bcache: Add btree_map() functions
[linux-2.6-block.git] / drivers / md / bcache / bcache.h
CommitLineData
cafe5635
KO
1#ifndef _BCACHE_H
2#define _BCACHE_H
3
4/*
5 * SOME HIGH LEVEL CODE DOCUMENTATION:
6 *
7 * Bcache mostly works with cache sets, cache devices, and backing devices.
8 *
9 * Support for multiple cache devices hasn't quite been finished off yet, but
10 * it's about 95% plumbed through. A cache set and its cache devices is sort of
11 * like a md raid array and its component devices. Most of the code doesn't care
12 * about individual cache devices, the main abstraction is the cache set.
13 *
14 * Multiple cache devices is intended to give us the ability to mirror dirty
15 * cached data and metadata, without mirroring clean cached data.
16 *
17 * Backing devices are different, in that they have a lifetime independent of a
18 * cache set. When you register a newly formatted backing device it'll come up
19 * in passthrough mode, and then you can attach and detach a backing device from
20 * a cache set at runtime - while it's mounted and in use. Detaching implicitly
21 * invalidates any cached data for that backing device.
22 *
23 * A cache set can have multiple (many) backing devices attached to it.
24 *
25 * There's also flash only volumes - this is the reason for the distinction
26 * between struct cached_dev and struct bcache_device. A flash only volume
27 * works much like a bcache device that has a backing device, except the
28 * "cached" data is always dirty. The end result is that we get thin
29 * provisioning with very little additional code.
30 *
31 * Flash only volumes work but they're not production ready because the moving
32 * garbage collector needs more work. More on that later.
33 *
34 * BUCKETS/ALLOCATION:
35 *
36 * Bcache is primarily designed for caching, which means that in normal
37 * operation all of our available space will be allocated. Thus, we need an
38 * efficient way of deleting things from the cache so we can write new things to
39 * it.
40 *
41 * To do this, we first divide the cache device up into buckets. A bucket is the
42 * unit of allocation; they're typically around 1 mb - anywhere from 128k to 2M+
43 * works efficiently.
44 *
45 * Each bucket has a 16 bit priority, and an 8 bit generation associated with
46 * it. The gens and priorities for all the buckets are stored contiguously and
47 * packed on disk (in a linked list of buckets - aside from the superblock, all
48 * of bcache's metadata is stored in buckets).
49 *
50 * The priority is used to implement an LRU. We reset a bucket's priority when
51 * we allocate it or on cache it, and every so often we decrement the priority
52 * of each bucket. It could be used to implement something more sophisticated,
53 * if anyone ever gets around to it.
54 *
55 * The generation is used for invalidating buckets. Each pointer also has an 8
56 * bit generation embedded in it; for a pointer to be considered valid, its gen
57 * must match the gen of the bucket it points into. Thus, to reuse a bucket all
58 * we have to do is increment its gen (and write its new gen to disk; we batch
59 * this up).
60 *
61 * Bcache is entirely COW - we never write twice to a bucket, even buckets that
62 * contain metadata (including btree nodes).
63 *
64 * THE BTREE:
65 *
66 * Bcache is in large part design around the btree.
67 *
68 * At a high level, the btree is just an index of key -> ptr tuples.
69 *
70 * Keys represent extents, and thus have a size field. Keys also have a variable
71 * number of pointers attached to them (potentially zero, which is handy for
72 * invalidating the cache).
73 *
74 * The key itself is an inode:offset pair. The inode number corresponds to a
75 * backing device or a flash only volume. The offset is the ending offset of the
76 * extent within the inode - not the starting offset; this makes lookups
77 * slightly more convenient.
78 *
79 * Pointers contain the cache device id, the offset on that device, and an 8 bit
80 * generation number. More on the gen later.
81 *
82 * Index lookups are not fully abstracted - cache lookups in particular are
83 * still somewhat mixed in with the btree code, but things are headed in that
84 * direction.
85 *
86 * Updates are fairly well abstracted, though. There are two different ways of
87 * updating the btree; insert and replace.
88 *
89 * BTREE_INSERT will just take a list of keys and insert them into the btree -
90 * overwriting (possibly only partially) any extents they overlap with. This is
91 * used to update the index after a write.
92 *
93 * BTREE_REPLACE is really cmpxchg(); it inserts a key into the btree iff it is
94 * overwriting a key that matches another given key. This is used for inserting
95 * data into the cache after a cache miss, and for background writeback, and for
96 * the moving garbage collector.
97 *
98 * There is no "delete" operation; deleting things from the index is
99 * accomplished by either by invalidating pointers (by incrementing a bucket's
100 * gen) or by inserting a key with 0 pointers - which will overwrite anything
101 * previously present at that location in the index.
102 *
103 * This means that there are always stale/invalid keys in the btree. They're
104 * filtered out by the code that iterates through a btree node, and removed when
105 * a btree node is rewritten.
106 *
107 * BTREE NODES:
108 *
109 * Our unit of allocation is a bucket, and we we can't arbitrarily allocate and
110 * free smaller than a bucket - so, that's how big our btree nodes are.
111 *
112 * (If buckets are really big we'll only use part of the bucket for a btree node
113 * - no less than 1/4th - but a bucket still contains no more than a single
114 * btree node. I'd actually like to change this, but for now we rely on the
115 * bucket's gen for deleting btree nodes when we rewrite/split a node.)
116 *
117 * Anyways, btree nodes are big - big enough to be inefficient with a textbook
118 * btree implementation.
119 *
120 * The way this is solved is that btree nodes are internally log structured; we
121 * can append new keys to an existing btree node without rewriting it. This
122 * means each set of keys we write is sorted, but the node is not.
123 *
124 * We maintain this log structure in memory - keeping 1Mb of keys sorted would
125 * be expensive, and we have to distinguish between the keys we have written and
126 * the keys we haven't. So to do a lookup in a btree node, we have to search
127 * each sorted set. But we do merge written sets together lazily, so the cost of
128 * these extra searches is quite low (normally most of the keys in a btree node
129 * will be in one big set, and then there'll be one or two sets that are much
130 * smaller).
131 *
132 * This log structure makes bcache's btree more of a hybrid between a
133 * conventional btree and a compacting data structure, with some of the
134 * advantages of both.
135 *
136 * GARBAGE COLLECTION:
137 *
138 * We can't just invalidate any bucket - it might contain dirty data or
139 * metadata. If it once contained dirty data, other writes might overwrite it
140 * later, leaving no valid pointers into that bucket in the index.
141 *
142 * Thus, the primary purpose of garbage collection is to find buckets to reuse.
143 * It also counts how much valid data it each bucket currently contains, so that
144 * allocation can reuse buckets sooner when they've been mostly overwritten.
145 *
146 * It also does some things that are really internal to the btree
147 * implementation. If a btree node contains pointers that are stale by more than
148 * some threshold, it rewrites the btree node to avoid the bucket's generation
149 * wrapping around. It also merges adjacent btree nodes if they're empty enough.
150 *
151 * THE JOURNAL:
152 *
153 * Bcache's journal is not necessary for consistency; we always strictly
154 * order metadata writes so that the btree and everything else is consistent on
155 * disk in the event of an unclean shutdown, and in fact bcache had writeback
156 * caching (with recovery from unclean shutdown) before journalling was
157 * implemented.
158 *
159 * Rather, the journal is purely a performance optimization; we can't complete a
160 * write until we've updated the index on disk, otherwise the cache would be
161 * inconsistent in the event of an unclean shutdown. This means that without the
162 * journal, on random write workloads we constantly have to update all the leaf
163 * nodes in the btree, and those writes will be mostly empty (appending at most
164 * a few keys each) - highly inefficient in terms of amount of metadata writes,
165 * and it puts more strain on the various btree resorting/compacting code.
166 *
167 * The journal is just a log of keys we've inserted; on startup we just reinsert
168 * all the keys in the open journal entries. That means that when we're updating
169 * a node in the btree, we can wait until a 4k block of keys fills up before
170 * writing them out.
171 *
172 * For simplicity, we only journal updates to leaf nodes; updates to parent
173 * nodes are rare enough (since our leaf nodes are huge) that it wasn't worth
174 * the complexity to deal with journalling them (in particular, journal replay)
175 * - updates to non leaf nodes just happen synchronously (see btree_split()).
176 */
177
178#define pr_fmt(fmt) "bcache: %s() " fmt "\n", __func__
179
180#include <linux/bio.h>
cafe5635
KO
181#include <linux/kobject.h>
182#include <linux/list.h>
183#include <linux/mutex.h>
184#include <linux/rbtree.h>
185#include <linux/rwsem.h>
186#include <linux/types.h>
187#include <linux/workqueue.h>
188
189#include "util.h"
190#include "closure.h"
191
192struct bucket {
193 atomic_t pin;
194 uint16_t prio;
195 uint8_t gen;
196 uint8_t disk_gen;
197 uint8_t last_gc; /* Most out of date gen in the btree */
198 uint8_t gc_gen;
199 uint16_t gc_mark;
200};
201
202/*
203 * I'd use bitfields for these, but I don't trust the compiler not to screw me
204 * as multiple threads touch struct bucket without locking
205 */
206
207BITMASK(GC_MARK, struct bucket, gc_mark, 0, 2);
208#define GC_MARK_RECLAIMABLE 0
209#define GC_MARK_DIRTY 1
210#define GC_MARK_METADATA 2
211BITMASK(GC_SECTORS_USED, struct bucket, gc_mark, 2, 14);
212
213struct bkey {
214 uint64_t high;
215 uint64_t low;
216 uint64_t ptr[];
217};
218
219/* Enough for a key with 6 pointers */
220#define BKEY_PAD 8
221
222#define BKEY_PADDED(key) \
223 union { struct bkey key; uint64_t key ## _pad[BKEY_PAD]; }
224
2903381f
KO
225/* Version 0: Cache device
226 * Version 1: Backing device
cafe5635 227 * Version 2: Seed pointer into btree node checksum
2903381f
KO
228 * Version 3: Cache device with new UUID format
229 * Version 4: Backing device with data offset
cafe5635 230 */
2903381f
KO
231#define BCACHE_SB_VERSION_CDEV 0
232#define BCACHE_SB_VERSION_BDEV 1
233#define BCACHE_SB_VERSION_CDEV_WITH_UUID 3
234#define BCACHE_SB_VERSION_BDEV_WITH_OFFSET 4
235#define BCACHE_SB_MAX_VERSION 4
cafe5635
KO
236
237#define SB_SECTOR 8
238#define SB_SIZE 4096
239#define SB_LABEL_SIZE 32
240#define SB_JOURNAL_BUCKETS 256U
241/* SB_JOURNAL_BUCKETS must be divisible by BITS_PER_LONG */
242#define MAX_CACHES_PER_SET 8
243
2903381f 244#define BDEV_DATA_START_DEFAULT 16 /* sectors */
cafe5635
KO
245
246struct cache_sb {
247 uint64_t csum;
248 uint64_t offset; /* sector where this sb was written */
249 uint64_t version;
cafe5635
KO
250
251 uint8_t magic[16];
252
253 uint8_t uuid[16];
254 union {
255 uint8_t set_uuid[16];
256 uint64_t set_magic;
257 };
258 uint8_t label[SB_LABEL_SIZE];
259
260 uint64_t flags;
261 uint64_t seq;
262 uint64_t pad[8];
263
2903381f
KO
264 union {
265 struct {
266 /* Cache devices */
267 uint64_t nbuckets; /* device size */
268
269 uint16_t block_size; /* sectors */
270 uint16_t bucket_size; /* sectors */
cafe5635 271
2903381f
KO
272 uint16_t nr_in_set;
273 uint16_t nr_this_dev;
274 };
275 struct {
276 /* Backing devices */
277 uint64_t data_offset;
278
279 /*
280 * block_size from the cache device section is still used by
281 * backing devices, so don't add anything here until we fix
282 * things to not need it for backing devices anymore
283 */
284 };
285 };
cafe5635
KO
286
287 uint32_t last_mount; /* time_t */
288
289 uint16_t first_bucket;
290 union {
291 uint16_t njournal_buckets;
292 uint16_t keys;
293 };
294 uint64_t d[SB_JOURNAL_BUCKETS]; /* journal buckets */
295};
296
297BITMASK(CACHE_SYNC, struct cache_sb, flags, 0, 1);
298BITMASK(CACHE_DISCARD, struct cache_sb, flags, 1, 1);
299BITMASK(CACHE_REPLACEMENT, struct cache_sb, flags, 2, 3);
300#define CACHE_REPLACEMENT_LRU 0U
301#define CACHE_REPLACEMENT_FIFO 1U
302#define CACHE_REPLACEMENT_RANDOM 2U
303
304BITMASK(BDEV_CACHE_MODE, struct cache_sb, flags, 0, 4);
305#define CACHE_MODE_WRITETHROUGH 0U
306#define CACHE_MODE_WRITEBACK 1U
307#define CACHE_MODE_WRITEAROUND 2U
308#define CACHE_MODE_NONE 3U
309BITMASK(BDEV_STATE, struct cache_sb, flags, 61, 2);
310#define BDEV_STATE_NONE 0U
311#define BDEV_STATE_CLEAN 1U
312#define BDEV_STATE_DIRTY 2U
313#define BDEV_STATE_STALE 3U
314
315/* Version 1: Seed pointer into btree node checksum
316 */
317#define BCACHE_BSET_VERSION 1
318
319/*
320 * This is the on disk format for btree nodes - a btree node on disk is a list
321 * of these; within each set the keys are sorted
322 */
323struct bset {
324 uint64_t csum;
325 uint64_t magic;
326 uint64_t seq;
327 uint32_t version;
328 uint32_t keys;
329
330 union {
331 struct bkey start[0];
332 uint64_t d[0];
333 };
334};
335
336/*
337 * On disk format for priorities and gens - see super.c near prio_write() for
338 * more.
339 */
340struct prio_set {
341 uint64_t csum;
342 uint64_t magic;
343 uint64_t seq;
344 uint32_t version;
345 uint32_t pad;
346
347 uint64_t next_bucket;
348
349 struct bucket_disk {
350 uint16_t prio;
351 uint8_t gen;
352 } __attribute((packed)) data[];
353};
354
355struct uuid_entry {
356 union {
357 struct {
358 uint8_t uuid[16];
359 uint8_t label[32];
360 uint32_t first_reg;
361 uint32_t last_reg;
362 uint32_t invalidated;
363
364 uint32_t flags;
365 /* Size of flash only volumes */
366 uint64_t sectors;
367 };
368
369 uint8_t pad[128];
370 };
371};
372
373BITMASK(UUID_FLASH_ONLY, struct uuid_entry, flags, 0, 1);
374
375#include "journal.h"
376#include "stats.h"
377struct search;
378struct btree;
379struct keybuf;
380
381struct keybuf_key {
382 struct rb_node node;
383 BKEY_PADDED(key);
384 void *private;
385};
386
cafe5635 387struct keybuf {
cafe5635
KO
388 struct bkey last_scanned;
389 spinlock_t lock;
390
391 /*
392 * Beginning and end of range in rb tree - so that we can skip taking
393 * lock and checking the rb tree when we need to check for overlapping
394 * keys.
395 */
396 struct bkey start;
397 struct bkey end;
398
399 struct rb_root keys;
400
401#define KEYBUF_NR 100
402 DECLARE_ARRAY_ALLOCATOR(struct keybuf_key, freelist, KEYBUF_NR);
403};
404
405struct bio_split_pool {
406 struct bio_set *bio_split;
407 mempool_t *bio_split_hook;
408};
409
410struct bio_split_hook {
411 struct closure cl;
412 struct bio_split_pool *p;
413 struct bio *bio;
414 bio_end_io_t *bi_end_io;
415 void *bi_private;
416};
417
418struct bcache_device {
419 struct closure cl;
420
421 struct kobject kobj;
422
423 struct cache_set *c;
424 unsigned id;
425#define BCACHEDEVNAME_SIZE 12
426 char name[BCACHEDEVNAME_SIZE];
427
428 struct gendisk *disk;
429
430 /* If nonzero, we're closing */
431 atomic_t closing;
432
433 /* If nonzero, we're detaching/unregistering from cache set */
434 atomic_t detaching;
c9502ea4 435 int flush_done;
cafe5635 436
279afbad 437 uint64_t nr_stripes;
2d679fc7 438 unsigned stripe_size;
279afbad
KO
439 atomic_t *stripe_sectors_dirty;
440
cafe5635
KO
441 unsigned long sectors_dirty_last;
442 long sectors_dirty_derivative;
443
444 mempool_t *unaligned_bvec;
445 struct bio_set *bio_split;
446
447 unsigned data_csum:1;
448
449 int (*cache_miss)(struct btree *, struct search *,
450 struct bio *, unsigned);
451 int (*ioctl) (struct bcache_device *, fmode_t, unsigned, unsigned long);
452
453 struct bio_split_pool bio_split_hook;
454};
455
456struct io {
457 /* Used to track sequential IO so it can be skipped */
458 struct hlist_node hash;
459 struct list_head lru;
460
461 unsigned long jiffies;
462 unsigned sequential;
463 sector_t last;
464};
465
466struct cached_dev {
467 struct list_head list;
468 struct bcache_device disk;
469 struct block_device *bdev;
470
471 struct cache_sb sb;
472 struct bio sb_bio;
473 struct bio_vec sb_bv[1];
474 struct closure_with_waitlist sb_write;
475
476 /* Refcount on the cache set. Always nonzero when we're caching. */
477 atomic_t count;
478 struct work_struct detach;
479
480 /*
481 * Device might not be running if it's dirty and the cache set hasn't
482 * showed up yet.
483 */
484 atomic_t running;
485
486 /*
487 * Writes take a shared lock from start to finish; scanning for dirty
488 * data to refill the rb tree requires an exclusive lock.
489 */
490 struct rw_semaphore writeback_lock;
491
492 /*
493 * Nonzero, and writeback has a refcount (d->count), iff there is dirty
494 * data in the cache. Protected by writeback_lock; must have an
495 * shared lock to set and exclusive lock to clear.
496 */
497 atomic_t has_dirty;
498
c2a4f318 499 struct bch_ratelimit writeback_rate;
cafe5635
KO
500 struct delayed_work writeback_rate_update;
501
502 /*
503 * Internal to the writeback code, so read_dirty() can keep track of
504 * where it's at.
505 */
506 sector_t last_read;
507
c2a4f318
KO
508 /* Limit number of writeback bios in flight */
509 struct semaphore in_flight;
5e6926da 510 struct task_struct *writeback_thread;
cafe5635
KO
511
512 struct keybuf writeback_keys;
513
514 /* For tracking sequential IO */
515#define RECENT_IO_BITS 7
516#define RECENT_IO (1 << RECENT_IO_BITS)
517 struct io io[RECENT_IO];
518 struct hlist_head io_hash[RECENT_IO + 1];
519 struct list_head io_lru;
520 spinlock_t io_lock;
521
522 struct cache_accounting accounting;
523
524 /* The rest of this all shows up in sysfs */
525 unsigned sequential_cutoff;
526 unsigned readahead;
527
528 unsigned sequential_merge:1;
529 unsigned verify:1;
530
72c27061 531 unsigned partial_stripes_expensive:1;
cafe5635
KO
532 unsigned writeback_metadata:1;
533 unsigned writeback_running:1;
534 unsigned char writeback_percent;
535 unsigned writeback_delay;
536
537 int writeback_rate_change;
538 int64_t writeback_rate_derivative;
539 uint64_t writeback_rate_target;
540
541 unsigned writeback_rate_update_seconds;
542 unsigned writeback_rate_d_term;
543 unsigned writeback_rate_p_term_inverse;
544 unsigned writeback_rate_d_smooth;
545};
546
547enum alloc_watermarks {
548 WATERMARK_PRIO,
549 WATERMARK_METADATA,
550 WATERMARK_MOVINGGC,
551 WATERMARK_NONE,
552 WATERMARK_MAX
553};
554
555struct cache {
556 struct cache_set *set;
557 struct cache_sb sb;
558 struct bio sb_bio;
559 struct bio_vec sb_bv[1];
560
561 struct kobject kobj;
562 struct block_device *bdev;
563
564 unsigned watermark[WATERMARK_MAX];
565
119ba0f8 566 struct task_struct *alloc_thread;
cafe5635
KO
567
568 struct closure prio;
569 struct prio_set *disk_buckets;
570
571 /*
572 * When allocating new buckets, prio_write() gets first dibs - since we
573 * may not be allocate at all without writing priorities and gens.
574 * prio_buckets[] contains the last buckets we wrote priorities to (so
575 * gc can mark them as metadata), prio_next[] contains the buckets
576 * allocated for the next prio write.
577 */
578 uint64_t *prio_buckets;
579 uint64_t *prio_last_buckets;
580
581 /*
582 * free: Buckets that are ready to be used
583 *
584 * free_inc: Incoming buckets - these are buckets that currently have
585 * cached data in them, and we can't reuse them until after we write
586 * their new gen to disk. After prio_write() finishes writing the new
587 * gens/prios, they'll be moved to the free list (and possibly discarded
588 * in the process)
589 *
590 * unused: GC found nothing pointing into these buckets (possibly
591 * because all the data they contained was overwritten), so we only
592 * need to discard them before they can be moved to the free list.
593 */
594 DECLARE_FIFO(long, free);
595 DECLARE_FIFO(long, free_inc);
596 DECLARE_FIFO(long, unused);
597
598 size_t fifo_last_bucket;
599
600 /* Allocation stuff: */
601 struct bucket *buckets;
602
603 DECLARE_HEAP(struct bucket *, heap);
604
605 /*
606 * max(gen - disk_gen) for all buckets. When it gets too big we have to
607 * call prio_write() to keep gens from wrapping.
608 */
609 uint8_t need_save_prio;
610 unsigned gc_move_threshold;
611
612 /*
613 * If nonzero, we know we aren't going to find any buckets to invalidate
614 * until a gc finishes - otherwise we could pointlessly burn a ton of
615 * cpu
616 */
617 unsigned invalidate_needs_gc:1;
618
619 bool discard; /* Get rid of? */
620
cafe5635
KO
621 struct journal_device journal;
622
623 /* The rest of this all shows up in sysfs */
624#define IO_ERROR_SHIFT 20
625 atomic_t io_errors;
626 atomic_t io_count;
627
628 atomic_long_t meta_sectors_written;
629 atomic_long_t btree_sectors_written;
630 atomic_long_t sectors_written;
631
632 struct bio_split_pool bio_split_hook;
633};
634
635struct gc_stat {
636 size_t nodes;
637 size_t key_bytes;
638
639 size_t nkeys;
640 uint64_t data; /* sectors */
641 uint64_t dirty; /* sectors */
642 unsigned in_use; /* percent */
643};
644
645/*
646 * Flag bits, for how the cache set is shutting down, and what phase it's at:
647 *
648 * CACHE_SET_UNREGISTERING means we're not just shutting down, we're detaching
649 * all the backing devices first (their cached data gets invalidated, and they
650 * won't automatically reattach).
651 *
652 * CACHE_SET_STOPPING always gets set first when we're closing down a cache set;
653 * we'll continue to run normally for awhile with CACHE_SET_STOPPING set (i.e.
654 * flushing dirty data).
cafe5635
KO
655 */
656#define CACHE_SET_UNREGISTERING 0
657#define CACHE_SET_STOPPING 1
cafe5635
KO
658
659struct cache_set {
660 struct closure cl;
661
662 struct list_head list;
663 struct kobject kobj;
664 struct kobject internal;
665 struct dentry *debug;
666 struct cache_accounting accounting;
667
668 unsigned long flags;
669
670 struct cache_sb sb;
671
672 struct cache *cache[MAX_CACHES_PER_SET];
673 struct cache *cache_by_alloc[MAX_CACHES_PER_SET];
674 int caches_loaded;
675
676 struct bcache_device **devices;
677 struct list_head cached_devs;
678 uint64_t cached_dev_sectors;
679 struct closure caching;
680
681 struct closure_with_waitlist sb_write;
682
683 mempool_t *search;
684 mempool_t *bio_meta;
685 struct bio_set *bio_split;
686
687 /* For the btree cache */
688 struct shrinker shrink;
689
cafe5635
KO
690 /* For the btree cache and anything allocation related */
691 struct mutex bucket_lock;
692
693 /* log2(bucket_size), in sectors */
694 unsigned short bucket_bits;
695
696 /* log2(block_size), in sectors */
697 unsigned short block_bits;
698
699 /*
700 * Default number of pages for a new btree node - may be less than a
701 * full bucket
702 */
703 unsigned btree_pages;
704
705 /*
706 * Lists of struct btrees; lru is the list for structs that have memory
707 * allocated for actual btree node, freed is for structs that do not.
708 *
709 * We never free a struct btree, except on shutdown - we just put it on
710 * the btree_cache_freed list and reuse it later. This simplifies the
711 * code, and it doesn't cost us much memory as the memory usage is
712 * dominated by buffers that hold the actual btree node data and those
713 * can be freed - and the number of struct btrees allocated is
714 * effectively bounded.
715 *
716 * btree_cache_freeable effectively is a small cache - we use it because
717 * high order page allocations can be rather expensive, and it's quite
718 * common to delete and allocate btree nodes in quick succession. It
719 * should never grow past ~2-3 nodes in practice.
720 */
721 struct list_head btree_cache;
722 struct list_head btree_cache_freeable;
723 struct list_head btree_cache_freed;
724
725 /* Number of elements in btree_cache + btree_cache_freeable lists */
726 unsigned bucket_cache_used;
727
728 /*
729 * If we need to allocate memory for a new btree node and that
730 * allocation fails, we can cannibalize another node in the btree cache
731 * to satisfy the allocation. However, only one thread can be doing this
732 * at a time, for obvious reasons - try_harder and try_wait are
733 * basically a lock for this that we can wait on asynchronously. The
734 * btree_root() macro releases the lock when it returns.
735 */
e8e1d468
KO
736 struct task_struct *try_harder;
737 wait_queue_head_t try_wait;
cafe5635
KO
738 uint64_t try_harder_start;
739
740 /*
741 * When we free a btree node, we increment the gen of the bucket the
742 * node is in - but we can't rewrite the prios and gens until we
743 * finished whatever it is we were doing, otherwise after a crash the
744 * btree node would be freed but for say a split, we might not have the
745 * pointers to the new nodes inserted into the btree yet.
746 *
747 * This is a refcount that blocks prio_write() until the new keys are
748 * written.
749 */
750 atomic_t prio_blocked;
35fcd848 751 wait_queue_head_t bucket_wait;
cafe5635
KO
752
753 /*
754 * For any bio we don't skip we subtract the number of sectors from
755 * rescale; when it hits 0 we rescale all the bucket priorities.
756 */
757 atomic_t rescale;
758 /*
759 * When we invalidate buckets, we use both the priority and the amount
760 * of good data to determine which buckets to reuse first - to weight
761 * those together consistently we keep track of the smallest nonzero
762 * priority of any bucket.
763 */
764 uint16_t min_prio;
765
766 /*
767 * max(gen - gc_gen) for all buckets. When it gets too big we have to gc
768 * to keep gens from wrapping around.
769 */
770 uint8_t need_gc;
771 struct gc_stat gc_stats;
772 size_t nbuckets;
773
72a44517 774 struct task_struct *gc_thread;
cafe5635
KO
775 /* Where in the btree gc currently is */
776 struct bkey gc_done;
777
778 /*
779 * The allocation code needs gc_mark in struct bucket to be correct, but
780 * it's not while a gc is in progress. Protected by bucket_lock.
781 */
782 int gc_mark_valid;
783
784 /* Counts how many sectors bio_insert has added to the cache */
785 atomic_t sectors_to_gc;
786
72a44517 787 wait_queue_head_t moving_gc_wait;
cafe5635
KO
788 struct keybuf moving_gc_keys;
789 /* Number of moving GC bios in flight */
72a44517 790 struct semaphore moving_in_flight;
cafe5635
KO
791
792 struct btree *root;
793
794#ifdef CONFIG_BCACHE_DEBUG
795 struct btree *verify_data;
796 struct mutex verify_lock;
797#endif
798
799 unsigned nr_uuids;
800 struct uuid_entry *uuids;
801 BKEY_PADDED(uuid_bucket);
802 struct closure_with_waitlist uuid_write;
803
804 /*
805 * A btree node on disk could have too many bsets for an iterator to fit
57943511 806 * on the stack - have to dynamically allocate them
cafe5635 807 */
57943511 808 mempool_t *fill_iter;
cafe5635
KO
809
810 /*
811 * btree_sort() is a merge sort and requires temporary space - single
812 * element mempool
813 */
814 struct mutex sort_lock;
815 struct bset *sort;
6ded34d1 816 unsigned sort_crit_factor;
cafe5635
KO
817
818 /* List of buckets we're currently writing data to */
819 struct list_head data_buckets;
820 spinlock_t data_bucket_lock;
821
822 struct journal journal;
823
824#define CONGESTED_MAX 1024
825 unsigned congested_last_us;
826 atomic_t congested;
827
828 /* The rest of this all shows up in sysfs */
829 unsigned congested_read_threshold_us;
830 unsigned congested_write_threshold_us;
831
832 spinlock_t sort_time_lock;
833 struct time_stats sort_time;
834 struct time_stats btree_gc_time;
835 struct time_stats btree_split_time;
836 spinlock_t btree_read_time_lock;
837 struct time_stats btree_read_time;
838 struct time_stats try_harder_time;
839
840 atomic_long_t cache_read_races;
841 atomic_long_t writeback_keys_done;
842 atomic_long_t writeback_keys_failed;
77c320eb
KO
843
844 enum {
845 ON_ERROR_UNREGISTER,
846 ON_ERROR_PANIC,
847 } on_error;
cafe5635
KO
848 unsigned error_limit;
849 unsigned error_decay;
77c320eb 850
cafe5635
KO
851 unsigned short journal_delay_ms;
852 unsigned verify:1;
853 unsigned key_merging_disabled:1;
854 unsigned gc_always_rewrite:1;
855 unsigned shrinker_disabled:1;
856 unsigned copy_gc_enabled:1;
857
858#define BUCKET_HASH_BITS 12
859 struct hlist_head bucket_hash[1 << BUCKET_HASH_BITS];
860};
861
862static inline bool key_merging_disabled(struct cache_set *c)
863{
864#ifdef CONFIG_BCACHE_DEBUG
865 return c->key_merging_disabled;
866#else
867 return 0;
868#endif
869}
870
2903381f
KO
871static inline bool SB_IS_BDEV(const struct cache_sb *sb)
872{
873 return sb->version == BCACHE_SB_VERSION_BDEV
874 || sb->version == BCACHE_SB_VERSION_BDEV_WITH_OFFSET;
875}
876
cafe5635
KO
877struct bbio {
878 unsigned submit_time_us;
879 union {
880 struct bkey key;
881 uint64_t _pad[3];
882 /*
883 * We only need pad = 3 here because we only ever carry around a
884 * single pointer - i.e. the pointer we're doing io to/from.
885 */
886 };
887 struct bio bio;
888};
889
890static inline unsigned local_clock_us(void)
891{
892 return local_clock() >> 10;
893}
894
cafe5635
KO
895#define BTREE_PRIO USHRT_MAX
896#define INITIAL_PRIO 32768
897
898#define btree_bytes(c) ((c)->btree_pages * PAGE_SIZE)
899#define btree_blocks(b) \
900 ((unsigned) (KEY_SIZE(&b->key) >> (b)->c->block_bits))
901
902#define btree_default_blocks(c) \
903 ((unsigned) ((PAGE_SECTORS * (c)->btree_pages) >> (c)->block_bits))
904
905#define bucket_pages(c) ((c)->sb.bucket_size / PAGE_SECTORS)
906#define bucket_bytes(c) ((c)->sb.bucket_size << 9)
907#define block_bytes(c) ((c)->sb.block_size << 9)
908
909#define __set_bytes(i, k) (sizeof(*(i)) + (k) * sizeof(uint64_t))
910#define set_bytes(i) __set_bytes(i, i->keys)
911
912#define __set_blocks(i, k, c) DIV_ROUND_UP(__set_bytes(i, k), block_bytes(c))
913#define set_blocks(i, c) __set_blocks(i, (i)->keys, c)
914
915#define node(i, j) ((struct bkey *) ((i)->d + (j)))
916#define end(i) node(i, (i)->keys)
917
918#define index(i, b) \
919 ((size_t) (((void *) i - (void *) (b)->sets[0].data) / \
920 block_bytes(b->c)))
921
922#define btree_data_space(b) (PAGE_SIZE << (b)->page_order)
923
924#define prios_per_bucket(c) \
925 ((bucket_bytes(c) - sizeof(struct prio_set)) / \
926 sizeof(struct bucket_disk))
927#define prio_buckets(c) \
928 DIV_ROUND_UP((size_t) (c)->sb.nbuckets, prios_per_bucket(c))
929
930#define JSET_MAGIC 0x245235c1a3625032ULL
931#define PSET_MAGIC 0x6750e15f87337f91ULL
932#define BSET_MAGIC 0x90135c78b99e07f5ULL
933
934#define jset_magic(c) ((c)->sb.set_magic ^ JSET_MAGIC)
935#define pset_magic(c) ((c)->sb.set_magic ^ PSET_MAGIC)
936#define bset_magic(c) ((c)->sb.set_magic ^ BSET_MAGIC)
937
938/* Bkey fields: all units are in sectors */
939
940#define KEY_FIELD(name, field, offset, size) \
941 BITMASK(name, struct bkey, field, offset, size)
942
943#define PTR_FIELD(name, offset, size) \
944 static inline uint64_t name(const struct bkey *k, unsigned i) \
945 { return (k->ptr[i] >> offset) & ~(((uint64_t) ~0) << size); } \
946 \
947 static inline void SET_##name(struct bkey *k, unsigned i, uint64_t v)\
948 { \
949 k->ptr[i] &= ~(~((uint64_t) ~0 << size) << offset); \
950 k->ptr[i] |= v << offset; \
951 }
952
953KEY_FIELD(KEY_PTRS, high, 60, 3)
954KEY_FIELD(HEADER_SIZE, high, 58, 2)
955KEY_FIELD(KEY_CSUM, high, 56, 2)
956KEY_FIELD(KEY_PINNED, high, 55, 1)
957KEY_FIELD(KEY_DIRTY, high, 36, 1)
958
959KEY_FIELD(KEY_SIZE, high, 20, 16)
960KEY_FIELD(KEY_INODE, high, 0, 20)
961
962/* Next time I change the on disk format, KEY_OFFSET() won't be 64 bits */
963
964static inline uint64_t KEY_OFFSET(const struct bkey *k)
965{
966 return k->low;
967}
968
969static inline void SET_KEY_OFFSET(struct bkey *k, uint64_t v)
970{
971 k->low = v;
972}
973
974PTR_FIELD(PTR_DEV, 51, 12)
975PTR_FIELD(PTR_OFFSET, 8, 43)
976PTR_FIELD(PTR_GEN, 0, 8)
977
978#define PTR_CHECK_DEV ((1 << 12) - 1)
979
980#define PTR(gen, offset, dev) \
981 ((((uint64_t) dev) << 51) | ((uint64_t) offset) << 8 | gen)
982
983static inline size_t sector_to_bucket(struct cache_set *c, sector_t s)
984{
985 return s >> c->bucket_bits;
986}
987
988static inline sector_t bucket_to_sector(struct cache_set *c, size_t b)
989{
990 return ((sector_t) b) << c->bucket_bits;
991}
992
993static inline sector_t bucket_remainder(struct cache_set *c, sector_t s)
994{
995 return s & (c->sb.bucket_size - 1);
996}
997
998static inline struct cache *PTR_CACHE(struct cache_set *c,
999 const struct bkey *k,
1000 unsigned ptr)
1001{
1002 return c->cache[PTR_DEV(k, ptr)];
1003}
1004
1005static inline size_t PTR_BUCKET_NR(struct cache_set *c,
1006 const struct bkey *k,
1007 unsigned ptr)
1008{
1009 return sector_to_bucket(c, PTR_OFFSET(k, ptr));
1010}
1011
1012static inline struct bucket *PTR_BUCKET(struct cache_set *c,
1013 const struct bkey *k,
1014 unsigned ptr)
1015{
1016 return PTR_CACHE(c, k, ptr)->buckets + PTR_BUCKET_NR(c, k, ptr);
1017}
1018
1019/* Btree key macros */
1020
1021/*
1022 * The high bit being set is a relic from when we used it to do binary
1023 * searches - it told you where a key started. It's not used anymore,
1024 * and can probably be safely dropped.
1025 */
b1a67b0f
KO
1026#define KEY(dev, sector, len) \
1027((struct bkey) { \
cafe5635
KO
1028 .high = (1ULL << 63) | ((uint64_t) (len) << 20) | (dev), \
1029 .low = (sector) \
b1a67b0f 1030})
cafe5635
KO
1031
1032static inline void bkey_init(struct bkey *k)
1033{
1034 *k = KEY(0, 0, 0);
1035}
1036
1037#define KEY_START(k) (KEY_OFFSET(k) - KEY_SIZE(k))
1038#define START_KEY(k) KEY(KEY_INODE(k), KEY_START(k), 0)
5e6926da
KO
1039
1040#define MAX_KEY_INODE (~(~0 << 20))
1041#define MAX_KEY_OFFSET (((uint64_t) ~0) >> 1)
1042#define MAX_KEY KEY(MAX_KEY_INODE, MAX_KEY_OFFSET, 0)
1043
cafe5635
KO
1044#define ZERO_KEY KEY(0, 0, 0)
1045
1046/*
1047 * This is used for various on disk data structures - cache_sb, prio_set, bset,
1048 * jset: The checksum is _always_ the first 8 bytes of these structs
1049 */
1050#define csum_set(i) \
169ef1cf 1051 bch_crc64(((void *) (i)) + sizeof(uint64_t), \
cafe5635
KO
1052 ((void *) end(i)) - (((void *) (i)) + sizeof(uint64_t)))
1053
1054/* Error handling macros */
1055
1056#define btree_bug(b, ...) \
1057do { \
1058 if (bch_cache_set_error((b)->c, __VA_ARGS__)) \
1059 dump_stack(); \
1060} while (0)
1061
1062#define cache_bug(c, ...) \
1063do { \
1064 if (bch_cache_set_error(c, __VA_ARGS__)) \
1065 dump_stack(); \
1066} while (0)
1067
1068#define btree_bug_on(cond, b, ...) \
1069do { \
1070 if (cond) \
1071 btree_bug(b, __VA_ARGS__); \
1072} while (0)
1073
1074#define cache_bug_on(cond, c, ...) \
1075do { \
1076 if (cond) \
1077 cache_bug(c, __VA_ARGS__); \
1078} while (0)
1079
1080#define cache_set_err_on(cond, c, ...) \
1081do { \
1082 if (cond) \
1083 bch_cache_set_error(c, __VA_ARGS__); \
1084} while (0)
1085
1086/* Looping macros */
1087
1088#define for_each_cache(ca, cs, iter) \
1089 for (iter = 0; ca = cs->cache[iter], iter < (cs)->sb.nr_in_set; iter++)
1090
1091#define for_each_bucket(b, ca) \
1092 for (b = (ca)->buckets + (ca)->sb.first_bucket; \
1093 b < (ca)->buckets + (ca)->sb.nbuckets; b++)
1094
cafe5635
KO
1095static inline void cached_dev_put(struct cached_dev *dc)
1096{
1097 if (atomic_dec_and_test(&dc->count))
1098 schedule_work(&dc->detach);
1099}
1100
1101static inline bool cached_dev_get(struct cached_dev *dc)
1102{
1103 if (!atomic_inc_not_zero(&dc->count))
1104 return false;
1105
1106 /* Paired with the mb in cached_dev_attach */
1107 smp_mb__after_atomic_inc();
1108 return true;
1109}
1110
1111/*
1112 * bucket_gc_gen() returns the difference between the bucket's current gen and
1113 * the oldest gen of any pointer into that bucket in the btree (last_gc).
1114 *
1115 * bucket_disk_gen() returns the difference between the current gen and the gen
1116 * on disk; they're both used to make sure gens don't wrap around.
1117 */
1118
1119static inline uint8_t bucket_gc_gen(struct bucket *b)
1120{
1121 return b->gen - b->last_gc;
1122}
1123
1124static inline uint8_t bucket_disk_gen(struct bucket *b)
1125{
1126 return b->gen - b->disk_gen;
1127}
1128
1129#define BUCKET_GC_GEN_MAX 96U
1130#define BUCKET_DISK_GEN_MAX 64U
1131
1132#define kobj_attribute_write(n, fn) \
1133 static struct kobj_attribute ksysfs_##n = __ATTR(n, S_IWUSR, NULL, fn)
1134
1135#define kobj_attribute_rw(n, show, store) \
1136 static struct kobj_attribute ksysfs_##n = \
1137 __ATTR(n, S_IWUSR|S_IRUSR, show, store)
1138
119ba0f8
KO
1139static inline void wake_up_allocators(struct cache_set *c)
1140{
1141 struct cache *ca;
1142 unsigned i;
1143
1144 for_each_cache(ca, c, i)
1145 wake_up_process(ca->alloc_thread);
1146}
1147
cafe5635
KO
1148/* Forward declarations */
1149
cafe5635
KO
1150void bch_count_io_errors(struct cache *, int, const char *);
1151void bch_bbio_count_io_errors(struct cache_set *, struct bio *,
1152 int, const char *);
1153void bch_bbio_endio(struct cache_set *, struct bio *, int, const char *);
1154void bch_bbio_free(struct bio *, struct cache_set *);
1155struct bio *bch_bbio_alloc(struct cache_set *);
1156
1157struct bio *bch_bio_split(struct bio *, int, gfp_t, struct bio_set *);
1158void bch_generic_make_request(struct bio *, struct bio_split_pool *);
1159void __bch_submit_bbio(struct bio *, struct cache_set *);
1160void bch_submit_bbio(struct bio *, struct cache_set *, struct bkey *, unsigned);
1161
1162uint8_t bch_inc_gen(struct cache *, struct bucket *);
1163void bch_rescale_priorities(struct cache_set *, int);
1164bool bch_bucket_add_unused(struct cache *, struct bucket *);
cafe5635 1165
35fcd848 1166long bch_bucket_alloc(struct cache *, unsigned, bool);
cafe5635
KO
1167void bch_bucket_free(struct cache_set *, struct bkey *);
1168
1169int __bch_bucket_alloc_set(struct cache_set *, unsigned,
35fcd848 1170 struct bkey *, int, bool);
cafe5635 1171int bch_bucket_alloc_set(struct cache_set *, unsigned,
35fcd848 1172 struct bkey *, int, bool);
cafe5635
KO
1173
1174__printf(2, 3)
1175bool bch_cache_set_error(struct cache_set *, const char *, ...);
1176
1177void bch_prio_write(struct cache *);
1178void bch_write_bdev_super(struct cached_dev *, struct closure *);
1179
72a44517 1180extern struct workqueue_struct *bcache_wq;
cafe5635
KO
1181extern const char * const bch_cache_modes[];
1182extern struct mutex bch_register_lock;
1183extern struct list_head bch_cache_sets;
1184
1185extern struct kobj_type bch_cached_dev_ktype;
1186extern struct kobj_type bch_flash_dev_ktype;
1187extern struct kobj_type bch_cache_set_ktype;
1188extern struct kobj_type bch_cache_set_internal_ktype;
1189extern struct kobj_type bch_cache_ktype;
1190
1191void bch_cached_dev_release(struct kobject *);
1192void bch_flash_dev_release(struct kobject *);
1193void bch_cache_set_release(struct kobject *);
1194void bch_cache_release(struct kobject *);
1195
1196int bch_uuid_write(struct cache_set *);
1197void bcache_write_super(struct cache_set *);
1198
1199int bch_flash_dev_create(struct cache_set *c, uint64_t size);
1200
1201int bch_cached_dev_attach(struct cached_dev *, struct cache_set *);
1202void bch_cached_dev_detach(struct cached_dev *);
1203void bch_cached_dev_run(struct cached_dev *);
1204void bcache_device_stop(struct bcache_device *);
1205
1206void bch_cache_set_unregister(struct cache_set *);
1207void bch_cache_set_stop(struct cache_set *);
1208
1209struct cache_set *bch_cache_set_alloc(struct cache_sb *);
1210void bch_btree_cache_free(struct cache_set *);
1211int bch_btree_cache_alloc(struct cache_set *);
cafe5635
KO
1212void bch_moving_init_cache_set(struct cache_set *);
1213
119ba0f8 1214int bch_cache_allocator_start(struct cache *ca);
cafe5635
KO
1215int bch_cache_allocator_init(struct cache *ca);
1216
1217void bch_debug_exit(void);
1218int bch_debug_init(struct kobject *);
cafe5635
KO
1219void bch_request_exit(void);
1220int bch_request_init(void);
1221void bch_btree_exit(void);
1222int bch_btree_init(void);
1223
1224#endif /* _BCACHE_H */