bcache: Rip out pkey()/pbtree()
[linux-2.6-block.git] / drivers / md / bcache / bcache.h
CommitLineData
cafe5635
KO
1#ifndef _BCACHE_H
2#define _BCACHE_H
3
4/*
5 * SOME HIGH LEVEL CODE DOCUMENTATION:
6 *
7 * Bcache mostly works with cache sets, cache devices, and backing devices.
8 *
9 * Support for multiple cache devices hasn't quite been finished off yet, but
10 * it's about 95% plumbed through. A cache set and its cache devices is sort of
11 * like a md raid array and its component devices. Most of the code doesn't care
12 * about individual cache devices, the main abstraction is the cache set.
13 *
14 * Multiple cache devices is intended to give us the ability to mirror dirty
15 * cached data and metadata, without mirroring clean cached data.
16 *
17 * Backing devices are different, in that they have a lifetime independent of a
18 * cache set. When you register a newly formatted backing device it'll come up
19 * in passthrough mode, and then you can attach and detach a backing device from
20 * a cache set at runtime - while it's mounted and in use. Detaching implicitly
21 * invalidates any cached data for that backing device.
22 *
23 * A cache set can have multiple (many) backing devices attached to it.
24 *
25 * There's also flash only volumes - this is the reason for the distinction
26 * between struct cached_dev and struct bcache_device. A flash only volume
27 * works much like a bcache device that has a backing device, except the
28 * "cached" data is always dirty. The end result is that we get thin
29 * provisioning with very little additional code.
30 *
31 * Flash only volumes work but they're not production ready because the moving
32 * garbage collector needs more work. More on that later.
33 *
34 * BUCKETS/ALLOCATION:
35 *
36 * Bcache is primarily designed for caching, which means that in normal
37 * operation all of our available space will be allocated. Thus, we need an
38 * efficient way of deleting things from the cache so we can write new things to
39 * it.
40 *
41 * To do this, we first divide the cache device up into buckets. A bucket is the
42 * unit of allocation; they're typically around 1 mb - anywhere from 128k to 2M+
43 * works efficiently.
44 *
45 * Each bucket has a 16 bit priority, and an 8 bit generation associated with
46 * it. The gens and priorities for all the buckets are stored contiguously and
47 * packed on disk (in a linked list of buckets - aside from the superblock, all
48 * of bcache's metadata is stored in buckets).
49 *
50 * The priority is used to implement an LRU. We reset a bucket's priority when
51 * we allocate it or on cache it, and every so often we decrement the priority
52 * of each bucket. It could be used to implement something more sophisticated,
53 * if anyone ever gets around to it.
54 *
55 * The generation is used for invalidating buckets. Each pointer also has an 8
56 * bit generation embedded in it; for a pointer to be considered valid, its gen
57 * must match the gen of the bucket it points into. Thus, to reuse a bucket all
58 * we have to do is increment its gen (and write its new gen to disk; we batch
59 * this up).
60 *
61 * Bcache is entirely COW - we never write twice to a bucket, even buckets that
62 * contain metadata (including btree nodes).
63 *
64 * THE BTREE:
65 *
66 * Bcache is in large part design around the btree.
67 *
68 * At a high level, the btree is just an index of key -> ptr tuples.
69 *
70 * Keys represent extents, and thus have a size field. Keys also have a variable
71 * number of pointers attached to them (potentially zero, which is handy for
72 * invalidating the cache).
73 *
74 * The key itself is an inode:offset pair. The inode number corresponds to a
75 * backing device or a flash only volume. The offset is the ending offset of the
76 * extent within the inode - not the starting offset; this makes lookups
77 * slightly more convenient.
78 *
79 * Pointers contain the cache device id, the offset on that device, and an 8 bit
80 * generation number. More on the gen later.
81 *
82 * Index lookups are not fully abstracted - cache lookups in particular are
83 * still somewhat mixed in with the btree code, but things are headed in that
84 * direction.
85 *
86 * Updates are fairly well abstracted, though. There are two different ways of
87 * updating the btree; insert and replace.
88 *
89 * BTREE_INSERT will just take a list of keys and insert them into the btree -
90 * overwriting (possibly only partially) any extents they overlap with. This is
91 * used to update the index after a write.
92 *
93 * BTREE_REPLACE is really cmpxchg(); it inserts a key into the btree iff it is
94 * overwriting a key that matches another given key. This is used for inserting
95 * data into the cache after a cache miss, and for background writeback, and for
96 * the moving garbage collector.
97 *
98 * There is no "delete" operation; deleting things from the index is
99 * accomplished by either by invalidating pointers (by incrementing a bucket's
100 * gen) or by inserting a key with 0 pointers - which will overwrite anything
101 * previously present at that location in the index.
102 *
103 * This means that there are always stale/invalid keys in the btree. They're
104 * filtered out by the code that iterates through a btree node, and removed when
105 * a btree node is rewritten.
106 *
107 * BTREE NODES:
108 *
109 * Our unit of allocation is a bucket, and we we can't arbitrarily allocate and
110 * free smaller than a bucket - so, that's how big our btree nodes are.
111 *
112 * (If buckets are really big we'll only use part of the bucket for a btree node
113 * - no less than 1/4th - but a bucket still contains no more than a single
114 * btree node. I'd actually like to change this, but for now we rely on the
115 * bucket's gen for deleting btree nodes when we rewrite/split a node.)
116 *
117 * Anyways, btree nodes are big - big enough to be inefficient with a textbook
118 * btree implementation.
119 *
120 * The way this is solved is that btree nodes are internally log structured; we
121 * can append new keys to an existing btree node without rewriting it. This
122 * means each set of keys we write is sorted, but the node is not.
123 *
124 * We maintain this log structure in memory - keeping 1Mb of keys sorted would
125 * be expensive, and we have to distinguish between the keys we have written and
126 * the keys we haven't. So to do a lookup in a btree node, we have to search
127 * each sorted set. But we do merge written sets together lazily, so the cost of
128 * these extra searches is quite low (normally most of the keys in a btree node
129 * will be in one big set, and then there'll be one or two sets that are much
130 * smaller).
131 *
132 * This log structure makes bcache's btree more of a hybrid between a
133 * conventional btree and a compacting data structure, with some of the
134 * advantages of both.
135 *
136 * GARBAGE COLLECTION:
137 *
138 * We can't just invalidate any bucket - it might contain dirty data or
139 * metadata. If it once contained dirty data, other writes might overwrite it
140 * later, leaving no valid pointers into that bucket in the index.
141 *
142 * Thus, the primary purpose of garbage collection is to find buckets to reuse.
143 * It also counts how much valid data it each bucket currently contains, so that
144 * allocation can reuse buckets sooner when they've been mostly overwritten.
145 *
146 * It also does some things that are really internal to the btree
147 * implementation. If a btree node contains pointers that are stale by more than
148 * some threshold, it rewrites the btree node to avoid the bucket's generation
149 * wrapping around. It also merges adjacent btree nodes if they're empty enough.
150 *
151 * THE JOURNAL:
152 *
153 * Bcache's journal is not necessary for consistency; we always strictly
154 * order metadata writes so that the btree and everything else is consistent on
155 * disk in the event of an unclean shutdown, and in fact bcache had writeback
156 * caching (with recovery from unclean shutdown) before journalling was
157 * implemented.
158 *
159 * Rather, the journal is purely a performance optimization; we can't complete a
160 * write until we've updated the index on disk, otherwise the cache would be
161 * inconsistent in the event of an unclean shutdown. This means that without the
162 * journal, on random write workloads we constantly have to update all the leaf
163 * nodes in the btree, and those writes will be mostly empty (appending at most
164 * a few keys each) - highly inefficient in terms of amount of metadata writes,
165 * and it puts more strain on the various btree resorting/compacting code.
166 *
167 * The journal is just a log of keys we've inserted; on startup we just reinsert
168 * all the keys in the open journal entries. That means that when we're updating
169 * a node in the btree, we can wait until a 4k block of keys fills up before
170 * writing them out.
171 *
172 * For simplicity, we only journal updates to leaf nodes; updates to parent
173 * nodes are rare enough (since our leaf nodes are huge) that it wasn't worth
174 * the complexity to deal with journalling them (in particular, journal replay)
175 * - updates to non leaf nodes just happen synchronously (see btree_split()).
176 */
177
178#define pr_fmt(fmt) "bcache: %s() " fmt "\n", __func__
179
180#include <linux/bio.h>
cafe5635
KO
181#include <linux/kobject.h>
182#include <linux/list.h>
183#include <linux/mutex.h>
184#include <linux/rbtree.h>
185#include <linux/rwsem.h>
186#include <linux/types.h>
187#include <linux/workqueue.h>
188
189#include "util.h"
190#include "closure.h"
191
192struct bucket {
193 atomic_t pin;
194 uint16_t prio;
195 uint8_t gen;
196 uint8_t disk_gen;
197 uint8_t last_gc; /* Most out of date gen in the btree */
198 uint8_t gc_gen;
199 uint16_t gc_mark;
200};
201
202/*
203 * I'd use bitfields for these, but I don't trust the compiler not to screw me
204 * as multiple threads touch struct bucket without locking
205 */
206
207BITMASK(GC_MARK, struct bucket, gc_mark, 0, 2);
208#define GC_MARK_RECLAIMABLE 0
209#define GC_MARK_DIRTY 1
210#define GC_MARK_METADATA 2
211BITMASK(GC_SECTORS_USED, struct bucket, gc_mark, 2, 14);
212
213struct bkey {
214 uint64_t high;
215 uint64_t low;
216 uint64_t ptr[];
217};
218
219/* Enough for a key with 6 pointers */
220#define BKEY_PAD 8
221
222#define BKEY_PADDED(key) \
223 union { struct bkey key; uint64_t key ## _pad[BKEY_PAD]; }
224
2903381f
KO
225/* Version 0: Cache device
226 * Version 1: Backing device
cafe5635 227 * Version 2: Seed pointer into btree node checksum
2903381f
KO
228 * Version 3: Cache device with new UUID format
229 * Version 4: Backing device with data offset
cafe5635 230 */
2903381f
KO
231#define BCACHE_SB_VERSION_CDEV 0
232#define BCACHE_SB_VERSION_BDEV 1
233#define BCACHE_SB_VERSION_CDEV_WITH_UUID 3
234#define BCACHE_SB_VERSION_BDEV_WITH_OFFSET 4
235#define BCACHE_SB_MAX_VERSION 4
cafe5635
KO
236
237#define SB_SECTOR 8
238#define SB_SIZE 4096
239#define SB_LABEL_SIZE 32
240#define SB_JOURNAL_BUCKETS 256U
241/* SB_JOURNAL_BUCKETS must be divisible by BITS_PER_LONG */
242#define MAX_CACHES_PER_SET 8
243
2903381f 244#define BDEV_DATA_START_DEFAULT 16 /* sectors */
cafe5635
KO
245
246struct cache_sb {
247 uint64_t csum;
248 uint64_t offset; /* sector where this sb was written */
249 uint64_t version;
cafe5635
KO
250
251 uint8_t magic[16];
252
253 uint8_t uuid[16];
254 union {
255 uint8_t set_uuid[16];
256 uint64_t set_magic;
257 };
258 uint8_t label[SB_LABEL_SIZE];
259
260 uint64_t flags;
261 uint64_t seq;
262 uint64_t pad[8];
263
2903381f
KO
264 union {
265 struct {
266 /* Cache devices */
267 uint64_t nbuckets; /* device size */
268
269 uint16_t block_size; /* sectors */
270 uint16_t bucket_size; /* sectors */
cafe5635 271
2903381f
KO
272 uint16_t nr_in_set;
273 uint16_t nr_this_dev;
274 };
275 struct {
276 /* Backing devices */
277 uint64_t data_offset;
278
279 /*
280 * block_size from the cache device section is still used by
281 * backing devices, so don't add anything here until we fix
282 * things to not need it for backing devices anymore
283 */
284 };
285 };
cafe5635
KO
286
287 uint32_t last_mount; /* time_t */
288
289 uint16_t first_bucket;
290 union {
291 uint16_t njournal_buckets;
292 uint16_t keys;
293 };
294 uint64_t d[SB_JOURNAL_BUCKETS]; /* journal buckets */
295};
296
297BITMASK(CACHE_SYNC, struct cache_sb, flags, 0, 1);
298BITMASK(CACHE_DISCARD, struct cache_sb, flags, 1, 1);
299BITMASK(CACHE_REPLACEMENT, struct cache_sb, flags, 2, 3);
300#define CACHE_REPLACEMENT_LRU 0U
301#define CACHE_REPLACEMENT_FIFO 1U
302#define CACHE_REPLACEMENT_RANDOM 2U
303
304BITMASK(BDEV_CACHE_MODE, struct cache_sb, flags, 0, 4);
305#define CACHE_MODE_WRITETHROUGH 0U
306#define CACHE_MODE_WRITEBACK 1U
307#define CACHE_MODE_WRITEAROUND 2U
308#define CACHE_MODE_NONE 3U
309BITMASK(BDEV_STATE, struct cache_sb, flags, 61, 2);
310#define BDEV_STATE_NONE 0U
311#define BDEV_STATE_CLEAN 1U
312#define BDEV_STATE_DIRTY 2U
313#define BDEV_STATE_STALE 3U
314
315/* Version 1: Seed pointer into btree node checksum
316 */
317#define BCACHE_BSET_VERSION 1
318
319/*
320 * This is the on disk format for btree nodes - a btree node on disk is a list
321 * of these; within each set the keys are sorted
322 */
323struct bset {
324 uint64_t csum;
325 uint64_t magic;
326 uint64_t seq;
327 uint32_t version;
328 uint32_t keys;
329
330 union {
331 struct bkey start[0];
332 uint64_t d[0];
333 };
334};
335
336/*
337 * On disk format for priorities and gens - see super.c near prio_write() for
338 * more.
339 */
340struct prio_set {
341 uint64_t csum;
342 uint64_t magic;
343 uint64_t seq;
344 uint32_t version;
345 uint32_t pad;
346
347 uint64_t next_bucket;
348
349 struct bucket_disk {
350 uint16_t prio;
351 uint8_t gen;
352 } __attribute((packed)) data[];
353};
354
355struct uuid_entry {
356 union {
357 struct {
358 uint8_t uuid[16];
359 uint8_t label[32];
360 uint32_t first_reg;
361 uint32_t last_reg;
362 uint32_t invalidated;
363
364 uint32_t flags;
365 /* Size of flash only volumes */
366 uint64_t sectors;
367 };
368
369 uint8_t pad[128];
370 };
371};
372
373BITMASK(UUID_FLASH_ONLY, struct uuid_entry, flags, 0, 1);
374
375#include "journal.h"
376#include "stats.h"
377struct search;
378struct btree;
379struct keybuf;
380
381struct keybuf_key {
382 struct rb_node node;
383 BKEY_PADDED(key);
384 void *private;
385};
386
387typedef bool (keybuf_pred_fn)(struct keybuf *, struct bkey *);
388
389struct keybuf {
390 keybuf_pred_fn *key_predicate;
391
392 struct bkey last_scanned;
393 spinlock_t lock;
394
395 /*
396 * Beginning and end of range in rb tree - so that we can skip taking
397 * lock and checking the rb tree when we need to check for overlapping
398 * keys.
399 */
400 struct bkey start;
401 struct bkey end;
402
403 struct rb_root keys;
404
405#define KEYBUF_NR 100
406 DECLARE_ARRAY_ALLOCATOR(struct keybuf_key, freelist, KEYBUF_NR);
407};
408
409struct bio_split_pool {
410 struct bio_set *bio_split;
411 mempool_t *bio_split_hook;
412};
413
414struct bio_split_hook {
415 struct closure cl;
416 struct bio_split_pool *p;
417 struct bio *bio;
418 bio_end_io_t *bi_end_io;
419 void *bi_private;
420};
421
422struct bcache_device {
423 struct closure cl;
424
425 struct kobject kobj;
426
427 struct cache_set *c;
428 unsigned id;
429#define BCACHEDEVNAME_SIZE 12
430 char name[BCACHEDEVNAME_SIZE];
431
432 struct gendisk *disk;
433
434 /* If nonzero, we're closing */
435 atomic_t closing;
436
437 /* If nonzero, we're detaching/unregistering from cache set */
438 atomic_t detaching;
439
440 atomic_long_t sectors_dirty;
441 unsigned long sectors_dirty_gc;
442 unsigned long sectors_dirty_last;
443 long sectors_dirty_derivative;
444
445 mempool_t *unaligned_bvec;
446 struct bio_set *bio_split;
447
448 unsigned data_csum:1;
449
450 int (*cache_miss)(struct btree *, struct search *,
451 struct bio *, unsigned);
452 int (*ioctl) (struct bcache_device *, fmode_t, unsigned, unsigned long);
453
454 struct bio_split_pool bio_split_hook;
455};
456
457struct io {
458 /* Used to track sequential IO so it can be skipped */
459 struct hlist_node hash;
460 struct list_head lru;
461
462 unsigned long jiffies;
463 unsigned sequential;
464 sector_t last;
465};
466
467struct cached_dev {
468 struct list_head list;
469 struct bcache_device disk;
470 struct block_device *bdev;
471
472 struct cache_sb sb;
473 struct bio sb_bio;
474 struct bio_vec sb_bv[1];
475 struct closure_with_waitlist sb_write;
476
477 /* Refcount on the cache set. Always nonzero when we're caching. */
478 atomic_t count;
479 struct work_struct detach;
480
481 /*
482 * Device might not be running if it's dirty and the cache set hasn't
483 * showed up yet.
484 */
485 atomic_t running;
486
487 /*
488 * Writes take a shared lock from start to finish; scanning for dirty
489 * data to refill the rb tree requires an exclusive lock.
490 */
491 struct rw_semaphore writeback_lock;
492
493 /*
494 * Nonzero, and writeback has a refcount (d->count), iff there is dirty
495 * data in the cache. Protected by writeback_lock; must have an
496 * shared lock to set and exclusive lock to clear.
497 */
498 atomic_t has_dirty;
499
500 struct ratelimit writeback_rate;
501 struct delayed_work writeback_rate_update;
502
503 /*
504 * Internal to the writeback code, so read_dirty() can keep track of
505 * where it's at.
506 */
507 sector_t last_read;
508
509 /* Number of writeback bios in flight */
510 atomic_t in_flight;
511 struct closure_with_timer writeback;
512 struct closure_waitlist writeback_wait;
513
514 struct keybuf writeback_keys;
515
516 /* For tracking sequential IO */
517#define RECENT_IO_BITS 7
518#define RECENT_IO (1 << RECENT_IO_BITS)
519 struct io io[RECENT_IO];
520 struct hlist_head io_hash[RECENT_IO + 1];
521 struct list_head io_lru;
522 spinlock_t io_lock;
523
524 struct cache_accounting accounting;
525
526 /* The rest of this all shows up in sysfs */
527 unsigned sequential_cutoff;
528 unsigned readahead;
529
530 unsigned sequential_merge:1;
531 unsigned verify:1;
532
533 unsigned writeback_metadata:1;
534 unsigned writeback_running:1;
535 unsigned char writeback_percent;
536 unsigned writeback_delay;
537
538 int writeback_rate_change;
539 int64_t writeback_rate_derivative;
540 uint64_t writeback_rate_target;
541
542 unsigned writeback_rate_update_seconds;
543 unsigned writeback_rate_d_term;
544 unsigned writeback_rate_p_term_inverse;
545 unsigned writeback_rate_d_smooth;
546};
547
548enum alloc_watermarks {
549 WATERMARK_PRIO,
550 WATERMARK_METADATA,
551 WATERMARK_MOVINGGC,
552 WATERMARK_NONE,
553 WATERMARK_MAX
554};
555
556struct cache {
557 struct cache_set *set;
558 struct cache_sb sb;
559 struct bio sb_bio;
560 struct bio_vec sb_bv[1];
561
562 struct kobject kobj;
563 struct block_device *bdev;
564
565 unsigned watermark[WATERMARK_MAX];
566
119ba0f8 567 struct task_struct *alloc_thread;
cafe5635
KO
568
569 struct closure prio;
570 struct prio_set *disk_buckets;
571
572 /*
573 * When allocating new buckets, prio_write() gets first dibs - since we
574 * may not be allocate at all without writing priorities and gens.
575 * prio_buckets[] contains the last buckets we wrote priorities to (so
576 * gc can mark them as metadata), prio_next[] contains the buckets
577 * allocated for the next prio write.
578 */
579 uint64_t *prio_buckets;
580 uint64_t *prio_last_buckets;
581
582 /*
583 * free: Buckets that are ready to be used
584 *
585 * free_inc: Incoming buckets - these are buckets that currently have
586 * cached data in them, and we can't reuse them until after we write
587 * their new gen to disk. After prio_write() finishes writing the new
588 * gens/prios, they'll be moved to the free list (and possibly discarded
589 * in the process)
590 *
591 * unused: GC found nothing pointing into these buckets (possibly
592 * because all the data they contained was overwritten), so we only
593 * need to discard them before they can be moved to the free list.
594 */
595 DECLARE_FIFO(long, free);
596 DECLARE_FIFO(long, free_inc);
597 DECLARE_FIFO(long, unused);
598
599 size_t fifo_last_bucket;
600
601 /* Allocation stuff: */
602 struct bucket *buckets;
603
604 DECLARE_HEAP(struct bucket *, heap);
605
606 /*
607 * max(gen - disk_gen) for all buckets. When it gets too big we have to
608 * call prio_write() to keep gens from wrapping.
609 */
610 uint8_t need_save_prio;
611 unsigned gc_move_threshold;
612
613 /*
614 * If nonzero, we know we aren't going to find any buckets to invalidate
615 * until a gc finishes - otherwise we could pointlessly burn a ton of
616 * cpu
617 */
618 unsigned invalidate_needs_gc:1;
619
620 bool discard; /* Get rid of? */
621
622 /*
623 * We preallocate structs for issuing discards to buckets, and keep them
624 * on this list when they're not in use; do_discard() issues discards
625 * whenever there's work to do and is called by free_some_buckets() and
626 * when a discard finishes.
627 */
628 atomic_t discards_in_flight;
629 struct list_head discards;
630
631 struct journal_device journal;
632
633 /* The rest of this all shows up in sysfs */
634#define IO_ERROR_SHIFT 20
635 atomic_t io_errors;
636 atomic_t io_count;
637
638 atomic_long_t meta_sectors_written;
639 atomic_long_t btree_sectors_written;
640 atomic_long_t sectors_written;
641
642 struct bio_split_pool bio_split_hook;
643};
644
645struct gc_stat {
646 size_t nodes;
647 size_t key_bytes;
648
649 size_t nkeys;
650 uint64_t data; /* sectors */
651 uint64_t dirty; /* sectors */
652 unsigned in_use; /* percent */
653};
654
655/*
656 * Flag bits, for how the cache set is shutting down, and what phase it's at:
657 *
658 * CACHE_SET_UNREGISTERING means we're not just shutting down, we're detaching
659 * all the backing devices first (their cached data gets invalidated, and they
660 * won't automatically reattach).
661 *
662 * CACHE_SET_STOPPING always gets set first when we're closing down a cache set;
663 * we'll continue to run normally for awhile with CACHE_SET_STOPPING set (i.e.
664 * flushing dirty data).
665 *
b1a67b0f
KO
666 * CACHE_SET_STOPPING_2 gets set at the last phase, when it's time to shut down
667 * the allocation thread.
cafe5635
KO
668 */
669#define CACHE_SET_UNREGISTERING 0
670#define CACHE_SET_STOPPING 1
671#define CACHE_SET_STOPPING_2 2
672
673struct cache_set {
674 struct closure cl;
675
676 struct list_head list;
677 struct kobject kobj;
678 struct kobject internal;
679 struct dentry *debug;
680 struct cache_accounting accounting;
681
682 unsigned long flags;
683
684 struct cache_sb sb;
685
686 struct cache *cache[MAX_CACHES_PER_SET];
687 struct cache *cache_by_alloc[MAX_CACHES_PER_SET];
688 int caches_loaded;
689
690 struct bcache_device **devices;
691 struct list_head cached_devs;
692 uint64_t cached_dev_sectors;
693 struct closure caching;
694
695 struct closure_with_waitlist sb_write;
696
697 mempool_t *search;
698 mempool_t *bio_meta;
699 struct bio_set *bio_split;
700
701 /* For the btree cache */
702 struct shrinker shrink;
703
cafe5635
KO
704 /* For the btree cache and anything allocation related */
705 struct mutex bucket_lock;
706
707 /* log2(bucket_size), in sectors */
708 unsigned short bucket_bits;
709
710 /* log2(block_size), in sectors */
711 unsigned short block_bits;
712
713 /*
714 * Default number of pages for a new btree node - may be less than a
715 * full bucket
716 */
717 unsigned btree_pages;
718
719 /*
720 * Lists of struct btrees; lru is the list for structs that have memory
721 * allocated for actual btree node, freed is for structs that do not.
722 *
723 * We never free a struct btree, except on shutdown - we just put it on
724 * the btree_cache_freed list and reuse it later. This simplifies the
725 * code, and it doesn't cost us much memory as the memory usage is
726 * dominated by buffers that hold the actual btree node data and those
727 * can be freed - and the number of struct btrees allocated is
728 * effectively bounded.
729 *
730 * btree_cache_freeable effectively is a small cache - we use it because
731 * high order page allocations can be rather expensive, and it's quite
732 * common to delete and allocate btree nodes in quick succession. It
733 * should never grow past ~2-3 nodes in practice.
734 */
735 struct list_head btree_cache;
736 struct list_head btree_cache_freeable;
737 struct list_head btree_cache_freed;
738
739 /* Number of elements in btree_cache + btree_cache_freeable lists */
740 unsigned bucket_cache_used;
741
742 /*
743 * If we need to allocate memory for a new btree node and that
744 * allocation fails, we can cannibalize another node in the btree cache
745 * to satisfy the allocation. However, only one thread can be doing this
746 * at a time, for obvious reasons - try_harder and try_wait are
747 * basically a lock for this that we can wait on asynchronously. The
748 * btree_root() macro releases the lock when it returns.
749 */
750 struct closure *try_harder;
751 struct closure_waitlist try_wait;
752 uint64_t try_harder_start;
753
754 /*
755 * When we free a btree node, we increment the gen of the bucket the
756 * node is in - but we can't rewrite the prios and gens until we
757 * finished whatever it is we were doing, otherwise after a crash the
758 * btree node would be freed but for say a split, we might not have the
759 * pointers to the new nodes inserted into the btree yet.
760 *
761 * This is a refcount that blocks prio_write() until the new keys are
762 * written.
763 */
764 atomic_t prio_blocked;
765 struct closure_waitlist bucket_wait;
766
767 /*
768 * For any bio we don't skip we subtract the number of sectors from
769 * rescale; when it hits 0 we rescale all the bucket priorities.
770 */
771 atomic_t rescale;
772 /*
773 * When we invalidate buckets, we use both the priority and the amount
774 * of good data to determine which buckets to reuse first - to weight
775 * those together consistently we keep track of the smallest nonzero
776 * priority of any bucket.
777 */
778 uint16_t min_prio;
779
780 /*
781 * max(gen - gc_gen) for all buckets. When it gets too big we have to gc
782 * to keep gens from wrapping around.
783 */
784 uint8_t need_gc;
785 struct gc_stat gc_stats;
786 size_t nbuckets;
787
788 struct closure_with_waitlist gc;
789 /* Where in the btree gc currently is */
790 struct bkey gc_done;
791
792 /*
793 * The allocation code needs gc_mark in struct bucket to be correct, but
794 * it's not while a gc is in progress. Protected by bucket_lock.
795 */
796 int gc_mark_valid;
797
798 /* Counts how many sectors bio_insert has added to the cache */
799 atomic_t sectors_to_gc;
800
801 struct closure moving_gc;
802 struct closure_waitlist moving_gc_wait;
803 struct keybuf moving_gc_keys;
804 /* Number of moving GC bios in flight */
805 atomic_t in_flight;
806
807 struct btree *root;
808
809#ifdef CONFIG_BCACHE_DEBUG
810 struct btree *verify_data;
811 struct mutex verify_lock;
812#endif
813
814 unsigned nr_uuids;
815 struct uuid_entry *uuids;
816 BKEY_PADDED(uuid_bucket);
817 struct closure_with_waitlist uuid_write;
818
819 /*
820 * A btree node on disk could have too many bsets for an iterator to fit
57943511 821 * on the stack - have to dynamically allocate them
cafe5635 822 */
57943511 823 mempool_t *fill_iter;
cafe5635
KO
824
825 /*
826 * btree_sort() is a merge sort and requires temporary space - single
827 * element mempool
828 */
829 struct mutex sort_lock;
830 struct bset *sort;
831
832 /* List of buckets we're currently writing data to */
833 struct list_head data_buckets;
834 spinlock_t data_bucket_lock;
835
836 struct journal journal;
837
838#define CONGESTED_MAX 1024
839 unsigned congested_last_us;
840 atomic_t congested;
841
842 /* The rest of this all shows up in sysfs */
843 unsigned congested_read_threshold_us;
844 unsigned congested_write_threshold_us;
845
846 spinlock_t sort_time_lock;
847 struct time_stats sort_time;
848 struct time_stats btree_gc_time;
849 struct time_stats btree_split_time;
850 spinlock_t btree_read_time_lock;
851 struct time_stats btree_read_time;
852 struct time_stats try_harder_time;
853
854 atomic_long_t cache_read_races;
855 atomic_long_t writeback_keys_done;
856 atomic_long_t writeback_keys_failed;
857 unsigned error_limit;
858 unsigned error_decay;
859 unsigned short journal_delay_ms;
860 unsigned verify:1;
861 unsigned key_merging_disabled:1;
862 unsigned gc_always_rewrite:1;
863 unsigned shrinker_disabled:1;
864 unsigned copy_gc_enabled:1;
865
866#define BUCKET_HASH_BITS 12
867 struct hlist_head bucket_hash[1 << BUCKET_HASH_BITS];
868};
869
870static inline bool key_merging_disabled(struct cache_set *c)
871{
872#ifdef CONFIG_BCACHE_DEBUG
873 return c->key_merging_disabled;
874#else
875 return 0;
876#endif
877}
878
2903381f
KO
879static inline bool SB_IS_BDEV(const struct cache_sb *sb)
880{
881 return sb->version == BCACHE_SB_VERSION_BDEV
882 || sb->version == BCACHE_SB_VERSION_BDEV_WITH_OFFSET;
883}
884
cafe5635
KO
885struct bbio {
886 unsigned submit_time_us;
887 union {
888 struct bkey key;
889 uint64_t _pad[3];
890 /*
891 * We only need pad = 3 here because we only ever carry around a
892 * single pointer - i.e. the pointer we're doing io to/from.
893 */
894 };
895 struct bio bio;
896};
897
898static inline unsigned local_clock_us(void)
899{
900 return local_clock() >> 10;
901}
902
cafe5635
KO
903#define BTREE_PRIO USHRT_MAX
904#define INITIAL_PRIO 32768
905
906#define btree_bytes(c) ((c)->btree_pages * PAGE_SIZE)
907#define btree_blocks(b) \
908 ((unsigned) (KEY_SIZE(&b->key) >> (b)->c->block_bits))
909
910#define btree_default_blocks(c) \
911 ((unsigned) ((PAGE_SECTORS * (c)->btree_pages) >> (c)->block_bits))
912
913#define bucket_pages(c) ((c)->sb.bucket_size / PAGE_SECTORS)
914#define bucket_bytes(c) ((c)->sb.bucket_size << 9)
915#define block_bytes(c) ((c)->sb.block_size << 9)
916
917#define __set_bytes(i, k) (sizeof(*(i)) + (k) * sizeof(uint64_t))
918#define set_bytes(i) __set_bytes(i, i->keys)
919
920#define __set_blocks(i, k, c) DIV_ROUND_UP(__set_bytes(i, k), block_bytes(c))
921#define set_blocks(i, c) __set_blocks(i, (i)->keys, c)
922
923#define node(i, j) ((struct bkey *) ((i)->d + (j)))
924#define end(i) node(i, (i)->keys)
925
926#define index(i, b) \
927 ((size_t) (((void *) i - (void *) (b)->sets[0].data) / \
928 block_bytes(b->c)))
929
930#define btree_data_space(b) (PAGE_SIZE << (b)->page_order)
931
932#define prios_per_bucket(c) \
933 ((bucket_bytes(c) - sizeof(struct prio_set)) / \
934 sizeof(struct bucket_disk))
935#define prio_buckets(c) \
936 DIV_ROUND_UP((size_t) (c)->sb.nbuckets, prios_per_bucket(c))
937
938#define JSET_MAGIC 0x245235c1a3625032ULL
939#define PSET_MAGIC 0x6750e15f87337f91ULL
940#define BSET_MAGIC 0x90135c78b99e07f5ULL
941
942#define jset_magic(c) ((c)->sb.set_magic ^ JSET_MAGIC)
943#define pset_magic(c) ((c)->sb.set_magic ^ PSET_MAGIC)
944#define bset_magic(c) ((c)->sb.set_magic ^ BSET_MAGIC)
945
946/* Bkey fields: all units are in sectors */
947
948#define KEY_FIELD(name, field, offset, size) \
949 BITMASK(name, struct bkey, field, offset, size)
950
951#define PTR_FIELD(name, offset, size) \
952 static inline uint64_t name(const struct bkey *k, unsigned i) \
953 { return (k->ptr[i] >> offset) & ~(((uint64_t) ~0) << size); } \
954 \
955 static inline void SET_##name(struct bkey *k, unsigned i, uint64_t v)\
956 { \
957 k->ptr[i] &= ~(~((uint64_t) ~0 << size) << offset); \
958 k->ptr[i] |= v << offset; \
959 }
960
961KEY_FIELD(KEY_PTRS, high, 60, 3)
962KEY_FIELD(HEADER_SIZE, high, 58, 2)
963KEY_FIELD(KEY_CSUM, high, 56, 2)
964KEY_FIELD(KEY_PINNED, high, 55, 1)
965KEY_FIELD(KEY_DIRTY, high, 36, 1)
966
967KEY_FIELD(KEY_SIZE, high, 20, 16)
968KEY_FIELD(KEY_INODE, high, 0, 20)
969
970/* Next time I change the on disk format, KEY_OFFSET() won't be 64 bits */
971
972static inline uint64_t KEY_OFFSET(const struct bkey *k)
973{
974 return k->low;
975}
976
977static inline void SET_KEY_OFFSET(struct bkey *k, uint64_t v)
978{
979 k->low = v;
980}
981
982PTR_FIELD(PTR_DEV, 51, 12)
983PTR_FIELD(PTR_OFFSET, 8, 43)
984PTR_FIELD(PTR_GEN, 0, 8)
985
986#define PTR_CHECK_DEV ((1 << 12) - 1)
987
988#define PTR(gen, offset, dev) \
989 ((((uint64_t) dev) << 51) | ((uint64_t) offset) << 8 | gen)
990
991static inline size_t sector_to_bucket(struct cache_set *c, sector_t s)
992{
993 return s >> c->bucket_bits;
994}
995
996static inline sector_t bucket_to_sector(struct cache_set *c, size_t b)
997{
998 return ((sector_t) b) << c->bucket_bits;
999}
1000
1001static inline sector_t bucket_remainder(struct cache_set *c, sector_t s)
1002{
1003 return s & (c->sb.bucket_size - 1);
1004}
1005
1006static inline struct cache *PTR_CACHE(struct cache_set *c,
1007 const struct bkey *k,
1008 unsigned ptr)
1009{
1010 return c->cache[PTR_DEV(k, ptr)];
1011}
1012
1013static inline size_t PTR_BUCKET_NR(struct cache_set *c,
1014 const struct bkey *k,
1015 unsigned ptr)
1016{
1017 return sector_to_bucket(c, PTR_OFFSET(k, ptr));
1018}
1019
1020static inline struct bucket *PTR_BUCKET(struct cache_set *c,
1021 const struct bkey *k,
1022 unsigned ptr)
1023{
1024 return PTR_CACHE(c, k, ptr)->buckets + PTR_BUCKET_NR(c, k, ptr);
1025}
1026
1027/* Btree key macros */
1028
1029/*
1030 * The high bit being set is a relic from when we used it to do binary
1031 * searches - it told you where a key started. It's not used anymore,
1032 * and can probably be safely dropped.
1033 */
b1a67b0f
KO
1034#define KEY(dev, sector, len) \
1035((struct bkey) { \
cafe5635
KO
1036 .high = (1ULL << 63) | ((uint64_t) (len) << 20) | (dev), \
1037 .low = (sector) \
b1a67b0f 1038})
cafe5635
KO
1039
1040static inline void bkey_init(struct bkey *k)
1041{
1042 *k = KEY(0, 0, 0);
1043}
1044
1045#define KEY_START(k) (KEY_OFFSET(k) - KEY_SIZE(k))
1046#define START_KEY(k) KEY(KEY_INODE(k), KEY_START(k), 0)
1047#define MAX_KEY KEY(~(~0 << 20), ((uint64_t) ~0) >> 1, 0)
1048#define ZERO_KEY KEY(0, 0, 0)
1049
1050/*
1051 * This is used for various on disk data structures - cache_sb, prio_set, bset,
1052 * jset: The checksum is _always_ the first 8 bytes of these structs
1053 */
1054#define csum_set(i) \
169ef1cf 1055 bch_crc64(((void *) (i)) + sizeof(uint64_t), \
cafe5635
KO
1056 ((void *) end(i)) - (((void *) (i)) + sizeof(uint64_t)))
1057
1058/* Error handling macros */
1059
1060#define btree_bug(b, ...) \
1061do { \
1062 if (bch_cache_set_error((b)->c, __VA_ARGS__)) \
1063 dump_stack(); \
1064} while (0)
1065
1066#define cache_bug(c, ...) \
1067do { \
1068 if (bch_cache_set_error(c, __VA_ARGS__)) \
1069 dump_stack(); \
1070} while (0)
1071
1072#define btree_bug_on(cond, b, ...) \
1073do { \
1074 if (cond) \
1075 btree_bug(b, __VA_ARGS__); \
1076} while (0)
1077
1078#define cache_bug_on(cond, c, ...) \
1079do { \
1080 if (cond) \
1081 cache_bug(c, __VA_ARGS__); \
1082} while (0)
1083
1084#define cache_set_err_on(cond, c, ...) \
1085do { \
1086 if (cond) \
1087 bch_cache_set_error(c, __VA_ARGS__); \
1088} while (0)
1089
1090/* Looping macros */
1091
1092#define for_each_cache(ca, cs, iter) \
1093 for (iter = 0; ca = cs->cache[iter], iter < (cs)->sb.nr_in_set; iter++)
1094
1095#define for_each_bucket(b, ca) \
1096 for (b = (ca)->buckets + (ca)->sb.first_bucket; \
1097 b < (ca)->buckets + (ca)->sb.nbuckets; b++)
1098
1099static inline void __bkey_put(struct cache_set *c, struct bkey *k)
1100{
1101 unsigned i;
1102
1103 for (i = 0; i < KEY_PTRS(k); i++)
1104 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
1105}
1106
cafe5635
KO
1107static inline void cached_dev_put(struct cached_dev *dc)
1108{
1109 if (atomic_dec_and_test(&dc->count))
1110 schedule_work(&dc->detach);
1111}
1112
1113static inline bool cached_dev_get(struct cached_dev *dc)
1114{
1115 if (!atomic_inc_not_zero(&dc->count))
1116 return false;
1117
1118 /* Paired with the mb in cached_dev_attach */
1119 smp_mb__after_atomic_inc();
1120 return true;
1121}
1122
1123/*
1124 * bucket_gc_gen() returns the difference between the bucket's current gen and
1125 * the oldest gen of any pointer into that bucket in the btree (last_gc).
1126 *
1127 * bucket_disk_gen() returns the difference between the current gen and the gen
1128 * on disk; they're both used to make sure gens don't wrap around.
1129 */
1130
1131static inline uint8_t bucket_gc_gen(struct bucket *b)
1132{
1133 return b->gen - b->last_gc;
1134}
1135
1136static inline uint8_t bucket_disk_gen(struct bucket *b)
1137{
1138 return b->gen - b->disk_gen;
1139}
1140
1141#define BUCKET_GC_GEN_MAX 96U
1142#define BUCKET_DISK_GEN_MAX 64U
1143
1144#define kobj_attribute_write(n, fn) \
1145 static struct kobj_attribute ksysfs_##n = __ATTR(n, S_IWUSR, NULL, fn)
1146
1147#define kobj_attribute_rw(n, show, store) \
1148 static struct kobj_attribute ksysfs_##n = \
1149 __ATTR(n, S_IWUSR|S_IRUSR, show, store)
1150
119ba0f8
KO
1151static inline void wake_up_allocators(struct cache_set *c)
1152{
1153 struct cache *ca;
1154 unsigned i;
1155
1156 for_each_cache(ca, c, i)
1157 wake_up_process(ca->alloc_thread);
1158}
1159
cafe5635
KO
1160/* Forward declarations */
1161
1162void bch_writeback_queue(struct cached_dev *);
1163void bch_writeback_add(struct cached_dev *, unsigned);
1164
1165void bch_count_io_errors(struct cache *, int, const char *);
1166void bch_bbio_count_io_errors(struct cache_set *, struct bio *,
1167 int, const char *);
1168void bch_bbio_endio(struct cache_set *, struct bio *, int, const char *);
1169void bch_bbio_free(struct bio *, struct cache_set *);
1170struct bio *bch_bbio_alloc(struct cache_set *);
1171
1172struct bio *bch_bio_split(struct bio *, int, gfp_t, struct bio_set *);
1173void bch_generic_make_request(struct bio *, struct bio_split_pool *);
1174void __bch_submit_bbio(struct bio *, struct cache_set *);
1175void bch_submit_bbio(struct bio *, struct cache_set *, struct bkey *, unsigned);
1176
1177uint8_t bch_inc_gen(struct cache *, struct bucket *);
1178void bch_rescale_priorities(struct cache_set *, int);
1179bool bch_bucket_add_unused(struct cache *, struct bucket *);
cafe5635
KO
1180
1181long bch_bucket_alloc(struct cache *, unsigned, struct closure *);
1182void bch_bucket_free(struct cache_set *, struct bkey *);
1183
1184int __bch_bucket_alloc_set(struct cache_set *, unsigned,
1185 struct bkey *, int, struct closure *);
1186int bch_bucket_alloc_set(struct cache_set *, unsigned,
1187 struct bkey *, int, struct closure *);
1188
1189__printf(2, 3)
1190bool bch_cache_set_error(struct cache_set *, const char *, ...);
1191
1192void bch_prio_write(struct cache *);
1193void bch_write_bdev_super(struct cached_dev *, struct closure *);
1194
1195extern struct workqueue_struct *bcache_wq, *bch_gc_wq;
1196extern const char * const bch_cache_modes[];
1197extern struct mutex bch_register_lock;
1198extern struct list_head bch_cache_sets;
1199
1200extern struct kobj_type bch_cached_dev_ktype;
1201extern struct kobj_type bch_flash_dev_ktype;
1202extern struct kobj_type bch_cache_set_ktype;
1203extern struct kobj_type bch_cache_set_internal_ktype;
1204extern struct kobj_type bch_cache_ktype;
1205
1206void bch_cached_dev_release(struct kobject *);
1207void bch_flash_dev_release(struct kobject *);
1208void bch_cache_set_release(struct kobject *);
1209void bch_cache_release(struct kobject *);
1210
1211int bch_uuid_write(struct cache_set *);
1212void bcache_write_super(struct cache_set *);
1213
1214int bch_flash_dev_create(struct cache_set *c, uint64_t size);
1215
1216int bch_cached_dev_attach(struct cached_dev *, struct cache_set *);
1217void bch_cached_dev_detach(struct cached_dev *);
1218void bch_cached_dev_run(struct cached_dev *);
1219void bcache_device_stop(struct bcache_device *);
1220
1221void bch_cache_set_unregister(struct cache_set *);
1222void bch_cache_set_stop(struct cache_set *);
1223
1224struct cache_set *bch_cache_set_alloc(struct cache_sb *);
1225void bch_btree_cache_free(struct cache_set *);
1226int bch_btree_cache_alloc(struct cache_set *);
f59fce84 1227void bch_cached_dev_writeback_init(struct cached_dev *);
cafe5635
KO
1228void bch_moving_init_cache_set(struct cache_set *);
1229
119ba0f8 1230int bch_cache_allocator_start(struct cache *ca);
cafe5635
KO
1231void bch_cache_allocator_exit(struct cache *ca);
1232int bch_cache_allocator_init(struct cache *ca);
1233
1234void bch_debug_exit(void);
1235int bch_debug_init(struct kobject *);
1236void bch_writeback_exit(void);
1237int bch_writeback_init(void);
1238void bch_request_exit(void);
1239int bch_request_init(void);
1240void bch_btree_exit(void);
1241int bch_btree_init(void);
1242
1243#endif /* _BCACHE_H */