[PATCH] KVM: Remove extranous put_cpu() from vcpu_put()
[linux-2.6-block.git] / drivers / kvm / paging_tmpl.h
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 *
11 * Authors:
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Avi Kivity <avi@qumranet.com>
14 *
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
17 *
18 */
19
20/*
21 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
22 * so the code in this file is compiled twice, once per pte size.
23 */
24
25#if PTTYPE == 64
26 #define pt_element_t u64
27 #define guest_walker guest_walker64
28 #define FNAME(name) paging##64_##name
29 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
30 #define PT_DIR_BASE_ADDR_MASK PT64_DIR_BASE_ADDR_MASK
31 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
32 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
33 #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
34 #define PT_PTE_COPY_MASK PT64_PTE_COPY_MASK
35 #define PT_NON_PTE_COPY_MASK PT64_NON_PTE_COPY_MASK
36#elif PTTYPE == 32
37 #define pt_element_t u32
38 #define guest_walker guest_walker32
39 #define FNAME(name) paging##32_##name
40 #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
41 #define PT_DIR_BASE_ADDR_MASK PT32_DIR_BASE_ADDR_MASK
42 #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
43 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
44 #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
45 #define PT_PTE_COPY_MASK PT32_PTE_COPY_MASK
46 #define PT_NON_PTE_COPY_MASK PT32_NON_PTE_COPY_MASK
47#else
48 #error Invalid PTTYPE value
49#endif
50
51/*
52 * The guest_walker structure emulates the behavior of the hardware page
53 * table walker.
54 */
55struct guest_walker {
56 int level;
57 pt_element_t *table;
58 pt_element_t inherited_ar;
59};
60
61static void FNAME(init_walker)(struct guest_walker *walker,
62 struct kvm_vcpu *vcpu)
63{
64 hpa_t hpa;
65 struct kvm_memory_slot *slot;
66
67 walker->level = vcpu->mmu.root_level;
68 slot = gfn_to_memslot(vcpu->kvm,
69 (vcpu->cr3 & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
70 hpa = safe_gpa_to_hpa(vcpu, vcpu->cr3 & PT64_BASE_ADDR_MASK);
71 walker->table = kmap_atomic(pfn_to_page(hpa >> PAGE_SHIFT), KM_USER0);
72
73 ASSERT((!kvm_arch_ops->is_long_mode(vcpu) && is_pae(vcpu)) ||
74 (vcpu->cr3 & ~(PAGE_MASK | CR3_FLAGS_MASK)) == 0);
75
76 walker->table = (pt_element_t *)( (unsigned long)walker->table |
77 (unsigned long)(vcpu->cr3 & ~(PAGE_MASK | CR3_FLAGS_MASK)) );
78 walker->inherited_ar = PT_USER_MASK | PT_WRITABLE_MASK;
79}
80
81static void FNAME(release_walker)(struct guest_walker *walker)
82{
83 kunmap_atomic(walker->table, KM_USER0);
84}
85
86static void FNAME(set_pte)(struct kvm_vcpu *vcpu, u64 guest_pte,
87 u64 *shadow_pte, u64 access_bits)
88{
89 ASSERT(*shadow_pte == 0);
90 access_bits &= guest_pte;
91 *shadow_pte = (guest_pte & PT_PTE_COPY_MASK);
92 set_pte_common(vcpu, shadow_pte, guest_pte & PT_BASE_ADDR_MASK,
93 guest_pte & PT_DIRTY_MASK, access_bits);
94}
95
96static void FNAME(set_pde)(struct kvm_vcpu *vcpu, u64 guest_pde,
97 u64 *shadow_pte, u64 access_bits,
98 int index)
99{
100 gpa_t gaddr;
101
102 ASSERT(*shadow_pte == 0);
103 access_bits &= guest_pde;
104 gaddr = (guest_pde & PT_DIR_BASE_ADDR_MASK) + PAGE_SIZE * index;
105 if (PTTYPE == 32 && is_cpuid_PSE36())
106 gaddr |= (guest_pde & PT32_DIR_PSE36_MASK) <<
107 (32 - PT32_DIR_PSE36_SHIFT);
108 *shadow_pte = (guest_pde & (PT_NON_PTE_COPY_MASK | PT_GLOBAL_MASK)) |
109 ((guest_pde & PT_DIR_PAT_MASK) >>
110 (PT_DIR_PAT_SHIFT - PT_PAT_SHIFT));
111 set_pte_common(vcpu, shadow_pte, gaddr,
112 guest_pde & PT_DIRTY_MASK, access_bits);
113}
114
115/*
116 * Fetch a guest pte from a specific level in the paging hierarchy.
117 */
118static pt_element_t *FNAME(fetch_guest)(struct kvm_vcpu *vcpu,
119 struct guest_walker *walker,
120 int level,
121 gva_t addr)
122{
123
124 ASSERT(level > 0 && level <= walker->level);
125
126 for (;;) {
127 int index = PT_INDEX(addr, walker->level);
128 hpa_t paddr;
129
130 ASSERT(((unsigned long)walker->table & PAGE_MASK) ==
131 ((unsigned long)&walker->table[index] & PAGE_MASK));
132 if (level == walker->level ||
133 !is_present_pte(walker->table[index]) ||
134 (walker->level == PT_DIRECTORY_LEVEL &&
135 (walker->table[index] & PT_PAGE_SIZE_MASK) &&
136 (PTTYPE == 64 || is_pse(vcpu))))
137 return &walker->table[index];
138 if (walker->level != 3 || kvm_arch_ops->is_long_mode(vcpu))
139 walker->inherited_ar &= walker->table[index];
140 paddr = safe_gpa_to_hpa(vcpu, walker->table[index] & PT_BASE_ADDR_MASK);
141 kunmap_atomic(walker->table, KM_USER0);
142 walker->table = kmap_atomic(pfn_to_page(paddr >> PAGE_SHIFT),
143 KM_USER0);
144 --walker->level;
145 }
146}
147
148/*
149 * Fetch a shadow pte for a specific level in the paging hierarchy.
150 */
151static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
152 struct guest_walker *walker)
153{
154 hpa_t shadow_addr;
155 int level;
156 u64 *prev_shadow_ent = NULL;
157
158 shadow_addr = vcpu->mmu.root_hpa;
159 level = vcpu->mmu.shadow_root_level;
160
161 for (; ; level--) {
162 u32 index = SHADOW_PT_INDEX(addr, level);
163 u64 *shadow_ent = ((u64 *)__va(shadow_addr)) + index;
164 pt_element_t *guest_ent;
165
166 if (is_present_pte(*shadow_ent) || is_io_pte(*shadow_ent)) {
167 if (level == PT_PAGE_TABLE_LEVEL)
168 return shadow_ent;
169 shadow_addr = *shadow_ent & PT64_BASE_ADDR_MASK;
170 prev_shadow_ent = shadow_ent;
171 continue;
172 }
173
174 if (PTTYPE == 32 && level > PT32_ROOT_LEVEL) {
175 ASSERT(level == PT32E_ROOT_LEVEL);
176 guest_ent = FNAME(fetch_guest)(vcpu, walker,
177 PT32_ROOT_LEVEL, addr);
178 } else
179 guest_ent = FNAME(fetch_guest)(vcpu, walker,
180 level, addr);
181
182 if (!is_present_pte(*guest_ent))
183 return NULL;
184
185 /* Don't set accessed bit on PAE PDPTRs */
186 if (vcpu->mmu.root_level != 3 || walker->level != 3)
187 *guest_ent |= PT_ACCESSED_MASK;
188
189 if (level == PT_PAGE_TABLE_LEVEL) {
190
191 if (walker->level == PT_DIRECTORY_LEVEL) {
192 if (prev_shadow_ent)
193 *prev_shadow_ent |= PT_SHADOW_PS_MARK;
194 FNAME(set_pde)(vcpu, *guest_ent, shadow_ent,
195 walker->inherited_ar,
196 PT_INDEX(addr, PT_PAGE_TABLE_LEVEL));
197 } else {
198 ASSERT(walker->level == PT_PAGE_TABLE_LEVEL);
199 FNAME(set_pte)(vcpu, *guest_ent, shadow_ent, walker->inherited_ar);
200 }
201 return shadow_ent;
202 }
203
204 shadow_addr = kvm_mmu_alloc_page(vcpu, shadow_ent);
205 if (!VALID_PAGE(shadow_addr))
206 return ERR_PTR(-ENOMEM);
207 if (!kvm_arch_ops->is_long_mode(vcpu) && level == 3)
208 *shadow_ent = shadow_addr |
209 (*guest_ent & (PT_PRESENT_MASK | PT_PWT_MASK | PT_PCD_MASK));
210 else {
211 *shadow_ent = shadow_addr |
212 (*guest_ent & PT_NON_PTE_COPY_MASK);
213 *shadow_ent |= (PT_WRITABLE_MASK | PT_USER_MASK);
214 }
215 prev_shadow_ent = shadow_ent;
216 }
217}
218
219/*
220 * The guest faulted for write. We need to
221 *
222 * - check write permissions
223 * - update the guest pte dirty bit
224 * - update our own dirty page tracking structures
225 */
226static int FNAME(fix_write_pf)(struct kvm_vcpu *vcpu,
227 u64 *shadow_ent,
228 struct guest_walker *walker,
229 gva_t addr,
230 int user)
231{
232 pt_element_t *guest_ent;
233 int writable_shadow;
234 gfn_t gfn;
235
236 if (is_writeble_pte(*shadow_ent))
237 return 0;
238
239 writable_shadow = *shadow_ent & PT_SHADOW_WRITABLE_MASK;
240 if (user) {
241 /*
242 * User mode access. Fail if it's a kernel page or a read-only
243 * page.
244 */
245 if (!(*shadow_ent & PT_SHADOW_USER_MASK) || !writable_shadow)
246 return 0;
247 ASSERT(*shadow_ent & PT_USER_MASK);
248 } else
249 /*
250 * Kernel mode access. Fail if it's a read-only page and
251 * supervisor write protection is enabled.
252 */
253 if (!writable_shadow) {
254 if (is_write_protection(vcpu))
255 return 0;
256 *shadow_ent &= ~PT_USER_MASK;
257 }
258
259 guest_ent = FNAME(fetch_guest)(vcpu, walker, PT_PAGE_TABLE_LEVEL, addr);
260
261 if (!is_present_pte(*guest_ent)) {
262 *shadow_ent = 0;
263 return 0;
264 }
265
266 gfn = (*guest_ent & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
267 mark_page_dirty(vcpu->kvm, gfn);
268 *shadow_ent |= PT_WRITABLE_MASK;
269 *guest_ent |= PT_DIRTY_MASK;
270
271 return 1;
272}
273
274/*
275 * Page fault handler. There are several causes for a page fault:
276 * - there is no shadow pte for the guest pte
277 * - write access through a shadow pte marked read only so that we can set
278 * the dirty bit
279 * - write access to a shadow pte marked read only so we can update the page
280 * dirty bitmap, when userspace requests it
281 * - mmio access; in this case we will never install a present shadow pte
282 * - normal guest page fault due to the guest pte marked not present, not
283 * writable, or not executable
284 *
285 * Returns: 1 if we need to emulate the instruction, 0 otherwise
286 */
287static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
288 u32 error_code)
289{
290 int write_fault = error_code & PFERR_WRITE_MASK;
291 int pte_present = error_code & PFERR_PRESENT_MASK;
292 int user_fault = error_code & PFERR_USER_MASK;
293 struct guest_walker walker;
294 u64 *shadow_pte;
295 int fixed;
296
297 /*
298 * Look up the shadow pte for the faulting address.
299 */
300 for (;;) {
301 FNAME(init_walker)(&walker, vcpu);
302 shadow_pte = FNAME(fetch)(vcpu, addr, &walker);
303 if (IS_ERR(shadow_pte)) { /* must be -ENOMEM */
304 nonpaging_flush(vcpu);
305 FNAME(release_walker)(&walker);
306 continue;
307 }
308 break;
309 }
310
311 /*
312 * The page is not mapped by the guest. Let the guest handle it.
313 */
314 if (!shadow_pte) {
315 inject_page_fault(vcpu, addr, error_code);
316 FNAME(release_walker)(&walker);
317 return 0;
318 }
319
320 /*
321 * Update the shadow pte.
322 */
323 if (write_fault)
324 fixed = FNAME(fix_write_pf)(vcpu, shadow_pte, &walker, addr,
325 user_fault);
326 else
327 fixed = fix_read_pf(shadow_pte);
328
329 FNAME(release_walker)(&walker);
330
331 /*
332 * mmio: emulate if accessible, otherwise its a guest fault.
333 */
334 if (is_io_pte(*shadow_pte)) {
335 if (may_access(*shadow_pte, write_fault, user_fault))
336 return 1;
337 pgprintk("%s: io work, no access\n", __FUNCTION__);
338 inject_page_fault(vcpu, addr,
339 error_code | PFERR_PRESENT_MASK);
340 return 0;
341 }
342
343 /*
344 * pte not present, guest page fault.
345 */
346 if (pte_present && !fixed) {
347 inject_page_fault(vcpu, addr, error_code);
348 return 0;
349 }
350
351 ++kvm_stat.pf_fixed;
352
353 return 0;
354}
355
356static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr)
357{
358 struct guest_walker walker;
359 pt_element_t guest_pte;
360 gpa_t gpa;
361
362 FNAME(init_walker)(&walker, vcpu);
363 guest_pte = *FNAME(fetch_guest)(vcpu, &walker, PT_PAGE_TABLE_LEVEL,
364 vaddr);
365 FNAME(release_walker)(&walker);
366
367 if (!is_present_pte(guest_pte))
368 return UNMAPPED_GVA;
369
370 if (walker.level == PT_DIRECTORY_LEVEL) {
371 ASSERT((guest_pte & PT_PAGE_SIZE_MASK));
372 ASSERT(PTTYPE == 64 || is_pse(vcpu));
373
374 gpa = (guest_pte & PT_DIR_BASE_ADDR_MASK) | (vaddr &
375 (PT_LEVEL_MASK(PT_PAGE_TABLE_LEVEL) | ~PAGE_MASK));
376
377 if (PTTYPE == 32 && is_cpuid_PSE36())
378 gpa |= (guest_pte & PT32_DIR_PSE36_MASK) <<
379 (32 - PT32_DIR_PSE36_SHIFT);
380 } else {
381 gpa = (guest_pte & PT_BASE_ADDR_MASK);
382 gpa |= (vaddr & ~PAGE_MASK);
383 }
384
385 return gpa;
386}
387
388#undef pt_element_t
389#undef guest_walker
390#undef FNAME
391#undef PT_BASE_ADDR_MASK
392#undef PT_INDEX
393#undef SHADOW_PT_INDEX
394#undef PT_LEVEL_MASK
395#undef PT_PTE_COPY_MASK
396#undef PT_NON_PTE_COPY_MASK
397#undef PT_DIR_BASE_ADDR_MASK