[PATCH] KVM: MMU: Shadow page table caching
[linux-block.git] / drivers / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 *
11 * Authors:
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Avi Kivity <avi@qumranet.com>
14 *
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
17 *
18 */
19#include <linux/types.h>
20#include <linux/string.h>
21#include <asm/page.h>
22#include <linux/mm.h>
23#include <linux/highmem.h>
24#include <linux/module.h>
25
26#include "vmx.h"
27#include "kvm.h"
28
cea0f0e7
AK
29#define pgprintk(x...) do { printk(x); } while (0)
30#define rmap_printk(x...) do { printk(x); } while (0)
6aa8b732
AK
31
32#define ASSERT(x) \
33 if (!(x)) { \
34 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
35 __FILE__, __LINE__, #x); \
36 }
37
cea0f0e7
AK
38#define PT64_PT_BITS 9
39#define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
40#define PT32_PT_BITS 10
41#define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
6aa8b732
AK
42
43#define PT_WRITABLE_SHIFT 1
44
45#define PT_PRESENT_MASK (1ULL << 0)
46#define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
47#define PT_USER_MASK (1ULL << 2)
48#define PT_PWT_MASK (1ULL << 3)
49#define PT_PCD_MASK (1ULL << 4)
50#define PT_ACCESSED_MASK (1ULL << 5)
51#define PT_DIRTY_MASK (1ULL << 6)
52#define PT_PAGE_SIZE_MASK (1ULL << 7)
53#define PT_PAT_MASK (1ULL << 7)
54#define PT_GLOBAL_MASK (1ULL << 8)
55#define PT64_NX_MASK (1ULL << 63)
56
57#define PT_PAT_SHIFT 7
58#define PT_DIR_PAT_SHIFT 12
59#define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
60
61#define PT32_DIR_PSE36_SIZE 4
62#define PT32_DIR_PSE36_SHIFT 13
63#define PT32_DIR_PSE36_MASK (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
64
65
66#define PT32_PTE_COPY_MASK \
8c7bb723 67 (PT_PRESENT_MASK | PT_ACCESSED_MASK | PT_DIRTY_MASK | PT_GLOBAL_MASK)
6aa8b732 68
8c7bb723 69#define PT64_PTE_COPY_MASK (PT64_NX_MASK | PT32_PTE_COPY_MASK)
6aa8b732
AK
70
71#define PT_FIRST_AVAIL_BITS_SHIFT 9
72#define PT64_SECOND_AVAIL_BITS_SHIFT 52
73
74#define PT_SHADOW_PS_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
75#define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
76
77#define PT_SHADOW_WRITABLE_SHIFT (PT_FIRST_AVAIL_BITS_SHIFT + 1)
78#define PT_SHADOW_WRITABLE_MASK (1ULL << PT_SHADOW_WRITABLE_SHIFT)
79
80#define PT_SHADOW_USER_SHIFT (PT_SHADOW_WRITABLE_SHIFT + 1)
81#define PT_SHADOW_USER_MASK (1ULL << (PT_SHADOW_USER_SHIFT))
82
83#define PT_SHADOW_BITS_OFFSET (PT_SHADOW_WRITABLE_SHIFT - PT_WRITABLE_SHIFT)
84
85#define VALID_PAGE(x) ((x) != INVALID_PAGE)
86
87#define PT64_LEVEL_BITS 9
88
89#define PT64_LEVEL_SHIFT(level) \
90 ( PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS )
91
92#define PT64_LEVEL_MASK(level) \
93 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
94
95#define PT64_INDEX(address, level)\
96 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
97
98
99#define PT32_LEVEL_BITS 10
100
101#define PT32_LEVEL_SHIFT(level) \
102 ( PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS )
103
104#define PT32_LEVEL_MASK(level) \
105 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
106
107#define PT32_INDEX(address, level)\
108 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
109
110
111#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & PAGE_MASK)
112#define PT64_DIR_BASE_ADDR_MASK \
113 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
114
115#define PT32_BASE_ADDR_MASK PAGE_MASK
116#define PT32_DIR_BASE_ADDR_MASK \
117 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
118
119
120#define PFERR_PRESENT_MASK (1U << 0)
121#define PFERR_WRITE_MASK (1U << 1)
122#define PFERR_USER_MASK (1U << 2)
123
124#define PT64_ROOT_LEVEL 4
125#define PT32_ROOT_LEVEL 2
126#define PT32E_ROOT_LEVEL 3
127
128#define PT_DIRECTORY_LEVEL 2
129#define PT_PAGE_TABLE_LEVEL 1
130
cd4a4e53
AK
131#define RMAP_EXT 4
132
133struct kvm_rmap_desc {
134 u64 *shadow_ptes[RMAP_EXT];
135 struct kvm_rmap_desc *more;
136};
137
6aa8b732
AK
138static int is_write_protection(struct kvm_vcpu *vcpu)
139{
140 return vcpu->cr0 & CR0_WP_MASK;
141}
142
143static int is_cpuid_PSE36(void)
144{
145 return 1;
146}
147
148static int is_present_pte(unsigned long pte)
149{
150 return pte & PT_PRESENT_MASK;
151}
152
153static int is_writeble_pte(unsigned long pte)
154{
155 return pte & PT_WRITABLE_MASK;
156}
157
158static int is_io_pte(unsigned long pte)
159{
160 return pte & PT_SHADOW_IO_MARK;
161}
162
cd4a4e53
AK
163static int is_rmap_pte(u64 pte)
164{
165 return (pte & (PT_WRITABLE_MASK | PT_PRESENT_MASK))
166 == (PT_WRITABLE_MASK | PT_PRESENT_MASK);
167}
168
169/*
170 * Reverse mapping data structures:
171 *
172 * If page->private bit zero is zero, then page->private points to the
173 * shadow page table entry that points to page_address(page).
174 *
175 * If page->private bit zero is one, (then page->private & ~1) points
176 * to a struct kvm_rmap_desc containing more mappings.
177 */
178static void rmap_add(struct kvm *kvm, u64 *spte)
179{
180 struct page *page;
181 struct kvm_rmap_desc *desc;
182 int i;
183
184 if (!is_rmap_pte(*spte))
185 return;
186 page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
187 if (!page->private) {
188 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
189 page->private = (unsigned long)spte;
190 } else if (!(page->private & 1)) {
191 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
192 desc = kzalloc(sizeof *desc, GFP_NOWAIT);
193 if (!desc)
194 BUG(); /* FIXME: return error */
195 desc->shadow_ptes[0] = (u64 *)page->private;
196 desc->shadow_ptes[1] = spte;
197 page->private = (unsigned long)desc | 1;
198 } else {
199 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
200 desc = (struct kvm_rmap_desc *)(page->private & ~1ul);
201 while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
202 desc = desc->more;
203 if (desc->shadow_ptes[RMAP_EXT-1]) {
204 desc->more = kzalloc(sizeof *desc->more, GFP_NOWAIT);
205 if (!desc->more)
206 BUG(); /* FIXME: return error */
207 desc = desc->more;
208 }
209 for (i = 0; desc->shadow_ptes[i]; ++i)
210 ;
211 desc->shadow_ptes[i] = spte;
212 }
213}
214
215static void rmap_desc_remove_entry(struct page *page,
216 struct kvm_rmap_desc *desc,
217 int i,
218 struct kvm_rmap_desc *prev_desc)
219{
220 int j;
221
222 for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
223 ;
224 desc->shadow_ptes[i] = desc->shadow_ptes[j];
225 desc->shadow_ptes[j] = 0;
226 if (j != 0)
227 return;
228 if (!prev_desc && !desc->more)
229 page->private = (unsigned long)desc->shadow_ptes[0];
230 else
231 if (prev_desc)
232 prev_desc->more = desc->more;
233 else
234 page->private = (unsigned long)desc->more | 1;
235 kfree(desc);
236}
237
238static void rmap_remove(struct kvm *kvm, u64 *spte)
239{
240 struct page *page;
241 struct kvm_rmap_desc *desc;
242 struct kvm_rmap_desc *prev_desc;
243 int i;
244
245 if (!is_rmap_pte(*spte))
246 return;
247 page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
248 if (!page->private) {
249 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
250 BUG();
251 } else if (!(page->private & 1)) {
252 rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
253 if ((u64 *)page->private != spte) {
254 printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
255 spte, *spte);
256 BUG();
257 }
258 page->private = 0;
259 } else {
260 rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
261 desc = (struct kvm_rmap_desc *)(page->private & ~1ul);
262 prev_desc = NULL;
263 while (desc) {
264 for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
265 if (desc->shadow_ptes[i] == spte) {
266 rmap_desc_remove_entry(page, desc, i,
267 prev_desc);
268 return;
269 }
270 prev_desc = desc;
271 desc = desc->more;
272 }
273 BUG();
274 }
275}
276
6aa8b732
AK
277static void kvm_mmu_free_page(struct kvm_vcpu *vcpu, hpa_t page_hpa)
278{
279 struct kvm_mmu_page *page_head = page_header(page_hpa);
280
281 list_del(&page_head->link);
282 page_head->page_hpa = page_hpa;
283 list_add(&page_head->link, &vcpu->free_pages);
284}
285
286static int is_empty_shadow_page(hpa_t page_hpa)
287{
288 u32 *pos;
289 u32 *end;
290 for (pos = __va(page_hpa), end = pos + PAGE_SIZE / sizeof(u32);
291 pos != end; pos++)
292 if (*pos != 0)
293 return 0;
294 return 1;
295}
296
cea0f0e7
AK
297static unsigned kvm_page_table_hashfn(gfn_t gfn)
298{
299 return gfn;
300}
301
25c0de2c
AK
302static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
303 u64 *parent_pte)
6aa8b732
AK
304{
305 struct kvm_mmu_page *page;
306
307 if (list_empty(&vcpu->free_pages))
25c0de2c 308 return NULL;
6aa8b732
AK
309
310 page = list_entry(vcpu->free_pages.next, struct kvm_mmu_page, link);
311 list_del(&page->link);
312 list_add(&page->link, &vcpu->kvm->active_mmu_pages);
313 ASSERT(is_empty_shadow_page(page->page_hpa));
314 page->slot_bitmap = 0;
315 page->global = 1;
cea0f0e7 316 page->multimapped = 0;
6aa8b732 317 page->parent_pte = parent_pte;
25c0de2c 318 return page;
6aa8b732
AK
319}
320
cea0f0e7
AK
321static void mmu_page_add_parent_pte(struct kvm_mmu_page *page, u64 *parent_pte)
322{
323 struct kvm_pte_chain *pte_chain;
324 struct hlist_node *node;
325 int i;
326
327 if (!parent_pte)
328 return;
329 if (!page->multimapped) {
330 u64 *old = page->parent_pte;
331
332 if (!old) {
333 page->parent_pte = parent_pte;
334 return;
335 }
336 page->multimapped = 1;
337 pte_chain = kzalloc(sizeof(struct kvm_pte_chain), GFP_NOWAIT);
338 BUG_ON(!pte_chain);
339 INIT_HLIST_HEAD(&page->parent_ptes);
340 hlist_add_head(&pte_chain->link, &page->parent_ptes);
341 pte_chain->parent_ptes[0] = old;
342 }
343 hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link) {
344 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
345 continue;
346 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
347 if (!pte_chain->parent_ptes[i]) {
348 pte_chain->parent_ptes[i] = parent_pte;
349 return;
350 }
351 }
352 pte_chain = kzalloc(sizeof(struct kvm_pte_chain), GFP_NOWAIT);
353 BUG_ON(!pte_chain);
354 hlist_add_head(&pte_chain->link, &page->parent_ptes);
355 pte_chain->parent_ptes[0] = parent_pte;
356}
357
358static void mmu_page_remove_parent_pte(struct kvm_mmu_page *page,
359 u64 *parent_pte)
360{
361 struct kvm_pte_chain *pte_chain;
362 struct hlist_node *node;
363 int i;
364
365 if (!page->multimapped) {
366 BUG_ON(page->parent_pte != parent_pte);
367 page->parent_pte = NULL;
368 return;
369 }
370 hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link)
371 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
372 if (!pte_chain->parent_ptes[i])
373 break;
374 if (pte_chain->parent_ptes[i] != parent_pte)
375 continue;
376 while (i + 1 < NR_PTE_CHAIN_ENTRIES) {
377 pte_chain->parent_ptes[i]
378 = pte_chain->parent_ptes[i + 1];
379 ++i;
380 }
381 pte_chain->parent_ptes[i] = NULL;
382 return;
383 }
384 BUG();
385}
386
387static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm_vcpu *vcpu,
388 gfn_t gfn)
389{
390 unsigned index;
391 struct hlist_head *bucket;
392 struct kvm_mmu_page *page;
393 struct hlist_node *node;
394
395 pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
396 index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
397 bucket = &vcpu->kvm->mmu_page_hash[index];
398 hlist_for_each_entry(page, node, bucket, hash_link)
399 if (page->gfn == gfn && !page->role.metaphysical) {
400 pgprintk("%s: found role %x\n",
401 __FUNCTION__, page->role.word);
402 return page;
403 }
404 return NULL;
405}
406
407static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
408 gfn_t gfn,
409 gva_t gaddr,
410 unsigned level,
411 int metaphysical,
412 u64 *parent_pte)
413{
414 union kvm_mmu_page_role role;
415 unsigned index;
416 unsigned quadrant;
417 struct hlist_head *bucket;
418 struct kvm_mmu_page *page;
419 struct hlist_node *node;
420
421 role.word = 0;
422 role.glevels = vcpu->mmu.root_level;
423 role.level = level;
424 role.metaphysical = metaphysical;
425 if (vcpu->mmu.root_level <= PT32_ROOT_LEVEL) {
426 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
427 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
428 role.quadrant = quadrant;
429 }
430 pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
431 gfn, role.word);
432 index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
433 bucket = &vcpu->kvm->mmu_page_hash[index];
434 hlist_for_each_entry(page, node, bucket, hash_link)
435 if (page->gfn == gfn && page->role.word == role.word) {
436 mmu_page_add_parent_pte(page, parent_pte);
437 pgprintk("%s: found\n", __FUNCTION__);
438 return page;
439 }
440 page = kvm_mmu_alloc_page(vcpu, parent_pte);
441 if (!page)
442 return page;
443 pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
444 page->gfn = gfn;
445 page->role = role;
446 hlist_add_head(&page->hash_link, bucket);
447 return page;
448}
449
450static void kvm_mmu_put_page(struct kvm_vcpu *vcpu,
451 struct kvm_mmu_page *page,
452 u64 *parent_pte)
453{
454 mmu_page_remove_parent_pte(page, parent_pte);
455}
456
6aa8b732
AK
457static void page_header_update_slot(struct kvm *kvm, void *pte, gpa_t gpa)
458{
459 int slot = memslot_id(kvm, gfn_to_memslot(kvm, gpa >> PAGE_SHIFT));
460 struct kvm_mmu_page *page_head = page_header(__pa(pte));
461
462 __set_bit(slot, &page_head->slot_bitmap);
463}
464
465hpa_t safe_gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
466{
467 hpa_t hpa = gpa_to_hpa(vcpu, gpa);
468
469 return is_error_hpa(hpa) ? bad_page_address | (gpa & ~PAGE_MASK): hpa;
470}
471
472hpa_t gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
473{
474 struct kvm_memory_slot *slot;
475 struct page *page;
476
477 ASSERT((gpa & HPA_ERR_MASK) == 0);
478 slot = gfn_to_memslot(vcpu->kvm, gpa >> PAGE_SHIFT);
479 if (!slot)
480 return gpa | HPA_ERR_MASK;
481 page = gfn_to_page(slot, gpa >> PAGE_SHIFT);
482 return ((hpa_t)page_to_pfn(page) << PAGE_SHIFT)
483 | (gpa & (PAGE_SIZE-1));
484}
485
486hpa_t gva_to_hpa(struct kvm_vcpu *vcpu, gva_t gva)
487{
488 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
489
490 if (gpa == UNMAPPED_GVA)
491 return UNMAPPED_GVA;
492 return gpa_to_hpa(vcpu, gpa);
493}
494
495
496static void release_pt_page_64(struct kvm_vcpu *vcpu, hpa_t page_hpa,
497 int level)
498{
cd4a4e53
AK
499 u64 *pos;
500 u64 *end;
501
6aa8b732
AK
502 ASSERT(vcpu);
503 ASSERT(VALID_PAGE(page_hpa));
504 ASSERT(level <= PT64_ROOT_LEVEL && level > 0);
505
cd4a4e53
AK
506 for (pos = __va(page_hpa), end = pos + PT64_ENT_PER_PAGE;
507 pos != end; pos++) {
508 u64 current_ent = *pos;
6aa8b732 509
cd4a4e53
AK
510 if (is_present_pte(current_ent)) {
511 if (level != 1)
6aa8b732
AK
512 release_pt_page_64(vcpu,
513 current_ent &
514 PT64_BASE_ADDR_MASK,
515 level - 1);
cd4a4e53
AK
516 else
517 rmap_remove(vcpu->kvm, pos);
6aa8b732 518 }
cd4a4e53 519 *pos = 0;
6aa8b732
AK
520 }
521 kvm_mmu_free_page(vcpu, page_hpa);
522}
523
524static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
525{
526}
527
528static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, hpa_t p)
529{
530 int level = PT32E_ROOT_LEVEL;
531 hpa_t table_addr = vcpu->mmu.root_hpa;
532
533 for (; ; level--) {
534 u32 index = PT64_INDEX(v, level);
535 u64 *table;
cea0f0e7 536 u64 pte;
6aa8b732
AK
537
538 ASSERT(VALID_PAGE(table_addr));
539 table = __va(table_addr);
540
541 if (level == 1) {
cea0f0e7
AK
542 pte = table[index];
543 if (is_present_pte(pte) && is_writeble_pte(pte))
544 return 0;
6aa8b732
AK
545 mark_page_dirty(vcpu->kvm, v >> PAGE_SHIFT);
546 page_header_update_slot(vcpu->kvm, table, v);
547 table[index] = p | PT_PRESENT_MASK | PT_WRITABLE_MASK |
548 PT_USER_MASK;
cd4a4e53 549 rmap_add(vcpu->kvm, &table[index]);
6aa8b732
AK
550 return 0;
551 }
552
553 if (table[index] == 0) {
25c0de2c 554 struct kvm_mmu_page *new_table;
cea0f0e7 555 gfn_t pseudo_gfn;
6aa8b732 556
cea0f0e7
AK
557 pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
558 >> PAGE_SHIFT;
559 new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
560 v, level - 1,
561 1, &table[index]);
25c0de2c 562 if (!new_table) {
6aa8b732
AK
563 pgprintk("nonpaging_map: ENOMEM\n");
564 return -ENOMEM;
565 }
566
25c0de2c
AK
567 table[index] = new_table->page_hpa | PT_PRESENT_MASK
568 | PT_WRITABLE_MASK | PT_USER_MASK;
6aa8b732
AK
569 }
570 table_addr = table[index] & PT64_BASE_ADDR_MASK;
571 }
572}
573
17ac10ad
AK
574static void mmu_free_roots(struct kvm_vcpu *vcpu)
575{
576 int i;
577
578#ifdef CONFIG_X86_64
579 if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
580 hpa_t root = vcpu->mmu.root_hpa;
581
582 ASSERT(VALID_PAGE(root));
17ac10ad
AK
583 vcpu->mmu.root_hpa = INVALID_PAGE;
584 return;
585 }
586#endif
587 for (i = 0; i < 4; ++i) {
588 hpa_t root = vcpu->mmu.pae_root[i];
589
590 ASSERT(VALID_PAGE(root));
591 root &= PT64_BASE_ADDR_MASK;
17ac10ad
AK
592 vcpu->mmu.pae_root[i] = INVALID_PAGE;
593 }
594 vcpu->mmu.root_hpa = INVALID_PAGE;
595}
596
597static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
598{
599 int i;
cea0f0e7
AK
600 gfn_t root_gfn;
601 root_gfn = vcpu->cr3 >> PAGE_SHIFT;
17ac10ad
AK
602
603#ifdef CONFIG_X86_64
604 if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
605 hpa_t root = vcpu->mmu.root_hpa;
606
607 ASSERT(!VALID_PAGE(root));
cea0f0e7
AK
608 root = kvm_mmu_get_page(vcpu, root_gfn, 0,
609 PT64_ROOT_LEVEL, 0, NULL)->page_hpa;
17ac10ad
AK
610 vcpu->mmu.root_hpa = root;
611 return;
612 }
613#endif
614 for (i = 0; i < 4; ++i) {
615 hpa_t root = vcpu->mmu.pae_root[i];
616
617 ASSERT(!VALID_PAGE(root));
cea0f0e7
AK
618 if (vcpu->mmu.root_level == PT32E_ROOT_LEVEL)
619 root_gfn = vcpu->pdptrs[i] >> PAGE_SHIFT;
620 else if (vcpu->mmu.root_level == 0)
621 root_gfn = 0;
622 root = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
623 PT32_ROOT_LEVEL, !is_paging(vcpu),
624 NULL)->page_hpa;
17ac10ad
AK
625 vcpu->mmu.pae_root[i] = root | PT_PRESENT_MASK;
626 }
627 vcpu->mmu.root_hpa = __pa(vcpu->mmu.pae_root);
628}
629
6aa8b732
AK
630static void nonpaging_flush(struct kvm_vcpu *vcpu)
631{
632 hpa_t root = vcpu->mmu.root_hpa;
633
634 ++kvm_stat.tlb_flush;
635 pgprintk("nonpaging_flush\n");
17ac10ad
AK
636 mmu_free_roots(vcpu);
637 mmu_alloc_roots(vcpu);
6aa8b732
AK
638 kvm_arch_ops->set_cr3(vcpu, root);
639 kvm_arch_ops->tlb_flush(vcpu);
640}
641
642static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
643{
644 return vaddr;
645}
646
647static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
648 u32 error_code)
649{
650 int ret;
651 gpa_t addr = gva;
652
653 ASSERT(vcpu);
654 ASSERT(VALID_PAGE(vcpu->mmu.root_hpa));
655
656 for (;;) {
657 hpa_t paddr;
658
659 paddr = gpa_to_hpa(vcpu , addr & PT64_BASE_ADDR_MASK);
660
661 if (is_error_hpa(paddr))
662 return 1;
663
664 ret = nonpaging_map(vcpu, addr & PAGE_MASK, paddr);
665 if (ret) {
666 nonpaging_flush(vcpu);
667 continue;
668 }
669 break;
670 }
671 return ret;
672}
673
674static void nonpaging_inval_page(struct kvm_vcpu *vcpu, gva_t addr)
675{
676}
677
678static void nonpaging_free(struct kvm_vcpu *vcpu)
679{
17ac10ad 680 mmu_free_roots(vcpu);
6aa8b732
AK
681}
682
683static int nonpaging_init_context(struct kvm_vcpu *vcpu)
684{
685 struct kvm_mmu *context = &vcpu->mmu;
686
687 context->new_cr3 = nonpaging_new_cr3;
688 context->page_fault = nonpaging_page_fault;
689 context->inval_page = nonpaging_inval_page;
690 context->gva_to_gpa = nonpaging_gva_to_gpa;
691 context->free = nonpaging_free;
cea0f0e7 692 context->root_level = 0;
6aa8b732 693 context->shadow_root_level = PT32E_ROOT_LEVEL;
17ac10ad 694 mmu_alloc_roots(vcpu);
6aa8b732
AK
695 ASSERT(VALID_PAGE(context->root_hpa));
696 kvm_arch_ops->set_cr3(vcpu, context->root_hpa);
697 return 0;
698}
699
6aa8b732
AK
700static void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
701{
6aa8b732
AK
702 ++kvm_stat.tlb_flush;
703 kvm_arch_ops->tlb_flush(vcpu);
704}
705
706static void paging_new_cr3(struct kvm_vcpu *vcpu)
707{
cea0f0e7
AK
708 mmu_free_roots(vcpu);
709 mmu_alloc_roots(vcpu);
6aa8b732 710 kvm_mmu_flush_tlb(vcpu);
cea0f0e7 711 kvm_arch_ops->set_cr3(vcpu, vcpu->mmu.root_hpa);
6aa8b732
AK
712}
713
714static void mark_pagetable_nonglobal(void *shadow_pte)
715{
716 page_header(__pa(shadow_pte))->global = 0;
717}
718
719static inline void set_pte_common(struct kvm_vcpu *vcpu,
720 u64 *shadow_pte,
721 gpa_t gaddr,
722 int dirty,
723 u64 access_bits)
724{
725 hpa_t paddr;
726
727 *shadow_pte |= access_bits << PT_SHADOW_BITS_OFFSET;
728 if (!dirty)
729 access_bits &= ~PT_WRITABLE_MASK;
cea0f0e7
AK
730 if (access_bits & PT_WRITABLE_MASK) {
731 struct kvm_mmu_page *shadow;
732
733 shadow = kvm_mmu_lookup_page(vcpu, gaddr >> PAGE_SHIFT);
734 if (shadow)
735 pgprintk("%s: found shadow page for %lx, marking ro\n",
736 __FUNCTION__, (gfn_t)(gaddr >> PAGE_SHIFT));
737 if (shadow)
738 access_bits &= ~PT_WRITABLE_MASK;
739 }
6aa8b732
AK
740
741 if (access_bits & PT_WRITABLE_MASK)
742 mark_page_dirty(vcpu->kvm, gaddr >> PAGE_SHIFT);
743
744 *shadow_pte |= access_bits;
745
746 paddr = gpa_to_hpa(vcpu, gaddr & PT64_BASE_ADDR_MASK);
747
748 if (!(*shadow_pte & PT_GLOBAL_MASK))
749 mark_pagetable_nonglobal(shadow_pte);
750
751 if (is_error_hpa(paddr)) {
752 *shadow_pte |= gaddr;
753 *shadow_pte |= PT_SHADOW_IO_MARK;
754 *shadow_pte &= ~PT_PRESENT_MASK;
755 } else {
756 *shadow_pte |= paddr;
757 page_header_update_slot(vcpu->kvm, shadow_pte, gaddr);
cd4a4e53 758 rmap_add(vcpu->kvm, shadow_pte);
6aa8b732
AK
759 }
760}
761
762static void inject_page_fault(struct kvm_vcpu *vcpu,
763 u64 addr,
764 u32 err_code)
765{
766 kvm_arch_ops->inject_page_fault(vcpu, addr, err_code);
767}
768
769static inline int fix_read_pf(u64 *shadow_ent)
770{
771 if ((*shadow_ent & PT_SHADOW_USER_MASK) &&
772 !(*shadow_ent & PT_USER_MASK)) {
773 /*
774 * If supervisor write protect is disabled, we shadow kernel
775 * pages as user pages so we can trap the write access.
776 */
777 *shadow_ent |= PT_USER_MASK;
778 *shadow_ent &= ~PT_WRITABLE_MASK;
779
780 return 1;
781
782 }
783 return 0;
784}
785
786static int may_access(u64 pte, int write, int user)
787{
788
789 if (user && !(pte & PT_USER_MASK))
790 return 0;
791 if (write && !(pte & PT_WRITABLE_MASK))
792 return 0;
793 return 1;
794}
795
796/*
797 * Remove a shadow pte.
798 */
799static void paging_inval_page(struct kvm_vcpu *vcpu, gva_t addr)
800{
801 hpa_t page_addr = vcpu->mmu.root_hpa;
802 int level = vcpu->mmu.shadow_root_level;
803
804 ++kvm_stat.invlpg;
805
806 for (; ; level--) {
807 u32 index = PT64_INDEX(addr, level);
808 u64 *table = __va(page_addr);
809
810 if (level == PT_PAGE_TABLE_LEVEL ) {
cd4a4e53 811 rmap_remove(vcpu->kvm, &table[index]);
6aa8b732
AK
812 table[index] = 0;
813 return;
814 }
815
816 if (!is_present_pte(table[index]))
817 return;
818
819 page_addr = table[index] & PT64_BASE_ADDR_MASK;
820
821 if (level == PT_DIRECTORY_LEVEL &&
822 (table[index] & PT_SHADOW_PS_MARK)) {
823 table[index] = 0;
824 release_pt_page_64(vcpu, page_addr, PT_PAGE_TABLE_LEVEL);
825
826 kvm_arch_ops->tlb_flush(vcpu);
827 return;
828 }
829 }
830}
831
832static void paging_free(struct kvm_vcpu *vcpu)
833{
834 nonpaging_free(vcpu);
835}
836
837#define PTTYPE 64
838#include "paging_tmpl.h"
839#undef PTTYPE
840
841#define PTTYPE 32
842#include "paging_tmpl.h"
843#undef PTTYPE
844
17ac10ad 845static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
6aa8b732
AK
846{
847 struct kvm_mmu *context = &vcpu->mmu;
848
849 ASSERT(is_pae(vcpu));
850 context->new_cr3 = paging_new_cr3;
851 context->page_fault = paging64_page_fault;
852 context->inval_page = paging_inval_page;
853 context->gva_to_gpa = paging64_gva_to_gpa;
854 context->free = paging_free;
17ac10ad
AK
855 context->root_level = level;
856 context->shadow_root_level = level;
857 mmu_alloc_roots(vcpu);
6aa8b732
AK
858 ASSERT(VALID_PAGE(context->root_hpa));
859 kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
860 (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
861 return 0;
862}
863
17ac10ad
AK
864static int paging64_init_context(struct kvm_vcpu *vcpu)
865{
866 return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
867}
868
6aa8b732
AK
869static int paging32_init_context(struct kvm_vcpu *vcpu)
870{
871 struct kvm_mmu *context = &vcpu->mmu;
872
873 context->new_cr3 = paging_new_cr3;
874 context->page_fault = paging32_page_fault;
875 context->inval_page = paging_inval_page;
876 context->gva_to_gpa = paging32_gva_to_gpa;
877 context->free = paging_free;
878 context->root_level = PT32_ROOT_LEVEL;
879 context->shadow_root_level = PT32E_ROOT_LEVEL;
17ac10ad 880 mmu_alloc_roots(vcpu);
6aa8b732
AK
881 ASSERT(VALID_PAGE(context->root_hpa));
882 kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
883 (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
884 return 0;
885}
886
887static int paging32E_init_context(struct kvm_vcpu *vcpu)
888{
17ac10ad 889 return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
6aa8b732
AK
890}
891
892static int init_kvm_mmu(struct kvm_vcpu *vcpu)
893{
894 ASSERT(vcpu);
895 ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
896
897 if (!is_paging(vcpu))
898 return nonpaging_init_context(vcpu);
a9058ecd 899 else if (is_long_mode(vcpu))
6aa8b732
AK
900 return paging64_init_context(vcpu);
901 else if (is_pae(vcpu))
902 return paging32E_init_context(vcpu);
903 else
904 return paging32_init_context(vcpu);
905}
906
907static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
908{
909 ASSERT(vcpu);
910 if (VALID_PAGE(vcpu->mmu.root_hpa)) {
911 vcpu->mmu.free(vcpu);
912 vcpu->mmu.root_hpa = INVALID_PAGE;
913 }
914}
915
916int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
917{
918 destroy_kvm_mmu(vcpu);
919 return init_kvm_mmu(vcpu);
920}
921
922static void free_mmu_pages(struct kvm_vcpu *vcpu)
923{
924 while (!list_empty(&vcpu->free_pages)) {
925 struct kvm_mmu_page *page;
926
927 page = list_entry(vcpu->free_pages.next,
928 struct kvm_mmu_page, link);
929 list_del(&page->link);
930 __free_page(pfn_to_page(page->page_hpa >> PAGE_SHIFT));
931 page->page_hpa = INVALID_PAGE;
932 }
17ac10ad 933 free_page((unsigned long)vcpu->mmu.pae_root);
6aa8b732
AK
934}
935
936static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
937{
17ac10ad 938 struct page *page;
6aa8b732
AK
939 int i;
940
941 ASSERT(vcpu);
942
943 for (i = 0; i < KVM_NUM_MMU_PAGES; i++) {
6aa8b732
AK
944 struct kvm_mmu_page *page_header = &vcpu->page_header_buf[i];
945
946 INIT_LIST_HEAD(&page_header->link);
17ac10ad 947 if ((page = alloc_page(GFP_KERNEL)) == NULL)
6aa8b732
AK
948 goto error_1;
949 page->private = (unsigned long)page_header;
950 page_header->page_hpa = (hpa_t)page_to_pfn(page) << PAGE_SHIFT;
951 memset(__va(page_header->page_hpa), 0, PAGE_SIZE);
952 list_add(&page_header->link, &vcpu->free_pages);
953 }
17ac10ad
AK
954
955 /*
956 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
957 * Therefore we need to allocate shadow page tables in the first
958 * 4GB of memory, which happens to fit the DMA32 zone.
959 */
960 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
961 if (!page)
962 goto error_1;
963 vcpu->mmu.pae_root = page_address(page);
964 for (i = 0; i < 4; ++i)
965 vcpu->mmu.pae_root[i] = INVALID_PAGE;
966
6aa8b732
AK
967 return 0;
968
969error_1:
970 free_mmu_pages(vcpu);
971 return -ENOMEM;
972}
973
8018c27b 974int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 975{
6aa8b732
AK
976 ASSERT(vcpu);
977 ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
978 ASSERT(list_empty(&vcpu->free_pages));
979
8018c27b
IM
980 return alloc_mmu_pages(vcpu);
981}
6aa8b732 982
8018c27b
IM
983int kvm_mmu_setup(struct kvm_vcpu *vcpu)
984{
985 ASSERT(vcpu);
986 ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
987 ASSERT(!list_empty(&vcpu->free_pages));
2c264957 988
8018c27b 989 return init_kvm_mmu(vcpu);
6aa8b732
AK
990}
991
992void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
993{
994 ASSERT(vcpu);
995
996 destroy_kvm_mmu(vcpu);
997 free_mmu_pages(vcpu);
998}
999
1000void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
1001{
1002 struct kvm_mmu_page *page;
1003
1004 list_for_each_entry(page, &kvm->active_mmu_pages, link) {
1005 int i;
1006 u64 *pt;
1007
1008 if (!test_bit(slot, &page->slot_bitmap))
1009 continue;
1010
1011 pt = __va(page->page_hpa);
1012 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1013 /* avoid RMW */
cd4a4e53
AK
1014 if (pt[i] & PT_WRITABLE_MASK) {
1015 rmap_remove(kvm, &pt[i]);
6aa8b732 1016 pt[i] &= ~PT_WRITABLE_MASK;
cd4a4e53 1017 }
6aa8b732
AK
1018 }
1019}