bcache: add io error counting in write_bdev_super_endio()
[linux-block.git] / drivers / md / bcache / bset.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
cafe5635
KO
2/*
3 * Code for working with individual keys, and sorted sets of keys with in a
4 * btree node
5 *
6 * Copyright 2012 Google, Inc.
7 */
8
89ebb4a2
KO
9#define pr_fmt(fmt) "bcache: %s() " fmt "\n", __func__
10
11#include "util.h"
12#include "bset.h"
cafe5635 13
dc9d98d6 14#include <linux/console.h>
e6017571 15#include <linux/sched/clock.h>
cafe5635 16#include <linux/random.h>
cd953ed0 17#include <linux/prefetch.h>
cafe5635 18
dc9d98d6
KO
19#ifdef CONFIG_BCACHE_DEBUG
20
6f10f7d1 21void bch_dump_bset(struct btree_keys *b, struct bset *i, unsigned int set)
dc9d98d6
KO
22{
23 struct bkey *k, *next;
24
25 for (k = i->start; k < bset_bkey_last(i); k = next) {
26 next = bkey_next(k);
27
6ae63e35 28 pr_err("block %u key %u/%u: ", set,
6f10f7d1 29 (unsigned int) ((u64 *) k - i->d), i->keys);
dc9d98d6
KO
30
31 if (b->ops->key_dump)
32 b->ops->key_dump(b, k);
33 else
6ae63e35 34 pr_err("%llu:%llu\n", KEY_INODE(k), KEY_OFFSET(k));
dc9d98d6
KO
35
36 if (next < bset_bkey_last(i) &&
37 bkey_cmp(k, b->ops->is_extents ?
38 &START_KEY(next) : next) > 0)
6ae63e35 39 pr_err("Key skipped backwards\n");
dc9d98d6
KO
40 }
41}
42
43void bch_dump_bucket(struct btree_keys *b)
44{
6f10f7d1 45 unsigned int i;
dc9d98d6
KO
46
47 console_lock();
48 for (i = 0; i <= b->nsets; i++)
49 bch_dump_bset(b, b->set[i].data,
50 bset_sector_offset(b, b->set[i].data));
51 console_unlock();
52}
53
54int __bch_count_data(struct btree_keys *b)
55{
6f10f7d1 56 unsigned int ret = 0;
dc9d98d6
KO
57 struct btree_iter iter;
58 struct bkey *k;
59
60 if (b->ops->is_extents)
61 for_each_key(b, k, &iter)
62 ret += KEY_SIZE(k);
63 return ret;
64}
65
66void __bch_check_keys(struct btree_keys *b, const char *fmt, ...)
67{
68 va_list args;
69 struct bkey *k, *p = NULL;
70 struct btree_iter iter;
71 const char *err;
72
73 for_each_key(b, k, &iter) {
74 if (b->ops->is_extents) {
75 err = "Keys out of order";
76 if (p && bkey_cmp(&START_KEY(p), &START_KEY(k)) > 0)
77 goto bug;
78
79 if (bch_ptr_invalid(b, k))
80 continue;
81
82 err = "Overlapping keys";
83 if (p && bkey_cmp(p, &START_KEY(k)) > 0)
84 goto bug;
85 } else {
86 if (bch_ptr_bad(b, k))
87 continue;
88
89 err = "Duplicate keys";
90 if (p && !bkey_cmp(p, k))
91 goto bug;
92 }
93 p = k;
94 }
95#if 0
96 err = "Key larger than btree node key";
97 if (p && bkey_cmp(p, &b->key) > 0)
98 goto bug;
99#endif
100 return;
101bug:
102 bch_dump_bucket(b);
103
104 va_start(args, fmt);
105 vprintk(fmt, args);
106 va_end(args);
107
108 panic("bch_check_keys error: %s:\n", err);
109}
110
111static void bch_btree_iter_next_check(struct btree_iter *iter)
112{
113 struct bkey *k = iter->data->k, *next = bkey_next(k);
114
115 if (next < iter->data->end &&
116 bkey_cmp(k, iter->b->ops->is_extents ?
117 &START_KEY(next) : next) > 0) {
118 bch_dump_bucket(iter->b);
119 panic("Key skipped backwards\n");
120 }
121}
122
123#else
124
125static inline void bch_btree_iter_next_check(struct btree_iter *iter) {}
126
127#endif
128
cafe5635
KO
129/* Keylists */
130
6f10f7d1 131int __bch_keylist_realloc(struct keylist *l, unsigned int u64s)
cafe5635 132{
c2f95ae2 133 size_t oldsize = bch_keylist_nkeys(l);
085d2a3d 134 size_t newsize = oldsize + u64s;
c2f95ae2
KO
135 uint64_t *old_keys = l->keys_p == l->inline_keys ? NULL : l->keys_p;
136 uint64_t *new_keys;
cafe5635 137
cafe5635
KO
138 newsize = roundup_pow_of_two(newsize);
139
140 if (newsize <= KEYLIST_INLINE ||
141 roundup_pow_of_two(oldsize) == newsize)
142 return 0;
143
c2f95ae2 144 new_keys = krealloc(old_keys, sizeof(uint64_t) * newsize, GFP_NOIO);
cafe5635 145
c2f95ae2 146 if (!new_keys)
cafe5635
KO
147 return -ENOMEM;
148
c2f95ae2
KO
149 if (!old_keys)
150 memcpy(new_keys, l->inline_keys, sizeof(uint64_t) * oldsize);
cafe5635 151
c2f95ae2
KO
152 l->keys_p = new_keys;
153 l->top_p = new_keys + oldsize;
cafe5635
KO
154
155 return 0;
156}
157
158struct bkey *bch_keylist_pop(struct keylist *l)
159{
c2f95ae2 160 struct bkey *k = l->keys;
cafe5635
KO
161
162 if (k == l->top)
163 return NULL;
164
165 while (bkey_next(k) != l->top)
166 k = bkey_next(k);
167
168 return l->top = k;
169}
170
26c949f8
KO
171void bch_keylist_pop_front(struct keylist *l)
172{
c2f95ae2 173 l->top_p -= bkey_u64s(l->keys);
26c949f8 174
c2f95ae2
KO
175 memmove(l->keys,
176 bkey_next(l->keys),
177 bch_keylist_bytes(l));
26c949f8
KO
178}
179
cafe5635
KO
180/* Key/pointer manipulation */
181
182void bch_bkey_copy_single_ptr(struct bkey *dest, const struct bkey *src,
6f10f7d1 183 unsigned int i)
cafe5635
KO
184{
185 BUG_ON(i > KEY_PTRS(src));
186
187 /* Only copy the header, key, and one pointer. */
188 memcpy(dest, src, 2 * sizeof(uint64_t));
189 dest->ptr[0] = src->ptr[i];
190 SET_KEY_PTRS(dest, 1);
191 /* We didn't copy the checksum so clear that bit. */
192 SET_KEY_CSUM(dest, 0);
193}
194
195bool __bch_cut_front(const struct bkey *where, struct bkey *k)
196{
6f10f7d1 197 unsigned int i, len = 0;
cafe5635
KO
198
199 if (bkey_cmp(where, &START_KEY(k)) <= 0)
200 return false;
201
202 if (bkey_cmp(where, k) < 0)
203 len = KEY_OFFSET(k) - KEY_OFFSET(where);
204 else
205 bkey_copy_key(k, where);
206
207 for (i = 0; i < KEY_PTRS(k); i++)
208 SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + KEY_SIZE(k) - len);
209
210 BUG_ON(len > KEY_SIZE(k));
211 SET_KEY_SIZE(k, len);
212 return true;
213}
214
215bool __bch_cut_back(const struct bkey *where, struct bkey *k)
216{
6f10f7d1 217 unsigned int len = 0;
cafe5635
KO
218
219 if (bkey_cmp(where, k) >= 0)
220 return false;
221
222 BUG_ON(KEY_INODE(where) != KEY_INODE(k));
223
224 if (bkey_cmp(where, &START_KEY(k)) > 0)
225 len = KEY_OFFSET(where) - KEY_START(k);
226
227 bkey_copy_key(k, where);
228
229 BUG_ON(len > KEY_SIZE(k));
230 SET_KEY_SIZE(k, len);
231 return true;
232}
233
ee811287
KO
234/* Auxiliary search trees */
235
236/* 32 bits total: */
237#define BKEY_MID_BITS 3
238#define BKEY_EXPONENT_BITS 7
239#define BKEY_MANTISSA_BITS (32 - BKEY_MID_BITS - BKEY_EXPONENT_BITS)
240#define BKEY_MANTISSA_MASK ((1 << BKEY_MANTISSA_BITS) - 1)
241
242struct bkey_float {
6f10f7d1
CL
243 unsigned int exponent:BKEY_EXPONENT_BITS;
244 unsigned int m:BKEY_MID_BITS;
245 unsigned int mantissa:BKEY_MANTISSA_BITS;
ee811287
KO
246} __packed;
247
248/*
249 * BSET_CACHELINE was originally intended to match the hardware cacheline size -
250 * it used to be 64, but I realized the lookup code would touch slightly less
251 * memory if it was 128.
252 *
253 * It definites the number of bytes (in struct bset) per struct bkey_float in
254 * the auxiliar search tree - when we're done searching the bset_float tree we
255 * have this many bytes left that we do a linear search over.
256 *
257 * Since (after level 5) every level of the bset_tree is on a new cacheline,
258 * we're touching one fewer cacheline in the bset tree in exchange for one more
259 * cacheline in the linear search - but the linear search might stop before it
260 * gets to the second cacheline.
261 */
262
263#define BSET_CACHELINE 128
264
265/* Space required for the btree node keys */
a85e968e 266static inline size_t btree_keys_bytes(struct btree_keys *b)
ee811287
KO
267{
268 return PAGE_SIZE << b->page_order;
269}
270
a85e968e 271static inline size_t btree_keys_cachelines(struct btree_keys *b)
ee811287
KO
272{
273 return btree_keys_bytes(b) / BSET_CACHELINE;
274}
275
276/* Space required for the auxiliary search trees */
a85e968e 277static inline size_t bset_tree_bytes(struct btree_keys *b)
ee811287
KO
278{
279 return btree_keys_cachelines(b) * sizeof(struct bkey_float);
280}
281
282/* Space required for the prev pointers */
a85e968e 283static inline size_t bset_prev_bytes(struct btree_keys *b)
ee811287
KO
284{
285 return btree_keys_cachelines(b) * sizeof(uint8_t);
286}
287
288/* Memory allocation */
289
a85e968e 290void bch_btree_keys_free(struct btree_keys *b)
ee811287 291{
a85e968e 292 struct bset_tree *t = b->set;
ee811287
KO
293
294 if (bset_prev_bytes(b) < PAGE_SIZE)
295 kfree(t->prev);
296 else
297 free_pages((unsigned long) t->prev,
298 get_order(bset_prev_bytes(b)));
299
300 if (bset_tree_bytes(b) < PAGE_SIZE)
301 kfree(t->tree);
302 else
303 free_pages((unsigned long) t->tree,
304 get_order(bset_tree_bytes(b)));
305
306 free_pages((unsigned long) t->data, b->page_order);
307
308 t->prev = NULL;
309 t->tree = NULL;
310 t->data = NULL;
311}
a85e968e 312EXPORT_SYMBOL(bch_btree_keys_free);
ee811287 313
b0d30981
CL
314int bch_btree_keys_alloc(struct btree_keys *b,
315 unsigned int page_order,
316 gfp_t gfp)
ee811287 317{
a85e968e 318 struct bset_tree *t = b->set;
ee811287
KO
319
320 BUG_ON(t->data);
321
322 b->page_order = page_order;
323
324 t->data = (void *) __get_free_pages(gfp, b->page_order);
325 if (!t->data)
326 goto err;
327
328 t->tree = bset_tree_bytes(b) < PAGE_SIZE
329 ? kmalloc(bset_tree_bytes(b), gfp)
330 : (void *) __get_free_pages(gfp, get_order(bset_tree_bytes(b)));
331 if (!t->tree)
332 goto err;
333
334 t->prev = bset_prev_bytes(b) < PAGE_SIZE
335 ? kmalloc(bset_prev_bytes(b), gfp)
336 : (void *) __get_free_pages(gfp, get_order(bset_prev_bytes(b)));
337 if (!t->prev)
338 goto err;
339
340 return 0;
341err:
342 bch_btree_keys_free(b);
343 return -ENOMEM;
344}
a85e968e
KO
345EXPORT_SYMBOL(bch_btree_keys_alloc);
346
347void bch_btree_keys_init(struct btree_keys *b, const struct btree_keys_ops *ops,
348 bool *expensive_debug_checks)
349{
6f10f7d1 350 unsigned int i;
a85e968e
KO
351
352 b->ops = ops;
353 b->expensive_debug_checks = expensive_debug_checks;
354 b->nsets = 0;
355 b->last_set_unwritten = 0;
356
357 /* XXX: shouldn't be needed */
358 for (i = 0; i < MAX_BSETS; i++)
359 b->set[i].size = 0;
360 /*
361 * Second loop starts at 1 because b->keys[0]->data is the memory we
362 * allocated
363 */
364 for (i = 1; i < MAX_BSETS; i++)
365 b->set[i].data = NULL;
366}
367EXPORT_SYMBOL(bch_btree_keys_init);
ee811287 368
cafe5635
KO
369/* Binary tree stuff for auxiliary search trees */
370
b467a6ac
CL
371/*
372 * return array index next to j when does in-order traverse
373 * of a binary tree which is stored in a linear array
374 */
6f10f7d1 375static unsigned int inorder_next(unsigned int j, unsigned int size)
cafe5635
KO
376{
377 if (j * 2 + 1 < size) {
378 j = j * 2 + 1;
379
380 while (j * 2 < size)
381 j *= 2;
382 } else
383 j >>= ffz(j) + 1;
384
385 return j;
386}
387
b467a6ac
CL
388/*
389 * return array index previous to j when does in-order traverse
390 * of a binary tree which is stored in a linear array
391 */
6f10f7d1 392static unsigned int inorder_prev(unsigned int j, unsigned int size)
cafe5635
KO
393{
394 if (j * 2 < size) {
395 j = j * 2;
396
397 while (j * 2 + 1 < size)
398 j = j * 2 + 1;
399 } else
400 j >>= ffs(j);
401
402 return j;
403}
404
3be11dba
CL
405/*
406 * I have no idea why this code works... and I'm the one who wrote it
cafe5635
KO
407 *
408 * However, I do know what it does:
409 * Given a binary tree constructed in an array (i.e. how you normally implement
410 * a heap), it converts a node in the tree - referenced by array index - to the
411 * index it would have if you did an inorder traversal.
412 *
413 * Also tested for every j, size up to size somewhere around 6 million.
414 *
415 * The binary tree starts at array index 1, not 0
416 * extra is a function of size:
417 * extra = (size - rounddown_pow_of_two(size - 1)) << 1;
418 */
6f10f7d1
CL
419static unsigned int __to_inorder(unsigned int j,
420 unsigned int size,
421 unsigned int extra)
cafe5635 422{
6f10f7d1
CL
423 unsigned int b = fls(j);
424 unsigned int shift = fls(size - 1) - b;
cafe5635
KO
425
426 j ^= 1U << (b - 1);
427 j <<= 1;
428 j |= 1;
429 j <<= shift;
430
431 if (j > extra)
432 j -= (j - extra) >> 1;
433
434 return j;
435}
436
b467a6ac
CL
437/*
438 * Return the cacheline index in bset_tree->data, where j is index
439 * from a linear array which stores the auxiliar binary tree
440 */
6f10f7d1 441static unsigned int to_inorder(unsigned int j, struct bset_tree *t)
cafe5635
KO
442{
443 return __to_inorder(j, t->size, t->extra);
444}
445
6f10f7d1
CL
446static unsigned int __inorder_to_tree(unsigned int j,
447 unsigned int size,
448 unsigned int extra)
cafe5635 449{
6f10f7d1 450 unsigned int shift;
cafe5635
KO
451
452 if (j > extra)
453 j += j - extra;
454
455 shift = ffs(j);
456
457 j >>= shift;
458 j |= roundup_pow_of_two(size) >> shift;
459
460 return j;
461}
462
b467a6ac
CL
463/*
464 * Return an index from a linear array which stores the auxiliar binary
465 * tree, j is the cacheline index of t->data.
466 */
6f10f7d1 467static unsigned int inorder_to_tree(unsigned int j, struct bset_tree *t)
cafe5635
KO
468{
469 return __inorder_to_tree(j, t->size, t->extra);
470}
471
472#if 0
473void inorder_test(void)
474{
475 unsigned long done = 0;
476 ktime_t start = ktime_get();
477
6f10f7d1 478 for (unsigned int size = 2;
cafe5635
KO
479 size < 65536000;
480 size++) {
b0d30981
CL
481 unsigned int extra =
482 (size - rounddown_pow_of_two(size - 1)) << 1;
6f10f7d1 483 unsigned int i = 1, j = rounddown_pow_of_two(size - 1);
cafe5635
KO
484
485 if (!(size % 4096))
6ae63e35 486 pr_notice("loop %u, %llu per us\n", size,
cafe5635
KO
487 done / ktime_us_delta(ktime_get(), start));
488
489 while (1) {
490 if (__inorder_to_tree(i, size, extra) != j)
491 panic("size %10u j %10u i %10u", size, j, i);
492
493 if (__to_inorder(j, size, extra) != i)
494 panic("size %10u j %10u i %10u", size, j, i);
495
496 if (j == rounddown_pow_of_two(size) - 1)
497 break;
498
499 BUG_ON(inorder_prev(inorder_next(j, size), size) != j);
500
501 j = inorder_next(j, size);
502 i++;
503 }
504
505 done += size - 1;
506 }
507}
508#endif
509
510/*
48a73025 511 * Cacheline/offset <-> bkey pointer arithmetic:
cafe5635
KO
512 *
513 * t->tree is a binary search tree in an array; each node corresponds to a key
514 * in one cacheline in t->set (BSET_CACHELINE bytes).
515 *
516 * This means we don't have to store the full index of the key that a node in
517 * the binary tree points to; to_inorder() gives us the cacheline, and then
518 * bkey_float->m gives us the offset within that cacheline, in units of 8 bytes.
519 *
48a73025 520 * cacheline_to_bkey() and friends abstract out all the pointer arithmetic to
cafe5635
KO
521 * make this work.
522 *
523 * To construct the bfloat for an arbitrary key we need to know what the key
524 * immediately preceding it is: we have to check if the two keys differ in the
525 * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size
526 * of the previous key so we can walk backwards to it from t->tree[j]'s key.
527 */
528
6f10f7d1
CL
529static struct bkey *cacheline_to_bkey(struct bset_tree *t,
530 unsigned int cacheline,
531 unsigned int offset)
cafe5635
KO
532{
533 return ((void *) t->data) + cacheline * BSET_CACHELINE + offset * 8;
534}
535
6f10f7d1 536static unsigned int bkey_to_cacheline(struct bset_tree *t, struct bkey *k)
cafe5635
KO
537{
538 return ((void *) k - (void *) t->data) / BSET_CACHELINE;
539}
540
6f10f7d1
CL
541static unsigned int bkey_to_cacheline_offset(struct bset_tree *t,
542 unsigned int cacheline,
9dd6358a 543 struct bkey *k)
cafe5635 544{
9dd6358a 545 return (u64 *) k - (u64 *) cacheline_to_bkey(t, cacheline, 0);
cafe5635
KO
546}
547
6f10f7d1 548static struct bkey *tree_to_bkey(struct bset_tree *t, unsigned int j)
cafe5635
KO
549{
550 return cacheline_to_bkey(t, to_inorder(j, t), t->tree[j].m);
551}
552
6f10f7d1 553static struct bkey *tree_to_prev_bkey(struct bset_tree *t, unsigned int j)
cafe5635
KO
554{
555 return (void *) (((uint64_t *) tree_to_bkey(t, j)) - t->prev[j]);
556}
557
558/*
559 * For the write set - the one we're currently inserting keys into - we don't
560 * maintain a full search tree, we just keep a simple lookup table in t->prev.
561 */
6f10f7d1 562static struct bkey *table_to_bkey(struct bset_tree *t, unsigned int cacheline)
cafe5635
KO
563{
564 return cacheline_to_bkey(t, cacheline, t->prev[cacheline]);
565}
566
567static inline uint64_t shrd128(uint64_t high, uint64_t low, uint8_t shift)
568{
cafe5635
KO
569 low >>= shift;
570 low |= (high << 1) << (63U - shift);
cafe5635
KO
571 return low;
572}
573
b467a6ac
CL
574/*
575 * Calculate mantissa value for struct bkey_float.
576 * If most significant bit of f->exponent is not set, then
577 * - f->exponent >> 6 is 0
578 * - p[0] points to bkey->low
579 * - p[-1] borrows bits from KEY_INODE() of bkey->high
580 * if most isgnificant bits of f->exponent is set, then
581 * - f->exponent >> 6 is 1
582 * - p[0] points to bits from KEY_INODE() of bkey->high
583 * - p[-1] points to other bits from KEY_INODE() of
584 * bkey->high too.
585 * See make_bfloat() to check when most significant bit of f->exponent
586 * is set or not.
587 */
6f10f7d1 588static inline unsigned int bfloat_mantissa(const struct bkey *k,
cafe5635
KO
589 struct bkey_float *f)
590{
591 const uint64_t *p = &k->low - (f->exponent >> 6);
1fae7cf0 592
cafe5635
KO
593 return shrd128(p[-1], p[0], f->exponent & 63) & BKEY_MANTISSA_MASK;
594}
595
6f10f7d1 596static void make_bfloat(struct bset_tree *t, unsigned int j)
cafe5635
KO
597{
598 struct bkey_float *f = &t->tree[j];
599 struct bkey *m = tree_to_bkey(t, j);
600 struct bkey *p = tree_to_prev_bkey(t, j);
601
602 struct bkey *l = is_power_of_2(j)
603 ? t->data->start
604 : tree_to_prev_bkey(t, j >> ffs(j));
605
606 struct bkey *r = is_power_of_2(j + 1)
fafff81c 607 ? bset_bkey_idx(t->data, t->data->keys - bkey_u64s(&t->end))
cafe5635
KO
608 : tree_to_bkey(t, j >> (ffz(j) + 1));
609
610 BUG_ON(m < l || m > r);
611 BUG_ON(bkey_next(p) != m);
612
b467a6ac
CL
613 /*
614 * If l and r have different KEY_INODE values (different backing
615 * device), f->exponent records how many least significant bits
616 * are different in KEY_INODE values and sets most significant
617 * bits to 1 (by +64).
618 * If l and r have same KEY_INODE value, f->exponent records
619 * how many different bits in least significant bits of bkey->low.
620 * See bfloat_mantiss() how the most significant bit of
621 * f->exponent is used to calculate bfloat mantissa value.
622 */
cafe5635
KO
623 if (KEY_INODE(l) != KEY_INODE(r))
624 f->exponent = fls64(KEY_INODE(r) ^ KEY_INODE(l)) + 64;
625 else
626 f->exponent = fls64(r->low ^ l->low);
627
628 f->exponent = max_t(int, f->exponent - BKEY_MANTISSA_BITS, 0);
629
630 /*
631 * Setting f->exponent = 127 flags this node as failed, and causes the
632 * lookup code to fall back to comparing against the original key.
633 */
634
635 if (bfloat_mantissa(m, f) != bfloat_mantissa(p, f))
636 f->mantissa = bfloat_mantissa(m, f) - 1;
637 else
638 f->exponent = 127;
639}
640
a85e968e 641static void bset_alloc_tree(struct btree_keys *b, struct bset_tree *t)
cafe5635 642{
a85e968e 643 if (t != b->set) {
6f10f7d1 644 unsigned int j = roundup(t[-1].size,
cafe5635
KO
645 64 / sizeof(struct bkey_float));
646
647 t->tree = t[-1].tree + j;
648 t->prev = t[-1].prev + j;
649 }
650
a85e968e 651 while (t < b->set + MAX_BSETS)
cafe5635
KO
652 t++->size = 0;
653}
654
a85e968e 655static void bch_bset_build_unwritten_tree(struct btree_keys *b)
cafe5635 656{
ee811287 657 struct bset_tree *t = bset_tree_last(b);
cafe5635 658
a85e968e
KO
659 BUG_ON(b->last_set_unwritten);
660 b->last_set_unwritten = 1;
661
cafe5635
KO
662 bset_alloc_tree(b, t);
663
a85e968e 664 if (t->tree != b->set->tree + btree_keys_cachelines(b)) {
9dd6358a 665 t->prev[0] = bkey_to_cacheline_offset(t, 0, t->data->start);
cafe5635
KO
666 t->size = 1;
667 }
668}
669
a85e968e 670void bch_bset_init_next(struct btree_keys *b, struct bset *i, uint64_t magic)
ee811287 671{
a85e968e
KO
672 if (i != b->set->data) {
673 b->set[++b->nsets].data = i;
674 i->seq = b->set->data->seq;
ee811287
KO
675 } else
676 get_random_bytes(&i->seq, sizeof(uint64_t));
677
678 i->magic = magic;
679 i->version = 0;
680 i->keys = 0;
681
682 bch_bset_build_unwritten_tree(b);
683}
a85e968e 684EXPORT_SYMBOL(bch_bset_init_next);
ee811287 685
b467a6ac
CL
686/*
687 * Build auxiliary binary tree 'struct bset_tree *t', this tree is used to
688 * accelerate bkey search in a btree node (pointed by bset_tree->data in
689 * memory). After search in the auxiliar tree by calling bset_search_tree(),
690 * a struct bset_search_iter is returned which indicates range [l, r] from
691 * bset_tree->data where the searching bkey might be inside. Then a followed
692 * linear comparison does the exact search, see __bch_bset_search() for how
693 * the auxiliary tree is used.
694 */
a85e968e 695void bch_bset_build_written_tree(struct btree_keys *b)
cafe5635 696{
ee811287 697 struct bset_tree *t = bset_tree_last(b);
9dd6358a 698 struct bkey *prev = NULL, *k = t->data->start;
6f10f7d1 699 unsigned int j, cacheline = 1;
cafe5635 700
a85e968e
KO
701 b->last_set_unwritten = 0;
702
cafe5635
KO
703 bset_alloc_tree(b, t);
704
6f10f7d1 705 t->size = min_t(unsigned int,
fafff81c 706 bkey_to_cacheline(t, bset_bkey_last(t->data)),
a85e968e 707 b->set->tree + btree_keys_cachelines(b) - t->tree);
cafe5635
KO
708
709 if (t->size < 2) {
710 t->size = 0;
711 return;
712 }
713
714 t->extra = (t->size - rounddown_pow_of_two(t->size - 1)) << 1;
715
716 /* First we figure out where the first key in each cacheline is */
717 for (j = inorder_next(0, t->size);
718 j;
719 j = inorder_next(j, t->size)) {
9dd6358a
KO
720 while (bkey_to_cacheline(t, k) < cacheline)
721 prev = k, k = bkey_next(k);
cafe5635 722
9dd6358a
KO
723 t->prev[j] = bkey_u64s(prev);
724 t->tree[j].m = bkey_to_cacheline_offset(t, cacheline++, k);
cafe5635
KO
725 }
726
fafff81c 727 while (bkey_next(k) != bset_bkey_last(t->data))
cafe5635
KO
728 k = bkey_next(k);
729
730 t->end = *k;
731
732 /* Then we build the tree */
733 for (j = inorder_next(0, t->size);
734 j;
735 j = inorder_next(j, t->size))
736 make_bfloat(t, j);
737}
a85e968e 738EXPORT_SYMBOL(bch_bset_build_written_tree);
cafe5635 739
829a60b9
KO
740/* Insert */
741
a85e968e 742void bch_bset_fix_invalidated_key(struct btree_keys *b, struct bkey *k)
cafe5635
KO
743{
744 struct bset_tree *t;
6f10f7d1 745 unsigned int inorder, j = 1;
cafe5635 746
a85e968e 747 for (t = b->set; t <= bset_tree_last(b); t++)
fafff81c 748 if (k < bset_bkey_last(t->data))
cafe5635
KO
749 goto found_set;
750
751 BUG();
752found_set:
753 if (!t->size || !bset_written(b, t))
754 return;
755
756 inorder = bkey_to_cacheline(t, k);
757
758 if (k == t->data->start)
759 goto fix_left;
760
fafff81c 761 if (bkey_next(k) == bset_bkey_last(t->data)) {
cafe5635
KO
762 t->end = *k;
763 goto fix_right;
764 }
765
766 j = inorder_to_tree(inorder, t);
767
768 if (j &&
769 j < t->size &&
770 k == tree_to_bkey(t, j))
771fix_left: do {
772 make_bfloat(t, j);
773 j = j * 2;
774 } while (j < t->size);
775
776 j = inorder_to_tree(inorder + 1, t);
777
778 if (j &&
779 j < t->size &&
780 k == tree_to_prev_bkey(t, j))
781fix_right: do {
782 make_bfloat(t, j);
783 j = j * 2 + 1;
784 } while (j < t->size);
785}
a85e968e 786EXPORT_SYMBOL(bch_bset_fix_invalidated_key);
cafe5635 787
a85e968e 788static void bch_bset_fix_lookup_table(struct btree_keys *b,
ee811287
KO
789 struct bset_tree *t,
790 struct bkey *k)
cafe5635 791{
6f10f7d1
CL
792 unsigned int shift = bkey_u64s(k);
793 unsigned int j = bkey_to_cacheline(t, k);
cafe5635
KO
794
795 /* We're getting called from btree_split() or btree_gc, just bail out */
796 if (!t->size)
797 return;
798
3be11dba
CL
799 /*
800 * k is the key we just inserted; we need to find the entry in the
cafe5635
KO
801 * lookup table for the first key that is strictly greater than k:
802 * it's either k's cacheline or the next one
803 */
9dd6358a
KO
804 while (j < t->size &&
805 table_to_bkey(t, j) <= k)
cafe5635
KO
806 j++;
807
3be11dba
CL
808 /*
809 * Adjust all the lookup table entries, and find a new key for any that
cafe5635
KO
810 * have gotten too big
811 */
812 for (; j < t->size; j++) {
813 t->prev[j] += shift;
814
815 if (t->prev[j] > 7) {
816 k = table_to_bkey(t, j - 1);
817
818 while (k < cacheline_to_bkey(t, j, 0))
819 k = bkey_next(k);
820
9dd6358a 821 t->prev[j] = bkey_to_cacheline_offset(t, j, k);
cafe5635
KO
822 }
823 }
824
a85e968e 825 if (t->size == b->set->tree + btree_keys_cachelines(b) - t->tree)
cafe5635
KO
826 return;
827
828 /* Possibly add a new entry to the end of the lookup table */
829
830 for (k = table_to_bkey(t, t->size - 1);
fafff81c 831 k != bset_bkey_last(t->data);
cafe5635
KO
832 k = bkey_next(k))
833 if (t->size == bkey_to_cacheline(t, k)) {
b0d30981
CL
834 t->prev[t->size] =
835 bkey_to_cacheline_offset(t, t->size, k);
cafe5635
KO
836 t->size++;
837 }
838}
839
0f49cf3d
NS
840/*
841 * Tries to merge l and r: l should be lower than r
842 * Returns true if we were able to merge. If we did merge, l will be the merged
843 * key, r will be untouched.
844 */
845bool bch_bkey_try_merge(struct btree_keys *b, struct bkey *l, struct bkey *r)
846{
847 if (!b->ops->key_merge)
848 return false;
849
850 /*
851 * Generic header checks
852 * Assumes left and right are in order
853 * Left and right must be exactly aligned
854 */
3bdad1e4
NS
855 if (!bch_bkey_equal_header(l, r) ||
856 bkey_cmp(l, &START_KEY(r)))
0f49cf3d
NS
857 return false;
858
859 return b->ops->key_merge(b, l, r);
860}
861EXPORT_SYMBOL(bch_bkey_try_merge);
862
a85e968e 863void bch_bset_insert(struct btree_keys *b, struct bkey *where,
ee811287 864 struct bkey *insert)
cafe5635 865{
ee811287 866 struct bset_tree *t = bset_tree_last(b);
cafe5635 867
a85e968e 868 BUG_ON(!b->last_set_unwritten);
ee811287
KO
869 BUG_ON(bset_byte_offset(b, t->data) +
870 __set_bytes(t->data, t->data->keys + bkey_u64s(insert)) >
871 PAGE_SIZE << b->page_order);
cafe5635 872
ee811287
KO
873 memmove((uint64_t *) where + bkey_u64s(insert),
874 where,
875 (void *) bset_bkey_last(t->data) - (void *) where);
cafe5635 876
ee811287
KO
877 t->data->keys += bkey_u64s(insert);
878 bkey_copy(where, insert);
879 bch_bset_fix_lookup_table(b, t, where);
cafe5635 880}
a85e968e 881EXPORT_SYMBOL(bch_bset_insert);
cafe5635 882
6f10f7d1 883unsigned int bch_btree_insert_key(struct btree_keys *b, struct bkey *k,
829a60b9
KO
884 struct bkey *replace_key)
885{
6f10f7d1 886 unsigned int status = BTREE_INSERT_STATUS_NO_INSERT;
829a60b9
KO
887 struct bset *i = bset_tree_last(b)->data;
888 struct bkey *m, *prev = NULL;
889 struct btree_iter iter;
31b90956
CL
890 struct bkey preceding_key_on_stack = ZERO_KEY;
891 struct bkey *preceding_key_p = &preceding_key_on_stack;
829a60b9
KO
892
893 BUG_ON(b->ops->is_extents && !KEY_SIZE(k));
894
31b90956
CL
895 /*
896 * If k has preceding key, preceding_key_p will be set to address
897 * of k's preceding key; otherwise preceding_key_p will be set
898 * to NULL inside preceding_key().
899 */
900 if (b->ops->is_extents)
901 preceding_key(&START_KEY(k), &preceding_key_p);
902 else
903 preceding_key(k, &preceding_key_p);
904
905 m = bch_btree_iter_init(b, &iter, preceding_key_p);
829a60b9
KO
906
907 if (b->ops->insert_fixup(b, k, &iter, replace_key))
908 return status;
909
910 status = BTREE_INSERT_STATUS_INSERT;
911
912 while (m != bset_bkey_last(i) &&
913 bkey_cmp(k, b->ops->is_extents ? &START_KEY(m) : m) > 0)
914 prev = m, m = bkey_next(m);
915
916 /* prev is in the tree, if we merge we're done */
917 status = BTREE_INSERT_STATUS_BACK_MERGE;
918 if (prev &&
919 bch_bkey_try_merge(b, prev, k))
920 goto merged;
921#if 0
922 status = BTREE_INSERT_STATUS_OVERWROTE;
923 if (m != bset_bkey_last(i) &&
924 KEY_PTRS(m) == KEY_PTRS(k) && !KEY_SIZE(m))
925 goto copy;
926#endif
927 status = BTREE_INSERT_STATUS_FRONT_MERGE;
928 if (m != bset_bkey_last(i) &&
929 bch_bkey_try_merge(b, k, m))
930 goto copy;
931
932 bch_bset_insert(b, m, k);
933copy: bkey_copy(m, k);
934merged:
935 return status;
936}
937EXPORT_SYMBOL(bch_btree_insert_key);
938
939/* Lookup */
940
cafe5635
KO
941struct bset_search_iter {
942 struct bkey *l, *r;
943};
944
a85e968e 945static struct bset_search_iter bset_search_write_set(struct bset_tree *t,
cafe5635
KO
946 const struct bkey *search)
947{
6f10f7d1 948 unsigned int li = 0, ri = t->size;
cafe5635 949
cafe5635 950 while (li + 1 != ri) {
6f10f7d1 951 unsigned int m = (li + ri) >> 1;
cafe5635
KO
952
953 if (bkey_cmp(table_to_bkey(t, m), search) > 0)
954 ri = m;
955 else
956 li = m;
957 }
958
959 return (struct bset_search_iter) {
960 table_to_bkey(t, li),
fafff81c 961 ri < t->size ? table_to_bkey(t, ri) : bset_bkey_last(t->data)
cafe5635
KO
962 };
963}
964
a85e968e 965static struct bset_search_iter bset_search_tree(struct bset_tree *t,
cafe5635
KO
966 const struct bkey *search)
967{
968 struct bkey *l, *r;
969 struct bkey_float *f;
6f10f7d1 970 unsigned int inorder, j, n = 1;
cafe5635
KO
971
972 do {
b467a6ac
CL
973 /*
974 * A bit trick here.
975 * If p < t->size, (int)(p - t->size) is a minus value and
976 * the most significant bit is set, right shifting 31 bits
977 * gets 1. If p >= t->size, the most significant bit is
978 * not set, right shifting 31 bits gets 0.
979 * So the following 2 lines equals to
980 * if (p >= t->size)
981 * p = 0;
982 * but a branch instruction is avoided.
983 */
6f10f7d1 984 unsigned int p = n << 4;
1fae7cf0 985
cafe5635
KO
986 p &= ((int) (p - t->size)) >> 31;
987
988 prefetch(&t->tree[p]);
989
990 j = n;
991 f = &t->tree[j];
992
993 /*
b467a6ac
CL
994 * Similar bit trick, use subtract operation to avoid a branch
995 * instruction.
996 *
cafe5635
KO
997 * n = (f->mantissa > bfloat_mantissa())
998 * ? j * 2
999 * : j * 2 + 1;
1000 *
1001 * We need to subtract 1 from f->mantissa for the sign bit trick
1002 * to work - that's done in make_bfloat()
1003 */
1004 if (likely(f->exponent != 127))
6f10f7d1 1005 n = j * 2 + (((unsigned int)
cafe5635
KO
1006 (f->mantissa -
1007 bfloat_mantissa(search, f))) >> 31);
1008 else
1009 n = (bkey_cmp(tree_to_bkey(t, j), search) > 0)
1010 ? j * 2
1011 : j * 2 + 1;
1012 } while (n < t->size);
1013
1014 inorder = to_inorder(j, t);
1015
1016 /*
1017 * n would have been the node we recursed to - the low bit tells us if
1018 * we recursed left or recursed right.
1019 */
1020 if (n & 1) {
1021 l = cacheline_to_bkey(t, inorder, f->m);
1022
1023 if (++inorder != t->size) {
1024 f = &t->tree[inorder_next(j, t->size)];
1025 r = cacheline_to_bkey(t, inorder, f->m);
1026 } else
fafff81c 1027 r = bset_bkey_last(t->data);
cafe5635
KO
1028 } else {
1029 r = cacheline_to_bkey(t, inorder, f->m);
1030
1031 if (--inorder) {
1032 f = &t->tree[inorder_prev(j, t->size)];
1033 l = cacheline_to_bkey(t, inorder, f->m);
1034 } else
1035 l = t->data->start;
1036 }
1037
1038 return (struct bset_search_iter) {l, r};
1039}
1040
c052dd9a 1041struct bkey *__bch_bset_search(struct btree_keys *b, struct bset_tree *t,
cafe5635
KO
1042 const struct bkey *search)
1043{
1044 struct bset_search_iter i;
1045
1046 /*
1047 * First, we search for a cacheline, then lastly we do a linear search
1048 * within that cacheline.
1049 *
1050 * To search for the cacheline, there's three different possibilities:
1051 * * The set is too small to have a search tree, so we just do a linear
1052 * search over the whole set.
1053 * * The set is the one we're currently inserting into; keeping a full
1054 * auxiliary search tree up to date would be too expensive, so we
1055 * use a much simpler lookup table to do a binary search -
1056 * bset_search_write_set().
1057 * * Or we use the auxiliary search tree we constructed earlier -
1058 * bset_search_tree()
1059 */
1060
1061 if (unlikely(!t->size)) {
1062 i.l = t->data->start;
fafff81c 1063 i.r = bset_bkey_last(t->data);
c052dd9a 1064 } else if (bset_written(b, t)) {
cafe5635
KO
1065 /*
1066 * Each node in the auxiliary search tree covers a certain range
1067 * of bits, and keys above and below the set it covers might
1068 * differ outside those bits - so we have to special case the
1069 * start and end - handle that here:
1070 */
1071
1072 if (unlikely(bkey_cmp(search, &t->end) >= 0))
fafff81c 1073 return bset_bkey_last(t->data);
cafe5635
KO
1074
1075 if (unlikely(bkey_cmp(search, t->data->start) < 0))
1076 return t->data->start;
1077
a85e968e
KO
1078 i = bset_search_tree(t, search);
1079 } else {
c052dd9a 1080 BUG_ON(!b->nsets &&
a85e968e
KO
1081 t->size < bkey_to_cacheline(t, bset_bkey_last(t->data)));
1082
1083 i = bset_search_write_set(t, search);
1084 }
cafe5635 1085
c052dd9a
KO
1086 if (btree_keys_expensive_checks(b)) {
1087 BUG_ON(bset_written(b, t) &&
280481d0
KO
1088 i.l != t->data->start &&
1089 bkey_cmp(tree_to_prev_bkey(t,
1090 inorder_to_tree(bkey_to_cacheline(t, i.l), t)),
1091 search) > 0);
cafe5635 1092
fafff81c 1093 BUG_ON(i.r != bset_bkey_last(t->data) &&
280481d0
KO
1094 bkey_cmp(i.r, search) <= 0);
1095 }
cafe5635
KO
1096
1097 while (likely(i.l != i.r) &&
1098 bkey_cmp(i.l, search) <= 0)
1099 i.l = bkey_next(i.l);
1100
1101 return i.l;
1102}
a85e968e 1103EXPORT_SYMBOL(__bch_bset_search);
cafe5635
KO
1104
1105/* Btree iterator */
1106
911c9610
KO
1107typedef bool (btree_iter_cmp_fn)(struct btree_iter_set,
1108 struct btree_iter_set);
1109
cafe5635
KO
1110static inline bool btree_iter_cmp(struct btree_iter_set l,
1111 struct btree_iter_set r)
1112{
911c9610 1113 return bkey_cmp(l.k, r.k) > 0;
cafe5635
KO
1114}
1115
1116static inline bool btree_iter_end(struct btree_iter *iter)
1117{
1118 return !iter->used;
1119}
1120
1121void bch_btree_iter_push(struct btree_iter *iter, struct bkey *k,
1122 struct bkey *end)
1123{
1124 if (k != end)
1125 BUG_ON(!heap_add(iter,
1126 ((struct btree_iter_set) { k, end }),
1127 btree_iter_cmp));
1128}
1129
c052dd9a 1130static struct bkey *__bch_btree_iter_init(struct btree_keys *b,
911c9610
KO
1131 struct btree_iter *iter,
1132 struct bkey *search,
1133 struct bset_tree *start)
cafe5635
KO
1134{
1135 struct bkey *ret = NULL;
1fae7cf0 1136
cafe5635
KO
1137 iter->size = ARRAY_SIZE(iter->data);
1138 iter->used = 0;
1139
280481d0
KO
1140#ifdef CONFIG_BCACHE_DEBUG
1141 iter->b = b;
1142#endif
1143
c052dd9a 1144 for (; start <= bset_tree_last(b); start++) {
cafe5635 1145 ret = bch_bset_search(b, start, search);
fafff81c 1146 bch_btree_iter_push(iter, ret, bset_bkey_last(start->data));
cafe5635
KO
1147 }
1148
1149 return ret;
1150}
1151
c052dd9a 1152struct bkey *bch_btree_iter_init(struct btree_keys *b,
911c9610
KO
1153 struct btree_iter *iter,
1154 struct bkey *search)
1155{
c052dd9a 1156 return __bch_btree_iter_init(b, iter, search, b->set);
911c9610 1157}
a85e968e 1158EXPORT_SYMBOL(bch_btree_iter_init);
911c9610
KO
1159
1160static inline struct bkey *__bch_btree_iter_next(struct btree_iter *iter,
1161 btree_iter_cmp_fn *cmp)
cafe5635 1162{
42361469 1163 struct btree_iter_set b __maybe_unused;
cafe5635
KO
1164 struct bkey *ret = NULL;
1165
1166 if (!btree_iter_end(iter)) {
280481d0
KO
1167 bch_btree_iter_next_check(iter);
1168
cafe5635
KO
1169 ret = iter->data->k;
1170 iter->data->k = bkey_next(iter->data->k);
1171
1172 if (iter->data->k > iter->data->end) {
cc0f4eaa 1173 WARN_ONCE(1, "bset was corrupt!\n");
cafe5635
KO
1174 iter->data->k = iter->data->end;
1175 }
1176
1177 if (iter->data->k == iter->data->end)
42361469 1178 heap_pop(iter, b, cmp);
cafe5635 1179 else
911c9610 1180 heap_sift(iter, 0, cmp);
cafe5635
KO
1181 }
1182
1183 return ret;
1184}
1185
911c9610
KO
1186struct bkey *bch_btree_iter_next(struct btree_iter *iter)
1187{
1188 return __bch_btree_iter_next(iter, btree_iter_cmp);
1189
1190}
a85e968e 1191EXPORT_SYMBOL(bch_btree_iter_next);
911c9610 1192
cafe5635 1193struct bkey *bch_btree_iter_next_filter(struct btree_iter *iter,
a85e968e 1194 struct btree_keys *b, ptr_filter_fn fn)
cafe5635
KO
1195{
1196 struct bkey *ret;
1197
1198 do {
1199 ret = bch_btree_iter_next(iter);
1200 } while (ret && fn(b, ret));
1201
1202 return ret;
1203}
1204
cafe5635
KO
1205/* Mergesort */
1206
67539e85
KO
1207void bch_bset_sort_state_free(struct bset_sort_state *state)
1208{
d19936a2 1209 mempool_exit(&state->pool);
67539e85
KO
1210}
1211
6f10f7d1
CL
1212int bch_bset_sort_state_init(struct bset_sort_state *state,
1213 unsigned int page_order)
67539e85
KO
1214{
1215 spin_lock_init(&state->time.lock);
1216
1217 state->page_order = page_order;
1218 state->crit_factor = int_sqrt(1 << page_order);
1219
d19936a2 1220 return mempool_init_page_pool(&state->pool, 1, page_order);
67539e85 1221}
a85e968e 1222EXPORT_SYMBOL(bch_bset_sort_state_init);
67539e85 1223
a85e968e 1224static void btree_mergesort(struct btree_keys *b, struct bset *out,
cafe5635
KO
1225 struct btree_iter *iter,
1226 bool fixup, bool remove_stale)
1227{
911c9610 1228 int i;
cafe5635 1229 struct bkey *k, *last = NULL;
ef71ec00 1230 BKEY_PADDED(k) tmp;
a85e968e 1231 bool (*bad)(struct btree_keys *, const struct bkey *) = remove_stale
cafe5635
KO
1232 ? bch_ptr_bad
1233 : bch_ptr_invalid;
1234
911c9610
KO
1235 /* Heapify the iterator, using our comparison function */
1236 for (i = iter->used / 2 - 1; i >= 0; --i)
65d45231 1237 heap_sift(iter, i, b->ops->sort_cmp);
911c9610 1238
cafe5635 1239 while (!btree_iter_end(iter)) {
65d45231
KO
1240 if (b->ops->sort_fixup && fixup)
1241 k = b->ops->sort_fixup(iter, &tmp.k);
ef71ec00
KO
1242 else
1243 k = NULL;
1244
1245 if (!k)
65d45231 1246 k = __bch_btree_iter_next(iter, b->ops->sort_cmp);
cafe5635 1247
cafe5635
KO
1248 if (bad(b, k))
1249 continue;
1250
1251 if (!last) {
1252 last = out->start;
1253 bkey_copy(last, k);
65d45231 1254 } else if (!bch_bkey_try_merge(b, last, k)) {
cafe5635
KO
1255 last = bkey_next(last);
1256 bkey_copy(last, k);
1257 }
1258 }
1259
1260 out->keys = last ? (uint64_t *) bkey_next(last) - out->d : 0;
1261
1262 pr_debug("sorted %i keys", out->keys);
cafe5635
KO
1263}
1264
a85e968e 1265static void __btree_sort(struct btree_keys *b, struct btree_iter *iter,
6f10f7d1 1266 unsigned int start, unsigned int order, bool fixup,
67539e85 1267 struct bset_sort_state *state)
cafe5635
KO
1268{
1269 uint64_t start_time;
0a451145 1270 bool used_mempool = false;
501d52a9 1271 struct bset *out = (void *) __get_free_pages(__GFP_NOWARN|GFP_NOWAIT,
cafe5635
KO
1272 order);
1273 if (!out) {
3572324a
KO
1274 struct page *outp;
1275
67539e85
KO
1276 BUG_ON(order > state->page_order);
1277
d19936a2 1278 outp = mempool_alloc(&state->pool, GFP_NOIO);
3572324a 1279 out = page_address(outp);
0a451145 1280 used_mempool = true;
a85e968e 1281 order = state->page_order;
cafe5635
KO
1282 }
1283
1284 start_time = local_clock();
1285
67539e85 1286 btree_mergesort(b, out, iter, fixup, false);
cafe5635
KO
1287 b->nsets = start;
1288
cafe5635
KO
1289 if (!start && order == b->page_order) {
1290 /*
1291 * Our temporary buffer is the same size as the btree node's
1292 * buffer, we can just swap buffers instead of doing a big
1293 * memcpy()
1294 */
1295
a85e968e
KO
1296 out->magic = b->set->data->magic;
1297 out->seq = b->set->data->seq;
1298 out->version = b->set->data->version;
1299 swap(out, b->set->data);
cafe5635 1300 } else {
a85e968e
KO
1301 b->set[start].data->keys = out->keys;
1302 memcpy(b->set[start].data->start, out->start,
fafff81c 1303 (void *) bset_bkey_last(out) - (void *) out->start);
cafe5635
KO
1304 }
1305
0a451145 1306 if (used_mempool)
d19936a2 1307 mempool_free(virt_to_page(out), &state->pool);
cafe5635
KO
1308 else
1309 free_pages((unsigned long) out, order);
1310
a85e968e 1311 bch_bset_build_written_tree(b);
cafe5635 1312
65d22e91 1313 if (!start)
67539e85 1314 bch_time_stats_update(&state->time, start_time);
cafe5635
KO
1315}
1316
6f10f7d1 1317void bch_btree_sort_partial(struct btree_keys *b, unsigned int start,
67539e85 1318 struct bset_sort_state *state)
cafe5635 1319{
89ebb4a2 1320 size_t order = b->page_order, keys = 0;
cafe5635 1321 struct btree_iter iter;
89ebb4a2 1322 int oldsize = bch_count_data(b);
280481d0 1323
89ebb4a2 1324 __bch_btree_iter_init(b, &iter, NULL, &b->set[start]);
cafe5635
KO
1325
1326 if (start) {
6f10f7d1 1327 unsigned int i;
cafe5635 1328
89ebb4a2
KO
1329 for (i = start; i <= b->nsets; i++)
1330 keys += b->set[i].data->keys;
cafe5635 1331
89ebb4a2 1332 order = get_order(__set_bytes(b->set->data, keys));
cafe5635
KO
1333 }
1334
89ebb4a2 1335 __btree_sort(b, &iter, start, order, false, state);
cafe5635 1336
89ebb4a2 1337 EBUG_ON(oldsize >= 0 && bch_count_data(b) != oldsize);
cafe5635 1338}
65d45231 1339EXPORT_SYMBOL(bch_btree_sort_partial);
cafe5635 1340
a85e968e
KO
1341void bch_btree_sort_and_fix_extents(struct btree_keys *b,
1342 struct btree_iter *iter,
67539e85 1343 struct bset_sort_state *state)
cafe5635 1344{
67539e85 1345 __btree_sort(b, iter, 0, b->page_order, true, state);
cafe5635
KO
1346}
1347
89ebb4a2 1348void bch_btree_sort_into(struct btree_keys *b, struct btree_keys *new,
67539e85 1349 struct bset_sort_state *state)
cafe5635
KO
1350{
1351 uint64_t start_time = local_clock();
cafe5635 1352 struct btree_iter iter;
1fae7cf0 1353
89ebb4a2 1354 bch_btree_iter_init(b, &iter, NULL);
cafe5635 1355
89ebb4a2 1356 btree_mergesort(b, new->set->data, &iter, false, true);
cafe5635 1357
67539e85 1358 bch_time_stats_update(&state->time, start_time);
cafe5635 1359
89ebb4a2 1360 new->set->size = 0; // XXX: why?
cafe5635
KO
1361}
1362
6ded34d1
KO
1363#define SORT_CRIT (4096 / sizeof(uint64_t))
1364
89ebb4a2 1365void bch_btree_sort_lazy(struct btree_keys *b, struct bset_sort_state *state)
cafe5635 1366{
6f10f7d1 1367 unsigned int crit = SORT_CRIT;
6ded34d1 1368 int i;
cafe5635 1369
6ded34d1 1370 /* Don't sort if nothing to do */
89ebb4a2 1371 if (!b->nsets)
6ded34d1 1372 goto out;
cafe5635 1373
89ebb4a2 1374 for (i = b->nsets - 1; i >= 0; --i) {
67539e85 1375 crit *= state->crit_factor;
cafe5635 1376
89ebb4a2 1377 if (b->set[i].data->keys < crit) {
67539e85 1378 bch_btree_sort_partial(b, i, state);
cafe5635
KO
1379 return;
1380 }
1381 }
1382
6ded34d1 1383 /* Sort if we'd overflow */
89ebb4a2 1384 if (b->nsets + 1 == MAX_BSETS) {
67539e85 1385 bch_btree_sort(b, state);
6ded34d1
KO
1386 return;
1387 }
1388
1389out:
89ebb4a2 1390 bch_bset_build_written_tree(b);
cafe5635 1391}
a85e968e 1392EXPORT_SYMBOL(bch_btree_sort_lazy);
cafe5635 1393
f67342dd 1394void bch_btree_keys_stats(struct btree_keys *b, struct bset_stats *stats)
cafe5635 1395{
6f10f7d1 1396 unsigned int i;
cafe5635 1397
f67342dd
KO
1398 for (i = 0; i <= b->nsets; i++) {
1399 struct bset_tree *t = &b->set[i];
cafe5635
KO
1400 size_t bytes = t->data->keys * sizeof(uint64_t);
1401 size_t j;
1402
f67342dd 1403 if (bset_written(b, t)) {
cafe5635
KO
1404 stats->sets_written++;
1405 stats->bytes_written += bytes;
1406
1407 stats->floats += t->size - 1;
1408
1409 for (j = 1; j < t->size; j++)
1410 if (t->tree[j].exponent == 127)
1411 stats->failed++;
1412 } else {
1413 stats->sets_unwritten++;
1414 stats->bytes_unwritten += bytes;
1415 }
1416 }
cafe5635 1417}