 out->version = b->set->data->version;
1286 swap(out, b->set->data);
cafe5635 1287 } else {
a85e968e
KO
1288 b->set[start].data->keys = out->keys;
1289 memcpy(b->set[start].data->start, out->start,
fafff81c 1290 (void *) bset_bkey_last(out) - (void *) out->start);
cafe5635
KO
1291 }
1292
0a451145 1293 if (used_mempool)
d19936a2 1294 mempool_free(virt_to_page(out), &state->pool);
cafe5635
KO
1295 else
1296 free_pages((unsigned long) out, order);
1297
a85e968e 1298 bch_bset_build_written_tree(b);
cafe5635 1299
65d22e91 1300 if (!start)
67539e85 1301 bch_time_stats_update(&state->time, start_time);
cafe5635
KO
1302}
1303
6f10f7d1 1304void bch_btree_sort_partial(struct btree_keys *b, unsigned int start,
67539e85 1305 struct bset_sort_state *state)
cafe5635 1306{
89ebb4a2 1307 size_t order = b->page_order, keys = 0;
cafe5635 1308 struct btree_iter iter;
89ebb4a2 1309 int oldsize = bch_count_data(b);
280481d0 1310
89ebb4a2 1311 __bch_btree_iter_init(b, &iter, NULL, &b->set[start]);
cafe5635
KO
1312
1313 if (start) {
6f10f7d1 1314 unsigned int i;
cafe5635 1315
89ebb4a2
KO
1316 for (i = start; i <= b->nsets; i++)
1317 keys += b->set[i].data->keys;
cafe5635 1318
89ebb4a2 1319 order = get_order(__set_bytes(b->set->data, keys));
cafe5635
KO
1320 }
1321
89ebb4a2 1322 __btree_sort(b, &iter, start, order, false, state);
cafe5635 1323
89ebb4a2 1324 EBUG_ON(oldsize >= 0 && bch_count_data(b) != oldsize);
cafe5635 1325}
65d45231 1326EXPORT_SYMBOL(bch_btree_sort_partial);
cafe5635 1327
a85e968e
KO
1328void bch_btree_sort_and_fix_extents(struct btree_keys *b,
1329 struct btree_iter *iter,
67539e85 1330 struct bset_sort_state *state)
cafe5635 1331{
67539e85 1332 __btree_sort(b, iter, 0, b->page_order, true, state);
cafe5635
KO
1333}
1334
89ebb4a2 1335void bch_btree_sort_into(struct btree_keys *b, struct btree_keys *new,
67539e85 1336 struct bset_sort_state *state)
cafe5635
KO
1337{
1338 uint64_t start_time = local_clock();
cafe5635 1339 struct btree_iter iter;
1fae7cf0 1340
89ebb4a2 1341 bch_btree_iter_init(b, &iter, NULL);
cafe5635 1342
89ebb4a2 1343 btree_mergesort(b, new->set->data, &iter, false, true);
cafe5635 1344
67539e85 1345 bch_time_stats_update(&state->time, start_time);
cafe5635 1346
89ebb4a2 1347 new->set->size = 0; // XXX: why?
cafe5635
KO
1348}
1349
6ded34d1
KO
1350#define SORT_CRIT (4096 / sizeof(uint64_t))
1351
89ebb4a2 1352void bch_btree_sort_lazy(struct btree_keys *b, struct bset_sort_state *state)
cafe5635 1353{
6f10f7d1 1354 unsigned int crit = SORT_CRIT;
6ded34d1 1355 int i;
cafe5635 1356
6ded34d1 1357 /* Don't sort if nothing to do */
89ebb4a2 1358 if (!b->nsets)
6ded34d1 1359 goto out;
cafe5635 1360
89ebb4a2 1361 for (i = b->nsets - 1; i >= 0; --i) {
67539e85 1362 crit *= state->crit_factor;
cafe5635 1363
89ebb4a2 1364 if (b->set[i].data->keys < crit) {
67539e85 1365 bch_btree_sort_partial(b, i, state);
cafe5635
KO
1366 return;
1367 }
1368 }
1369
6ded34d1 1370 /* Sort if we'd overflow */
89ebb4a2 1371 if (b->nsets + 1 == MAX_BSETS) {
67539e85 1372 bch_btree_sort(b, state);
6ded34d1
KO
1373 return;
1374 }
1375
1376out:
89ebb4a2 1377 bch_bset_build_written_tree(b);
cafe5635 1378}
a85e968e 1379EXPORT_SYMBOL(bch_btree_sort_lazy);
cafe5635 1380
f67342dd 1381void bch_btree_keys_stats(struct btree_keys *b, struct bset_stats *stats)
cafe5635 1382{
6f10f7d1 1383 unsigned int i;
cafe5635 1384
f67342dd
KO
1385 for (i = 0; i <= b->nsets; i++) {
1386 struct bset_tree *t = &b->set[i];
cafe5635
KO
1387 size_t bytes = t->data->keys * sizeof(uint64_t);
1388 size_t j;
1389
f67342dd 1390 if (bset_written(b, t)) {
cafe5635
KO
1391 stats->sets_written++;
1392 stats->bytes_written += bytes;
1393
1394 stats->floats += t->size - 1;
1395
1396 for (j = 1; j < t->size; j++)
1397 if (t->tree[j].exponent == 127)
1398 stats->failed++;
1399 } else {
1400 stats->sets_unwritten++;
1401 stats->bytes_unwritten += bytes;
1402 }
1403 }
cafe5635 1404}