irqdomain/treewide: Free firmware node after domain removal
[linux-block.git] / drivers / irqchip / irq-gic-v3-its.c
CommitLineData
caab277b 1// SPDX-License-Identifier: GPL-2.0-only
cc2d3216 2/*
d7276b80 3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
cc2d3216 4 * Author: Marc Zyngier <marc.zyngier@arm.com>
cc2d3216
MZ
5 */
6
3f010cf1 7#include <linux/acpi.h>
8d3554b8 8#include <linux/acpi_iort.h>
ffedbf0c 9#include <linux/bitfield.h>
cc2d3216
MZ
10#include <linux/bitmap.h>
11#include <linux/cpu.h>
c6e2ccb6 12#include <linux/crash_dump.h>
cc2d3216 13#include <linux/delay.h>
44bb7e24 14#include <linux/dma-iommu.h>
3fb68fae 15#include <linux/efi.h>
cc2d3216 16#include <linux/interrupt.h>
96806229 17#include <linux/iopoll.h>
3f010cf1 18#include <linux/irqdomain.h>
880cb3cd 19#include <linux/list.h>
cc2d3216 20#include <linux/log2.h>
5e2c9f9a 21#include <linux/memblock.h>
cc2d3216
MZ
22#include <linux/mm.h>
23#include <linux/msi.h>
24#include <linux/of.h>
25#include <linux/of_address.h>
26#include <linux/of_irq.h>
27#include <linux/of_pci.h>
28#include <linux/of_platform.h>
29#include <linux/percpu.h>
30#include <linux/slab.h>
dba0bc7b 31#include <linux/syscore_ops.h>
cc2d3216 32
41a83e06 33#include <linux/irqchip.h>
cc2d3216 34#include <linux/irqchip/arm-gic-v3.h>
c808eea8 35#include <linux/irqchip/arm-gic-v4.h>
cc2d3216 36
cc2d3216
MZ
37#include <asm/cputype.h>
38#include <asm/exception.h>
39
67510cca
RR
40#include "irq-gic-common.h"
41
94100970
RR
42#define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0)
43#define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1)
fbf8f40e 44#define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2)
dba0bc7b 45#define ITS_FLAGS_SAVE_SUSPEND_STATE (1ULL << 3)
cc2d3216 46
c48ed51c 47#define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0)
c440a9d9 48#define RDIST_FLAGS_RD_TABLES_PREALLOCATED (1 << 1)
c48ed51c 49
a13b0404
MZ
50static u32 lpi_id_bits;
51
52/*
53 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
54 * deal with (one configuration byte per interrupt). PENDBASE has to
55 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
56 */
57#define LPI_NRBITS lpi_id_bits
58#define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K)
59#define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
60
2130b789 61#define LPI_PROP_DEFAULT_PRIO GICD_INT_DEF_PRI
a13b0404 62
cc2d3216
MZ
63/*
64 * Collection structure - just an ID, and a redistributor address to
65 * ping. We use one per CPU as a bag of interrupts assigned to this
66 * CPU.
67 */
68struct its_collection {
69 u64 target_address;
70 u16 col_id;
71};
72
466b7d16 73/*
9347359a
SD
74 * The ITS_BASER structure - contains memory information, cached
75 * value of BASER register configuration and ITS page size.
466b7d16
SD
76 */
77struct its_baser {
78 void *base;
79 u64 val;
80 u32 order;
9347359a 81 u32 psz;
466b7d16
SD
82};
83
558b0165
AB
84struct its_device;
85
cc2d3216
MZ
86/*
87 * The ITS structure - contains most of the infrastructure, with the
841514ab
MZ
88 * top-level MSI domain, the command queue, the collections, and the
89 * list of devices writing to it.
9791ec7d
MZ
90 *
91 * dev_alloc_lock has to be taken for device allocations, while the
92 * spinlock must be taken to parse data structures such as the device
93 * list.
cc2d3216
MZ
94 */
95struct its_node {
96 raw_spinlock_t lock;
9791ec7d 97 struct mutex dev_alloc_lock;
cc2d3216 98 struct list_head entry;
cc2d3216 99 void __iomem *base;
5e46a484 100 void __iomem *sgir_base;
db40f0a7 101 phys_addr_t phys_base;
cc2d3216
MZ
102 struct its_cmd_block *cmd_base;
103 struct its_cmd_block *cmd_write;
466b7d16 104 struct its_baser tables[GITS_BASER_NR_REGS];
cc2d3216 105 struct its_collection *collections;
558b0165
AB
106 struct fwnode_handle *fwnode_handle;
107 u64 (*get_msi_base)(struct its_device *its_dev);
0dd57fed 108 u64 typer;
dba0bc7b
DB
109 u64 cbaser_save;
110 u32 ctlr_save;
5e516846 111 u32 mpidr;
cc2d3216
MZ
112 struct list_head its_device_list;
113 u64 flags;
debf6d02 114 unsigned long list_nr;
fbf8f40e 115 int numa_node;
558b0165
AB
116 unsigned int msi_domain_flags;
117 u32 pre_its_base; /* for Socionext Synquacer */
5c9a882e 118 int vlpi_redist_offset;
cc2d3216
MZ
119};
120
0dd57fed 121#define is_v4(its) (!!((its)->typer & GITS_TYPER_VLPIS))
5e516846 122#define is_v4_1(its) (!!((its)->typer & GITS_TYPER_VMAPP))
576a8342 123#define device_ids(its) (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
0dd57fed 124
cc2d3216
MZ
125#define ITS_ITT_ALIGN SZ_256
126
32bd44dc 127/* The maximum number of VPEID bits supported by VLPI commands */
f2d83409
MZ
128#define ITS_MAX_VPEID_BITS \
129 ({ \
130 int nvpeid = 16; \
131 if (gic_rdists->has_rvpeid && \
132 gic_rdists->gicd_typer2 & GICD_TYPER2_VIL) \
133 nvpeid = 1 + (gic_rdists->gicd_typer2 & \
134 GICD_TYPER2_VID); \
135 \
136 nvpeid; \
137 })
32bd44dc
SD
138#define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS))
139
2eca0d6c
SD
140/* Convert page order to size in bytes */
141#define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o))
142
591e5bec
MZ
143struct event_lpi_map {
144 unsigned long *lpi_map;
145 u16 *col_map;
146 irq_hw_number_t lpi_base;
147 int nr_lpis;
11635fa2 148 raw_spinlock_t vlpi_lock;
d011e4e6
MZ
149 struct its_vm *vm;
150 struct its_vlpi_map *vlpi_maps;
151 int nr_vlpis;
591e5bec
MZ
152};
153
cc2d3216 154/*
d011e4e6
MZ
155 * The ITS view of a device - belongs to an ITS, owns an interrupt
156 * translation table, and a list of interrupts. If it some of its
157 * LPIs are injected into a guest (GICv4), the event_map.vm field
158 * indicates which one.
cc2d3216
MZ
159 */
160struct its_device {
161 struct list_head entry;
162 struct its_node *its;
591e5bec 163 struct event_lpi_map event_map;
cc2d3216 164 void *itt;
cc2d3216
MZ
165 u32 nr_ites;
166 u32 device_id;
9791ec7d 167 bool shared;
cc2d3216
MZ
168};
169
20b3d54e
MZ
170static struct {
171 raw_spinlock_t lock;
172 struct its_device *dev;
173 struct its_vpe **vpes;
174 int next_victim;
175} vpe_proxy;
176
2f13ff1d
MZ
177struct cpu_lpi_count {
178 atomic_t managed;
179 atomic_t unmanaged;
180};
181
182static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
183
1ac19ca6 184static LIST_HEAD(its_nodes);
a8db7456 185static DEFINE_RAW_SPINLOCK(its_lock);
1ac19ca6 186static struct rdists *gic_rdists;
db40f0a7 187static struct irq_domain *its_parent;
1ac19ca6 188
3dfa576b 189static unsigned long its_list_map;
3171a47a
MZ
190static u16 vmovp_seq_num;
191static DEFINE_RAW_SPINLOCK(vmovp_lock);
192
7d75bbb4 193static DEFINE_IDA(its_vpeid_ida);
3dfa576b 194
1ac19ca6 195#define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist))
11e37d35 196#define gic_data_rdist_cpu(cpu) (per_cpu_ptr(gic_rdists->rdist, cpu))
1ac19ca6 197#define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base)
e643d803 198#define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K)
1ac19ca6 199
009384b3
MZ
200/*
201 * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
202 * always have vSGIs mapped.
203 */
204static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
205{
206 return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
207}
208
84243125
ZY
209static u16 get_its_list(struct its_vm *vm)
210{
211 struct its_node *its;
212 unsigned long its_list = 0;
213
214 list_for_each_entry(its, &its_nodes, entry) {
0dd57fed 215 if (!is_v4(its))
84243125
ZY
216 continue;
217
009384b3 218 if (require_its_list_vmovp(vm, its))
84243125
ZY
219 __set_bit(its->list_nr, &its_list);
220 }
221
222 return (u16)its_list;
223}
224
425c09be
MZ
225static inline u32 its_get_event_id(struct irq_data *d)
226{
227 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
228 return d->hwirq - its_dev->event_map.lpi_base;
229}
230
591e5bec
MZ
231static struct its_collection *dev_event_to_col(struct its_device *its_dev,
232 u32 event)
233{
234 struct its_node *its = its_dev->its;
235
236 return its->collections + its_dev->event_map.col_map[event];
237}
238
c1d4d5cd
MZ
239static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
240 u32 event)
241{
242 if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
243 return NULL;
244
245 return &its_dev->event_map.vlpi_maps[event];
246}
247
f4a81f5a
MZ
248static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
249{
250 if (irqd_is_forwarded_to_vcpu(d)) {
251 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
252 u32 event = its_get_event_id(d);
253
254 return dev_event_to_vlpi_map(its_dev, event);
255 }
256
257 return NULL;
258}
259
f3a05921
MZ
260static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
261{
262 raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
263 return vpe->col_idx;
264}
265
266static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
267{
268 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
269}
270
271static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
425c09be 272{
f4a81f5a 273 struct its_vlpi_map *map = get_vlpi_map(d);
f3a05921 274 int cpu;
f4a81f5a 275
f3a05921
MZ
276 if (map) {
277 cpu = vpe_to_cpuid_lock(map->vpe, flags);
278 } else {
279 /* Physical LPIs are already locked via the irq_desc lock */
280 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
281 cpu = its_dev->event_map.col_map[its_get_event_id(d)];
282 /* Keep GCC quiet... */
283 *flags = 0;
284 }
425c09be 285
f3a05921
MZ
286 return cpu;
287}
288
289static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
425c09be 290{
f4a81f5a
MZ
291 struct its_vlpi_map *map = get_vlpi_map(d);
292
293 if (map)
f3a05921 294 vpe_to_cpuid_unlock(map->vpe, flags);
425c09be
MZ
295}
296
83559b47
MZ
297static struct its_collection *valid_col(struct its_collection *col)
298{
20faba84 299 if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
83559b47
MZ
300 return NULL;
301
302 return col;
303}
304
205e065d
MZ
305static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
306{
307 if (valid_col(its->collections + vpe->col_idx))
308 return vpe;
309
310 return NULL;
311}
312
cc2d3216
MZ
313/*
314 * ITS command descriptors - parameters to be encoded in a command
315 * block.
316 */
317struct its_cmd_desc {
318 union {
319 struct {
320 struct its_device *dev;
321 u32 event_id;
322 } its_inv_cmd;
323
8d85dced
MZ
324 struct {
325 struct its_device *dev;
326 u32 event_id;
327 } its_clear_cmd;
328
cc2d3216
MZ
329 struct {
330 struct its_device *dev;
331 u32 event_id;
332 } its_int_cmd;
333
334 struct {
335 struct its_device *dev;
336 int valid;
337 } its_mapd_cmd;
338
339 struct {
340 struct its_collection *col;
341 int valid;
342 } its_mapc_cmd;
343
344 struct {
345 struct its_device *dev;
346 u32 phys_id;
347 u32 event_id;
6a25ad3a 348 } its_mapti_cmd;
cc2d3216
MZ
349
350 struct {
351 struct its_device *dev;
352 struct its_collection *col;
591e5bec 353 u32 event_id;
cc2d3216
MZ
354 } its_movi_cmd;
355
356 struct {
357 struct its_device *dev;
358 u32 event_id;
359 } its_discard_cmd;
360
361 struct {
362 struct its_collection *col;
363 } its_invall_cmd;
d011e4e6 364
eb78192b
MZ
365 struct {
366 struct its_vpe *vpe;
367 } its_vinvall_cmd;
368
369 struct {
370 struct its_vpe *vpe;
371 struct its_collection *col;
372 bool valid;
373 } its_vmapp_cmd;
374
d011e4e6
MZ
375 struct {
376 struct its_vpe *vpe;
377 struct its_device *dev;
378 u32 virt_id;
379 u32 event_id;
380 bool db_enabled;
381 } its_vmapti_cmd;
382
383 struct {
384 struct its_vpe *vpe;
385 struct its_device *dev;
386 u32 event_id;
387 bool db_enabled;
388 } its_vmovi_cmd;
3171a47a
MZ
389
390 struct {
391 struct its_vpe *vpe;
392 struct its_collection *col;
393 u16 seq_num;
394 u16 its_list;
395 } its_vmovp_cmd;
d97c97ba
MZ
396
397 struct {
398 struct its_vpe *vpe;
399 } its_invdb_cmd;
e252cf8a
MZ
400
401 struct {
402 struct its_vpe *vpe;
403 u8 sgi;
404 u8 priority;
405 bool enable;
406 bool group;
407 bool clear;
408 } its_vsgi_cmd;
cc2d3216
MZ
409 };
410};
411
412/*
413 * The ITS command block, which is what the ITS actually parses.
414 */
415struct its_cmd_block {
2bbdfcc5
BDC
416 union {
417 u64 raw_cmd[4];
418 __le64 raw_cmd_le[4];
419 };
cc2d3216
MZ
420};
421
422#define ITS_CMD_QUEUE_SZ SZ_64K
423#define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
424
67047f90
MZ
425typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
426 struct its_cmd_block *,
cc2d3216
MZ
427 struct its_cmd_desc *);
428
67047f90
MZ
429typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
430 struct its_cmd_block *,
d011e4e6
MZ
431 struct its_cmd_desc *);
432
4d36f136
MZ
433static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
434{
435 u64 mask = GENMASK_ULL(h, l);
436 *raw_cmd &= ~mask;
437 *raw_cmd |= (val << l) & mask;
438}
439
cc2d3216
MZ
440static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
441{
4d36f136 442 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
cc2d3216
MZ
443}
444
445static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
446{
4d36f136 447 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
cc2d3216
MZ
448}
449
450static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
451{
4d36f136 452 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
cc2d3216
MZ
453}
454
455static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
456{
4d36f136 457 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
cc2d3216
MZ
458}
459
460static void its_encode_size(struct its_cmd_block *cmd, u8 size)
461{
4d36f136 462 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
cc2d3216
MZ
463}
464
465static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
466{
30ae9610 467 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
cc2d3216
MZ
468}
469
470static void its_encode_valid(struct its_cmd_block *cmd, int valid)
471{
4d36f136 472 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
cc2d3216
MZ
473}
474
475static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
476{
30ae9610 477 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
cc2d3216
MZ
478}
479
480static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
481{
4d36f136 482 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
cc2d3216
MZ
483}
484
d011e4e6
MZ
485static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
486{
487 its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
488}
489
490static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
491{
492 its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
493}
494
495static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
496{
497 its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
498}
499
500static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
501{
502 its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
503}
504
3171a47a
MZ
505static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
506{
507 its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
508}
509
510static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
511{
512 its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
513}
514
eb78192b
MZ
515static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
516{
30ae9610 517 its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
eb78192b
MZ
518}
519
520static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
521{
522 its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
523}
524
64edfaa9
MZ
525static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
526{
527 its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
528}
529
530static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
531{
532 its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
533}
534
535static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
536{
537 its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
538}
539
540static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
541 u32 vpe_db_lpi)
542{
543 its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
544}
545
dd3f050a
MZ
546static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
547 u32 vpe_db_lpi)
548{
549 its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
550}
551
552static void its_encode_db(struct its_cmd_block *cmd, bool db)
553{
554 its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
555}
556
e252cf8a
MZ
557static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
558{
559 its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
560}
561
562static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
563{
564 its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
565}
566
567static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
568{
569 its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
570}
571
572static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
573{
574 its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
575}
576
577static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
578{
579 its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
580}
581
cc2d3216
MZ
582static inline void its_fixup_cmd(struct its_cmd_block *cmd)
583{
584 /* Let's fixup BE commands */
2bbdfcc5
BDC
585 cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
586 cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
587 cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
588 cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
cc2d3216
MZ
589}
590
67047f90
MZ
591static struct its_collection *its_build_mapd_cmd(struct its_node *its,
592 struct its_cmd_block *cmd,
cc2d3216
MZ
593 struct its_cmd_desc *desc)
594{
595 unsigned long itt_addr;
c8481267 596 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
cc2d3216
MZ
597
598 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
599 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
600
601 its_encode_cmd(cmd, GITS_CMD_MAPD);
602 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
603 its_encode_size(cmd, size - 1);
604 its_encode_itt(cmd, itt_addr);
605 its_encode_valid(cmd, desc->its_mapd_cmd.valid);
606
607 its_fixup_cmd(cmd);
608
591e5bec 609 return NULL;
cc2d3216
MZ
610}
611
67047f90
MZ
612static struct its_collection *its_build_mapc_cmd(struct its_node *its,
613 struct its_cmd_block *cmd,
cc2d3216
MZ
614 struct its_cmd_desc *desc)
615{
616 its_encode_cmd(cmd, GITS_CMD_MAPC);
617 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
618 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
619 its_encode_valid(cmd, desc->its_mapc_cmd.valid);
620
621 its_fixup_cmd(cmd);
622
623 return desc->its_mapc_cmd.col;
624}
625
67047f90
MZ
626static struct its_collection *its_build_mapti_cmd(struct its_node *its,
627 struct its_cmd_block *cmd,
cc2d3216
MZ
628 struct its_cmd_desc *desc)
629{
591e5bec
MZ
630 struct its_collection *col;
631
6a25ad3a
MZ
632 col = dev_event_to_col(desc->its_mapti_cmd.dev,
633 desc->its_mapti_cmd.event_id);
591e5bec 634
6a25ad3a
MZ
635 its_encode_cmd(cmd, GITS_CMD_MAPTI);
636 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
637 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
638 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
591e5bec 639 its_encode_collection(cmd, col->col_id);
cc2d3216
MZ
640
641 its_fixup_cmd(cmd);
642
83559b47 643 return valid_col(col);
cc2d3216
MZ
644}
645
67047f90
MZ
646static struct its_collection *its_build_movi_cmd(struct its_node *its,
647 struct its_cmd_block *cmd,
cc2d3216
MZ
648 struct its_cmd_desc *desc)
649{
591e5bec
MZ
650 struct its_collection *col;
651
652 col = dev_event_to_col(desc->its_movi_cmd.dev,
653 desc->its_movi_cmd.event_id);
654
cc2d3216
MZ
655 its_encode_cmd(cmd, GITS_CMD_MOVI);
656 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
591e5bec 657 its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
cc2d3216
MZ
658 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
659
660 its_fixup_cmd(cmd);
661
83559b47 662 return valid_col(col);
cc2d3216
MZ
663}
664
67047f90
MZ
665static struct its_collection *its_build_discard_cmd(struct its_node *its,
666 struct its_cmd_block *cmd,
cc2d3216
MZ
667 struct its_cmd_desc *desc)
668{
591e5bec
MZ
669 struct its_collection *col;
670
671 col = dev_event_to_col(desc->its_discard_cmd.dev,
672 desc->its_discard_cmd.event_id);
673
cc2d3216
MZ
674 its_encode_cmd(cmd, GITS_CMD_DISCARD);
675 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
676 its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
677
678 its_fixup_cmd(cmd);
679
83559b47 680 return valid_col(col);
cc2d3216
MZ
681}
682
67047f90
MZ
683static struct its_collection *its_build_inv_cmd(struct its_node *its,
684 struct its_cmd_block *cmd,
cc2d3216
MZ
685 struct its_cmd_desc *desc)
686{
591e5bec
MZ
687 struct its_collection *col;
688
689 col = dev_event_to_col(desc->its_inv_cmd.dev,
690 desc->its_inv_cmd.event_id);
691
cc2d3216
MZ
692 its_encode_cmd(cmd, GITS_CMD_INV);
693 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
694 its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
695
696 its_fixup_cmd(cmd);
697
83559b47 698 return valid_col(col);
cc2d3216
MZ
699}
700
67047f90
MZ
701static struct its_collection *its_build_int_cmd(struct its_node *its,
702 struct its_cmd_block *cmd,
8d85dced
MZ
703 struct its_cmd_desc *desc)
704{
705 struct its_collection *col;
706
707 col = dev_event_to_col(desc->its_int_cmd.dev,
708 desc->its_int_cmd.event_id);
709
710 its_encode_cmd(cmd, GITS_CMD_INT);
711 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
712 its_encode_event_id(cmd, desc->its_int_cmd.event_id);
713
714 its_fixup_cmd(cmd);
715
83559b47 716 return valid_col(col);
8d85dced
MZ
717}
718
67047f90
MZ
719static struct its_collection *its_build_clear_cmd(struct its_node *its,
720 struct its_cmd_block *cmd,
8d85dced
MZ
721 struct its_cmd_desc *desc)
722{
723 struct its_collection *col;
724
725 col = dev_event_to_col(desc->its_clear_cmd.dev,
726 desc->its_clear_cmd.event_id);
727
728 its_encode_cmd(cmd, GITS_CMD_CLEAR);
729 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
730 its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
731
732 its_fixup_cmd(cmd);
733
83559b47 734 return valid_col(col);
8d85dced
MZ
735}
736
67047f90
MZ
737static struct its_collection *its_build_invall_cmd(struct its_node *its,
738 struct its_cmd_block *cmd,
cc2d3216
MZ
739 struct its_cmd_desc *desc)
740{
741 its_encode_cmd(cmd, GITS_CMD_INVALL);
10794522 742 its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
cc2d3216
MZ
743
744 its_fixup_cmd(cmd);
745
746 return NULL;
747}
748
67047f90
MZ
749static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
750 struct its_cmd_block *cmd,
eb78192b
MZ
751 struct its_cmd_desc *desc)
752{
753 its_encode_cmd(cmd, GITS_CMD_VINVALL);
754 its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
755
756 its_fixup_cmd(cmd);
757
205e065d 758 return valid_vpe(its, desc->its_vinvall_cmd.vpe);
eb78192b
MZ
759}
760
67047f90
MZ
761static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
762 struct its_cmd_block *cmd,
eb78192b
MZ
763 struct its_cmd_desc *desc)
764{
64edfaa9 765 unsigned long vpt_addr, vconf_addr;
5c9a882e 766 u64 target;
64edfaa9 767 bool alloc;
eb78192b
MZ
768
769 its_encode_cmd(cmd, GITS_CMD_VMAPP);
770 its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
771 its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
64edfaa9
MZ
772
773 if (!desc->its_vmapp_cmd.valid) {
774 if (is_v4_1(its)) {
775 alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
776 its_encode_alloc(cmd, alloc);
777 }
778
779 goto out;
780 }
781
782 vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
783 target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
784
5c9a882e 785 its_encode_target(cmd, target);
eb78192b
MZ
786 its_encode_vpt_addr(cmd, vpt_addr);
787 its_encode_vpt_size(cmd, LPI_NRBITS - 1);
788
64edfaa9
MZ
789 if (!is_v4_1(its))
790 goto out;
791
792 vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
793
794 alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
795
796 its_encode_alloc(cmd, alloc);
797
798 /* We can only signal PTZ when alloc==1. Why do we have two bits? */
799 its_encode_ptz(cmd, alloc);
800 its_encode_vconf_addr(cmd, vconf_addr);
801 its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
802
803out:
eb78192b
MZ
804 its_fixup_cmd(cmd);
805
205e065d 806 return valid_vpe(its, desc->its_vmapp_cmd.vpe);
eb78192b
MZ
807}
808
67047f90
MZ
809static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
810 struct its_cmd_block *cmd,
d011e4e6
MZ
811 struct its_cmd_desc *desc)
812{
813 u32 db;
814
3858d4df 815 if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
d011e4e6
MZ
816 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
817 else
818 db = 1023;
819
820 its_encode_cmd(cmd, GITS_CMD_VMAPTI);
821 its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
822 its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
823 its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
824 its_encode_db_phys_id(cmd, db);
825 its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
826
827 its_fixup_cmd(cmd);
828
205e065d 829 return valid_vpe(its, desc->its_vmapti_cmd.vpe);
d011e4e6
MZ
830}
831
67047f90
MZ
832static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
833 struct its_cmd_block *cmd,
d011e4e6
MZ
834 struct its_cmd_desc *desc)
835{
836 u32 db;
837
3858d4df 838 if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
d011e4e6
MZ
839 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
840 else
841 db = 1023;
842
843 its_encode_cmd(cmd, GITS_CMD_VMOVI);
844 its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
845 its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
846 its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
847 its_encode_db_phys_id(cmd, db);
848 its_encode_db_valid(cmd, true);
849
850 its_fixup_cmd(cmd);
851
205e065d 852 return valid_vpe(its, desc->its_vmovi_cmd.vpe);
d011e4e6
MZ
853}
854
67047f90
MZ
855static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
856 struct its_cmd_block *cmd,
3171a47a
MZ
857 struct its_cmd_desc *desc)
858{
5c9a882e
MZ
859 u64 target;
860
861 target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
3171a47a
MZ
862 its_encode_cmd(cmd, GITS_CMD_VMOVP);
863 its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
864 its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
865 its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
5c9a882e 866 its_encode_target(cmd, target);
3171a47a 867
dd3f050a
MZ
868 if (is_v4_1(its)) {
869 its_encode_db(cmd, true);
870 its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
871 }
872
3171a47a
MZ
873 its_fixup_cmd(cmd);
874
205e065d 875 return valid_vpe(its, desc->its_vmovp_cmd.vpe);
3171a47a
MZ
876}
877
28614696
MZ
878static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
879 struct its_cmd_block *cmd,
880 struct its_cmd_desc *desc)
881{
882 struct its_vlpi_map *map;
883
884 map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
885 desc->its_inv_cmd.event_id);
886
887 its_encode_cmd(cmd, GITS_CMD_INV);
888 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
889 its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
890
891 its_fixup_cmd(cmd);
892
893 return valid_vpe(its, map->vpe);
894}
895
ed0e4aa9
MZ
896static struct its_vpe *its_build_vint_cmd(struct its_node *its,
897 struct its_cmd_block *cmd,
898 struct its_cmd_desc *desc)
899{
900 struct its_vlpi_map *map;
901
902 map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
903 desc->its_int_cmd.event_id);
904
905 its_encode_cmd(cmd, GITS_CMD_INT);
906 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
907 its_encode_event_id(cmd, desc->its_int_cmd.event_id);
908
909 its_fixup_cmd(cmd);
910
911 return valid_vpe(its, map->vpe);
912}
913
914static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
915 struct its_cmd_block *cmd,
916 struct its_cmd_desc *desc)
917{
918 struct its_vlpi_map *map;
919
920 map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
921 desc->its_clear_cmd.event_id);
922
923 its_encode_cmd(cmd, GITS_CMD_CLEAR);
924 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
925 its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
926
927 its_fixup_cmd(cmd);
928
929 return valid_vpe(its, map->vpe);
930}
931
d97c97ba
MZ
932static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
933 struct its_cmd_block *cmd,
934 struct its_cmd_desc *desc)
935{
936 if (WARN_ON(!is_v4_1(its)))
937 return NULL;
938
939 its_encode_cmd(cmd, GITS_CMD_INVDB);
940 its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
941
942 its_fixup_cmd(cmd);
943
944 return valid_vpe(its, desc->its_invdb_cmd.vpe);
945}
946
e252cf8a
MZ
947static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
948 struct its_cmd_block *cmd,
949 struct its_cmd_desc *desc)
950{
951 if (WARN_ON(!is_v4_1(its)))
952 return NULL;
953
954 its_encode_cmd(cmd, GITS_CMD_VSGI);
955 its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
956 its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
957 its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
958 its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
959 its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
960 its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
961
962 its_fixup_cmd(cmd);
963
964 return valid_vpe(its, desc->its_vsgi_cmd.vpe);
965}
966
cc2d3216
MZ
967static u64 its_cmd_ptr_to_offset(struct its_node *its,
968 struct its_cmd_block *ptr)
969{
970 return (ptr - its->cmd_base) * sizeof(*ptr);
971}
972
973static int its_queue_full(struct its_node *its)
974{
975 int widx;
976 int ridx;
977
978 widx = its->cmd_write - its->cmd_base;
979 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
980
981 /* This is incredibly unlikely to happen, unless the ITS locks up. */
982 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
983 return 1;
984
985 return 0;
986}
987
988static struct its_cmd_block *its_allocate_entry(struct its_node *its)
989{
990 struct its_cmd_block *cmd;
991 u32 count = 1000000; /* 1s! */
992
993 while (its_queue_full(its)) {
994 count--;
995 if (!count) {
996 pr_err_ratelimited("ITS queue not draining\n");
997 return NULL;
998 }
999 cpu_relax();
1000 udelay(1);
1001 }
1002
1003 cmd = its->cmd_write++;
1004
1005 /* Handle queue wrapping */
1006 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1007 its->cmd_write = its->cmd_base;
1008
34d677a9
MZ
1009 /* Clear command */
1010 cmd->raw_cmd[0] = 0;
1011 cmd->raw_cmd[1] = 0;
1012 cmd->raw_cmd[2] = 0;
1013 cmd->raw_cmd[3] = 0;
1014
cc2d3216
MZ
1015 return cmd;
1016}
1017
1018static struct its_cmd_block *its_post_commands(struct its_node *its)
1019{
1020 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1021
1022 writel_relaxed(wr, its->base + GITS_CWRITER);
1023
1024 return its->cmd_write;
1025}
1026
1027static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1028{
1029 /*
1030 * Make sure the commands written to memory are observable by
1031 * the ITS.
1032 */
1033 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
328191c0 1034 gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
cc2d3216
MZ
1035 else
1036 dsb(ishst);
1037}
1038
a19b462f 1039static int its_wait_for_range_completion(struct its_node *its,
a050fa54 1040 u64 prev_idx,
a19b462f 1041 struct its_cmd_block *to)
cc2d3216 1042{
a050fa54 1043 u64 rd_idx, to_idx, linear_idx;
cc2d3216
MZ
1044 u32 count = 1000000; /* 1s! */
1045
a050fa54 1046 /* Linearize to_idx if the command set has wrapped around */
cc2d3216 1047 to_idx = its_cmd_ptr_to_offset(its, to);
a050fa54
HG
1048 if (to_idx < prev_idx)
1049 to_idx += ITS_CMD_QUEUE_SZ;
1050
1051 linear_idx = prev_idx;
cc2d3216
MZ
1052
1053 while (1) {
a050fa54
HG
1054 s64 delta;
1055
cc2d3216 1056 rd_idx = readl_relaxed(its->base + GITS_CREADR);
9bdd8b1c 1057
a050fa54
HG
1058 /*
1059 * Compute the read pointer progress, taking the
1060 * potential wrap-around into account.
1061 */
1062 delta = rd_idx - prev_idx;
1063 if (rd_idx < prev_idx)
1064 delta += ITS_CMD_QUEUE_SZ;
9bdd8b1c 1065
a050fa54
HG
1066 linear_idx += delta;
1067 if (linear_idx >= to_idx)
cc2d3216
MZ
1068 break;
1069
1070 count--;
1071 if (!count) {
a050fa54
HG
1072 pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1073 to_idx, linear_idx);
a19b462f 1074 return -1;
cc2d3216 1075 }
a050fa54 1076 prev_idx = rd_idx;
cc2d3216
MZ
1077 cpu_relax();
1078 udelay(1);
1079 }
a19b462f
MZ
1080
1081 return 0;
cc2d3216
MZ
1082}
1083
e4f9094b
MZ
1084/* Warning, macro hell follows */
1085#define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \
1086void name(struct its_node *its, \
1087 buildtype builder, \
1088 struct its_cmd_desc *desc) \
1089{ \
1090 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \
1091 synctype *sync_obj; \
1092 unsigned long flags; \
a050fa54 1093 u64 rd_idx; \
e4f9094b
MZ
1094 \
1095 raw_spin_lock_irqsave(&its->lock, flags); \
1096 \
1097 cmd = its_allocate_entry(its); \
1098 if (!cmd) { /* We're soooooo screewed... */ \
1099 raw_spin_unlock_irqrestore(&its->lock, flags); \
1100 return; \
1101 } \
67047f90 1102 sync_obj = builder(its, cmd, desc); \
e4f9094b
MZ
1103 its_flush_cmd(its, cmd); \
1104 \
1105 if (sync_obj) { \
1106 sync_cmd = its_allocate_entry(its); \
1107 if (!sync_cmd) \
1108 goto post; \
1109 \
67047f90 1110 buildfn(its, sync_cmd, sync_obj); \
e4f9094b
MZ
1111 its_flush_cmd(its, sync_cmd); \
1112 } \
1113 \
1114post: \
a050fa54 1115 rd_idx = readl_relaxed(its->base + GITS_CREADR); \
e4f9094b
MZ
1116 next_cmd = its_post_commands(its); \
1117 raw_spin_unlock_irqrestore(&its->lock, flags); \
1118 \
a050fa54 1119 if (its_wait_for_range_completion(its, rd_idx, next_cmd)) \
a19b462f 1120 pr_err_ratelimited("ITS cmd %ps failed\n", builder); \
e4f9094b 1121}
cc2d3216 1122
67047f90
MZ
1123static void its_build_sync_cmd(struct its_node *its,
1124 struct its_cmd_block *sync_cmd,
e4f9094b
MZ
1125 struct its_collection *sync_col)
1126{
1127 its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1128 its_encode_target(sync_cmd, sync_col->target_address);
cc2d3216 1129
e4f9094b 1130 its_fixup_cmd(sync_cmd);
cc2d3216
MZ
1131}
1132
e4f9094b
MZ
1133static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1134 struct its_collection, its_build_sync_cmd)
1135
67047f90
MZ
1136static void its_build_vsync_cmd(struct its_node *its,
1137 struct its_cmd_block *sync_cmd,
d011e4e6
MZ
1138 struct its_vpe *sync_vpe)
1139{
1140 its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1141 its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1142
1143 its_fixup_cmd(sync_cmd);
1144}
1145
1146static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1147 struct its_vpe, its_build_vsync_cmd)
1148
8d85dced 1149static void its_send_int(struct its_device *dev, u32 event_id)
cc2d3216 1150{
8d85dced 1151 struct its_cmd_desc desc;
cc2d3216 1152
8d85dced
MZ
1153 desc.its_int_cmd.dev = dev;
1154 desc.its_int_cmd.event_id = event_id;
cc2d3216 1155
8d85dced
MZ
1156 its_send_single_command(dev->its, its_build_int_cmd, &desc);
1157}
cc2d3216 1158
8d85dced
MZ
1159static void its_send_clear(struct its_device *dev, u32 event_id)
1160{
1161 struct its_cmd_desc desc;
cc2d3216 1162
8d85dced
MZ
1163 desc.its_clear_cmd.dev = dev;
1164 desc.its_clear_cmd.event_id = event_id;
cc2d3216 1165
8d85dced 1166 its_send_single_command(dev->its, its_build_clear_cmd, &desc);
cc2d3216
MZ
1167}
1168
1169static void its_send_inv(struct its_device *dev, u32 event_id)
1170{
1171 struct its_cmd_desc desc;
1172
1173 desc.its_inv_cmd.dev = dev;
1174 desc.its_inv_cmd.event_id = event_id;
1175
1176 its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1177}
1178
1179static void its_send_mapd(struct its_device *dev, int valid)
1180{
1181 struct its_cmd_desc desc;
1182
1183 desc.its_mapd_cmd.dev = dev;
1184 desc.its_mapd_cmd.valid = !!valid;
1185
1186 its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1187}
1188
1189static void its_send_mapc(struct its_node *its, struct its_collection *col,
1190 int valid)
1191{
1192 struct its_cmd_desc desc;
1193
1194 desc.its_mapc_cmd.col = col;
1195 desc.its_mapc_cmd.valid = !!valid;
1196
1197 its_send_single_command(its, its_build_mapc_cmd, &desc);
1198}
1199
6a25ad3a 1200static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
cc2d3216
MZ
1201{
1202 struct its_cmd_desc desc;
1203
6a25ad3a
MZ
1204 desc.its_mapti_cmd.dev = dev;
1205 desc.its_mapti_cmd.phys_id = irq_id;
1206 desc.its_mapti_cmd.event_id = id;
cc2d3216 1207
6a25ad3a 1208 its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
cc2d3216
MZ
1209}
1210
1211static void its_send_movi(struct its_device *dev,
1212 struct its_collection *col, u32 id)
1213{
1214 struct its_cmd_desc desc;
1215
1216 desc.its_movi_cmd.dev = dev;
1217 desc.its_movi_cmd.col = col;
591e5bec 1218 desc.its_movi_cmd.event_id = id;
cc2d3216
MZ
1219
1220 its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1221}
1222
1223static void its_send_discard(struct its_device *dev, u32 id)
1224{
1225 struct its_cmd_desc desc;
1226
1227 desc.its_discard_cmd.dev = dev;
1228 desc.its_discard_cmd.event_id = id;
1229
1230 its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1231}
1232
1233static void its_send_invall(struct its_node *its, struct its_collection *col)
1234{
1235 struct its_cmd_desc desc;
1236
1237 desc.its_invall_cmd.col = col;
1238
1239 its_send_single_command(its, its_build_invall_cmd, &desc);
1240}
c48ed51c 1241
d011e4e6
MZ
1242static void its_send_vmapti(struct its_device *dev, u32 id)
1243{
c1d4d5cd 1244 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
d011e4e6
MZ
1245 struct its_cmd_desc desc;
1246
1247 desc.its_vmapti_cmd.vpe = map->vpe;
1248 desc.its_vmapti_cmd.dev = dev;
1249 desc.its_vmapti_cmd.virt_id = map->vintid;
1250 desc.its_vmapti_cmd.event_id = id;
1251 desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1252
1253 its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1254}
1255
1256static void its_send_vmovi(struct its_device *dev, u32 id)
1257{
c1d4d5cd 1258 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
d011e4e6
MZ
1259 struct its_cmd_desc desc;
1260
1261 desc.its_vmovi_cmd.vpe = map->vpe;
1262 desc.its_vmovi_cmd.dev = dev;
1263 desc.its_vmovi_cmd.event_id = id;
1264 desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1265
1266 its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1267}
1268
75fd951b
MZ
1269static void its_send_vmapp(struct its_node *its,
1270 struct its_vpe *vpe, bool valid)
eb78192b
MZ
1271{
1272 struct its_cmd_desc desc;
eb78192b
MZ
1273
1274 desc.its_vmapp_cmd.vpe = vpe;
1275 desc.its_vmapp_cmd.valid = valid;
75fd951b 1276 desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
eb78192b 1277
75fd951b 1278 its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
eb78192b
MZ
1279}
1280
3171a47a
MZ
1281static void its_send_vmovp(struct its_vpe *vpe)
1282{
84243125 1283 struct its_cmd_desc desc = {};
3171a47a
MZ
1284 struct its_node *its;
1285 unsigned long flags;
1286 int col_id = vpe->col_idx;
1287
1288 desc.its_vmovp_cmd.vpe = vpe;
3171a47a
MZ
1289
1290 if (!its_list_map) {
1291 its = list_first_entry(&its_nodes, struct its_node, entry);
3171a47a
MZ
1292 desc.its_vmovp_cmd.col = &its->collections[col_id];
1293 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1294 return;
1295 }
1296
1297 /*
1298 * Yet another marvel of the architecture. If using the
1299 * its_list "feature", we need to make sure that all ITSs
1300 * receive all VMOVP commands in the same order. The only way
1301 * to guarantee this is to make vmovp a serialization point.
1302 *
1303 * Wall <-- Head.
1304 */
1305 raw_spin_lock_irqsave(&vmovp_lock, flags);
1306
1307 desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
84243125 1308 desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
3171a47a
MZ
1309
1310 /* Emit VMOVPs */
1311 list_for_each_entry(its, &its_nodes, entry) {
0dd57fed 1312 if (!is_v4(its))
3171a47a
MZ
1313 continue;
1314
009384b3 1315 if (!require_its_list_vmovp(vpe->its_vm, its))
2247e1bf
MZ
1316 continue;
1317
3171a47a
MZ
1318 desc.its_vmovp_cmd.col = &its->collections[col_id];
1319 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1320 }
1321
1322 raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1323}
1324
40619a2e 1325static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
eb78192b
MZ
1326{
1327 struct its_cmd_desc desc;
eb78192b
MZ
1328
1329 desc.its_vinvall_cmd.vpe = vpe;
40619a2e 1330 its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
eb78192b
MZ
1331}
1332
28614696
MZ
1333static void its_send_vinv(struct its_device *dev, u32 event_id)
1334{
1335 struct its_cmd_desc desc;
1336
1337 /*
1338 * There is no real VINV command. This is just a normal INV,
1339 * with a VSYNC instead of a SYNC.
1340 */
1341 desc.its_inv_cmd.dev = dev;
1342 desc.its_inv_cmd.event_id = event_id;
1343
1344 its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1345}
1346
ed0e4aa9
MZ
1347static void its_send_vint(struct its_device *dev, u32 event_id)
1348{
1349 struct its_cmd_desc desc;
1350
1351 /*
1352 * There is no real VINT command. This is just a normal INT,
1353 * with a VSYNC instead of a SYNC.
1354 */
1355 desc.its_int_cmd.dev = dev;
1356 desc.its_int_cmd.event_id = event_id;
1357
1358 its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1359}
1360
1361static void its_send_vclear(struct its_device *dev, u32 event_id)
1362{
1363 struct its_cmd_desc desc;
1364
1365 /*
1366 * There is no real VCLEAR command. This is just a normal CLEAR,
1367 * with a VSYNC instead of a SYNC.
1368 */
1369 desc.its_clear_cmd.dev = dev;
1370 desc.its_clear_cmd.event_id = event_id;
1371
1372 its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1373}
1374
d97c97ba
MZ
1375static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1376{
1377 struct its_cmd_desc desc;
1378
1379 desc.its_invdb_cmd.vpe = vpe;
1380 its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1381}
1382
c48ed51c
MZ
1383/*
1384 * irqchip functions - assumes MSI, mostly.
1385 */
015ec038 1386static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
c48ed51c 1387{
c1d4d5cd 1388 struct its_vlpi_map *map = get_vlpi_map(d);
015ec038 1389 irq_hw_number_t hwirq;
e1a2e201 1390 void *va;
adcdb94e 1391 u8 *cfg;
c48ed51c 1392
c1d4d5cd
MZ
1393 if (map) {
1394 va = page_address(map->vm->vprop_page);
d4d7b4ad
MZ
1395 hwirq = map->vintid;
1396
1397 /* Remember the updated property */
1398 map->properties &= ~clr;
1399 map->properties |= set | LPI_PROP_GROUP1;
015ec038 1400 } else {
e1a2e201 1401 va = gic_rdists->prop_table_va;
015ec038
MZ
1402 hwirq = d->hwirq;
1403 }
adcdb94e 1404
e1a2e201 1405 cfg = va + hwirq - 8192;
adcdb94e 1406 *cfg &= ~clr;
015ec038 1407 *cfg |= set | LPI_PROP_GROUP1;
c48ed51c
MZ
1408
1409 /*
1410 * Make the above write visible to the redistributors.
1411 * And yes, we're flushing exactly: One. Single. Byte.
1412 * Humpf...
1413 */
1414 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
328191c0 1415 gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
c48ed51c
MZ
1416 else
1417 dsb(ishst);
015ec038
MZ
1418}
1419
2f4f064b
MZ
1420static void wait_for_syncr(void __iomem *rdbase)
1421{
04d80dbe 1422 while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
2f4f064b
MZ
1423 cpu_relax();
1424}
1425
425c09be
MZ
1426static void direct_lpi_inv(struct irq_data *d)
1427{
f4a81f5a 1428 struct its_vlpi_map *map = get_vlpi_map(d);
425c09be 1429 void __iomem *rdbase;
f3a05921 1430 unsigned long flags;
f4a81f5a 1431 u64 val;
f3a05921 1432 int cpu;
f4a81f5a
MZ
1433
1434 if (map) {
1435 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1436
1437 WARN_ON(!is_v4_1(its_dev->its));
1438
1439 val = GICR_INVLPIR_V;
1440 val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1441 val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1442 } else {
1443 val = d->hwirq;
1444 }
425c09be
MZ
1445
1446 /* Target the redistributor this LPI is currently routed to */
f3a05921 1447 cpu = irq_to_cpuid_lock(d, &flags);
9058a4e9 1448 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
f3a05921 1449 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
f4a81f5a 1450 gic_write_lpir(val, rdbase + GICR_INVLPIR);
425c09be
MZ
1451
1452 wait_for_syncr(rdbase);
9058a4e9 1453 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
f3a05921 1454 irq_to_cpuid_unlock(d, flags);
425c09be
MZ
1455}
1456
015ec038
MZ
1457static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1458{
1459 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1460
1461 lpi_write_config(d, clr, set);
f4a81f5a
MZ
1462 if (gic_rdists->has_direct_lpi &&
1463 (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
425c09be 1464 direct_lpi_inv(d);
28614696 1465 else if (!irqd_is_forwarded_to_vcpu(d))
425c09be 1466 its_send_inv(its_dev, its_get_event_id(d));
28614696
MZ
1467 else
1468 its_send_vinv(its_dev, its_get_event_id(d));
c48ed51c
MZ
1469}
1470
015ec038
MZ
1471static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1472{
1473 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1474 u32 event = its_get_event_id(d);
c1d4d5cd 1475 struct its_vlpi_map *map;
015ec038 1476
3858d4df
MZ
1477 /*
1478 * GICv4.1 does away with the per-LPI nonsense, nothing to do
1479 * here.
1480 */
1481 if (is_v4_1(its_dev->its))
1482 return;
1483
c1d4d5cd
MZ
1484 map = dev_event_to_vlpi_map(its_dev, event);
1485
1486 if (map->db_enabled == enable)
015ec038
MZ
1487 return;
1488
c1d4d5cd 1489 map->db_enabled = enable;
015ec038
MZ
1490
1491 /*
1492 * More fun with the architecture:
1493 *
1494 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1495 * value or to 1023, depending on the enable bit. But that
1496 * would be issueing a mapping for an /existing/ DevID+EventID
1497 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1498 * to the /same/ vPE, using this opportunity to adjust the
1499 * doorbell. Mouahahahaha. We loves it, Precious.
1500 */
1501 its_send_vmovi(its_dev, event);
c48ed51c
MZ
1502}
1503
1504static void its_mask_irq(struct irq_data *d)
1505{
015ec038
MZ
1506 if (irqd_is_forwarded_to_vcpu(d))
1507 its_vlpi_set_doorbell(d, false);
1508
adcdb94e 1509 lpi_update_config(d, LPI_PROP_ENABLED, 0);
c48ed51c
MZ
1510}
1511
1512static void its_unmask_irq(struct irq_data *d)
1513{
015ec038
MZ
1514 if (irqd_is_forwarded_to_vcpu(d))
1515 its_vlpi_set_doorbell(d, true);
1516
adcdb94e 1517 lpi_update_config(d, 0, LPI_PROP_ENABLED);
c48ed51c
MZ
1518}
1519
2f13ff1d
MZ
1520static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1521{
1522 if (irqd_affinity_is_managed(d))
1523 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1524
1525 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1526}
1527
1528static void its_inc_lpi_count(struct irq_data *d, int cpu)
1529{
1530 if (irqd_affinity_is_managed(d))
1531 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1532 else
1533 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1534}
1535
1536static void its_dec_lpi_count(struct irq_data *d, int cpu)
1537{
1538 if (irqd_affinity_is_managed(d))
1539 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1540 else
1541 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1542}
1543
c5d6082d
MZ
1544static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1545 const struct cpumask *cpu_mask)
1546{
1547 unsigned int cpu = nr_cpu_ids, tmp;
1548 int count = S32_MAX;
1549
1550 for_each_cpu(tmp, cpu_mask) {
1551 int this_count = its_read_lpi_count(d, tmp);
1552 if (this_count < count) {
1553 cpu = tmp;
1554 count = this_count;
1555 }
1556 }
1557
1558 return cpu;
1559}
1560
1561/*
1562 * As suggested by Thomas Gleixner in:
1563 * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de
1564 */
1565static int its_select_cpu(struct irq_data *d,
1566 const struct cpumask *aff_mask)
1567{
1568 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1569 cpumask_var_t tmpmask;
1570 int cpu, node;
1571
1572 if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
1573 return -ENOMEM;
1574
1575 node = its_dev->its->numa_node;
1576
1577 if (!irqd_affinity_is_managed(d)) {
1578 /* First try the NUMA node */
1579 if (node != NUMA_NO_NODE) {
1580 /*
1581 * Try the intersection of the affinity mask and the
1582 * node mask (and the online mask, just to be safe).
1583 */
1584 cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1585 cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1586
1587 /*
1588 * Ideally, we would check if the mask is empty, and
1589 * try again on the full node here.
1590 *
1591 * But it turns out that the way ACPI describes the
1592 * affinity for ITSs only deals about memory, and
1593 * not target CPUs, so it cannot describe a single
1594 * ITS placed next to two NUMA nodes.
1595 *
1596 * Instead, just fallback on the online mask. This
1597 * diverges from Thomas' suggestion above.
1598 */
1599 cpu = cpumask_pick_least_loaded(d, tmpmask);
1600 if (cpu < nr_cpu_ids)
1601 goto out;
1602
1603 /* If we can't cross sockets, give up */
1604 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1605 goto out;
1606
1607 /* If the above failed, expand the search */
1608 }
1609
1610 /* Try the intersection of the affinity and online masks */
1611 cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1612
1613 /* If that doesn't fly, the online mask is the last resort */
1614 if (cpumask_empty(tmpmask))
1615 cpumask_copy(tmpmask, cpu_online_mask);
1616
1617 cpu = cpumask_pick_least_loaded(d, tmpmask);
1618 } else {
1619 cpumask_and(tmpmask, irq_data_get_affinity_mask(d), cpu_online_mask);
1620
1621 /* If we cannot cross sockets, limit the search to that node */
1622 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1623 node != NUMA_NO_NODE)
1624 cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1625
1626 cpu = cpumask_pick_least_loaded(d, tmpmask);
1627 }
1628out:
1629 free_cpumask_var(tmpmask);
1630
1631 pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1632 return cpu;
1633}
1634
c48ed51c
MZ
1635static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1636 bool force)
1637{
c48ed51c
MZ
1638 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1639 struct its_collection *target_col;
1640 u32 id = its_get_event_id(d);
c5d6082d 1641 int cpu, prev_cpu;
c48ed51c 1642
015ec038
MZ
1643 /* A forwarded interrupt should use irq_set_vcpu_affinity */
1644 if (irqd_is_forwarded_to_vcpu(d))
1645 return -EINVAL;
1646
2f13ff1d
MZ
1647 prev_cpu = its_dev->event_map.col_map[id];
1648 its_dec_lpi_count(d, prev_cpu);
1649
c5d6082d
MZ
1650 if (!force)
1651 cpu = its_select_cpu(d, mask_val);
1652 else
1653 cpu = cpumask_pick_least_loaded(d, mask_val);
fbf8f40e 1654
c5d6082d 1655 if (cpu < 0 || cpu >= nr_cpu_ids)
2f13ff1d 1656 goto err;
c48ed51c 1657
8b8d94a7 1658 /* don't set the affinity when the target cpu is same as current one */
2f13ff1d 1659 if (cpu != prev_cpu) {
8b8d94a7
M
1660 target_col = &its_dev->its->collections[cpu];
1661 its_send_movi(its_dev, target_col, id);
1662 its_dev->event_map.col_map[id] = cpu;
0d224d35 1663 irq_data_update_effective_affinity(d, cpumask_of(cpu));
8b8d94a7 1664 }
c48ed51c 1665
2f13ff1d
MZ
1666 its_inc_lpi_count(d, cpu);
1667
c48ed51c 1668 return IRQ_SET_MASK_OK_DONE;
2f13ff1d
MZ
1669
1670err:
1671 its_inc_lpi_count(d, prev_cpu);
1672 return -EINVAL;
c48ed51c
MZ
1673}
1674
558b0165
AB
1675static u64 its_irq_get_msi_base(struct its_device *its_dev)
1676{
1677 struct its_node *its = its_dev->its;
1678
1679 return its->phys_base + GITS_TRANSLATER;
1680}
1681
b48ac83d
MZ
1682static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1683{
1684 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1685 struct its_node *its;
1686 u64 addr;
1687
1688 its = its_dev->its;
558b0165 1689 addr = its->get_msi_base(its_dev);
b48ac83d 1690
b11283eb
VM
1691 msg->address_lo = lower_32_bits(addr);
1692 msg->address_hi = upper_32_bits(addr);
b48ac83d 1693 msg->data = its_get_event_id(d);
44bb7e24 1694
35ae7df2 1695 iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
b48ac83d
MZ
1696}
1697
8d85dced
MZ
1698static int its_irq_set_irqchip_state(struct irq_data *d,
1699 enum irqchip_irq_state which,
1700 bool state)
1701{
1702 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1703 u32 event = its_get_event_id(d);
1704
1705 if (which != IRQCHIP_STATE_PENDING)
1706 return -EINVAL;
1707
ed0e4aa9
MZ
1708 if (irqd_is_forwarded_to_vcpu(d)) {
1709 if (state)
1710 its_send_vint(its_dev, event);
1711 else
1712 its_send_vclear(its_dev, event);
1713 } else {
1714 if (state)
1715 its_send_int(its_dev, event);
1716 else
1717 its_send_clear(its_dev, event);
1718 }
8d85dced
MZ
1719
1720 return 0;
1721}
1722
009384b3
MZ
1723/*
1724 * Two favourable cases:
1725 *
1726 * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1727 * for vSGI delivery
1728 *
1729 * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1730 * and we're better off mapping all VPEs always
1731 *
1732 * If neither (a) nor (b) is true, then we map vPEs on demand.
1733 *
1734 */
1735static bool gic_requires_eager_mapping(void)
1736{
1737 if (!its_list_map || gic_rdists->has_rvpeid)
1738 return true;
1739
1740 return false;
1741}
1742
2247e1bf
MZ
1743static void its_map_vm(struct its_node *its, struct its_vm *vm)
1744{
1745 unsigned long flags;
1746
009384b3 1747 if (gic_requires_eager_mapping())
2247e1bf
MZ
1748 return;
1749
1750 raw_spin_lock_irqsave(&vmovp_lock, flags);
1751
1752 /*
1753 * If the VM wasn't mapped yet, iterate over the vpes and get
1754 * them mapped now.
1755 */
1756 vm->vlpi_count[its->list_nr]++;
1757
1758 if (vm->vlpi_count[its->list_nr] == 1) {
1759 int i;
1760
1761 for (i = 0; i < vm->nr_vpes; i++) {
1762 struct its_vpe *vpe = vm->vpes[i];
44c4c25e 1763 struct irq_data *d = irq_get_irq_data(vpe->irq);
2247e1bf
MZ
1764
1765 /* Map the VPE to the first possible CPU */
1766 vpe->col_idx = cpumask_first(cpu_online_mask);
1767 its_send_vmapp(its, vpe, true);
1768 its_send_vinvall(its, vpe);
44c4c25e 1769 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
2247e1bf
MZ
1770 }
1771 }
1772
1773 raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1774}
1775
1776static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1777{
1778 unsigned long flags;
1779
1780 /* Not using the ITS list? Everything is always mapped. */
009384b3 1781 if (gic_requires_eager_mapping())
2247e1bf
MZ
1782 return;
1783
1784 raw_spin_lock_irqsave(&vmovp_lock, flags);
1785
1786 if (!--vm->vlpi_count[its->list_nr]) {
1787 int i;
1788
1789 for (i = 0; i < vm->nr_vpes; i++)
1790 its_send_vmapp(its, vm->vpes[i], false);
1791 }
1792
1793 raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1794}
1795
d011e4e6
MZ
1796static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1797{
1798 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1799 u32 event = its_get_event_id(d);
1800 int ret = 0;
1801
1802 if (!info->map)
1803 return -EINVAL;
1804
11635fa2 1805 raw_spin_lock(&its_dev->event_map.vlpi_lock);
d011e4e6
MZ
1806
1807 if (!its_dev->event_map.vm) {
1808 struct its_vlpi_map *maps;
1809
6396bb22 1810 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
11635fa2 1811 GFP_ATOMIC);
d011e4e6
MZ
1812 if (!maps) {
1813 ret = -ENOMEM;
1814 goto out;
1815 }
1816
1817 its_dev->event_map.vm = info->map->vm;
1818 its_dev->event_map.vlpi_maps = maps;
1819 } else if (its_dev->event_map.vm != info->map->vm) {
1820 ret = -EINVAL;
1821 goto out;
1822 }
1823
1824 /* Get our private copy of the mapping information */
1825 its_dev->event_map.vlpi_maps[event] = *info->map;
1826
1827 if (irqd_is_forwarded_to_vcpu(d)) {
1828 /* Already mapped, move it around */
1829 its_send_vmovi(its_dev, event);
1830 } else {
2247e1bf
MZ
1831 /* Ensure all the VPEs are mapped on this ITS */
1832 its_map_vm(its_dev->its, info->map->vm);
1833
d4d7b4ad
MZ
1834 /*
1835 * Flag the interrupt as forwarded so that we can
1836 * start poking the virtual property table.
1837 */
1838 irqd_set_forwarded_to_vcpu(d);
1839
1840 /* Write out the property to the prop table */
1841 lpi_write_config(d, 0xff, info->map->properties);
1842
d011e4e6
MZ
1843 /* Drop the physical mapping */
1844 its_send_discard(its_dev, event);
1845
1846 /* and install the virtual one */
1847 its_send_vmapti(its_dev, event);
d011e4e6
MZ
1848
1849 /* Increment the number of VLPIs */
1850 its_dev->event_map.nr_vlpis++;
1851 }
1852
1853out:
11635fa2 1854 raw_spin_unlock(&its_dev->event_map.vlpi_lock);
d011e4e6
MZ
1855 return ret;
1856}
1857
1858static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1859{
1860 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
046b5054 1861 struct its_vlpi_map *map;
d011e4e6
MZ
1862 int ret = 0;
1863
11635fa2 1864 raw_spin_lock(&its_dev->event_map.vlpi_lock);
d011e4e6 1865
046b5054
MZ
1866 map = get_vlpi_map(d);
1867
1868 if (!its_dev->event_map.vm || !map) {
d011e4e6
MZ
1869 ret = -EINVAL;
1870 goto out;
1871 }
1872
1873 /* Copy our mapping information to the incoming request */
c1d4d5cd 1874 *info->map = *map;
d011e4e6
MZ
1875
1876out:
11635fa2 1877 raw_spin_unlock(&its_dev->event_map.vlpi_lock);
d011e4e6
MZ
1878 return ret;
1879}
1880
1881static int its_vlpi_unmap(struct irq_data *d)
1882{
1883 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1884 u32 event = its_get_event_id(d);
1885 int ret = 0;
1886
11635fa2 1887 raw_spin_lock(&its_dev->event_map.vlpi_lock);
d011e4e6
MZ
1888
1889 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1890 ret = -EINVAL;
1891 goto out;
1892 }
1893
1894 /* Drop the virtual mapping */
1895 its_send_discard(its_dev, event);
1896
1897 /* and restore the physical one */
1898 irqd_clr_forwarded_to_vcpu(d);
1899 its_send_mapti(its_dev, d->hwirq, event);
1900 lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1901 LPI_PROP_ENABLED |
1902 LPI_PROP_GROUP1));
1903
2247e1bf
MZ
1904 /* Potentially unmap the VM from this ITS */
1905 its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1906
d011e4e6
MZ
1907 /*
1908 * Drop the refcount and make the device available again if
1909 * this was the last VLPI.
1910 */
1911 if (!--its_dev->event_map.nr_vlpis) {
1912 its_dev->event_map.vm = NULL;
1913 kfree(its_dev->event_map.vlpi_maps);
1914 }
1915
1916out:
11635fa2 1917 raw_spin_unlock(&its_dev->event_map.vlpi_lock);
d011e4e6
MZ
1918 return ret;
1919}
1920
015ec038
MZ
1921static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1922{
1923 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1924
1925 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1926 return -EINVAL;
1927
1928 if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1929 lpi_update_config(d, 0xff, info->config);
1930 else
1931 lpi_write_config(d, 0xff, info->config);
1932 its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1933
1934 return 0;
1935}
1936
c808eea8
MZ
1937static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1938{
1939 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1940 struct its_cmd_info *info = vcpu_info;
1941
1942 /* Need a v4 ITS */
0dd57fed 1943 if (!is_v4(its_dev->its))
c808eea8
MZ
1944 return -EINVAL;
1945
d011e4e6
MZ
1946 /* Unmap request? */
1947 if (!info)
1948 return its_vlpi_unmap(d);
1949
c808eea8
MZ
1950 switch (info->cmd_type) {
1951 case MAP_VLPI:
d011e4e6 1952 return its_vlpi_map(d, info);
c808eea8
MZ
1953
1954 case GET_VLPI:
d011e4e6 1955 return its_vlpi_get(d, info);
c808eea8
MZ
1956
1957 case PROP_UPDATE_VLPI:
1958 case PROP_UPDATE_AND_INV_VLPI:
015ec038 1959 return its_vlpi_prop_update(d, info);
c808eea8
MZ
1960
1961 default:
1962 return -EINVAL;
1963 }
1964}
1965
c48ed51c
MZ
1966static struct irq_chip its_irq_chip = {
1967 .name = "ITS",
1968 .irq_mask = its_mask_irq,
1969 .irq_unmask = its_unmask_irq,
004fa08d 1970 .irq_eoi = irq_chip_eoi_parent,
c48ed51c 1971 .irq_set_affinity = its_set_affinity,
b48ac83d 1972 .irq_compose_msi_msg = its_irq_compose_msi_msg,
8d85dced 1973 .irq_set_irqchip_state = its_irq_set_irqchip_state,
c808eea8 1974 .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity,
b48ac83d
MZ
1975};
1976
880cb3cd 1977
bf9529f8
MZ
1978/*
1979 * How we allocate LPIs:
1980 *
880cb3cd
MZ
1981 * lpi_range_list contains ranges of LPIs that are to available to
1982 * allocate from. To allocate LPIs, just pick the first range that
1983 * fits the required allocation, and reduce it by the required
1984 * amount. Once empty, remove the range from the list.
1985 *
1986 * To free a range of LPIs, add a free range to the list, sort it and
1987 * merge the result if the new range happens to be adjacent to an
1988 * already free block.
bf9529f8 1989 *
880cb3cd
MZ
1990 * The consequence of the above is that allocation is cost is low, but
1991 * freeing is expensive. We assumes that freeing rarely occurs.
1992 */
4cb205c0 1993#define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */
880cb3cd 1994
880cb3cd
MZ
1995static DEFINE_MUTEX(lpi_range_lock);
1996static LIST_HEAD(lpi_range_list);
1997
1998struct lpi_range {
1999 struct list_head entry;
2000 u32 base_id;
2001 u32 span;
2002};
bf9529f8 2003
880cb3cd 2004static struct lpi_range *mk_lpi_range(u32 base, u32 span)
bf9529f8 2005{
880cb3cd
MZ
2006 struct lpi_range *range;
2007
1c73fac5 2008 range = kmalloc(sizeof(*range), GFP_KERNEL);
880cb3cd 2009 if (range) {
880cb3cd
MZ
2010 range->base_id = base;
2011 range->span = span;
2012 }
2013
2014 return range;
bf9529f8
MZ
2015}
2016
880cb3cd
MZ
2017static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2018{
2019 struct lpi_range *range, *tmp;
2020 int err = -ENOSPC;
2021
2022 mutex_lock(&lpi_range_lock);
2023
2024 list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2025 if (range->span >= nr_lpis) {
2026 *base = range->base_id;
2027 range->base_id += nr_lpis;
2028 range->span -= nr_lpis;
2029
2030 if (range->span == 0) {
2031 list_del(&range->entry);
2032 kfree(range);
2033 }
2034
2035 err = 0;
2036 break;
2037 }
2038 }
2039
2040 mutex_unlock(&lpi_range_lock);
2041
2042 pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2043 return err;
bf9529f8
MZ
2044}
2045
12eade12
RV
2046static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2047{
2048 if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2049 return;
2050 if (a->base_id + a->span != b->base_id)
2051 return;
2052 b->base_id = a->base_id;
2053 b->span += a->span;
2054 list_del(&a->entry);
2055 kfree(a);
2056}
2057
880cb3cd 2058static int free_lpi_range(u32 base, u32 nr_lpis)
bf9529f8 2059{
12eade12 2060 struct lpi_range *new, *old;
880cb3cd
MZ
2061
2062 new = mk_lpi_range(base, nr_lpis);
b31a3838
RV
2063 if (!new)
2064 return -ENOMEM;
880cb3cd
MZ
2065
2066 mutex_lock(&lpi_range_lock);
2067
12eade12
RV
2068 list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2069 if (old->base_id < base)
2070 break;
880cb3cd 2071 }
12eade12
RV
2072 /*
2073 * old is the last element with ->base_id smaller than base,
2074 * so new goes right after it. If there are no elements with
2075 * ->base_id smaller than base, &old->entry ends up pointing
2076 * at the head of the list, and inserting new it the start of
2077 * the list is the right thing to do in that case as well.
2078 */
2079 list_add(&new->entry, &old->entry);
2080 /*
2081 * Now check if we can merge with the preceding and/or
2082 * following ranges.
2083 */
2084 merge_lpi_ranges(old, new);
2085 merge_lpi_ranges(new, list_next_entry(new, entry));
880cb3cd 2086
880cb3cd 2087 mutex_unlock(&lpi_range_lock);
b31a3838 2088 return 0;
880cb3cd
MZ
2089}
2090
2091static int __init its_lpi_init(u32 id_bits)
2092{
2093 u32 lpis = (1UL << id_bits) - 8192;
12b2905a 2094 u32 numlpis;
880cb3cd
MZ
2095 int err;
2096
12b2905a
MZ
2097 numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2098
2099 if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2100 lpis = numlpis;
2101 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2102 lpis);
2103 }
2104
880cb3cd
MZ
2105 /*
2106 * Initializing the allocator is just the same as freeing the
2107 * full range of LPIs.
2108 */
2109 err = free_lpi_range(8192, lpis);
2110 pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2111 return err;
2112}
bf9529f8 2113
38dd7c49 2114static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
880cb3cd
MZ
2115{
2116 unsigned long *bitmap = NULL;
2117 int err = 0;
bf9529f8
MZ
2118
2119 do {
38dd7c49 2120 err = alloc_lpi_range(nr_irqs, base);
880cb3cd 2121 if (!err)
bf9529f8
MZ
2122 break;
2123
38dd7c49
MZ
2124 nr_irqs /= 2;
2125 } while (nr_irqs > 0);
bf9529f8 2126
45725e0f
MZ
2127 if (!nr_irqs)
2128 err = -ENOSPC;
2129
880cb3cd 2130 if (err)
bf9529f8
MZ
2131 goto out;
2132
38dd7c49 2133 bitmap = kcalloc(BITS_TO_LONGS(nr_irqs), sizeof (long), GFP_ATOMIC);
bf9529f8
MZ
2134 if (!bitmap)
2135 goto out;
2136
38dd7c49 2137 *nr_ids = nr_irqs;
bf9529f8
MZ
2138
2139out:
c8415b94
MZ
2140 if (!bitmap)
2141 *base = *nr_ids = 0;
2142
bf9529f8
MZ
2143 return bitmap;
2144}
2145
38dd7c49 2146static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
bf9529f8 2147{
880cb3cd 2148 WARN_ON(free_lpi_range(base, nr_ids));
cf2be8ba 2149 kfree(bitmap);
bf9529f8 2150}
1ac19ca6 2151
053be485
MZ
2152static void gic_reset_prop_table(void *va)
2153{
2154 /* Priority 0xa0, Group-1, disabled */
2155 memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2156
2157 /* Make sure the GIC will observe the written configuration */
2158 gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2159}
2160
0e5ccf91
MZ
2161static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2162{
2163 struct page *prop_page;
1ac19ca6 2164
0e5ccf91
MZ
2165 prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
2166 if (!prop_page)
2167 return NULL;
2168
053be485 2169 gic_reset_prop_table(page_address(prop_page));
0e5ccf91
MZ
2170
2171 return prop_page;
2172}
2173
7d75bbb4
MZ
2174static void its_free_prop_table(struct page *prop_page)
2175{
2176 free_pages((unsigned long)page_address(prop_page),
2177 get_order(LPI_PROPBASE_SZ));
2178}
1ac19ca6 2179
5e2c9f9a
MZ
2180static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2181{
2182 phys_addr_t start, end, addr_end;
2183 u64 i;
2184
2185 /*
2186 * We don't bother checking for a kdump kernel as by
2187 * construction, the LPI tables are out of this kernel's
2188 * memory map.
2189 */
2190 if (is_kdump_kernel())
2191 return true;
2192
2193 addr_end = addr + size - 1;
2194
2195 for_each_reserved_mem_region(i, &start, &end) {
2196 if (addr >= start && addr_end <= end)
2197 return true;
2198 }
2199
2200 /* Not found, not a good sign... */
2201 pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2202 &addr, &addr_end);
2203 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2204 return false;
2205}
2206
3fb68fae
MZ
2207static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2208{
2209 if (efi_enabled(EFI_CONFIG_TABLES))
2210 return efi_mem_reserve_persistent(addr, size);
2211
2212 return 0;
2213}
2214
11e37d35 2215static int __init its_setup_lpi_prop_table(void)
1ac19ca6 2216{
c440a9d9
MZ
2217 if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2218 u64 val;
1ac19ca6 2219
c440a9d9
MZ
2220 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2221 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
1ac19ca6 2222
c440a9d9
MZ
2223 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2224 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2225 LPI_PROPBASE_SZ,
2226 MEMREMAP_WB);
2227 gic_reset_prop_table(gic_rdists->prop_table_va);
2228 } else {
2229 struct page *page;
2230
2231 lpi_id_bits = min_t(u32,
2232 GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2233 ITS_MAX_LPI_NRBITS);
2234 page = its_allocate_prop_table(GFP_NOWAIT);
2235 if (!page) {
2236 pr_err("Failed to allocate PROPBASE\n");
2237 return -ENOMEM;
2238 }
2239
2240 gic_rdists->prop_table_pa = page_to_phys(page);
2241 gic_rdists->prop_table_va = page_address(page);
3fb68fae
MZ
2242 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2243 LPI_PROPBASE_SZ));
c440a9d9 2244 }
e1a2e201
MZ
2245
2246 pr_info("GICv3: using LPI property table @%pa\n",
2247 &gic_rdists->prop_table_pa);
1ac19ca6 2248
6c31e123 2249 return its_lpi_init(lpi_id_bits);
1ac19ca6
MZ
2250}
2251
2252static const char *its_base_type_string[] = {
2253 [GITS_BASER_TYPE_DEVICE] = "Devices",
2254 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs",
4f46de9d 2255 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)",
1ac19ca6
MZ
2256 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections",
2257 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)",
2258 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)",
2259 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)",
2260};
2261
2d81d425
SD
2262static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2263{
2264 u32 idx = baser - its->tables;
2265
0968a619 2266 return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2d81d425
SD
2267}
2268
2269static void its_write_baser(struct its_node *its, struct its_baser *baser,
2270 u64 val)
2271{
2272 u32 idx = baser - its->tables;
2273
0968a619 2274 gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2d81d425
SD
2275 baser->val = its_read_baser(its, baser);
2276}
2277
9347359a 2278static int its_setup_baser(struct its_node *its, struct its_baser *baser,
d5df9dc9 2279 u64 cache, u64 shr, u32 order, bool indirect)
9347359a
SD
2280{
2281 u64 val = its_read_baser(its, baser);
2282 u64 esz = GITS_BASER_ENTRY_SIZE(val);
2283 u64 type = GITS_BASER_TYPE(val);
30ae9610 2284 u64 baser_phys, tmp;
d5df9dc9 2285 u32 alloc_pages, psz;
539d3782 2286 struct page *page;
9347359a 2287 void *base;
9347359a 2288
d5df9dc9 2289 psz = baser->psz;
9347359a
SD
2290 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2291 if (alloc_pages > GITS_BASER_PAGES_MAX) {
2292 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2293 &its->phys_base, its_base_type_string[type],
2294 alloc_pages, GITS_BASER_PAGES_MAX);
2295 alloc_pages = GITS_BASER_PAGES_MAX;
2296 order = get_order(GITS_BASER_PAGES_MAX * psz);
2297 }
2298
539d3782
SD
2299 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2300 if (!page)
9347359a
SD
2301 return -ENOMEM;
2302
539d3782 2303 base = (void *)page_address(page);
30ae9610
SD
2304 baser_phys = virt_to_phys(base);
2305
2306 /* Check if the physical address of the memory is above 48bits */
2307 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2308
2309 /* 52bit PA is supported only when PageSize=64K */
2310 if (psz != SZ_64K) {
2311 pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2312 free_pages((unsigned long)base, order);
2313 return -ENXIO;
2314 }
2315
2316 /* Convert 52bit PA to 48bit field */
2317 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2318 }
2319
9347359a 2320retry_baser:
30ae9610 2321 val = (baser_phys |
9347359a
SD
2322 (type << GITS_BASER_TYPE_SHIFT) |
2323 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) |
2324 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) |
2325 cache |
2326 shr |
2327 GITS_BASER_VALID);
2328
3faf24ea
SD
2329 val |= indirect ? GITS_BASER_INDIRECT : 0x0;
2330
9347359a
SD
2331 switch (psz) {
2332 case SZ_4K:
2333 val |= GITS_BASER_PAGE_SIZE_4K;
2334 break;
2335 case SZ_16K:
2336 val |= GITS_BASER_PAGE_SIZE_16K;
2337 break;
2338 case SZ_64K:
2339 val |= GITS_BASER_PAGE_SIZE_64K;
2340 break;
2341 }
2342
2343 its_write_baser(its, baser, val);
2344 tmp = baser->val;
2345
2346 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2347 /*
2348 * Shareability didn't stick. Just use
2349 * whatever the read reported, which is likely
2350 * to be the only thing this redistributor
2351 * supports. If that's zero, make it
2352 * non-cacheable as well.
2353 */
2354 shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2355 if (!shr) {
2356 cache = GITS_BASER_nC;
328191c0 2357 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
9347359a
SD
2358 }
2359 goto retry_baser;
2360 }
2361
9347359a 2362 if (val != tmp) {
b11283eb 2363 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
9347359a 2364 &its->phys_base, its_base_type_string[type],
b11283eb 2365 val, tmp);
9347359a
SD
2366 free_pages((unsigned long)base, order);
2367 return -ENXIO;
2368 }
2369
2370 baser->order = order;
2371 baser->base = base;
2372 baser->psz = psz;
3faf24ea 2373 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
9347359a 2374
3faf24ea 2375 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
d524eaa2 2376 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
9347359a
SD
2377 its_base_type_string[type],
2378 (unsigned long)virt_to_phys(base),
3faf24ea 2379 indirect ? "indirect" : "flat", (int)esz,
9347359a
SD
2380 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2381
2382 return 0;
2383}
2384
4cacac57
MZ
2385static bool its_parse_indirect_baser(struct its_node *its,
2386 struct its_baser *baser,
d5df9dc9 2387 u32 *order, u32 ids)
4b75c459 2388{
4cacac57
MZ
2389 u64 tmp = its_read_baser(its, baser);
2390 u64 type = GITS_BASER_TYPE(tmp);
2391 u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2fd632a0 2392 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
4b75c459 2393 u32 new_order = *order;
d5df9dc9 2394 u32 psz = baser->psz;
3faf24ea
SD
2395 bool indirect = false;
2396
2397 /* No need to enable Indirection if memory requirement < (psz*2)bytes */
2398 if ((esz << ids) > (psz * 2)) {
2399 /*
2400 * Find out whether hw supports a single or two-level table by
2401 * table by reading bit at offset '62' after writing '1' to it.
2402 */
2403 its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2404 indirect = !!(baser->val & GITS_BASER_INDIRECT);
2405
2406 if (indirect) {
2407 /*
2408 * The size of the lvl2 table is equal to ITS page size
2409 * which is 'psz'. For computing lvl1 table size,
2410 * subtract ID bits that sparse lvl2 table from 'ids'
2411 * which is reported by ITS hardware times lvl1 table
2412 * entry size.
2413 */
d524eaa2 2414 ids -= ilog2(psz / (int)esz);
3faf24ea
SD
2415 esz = GITS_LVL1_ENTRY_SIZE;
2416 }
2417 }
4b75c459
SD
2418
2419 /*
2420 * Allocate as many entries as required to fit the
2421 * range of device IDs that the ITS can grok... The ID
2422 * space being incredibly sparse, this results in a
3faf24ea
SD
2423 * massive waste of memory if two-level device table
2424 * feature is not supported by hardware.
4b75c459
SD
2425 */
2426 new_order = max_t(u32, get_order(esz << ids), new_order);
2427 if (new_order >= MAX_ORDER) {
2428 new_order = MAX_ORDER - 1;
d524eaa2 2429 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
576a8342 2430 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
4cacac57 2431 &its->phys_base, its_base_type_string[type],
576a8342 2432 device_ids(its), ids);
4b75c459
SD
2433 }
2434
2435 *order = new_order;
3faf24ea
SD
2436
2437 return indirect;
4b75c459
SD
2438}
2439
5e516846
MZ
2440static u32 compute_common_aff(u64 val)
2441{
2442 u32 aff, clpiaff;
2443
2444 aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2445 clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2446
2447 return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2448}
2449
2450static u32 compute_its_aff(struct its_node *its)
2451{
2452 u64 val;
2453 u32 svpet;
2454
2455 /*
2456 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2457 * the resulting affinity. We then use that to see if this match
2458 * our own affinity.
2459 */
2460 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2461 val = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2462 val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2463 return compute_common_aff(val);
2464}
2465
2466static struct its_node *find_sibling_its(struct its_node *cur_its)
2467{
2468 struct its_node *its;
2469 u32 aff;
2470
2471 if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2472 return NULL;
2473
2474 aff = compute_its_aff(cur_its);
2475
2476 list_for_each_entry(its, &its_nodes, entry) {
2477 u64 baser;
2478
2479 if (!is_v4_1(its) || its == cur_its)
2480 continue;
2481
2482 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2483 continue;
2484
2485 if (aff != compute_its_aff(its))
2486 continue;
2487
2488 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2489 baser = its->tables[2].val;
2490 if (!(baser & GITS_BASER_VALID))
2491 continue;
2492
2493 return its;
2494 }
2495
2496 return NULL;
2497}
2498
1ac19ca6
MZ
2499static void its_free_tables(struct its_node *its)
2500{
2501 int i;
2502
2503 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1a485f4d
SD
2504 if (its->tables[i].base) {
2505 free_pages((unsigned long)its->tables[i].base,
2506 its->tables[i].order);
2507 its->tables[i].base = NULL;
1ac19ca6
MZ
2508 }
2509 }
2510}
2511
d5df9dc9
MZ
2512static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2513{
2514 u64 psz = SZ_64K;
2515
2516 while (psz) {
2517 u64 val, gpsz;
2518
2519 val = its_read_baser(its, baser);
2520 val &= ~GITS_BASER_PAGE_SIZE_MASK;
2521
2522 switch (psz) {
2523 case SZ_64K:
2524 gpsz = GITS_BASER_PAGE_SIZE_64K;
2525 break;
2526 case SZ_16K:
2527 gpsz = GITS_BASER_PAGE_SIZE_16K;
2528 break;
2529 case SZ_4K:
2530 default:
2531 gpsz = GITS_BASER_PAGE_SIZE_4K;
2532 break;
2533 }
2534
2535 gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2536
2537 val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2538 its_write_baser(its, baser, val);
2539
2540 if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2541 break;
2542
2543 switch (psz) {
2544 case SZ_64K:
2545 psz = SZ_16K;
2546 break;
2547 case SZ_16K:
2548 psz = SZ_4K;
2549 break;
2550 case SZ_4K:
2551 default:
2552 return -1;
2553 }
2554 }
2555
2556 baser->psz = psz;
2557 return 0;
2558}
2559
0e0b0f69 2560static int its_alloc_tables(struct its_node *its)
1ac19ca6 2561{
1ac19ca6 2562 u64 shr = GITS_BASER_InnerShareable;
2fd632a0 2563 u64 cache = GITS_BASER_RaWaWb;
9347359a 2564 int err, i;
94100970 2565
fa150019
AB
2566 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2567 /* erratum 24313: ignore memory access type */
2568 cache = GITS_BASER_nCnB;
466b7d16 2569
1ac19ca6 2570 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2d81d425
SD
2571 struct its_baser *baser = its->tables + i;
2572 u64 val = its_read_baser(its, baser);
1ac19ca6 2573 u64 type = GITS_BASER_TYPE(val);
3faf24ea 2574 bool indirect = false;
d5df9dc9 2575 u32 order;
1ac19ca6 2576
d5df9dc9 2577 if (type == GITS_BASER_TYPE_NONE)
1ac19ca6
MZ
2578 continue;
2579
d5df9dc9
MZ
2580 if (its_probe_baser_psz(its, baser)) {
2581 its_free_tables(its);
2582 return -ENXIO;
2583 }
2584
2585 order = get_order(baser->psz);
2586
2587 switch (type) {
4cacac57 2588 case GITS_BASER_TYPE_DEVICE:
d5df9dc9 2589 indirect = its_parse_indirect_baser(its, baser, &order,
576a8342 2590 device_ids(its));
8d565748
ZY
2591 break;
2592
4cacac57 2593 case GITS_BASER_TYPE_VCPU:
5e516846
MZ
2594 if (is_v4_1(its)) {
2595 struct its_node *sibling;
2596
2597 WARN_ON(i != 2);
2598 if ((sibling = find_sibling_its(its))) {
2599 *baser = sibling->tables[2];
2600 its_write_baser(its, baser, baser->val);
2601 continue;
2602 }
2603 }
2604
d5df9dc9 2605 indirect = its_parse_indirect_baser(its, baser, &order,
32bd44dc 2606 ITS_MAX_VPEID_BITS);
4cacac57
MZ
2607 break;
2608 }
f54b97ed 2609
d5df9dc9 2610 err = its_setup_baser(its, baser, cache, shr, order, indirect);
9347359a
SD
2611 if (err < 0) {
2612 its_free_tables(its);
2613 return err;
1ac19ca6
MZ
2614 }
2615
9347359a 2616 /* Update settings which will be used for next BASERn */
9347359a
SD
2617 cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2618 shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
1ac19ca6
MZ
2619 }
2620
2621 return 0;
1ac19ca6
MZ
2622}
2623
5e516846
MZ
2624static u64 inherit_vpe_l1_table_from_its(void)
2625{
2626 struct its_node *its;
2627 u64 val;
2628 u32 aff;
2629
2630 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2631 aff = compute_common_aff(val);
2632
2633 list_for_each_entry(its, &its_nodes, entry) {
2634 u64 baser, addr;
2635
2636 if (!is_v4_1(its))
2637 continue;
2638
2639 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2640 continue;
2641
2642 if (aff != compute_its_aff(its))
2643 continue;
2644
2645 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2646 baser = its->tables[2].val;
2647 if (!(baser & GITS_BASER_VALID))
2648 continue;
2649
2650 /* We have a winner! */
8b718d40
ZY
2651 gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2652
5e516846
MZ
2653 val = GICR_VPROPBASER_4_1_VALID;
2654 if (baser & GITS_BASER_INDIRECT)
2655 val |= GICR_VPROPBASER_4_1_INDIRECT;
2656 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2657 FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2658 switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2659 case GIC_PAGE_SIZE_64K:
2660 addr = GITS_BASER_ADDR_48_to_52(baser);
2661 break;
2662 default:
2663 addr = baser & GENMASK_ULL(47, 12);
2664 break;
2665 }
2666 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2667 val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2668 FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2669 val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2670 FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2671 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2672
2673 return val;
2674 }
2675
2676 return 0;
2677}
2678
2679static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2680{
2681 u32 aff;
2682 u64 val;
2683 int cpu;
2684
2685 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2686 aff = compute_common_aff(val);
2687
2688 for_each_possible_cpu(cpu) {
2689 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
5e516846
MZ
2690
2691 if (!base || cpu == smp_processor_id())
2692 continue;
2693
2694 val = gic_read_typer(base + GICR_TYPER);
4bccf1d7 2695 if (aff != compute_common_aff(val))
5e516846
MZ
2696 continue;
2697
2698 /*
2699 * At this point, we have a victim. This particular CPU
2700 * has already booted, and has an affinity that matches
2701 * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2702 * Make sure we don't write the Z bit in that case.
2703 */
5186a6cc 2704 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
5e516846
MZ
2705 val &= ~GICR_VPROPBASER_4_1_Z;
2706
8b718d40 2707 gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
5e516846
MZ
2708 *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2709
2710 return val;
2711 }
2712
2713 return 0;
2714}
2715
4e6437f1
ZY
2716static bool allocate_vpe_l2_table(int cpu, u32 id)
2717{
2718 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
490d332e
MZ
2719 unsigned int psz, esz, idx, npg, gpsz;
2720 u64 val;
4e6437f1
ZY
2721 struct page *page;
2722 __le64 *table;
2723
2724 if (!gic_rdists->has_rvpeid)
2725 return true;
2726
28d160de
MZ
2727 /* Skip non-present CPUs */
2728 if (!base)
2729 return true;
2730
5186a6cc 2731 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
4e6437f1
ZY
2732
2733 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2734 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2735 npg = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2736
2737 switch (gpsz) {
2738 default:
2739 WARN_ON(1);
2740 /* fall through */
2741 case GIC_PAGE_SIZE_4K:
2742 psz = SZ_4K;
2743 break;
2744 case GIC_PAGE_SIZE_16K:
2745 psz = SZ_16K;
2746 break;
2747 case GIC_PAGE_SIZE_64K:
2748 psz = SZ_64K;
2749 break;
2750 }
2751
2752 /* Don't allow vpe_id that exceeds single, flat table limit */
2753 if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2754 return (id < (npg * psz / (esz * SZ_8)));
2755
2756 /* Compute 1st level table index & check if that exceeds table limit */
2757 idx = id >> ilog2(psz / (esz * SZ_8));
2758 if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2759 return false;
2760
2761 table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2762
2763 /* Allocate memory for 2nd level table */
2764 if (!table[idx]) {
2765 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2766 if (!page)
2767 return false;
2768
2769 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
2770 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2771 gic_flush_dcache_to_poc(page_address(page), psz);
2772
2773 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2774
2775 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2776 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2777 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2778
2779 /* Ensure updated table contents are visible to RD hardware */
2780 dsb(sy);
2781 }
2782
2783 return true;
2784}
2785
5e516846
MZ
2786static int allocate_vpe_l1_table(void)
2787{
2788 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2789 u64 val, gpsz, npg, pa;
2790 unsigned int psz = SZ_64K;
2791 unsigned int np, epp, esz;
2792 struct page *page;
2793
2794 if (!gic_rdists->has_rvpeid)
2795 return 0;
2796
2797 /*
2798 * if VPENDBASER.Valid is set, disable any previously programmed
2799 * VPE by setting PendingLast while clearing Valid. This has the
2800 * effect of making sure no doorbell will be generated and we can
2801 * then safely clear VPROPBASER.Valid.
2802 */
5186a6cc
ZY
2803 if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2804 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
5e516846
MZ
2805 vlpi_base + GICR_VPENDBASER);
2806
2807 /*
2808 * If we can inherit the configuration from another RD, let's do
2809 * so. Otherwise, we have to go through the allocation process. We
2810 * assume that all RDs have the exact same requirements, as
2811 * nothing will work otherwise.
2812 */
2813 val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2814 if (val & GICR_VPROPBASER_4_1_VALID)
2815 goto out;
2816
2817 gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_KERNEL);
2818 if (!gic_data_rdist()->vpe_table_mask)
2819 return -ENOMEM;
2820
2821 val = inherit_vpe_l1_table_from_its();
2822 if (val & GICR_VPROPBASER_4_1_VALID)
2823 goto out;
2824
2825 /* First probe the page size */
2826 val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
5186a6cc
ZY
2827 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2828 val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
5e516846
MZ
2829 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2830 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2831
2832 switch (gpsz) {
2833 default:
2834 gpsz = GIC_PAGE_SIZE_4K;
2835 /* fall through */
2836 case GIC_PAGE_SIZE_4K:
2837 psz = SZ_4K;
2838 break;
2839 case GIC_PAGE_SIZE_16K:
2840 psz = SZ_16K;
2841 break;
2842 case GIC_PAGE_SIZE_64K:
2843 psz = SZ_64K;
2844 break;
2845 }
2846
2847 /*
2848 * Start populating the register from scratch, including RO fields
2849 * (which we want to print in debug cases...)
2850 */
2851 val = 0;
2852 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2853 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2854
2855 /* How many entries per GIC page? */
2856 esz++;
2857 epp = psz / (esz * SZ_8);
2858
2859 /*
2860 * If we need more than just a single L1 page, flag the table
2861 * as indirect and compute the number of required L1 pages.
2862 */
2863 if (epp < ITS_MAX_VPEID) {
2864 int nl2;
2865
2866 val |= GICR_VPROPBASER_4_1_INDIRECT;
2867
2868 /* Number of L2 pages required to cover the VPEID space */
2869 nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2870
2871 /* Number of L1 pages to point to the L2 pages */
2872 npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2873 } else {
2874 npg = 1;
2875 }
2876
e88bd316 2877 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
5e516846
MZ
2878
2879 /* Right, that's the number of CPU pages we need for L1 */
2880 np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2881
2882 pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2883 np, npg, psz, epp, esz);
2884 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(np * PAGE_SIZE));
2885 if (!page)
2886 return -ENOMEM;
2887
8b718d40 2888 gic_data_rdist()->vpe_l1_base = page_address(page);
5e516846
MZ
2889 pa = virt_to_phys(page_address(page));
2890 WARN_ON(!IS_ALIGNED(pa, psz));
2891
2892 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
2893 val |= GICR_VPROPBASER_RaWb;
2894 val |= GICR_VPROPBASER_InnerShareable;
2895 val |= GICR_VPROPBASER_4_1_Z;
2896 val |= GICR_VPROPBASER_4_1_VALID;
2897
2898out:
5186a6cc 2899 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
5e516846
MZ
2900 cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
2901
2902 pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
2903 smp_processor_id(), val,
2904 cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
2905
2906 return 0;
2907}
2908
1ac19ca6
MZ
2909static int its_alloc_collections(struct its_node *its)
2910{
83559b47
MZ
2911 int i;
2912
6396bb22 2913 its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
1ac19ca6
MZ
2914 GFP_KERNEL);
2915 if (!its->collections)
2916 return -ENOMEM;
2917
83559b47
MZ
2918 for (i = 0; i < nr_cpu_ids; i++)
2919 its->collections[i].target_address = ~0ULL;
2920
1ac19ca6
MZ
2921 return 0;
2922}
2923
7c297a2d
MZ
2924static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2925{
2926 struct page *pend_page;
adaab500 2927
7c297a2d 2928 pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
adaab500 2929 get_order(LPI_PENDBASE_SZ));
7c297a2d
MZ
2930 if (!pend_page)
2931 return NULL;
2932
2933 /* Make sure the GIC will observe the zero-ed page */
2934 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2935
2936 return pend_page;
2937}
2938
7d75bbb4
MZ
2939static void its_free_pending_table(struct page *pt)
2940{
adaab500 2941 free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
7d75bbb4
MZ
2942}
2943
c6e2ccb6 2944/*
5e2c9f9a
MZ
2945 * Booting with kdump and LPIs enabled is generally fine. Any other
2946 * case is wrong in the absence of firmware/EFI support.
c6e2ccb6 2947 */
c440a9d9
MZ
2948static bool enabled_lpis_allowed(void)
2949{
5e2c9f9a
MZ
2950 phys_addr_t addr;
2951 u64 val;
c6e2ccb6 2952
5e2c9f9a
MZ
2953 /* Check whether the property table is in a reserved region */
2954 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2955 addr = val & GENMASK_ULL(51, 12);
2956
2957 return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
c440a9d9
MZ
2958}
2959
11e37d35 2960static int __init allocate_lpi_tables(void)
1ac19ca6 2961{
c440a9d9 2962 u64 val;
11e37d35 2963 int err, cpu;
1ac19ca6 2964
c440a9d9
MZ
2965 /*
2966 * If LPIs are enabled while we run this from the boot CPU,
2967 * flag the RD tables as pre-allocated if the stars do align.
2968 */
2969 val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
2970 if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
2971 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
2972 RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
2973 pr_info("GICv3: Using preallocated redistributor tables\n");
2974 }
2975
11e37d35
MZ
2976 err = its_setup_lpi_prop_table();
2977 if (err)
2978 return err;
2979
2980 /*
2981 * We allocate all the pending tables anyway, as we may have a
2982 * mix of RDs that have had LPIs enabled, and some that
2983 * don't. We'll free the unused ones as each CPU comes online.
2984 */
2985 for_each_possible_cpu(cpu) {
2986 struct page *pend_page;
7c297a2d
MZ
2987
2988 pend_page = its_allocate_pending_table(GFP_NOWAIT);
1ac19ca6 2989 if (!pend_page) {
11e37d35
MZ
2990 pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
2991 return -ENOMEM;
1ac19ca6
MZ
2992 }
2993
11e37d35 2994 gic_data_rdist_cpu(cpu)->pend_page = pend_page;
1ac19ca6
MZ
2995 }
2996
11e37d35
MZ
2997 return 0;
2998}
2999
e64fab1a 3000static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
6479450f
HG
3001{
3002 u32 count = 1000000; /* 1s! */
3003 bool clean;
3004 u64 val;
3005
5186a6cc 3006 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
6479450f 3007 val &= ~GICR_VPENDBASER_Valid;
e64fab1a
MZ
3008 val &= ~clr;
3009 val |= set;
5186a6cc 3010 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
6479450f
HG
3011
3012 do {
5186a6cc 3013 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
6479450f
HG
3014 clean = !(val & GICR_VPENDBASER_Dirty);
3015 if (!clean) {
3016 count--;
3017 cpu_relax();
3018 udelay(1);
3019 }
3020 } while (!clean && count);
3021
e64fab1a
MZ
3022 if (unlikely(val & GICR_VPENDBASER_Dirty)) {
3023 pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3024 val |= GICR_VPENDBASER_PendingLast;
3025 }
3026
6479450f
HG
3027 return val;
3028}
3029
11e37d35
MZ
3030static void its_cpu_init_lpis(void)
3031{
3032 void __iomem *rbase = gic_data_rdist_rd_base();
3033 struct page *pend_page;
3034 phys_addr_t paddr;
3035 u64 val, tmp;
3036
3037 if (gic_data_rdist()->lpi_enabled)
3038 return;
3039
c440a9d9
MZ
3040 val = readl_relaxed(rbase + GICR_CTLR);
3041 if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3042 (val & GICR_CTLR_ENABLE_LPIS)) {
f842ca8e
MZ
3043 /*
3044 * Check that we get the same property table on all
3045 * RDs. If we don't, this is hopeless.
3046 */
3047 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3048 paddr &= GENMASK_ULL(51, 12);
3049 if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3050 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3051
c440a9d9
MZ
3052 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3053 paddr &= GENMASK_ULL(51, 16);
3054
5e2c9f9a 3055 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
c440a9d9
MZ
3056 its_free_pending_table(gic_data_rdist()->pend_page);
3057 gic_data_rdist()->pend_page = NULL;
3058
3059 goto out;
3060 }
3061
11e37d35
MZ
3062 pend_page = gic_data_rdist()->pend_page;
3063 paddr = page_to_phys(pend_page);
3fb68fae 3064 WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
11e37d35 3065
1ac19ca6 3066 /* set PROPBASE */
e1a2e201 3067 val = (gic_rdists->prop_table_pa |
1ac19ca6 3068 GICR_PROPBASER_InnerShareable |
2fd632a0 3069 GICR_PROPBASER_RaWaWb |
1ac19ca6
MZ
3070 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3071
0968a619
VM
3072 gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3073 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
1ac19ca6
MZ
3074
3075 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
241a386c
MZ
3076 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3077 /*
3078 * The HW reports non-shareable, we must
3079 * remove the cacheability attributes as
3080 * well.
3081 */
3082 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3083 GICR_PROPBASER_CACHEABILITY_MASK);
3084 val |= GICR_PROPBASER_nC;
0968a619 3085 gicr_write_propbaser(val, rbase + GICR_PROPBASER);
241a386c 3086 }
1ac19ca6
MZ
3087 pr_info_once("GIC: using cache flushing for LPI property table\n");
3088 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3089 }
3090
3091 /* set PENDBASE */
3092 val = (page_to_phys(pend_page) |
4ad3e363 3093 GICR_PENDBASER_InnerShareable |
2fd632a0 3094 GICR_PENDBASER_RaWaWb);
1ac19ca6 3095
0968a619
VM
3096 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3097 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
241a386c
MZ
3098
3099 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3100 /*
3101 * The HW reports non-shareable, we must remove the
3102 * cacheability attributes as well.
3103 */
3104 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3105 GICR_PENDBASER_CACHEABILITY_MASK);
3106 val |= GICR_PENDBASER_nC;
0968a619 3107 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
241a386c 3108 }
1ac19ca6
MZ
3109
3110 /* Enable LPIs */
3111 val = readl_relaxed(rbase + GICR_CTLR);
3112 val |= GICR_CTLR_ENABLE_LPIS;
3113 writel_relaxed(val, rbase + GICR_CTLR);
3114
5e516846 3115 if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
6479450f
HG
3116 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3117
3118 /*
3119 * It's possible for CPU to receive VLPIs before it is
3120 * sheduled as a vPE, especially for the first CPU, and the
3121 * VLPI with INTID larger than 2^(IDbits+1) will be considered
3122 * as out of range and dropped by GIC.
3123 * So we initialize IDbits to known value to avoid VLPI drop.
3124 */
3125 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3126 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3127 smp_processor_id(), val);
5186a6cc 3128 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
6479450f
HG
3129
3130 /*
3131 * Also clear Valid bit of GICR_VPENDBASER, in case some
3132 * ancient programming gets left in and has possibility of
3133 * corrupting memory.
3134 */
e64fab1a 3135 val = its_clear_vpend_valid(vlpi_base, 0, 0);
6479450f
HG
3136 }
3137
5e516846
MZ
3138 if (allocate_vpe_l1_table()) {
3139 /*
3140 * If the allocation has failed, we're in massive trouble.
3141 * Disable direct injection, and pray that no VM was
3142 * already running...
3143 */
3144 gic_rdists->has_rvpeid = false;
3145 gic_rdists->has_vlpis = false;
3146 }
3147
1ac19ca6
MZ
3148 /* Make sure the GIC has seen the above */
3149 dsb(sy);
c440a9d9 3150out:
11e37d35 3151 gic_data_rdist()->lpi_enabled = true;
c440a9d9 3152 pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
11e37d35 3153 smp_processor_id(),
c440a9d9 3154 gic_data_rdist()->pend_page ? "allocated" : "reserved",
11e37d35 3155 &paddr);
1ac19ca6
MZ
3156}
3157
920181ce 3158static void its_cpu_init_collection(struct its_node *its)
1ac19ca6 3159{
920181ce
DB
3160 int cpu = smp_processor_id();
3161 u64 target;
1ac19ca6 3162
920181ce
DB
3163 /* avoid cross node collections and its mapping */
3164 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3165 struct device_node *cpu_node;
fbf8f40e 3166
920181ce
DB
3167 cpu_node = of_get_cpu_node(cpu, NULL);
3168 if (its->numa_node != NUMA_NO_NODE &&
3169 its->numa_node != of_node_to_nid(cpu_node))
3170 return;
3171 }
fbf8f40e 3172
920181ce
DB
3173 /*
3174 * We now have to bind each collection to its target
3175 * redistributor.
3176 */
3177 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
1ac19ca6 3178 /*
920181ce 3179 * This ITS wants the physical address of the
1ac19ca6
MZ
3180 * redistributor.
3181 */
920181ce
DB
3182 target = gic_data_rdist()->phys_base;
3183 } else {
3184 /* This ITS wants a linear CPU number. */
3185 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3186 target = GICR_TYPER_CPU_NUMBER(target) << 16;
3187 }
1ac19ca6 3188
920181ce
DB
3189 /* Perform collection mapping */
3190 its->collections[cpu].target_address = target;
3191 its->collections[cpu].col_id = cpu;
1ac19ca6 3192
920181ce
DB
3193 its_send_mapc(its, &its->collections[cpu], 1);
3194 its_send_invall(its, &its->collections[cpu]);
3195}
3196
3197static void its_cpu_init_collections(void)
3198{
3199 struct its_node *its;
3200
a8db7456 3201 raw_spin_lock(&its_lock);
920181ce
DB
3202
3203 list_for_each_entry(its, &its_nodes, entry)
3204 its_cpu_init_collection(its);
1ac19ca6 3205
a8db7456 3206 raw_spin_unlock(&its_lock);
1ac19ca6 3207}
84a6a2e7
MZ
3208
3209static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3210{
3211 struct its_device *its_dev = NULL, *tmp;
3e39e8f5 3212 unsigned long flags;
84a6a2e7 3213
3e39e8f5 3214 raw_spin_lock_irqsave(&its->lock, flags);
84a6a2e7
MZ
3215
3216 list_for_each_entry(tmp, &its->its_device_list, entry) {
3217 if (tmp->device_id == dev_id) {
3218 its_dev = tmp;
3219 break;
3220 }
3221 }
3222
3e39e8f5 3223 raw_spin_unlock_irqrestore(&its->lock, flags);
84a6a2e7
MZ
3224
3225 return its_dev;
3226}
3227
466b7d16
SD
3228static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3229{
3230 int i;
3231
3232 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3233 if (GITS_BASER_TYPE(its->tables[i].val) == type)
3234 return &its->tables[i];
3235 }
3236
3237 return NULL;
3238}
3239
539d3782
SD
3240static bool its_alloc_table_entry(struct its_node *its,
3241 struct its_baser *baser, u32 id)
3faf24ea 3242{
3faf24ea
SD
3243 struct page *page;
3244 u32 esz, idx;
3245 __le64 *table;
3246
3faf24ea
SD
3247 /* Don't allow device id that exceeds single, flat table limit */
3248 esz = GITS_BASER_ENTRY_SIZE(baser->val);
3249 if (!(baser->val & GITS_BASER_INDIRECT))
70cc81ed 3250 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3faf24ea
SD
3251
3252 /* Compute 1st level table index & check if that exceeds table limit */
70cc81ed 3253 idx = id >> ilog2(baser->psz / esz);
3faf24ea
SD
3254 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3255 return false;
3256
3257 table = baser->base;
3258
3259 /* Allocate memory for 2nd level table */
3260 if (!table[idx]) {
539d3782
SD
3261 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3262 get_order(baser->psz));
3faf24ea
SD
3263 if (!page)
3264 return false;
3265
3266 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
3267 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
328191c0 3268 gic_flush_dcache_to_poc(page_address(page), baser->psz);
3faf24ea
SD
3269
3270 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3271
3272 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3273 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
328191c0 3274 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3faf24ea
SD
3275
3276 /* Ensure updated table contents are visible to ITS hardware */
3277 dsb(sy);
3278 }
3279
3280 return true;
3281}
3282
70cc81ed
MZ
3283static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3284{
3285 struct its_baser *baser;
3286
3287 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3288
3289 /* Don't allow device id that exceeds ITS hardware limit */
3290 if (!baser)
576a8342 3291 return (ilog2(dev_id) < device_ids(its));
70cc81ed 3292
539d3782 3293 return its_alloc_table_entry(its, baser, dev_id);
70cc81ed
MZ
3294}
3295
7d75bbb4
MZ
3296static bool its_alloc_vpe_table(u32 vpe_id)
3297{
3298 struct its_node *its;
4e6437f1 3299 int cpu;
7d75bbb4
MZ
3300
3301 /*
3302 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3303 * could try and only do it on ITSs corresponding to devices
3304 * that have interrupts targeted at this VPE, but the
3305 * complexity becomes crazy (and you have tons of memory
3306 * anyway, right?).
3307 */
3308 list_for_each_entry(its, &its_nodes, entry) {
3309 struct its_baser *baser;
3310
0dd57fed 3311 if (!is_v4(its))
7d75bbb4 3312 continue;
3faf24ea 3313
7d75bbb4
MZ
3314 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3315 if (!baser)
3316 return false;
3faf24ea 3317
539d3782 3318 if (!its_alloc_table_entry(its, baser, vpe_id))
7d75bbb4 3319 return false;
3faf24ea
SD
3320 }
3321
4e6437f1
ZY
3322 /* Non v4.1? No need to iterate RDs and go back early. */
3323 if (!gic_rdists->has_rvpeid)
3324 return true;
3325
3326 /*
3327 * Make sure the L2 tables are allocated for all copies of
3328 * the L1 table on *all* v4.1 RDs.
3329 */
3330 for_each_possible_cpu(cpu) {
3331 if (!allocate_vpe_l2_table(cpu, vpe_id))
3332 return false;
3333 }
3334
3faf24ea
SD
3335 return true;
3336}
3337
84a6a2e7 3338static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
93f94ea0 3339 int nvecs, bool alloc_lpis)
84a6a2e7
MZ
3340{
3341 struct its_device *dev;
93f94ea0 3342 unsigned long *lpi_map = NULL;
3e39e8f5 3343 unsigned long flags;
591e5bec 3344 u16 *col_map = NULL;
84a6a2e7
MZ
3345 void *itt;
3346 int lpi_base;
3347 int nr_lpis;
c8481267 3348 int nr_ites;
84a6a2e7
MZ
3349 int sz;
3350
3faf24ea 3351 if (!its_alloc_device_table(its, dev_id))
466b7d16
SD
3352 return NULL;
3353
147c8f37
MZ
3354 if (WARN_ON(!is_power_of_2(nvecs)))
3355 nvecs = roundup_pow_of_two(nvecs);
3356
84a6a2e7 3357 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
c8481267 3358 /*
147c8f37
MZ
3359 * Even if the device wants a single LPI, the ITT must be
3360 * sized as a power of two (and you need at least one bit...).
c8481267 3361 */
147c8f37 3362 nr_ites = max(2, nvecs);
ffedbf0c 3363 sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
84a6a2e7 3364 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
539d3782 3365 itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
93f94ea0 3366 if (alloc_lpis) {
38dd7c49 3367 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
93f94ea0 3368 if (lpi_map)
6396bb22 3369 col_map = kcalloc(nr_lpis, sizeof(*col_map),
93f94ea0
MZ
3370 GFP_KERNEL);
3371 } else {
6396bb22 3372 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
93f94ea0
MZ
3373 nr_lpis = 0;
3374 lpi_base = 0;
3375 }
84a6a2e7 3376
93f94ea0 3377 if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) {
84a6a2e7
MZ
3378 kfree(dev);
3379 kfree(itt);
3380 kfree(lpi_map);
591e5bec 3381 kfree(col_map);
84a6a2e7
MZ
3382 return NULL;
3383 }
3384
328191c0 3385 gic_flush_dcache_to_poc(itt, sz);
5a9a8915 3386
84a6a2e7
MZ
3387 dev->its = its;
3388 dev->itt = itt;
c8481267 3389 dev->nr_ites = nr_ites;
591e5bec
MZ
3390 dev->event_map.lpi_map = lpi_map;
3391 dev->event_map.col_map = col_map;
3392 dev->event_map.lpi_base = lpi_base;
3393 dev->event_map.nr_lpis = nr_lpis;
11635fa2 3394 raw_spin_lock_init(&dev->event_map.vlpi_lock);
84a6a2e7
MZ
3395 dev->device_id = dev_id;
3396 INIT_LIST_HEAD(&dev->entry);
3397
3e39e8f5 3398 raw_spin_lock_irqsave(&its->lock, flags);
84a6a2e7 3399 list_add(&dev->entry, &its->its_device_list);
3e39e8f5 3400 raw_spin_unlock_irqrestore(&its->lock, flags);
84a6a2e7 3401
84a6a2e7
MZ
3402 /* Map device to its ITT */
3403 its_send_mapd(dev, 1);
3404
3405 return dev;
3406}
3407
3408static void its_free_device(struct its_device *its_dev)
3409{
3e39e8f5
MZ
3410 unsigned long flags;
3411
3412 raw_spin_lock_irqsave(&its_dev->its->lock, flags);
84a6a2e7 3413 list_del(&its_dev->entry);
3e39e8f5 3414 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
898aa5ce 3415 kfree(its_dev->event_map.col_map);
84a6a2e7
MZ
3416 kfree(its_dev->itt);
3417 kfree(its_dev);
3418}
b48ac83d 3419
8208d170 3420static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
b48ac83d
MZ
3421{
3422 int idx;
3423
342be106 3424 /* Find a free LPI region in lpi_map and allocate them. */
8208d170
MZ
3425 idx = bitmap_find_free_region(dev->event_map.lpi_map,
3426 dev->event_map.nr_lpis,
3427 get_count_order(nvecs));
3428 if (idx < 0)
b48ac83d
MZ
3429 return -ENOSPC;
3430
591e5bec 3431 *hwirq = dev->event_map.lpi_base + idx;
b48ac83d 3432
b48ac83d
MZ
3433 return 0;
3434}
3435
54456db9
MZ
3436static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3437 int nvec, msi_alloc_info_t *info)
e8137f4f 3438{
b48ac83d 3439 struct its_node *its;
b48ac83d 3440 struct its_device *its_dev;
54456db9
MZ
3441 struct msi_domain_info *msi_info;
3442 u32 dev_id;
9791ec7d 3443 int err = 0;
54456db9
MZ
3444
3445 /*
a7c90f51 3446 * We ignore "dev" entirely, and rely on the dev_id that has
54456db9
MZ
3447 * been passed via the scratchpad. This limits this domain's
3448 * usefulness to upper layers that definitely know that they
3449 * are built on top of the ITS.
3450 */
3451 dev_id = info->scratchpad[0].ul;
3452
3453 msi_info = msi_get_domain_info(domain);
3454 its = msi_info->data;
e8137f4f 3455
20b3d54e
MZ
3456 if (!gic_rdists->has_direct_lpi &&
3457 vpe_proxy.dev &&
3458 vpe_proxy.dev->its == its &&
3459 dev_id == vpe_proxy.dev->device_id) {
3460 /* Bad luck. Get yourself a better implementation */
3461 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3462 dev_id);
3463 return -EINVAL;
3464 }
3465
9791ec7d 3466 mutex_lock(&its->dev_alloc_lock);
f130420e 3467 its_dev = its_find_device(its, dev_id);
e8137f4f
MZ
3468 if (its_dev) {
3469 /*
3470 * We already have seen this ID, probably through
3471 * another alias (PCI bridge of some sort). No need to
3472 * create the device.
3473 */
9791ec7d 3474 its_dev->shared = true;
f130420e 3475 pr_debug("Reusing ITT for devID %x\n", dev_id);
e8137f4f
MZ
3476 goto out;
3477 }
b48ac83d 3478
93f94ea0 3479 its_dev = its_create_device(its, dev_id, nvec, true);
9791ec7d
MZ
3480 if (!its_dev) {
3481 err = -ENOMEM;
3482 goto out;
3483 }
b48ac83d 3484
f130420e 3485 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
e8137f4f 3486out:
9791ec7d 3487 mutex_unlock(&its->dev_alloc_lock);
b48ac83d 3488 info->scratchpad[0].ptr = its_dev;
9791ec7d 3489 return err;
b48ac83d
MZ
3490}
3491
54456db9
MZ
3492static struct msi_domain_ops its_msi_domain_ops = {
3493 .msi_prepare = its_msi_prepare,
3494};
3495
b48ac83d
MZ
3496static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3497 unsigned int virq,
3498 irq_hw_number_t hwirq)
3499{
f833f57f
MZ
3500 struct irq_fwspec fwspec;
3501
3502 if (irq_domain_get_of_node(domain->parent)) {
3503 fwspec.fwnode = domain->parent->fwnode;
3504 fwspec.param_count = 3;
3505 fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3506 fwspec.param[1] = hwirq;
3507 fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3f010cf1
TN
3508 } else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3509 fwspec.fwnode = domain->parent->fwnode;
3510 fwspec.param_count = 2;
3511 fwspec.param[0] = hwirq;
3512 fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
f833f57f
MZ
3513 } else {
3514 return -EINVAL;
3515 }
b48ac83d 3516
f833f57f 3517 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
b48ac83d
MZ
3518}
3519
3520static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3521 unsigned int nr_irqs, void *args)
3522{
3523 msi_alloc_info_t *info = args;
3524 struct its_device *its_dev = info->scratchpad[0].ptr;
35ae7df2 3525 struct its_node *its = its_dev->its;
b48ac83d
MZ
3526 irq_hw_number_t hwirq;
3527 int err;
3528 int i;
3529
8208d170
MZ
3530 err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3531 if (err)
3532 return err;
b48ac83d 3533
35ae7df2
JG
3534 err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3535 if (err)
3536 return err;
3537
8208d170
MZ
3538 for (i = 0; i < nr_irqs; i++) {
3539 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
b48ac83d
MZ
3540 if (err)
3541 return err;
3542
3543 irq_domain_set_hwirq_and_chip(domain, virq + i,
8208d170 3544 hwirq + i, &its_irq_chip, its_dev);
0d224d35 3545 irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(virq + i)));
f130420e 3546 pr_debug("ID:%d pID:%d vID:%d\n",
8208d170
MZ
3547 (int)(hwirq + i - its_dev->event_map.lpi_base),
3548 (int)(hwirq + i), virq + i);
b48ac83d
MZ
3549 }
3550
3551 return 0;
3552}
3553
72491643 3554static int its_irq_domain_activate(struct irq_domain *domain,
702cb0a0 3555 struct irq_data *d, bool reserve)
aca268df
MZ
3556{
3557 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3558 u32 event = its_get_event_id(d);
0d224d35 3559 int cpu;
fbf8f40e 3560
c5d6082d
MZ
3561 cpu = its_select_cpu(d, cpu_online_mask);
3562 if (cpu < 0 || cpu >= nr_cpu_ids)
3563 return -EINVAL;
c1797b11 3564
2f13ff1d 3565 its_inc_lpi_count(d, cpu);
0d224d35
MZ
3566 its_dev->event_map.col_map[event] = cpu;
3567 irq_data_update_effective_affinity(d, cpumask_of(cpu));
591e5bec 3568
aca268df 3569 /* Map the GIC IRQ and event to the device */
6a25ad3a 3570 its_send_mapti(its_dev, d->hwirq, event);
72491643 3571 return 0;
aca268df
MZ
3572}
3573
3574static void its_irq_domain_deactivate(struct irq_domain *domain,
3575 struct irq_data *d)
3576{
3577 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3578 u32 event = its_get_event_id(d);
3579
2f13ff1d 3580 its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
aca268df
MZ
3581 /* Stop the delivery of interrupts */
3582 its_send_discard(its_dev, event);
3583}
3584
b48ac83d
MZ
3585static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3586 unsigned int nr_irqs)
3587{
3588 struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3589 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
9791ec7d 3590 struct its_node *its = its_dev->its;
b48ac83d
MZ
3591 int i;
3592
c9c96e30
MZ
3593 bitmap_release_region(its_dev->event_map.lpi_map,
3594 its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3595 get_count_order(nr_irqs));
3596
b48ac83d
MZ
3597 for (i = 0; i < nr_irqs; i++) {
3598 struct irq_data *data = irq_domain_get_irq_data(domain,
3599 virq + i);
b48ac83d 3600 /* Nuke the entry in the domain */
2da39949 3601 irq_domain_reset_irq_data(data);
b48ac83d
MZ
3602 }
3603
9791ec7d
MZ
3604 mutex_lock(&its->dev_alloc_lock);
3605
3606 /*
3607 * If all interrupts have been freed, start mopping the
3608 * floor. This is conditionned on the device not being shared.
3609 */
3610 if (!its_dev->shared &&
3611 bitmap_empty(its_dev->event_map.lpi_map,
591e5bec 3612 its_dev->event_map.nr_lpis)) {
38dd7c49
MZ
3613 its_lpi_free(its_dev->event_map.lpi_map,
3614 its_dev->event_map.lpi_base,
3615 its_dev->event_map.nr_lpis);
b48ac83d
MZ
3616
3617 /* Unmap device/itt */
3618 its_send_mapd(its_dev, 0);
3619 its_free_device(its_dev);
3620 }
3621
9791ec7d
MZ
3622 mutex_unlock(&its->dev_alloc_lock);
3623
b48ac83d
MZ
3624 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3625}
3626
3627static const struct irq_domain_ops its_domain_ops = {
3628 .alloc = its_irq_domain_alloc,
3629 .free = its_irq_domain_free,
aca268df
MZ
3630 .activate = its_irq_domain_activate,
3631 .deactivate = its_irq_domain_deactivate,
b48ac83d 3632};
4c21f3c2 3633
20b3d54e
MZ
3634/*
3635 * This is insane.
3636 *
0684c704 3637 * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
20b3d54e
MZ
3638 * likely), the only way to perform an invalidate is to use a fake
3639 * device to issue an INV command, implying that the LPI has first
3640 * been mapped to some event on that device. Since this is not exactly
3641 * cheap, we try to keep that mapping around as long as possible, and
3642 * only issue an UNMAP if we're short on available slots.
3643 *
3644 * Broken by design(tm).
0684c704
MZ
3645 *
3646 * GICv4.1, on the other hand, mandates that we're able to invalidate
3647 * by writing to a MMIO register. It doesn't implement the whole of
3648 * DirectLPI, but that's good enough. And most of the time, we don't
3649 * even have to invalidate anything, as the redistributor can be told
3650 * whether to generate a doorbell or not (we thus leave it enabled,
3651 * always).
20b3d54e
MZ
3652 */
3653static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3654{
0684c704
MZ
3655 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3656 if (gic_rdists->has_rvpeid)
3657 return;
3658
20b3d54e
MZ
3659 /* Already unmapped? */
3660 if (vpe->vpe_proxy_event == -1)
3661 return;
3662
3663 its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3664 vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3665
3666 /*
3667 * We don't track empty slots at all, so let's move the
3668 * next_victim pointer if we can quickly reuse that slot
3669 * instead of nuking an existing entry. Not clear that this is
3670 * always a win though, and this might just generate a ripple
3671 * effect... Let's just hope VPEs don't migrate too often.
3672 */
3673 if (vpe_proxy.vpes[vpe_proxy.next_victim])
3674 vpe_proxy.next_victim = vpe->vpe_proxy_event;
3675
3676 vpe->vpe_proxy_event = -1;
3677}
3678
3679static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3680{
0684c704
MZ
3681 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3682 if (gic_rdists->has_rvpeid)
3683 return;
3684
20b3d54e
MZ
3685 if (!gic_rdists->has_direct_lpi) {
3686 unsigned long flags;
3687
3688 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3689 its_vpe_db_proxy_unmap_locked(vpe);
3690 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3691 }
3692}
3693
3694static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3695{
0684c704
MZ
3696 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3697 if (gic_rdists->has_rvpeid)
3698 return;
3699
20b3d54e
MZ
3700 /* Already mapped? */
3701 if (vpe->vpe_proxy_event != -1)
3702 return;
3703
3704 /* This slot was already allocated. Kick the other VPE out. */
3705 if (vpe_proxy.vpes[vpe_proxy.next_victim])
3706 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3707
3708 /* Map the new VPE instead */
3709 vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3710 vpe->vpe_proxy_event = vpe_proxy.next_victim;
3711 vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3712
3713 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3714 its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3715}
3716
958b90d1
MZ
3717static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3718{
3719 unsigned long flags;
3720 struct its_collection *target_col;
3721
0684c704
MZ
3722 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3723 if (gic_rdists->has_rvpeid)
3724 return;
3725
958b90d1
MZ
3726 if (gic_rdists->has_direct_lpi) {
3727 void __iomem *rdbase;
3728
3729 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3730 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2f4f064b 3731 wait_for_syncr(rdbase);
958b90d1
MZ
3732
3733 return;
3734 }
3735
3736 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3737
3738 its_vpe_db_proxy_map_locked(vpe);
3739
3740 target_col = &vpe_proxy.dev->its->collections[to];
3741 its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3742 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3743
3744 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3745}
3746
3171a47a
MZ
3747static int its_vpe_set_affinity(struct irq_data *d,
3748 const struct cpumask *mask_val,
3749 bool force)
3750{
3751 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
dd3f050a 3752 int from, cpu = cpumask_first(mask_val);
f3a05921 3753 unsigned long flags;
3171a47a
MZ
3754
3755 /*
3756 * Changing affinity is mega expensive, so let's be as lazy as
20b3d54e 3757 * we can and only do it if we really have to. Also, if mapped
958b90d1
MZ
3758 * into the proxy device, we need to move the doorbell
3759 * interrupt to its new location.
f3a05921
MZ
3760 *
3761 * Another thing is that changing the affinity of a vPE affects
3762 * *other interrupts* such as all the vLPIs that are routed to
3763 * this vPE. This means that the irq_desc lock is not enough to
3764 * protect us, and that we must ensure nobody samples vpe->col_idx
3765 * during the update, hence the lock below which must also be
3766 * taken on any vLPI handling path that evaluates vpe->col_idx.
3171a47a 3767 */
f3a05921
MZ
3768 from = vpe_to_cpuid_lock(vpe, &flags);
3769 if (from == cpu)
dd3f050a 3770 goto out;
958b90d1 3771
dd3f050a
MZ
3772 vpe->col_idx = cpu;
3773
3774 /*
3775 * GICv4.1 allows us to skip VMOVP if moving to a cpu whose RD
3776 * is sharing its VPE table with the current one.
3777 */
3778 if (gic_data_rdist_cpu(cpu)->vpe_table_mask &&
3779 cpumask_test_cpu(from, gic_data_rdist_cpu(cpu)->vpe_table_mask))
3780 goto out;
3171a47a 3781
dd3f050a
MZ
3782 its_send_vmovp(vpe);
3783 its_vpe_db_proxy_move(vpe, from, cpu);
3784
3785out:
44c4c25e 3786 irq_data_update_effective_affinity(d, cpumask_of(cpu));
f3a05921 3787 vpe_to_cpuid_unlock(vpe, flags);
44c4c25e 3788
3171a47a
MZ
3789 return IRQ_SET_MASK_OK_DONE;
3790}
3791
96806229
MZ
3792static void its_wait_vpt_parse_complete(void)
3793{
3794 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3795 u64 val;
3796
3797 if (!gic_rdists->has_vpend_valid_dirty)
3798 return;
3799
31dbb6b1
ZY
3800 WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
3801 val,
3802 !(val & GICR_VPENDBASER_Dirty),
3803 10, 500));
96806229
MZ
3804}
3805
e643d803
MZ
3806static void its_vpe_schedule(struct its_vpe *vpe)
3807{
50c33097 3808 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
e643d803
MZ
3809 u64 val;
3810
3811 /* Schedule the VPE */
3812 val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
3813 GENMASK_ULL(51, 12);
3814 val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3815 val |= GICR_VPROPBASER_RaWb;
3816 val |= GICR_VPROPBASER_InnerShareable;
5186a6cc 3817 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
e643d803
MZ
3818
3819 val = virt_to_phys(page_address(vpe->vpt_page)) &
3820 GENMASK_ULL(51, 16);
3821 val |= GICR_VPENDBASER_RaWaWb;
b2cb11f4 3822 val |= GICR_VPENDBASER_InnerShareable;
e643d803
MZ
3823 /*
3824 * There is no good way of finding out if the pending table is
3825 * empty as we can race against the doorbell interrupt very
3826 * easily. So in the end, vpe->pending_last is only an
3827 * indication that the vcpu has something pending, not one
3828 * that the pending table is empty. A good implementation
3829 * would be able to read its coarse map pretty quickly anyway,
3830 * making this a tolerable issue.
3831 */
3832 val |= GICR_VPENDBASER_PendingLast;
3833 val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
3834 val |= GICR_VPENDBASER_Valid;
5186a6cc 3835 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
96806229
MZ
3836
3837 its_wait_vpt_parse_complete();
e643d803
MZ
3838}
3839
3840static void its_vpe_deschedule(struct its_vpe *vpe)
3841{
50c33097 3842 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
e643d803
MZ
3843 u64 val;
3844
e64fab1a 3845 val = its_clear_vpend_valid(vlpi_base, 0, 0);
e643d803 3846
e64fab1a
MZ
3847 vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
3848 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
e643d803
MZ
3849}
3850
40619a2e
MZ
3851static void its_vpe_invall(struct its_vpe *vpe)
3852{
3853 struct its_node *its;
3854
3855 list_for_each_entry(its, &its_nodes, entry) {
0dd57fed 3856 if (!is_v4(its))
40619a2e
MZ
3857 continue;
3858
2247e1bf
MZ
3859 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
3860 continue;
3861
3c1cceeb
MZ
3862 /*
3863 * Sending a VINVALL to a single ITS is enough, as all
3864 * we need is to reach the redistributors.
3865 */
40619a2e 3866 its_send_vinvall(its, vpe);
3c1cceeb 3867 return;
40619a2e
MZ
3868 }
3869}
3870
e643d803
MZ
3871static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3872{
3873 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3874 struct its_cmd_info *info = vcpu_info;
3875
3876 switch (info->cmd_type) {
3877 case SCHEDULE_VPE:
3878 its_vpe_schedule(vpe);
3879 return 0;
3880
3881 case DESCHEDULE_VPE:
3882 its_vpe_deschedule(vpe);
3883 return 0;
3884
5e2f7642 3885 case INVALL_VPE:
40619a2e 3886 its_vpe_invall(vpe);
5e2f7642
MZ
3887 return 0;
3888
e643d803
MZ
3889 default:
3890 return -EINVAL;
3891 }
3892}
3893
20b3d54e
MZ
3894static void its_vpe_send_cmd(struct its_vpe *vpe,
3895 void (*cmd)(struct its_device *, u32))
3896{
3897 unsigned long flags;
3898
3899 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3900
3901 its_vpe_db_proxy_map_locked(vpe);
3902 cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
3903
3904 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3905}
3906
f6a91da7
MZ
3907static void its_vpe_send_inv(struct irq_data *d)
3908{
3909 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
f6a91da7 3910
20b3d54e
MZ
3911 if (gic_rdists->has_direct_lpi) {
3912 void __iomem *rdbase;
3913
425c09be 3914 /* Target the redistributor this VPE is currently known on */
9058a4e9 3915 raw_spin_lock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
20b3d54e 3916 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
425c09be 3917 gic_write_lpir(d->parent_data->hwirq, rdbase + GICR_INVLPIR);
2f4f064b 3918 wait_for_syncr(rdbase);
9058a4e9 3919 raw_spin_unlock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
20b3d54e
MZ
3920 } else {
3921 its_vpe_send_cmd(vpe, its_send_inv);
3922 }
f6a91da7
MZ
3923}
3924
3925static void its_vpe_mask_irq(struct irq_data *d)
3926{
3927 /*
3928 * We need to unmask the LPI, which is described by the parent
3929 * irq_data. Instead of calling into the parent (which won't
3930 * exactly do the right thing, let's simply use the
3931 * parent_data pointer. Yes, I'm naughty.
3932 */
3933 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
3934 its_vpe_send_inv(d);
3935}
3936
3937static void its_vpe_unmask_irq(struct irq_data *d)
3938{
3939 /* Same hack as above... */
3940 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
3941 its_vpe_send_inv(d);
3942}
3943
e57a3e28
MZ
3944static int its_vpe_set_irqchip_state(struct irq_data *d,
3945 enum irqchip_irq_state which,
3946 bool state)
3947{
3948 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3949
3950 if (which != IRQCHIP_STATE_PENDING)
3951 return -EINVAL;
3952
3953 if (gic_rdists->has_direct_lpi) {
3954 void __iomem *rdbase;
3955
3956 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
3957 if (state) {
3958 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
3959 } else {
3960 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2f4f064b 3961 wait_for_syncr(rdbase);
e57a3e28
MZ
3962 }
3963 } else {
3964 if (state)
3965 its_vpe_send_cmd(vpe, its_send_int);
3966 else
3967 its_vpe_send_cmd(vpe, its_send_clear);
3968 }
3969
3970 return 0;
3971}
3972
7809f701
MZ
3973static int its_vpe_retrigger(struct irq_data *d)
3974{
3975 return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
3976}
3977
8fff27ae
MZ
3978static struct irq_chip its_vpe_irq_chip = {
3979 .name = "GICv4-vpe",
f6a91da7
MZ
3980 .irq_mask = its_vpe_mask_irq,
3981 .irq_unmask = its_vpe_unmask_irq,
3982 .irq_eoi = irq_chip_eoi_parent,
3171a47a 3983 .irq_set_affinity = its_vpe_set_affinity,
7809f701 3984 .irq_retrigger = its_vpe_retrigger,
e57a3e28 3985 .irq_set_irqchip_state = its_vpe_set_irqchip_state,
e643d803 3986 .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity,
8fff27ae
MZ
3987};
3988
d97c97ba
MZ
3989static struct its_node *find_4_1_its(void)
3990{
3991 static struct its_node *its = NULL;
3992
3993 if (!its) {
3994 list_for_each_entry(its, &its_nodes, entry) {
3995 if (is_v4_1(its))
3996 return its;
3997 }
3998
3999 /* Oops? */
4000 its = NULL;
4001 }
4002
4003 return its;
4004}
4005
4006static void its_vpe_4_1_send_inv(struct irq_data *d)
4007{
4008 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4009 struct its_node *its;
4010
4011 /*
4012 * GICv4.1 wants doorbells to be invalidated using the
4013 * INVDB command in order to be broadcast to all RDs. Send
4014 * it to the first valid ITS, and let the HW do its magic.
4015 */
4016 its = find_4_1_its();
4017 if (its)
4018 its_send_invdb(its, vpe);
4019}
4020
4021static void its_vpe_4_1_mask_irq(struct irq_data *d)
4022{
4023 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4024 its_vpe_4_1_send_inv(d);
4025}
4026
4027static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4028{
4029 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4030 its_vpe_4_1_send_inv(d);
4031}
4032
91bf6395
MZ
4033static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4034 struct its_cmd_info *info)
4035{
4036 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4037 u64 val = 0;
4038
4039 /* Schedule the VPE */
4040 val |= GICR_VPENDBASER_Valid;
4041 val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4042 val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4043 val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4044
5186a6cc 4045 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
96806229
MZ
4046
4047 its_wait_vpt_parse_complete();
91bf6395
MZ
4048}
4049
e64fab1a
MZ
4050static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4051 struct its_cmd_info *info)
4052{
4053 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4054 u64 val;
4055
4056 if (info->req_db) {
a3f574cd
MZ
4057 unsigned long flags;
4058
e64fab1a
MZ
4059 /*
4060 * vPE is going to block: make the vPE non-resident with
4061 * PendingLast clear and DB set. The GIC guarantees that if
4062 * we read-back PendingLast clear, then a doorbell will be
4063 * delivered when an interrupt comes.
a3f574cd
MZ
4064 *
4065 * Note the locking to deal with the concurrent update of
4066 * pending_last from the doorbell interrupt handler that can
4067 * run concurrently.
e64fab1a 4068 */
a3f574cd 4069 raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
e64fab1a
MZ
4070 val = its_clear_vpend_valid(vlpi_base,
4071 GICR_VPENDBASER_PendingLast,
4072 GICR_VPENDBASER_4_1_DB);
4073 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
a3f574cd 4074 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
e64fab1a
MZ
4075 } else {
4076 /*
4077 * We're not blocking, so just make the vPE non-resident
4078 * with PendingLast set, indicating that we'll be back.
4079 */
4080 val = its_clear_vpend_valid(vlpi_base,
4081 0,
4082 GICR_VPENDBASER_PendingLast);
4083 vpe->pending_last = true;
4084 }
4085}
4086
b4a4bd0f
MZ
4087static void its_vpe_4_1_invall(struct its_vpe *vpe)
4088{
4089 void __iomem *rdbase;
4090 u64 val;
4091
4092 val = GICR_INVALLR_V;
4093 val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
4094
4095 /* Target the redistributor this vPE is currently known on */
9058a4e9 4096 raw_spin_lock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
b4a4bd0f
MZ
4097 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
4098 gic_write_lpir(val, rdbase + GICR_INVALLR);
b978c25f
ZY
4099
4100 wait_for_syncr(rdbase);
9058a4e9 4101 raw_spin_unlock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
b4a4bd0f
MZ
4102}
4103
29c647f3
MZ
4104static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4105{
91bf6395 4106 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
29c647f3
MZ
4107 struct its_cmd_info *info = vcpu_info;
4108
4109 switch (info->cmd_type) {
4110 case SCHEDULE_VPE:
91bf6395 4111 its_vpe_4_1_schedule(vpe, info);
29c647f3
MZ
4112 return 0;
4113
4114 case DESCHEDULE_VPE:
e64fab1a 4115 its_vpe_4_1_deschedule(vpe, info);
29c647f3
MZ
4116 return 0;
4117
4118 case INVALL_VPE:
b4a4bd0f 4119 its_vpe_4_1_invall(vpe);
29c647f3
MZ
4120 return 0;
4121
4122 default:
4123 return -EINVAL;
4124 }
4125}
4126
4127static struct irq_chip its_vpe_4_1_irq_chip = {
4128 .name = "GICv4.1-vpe",
d97c97ba
MZ
4129 .irq_mask = its_vpe_4_1_mask_irq,
4130 .irq_unmask = its_vpe_4_1_unmask_irq,
29c647f3
MZ
4131 .irq_eoi = irq_chip_eoi_parent,
4132 .irq_set_affinity = its_vpe_set_affinity,
4133 .irq_set_vcpu_affinity = its_vpe_4_1_set_vcpu_affinity,
4134};
4135
e252cf8a
MZ
4136static void its_configure_sgi(struct irq_data *d, bool clear)
4137{
4138 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4139 struct its_cmd_desc desc;
4140
4141 desc.its_vsgi_cmd.vpe = vpe;
4142 desc.its_vsgi_cmd.sgi = d->hwirq;
4143 desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4144 desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4145 desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4146 desc.its_vsgi_cmd.clear = clear;
4147
4148 /*
4149 * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4150 * destination VPE is mapped there. Since we map them eagerly at
4151 * activation time, we're pretty sure the first GICv4.1 ITS will do.
4152 */
4153 its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4154}
4155
b4e8d644
MZ
4156static void its_sgi_mask_irq(struct irq_data *d)
4157{
4158 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4159
4160 vpe->sgi_config[d->hwirq].enabled = false;
4161 its_configure_sgi(d, false);
4162}
4163
4164static void its_sgi_unmask_irq(struct irq_data *d)
4165{
4166 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4167
4168 vpe->sgi_config[d->hwirq].enabled = true;
4169 its_configure_sgi(d, false);
4170}
4171
166cba71
MZ
4172static int its_sgi_set_affinity(struct irq_data *d,
4173 const struct cpumask *mask_val,
4174 bool force)
4175{
4176 /*
4177 * There is no notion of affinity for virtual SGIs, at least
4178 * not on the host (since they can only be targetting a vPE).
4179 * Tell the kernel we've done whatever it asked for.
4180 */
4b2dfe1e 4181 irq_data_update_effective_affinity(d, mask_val);
166cba71
MZ
4182 return IRQ_SET_MASK_OK;
4183}
4184
7017ff0e
MZ
4185static int its_sgi_set_irqchip_state(struct irq_data *d,
4186 enum irqchip_irq_state which,
4187 bool state)
4188{
4189 if (which != IRQCHIP_STATE_PENDING)
4190 return -EINVAL;
4191
4192 if (state) {
4193 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4194 struct its_node *its = find_4_1_its();
4195 u64 val;
4196
4197 val = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4198 val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4199 writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4200 } else {
4201 its_configure_sgi(d, true);
4202 }
4203
4204 return 0;
4205}
4206
4207static int its_sgi_get_irqchip_state(struct irq_data *d,
4208 enum irqchip_irq_state which, bool *val)
4209{
4210 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4211 void __iomem *base;
4212 unsigned long flags;
4213 u32 count = 1000000; /* 1s! */
4214 u32 status;
4215 int cpu;
4216
4217 if (which != IRQCHIP_STATE_PENDING)
4218 return -EINVAL;
4219
4220 /*
4221 * Locking galore! We can race against two different events:
4222 *
4223 * - Concurent vPE affinity change: we must make sure it cannot
4224 * happen, or we'll talk to the wrong redistributor. This is
4225 * identical to what happens with vLPIs.
4226 *
4227 * - Concurrent VSGIPENDR access: As it involves accessing two
4228 * MMIO registers, this must be made atomic one way or another.
4229 */
4230 cpu = vpe_to_cpuid_lock(vpe, &flags);
4231 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4232 base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4233 writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4234 do {
4235 status = readl_relaxed(base + GICR_VSGIPENDR);
4236 if (!(status & GICR_VSGIPENDR_BUSY))
4237 goto out;
4238
4239 count--;
4240 if (!count) {
4241 pr_err_ratelimited("Unable to get SGI status\n");
4242 goto out;
4243 }
4244 cpu_relax();
4245 udelay(1);
4246 } while (count);
4247
4248out:
4249 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4250 vpe_to_cpuid_unlock(vpe, flags);
4251
4252 if (!count)
4253 return -ENXIO;
4254
4255 *val = !!(status & (1 << d->hwirq));
4256
4257 return 0;
4258}
4259
05d32df1
MZ
4260static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4261{
4262 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4263 struct its_cmd_info *info = vcpu_info;
4264
4265 switch (info->cmd_type) {
4266 case PROP_UPDATE_VSGI:
4267 vpe->sgi_config[d->hwirq].priority = info->priority;
4268 vpe->sgi_config[d->hwirq].group = info->group;
4269 its_configure_sgi(d, false);
4270 return 0;
4271
4272 default:
4273 return -EINVAL;
4274 }
4275}
4276
166cba71
MZ
4277static struct irq_chip its_sgi_irq_chip = {
4278 .name = "GICv4.1-sgi",
b4e8d644
MZ
4279 .irq_mask = its_sgi_mask_irq,
4280 .irq_unmask = its_sgi_unmask_irq,
166cba71 4281 .irq_set_affinity = its_sgi_set_affinity,
7017ff0e
MZ
4282 .irq_set_irqchip_state = its_sgi_set_irqchip_state,
4283 .irq_get_irqchip_state = its_sgi_get_irqchip_state,
05d32df1 4284 .irq_set_vcpu_affinity = its_sgi_set_vcpu_affinity,
166cba71
MZ
4285};
4286
4287static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4288 unsigned int virq, unsigned int nr_irqs,
4289 void *args)
4290{
4291 struct its_vpe *vpe = args;
4292 int i;
4293
4294 /* Yes, we do want 16 SGIs */
4295 WARN_ON(nr_irqs != 16);
4296
4297 for (i = 0; i < 16; i++) {
4298 vpe->sgi_config[i].priority = 0;
4299 vpe->sgi_config[i].enabled = false;
4300 vpe->sgi_config[i].group = false;
4301
4302 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4303 &its_sgi_irq_chip, vpe);
4304 irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4305 }
4306
4307 return 0;
4308}
4309
4310static void its_sgi_irq_domain_free(struct irq_domain *domain,
4311 unsigned int virq,
4312 unsigned int nr_irqs)
4313{
4314 /* Nothing to do */
4315}
4316
4317static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4318 struct irq_data *d, bool reserve)
4319{
e252cf8a
MZ
4320 /* Write out the initial SGI configuration */
4321 its_configure_sgi(d, false);
166cba71
MZ
4322 return 0;
4323}
4324
4325static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4326 struct irq_data *d)
4327{
e252cf8a
MZ
4328 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4329
4330 /*
4331 * The VSGI command is awkward:
4332 *
4333 * - To change the configuration, CLEAR must be set to false,
4334 * leaving the pending bit unchanged.
4335 * - To clear the pending bit, CLEAR must be set to true, leaving
4336 * the configuration unchanged.
4337 *
4338 * You just can't do both at once, hence the two commands below.
4339 */
4340 vpe->sgi_config[d->hwirq].enabled = false;
4341 its_configure_sgi(d, false);
4342 its_configure_sgi(d, true);
166cba71
MZ
4343}
4344
4345static const struct irq_domain_ops its_sgi_domain_ops = {
4346 .alloc = its_sgi_irq_domain_alloc,
4347 .free = its_sgi_irq_domain_free,
4348 .activate = its_sgi_irq_domain_activate,
4349 .deactivate = its_sgi_irq_domain_deactivate,
4350};
4351
7d75bbb4
MZ
4352static int its_vpe_id_alloc(void)
4353{
32bd44dc 4354 return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
7d75bbb4
MZ
4355}
4356
4357static void its_vpe_id_free(u16 id)
4358{
4359 ida_simple_remove(&its_vpeid_ida, id);
4360}
4361
4362static int its_vpe_init(struct its_vpe *vpe)
4363{
4364 struct page *vpt_page;
4365 int vpe_id;
4366
4367 /* Allocate vpe_id */
4368 vpe_id = its_vpe_id_alloc();
4369 if (vpe_id < 0)
4370 return vpe_id;
4371
4372 /* Allocate VPT */
4373 vpt_page = its_allocate_pending_table(GFP_KERNEL);
4374 if (!vpt_page) {
4375 its_vpe_id_free(vpe_id);
4376 return -ENOMEM;
4377 }
4378
4379 if (!its_alloc_vpe_table(vpe_id)) {
4380 its_vpe_id_free(vpe_id);
34f8eb92 4381 its_free_pending_table(vpt_page);
7d75bbb4
MZ
4382 return -ENOMEM;
4383 }
4384
f3a05921 4385 raw_spin_lock_init(&vpe->vpe_lock);
7d75bbb4
MZ
4386 vpe->vpe_id = vpe_id;
4387 vpe->vpt_page = vpt_page;
64edfaa9
MZ
4388 if (gic_rdists->has_rvpeid)
4389 atomic_set(&vpe->vmapp_count, 0);
4390 else
4391 vpe->vpe_proxy_event = -1;
7d75bbb4
MZ
4392
4393 return 0;
4394}
4395
4396static void its_vpe_teardown(struct its_vpe *vpe)
4397{
20b3d54e 4398 its_vpe_db_proxy_unmap(vpe);
7d75bbb4
MZ
4399 its_vpe_id_free(vpe->vpe_id);
4400 its_free_pending_table(vpe->vpt_page);
4401}
4402
4403static void its_vpe_irq_domain_free(struct irq_domain *domain,
4404 unsigned int virq,
4405 unsigned int nr_irqs)
4406{
4407 struct its_vm *vm = domain->host_data;
4408 int i;
4409
4410 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4411
4412 for (i = 0; i < nr_irqs; i++) {
4413 struct irq_data *data = irq_domain_get_irq_data(domain,
4414 virq + i);
4415 struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4416
4417 BUG_ON(vm != vpe->its_vm);
4418
4419 clear_bit(data->hwirq, vm->db_bitmap);
4420 its_vpe_teardown(vpe);
4421 irq_domain_reset_irq_data(data);
4422 }
4423
4424 if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
38dd7c49 4425 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
7d75bbb4
MZ
4426 its_free_prop_table(vm->vprop_page);
4427 }
4428}
4429
4430static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4431 unsigned int nr_irqs, void *args)
4432{
29c647f3 4433 struct irq_chip *irqchip = &its_vpe_irq_chip;
7d75bbb4
MZ
4434 struct its_vm *vm = args;
4435 unsigned long *bitmap;
4436 struct page *vprop_page;
4437 int base, nr_ids, i, err = 0;
4438
4439 BUG_ON(!vm);
4440
38dd7c49 4441 bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
7d75bbb4
MZ
4442 if (!bitmap)
4443 return -ENOMEM;
4444
4445 if (nr_ids < nr_irqs) {
38dd7c49 4446 its_lpi_free(bitmap, base, nr_ids);
7d75bbb4
MZ
4447 return -ENOMEM;
4448 }
4449
4450 vprop_page = its_allocate_prop_table(GFP_KERNEL);
4451 if (!vprop_page) {
38dd7c49 4452 its_lpi_free(bitmap, base, nr_ids);
7d75bbb4
MZ
4453 return -ENOMEM;
4454 }
4455
4456 vm->db_bitmap = bitmap;
4457 vm->db_lpi_base = base;
4458 vm->nr_db_lpis = nr_ids;
4459 vm->vprop_page = vprop_page;
4460
29c647f3
MZ
4461 if (gic_rdists->has_rvpeid)
4462 irqchip = &its_vpe_4_1_irq_chip;
4463
7d75bbb4
MZ
4464 for (i = 0; i < nr_irqs; i++) {
4465 vm->vpes[i]->vpe_db_lpi = base + i;
4466 err = its_vpe_init(vm->vpes[i]);
4467 if (err)
4468 break;
4469 err = its_irq_gic_domain_alloc(domain, virq + i,
4470 vm->vpes[i]->vpe_db_lpi);
4471 if (err)
4472 break;
4473 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
29c647f3 4474 irqchip, vm->vpes[i]);
7d75bbb4
MZ
4475 set_bit(i, bitmap);
4476 }
4477
4478 if (err) {
4479 if (i > 0)
4480 its_vpe_irq_domain_free(domain, virq, i - 1);
4481
38dd7c49 4482 its_lpi_free(bitmap, base, nr_ids);
7d75bbb4
MZ
4483 its_free_prop_table(vprop_page);
4484 }
4485
4486 return err;
4487}
4488
72491643 4489static int its_vpe_irq_domain_activate(struct irq_domain *domain,
702cb0a0 4490 struct irq_data *d, bool reserve)
eb78192b
MZ
4491{
4492 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
40619a2e 4493 struct its_node *its;
eb78192b 4494
009384b3
MZ
4495 /*
4496 * If we use the list map, we issue VMAPP on demand... Unless
4497 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4498 * so that VSGIs can work.
4499 */
4500 if (!gic_requires_eager_mapping())
6ef930f2 4501 return 0;
eb78192b
MZ
4502
4503 /* Map the VPE to the first possible CPU */
4504 vpe->col_idx = cpumask_first(cpu_online_mask);
40619a2e
MZ
4505
4506 list_for_each_entry(its, &its_nodes, entry) {
0dd57fed 4507 if (!is_v4(its))
40619a2e
MZ
4508 continue;
4509
75fd951b 4510 its_send_vmapp(its, vpe, true);
40619a2e
MZ
4511 its_send_vinvall(its, vpe);
4512 }
4513
44c4c25e
MZ
4514 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4515
72491643 4516 return 0;
eb78192b
MZ
4517}
4518
4519static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4520 struct irq_data *d)
4521{
4522 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
75fd951b
MZ
4523 struct its_node *its;
4524
2247e1bf 4525 /*
009384b3
MZ
4526 * If we use the list map on GICv4.0, we unmap the VPE once no
4527 * VLPIs are associated with the VM.
2247e1bf 4528 */
009384b3 4529 if (!gic_requires_eager_mapping())
2247e1bf 4530 return;
eb78192b 4531
75fd951b 4532 list_for_each_entry(its, &its_nodes, entry) {
0dd57fed 4533 if (!is_v4(its))
75fd951b 4534 continue;
eb78192b 4535
75fd951b
MZ
4536 its_send_vmapp(its, vpe, false);
4537 }
eb78192b
MZ
4538}
4539
8fff27ae 4540static const struct irq_domain_ops its_vpe_domain_ops = {
7d75bbb4
MZ
4541 .alloc = its_vpe_irq_domain_alloc,
4542 .free = its_vpe_irq_domain_free,
eb78192b
MZ
4543 .activate = its_vpe_irq_domain_activate,
4544 .deactivate = its_vpe_irq_domain_deactivate,
8fff27ae
MZ
4545};
4546
4559fbb3
YW
4547static int its_force_quiescent(void __iomem *base)
4548{
4549 u32 count = 1000000; /* 1s */
4550 u32 val;
4551
4552 val = readl_relaxed(base + GITS_CTLR);
7611da86
DD
4553 /*
4554 * GIC architecture specification requires the ITS to be both
4555 * disabled and quiescent for writes to GITS_BASER<n> or
4556 * GITS_CBASER to not have UNPREDICTABLE results.
4557 */
4558 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4559fbb3
YW
4559 return 0;
4560
4561 /* Disable the generation of all interrupts to this ITS */
d51c4b4d 4562 val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4559fbb3
YW
4563 writel_relaxed(val, base + GITS_CTLR);
4564
4565 /* Poll GITS_CTLR and wait until ITS becomes quiescent */
4566 while (1) {
4567 val = readl_relaxed(base + GITS_CTLR);
4568 if (val & GITS_CTLR_QUIESCENT)
4569 return 0;
4570
4571 count--;
4572 if (!count)
4573 return -EBUSY;
4574
4575 cpu_relax();
4576 udelay(1);
4577 }
4578}
4579
9d111d49 4580static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
94100970
RR
4581{
4582 struct its_node *its = data;
4583
576a8342
MZ
4584 /* erratum 22375: only alloc 8MB table size (20 bits) */
4585 its->typer &= ~GITS_TYPER_DEVBITS;
4586 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
94100970 4587 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
9d111d49
AB
4588
4589 return true;
94100970
RR
4590}
4591
9d111d49 4592static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
fbf8f40e
GK
4593{
4594 struct its_node *its = data;
4595
4596 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
9d111d49
AB
4597
4598 return true;
fbf8f40e
GK
4599}
4600
9d111d49 4601static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
90922a2d
SD
4602{
4603 struct its_node *its = data;
4604
4605 /* On QDF2400, the size of the ITE is 16Bytes */
ffedbf0c
MZ
4606 its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4607 its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
9d111d49
AB
4608
4609 return true;
90922a2d
SD
4610}
4611
558b0165
AB
4612static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4613{
4614 struct its_node *its = its_dev->its;
4615
4616 /*
4617 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4618 * which maps 32-bit writes targeted at a separate window of
4619 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4620 * with device ID taken from bits [device_id_bits + 1:2] of
4621 * the window offset.
4622 */
4623 return its->pre_its_base + (its_dev->device_id << 2);
4624}
4625
4626static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4627{
4628 struct its_node *its = data;
4629 u32 pre_its_window[2];
4630 u32 ids;
4631
4632 if (!fwnode_property_read_u32_array(its->fwnode_handle,
4633 "socionext,synquacer-pre-its",
4634 pre_its_window,
4635 ARRAY_SIZE(pre_its_window))) {
4636
4637 its->pre_its_base = pre_its_window[0];
4638 its->get_msi_base = its_irq_get_msi_base_pre_its;
4639
4640 ids = ilog2(pre_its_window[1]) - 2;
576a8342
MZ
4641 if (device_ids(its) > ids) {
4642 its->typer &= ~GITS_TYPER_DEVBITS;
4643 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4644 }
558b0165
AB
4645
4646 /* the pre-ITS breaks isolation, so disable MSI remapping */
4647 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP;
4648 return true;
4649 }
4650 return false;
4651}
4652
5c9a882e
MZ
4653static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4654{
4655 struct its_node *its = data;
4656
4657 /*
4658 * Hip07 insists on using the wrong address for the VLPI
4659 * page. Trick it into doing the right thing...
4660 */
4661 its->vlpi_redist_offset = SZ_128K;
4662 return true;
90922a2d
SD
4663}
4664
67510cca 4665static const struct gic_quirk its_quirks[] = {
94100970
RR
4666#ifdef CONFIG_CAVIUM_ERRATUM_22375
4667 {
4668 .desc = "ITS: Cavium errata 22375, 24313",
4669 .iidr = 0xa100034c, /* ThunderX pass 1.x */
4670 .mask = 0xffff0fff,
4671 .init = its_enable_quirk_cavium_22375,
4672 },
fbf8f40e
GK
4673#endif
4674#ifdef CONFIG_CAVIUM_ERRATUM_23144
4675 {
4676 .desc = "ITS: Cavium erratum 23144",
4677 .iidr = 0xa100034c, /* ThunderX pass 1.x */
4678 .mask = 0xffff0fff,
4679 .init = its_enable_quirk_cavium_23144,
4680 },
90922a2d
SD
4681#endif
4682#ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4683 {
4684 .desc = "ITS: QDF2400 erratum 0065",
4685 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */
4686 .mask = 0xffffffff,
4687 .init = its_enable_quirk_qdf2400_e0065,
4688 },
558b0165
AB
4689#endif
4690#ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4691 {
4692 /*
4693 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4694 * implementation, but with a 'pre-ITS' added that requires
4695 * special handling in software.
4696 */
4697 .desc = "ITS: Socionext Synquacer pre-ITS",
4698 .iidr = 0x0001143b,
4699 .mask = 0xffffffff,
4700 .init = its_enable_quirk_socionext_synquacer,
4701 },
5c9a882e
MZ
4702#endif
4703#ifdef CONFIG_HISILICON_ERRATUM_161600802
4704 {
4705 .desc = "ITS: Hip07 erratum 161600802",
4706 .iidr = 0x00000004,
4707 .mask = 0xffffffff,
4708 .init = its_enable_quirk_hip07_161600802,
4709 },
94100970 4710#endif
67510cca
RR
4711 {
4712 }
4713};
4714
4715static void its_enable_quirks(struct its_node *its)
4716{
4717 u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4718
4719 gic_enable_quirks(iidr, its_quirks, its);
4720}
4721
dba0bc7b
DB
4722static int its_save_disable(void)
4723{
4724 struct its_node *its;
4725 int err = 0;
4726
a8db7456 4727 raw_spin_lock(&its_lock);
dba0bc7b
DB
4728 list_for_each_entry(its, &its_nodes, entry) {
4729 void __iomem *base;
4730
4731 if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
4732 continue;
4733
4734 base = its->base;
4735 its->ctlr_save = readl_relaxed(base + GITS_CTLR);
4736 err = its_force_quiescent(base);
4737 if (err) {
4738 pr_err("ITS@%pa: failed to quiesce: %d\n",
4739 &its->phys_base, err);
4740 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4741 goto err;
4742 }
4743
4744 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
4745 }
4746
4747err:
4748 if (err) {
4749 list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
4750 void __iomem *base;
4751
4752 if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
4753 continue;
4754
4755 base = its->base;
4756 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4757 }
4758 }
a8db7456 4759 raw_spin_unlock(&its_lock);
dba0bc7b
DB
4760
4761 return err;
4762}
4763
4764static void its_restore_enable(void)
4765{
4766 struct its_node *its;
4767 int ret;
4768
a8db7456 4769 raw_spin_lock(&its_lock);
dba0bc7b
DB
4770 list_for_each_entry(its, &its_nodes, entry) {
4771 void __iomem *base;
4772 int i;
4773
4774 if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
4775 continue;
4776
4777 base = its->base;
4778
4779 /*
4780 * Make sure that the ITS is disabled. If it fails to quiesce,
4781 * don't restore it since writing to CBASER or BASER<n>
4782 * registers is undefined according to the GIC v3 ITS
4783 * Specification.
4784 */
4785 ret = its_force_quiescent(base);
4786 if (ret) {
4787 pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
4788 &its->phys_base, ret);
4789 continue;
4790 }
4791
4792 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
4793
4794 /*
4795 * Writing CBASER resets CREADR to 0, so make CWRITER and
4796 * cmd_write line up with it.
4797 */
4798 its->cmd_write = its->cmd_base;
4799 gits_write_cwriter(0, base + GITS_CWRITER);
4800
4801 /* Restore GITS_BASER from the value cache. */
4802 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
4803 struct its_baser *baser = &its->tables[i];
4804
4805 if (!(baser->val & GITS_BASER_VALID))
4806 continue;
4807
4808 its_write_baser(its, baser, baser->val);
4809 }
4810 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
920181ce
DB
4811
4812 /*
4813 * Reinit the collection if it's stored in the ITS. This is
4814 * indicated by the col_id being less than the HCC field.
4815 * CID < HCC as specified in the GIC v3 Documentation.
4816 */
4817 if (its->collections[smp_processor_id()].col_id <
4818 GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
4819 its_cpu_init_collection(its);
dba0bc7b 4820 }
a8db7456 4821 raw_spin_unlock(&its_lock);
dba0bc7b
DB
4822}
4823
4824static struct syscore_ops its_syscore_ops = {
4825 .suspend = its_save_disable,
4826 .resume = its_restore_enable,
4827};
4828
db40f0a7 4829static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
d14ae5e6
TN
4830{
4831 struct irq_domain *inner_domain;
4832 struct msi_domain_info *info;
4833
4834 info = kzalloc(sizeof(*info), GFP_KERNEL);
4835 if (!info)
4836 return -ENOMEM;
4837
db40f0a7 4838 inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
d14ae5e6
TN
4839 if (!inner_domain) {
4840 kfree(info);
4841 return -ENOMEM;
4842 }
4843
db40f0a7 4844 inner_domain->parent = its_parent;
96f0d93a 4845 irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
558b0165 4846 inner_domain->flags |= its->msi_domain_flags;
d14ae5e6
TN
4847 info->ops = &its_msi_domain_ops;
4848 info->data = its;
4849 inner_domain->host_data = info;
4850
4851 return 0;
4852}
4853
8fff27ae
MZ
4854static int its_init_vpe_domain(void)
4855{
20b3d54e
MZ
4856 struct its_node *its;
4857 u32 devid;
4858 int entries;
4859
4860 if (gic_rdists->has_direct_lpi) {
4861 pr_info("ITS: Using DirectLPI for VPE invalidation\n");
4862 return 0;
4863 }
4864
4865 /* Any ITS will do, even if not v4 */
4866 its = list_first_entry(&its_nodes, struct its_node, entry);
4867
4868 entries = roundup_pow_of_two(nr_cpu_ids);
6396bb22 4869 vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
20b3d54e
MZ
4870 GFP_KERNEL);
4871 if (!vpe_proxy.vpes) {
4872 pr_err("ITS: Can't allocate GICv4 proxy device array\n");
4873 return -ENOMEM;
4874 }
4875
4876 /* Use the last possible DevID */
576a8342 4877 devid = GENMASK(device_ids(its) - 1, 0);
20b3d54e
MZ
4878 vpe_proxy.dev = its_create_device(its, devid, entries, false);
4879 if (!vpe_proxy.dev) {
4880 kfree(vpe_proxy.vpes);
4881 pr_err("ITS: Can't allocate GICv4 proxy device\n");
4882 return -ENOMEM;
4883 }
4884
c427a475 4885 BUG_ON(entries > vpe_proxy.dev->nr_ites);
20b3d54e
MZ
4886
4887 raw_spin_lock_init(&vpe_proxy.lock);
4888 vpe_proxy.next_victim = 0;
4889 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
4890 devid, vpe_proxy.dev->nr_ites);
4891
8fff27ae
MZ
4892 return 0;
4893}
4894
3dfa576b
MZ
4895static int __init its_compute_its_list_map(struct resource *res,
4896 void __iomem *its_base)
4897{
4898 int its_number;
4899 u32 ctlr;
4900
4901 /*
4902 * This is assumed to be done early enough that we're
4903 * guaranteed to be single-threaded, hence no
4904 * locking. Should this change, we should address
4905 * this.
4906 */
ab60491e
MZ
4907 its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
4908 if (its_number >= GICv4_ITS_LIST_MAX) {
3dfa576b
MZ
4909 pr_err("ITS@%pa: No ITSList entry available!\n",
4910 &res->start);
4911 return -EINVAL;
4912 }
4913
4914 ctlr = readl_relaxed(its_base + GITS_CTLR);
4915 ctlr &= ~GITS_CTLR_ITS_NUMBER;
4916 ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
4917 writel_relaxed(ctlr, its_base + GITS_CTLR);
4918 ctlr = readl_relaxed(its_base + GITS_CTLR);
4919 if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
4920 its_number = ctlr & GITS_CTLR_ITS_NUMBER;
4921 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
4922 }
4923
4924 if (test_and_set_bit(its_number, &its_list_map)) {
4925 pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
4926 &res->start, its_number);
4927 return -EINVAL;
4928 }
4929
4930 return its_number;
4931}
4932
db40f0a7
TN
4933static int __init its_probe_one(struct resource *res,
4934 struct fwnode_handle *handle, int numa_node)
4c21f3c2 4935{
4c21f3c2
MZ
4936 struct its_node *its;
4937 void __iomem *its_base;
3dfa576b
MZ
4938 u32 val, ctlr;
4939 u64 baser, tmp, typer;
539d3782 4940 struct page *page;
4c21f3c2
MZ
4941 int err;
4942
5e46a484 4943 its_base = ioremap(res->start, SZ_64K);
4c21f3c2 4944 if (!its_base) {
db40f0a7 4945 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
4c21f3c2
MZ
4946 return -ENOMEM;
4947 }
4948
4949 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
4950 if (val != 0x30 && val != 0x40) {
db40f0a7 4951 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
4c21f3c2
MZ
4952 err = -ENODEV;
4953 goto out_unmap;
4954 }
4955
4559fbb3
YW
4956 err = its_force_quiescent(its_base);
4957 if (err) {
db40f0a7 4958 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
4559fbb3
YW
4959 goto out_unmap;
4960 }
4961
db40f0a7 4962 pr_info("ITS %pR\n", res);
4c21f3c2
MZ
4963
4964 its = kzalloc(sizeof(*its), GFP_KERNEL);
4965 if (!its) {
4966 err = -ENOMEM;
4967 goto out_unmap;
4968 }
4969
4970 raw_spin_lock_init(&its->lock);
9791ec7d 4971 mutex_init(&its->dev_alloc_lock);
4c21f3c2
MZ
4972 INIT_LIST_HEAD(&its->entry);
4973 INIT_LIST_HEAD(&its->its_device_list);
3dfa576b 4974 typer = gic_read_typer(its_base + GITS_TYPER);
0dd57fed 4975 its->typer = typer;
4c21f3c2 4976 its->base = its_base;
db40f0a7 4977 its->phys_base = res->start;
0dd57fed 4978 if (is_v4(its)) {
3dfa576b
MZ
4979 if (!(typer & GITS_TYPER_VMOVP)) {
4980 err = its_compute_its_list_map(res, its_base);
4981 if (err < 0)
4982 goto out_free_its;
4983
debf6d02
MZ
4984 its->list_nr = err;
4985
3dfa576b
MZ
4986 pr_info("ITS@%pa: Using ITS number %d\n",
4987 &res->start, err);
4988 } else {
4989 pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
4990 }
5e516846
MZ
4991
4992 if (is_v4_1(its)) {
4993 u32 svpet = FIELD_GET(GITS_TYPER_SVPET, typer);
5e46a484
MZ
4994
4995 its->sgir_base = ioremap(res->start + SZ_128K, SZ_64K);
4996 if (!its->sgir_base) {
4997 err = -ENOMEM;
4998 goto out_free_its;
4999 }
5000
5e516846
MZ
5001 its->mpidr = readl_relaxed(its_base + GITS_MPIDR);
5002
5003 pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5004 &res->start, its->mpidr, svpet);
5005 }
3dfa576b
MZ
5006 }
5007
db40f0a7 5008 its->numa_node = numa_node;
4c21f3c2 5009
539d3782
SD
5010 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
5011 get_order(ITS_CMD_QUEUE_SZ));
5012 if (!page) {
4c21f3c2 5013 err = -ENOMEM;
5e46a484 5014 goto out_unmap_sgir;
4c21f3c2 5015 }
539d3782 5016 its->cmd_base = (void *)page_address(page);
4c21f3c2 5017 its->cmd_write = its->cmd_base;
558b0165
AB
5018 its->fwnode_handle = handle;
5019 its->get_msi_base = its_irq_get_msi_base;
5020 its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP;
4c21f3c2 5021
67510cca
RR
5022 its_enable_quirks(its);
5023
0e0b0f69 5024 err = its_alloc_tables(its);
4c21f3c2
MZ
5025 if (err)
5026 goto out_free_cmd;
5027
5028 err = its_alloc_collections(its);
5029 if (err)
5030 goto out_free_tables;
5031
5032 baser = (virt_to_phys(its->cmd_base) |
2fd632a0 5033 GITS_CBASER_RaWaWb |
4c21f3c2
MZ
5034 GITS_CBASER_InnerShareable |
5035 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) |
5036 GITS_CBASER_VALID);
5037
0968a619
VM
5038 gits_write_cbaser(baser, its->base + GITS_CBASER);
5039 tmp = gits_read_cbaser(its->base + GITS_CBASER);
4c21f3c2 5040
4ad3e363 5041 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
241a386c
MZ
5042 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5043 /*
5044 * The HW reports non-shareable, we must
5045 * remove the cacheability attributes as
5046 * well.
5047 */
5048 baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5049 GITS_CBASER_CACHEABILITY_MASK);
5050 baser |= GITS_CBASER_nC;
0968a619 5051 gits_write_cbaser(baser, its->base + GITS_CBASER);
241a386c 5052 }
4c21f3c2
MZ
5053 pr_info("ITS: using cache flushing for cmd queue\n");
5054 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5055 }
5056
0968a619 5057 gits_write_cwriter(0, its->base + GITS_CWRITER);
3dfa576b 5058 ctlr = readl_relaxed(its->base + GITS_CTLR);
d51c4b4d 5059 ctlr |= GITS_CTLR_ENABLE;
0dd57fed 5060 if (is_v4(its))
d51c4b4d
MZ
5061 ctlr |= GITS_CTLR_ImDe;
5062 writel_relaxed(ctlr, its->base + GITS_CTLR);
241a386c 5063
dba0bc7b
DB
5064 if (GITS_TYPER_HCC(typer))
5065 its->flags |= ITS_FLAGS_SAVE_SUSPEND_STATE;
5066
db40f0a7 5067 err = its_init_domain(handle, its);
d14ae5e6
TN
5068 if (err)
5069 goto out_free_tables;
4c21f3c2 5070
a8db7456 5071 raw_spin_lock(&its_lock);
4c21f3c2 5072 list_add(&its->entry, &its_nodes);
a8db7456 5073 raw_spin_unlock(&its_lock);
4c21f3c2
MZ
5074
5075 return 0;
5076
4c21f3c2
MZ
5077out_free_tables:
5078 its_free_tables(its);
5079out_free_cmd:
5bc13c2c 5080 free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5e46a484
MZ
5081out_unmap_sgir:
5082 if (its->sgir_base)
5083 iounmap(its->sgir_base);
4c21f3c2
MZ
5084out_free_its:
5085 kfree(its);
5086out_unmap:
5087 iounmap(its_base);
db40f0a7 5088 pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
4c21f3c2
MZ
5089 return err;
5090}
5091
5092static bool gic_rdists_supports_plpis(void)
5093{
589ce5f4 5094 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
4c21f3c2
MZ
5095}
5096
6eb486b6
SD
5097static int redist_disable_lpis(void)
5098{
5099 void __iomem *rbase = gic_data_rdist_rd_base();
5100 u64 timeout = USEC_PER_SEC;
5101 u64 val;
5102
5103 if (!gic_rdists_supports_plpis()) {
5104 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5105 return -ENXIO;
5106 }
5107
5108 val = readl_relaxed(rbase + GICR_CTLR);
5109 if (!(val & GICR_CTLR_ENABLE_LPIS))
5110 return 0;
5111
11e37d35
MZ
5112 /*
5113 * If coming via a CPU hotplug event, we don't need to disable
5114 * LPIs before trying to re-enable them. They are already
5115 * configured and all is well in the world.
c440a9d9
MZ
5116 *
5117 * If running with preallocated tables, there is nothing to do.
11e37d35 5118 */
c440a9d9
MZ
5119 if (gic_data_rdist()->lpi_enabled ||
5120 (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
11e37d35
MZ
5121 return 0;
5122
5123 /*
5124 * From that point on, we only try to do some damage control.
5125 */
5126 pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
6eb486b6
SD
5127 smp_processor_id());
5128 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5129
5130 /* Disable LPIs */
5131 val &= ~GICR_CTLR_ENABLE_LPIS;
5132 writel_relaxed(val, rbase + GICR_CTLR);
5133
5134 /* Make sure any change to GICR_CTLR is observable by the GIC */
5135 dsb(sy);
5136
5137 /*
5138 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5139 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5140 * Error out if we time out waiting for RWP to clear.
5141 */
5142 while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5143 if (!timeout) {
5144 pr_err("CPU%d: Timeout while disabling LPIs\n",
5145 smp_processor_id());
5146 return -ETIMEDOUT;
5147 }
5148 udelay(1);
5149 timeout--;
5150 }
5151
5152 /*
5153 * After it has been written to 1, it is IMPLEMENTATION
5154 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5155 * cleared to 0. Error out if clearing the bit failed.
5156 */
5157 if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5158 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5159 return -EBUSY;
5160 }
5161
5162 return 0;
5163}
5164
4c21f3c2
MZ
5165int its_cpu_init(void)
5166{
4c21f3c2 5167 if (!list_empty(&its_nodes)) {
6eb486b6
SD
5168 int ret;
5169
5170 ret = redist_disable_lpis();
5171 if (ret)
5172 return ret;
5173
4c21f3c2 5174 its_cpu_init_lpis();
920181ce 5175 its_cpu_init_collections();
4c21f3c2
MZ
5176 }
5177
5178 return 0;
5179}
5180
935bba7c 5181static const struct of_device_id its_device_id[] = {
4c21f3c2
MZ
5182 { .compatible = "arm,gic-v3-its", },
5183 {},
5184};
5185
db40f0a7 5186static int __init its_of_probe(struct device_node *node)
4c21f3c2
MZ
5187{
5188 struct device_node *np;
db40f0a7 5189 struct resource res;
4c21f3c2
MZ
5190
5191 for (np = of_find_matching_node(node, its_device_id); np;
5192 np = of_find_matching_node(np, its_device_id)) {
95a25625
SB
5193 if (!of_device_is_available(np))
5194 continue;
d14ae5e6 5195 if (!of_property_read_bool(np, "msi-controller")) {
e81f54c6
RH
5196 pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5197 np);
d14ae5e6
TN
5198 continue;
5199 }
5200
db40f0a7 5201 if (of_address_to_resource(np, 0, &res)) {
e81f54c6 5202 pr_warn("%pOF: no regs?\n", np);
db40f0a7
TN
5203 continue;
5204 }
5205
5206 its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
4c21f3c2 5207 }
db40f0a7
TN
5208 return 0;
5209}
5210
3f010cf1
TN
5211#ifdef CONFIG_ACPI
5212
5213#define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5214
d1ce263f 5215#ifdef CONFIG_ACPI_NUMA
dbd2b826
GK
5216struct its_srat_map {
5217 /* numa node id */
5218 u32 numa_node;
5219 /* GIC ITS ID */
5220 u32 its_id;
5221};
5222
fdf6e7a8 5223static struct its_srat_map *its_srat_maps __initdata;
dbd2b826
GK
5224static int its_in_srat __initdata;
5225
5226static int __init acpi_get_its_numa_node(u32 its_id)
5227{
5228 int i;
5229
5230 for (i = 0; i < its_in_srat; i++) {
5231 if (its_id == its_srat_maps[i].its_id)
5232 return its_srat_maps[i].numa_node;
5233 }
5234 return NUMA_NO_NODE;
5235}
5236
60574d1e 5237static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
fdf6e7a8
HG
5238 const unsigned long end)
5239{
5240 return 0;
5241}
5242
60574d1e 5243static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
dbd2b826
GK
5244 const unsigned long end)
5245{
5246 int node;
5247 struct acpi_srat_gic_its_affinity *its_affinity;
5248
5249 its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5250 if (!its_affinity)
5251 return -EINVAL;
5252
5253 if (its_affinity->header.length < sizeof(*its_affinity)) {
5254 pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5255 its_affinity->header.length);
5256 return -EINVAL;
5257 }
5258
dbd2b826
GK
5259 node = acpi_map_pxm_to_node(its_affinity->proximity_domain);
5260
5261 if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5262 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5263 return 0;
5264 }
5265
5266 its_srat_maps[its_in_srat].numa_node = node;
5267 its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5268 its_in_srat++;
5269 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5270 its_affinity->proximity_domain, its_affinity->its_id, node);
5271
5272 return 0;
5273}
5274
5275static void __init acpi_table_parse_srat_its(void)
5276{
fdf6e7a8
HG
5277 int count;
5278
5279 count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5280 sizeof(struct acpi_table_srat),
5281 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5282 gic_acpi_match_srat_its, 0);
5283 if (count <= 0)
5284 return;
5285
6da2ec56
KC
5286 its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5287 GFP_KERNEL);
fdf6e7a8
HG
5288 if (!its_srat_maps) {
5289 pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n");
5290 return;
5291 }
5292
dbd2b826
GK
5293 acpi_table_parse_entries(ACPI_SIG_SRAT,
5294 sizeof(struct acpi_table_srat),
5295 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5296 gic_acpi_parse_srat_its, 0);
5297}
fdf6e7a8
HG
5298
5299/* free the its_srat_maps after ITS probing */
5300static void __init acpi_its_srat_maps_free(void)
5301{
5302 kfree(its_srat_maps);
5303}
dbd2b826
GK
5304#else
5305static void __init acpi_table_parse_srat_its(void) { }
5306static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
fdf6e7a8 5307static void __init acpi_its_srat_maps_free(void) { }
dbd2b826
GK
5308#endif
5309
60574d1e 5310static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
3f010cf1
TN
5311 const unsigned long end)
5312{
5313 struct acpi_madt_generic_translator *its_entry;
5314 struct fwnode_handle *dom_handle;
5315 struct resource res;
5316 int err;
5317
5318 its_entry = (struct acpi_madt_generic_translator *)header;
5319 memset(&res, 0, sizeof(res));
5320 res.start = its_entry->base_address;
5321 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5322 res.flags = IORESOURCE_MEM;
5323
5778cc77 5324 dom_handle = irq_domain_alloc_fwnode(&res.start);
3f010cf1
TN
5325 if (!dom_handle) {
5326 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5327 &res.start);
5328 return -ENOMEM;
5329 }
5330
8b4282e6
SK
5331 err = iort_register_domain_token(its_entry->translation_id, res.start,
5332 dom_handle);
3f010cf1
TN
5333 if (err) {
5334 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5335 &res.start, its_entry->translation_id);
5336 goto dom_err;
5337 }
5338
dbd2b826
GK
5339 err = its_probe_one(&res, dom_handle,
5340 acpi_get_its_numa_node(its_entry->translation_id));
3f010cf1
TN
5341 if (!err)
5342 return 0;
5343
5344 iort_deregister_domain_token(its_entry->translation_id);
5345dom_err:
5346 irq_domain_free_fwnode(dom_handle);
5347 return err;
5348}
5349
5350static void __init its_acpi_probe(void)
5351{
dbd2b826 5352 acpi_table_parse_srat_its();
3f010cf1
TN
5353 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5354 gic_acpi_parse_madt_its, 0);
fdf6e7a8 5355 acpi_its_srat_maps_free();
3f010cf1
TN
5356}
5357#else
5358static void __init its_acpi_probe(void) { }
5359#endif
5360
db40f0a7
TN
5361int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5362 struct irq_domain *parent_domain)
5363{
5364 struct device_node *of_node;
8fff27ae
MZ
5365 struct its_node *its;
5366 bool has_v4 = false;
3c40706d 5367 bool has_v4_1 = false;
8fff27ae 5368 int err;
db40f0a7 5369
5e516846
MZ
5370 gic_rdists = rdists;
5371
db40f0a7
TN
5372 its_parent = parent_domain;
5373 of_node = to_of_node(handle);
5374 if (of_node)
5375 its_of_probe(of_node);
5376 else
3f010cf1 5377 its_acpi_probe();
4c21f3c2
MZ
5378
5379 if (list_empty(&its_nodes)) {
5380 pr_warn("ITS: No ITS available, not enabling LPIs\n");
5381 return -ENXIO;
5382 }
5383
11e37d35 5384 err = allocate_lpi_tables();
8fff27ae
MZ
5385 if (err)
5386 return err;
5387
3c40706d 5388 list_for_each_entry(its, &its_nodes, entry) {
0dd57fed 5389 has_v4 |= is_v4(its);
3c40706d
MZ
5390 has_v4_1 |= is_v4_1(its);
5391 }
5392
5393 /* Don't bother with inconsistent systems */
5394 if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5395 rdists->has_rvpeid = false;
8fff27ae
MZ
5396
5397 if (has_v4 & rdists->has_vlpis) {
166cba71
MZ
5398 const struct irq_domain_ops *sgi_ops;
5399
5400 if (has_v4_1)
5401 sgi_ops = &its_sgi_domain_ops;
5402 else
5403 sgi_ops = NULL;
5404
3d63cb53 5405 if (its_init_vpe_domain() ||
166cba71 5406 its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
8fff27ae
MZ
5407 rdists->has_vlpis = false;
5408 pr_err("ITS: Disabling GICv4 support\n");
5409 }
5410 }
5411
dba0bc7b
DB
5412 register_syscore_ops(&its_syscore_ops);
5413
8fff27ae 5414 return 0;
4c21f3c2 5415}