Merge tag 'uml-for-linus-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-block.git] / drivers / md / Kconfig
CommitLineData
ec8f24b7 1# SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2#
3# Block device driver configuration
4#
5
afd44034 6menuconfig MD
1da177e4 7 bool "Multiple devices driver support (RAID and LVM)"
afd44034 8 depends on BLOCK
1da177e4
LT
9 help
10 Support multiple physical spindles through a single logical device.
11 Required for RAID and logical volume management.
12
afd44034
JE
13if MD
14
1da177e4
LT
15config BLK_DEV_MD
16 tristate "RAID support"
c66fd019 17 select BLOCK_HOLDER_DEPRECATED if SYSFS
6c0f5898
N
18 # BLOCK_LEGACY_AUTOLOAD requirement should be removed
19 # after relevant mdadm enhancements - to make "names=yes"
20 # the default - are widely available.
21 select BLOCK_LEGACY_AUTOLOAD
a7f7f624 22 help
1da177e4
LT
23 This driver lets you combine several hard disk partitions into one
24 logical block device. This can be used to simply append one
25 partition to another one or to combine several redundant hard disks
26 into a RAID1/4/5 device so as to provide protection against hard
27 disk failures. This is called "Software RAID" since the combining of
28 the partitions is done by the kernel. "Hardware RAID" means that the
29 combining is done by a dedicated controller; if you have such a
30 controller, you do not need to say Y here.
31
32 More information about Software RAID on Linux is contained in the
33 Software RAID mini-HOWTO, available from
6f3bc22b 34 <https://www.tldp.org/docs.html#howto>. There you will also learn
1da177e4
LT
35 where to get the supporting user space utilities raidtools.
36
37 If unsure, say N.
38
a364092a
AV
39config MD_AUTODETECT
40 bool "Autodetect RAID arrays during kernel boot"
ce52aebd 41 depends on BLK_DEV_MD=y
a364092a 42 default y
a7f7f624 43 help
a364092a 44 If you say Y here, then the kernel will try to autodetect raid
44363322 45 arrays as part of its boot process.
a364092a 46
44363322 47 If you don't use raid and say Y, this autodetection can cause
a364092a
AV
48 a several-second delay in the boot time due to various
49 synchronisation steps that are part of this step.
50
51 If unsure, say Y.
52
1da177e4 53config MD_LINEAR
608f52e3 54 tristate "Linear (append) mode (deprecated)"
1da177e4 55 depends on BLK_DEV_MD
a7f7f624 56 help
1da177e4
LT
57 If you say Y here, then your multiple devices driver will be able to
58 use the so-called linear mode, i.e. it will combine the hard disk
59 partitions by simply appending one to the other.
60
61 To compile this as a module, choose M here: the module
62 will be called linear.
63
64 If unsure, say Y.
65
66config MD_RAID0
67 tristate "RAID-0 (striping) mode"
68 depends on BLK_DEV_MD
a7f7f624 69 help
1da177e4
LT
70 If you say Y here, then your multiple devices driver will be able to
71 use the so-called raid0 mode, i.e. it will combine the hard disk
72 partitions into one logical device in such a fashion as to fill them
73 up evenly, one chunk here and one chunk there. This will increase
74 the throughput rate if the partitions reside on distinct disks.
75
76 Information about Software RAID on Linux is contained in the
77 Software-RAID mini-HOWTO, available from
6f3bc22b 78 <https://www.tldp.org/docs.html#howto>. There you will also
1da177e4
LT
79 learn where to get the supporting user space utilities raidtools.
80
81 To compile this as a module, choose M here: the module
82 will be called raid0.
83
84 If unsure, say Y.
85
86config MD_RAID1
87 tristate "RAID-1 (mirroring) mode"
88 depends on BLK_DEV_MD
a7f7f624 89 help
1da177e4
LT
90 A RAID-1 set consists of several disk drives which are exact copies
91 of each other. In the event of a mirror failure, the RAID driver
92 will continue to use the operational mirrors in the set, providing
93 an error free MD (multiple device) to the higher levels of the
94 kernel. In a set with N drives, the available space is the capacity
95 of a single drive, and the set protects against a failure of (N - 1)
96 drives.
97
98 Information about Software RAID on Linux is contained in the
99 Software-RAID mini-HOWTO, available from
6f3bc22b 100 <https://www.tldp.org/docs.html#howto>. There you will also
1da177e4
LT
101 learn where to get the supporting user space utilities raidtools.
102
103 If you want to use such a RAID-1 set, say Y. To compile this code
104 as a module, choose M here: the module will be called raid1.
105
106 If unsure, say Y.
107
108config MD_RAID10
08fb730c
N
109 tristate "RAID-10 (mirrored striping) mode"
110 depends on BLK_DEV_MD
a7f7f624 111 help
1da177e4 112 RAID-10 provides a combination of striping (RAID-0) and
4d2554d0 113 mirroring (RAID-1) with easier configuration and more flexible
1da177e4
LT
114 layout.
115 Unlike RAID-0, but like RAID-1, RAID-10 requires all devices to
116 be the same size (or at least, only as much as the smallest device
117 will be used).
118 RAID-10 provides a variety of layouts that provide different levels
119 of redundancy and performance.
120
121 RAID-10 requires mdadm-1.7.0 or later, available at:
122
4f6cce39 123 https://www.kernel.org/pub/linux/utils/raid/mdadm/
1da177e4
LT
124
125 If unsure, say Y.
126
16a53ecc
N
127config MD_RAID456
128 tristate "RAID-4/RAID-5/RAID-6 mode"
1da177e4 129 depends on BLK_DEV_MD
f5e70d0f 130 select RAID6_PQ
14f09e2f 131 select LIBCRC32C
9bc89cd8
DW
132 select ASYNC_MEMCPY
133 select ASYNC_XOR
ac6b53b6
DW
134 select ASYNC_PQ
135 select ASYNC_RAID6_RECOV
a7f7f624 136 help
1da177e4
LT
137 A RAID-5 set of N drives with a capacity of C MB per drive provides
138 the capacity of C * (N - 1) MB, and protects against a failure
139 of a single drive. For a given sector (row) number, (N - 1) drives
140 contain data sectors, and one drive contains the parity protection.
141 For a RAID-4 set, the parity blocks are present on a single drive,
142 while a RAID-5 set distributes the parity across the drives in one
143 of the available parity distribution methods.
144
16a53ecc
N
145 A RAID-6 set of N drives with a capacity of C MB per drive
146 provides the capacity of C * (N - 2) MB, and protects
147 against a failure of any two drives. For a given sector
148 (row) number, (N - 2) drives contain data sectors, and two
149 drives contains two independent redundancy syndromes. Like
150 RAID-5, RAID-6 distributes the syndromes across the drives
151 in one of the available parity distribution methods.
152
1da177e4
LT
153 Information about Software RAID on Linux is contained in the
154 Software-RAID mini-HOWTO, available from
6f3bc22b 155 <https://www.tldp.org/docs.html#howto>. There you will also
1da177e4
LT
156 learn where to get the supporting user space utilities raidtools.
157
16a53ecc 158 If you want to use such a RAID-4/RAID-5/RAID-6 set, say Y. To
1da177e4 159 compile this code as a module, choose M here: the module
16a53ecc 160 will be called raid456.
1da177e4
LT
161
162 If unsure, say Y.
163
1da177e4 164config MD_MULTIPATH
608f52e3 165 tristate "Multipath I/O support (deprecated)"
1da177e4
LT
166 depends on BLK_DEV_MD
167 help
93bd89a6
N
168 MD_MULTIPATH provides a simple multi-path personality for use
169 the MD framework. It is not under active development. New
170 projects should consider using DM_MULTIPATH which has more
171 features and more testing.
1da177e4
LT
172
173 If unsure, say N.
174
175config MD_FAULTY
608f52e3 176 tristate "Faulty test module for MD (deprecated)"
1da177e4
LT
177 depends on BLK_DEV_MD
178 help
179 The "faulty" module allows for a block device that occasionally returns
180 read or write errors. It is useful for testing.
181
182 In unsure, say N.
183
8e854e9c
GR
184
185config MD_CLUSTER
f0e230ad 186 tristate "Cluster Support for MD"
8e854e9c
GR
187 depends on BLK_DEV_MD
188 depends on DLM
189 default n
a7f7f624 190 help
8e854e9c
GR
191 Clustering support for MD devices. This enables locking and
192 synchronization across multiple systems on the cluster, so all
193 nodes in the cluster can access the MD devices simultaneously.
194
195 This brings the redundancy (and uptime) of RAID levels across the
f0e230ad
GJ
196 nodes of the cluster. Currently, it can work with raid1 and raid10
197 (limited support).
8e854e9c
GR
198
199 If unsure, say N.
200
cafe5635
KO
201source "drivers/md/bcache/Kconfig"
202
2995fa78 203config BLK_DEV_DM_BUILTIN
6341e62b 204 bool
2995fa78 205
1da177e4
LT
206config BLK_DEV_DM
207 tristate "Device mapper support"
c66fd019 208 select BLOCK_HOLDER_DEPRECATED if SYSFS
2995fa78 209 select BLK_DEV_DM_BUILTIN
248c7933 210 select BLK_MQ_STACKING
976431b0 211 depends on DAX || DAX=n
a7f7f624 212 help
1da177e4
LT
213 Device-mapper is a low level volume manager. It works by allowing
214 people to specify mappings for ranges of logical sectors. Various
215 mapping types are available, in addition people may write their own
216 modules containing custom mappings if they wish.
217
218 Higher level volume managers such as LVM2 use this driver.
219
220 To compile this as a module, choose M here: the module will be
221 called dm-mod.
222
223 If unsure, say N.
224
cc109201 225config DM_DEBUG
6341e62b 226 bool "Device mapper debugging support"
0149e57f 227 depends on BLK_DEV_DM
a7f7f624 228 help
cc109201
BR
229 Enable this for messages that may help debug device-mapper problems.
230
231 If unsure, say N.
232
95d402f0
MP
233config DM_BUFIO
234 tristate
d57916a0 235 depends on BLK_DEV_DM
a7f7f624 236 help
95d402f0
MP
237 This interface allows you to do buffered I/O on a device and acts
238 as a cache, holding recently-read blocks in memory and performing
239 delayed writes.
240
2e8ed711
JT
241config DM_DEBUG_BLOCK_MANAGER_LOCKING
242 bool "Block manager locking"
243 depends on DM_BUFIO
a7f7f624 244 help
2e8ed711
JT
245 Block manager locking can catch various metadata corruption issues.
246
247 If unsure, say N.
248
86bad0c7
MP
249config DM_DEBUG_BLOCK_STACK_TRACING
250 bool "Keep stack trace of persistent data block lock holders"
2e8ed711 251 depends on STACKTRACE_SUPPORT && DM_DEBUG_BLOCK_MANAGER_LOCKING
86bad0c7 252 select STACKTRACE
a7f7f624 253 help
86bad0c7
MP
254 Enable this for messages that may help debug problems with the
255 block manager locking used by thin provisioning and caching.
256
257 If unsure, say N.
3f068040 258
4f81a417
MS
259config DM_BIO_PRISON
260 tristate
d57916a0 261 depends on BLK_DEV_DM
a7f7f624 262 help
4f81a417
MS
263 Some bio locking schemes used by other device-mapper targets
264 including thin provisioning.
265
991d9fa0
JT
266source "drivers/md/persistent-data/Kconfig"
267
18a5bf27
SB
268config DM_UNSTRIPED
269 tristate "Unstriped target"
270 depends on BLK_DEV_DM
a7f7f624 271 help
18a5bf27
SB
272 Unstripes I/O so it is issued solely on a single drive in a HW
273 RAID0 or dm-striped target.
274
1da177e4
LT
275config DM_CRYPT
276 tristate "Crypt target support"
0149e57f 277 depends on BLK_DEV_DM
27f5411a 278 depends on (ENCRYPTED_KEYS || ENCRYPTED_KEYS=n)
363880c4 279 depends on (TRUSTED_KEYS || TRUSTED_KEYS=n)
1da177e4 280 select CRYPTO
3263263f 281 select CRYPTO_CBC
a1a262b6 282 select CRYPTO_ESSIV
a7f7f624 283 help
1da177e4
LT
284 This device-mapper target allows you to create a device that
285 transparently encrypts the data on it. You'll need to activate
286 the ciphers you're going to use in the cryptoapi configuration.
287
cf352487 288 For further information on dm-crypt and userspace tools see:
6ed443c0 289 <https://gitlab.com/cryptsetup/cryptsetup/wikis/DMCrypt>
1da177e4
LT
290
291 To compile this code as a module, choose M here: the module will
292 be called dm-crypt.
293
294 If unsure, say N.
295
296config DM_SNAPSHOT
0149e57f
AK
297 tristate "Snapshot target"
298 depends on BLK_DEV_DM
55494bf2 299 select DM_BUFIO
a7f7f624 300 help
44363322 301 Allow volume managers to take writable snapshots of a device.
1da177e4 302
991d9fa0 303config DM_THIN_PROVISIONING
d57916a0
AK
304 tristate "Thin provisioning target"
305 depends on BLK_DEV_DM
991d9fa0 306 select DM_PERSISTENT_DATA
4f81a417 307 select DM_BIO_PRISON
a7f7f624 308 help
44363322 309 Provides thin provisioning and snapshots that share a data store.
991d9fa0 310
c6b4fcba
JT
311config DM_CACHE
312 tristate "Cache target (EXPERIMENTAL)"
313 depends on BLK_DEV_DM
314 default n
315 select DM_PERSISTENT_DATA
316 select DM_BIO_PRISON
a7f7f624 317 help
44363322
KK
318 dm-cache attempts to improve performance of a block device by
319 moving frequently used data to a smaller, higher performance
320 device. Different 'policy' plugins can be used to change the
321 algorithms used to select which blocks are promoted, demoted,
322 cleaned etc. It supports writeback and writethrough modes.
c6b4fcba 323
66a63635
JT
324config DM_CACHE_SMQ
325 tristate "Stochastic MQ Cache Policy (EXPERIMENTAL)"
326 depends on DM_CACHE
327 default y
a7f7f624 328 help
44363322
KK
329 A cache policy that uses a multiqueue ordered by recent hits
330 to select which blocks should be promoted and demoted.
331 This is meant to be a general purpose policy. It prioritises
332 reads over writes. This SMQ policy (vs MQ) offers the promise
333 of less memory utilization, improved performance and increased
334 adaptability in the face of changing workloads.
66a63635 335
48debafe
MP
336config DM_WRITECACHE
337 tristate "Writecache target"
338 depends on BLK_DEV_DM
a7f7f624 339 help
48debafe
MP
340 The writecache target caches writes on persistent memory or SSD.
341 It is intended for databases or other programs that need extremely
342 low commit latency.
343
344 The writecache target doesn't cache reads because reads are supposed
345 to be cached in standard RAM.
346
d3c7b35c
HM
347config DM_EBS
348 tristate "Emulated block size target (EXPERIMENTAL)"
1c277e50 349 depends on BLK_DEV_DM && !HIGHMEM
d3c7b35c
HM
350 select DM_BUFIO
351 help
352 dm-ebs emulates smaller logical block size on backing devices
353 with larger ones (e.g. 512 byte sectors on 4K native disks).
354
eec40579
JT
355config DM_ERA
356 tristate "Era target (EXPERIMENTAL)"
357 depends on BLK_DEV_DM
358 default n
359 select DM_PERSISTENT_DATA
360 select DM_BIO_PRISON
a7f7f624 361 help
44363322
KK
362 dm-era tracks which parts of a block device are written to
363 over time. Useful for maintaining cache coherency when using
364 vendor snapshots.
eec40579 365
7431b783
NT
366config DM_CLONE
367 tristate "Clone target (EXPERIMENTAL)"
368 depends on BLK_DEV_DM
369 default n
370 select DM_PERSISTENT_DATA
a7f7f624 371 help
44363322
KK
372 dm-clone produces a one-to-one copy of an existing, read-only source
373 device into a writable destination device. The cloned device is
374 visible/mountable immediately and the copy of the source device to the
375 destination device happens in the background, in parallel with user
376 I/O.
7431b783 377
44363322 378 If unsure, say N.
7431b783 379
1da177e4 380config DM_MIRROR
0149e57f
AK
381 tristate "Mirror target"
382 depends on BLK_DEV_DM
a7f7f624 383 help
44363322
KK
384 Allow volume managers to mirror logical volumes, also
385 needed for live data migration tools such as 'pvmove'.
1da177e4 386
5442851e
MP
387config DM_LOG_USERSPACE
388 tristate "Mirror userspace logging"
389 depends on DM_MIRROR && NET
390 select CONNECTOR
a7f7f624 391 help
5442851e
MP
392 The userspace logging module provides a mechanism for
393 relaying the dm-dirty-log API to userspace. Log designs
394 which are more suited to userspace implementation (e.g.
395 shared storage logs) or experimental logs can be implemented
396 by leveraging this framework.
397
9d09e663 398config DM_RAID
d9f691c3 399 tristate "RAID 1/4/5/6/10 target"
035220b3 400 depends on BLK_DEV_DM
7b81ef8b 401 select MD_RAID0
b12d437b 402 select MD_RAID1
d9f691c3 403 select MD_RAID10
9d09e663
N
404 select MD_RAID456
405 select BLK_DEV_MD
a7f7f624 406 help
d9f691c3 407 A dm target that supports RAID1, RAID10, RAID4, RAID5 and RAID6 mappings
9d09e663
N
408
409 A RAID-5 set of N drives with a capacity of C MB per drive provides
410 the capacity of C * (N - 1) MB, and protects against a failure
411 of a single drive. For a given sector (row) number, (N - 1) drives
412 contain data sectors, and one drive contains the parity protection.
413 For a RAID-4 set, the parity blocks are present on a single drive,
414 while a RAID-5 set distributes the parity across the drives in one
415 of the available parity distribution methods.
416
417 A RAID-6 set of N drives with a capacity of C MB per drive
418 provides the capacity of C * (N - 2) MB, and protects
419 against a failure of any two drives. For a given sector
420 (row) number, (N - 2) drives contain data sectors, and two
421 drives contains two independent redundancy syndromes. Like
422 RAID-5, RAID-6 distributes the syndromes across the drives
423 in one of the available parity distribution methods.
424
1da177e4 425config DM_ZERO
0149e57f
AK
426 tristate "Zero target"
427 depends on BLK_DEV_DM
a7f7f624 428 help
1da177e4
LT
429 A target that discards writes, and returns all zeroes for
430 reads. Useful in some recovery situations.
431
432config DM_MULTIPATH
0149e57f
AK
433 tristate "Multipath target"
434 depends on BLK_DEV_DM
fe9233fb
CS
435 # nasty syntax but means make DM_MULTIPATH independent
436 # of SCSI_DH if the latter isn't defined but if
437 # it is, DM_MULTIPATH must depend on it. We get a build
438 # error if SCSI_DH=m and DM_MULTIPATH=y
294ab783 439 depends on !SCSI_DH || SCSI
a7f7f624 440 help
1da177e4
LT
441 Allow volume managers to support multipath hardware.
442
fd5e0339
KU
443config DM_MULTIPATH_QL
444 tristate "I/O Path Selector based on the number of in-flight I/Os"
445 depends on DM_MULTIPATH
a7f7f624 446 help
fd5e0339
KU
447 This path selector is a dynamic load balancer which selects
448 the path with the least number of in-flight I/Os.
449
450 If unsure, say N.
451
f392ba88
KU
452config DM_MULTIPATH_ST
453 tristate "I/O Path Selector based on the service time"
454 depends on DM_MULTIPATH
a7f7f624 455 help
f392ba88
KU
456 This path selector is a dynamic load balancer which selects
457 the path expected to complete the incoming I/O in the shortest
458 time.
459
460 If unsure, say N.
461
2613eab1
KK
462config DM_MULTIPATH_HST
463 tristate "I/O Path Selector based on historical service time"
464 depends on DM_MULTIPATH
465 help
466 This path selector is a dynamic load balancer which selects
467 the path expected to complete the incoming I/O in the shortest
468 time by comparing estimated service time (based on historical
469 service time).
470
471 If unsure, say N.
472
e4d2e82b
MC
473config DM_MULTIPATH_IOA
474 tristate "I/O Path Selector based on CPU submission"
475 depends on DM_MULTIPATH
476 help
477 This path selector selects the path based on the CPU the IO is
478 executed on and the CPU to path mapping setup at path addition time.
479
480 If unsure, say N.
481
26b9f228 482config DM_DELAY
d57916a0
AK
483 tristate "I/O delaying target"
484 depends on BLK_DEV_DM
a7f7f624 485 help
26b9f228
HM
486 A target that delays reads and/or writes and can send
487 them to different devices. Useful for testing.
488
489 If unsure, say N.
490
e4f3fabd
BG
491config DM_DUST
492 tristate "Bad sector simulation target"
493 depends on BLK_DEV_DM
a7f7f624 494 help
e4f3fabd
BG
495 A target that simulates bad sector behavior.
496 Useful for testing.
497
498 If unsure, say N.
499
6bbc923d
HK
500config DM_INIT
501 bool "DM \"dm-mod.create=\" parameter support"
502 depends on BLK_DEV_DM=y
a7f7f624 503 help
6bbc923d
HK
504 Enable "dm-mod.create=" parameter to create mapped devices at init time.
505 This option is useful to allow mounting rootfs without requiring an
506 initramfs.
6cf2a73c 507 See Documentation/admin-guide/device-mapper/dm-init.rst for dm-mod.create="..."
6bbc923d
HK
508 format.
509
510 If unsure, say N.
511
51e5b2bd 512config DM_UEVENT
e0b215da
AK
513 bool "DM uevents"
514 depends on BLK_DEV_DM
a7f7f624 515 help
51e5b2bd
MA
516 Generate udev events for DM events.
517
3407ef52 518config DM_FLAKEY
d57916a0
AK
519 tristate "Flakey target"
520 depends on BLK_DEV_DM
a7f7f624 521 help
44363322 522 A target that intermittently fails I/O for debugging purposes.
3407ef52 523
a4ffc152 524config DM_VERITY
d57916a0
AK
525 tristate "Verity target support"
526 depends on BLK_DEV_DM
a4ffc152
MP
527 select CRYPTO
528 select CRYPTO_HASH
529 select DM_BUFIO
a7f7f624 530 help
a4ffc152
MP
531 This device-mapper target creates a read-only device that
532 transparently validates the data on one underlying device against
533 a pre-generated tree of cryptographic checksums stored on a second
534 device.
535
536 You'll need to activate the digests you're going to use in the
537 cryptoapi configuration.
538
539 To compile this code as a module, choose M here: the module will
540 be called dm-verity.
541
542 If unsure, say N.
543
88cd3e6c
JK
544config DM_VERITY_VERIFY_ROOTHASH_SIG
545 def_bool n
546 bool "Verity data device root hash signature verification support"
547 depends on DM_VERITY
548 select SYSTEM_DATA_VERIFICATION
4da8f8c8 549 help
88cd3e6c
JK
550 Add ability for dm-verity device to be validated if the
551 pre-generated tree of cryptographic checksums passed has a pkcs#7
552 signature file that can validate the roothash of the tree.
553
4da8f8c8
MS
554 By default, rely on the builtin trusted keyring.
555
556 If unsure, say N.
557
558config DM_VERITY_VERIFY_ROOTHASH_SIG_SECONDARY_KEYRING
559 bool "Verity data device root hash signature verification with secondary keyring"
560 depends on DM_VERITY_VERIFY_ROOTHASH_SIG
561 depends on SECONDARY_TRUSTED_KEYRING
562 help
563 Rely on the secondary trusted keyring to verify dm-verity signatures.
564
88cd3e6c
JK
565 If unsure, say N.
566
a739ff3f
ST
567config DM_VERITY_FEC
568 bool "Verity forward error correction support"
569 depends on DM_VERITY
570 select REED_SOLOMON
571 select REED_SOLOMON_DEC8
a7f7f624 572 help
a739ff3f
ST
573 Add forward error correction support to dm-verity. This option
574 makes it possible to use pre-generated error correction data to
575 recover from corrupted blocks.
576
577 If unsure, say N.
578
9d0eb0ab
JR
579config DM_SWITCH
580 tristate "Switch target support (EXPERIMENTAL)"
581 depends on BLK_DEV_DM
a7f7f624 582 help
9d0eb0ab
JR
583 This device-mapper target creates a device that supports an arbitrary
584 mapping of fixed-size regions of I/O across a fixed set of paths.
585 The path used for any specific region can be switched dynamically
586 by sending the target a message.
587
588 To compile this code as a module, choose M here: the module will
589 be called dm-switch.
590
591 If unsure, say N.
592
0e9cebe7
JB
593config DM_LOG_WRITES
594 tristate "Log writes target support"
595 depends on BLK_DEV_DM
a7f7f624 596 help
0e9cebe7
JB
597 This device-mapper target takes two devices, one device to use
598 normally, one to log all write operations done to the first device.
599 This is for use by file system developers wishing to verify that
57d42487 600 their fs is writing a consistent file system at all times by allowing
0e9cebe7
JB
601 them to replay the log in a variety of ways and to check the
602 contents.
603
604 To compile this code as a module, choose M here: the module will
605 be called dm-log-writes.
606
607 If unsure, say N.
608
7eada909 609config DM_INTEGRITY
7ab84db6 610 tristate "Integrity target support"
7eada909
MP
611 depends on BLK_DEV_DM
612 select BLK_DEV_INTEGRITY
613 select DM_BUFIO
614 select CRYPTO
f7b347ac 615 select CRYPTO_SKCIPHER
7eada909 616 select ASYNC_XOR
82bb8599 617 select DM_AUDIT if AUDIT
a7f7f624 618 help
7ab84db6
MS
619 This device-mapper target emulates a block device that has
620 additional per-sector tags that can be used for storing
621 integrity information.
622
623 This integrity target is used with the dm-crypt target to
624 provide authenticated disk encryption or it can be used
625 standalone.
626
627 To compile this code as a module, choose M here: the module will
628 be called dm-integrity.
629
3b1a94c8
DLM
630config DM_ZONED
631 tristate "Drive-managed zoned block device target support"
632 depends on BLK_DEV_DM
633 depends on BLK_DEV_ZONED
b690bd54 634 select CRC32
a7f7f624 635 help
3b1a94c8
DLM
636 This device-mapper target takes a host-managed or host-aware zoned
637 block device and exposes most of its capacity as a regular block
638 device (drive-managed zoned block device) without any write
639 constraints. This is mainly intended for use with file systems that
640 do not natively support zoned block devices but still want to
641 benefit from the increased capacity offered by SMR disks. Other uses
642 by applications using raw block devices (for example object stores)
643 are also possible.
644
645 To compile this code as a module, choose M here: the module will
646 be called dm-zoned.
647
7ab84db6 648 If unsure, say N.
7eada909 649
2cc1ae48
MW
650config DM_AUDIT
651 bool "DM audit events"
652 depends on AUDIT
653 help
654 Generate audit events for device-mapper.
655
656 Enables audit logging of several security relevant events in the
657 particular device-mapper targets, especially the integrity target.
658
afd44034 659endif # MD