irqchip/gic-v3-its: Split allocation from initialisation of its_node
[linux-block.git] / drivers / irqchip / irq-gic-v3-its.c
CommitLineData
caab277b 1// SPDX-License-Identifier: GPL-2.0-only
cc2d3216 2/*
d7276b80 3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
cc2d3216 4 * Author: Marc Zyngier <marc.zyngier@arm.com>
cc2d3216
MZ
5 */
6
3f010cf1 7#include <linux/acpi.h>
8d3554b8 8#include <linux/acpi_iort.h>
ffedbf0c 9#include <linux/bitfield.h>
cc2d3216
MZ
10#include <linux/bitmap.h>
11#include <linux/cpu.h>
c6e2ccb6 12#include <linux/crash_dump.h>
cc2d3216 13#include <linux/delay.h>
3fb68fae 14#include <linux/efi.h>
cc2d3216 15#include <linux/interrupt.h>
fa49364c 16#include <linux/iommu.h>
96806229 17#include <linux/iopoll.h>
3f010cf1 18#include <linux/irqdomain.h>
880cb3cd 19#include <linux/list.h>
cc2d3216 20#include <linux/log2.h>
5e2c9f9a 21#include <linux/memblock.h>
cc2d3216
MZ
22#include <linux/mm.h>
23#include <linux/msi.h>
24#include <linux/of.h>
25#include <linux/of_address.h>
26#include <linux/of_irq.h>
27#include <linux/of_pci.h>
28#include <linux/of_platform.h>
29#include <linux/percpu.h>
30#include <linux/slab.h>
dba0bc7b 31#include <linux/syscore_ops.h>
cc2d3216 32
41a83e06 33#include <linux/irqchip.h>
cc2d3216 34#include <linux/irqchip/arm-gic-v3.h>
c808eea8 35#include <linux/irqchip/arm-gic-v4.h>
cc2d3216 36
cc2d3216
MZ
37#include <asm/cputype.h>
38#include <asm/exception.h>
39
67510cca
RR
40#include "irq-gic-common.h"
41
94100970
RR
42#define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0)
43#define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1)
fbf8f40e 44#define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2)
a8707f55 45#define ITS_FLAGS_FORCE_NON_SHAREABLE (1ULL << 3)
cc2d3216 46
c48ed51c 47#define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0)
c440a9d9 48#define RDIST_FLAGS_RD_TABLES_PREALLOCATED (1 << 1)
a8707f55 49#define RDIST_FLAGS_FORCE_NON_SHAREABLE (1 << 2)
c48ed51c 50
c0cdc890 51#define RD_LOCAL_LPI_ENABLED BIT(0)
d23bc2bc
VS
52#define RD_LOCAL_PENDTABLE_PREALLOCATED BIT(1)
53#define RD_LOCAL_MEMRESERVE_DONE BIT(2)
c0cdc890 54
a13b0404
MZ
55static u32 lpi_id_bits;
56
57/*
58 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
59 * deal with (one configuration byte per interrupt). PENDBASE has to
60 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
61 */
62#define LPI_NRBITS lpi_id_bits
63#define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K)
64#define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
65
2130b789 66#define LPI_PROP_DEFAULT_PRIO GICD_INT_DEF_PRI
a13b0404 67
cc2d3216
MZ
68/*
69 * Collection structure - just an ID, and a redistributor address to
70 * ping. We use one per CPU as a bag of interrupts assigned to this
71 * CPU.
72 */
73struct its_collection {
74 u64 target_address;
75 u16 col_id;
76};
77
466b7d16 78/*
9347359a
SD
79 * The ITS_BASER structure - contains memory information, cached
80 * value of BASER register configuration and ITS page size.
466b7d16
SD
81 */
82struct its_baser {
83 void *base;
84 u64 val;
85 u32 order;
9347359a 86 u32 psz;
466b7d16
SD
87};
88
558b0165
AB
89struct its_device;
90
cc2d3216
MZ
91/*
92 * The ITS structure - contains most of the infrastructure, with the
841514ab
MZ
93 * top-level MSI domain, the command queue, the collections, and the
94 * list of devices writing to it.
9791ec7d
MZ
95 *
96 * dev_alloc_lock has to be taken for device allocations, while the
97 * spinlock must be taken to parse data structures such as the device
98 * list.
cc2d3216
MZ
99 */
100struct its_node {
101 raw_spinlock_t lock;
9791ec7d 102 struct mutex dev_alloc_lock;
cc2d3216 103 struct list_head entry;
cc2d3216 104 void __iomem *base;
5e46a484 105 void __iomem *sgir_base;
db40f0a7 106 phys_addr_t phys_base;
cc2d3216
MZ
107 struct its_cmd_block *cmd_base;
108 struct its_cmd_block *cmd_write;
466b7d16 109 struct its_baser tables[GITS_BASER_NR_REGS];
cc2d3216 110 struct its_collection *collections;
558b0165
AB
111 struct fwnode_handle *fwnode_handle;
112 u64 (*get_msi_base)(struct its_device *its_dev);
0dd57fed 113 u64 typer;
dba0bc7b
DB
114 u64 cbaser_save;
115 u32 ctlr_save;
5e516846 116 u32 mpidr;
cc2d3216
MZ
117 struct list_head its_device_list;
118 u64 flags;
debf6d02 119 unsigned long list_nr;
fbf8f40e 120 int numa_node;
558b0165
AB
121 unsigned int msi_domain_flags;
122 u32 pre_its_base; /* for Socionext Synquacer */
5c9a882e 123 int vlpi_redist_offset;
cc2d3216
MZ
124};
125
0dd57fed 126#define is_v4(its) (!!((its)->typer & GITS_TYPER_VLPIS))
5e516846 127#define is_v4_1(its) (!!((its)->typer & GITS_TYPER_VMAPP))
576a8342 128#define device_ids(its) (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
0dd57fed 129
cc2d3216
MZ
130#define ITS_ITT_ALIGN SZ_256
131
32bd44dc 132/* The maximum number of VPEID bits supported by VLPI commands */
f2d83409
MZ
133#define ITS_MAX_VPEID_BITS \
134 ({ \
135 int nvpeid = 16; \
136 if (gic_rdists->has_rvpeid && \
137 gic_rdists->gicd_typer2 & GICD_TYPER2_VIL) \
138 nvpeid = 1 + (gic_rdists->gicd_typer2 & \
139 GICD_TYPER2_VID); \
140 \
141 nvpeid; \
142 })
32bd44dc
SD
143#define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS))
144
2eca0d6c
SD
145/* Convert page order to size in bytes */
146#define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o))
147
591e5bec
MZ
148struct event_lpi_map {
149 unsigned long *lpi_map;
150 u16 *col_map;
151 irq_hw_number_t lpi_base;
152 int nr_lpis;
11635fa2 153 raw_spinlock_t vlpi_lock;
d011e4e6
MZ
154 struct its_vm *vm;
155 struct its_vlpi_map *vlpi_maps;
156 int nr_vlpis;
591e5bec
MZ
157};
158
cc2d3216 159/*
d011e4e6
MZ
160 * The ITS view of a device - belongs to an ITS, owns an interrupt
161 * translation table, and a list of interrupts. If it some of its
162 * LPIs are injected into a guest (GICv4), the event_map.vm field
163 * indicates which one.
cc2d3216
MZ
164 */
165struct its_device {
166 struct list_head entry;
167 struct its_node *its;
591e5bec 168 struct event_lpi_map event_map;
cc2d3216 169 void *itt;
cc2d3216
MZ
170 u32 nr_ites;
171 u32 device_id;
9791ec7d 172 bool shared;
cc2d3216
MZ
173};
174
20b3d54e
MZ
175static struct {
176 raw_spinlock_t lock;
177 struct its_device *dev;
178 struct its_vpe **vpes;
179 int next_victim;
180} vpe_proxy;
181
2f13ff1d
MZ
182struct cpu_lpi_count {
183 atomic_t managed;
184 atomic_t unmanaged;
185};
186
187static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
188
1ac19ca6 189static LIST_HEAD(its_nodes);
a8db7456 190static DEFINE_RAW_SPINLOCK(its_lock);
1ac19ca6 191static struct rdists *gic_rdists;
db40f0a7 192static struct irq_domain *its_parent;
1ac19ca6 193
3dfa576b 194static unsigned long its_list_map;
3171a47a
MZ
195static u16 vmovp_seq_num;
196static DEFINE_RAW_SPINLOCK(vmovp_lock);
197
7d75bbb4 198static DEFINE_IDA(its_vpeid_ida);
3dfa576b 199
1ac19ca6 200#define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist))
11e37d35 201#define gic_data_rdist_cpu(cpu) (per_cpu_ptr(gic_rdists->rdist, cpu))
1ac19ca6 202#define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base)
e643d803 203#define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K)
1ac19ca6 204
009384b3
MZ
205/*
206 * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
207 * always have vSGIs mapped.
208 */
209static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
210{
211 return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
212}
213
84243125
ZY
214static u16 get_its_list(struct its_vm *vm)
215{
216 struct its_node *its;
217 unsigned long its_list = 0;
218
219 list_for_each_entry(its, &its_nodes, entry) {
0dd57fed 220 if (!is_v4(its))
84243125
ZY
221 continue;
222
009384b3 223 if (require_its_list_vmovp(vm, its))
84243125
ZY
224 __set_bit(its->list_nr, &its_list);
225 }
226
227 return (u16)its_list;
228}
229
425c09be
MZ
230static inline u32 its_get_event_id(struct irq_data *d)
231{
232 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
233 return d->hwirq - its_dev->event_map.lpi_base;
234}
235
591e5bec
MZ
236static struct its_collection *dev_event_to_col(struct its_device *its_dev,
237 u32 event)
238{
239 struct its_node *its = its_dev->its;
240
241 return its->collections + its_dev->event_map.col_map[event];
242}
243
c1d4d5cd
MZ
244static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
245 u32 event)
246{
247 if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
248 return NULL;
249
250 return &its_dev->event_map.vlpi_maps[event];
251}
252
f4a81f5a
MZ
253static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
254{
255 if (irqd_is_forwarded_to_vcpu(d)) {
256 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
257 u32 event = its_get_event_id(d);
258
259 return dev_event_to_vlpi_map(its_dev, event);
260 }
261
262 return NULL;
263}
264
f3a05921
MZ
265static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
266{
267 raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
268 return vpe->col_idx;
269}
270
271static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
272{
273 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
274}
275
926846a7
MZ
276static struct irq_chip its_vpe_irq_chip;
277
f3a05921 278static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
425c09be 279{
926846a7 280 struct its_vpe *vpe = NULL;
f3a05921 281 int cpu;
f4a81f5a 282
926846a7
MZ
283 if (d->chip == &its_vpe_irq_chip) {
284 vpe = irq_data_get_irq_chip_data(d);
285 } else {
286 struct its_vlpi_map *map = get_vlpi_map(d);
287 if (map)
288 vpe = map->vpe;
289 }
290
291 if (vpe) {
292 cpu = vpe_to_cpuid_lock(vpe, flags);
f3a05921
MZ
293 } else {
294 /* Physical LPIs are already locked via the irq_desc lock */
295 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
296 cpu = its_dev->event_map.col_map[its_get_event_id(d)];
297 /* Keep GCC quiet... */
298 *flags = 0;
299 }
425c09be 300
f3a05921
MZ
301 return cpu;
302}
303
304static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
425c09be 305{
926846a7
MZ
306 struct its_vpe *vpe = NULL;
307
308 if (d->chip == &its_vpe_irq_chip) {
309 vpe = irq_data_get_irq_chip_data(d);
310 } else {
311 struct its_vlpi_map *map = get_vlpi_map(d);
312 if (map)
313 vpe = map->vpe;
314 }
f4a81f5a 315
926846a7
MZ
316 if (vpe)
317 vpe_to_cpuid_unlock(vpe, flags);
425c09be
MZ
318}
319
83559b47
MZ
320static struct its_collection *valid_col(struct its_collection *col)
321{
20faba84 322 if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
83559b47
MZ
323 return NULL;
324
325 return col;
326}
327
205e065d
MZ
328static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
329{
330 if (valid_col(its->collections + vpe->col_idx))
331 return vpe;
332
333 return NULL;
334}
335
cc2d3216
MZ
336/*
337 * ITS command descriptors - parameters to be encoded in a command
338 * block.
339 */
340struct its_cmd_desc {
341 union {
342 struct {
343 struct its_device *dev;
344 u32 event_id;
345 } its_inv_cmd;
346
8d85dced
MZ
347 struct {
348 struct its_device *dev;
349 u32 event_id;
350 } its_clear_cmd;
351
cc2d3216
MZ
352 struct {
353 struct its_device *dev;
354 u32 event_id;
355 } its_int_cmd;
356
357 struct {
358 struct its_device *dev;
359 int valid;
360 } its_mapd_cmd;
361
362 struct {
363 struct its_collection *col;
364 int valid;
365 } its_mapc_cmd;
366
367 struct {
368 struct its_device *dev;
369 u32 phys_id;
370 u32 event_id;
6a25ad3a 371 } its_mapti_cmd;
cc2d3216
MZ
372
373 struct {
374 struct its_device *dev;
375 struct its_collection *col;
591e5bec 376 u32 event_id;
cc2d3216
MZ
377 } its_movi_cmd;
378
379 struct {
380 struct its_device *dev;
381 u32 event_id;
382 } its_discard_cmd;
383
384 struct {
385 struct its_collection *col;
386 } its_invall_cmd;
d011e4e6 387
eb78192b
MZ
388 struct {
389 struct its_vpe *vpe;
390 } its_vinvall_cmd;
391
392 struct {
393 struct its_vpe *vpe;
394 struct its_collection *col;
395 bool valid;
396 } its_vmapp_cmd;
397
d011e4e6
MZ
398 struct {
399 struct its_vpe *vpe;
400 struct its_device *dev;
401 u32 virt_id;
402 u32 event_id;
403 bool db_enabled;
404 } its_vmapti_cmd;
405
406 struct {
407 struct its_vpe *vpe;
408 struct its_device *dev;
409 u32 event_id;
410 bool db_enabled;
411 } its_vmovi_cmd;
3171a47a
MZ
412
413 struct {
414 struct its_vpe *vpe;
415 struct its_collection *col;
416 u16 seq_num;
417 u16 its_list;
418 } its_vmovp_cmd;
d97c97ba
MZ
419
420 struct {
421 struct its_vpe *vpe;
422 } its_invdb_cmd;
e252cf8a
MZ
423
424 struct {
425 struct its_vpe *vpe;
426 u8 sgi;
427 u8 priority;
428 bool enable;
429 bool group;
430 bool clear;
431 } its_vsgi_cmd;
cc2d3216
MZ
432 };
433};
434
435/*
436 * The ITS command block, which is what the ITS actually parses.
437 */
438struct its_cmd_block {
2bbdfcc5
BDC
439 union {
440 u64 raw_cmd[4];
441 __le64 raw_cmd_le[4];
442 };
cc2d3216
MZ
443};
444
445#define ITS_CMD_QUEUE_SZ SZ_64K
446#define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
447
67047f90
MZ
448typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
449 struct its_cmd_block *,
cc2d3216
MZ
450 struct its_cmd_desc *);
451
67047f90
MZ
452typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
453 struct its_cmd_block *,
d011e4e6
MZ
454 struct its_cmd_desc *);
455
4d36f136
MZ
456static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
457{
458 u64 mask = GENMASK_ULL(h, l);
459 *raw_cmd &= ~mask;
460 *raw_cmd |= (val << l) & mask;
461}
462
cc2d3216
MZ
463static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
464{
4d36f136 465 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
cc2d3216
MZ
466}
467
468static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
469{
4d36f136 470 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
cc2d3216
MZ
471}
472
473static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
474{
4d36f136 475 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
cc2d3216
MZ
476}
477
478static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
479{
4d36f136 480 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
cc2d3216
MZ
481}
482
483static void its_encode_size(struct its_cmd_block *cmd, u8 size)
484{
4d36f136 485 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
cc2d3216
MZ
486}
487
488static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
489{
30ae9610 490 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
cc2d3216
MZ
491}
492
493static void its_encode_valid(struct its_cmd_block *cmd, int valid)
494{
4d36f136 495 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
cc2d3216
MZ
496}
497
498static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
499{
30ae9610 500 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
cc2d3216
MZ
501}
502
503static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
504{
4d36f136 505 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
cc2d3216
MZ
506}
507
d011e4e6
MZ
508static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
509{
510 its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
511}
512
513static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
514{
515 its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
516}
517
518static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
519{
520 its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
521}
522
523static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
524{
525 its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
526}
527
3171a47a
MZ
528static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
529{
530 its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
531}
532
533static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
534{
535 its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
536}
537
eb78192b
MZ
538static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
539{
30ae9610 540 its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
eb78192b
MZ
541}
542
543static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
544{
545 its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
546}
547
64edfaa9
MZ
548static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
549{
550 its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
551}
552
553static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
554{
555 its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
556}
557
558static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
559{
560 its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
561}
562
563static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
564 u32 vpe_db_lpi)
565{
566 its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
567}
568
dd3f050a
MZ
569static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
570 u32 vpe_db_lpi)
571{
572 its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
573}
574
575static void its_encode_db(struct its_cmd_block *cmd, bool db)
576{
577 its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
578}
579
e252cf8a
MZ
580static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
581{
582 its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
583}
584
585static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
586{
587 its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
588}
589
590static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
591{
592 its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
593}
594
595static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
596{
597 its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
598}
599
600static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
601{
602 its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
603}
604
cc2d3216
MZ
605static inline void its_fixup_cmd(struct its_cmd_block *cmd)
606{
607 /* Let's fixup BE commands */
2bbdfcc5
BDC
608 cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
609 cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
610 cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
611 cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
cc2d3216
MZ
612}
613
67047f90
MZ
614static struct its_collection *its_build_mapd_cmd(struct its_node *its,
615 struct its_cmd_block *cmd,
cc2d3216
MZ
616 struct its_cmd_desc *desc)
617{
618 unsigned long itt_addr;
c8481267 619 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
cc2d3216
MZ
620
621 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
622 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
623
624 its_encode_cmd(cmd, GITS_CMD_MAPD);
625 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
626 its_encode_size(cmd, size - 1);
627 its_encode_itt(cmd, itt_addr);
628 its_encode_valid(cmd, desc->its_mapd_cmd.valid);
629
630 its_fixup_cmd(cmd);
631
591e5bec 632 return NULL;
cc2d3216
MZ
633}
634
67047f90
MZ
635static struct its_collection *its_build_mapc_cmd(struct its_node *its,
636 struct its_cmd_block *cmd,
cc2d3216
MZ
637 struct its_cmd_desc *desc)
638{
639 its_encode_cmd(cmd, GITS_CMD_MAPC);
640 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
641 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
642 its_encode_valid(cmd, desc->its_mapc_cmd.valid);
643
644 its_fixup_cmd(cmd);
645
646 return desc->its_mapc_cmd.col;
647}
648
67047f90
MZ
649static struct its_collection *its_build_mapti_cmd(struct its_node *its,
650 struct its_cmd_block *cmd,
cc2d3216
MZ
651 struct its_cmd_desc *desc)
652{
591e5bec
MZ
653 struct its_collection *col;
654
6a25ad3a
MZ
655 col = dev_event_to_col(desc->its_mapti_cmd.dev,
656 desc->its_mapti_cmd.event_id);
591e5bec 657
6a25ad3a
MZ
658 its_encode_cmd(cmd, GITS_CMD_MAPTI);
659 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
660 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
661 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
591e5bec 662 its_encode_collection(cmd, col->col_id);
cc2d3216
MZ
663
664 its_fixup_cmd(cmd);
665
83559b47 666 return valid_col(col);
cc2d3216
MZ
667}
668
67047f90
MZ
669static struct its_collection *its_build_movi_cmd(struct its_node *its,
670 struct its_cmd_block *cmd,
cc2d3216
MZ
671 struct its_cmd_desc *desc)
672{
591e5bec
MZ
673 struct its_collection *col;
674
675 col = dev_event_to_col(desc->its_movi_cmd.dev,
676 desc->its_movi_cmd.event_id);
677
cc2d3216
MZ
678 its_encode_cmd(cmd, GITS_CMD_MOVI);
679 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
591e5bec 680 its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
cc2d3216
MZ
681 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
682
683 its_fixup_cmd(cmd);
684
83559b47 685 return valid_col(col);
cc2d3216
MZ
686}
687
67047f90
MZ
688static struct its_collection *its_build_discard_cmd(struct its_node *its,
689 struct its_cmd_block *cmd,
cc2d3216
MZ
690 struct its_cmd_desc *desc)
691{
591e5bec
MZ
692 struct its_collection *col;
693
694 col = dev_event_to_col(desc->its_discard_cmd.dev,
695 desc->its_discard_cmd.event_id);
696
cc2d3216
MZ
697 its_encode_cmd(cmd, GITS_CMD_DISCARD);
698 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
699 its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
700
701 its_fixup_cmd(cmd);
702
83559b47 703 return valid_col(col);
cc2d3216
MZ
704}
705
67047f90
MZ
706static struct its_collection *its_build_inv_cmd(struct its_node *its,
707 struct its_cmd_block *cmd,
cc2d3216
MZ
708 struct its_cmd_desc *desc)
709{
591e5bec
MZ
710 struct its_collection *col;
711
712 col = dev_event_to_col(desc->its_inv_cmd.dev,
713 desc->its_inv_cmd.event_id);
714
cc2d3216
MZ
715 its_encode_cmd(cmd, GITS_CMD_INV);
716 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
717 its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
718
719 its_fixup_cmd(cmd);
720
83559b47 721 return valid_col(col);
cc2d3216
MZ
722}
723
67047f90
MZ
724static struct its_collection *its_build_int_cmd(struct its_node *its,
725 struct its_cmd_block *cmd,
8d85dced
MZ
726 struct its_cmd_desc *desc)
727{
728 struct its_collection *col;
729
730 col = dev_event_to_col(desc->its_int_cmd.dev,
731 desc->its_int_cmd.event_id);
732
733 its_encode_cmd(cmd, GITS_CMD_INT);
734 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
735 its_encode_event_id(cmd, desc->its_int_cmd.event_id);
736
737 its_fixup_cmd(cmd);
738
83559b47 739 return valid_col(col);
8d85dced
MZ
740}
741
67047f90
MZ
742static struct its_collection *its_build_clear_cmd(struct its_node *its,
743 struct its_cmd_block *cmd,
8d85dced
MZ
744 struct its_cmd_desc *desc)
745{
746 struct its_collection *col;
747
748 col = dev_event_to_col(desc->its_clear_cmd.dev,
749 desc->its_clear_cmd.event_id);
750
751 its_encode_cmd(cmd, GITS_CMD_CLEAR);
752 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
753 its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
754
755 its_fixup_cmd(cmd);
756
83559b47 757 return valid_col(col);
8d85dced
MZ
758}
759
67047f90
MZ
760static struct its_collection *its_build_invall_cmd(struct its_node *its,
761 struct its_cmd_block *cmd,
cc2d3216
MZ
762 struct its_cmd_desc *desc)
763{
764 its_encode_cmd(cmd, GITS_CMD_INVALL);
10794522 765 its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
cc2d3216
MZ
766
767 its_fixup_cmd(cmd);
768
b383a42c 769 return desc->its_invall_cmd.col;
cc2d3216
MZ
770}
771
67047f90
MZ
772static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
773 struct its_cmd_block *cmd,
eb78192b
MZ
774 struct its_cmd_desc *desc)
775{
776 its_encode_cmd(cmd, GITS_CMD_VINVALL);
777 its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
778
779 its_fixup_cmd(cmd);
780
205e065d 781 return valid_vpe(its, desc->its_vinvall_cmd.vpe);
eb78192b
MZ
782}
783
67047f90
MZ
784static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
785 struct its_cmd_block *cmd,
eb78192b
MZ
786 struct its_cmd_desc *desc)
787{
64edfaa9 788 unsigned long vpt_addr, vconf_addr;
5c9a882e 789 u64 target;
64edfaa9 790 bool alloc;
eb78192b
MZ
791
792 its_encode_cmd(cmd, GITS_CMD_VMAPP);
793 its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
794 its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
64edfaa9
MZ
795
796 if (!desc->its_vmapp_cmd.valid) {
797 if (is_v4_1(its)) {
798 alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
799 its_encode_alloc(cmd, alloc);
800 }
801
802 goto out;
803 }
804
805 vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
806 target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
807
5c9a882e 808 its_encode_target(cmd, target);
eb78192b
MZ
809 its_encode_vpt_addr(cmd, vpt_addr);
810 its_encode_vpt_size(cmd, LPI_NRBITS - 1);
811
64edfaa9
MZ
812 if (!is_v4_1(its))
813 goto out;
814
815 vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
816
817 alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
818
819 its_encode_alloc(cmd, alloc);
820
c21bc068
SL
821 /*
822 * GICv4.1 provides a way to get the VLPI state, which needs the vPE
823 * to be unmapped first, and in this case, we may remap the vPE
824 * back while the VPT is not empty. So we can't assume that the
825 * VPT is empty on map. This is why we never advertise PTZ.
826 */
827 its_encode_ptz(cmd, false);
64edfaa9
MZ
828 its_encode_vconf_addr(cmd, vconf_addr);
829 its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
830
831out:
eb78192b
MZ
832 its_fixup_cmd(cmd);
833
205e065d 834 return valid_vpe(its, desc->its_vmapp_cmd.vpe);
eb78192b
MZ
835}
836
67047f90
MZ
837static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
838 struct its_cmd_block *cmd,
d011e4e6
MZ
839 struct its_cmd_desc *desc)
840{
841 u32 db;
842
3858d4df 843 if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
d011e4e6
MZ
844 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
845 else
846 db = 1023;
847
848 its_encode_cmd(cmd, GITS_CMD_VMAPTI);
849 its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
850 its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
851 its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
852 its_encode_db_phys_id(cmd, db);
853 its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
854
855 its_fixup_cmd(cmd);
856
205e065d 857 return valid_vpe(its, desc->its_vmapti_cmd.vpe);
d011e4e6
MZ
858}
859
67047f90
MZ
860static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
861 struct its_cmd_block *cmd,
d011e4e6
MZ
862 struct its_cmd_desc *desc)
863{
864 u32 db;
865
3858d4df 866 if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
d011e4e6
MZ
867 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
868 else
869 db = 1023;
870
871 its_encode_cmd(cmd, GITS_CMD_VMOVI);
872 its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
873 its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
874 its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
875 its_encode_db_phys_id(cmd, db);
876 its_encode_db_valid(cmd, true);
877
878 its_fixup_cmd(cmd);
879
205e065d 880 return valid_vpe(its, desc->its_vmovi_cmd.vpe);
d011e4e6
MZ
881}
882
67047f90
MZ
883static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
884 struct its_cmd_block *cmd,
3171a47a
MZ
885 struct its_cmd_desc *desc)
886{
5c9a882e
MZ
887 u64 target;
888
889 target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
3171a47a
MZ
890 its_encode_cmd(cmd, GITS_CMD_VMOVP);
891 its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
892 its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
893 its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
5c9a882e 894 its_encode_target(cmd, target);
3171a47a 895
dd3f050a
MZ
896 if (is_v4_1(its)) {
897 its_encode_db(cmd, true);
898 its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
899 }
900
3171a47a
MZ
901 its_fixup_cmd(cmd);
902
205e065d 903 return valid_vpe(its, desc->its_vmovp_cmd.vpe);
3171a47a
MZ
904}
905
28614696
MZ
906static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
907 struct its_cmd_block *cmd,
908 struct its_cmd_desc *desc)
909{
910 struct its_vlpi_map *map;
911
912 map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
913 desc->its_inv_cmd.event_id);
914
915 its_encode_cmd(cmd, GITS_CMD_INV);
916 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
917 its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
918
919 its_fixup_cmd(cmd);
920
921 return valid_vpe(its, map->vpe);
922}
923
ed0e4aa9
MZ
924static struct its_vpe *its_build_vint_cmd(struct its_node *its,
925 struct its_cmd_block *cmd,
926 struct its_cmd_desc *desc)
927{
928 struct its_vlpi_map *map;
929
930 map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
931 desc->its_int_cmd.event_id);
932
933 its_encode_cmd(cmd, GITS_CMD_INT);
934 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
935 its_encode_event_id(cmd, desc->its_int_cmd.event_id);
936
937 its_fixup_cmd(cmd);
938
939 return valid_vpe(its, map->vpe);
940}
941
942static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
943 struct its_cmd_block *cmd,
944 struct its_cmd_desc *desc)
945{
946 struct its_vlpi_map *map;
947
948 map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
949 desc->its_clear_cmd.event_id);
950
951 its_encode_cmd(cmd, GITS_CMD_CLEAR);
952 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
953 its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
954
955 its_fixup_cmd(cmd);
956
957 return valid_vpe(its, map->vpe);
958}
959
d97c97ba
MZ
960static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
961 struct its_cmd_block *cmd,
962 struct its_cmd_desc *desc)
963{
964 if (WARN_ON(!is_v4_1(its)))
965 return NULL;
966
967 its_encode_cmd(cmd, GITS_CMD_INVDB);
968 its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
969
970 its_fixup_cmd(cmd);
971
972 return valid_vpe(its, desc->its_invdb_cmd.vpe);
973}
974
e252cf8a
MZ
975static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
976 struct its_cmd_block *cmd,
977 struct its_cmd_desc *desc)
978{
979 if (WARN_ON(!is_v4_1(its)))
980 return NULL;
981
982 its_encode_cmd(cmd, GITS_CMD_VSGI);
983 its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
984 its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
985 its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
986 its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
987 its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
988 its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
989
990 its_fixup_cmd(cmd);
991
992 return valid_vpe(its, desc->its_vsgi_cmd.vpe);
993}
994
cc2d3216
MZ
995static u64 its_cmd_ptr_to_offset(struct its_node *its,
996 struct its_cmd_block *ptr)
997{
998 return (ptr - its->cmd_base) * sizeof(*ptr);
999}
1000
1001static int its_queue_full(struct its_node *its)
1002{
1003 int widx;
1004 int ridx;
1005
1006 widx = its->cmd_write - its->cmd_base;
1007 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
1008
1009 /* This is incredibly unlikely to happen, unless the ITS locks up. */
1010 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
1011 return 1;
1012
1013 return 0;
1014}
1015
1016static struct its_cmd_block *its_allocate_entry(struct its_node *its)
1017{
1018 struct its_cmd_block *cmd;
1019 u32 count = 1000000; /* 1s! */
1020
1021 while (its_queue_full(its)) {
1022 count--;
1023 if (!count) {
1024 pr_err_ratelimited("ITS queue not draining\n");
1025 return NULL;
1026 }
1027 cpu_relax();
1028 udelay(1);
1029 }
1030
1031 cmd = its->cmd_write++;
1032
1033 /* Handle queue wrapping */
1034 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1035 its->cmd_write = its->cmd_base;
1036
34d677a9
MZ
1037 /* Clear command */
1038 cmd->raw_cmd[0] = 0;
1039 cmd->raw_cmd[1] = 0;
1040 cmd->raw_cmd[2] = 0;
1041 cmd->raw_cmd[3] = 0;
1042
cc2d3216
MZ
1043 return cmd;
1044}
1045
1046static struct its_cmd_block *its_post_commands(struct its_node *its)
1047{
1048 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1049
1050 writel_relaxed(wr, its->base + GITS_CWRITER);
1051
1052 return its->cmd_write;
1053}
1054
1055static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1056{
1057 /*
1058 * Make sure the commands written to memory are observable by
1059 * the ITS.
1060 */
1061 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
328191c0 1062 gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
cc2d3216
MZ
1063 else
1064 dsb(ishst);
1065}
1066
a19b462f 1067static int its_wait_for_range_completion(struct its_node *its,
a050fa54 1068 u64 prev_idx,
a19b462f 1069 struct its_cmd_block *to)
cc2d3216 1070{
a050fa54 1071 u64 rd_idx, to_idx, linear_idx;
cc2d3216
MZ
1072 u32 count = 1000000; /* 1s! */
1073
a050fa54 1074 /* Linearize to_idx if the command set has wrapped around */
cc2d3216 1075 to_idx = its_cmd_ptr_to_offset(its, to);
a050fa54
HG
1076 if (to_idx < prev_idx)
1077 to_idx += ITS_CMD_QUEUE_SZ;
1078
1079 linear_idx = prev_idx;
cc2d3216
MZ
1080
1081 while (1) {
a050fa54
HG
1082 s64 delta;
1083
cc2d3216 1084 rd_idx = readl_relaxed(its->base + GITS_CREADR);
9bdd8b1c 1085
a050fa54
HG
1086 /*
1087 * Compute the read pointer progress, taking the
1088 * potential wrap-around into account.
1089 */
1090 delta = rd_idx - prev_idx;
1091 if (rd_idx < prev_idx)
1092 delta += ITS_CMD_QUEUE_SZ;
9bdd8b1c 1093
a050fa54
HG
1094 linear_idx += delta;
1095 if (linear_idx >= to_idx)
cc2d3216
MZ
1096 break;
1097
1098 count--;
1099 if (!count) {
a050fa54
HG
1100 pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1101 to_idx, linear_idx);
a19b462f 1102 return -1;
cc2d3216 1103 }
a050fa54 1104 prev_idx = rd_idx;
cc2d3216
MZ
1105 cpu_relax();
1106 udelay(1);
1107 }
a19b462f
MZ
1108
1109 return 0;
cc2d3216
MZ
1110}
1111
e4f9094b
MZ
1112/* Warning, macro hell follows */
1113#define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \
1114void name(struct its_node *its, \
1115 buildtype builder, \
1116 struct its_cmd_desc *desc) \
1117{ \
1118 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \
1119 synctype *sync_obj; \
1120 unsigned long flags; \
a050fa54 1121 u64 rd_idx; \
e4f9094b
MZ
1122 \
1123 raw_spin_lock_irqsave(&its->lock, flags); \
1124 \
1125 cmd = its_allocate_entry(its); \
1126 if (!cmd) { /* We're soooooo screewed... */ \
1127 raw_spin_unlock_irqrestore(&its->lock, flags); \
1128 return; \
1129 } \
67047f90 1130 sync_obj = builder(its, cmd, desc); \
e4f9094b
MZ
1131 its_flush_cmd(its, cmd); \
1132 \
1133 if (sync_obj) { \
1134 sync_cmd = its_allocate_entry(its); \
1135 if (!sync_cmd) \
1136 goto post; \
1137 \
67047f90 1138 buildfn(its, sync_cmd, sync_obj); \
e4f9094b
MZ
1139 its_flush_cmd(its, sync_cmd); \
1140 } \
1141 \
1142post: \
a050fa54 1143 rd_idx = readl_relaxed(its->base + GITS_CREADR); \
e4f9094b
MZ
1144 next_cmd = its_post_commands(its); \
1145 raw_spin_unlock_irqrestore(&its->lock, flags); \
1146 \
a050fa54 1147 if (its_wait_for_range_completion(its, rd_idx, next_cmd)) \
a19b462f 1148 pr_err_ratelimited("ITS cmd %ps failed\n", builder); \
e4f9094b 1149}
cc2d3216 1150
67047f90
MZ
1151static void its_build_sync_cmd(struct its_node *its,
1152 struct its_cmd_block *sync_cmd,
e4f9094b
MZ
1153 struct its_collection *sync_col)
1154{
1155 its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1156 its_encode_target(sync_cmd, sync_col->target_address);
cc2d3216 1157
e4f9094b 1158 its_fixup_cmd(sync_cmd);
cc2d3216
MZ
1159}
1160
e4f9094b
MZ
1161static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1162 struct its_collection, its_build_sync_cmd)
1163
67047f90
MZ
1164static void its_build_vsync_cmd(struct its_node *its,
1165 struct its_cmd_block *sync_cmd,
d011e4e6
MZ
1166 struct its_vpe *sync_vpe)
1167{
1168 its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1169 its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1170
1171 its_fixup_cmd(sync_cmd);
1172}
1173
1174static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1175 struct its_vpe, its_build_vsync_cmd)
1176
8d85dced 1177static void its_send_int(struct its_device *dev, u32 event_id)
cc2d3216 1178{
8d85dced 1179 struct its_cmd_desc desc;
cc2d3216 1180
8d85dced
MZ
1181 desc.its_int_cmd.dev = dev;
1182 desc.its_int_cmd.event_id = event_id;
cc2d3216 1183
8d85dced
MZ
1184 its_send_single_command(dev->its, its_build_int_cmd, &desc);
1185}
cc2d3216 1186
8d85dced
MZ
1187static void its_send_clear(struct its_device *dev, u32 event_id)
1188{
1189 struct its_cmd_desc desc;
cc2d3216 1190
8d85dced
MZ
1191 desc.its_clear_cmd.dev = dev;
1192 desc.its_clear_cmd.event_id = event_id;
cc2d3216 1193
8d85dced 1194 its_send_single_command(dev->its, its_build_clear_cmd, &desc);
cc2d3216
MZ
1195}
1196
1197static void its_send_inv(struct its_device *dev, u32 event_id)
1198{
1199 struct its_cmd_desc desc;
1200
1201 desc.its_inv_cmd.dev = dev;
1202 desc.its_inv_cmd.event_id = event_id;
1203
1204 its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1205}
1206
1207static void its_send_mapd(struct its_device *dev, int valid)
1208{
1209 struct its_cmd_desc desc;
1210
1211 desc.its_mapd_cmd.dev = dev;
1212 desc.its_mapd_cmd.valid = !!valid;
1213
1214 its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1215}
1216
1217static void its_send_mapc(struct its_node *its, struct its_collection *col,
1218 int valid)
1219{
1220 struct its_cmd_desc desc;
1221
1222 desc.its_mapc_cmd.col = col;
1223 desc.its_mapc_cmd.valid = !!valid;
1224
1225 its_send_single_command(its, its_build_mapc_cmd, &desc);
1226}
1227
6a25ad3a 1228static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
cc2d3216
MZ
1229{
1230 struct its_cmd_desc desc;
1231
6a25ad3a
MZ
1232 desc.its_mapti_cmd.dev = dev;
1233 desc.its_mapti_cmd.phys_id = irq_id;
1234 desc.its_mapti_cmd.event_id = id;
cc2d3216 1235
6a25ad3a 1236 its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
cc2d3216
MZ
1237}
1238
1239static void its_send_movi(struct its_device *dev,
1240 struct its_collection *col, u32 id)
1241{
1242 struct its_cmd_desc desc;
1243
1244 desc.its_movi_cmd.dev = dev;
1245 desc.its_movi_cmd.col = col;
591e5bec 1246 desc.its_movi_cmd.event_id = id;
cc2d3216
MZ
1247
1248 its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1249}
1250
1251static void its_send_discard(struct its_device *dev, u32 id)
1252{
1253 struct its_cmd_desc desc;
1254
1255 desc.its_discard_cmd.dev = dev;
1256 desc.its_discard_cmd.event_id = id;
1257
1258 its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1259}
1260
1261static void its_send_invall(struct its_node *its, struct its_collection *col)
1262{
1263 struct its_cmd_desc desc;
1264
1265 desc.its_invall_cmd.col = col;
1266
1267 its_send_single_command(its, its_build_invall_cmd, &desc);
1268}
c48ed51c 1269
d011e4e6
MZ
1270static void its_send_vmapti(struct its_device *dev, u32 id)
1271{
c1d4d5cd 1272 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
d011e4e6
MZ
1273 struct its_cmd_desc desc;
1274
1275 desc.its_vmapti_cmd.vpe = map->vpe;
1276 desc.its_vmapti_cmd.dev = dev;
1277 desc.its_vmapti_cmd.virt_id = map->vintid;
1278 desc.its_vmapti_cmd.event_id = id;
1279 desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1280
1281 its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1282}
1283
1284static void its_send_vmovi(struct its_device *dev, u32 id)
1285{
c1d4d5cd 1286 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
d011e4e6
MZ
1287 struct its_cmd_desc desc;
1288
1289 desc.its_vmovi_cmd.vpe = map->vpe;
1290 desc.its_vmovi_cmd.dev = dev;
1291 desc.its_vmovi_cmd.event_id = id;
1292 desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1293
1294 its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1295}
1296
75fd951b
MZ
1297static void its_send_vmapp(struct its_node *its,
1298 struct its_vpe *vpe, bool valid)
eb78192b
MZ
1299{
1300 struct its_cmd_desc desc;
eb78192b
MZ
1301
1302 desc.its_vmapp_cmd.vpe = vpe;
1303 desc.its_vmapp_cmd.valid = valid;
75fd951b 1304 desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
eb78192b 1305
75fd951b 1306 its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
eb78192b
MZ
1307}
1308
3171a47a
MZ
1309static void its_send_vmovp(struct its_vpe *vpe)
1310{
84243125 1311 struct its_cmd_desc desc = {};
3171a47a
MZ
1312 struct its_node *its;
1313 unsigned long flags;
1314 int col_id = vpe->col_idx;
1315
1316 desc.its_vmovp_cmd.vpe = vpe;
3171a47a
MZ
1317
1318 if (!its_list_map) {
1319 its = list_first_entry(&its_nodes, struct its_node, entry);
3171a47a
MZ
1320 desc.its_vmovp_cmd.col = &its->collections[col_id];
1321 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1322 return;
1323 }
1324
1325 /*
1326 * Yet another marvel of the architecture. If using the
1327 * its_list "feature", we need to make sure that all ITSs
1328 * receive all VMOVP commands in the same order. The only way
1329 * to guarantee this is to make vmovp a serialization point.
1330 *
1331 * Wall <-- Head.
1332 */
1333 raw_spin_lock_irqsave(&vmovp_lock, flags);
1334
1335 desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
84243125 1336 desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
3171a47a
MZ
1337
1338 /* Emit VMOVPs */
1339 list_for_each_entry(its, &its_nodes, entry) {
0dd57fed 1340 if (!is_v4(its))
3171a47a
MZ
1341 continue;
1342
009384b3 1343 if (!require_its_list_vmovp(vpe->its_vm, its))
2247e1bf
MZ
1344 continue;
1345
3171a47a
MZ
1346 desc.its_vmovp_cmd.col = &its->collections[col_id];
1347 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1348 }
1349
1350 raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1351}
1352
40619a2e 1353static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
eb78192b
MZ
1354{
1355 struct its_cmd_desc desc;
eb78192b
MZ
1356
1357 desc.its_vinvall_cmd.vpe = vpe;
40619a2e 1358 its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
eb78192b
MZ
1359}
1360
28614696
MZ
1361static void its_send_vinv(struct its_device *dev, u32 event_id)
1362{
1363 struct its_cmd_desc desc;
1364
1365 /*
1366 * There is no real VINV command. This is just a normal INV,
1367 * with a VSYNC instead of a SYNC.
1368 */
1369 desc.its_inv_cmd.dev = dev;
1370 desc.its_inv_cmd.event_id = event_id;
1371
1372 its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1373}
1374
ed0e4aa9
MZ
1375static void its_send_vint(struct its_device *dev, u32 event_id)
1376{
1377 struct its_cmd_desc desc;
1378
1379 /*
1380 * There is no real VINT command. This is just a normal INT,
1381 * with a VSYNC instead of a SYNC.
1382 */
1383 desc.its_int_cmd.dev = dev;
1384 desc.its_int_cmd.event_id = event_id;
1385
1386 its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1387}
1388
1389static void its_send_vclear(struct its_device *dev, u32 event_id)
1390{
1391 struct its_cmd_desc desc;
1392
1393 /*
1394 * There is no real VCLEAR command. This is just a normal CLEAR,
1395 * with a VSYNC instead of a SYNC.
1396 */
1397 desc.its_clear_cmd.dev = dev;
1398 desc.its_clear_cmd.event_id = event_id;
1399
1400 its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1401}
1402
d97c97ba
MZ
1403static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1404{
1405 struct its_cmd_desc desc;
1406
1407 desc.its_invdb_cmd.vpe = vpe;
1408 its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1409}
1410
c48ed51c
MZ
1411/*
1412 * irqchip functions - assumes MSI, mostly.
1413 */
015ec038 1414static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
c48ed51c 1415{
c1d4d5cd 1416 struct its_vlpi_map *map = get_vlpi_map(d);
015ec038 1417 irq_hw_number_t hwirq;
e1a2e201 1418 void *va;
adcdb94e 1419 u8 *cfg;
c48ed51c 1420
c1d4d5cd
MZ
1421 if (map) {
1422 va = page_address(map->vm->vprop_page);
d4d7b4ad
MZ
1423 hwirq = map->vintid;
1424
1425 /* Remember the updated property */
1426 map->properties &= ~clr;
1427 map->properties |= set | LPI_PROP_GROUP1;
015ec038 1428 } else {
e1a2e201 1429 va = gic_rdists->prop_table_va;
015ec038
MZ
1430 hwirq = d->hwirq;
1431 }
adcdb94e 1432
e1a2e201 1433 cfg = va + hwirq - 8192;
adcdb94e 1434 *cfg &= ~clr;
015ec038 1435 *cfg |= set | LPI_PROP_GROUP1;
c48ed51c
MZ
1436
1437 /*
1438 * Make the above write visible to the redistributors.
1439 * And yes, we're flushing exactly: One. Single. Byte.
1440 * Humpf...
1441 */
1442 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
328191c0 1443 gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
c48ed51c
MZ
1444 else
1445 dsb(ishst);
015ec038
MZ
1446}
1447
2f4f064b
MZ
1448static void wait_for_syncr(void __iomem *rdbase)
1449{
04d80dbe 1450 while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
2f4f064b
MZ
1451 cpu_relax();
1452}
1453
926846a7 1454static void __direct_lpi_inv(struct irq_data *d, u64 val)
425c09be 1455{
425c09be 1456 void __iomem *rdbase;
f3a05921 1457 unsigned long flags;
f3a05921 1458 int cpu;
f4a81f5a 1459
926846a7
MZ
1460 /* Target the redistributor this LPI is currently routed to */
1461 cpu = irq_to_cpuid_lock(d, &flags);
1462 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1463
1464 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1465 gic_write_lpir(val, rdbase + GICR_INVLPIR);
1466 wait_for_syncr(rdbase);
1467
1468 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1469 irq_to_cpuid_unlock(d, flags);
1470}
1471
1472static void direct_lpi_inv(struct irq_data *d)
1473{
1474 struct its_vlpi_map *map = get_vlpi_map(d);
1475 u64 val;
1476
f4a81f5a
MZ
1477 if (map) {
1478 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1479
1480 WARN_ON(!is_v4_1(its_dev->its));
1481
1482 val = GICR_INVLPIR_V;
1483 val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1484 val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1485 } else {
1486 val = d->hwirq;
1487 }
425c09be 1488
926846a7 1489 __direct_lpi_inv(d, val);
425c09be
MZ
1490}
1491
015ec038
MZ
1492static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1493{
1494 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1495
1496 lpi_write_config(d, clr, set);
f4a81f5a
MZ
1497 if (gic_rdists->has_direct_lpi &&
1498 (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
425c09be 1499 direct_lpi_inv(d);
28614696 1500 else if (!irqd_is_forwarded_to_vcpu(d))
425c09be 1501 its_send_inv(its_dev, its_get_event_id(d));
28614696
MZ
1502 else
1503 its_send_vinv(its_dev, its_get_event_id(d));
c48ed51c
MZ
1504}
1505
015ec038
MZ
1506static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1507{
1508 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1509 u32 event = its_get_event_id(d);
c1d4d5cd 1510 struct its_vlpi_map *map;
015ec038 1511
3858d4df
MZ
1512 /*
1513 * GICv4.1 does away with the per-LPI nonsense, nothing to do
1514 * here.
1515 */
1516 if (is_v4_1(its_dev->its))
1517 return;
1518
c1d4d5cd
MZ
1519 map = dev_event_to_vlpi_map(its_dev, event);
1520
1521 if (map->db_enabled == enable)
015ec038
MZ
1522 return;
1523
c1d4d5cd 1524 map->db_enabled = enable;
015ec038
MZ
1525
1526 /*
1527 * More fun with the architecture:
1528 *
1529 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1530 * value or to 1023, depending on the enable bit. But that
a359f757 1531 * would be issuing a mapping for an /existing/ DevID+EventID
015ec038
MZ
1532 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1533 * to the /same/ vPE, using this opportunity to adjust the
1534 * doorbell. Mouahahahaha. We loves it, Precious.
1535 */
1536 its_send_vmovi(its_dev, event);
c48ed51c
MZ
1537}
1538
1539static void its_mask_irq(struct irq_data *d)
1540{
015ec038
MZ
1541 if (irqd_is_forwarded_to_vcpu(d))
1542 its_vlpi_set_doorbell(d, false);
1543
adcdb94e 1544 lpi_update_config(d, LPI_PROP_ENABLED, 0);
c48ed51c
MZ
1545}
1546
1547static void its_unmask_irq(struct irq_data *d)
1548{
015ec038
MZ
1549 if (irqd_is_forwarded_to_vcpu(d))
1550 its_vlpi_set_doorbell(d, true);
1551
adcdb94e 1552 lpi_update_config(d, 0, LPI_PROP_ENABLED);
c48ed51c
MZ
1553}
1554
2f13ff1d
MZ
1555static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1556{
1557 if (irqd_affinity_is_managed(d))
1558 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1559
1560 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1561}
1562
1563static void its_inc_lpi_count(struct irq_data *d, int cpu)
1564{
1565 if (irqd_affinity_is_managed(d))
1566 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1567 else
1568 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1569}
1570
1571static void its_dec_lpi_count(struct irq_data *d, int cpu)
1572{
1573 if (irqd_affinity_is_managed(d))
1574 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1575 else
1576 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1577}
1578
c5d6082d
MZ
1579static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1580 const struct cpumask *cpu_mask)
1581{
1582 unsigned int cpu = nr_cpu_ids, tmp;
1583 int count = S32_MAX;
1584
1585 for_each_cpu(tmp, cpu_mask) {
1586 int this_count = its_read_lpi_count(d, tmp);
1587 if (this_count < count) {
1588 cpu = tmp;
1589 count = this_count;
1590 }
1591 }
1592
1593 return cpu;
1594}
1595
1596/*
1597 * As suggested by Thomas Gleixner in:
1598 * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de
1599 */
1600static int its_select_cpu(struct irq_data *d,
1601 const struct cpumask *aff_mask)
1602{
1603 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
f55a9b59
PG
1604 static DEFINE_RAW_SPINLOCK(tmpmask_lock);
1605 static struct cpumask __tmpmask;
1606 struct cpumask *tmpmask;
1607 unsigned long flags;
c5d6082d 1608 int cpu, node;
c5d6082d 1609 node = its_dev->its->numa_node;
f55a9b59
PG
1610 tmpmask = &__tmpmask;
1611
1612 raw_spin_lock_irqsave(&tmpmask_lock, flags);
c5d6082d
MZ
1613
1614 if (!irqd_affinity_is_managed(d)) {
1615 /* First try the NUMA node */
1616 if (node != NUMA_NO_NODE) {
1617 /*
1618 * Try the intersection of the affinity mask and the
1619 * node mask (and the online mask, just to be safe).
1620 */
1621 cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1622 cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1623
1624 /*
1625 * Ideally, we would check if the mask is empty, and
1626 * try again on the full node here.
1627 *
1628 * But it turns out that the way ACPI describes the
1629 * affinity for ITSs only deals about memory, and
1630 * not target CPUs, so it cannot describe a single
1631 * ITS placed next to two NUMA nodes.
1632 *
1633 * Instead, just fallback on the online mask. This
1634 * diverges from Thomas' suggestion above.
1635 */
1636 cpu = cpumask_pick_least_loaded(d, tmpmask);
1637 if (cpu < nr_cpu_ids)
1638 goto out;
1639
1640 /* If we can't cross sockets, give up */
1641 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1642 goto out;
1643
1644 /* If the above failed, expand the search */
1645 }
1646
1647 /* Try the intersection of the affinity and online masks */
1648 cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1649
1650 /* If that doesn't fly, the online mask is the last resort */
1651 if (cpumask_empty(tmpmask))
1652 cpumask_copy(tmpmask, cpu_online_mask);
1653
1654 cpu = cpumask_pick_least_loaded(d, tmpmask);
1655 } else {
3f893a59 1656 cpumask_copy(tmpmask, aff_mask);
c5d6082d
MZ
1657
1658 /* If we cannot cross sockets, limit the search to that node */
1659 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1660 node != NUMA_NO_NODE)
1661 cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1662
1663 cpu = cpumask_pick_least_loaded(d, tmpmask);
1664 }
1665out:
f55a9b59 1666 raw_spin_unlock_irqrestore(&tmpmask_lock, flags);
c5d6082d
MZ
1667
1668 pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1669 return cpu;
1670}
1671
c48ed51c
MZ
1672static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1673 bool force)
1674{
c48ed51c
MZ
1675 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1676 struct its_collection *target_col;
1677 u32 id = its_get_event_id(d);
c5d6082d 1678 int cpu, prev_cpu;
c48ed51c 1679
015ec038
MZ
1680 /* A forwarded interrupt should use irq_set_vcpu_affinity */
1681 if (irqd_is_forwarded_to_vcpu(d))
1682 return -EINVAL;
1683
2f13ff1d
MZ
1684 prev_cpu = its_dev->event_map.col_map[id];
1685 its_dec_lpi_count(d, prev_cpu);
1686
c5d6082d
MZ
1687 if (!force)
1688 cpu = its_select_cpu(d, mask_val);
1689 else
1690 cpu = cpumask_pick_least_loaded(d, mask_val);
fbf8f40e 1691
c5d6082d 1692 if (cpu < 0 || cpu >= nr_cpu_ids)
2f13ff1d 1693 goto err;
c48ed51c 1694
8b8d94a7 1695 /* don't set the affinity when the target cpu is same as current one */
2f13ff1d 1696 if (cpu != prev_cpu) {
8b8d94a7
M
1697 target_col = &its_dev->its->collections[cpu];
1698 its_send_movi(its_dev, target_col, id);
1699 its_dev->event_map.col_map[id] = cpu;
0d224d35 1700 irq_data_update_effective_affinity(d, cpumask_of(cpu));
8b8d94a7 1701 }
c48ed51c 1702
2f13ff1d
MZ
1703 its_inc_lpi_count(d, cpu);
1704
c48ed51c 1705 return IRQ_SET_MASK_OK_DONE;
2f13ff1d
MZ
1706
1707err:
1708 its_inc_lpi_count(d, prev_cpu);
1709 return -EINVAL;
c48ed51c
MZ
1710}
1711
558b0165
AB
1712static u64 its_irq_get_msi_base(struct its_device *its_dev)
1713{
1714 struct its_node *its = its_dev->its;
1715
1716 return its->phys_base + GITS_TRANSLATER;
1717}
1718
b48ac83d
MZ
1719static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1720{
1721 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1722 struct its_node *its;
1723 u64 addr;
1724
1725 its = its_dev->its;
558b0165 1726 addr = its->get_msi_base(its_dev);
b48ac83d 1727
b11283eb
VM
1728 msg->address_lo = lower_32_bits(addr);
1729 msg->address_hi = upper_32_bits(addr);
b48ac83d 1730 msg->data = its_get_event_id(d);
44bb7e24 1731
35ae7df2 1732 iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
b48ac83d
MZ
1733}
1734
8d85dced
MZ
1735static int its_irq_set_irqchip_state(struct irq_data *d,
1736 enum irqchip_irq_state which,
1737 bool state)
1738{
1739 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1740 u32 event = its_get_event_id(d);
1741
1742 if (which != IRQCHIP_STATE_PENDING)
1743 return -EINVAL;
1744
ed0e4aa9
MZ
1745 if (irqd_is_forwarded_to_vcpu(d)) {
1746 if (state)
1747 its_send_vint(its_dev, event);
1748 else
1749 its_send_vclear(its_dev, event);
1750 } else {
1751 if (state)
1752 its_send_int(its_dev, event);
1753 else
1754 its_send_clear(its_dev, event);
1755 }
8d85dced
MZ
1756
1757 return 0;
1758}
1759
5f774f5e
MZ
1760static int its_irq_retrigger(struct irq_data *d)
1761{
1762 return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
1763}
1764
009384b3
MZ
1765/*
1766 * Two favourable cases:
1767 *
1768 * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1769 * for vSGI delivery
1770 *
1771 * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1772 * and we're better off mapping all VPEs always
1773 *
1774 * If neither (a) nor (b) is true, then we map vPEs on demand.
1775 *
1776 */
1777static bool gic_requires_eager_mapping(void)
1778{
1779 if (!its_list_map || gic_rdists->has_rvpeid)
1780 return true;
1781
1782 return false;
1783}
1784
2247e1bf
MZ
1785static void its_map_vm(struct its_node *its, struct its_vm *vm)
1786{
1787 unsigned long flags;
1788
009384b3 1789 if (gic_requires_eager_mapping())
2247e1bf
MZ
1790 return;
1791
1792 raw_spin_lock_irqsave(&vmovp_lock, flags);
1793
1794 /*
1795 * If the VM wasn't mapped yet, iterate over the vpes and get
1796 * them mapped now.
1797 */
1798 vm->vlpi_count[its->list_nr]++;
1799
1800 if (vm->vlpi_count[its->list_nr] == 1) {
1801 int i;
1802
1803 for (i = 0; i < vm->nr_vpes; i++) {
1804 struct its_vpe *vpe = vm->vpes[i];
44c4c25e 1805 struct irq_data *d = irq_get_irq_data(vpe->irq);
2247e1bf
MZ
1806
1807 /* Map the VPE to the first possible CPU */
1808 vpe->col_idx = cpumask_first(cpu_online_mask);
1809 its_send_vmapp(its, vpe, true);
1810 its_send_vinvall(its, vpe);
44c4c25e 1811 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
2247e1bf
MZ
1812 }
1813 }
1814
1815 raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1816}
1817
1818static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1819{
1820 unsigned long flags;
1821
1822 /* Not using the ITS list? Everything is always mapped. */
009384b3 1823 if (gic_requires_eager_mapping())
2247e1bf
MZ
1824 return;
1825
1826 raw_spin_lock_irqsave(&vmovp_lock, flags);
1827
1828 if (!--vm->vlpi_count[its->list_nr]) {
1829 int i;
1830
1831 for (i = 0; i < vm->nr_vpes; i++)
1832 its_send_vmapp(its, vm->vpes[i], false);
1833 }
1834
1835 raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1836}
1837
d011e4e6
MZ
1838static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1839{
1840 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1841 u32 event = its_get_event_id(d);
1842 int ret = 0;
1843
1844 if (!info->map)
1845 return -EINVAL;
1846
11635fa2 1847 raw_spin_lock(&its_dev->event_map.vlpi_lock);
d011e4e6
MZ
1848
1849 if (!its_dev->event_map.vm) {
1850 struct its_vlpi_map *maps;
1851
6396bb22 1852 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
11635fa2 1853 GFP_ATOMIC);
d011e4e6
MZ
1854 if (!maps) {
1855 ret = -ENOMEM;
1856 goto out;
1857 }
1858
1859 its_dev->event_map.vm = info->map->vm;
1860 its_dev->event_map.vlpi_maps = maps;
1861 } else if (its_dev->event_map.vm != info->map->vm) {
1862 ret = -EINVAL;
1863 goto out;
1864 }
1865
1866 /* Get our private copy of the mapping information */
1867 its_dev->event_map.vlpi_maps[event] = *info->map;
1868
1869 if (irqd_is_forwarded_to_vcpu(d)) {
1870 /* Already mapped, move it around */
1871 its_send_vmovi(its_dev, event);
1872 } else {
2247e1bf
MZ
1873 /* Ensure all the VPEs are mapped on this ITS */
1874 its_map_vm(its_dev->its, info->map->vm);
1875
d4d7b4ad
MZ
1876 /*
1877 * Flag the interrupt as forwarded so that we can
1878 * start poking the virtual property table.
1879 */
1880 irqd_set_forwarded_to_vcpu(d);
1881
1882 /* Write out the property to the prop table */
1883 lpi_write_config(d, 0xff, info->map->properties);
1884
d011e4e6
MZ
1885 /* Drop the physical mapping */
1886 its_send_discard(its_dev, event);
1887
1888 /* and install the virtual one */
1889 its_send_vmapti(its_dev, event);
d011e4e6
MZ
1890
1891 /* Increment the number of VLPIs */
1892 its_dev->event_map.nr_vlpis++;
1893 }
1894
1895out:
11635fa2 1896 raw_spin_unlock(&its_dev->event_map.vlpi_lock);
d011e4e6
MZ
1897 return ret;
1898}
1899
1900static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1901{
1902 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
046b5054 1903 struct its_vlpi_map *map;
d011e4e6
MZ
1904 int ret = 0;
1905
11635fa2 1906 raw_spin_lock(&its_dev->event_map.vlpi_lock);
d011e4e6 1907
046b5054
MZ
1908 map = get_vlpi_map(d);
1909
1910 if (!its_dev->event_map.vm || !map) {
d011e4e6
MZ
1911 ret = -EINVAL;
1912 goto out;
1913 }
1914
1915 /* Copy our mapping information to the incoming request */
c1d4d5cd 1916 *info->map = *map;
d011e4e6
MZ
1917
1918out:
11635fa2 1919 raw_spin_unlock(&its_dev->event_map.vlpi_lock);
d011e4e6
MZ
1920 return ret;
1921}
1922
1923static int its_vlpi_unmap(struct irq_data *d)
1924{
1925 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1926 u32 event = its_get_event_id(d);
1927 int ret = 0;
1928
11635fa2 1929 raw_spin_lock(&its_dev->event_map.vlpi_lock);
d011e4e6
MZ
1930
1931 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1932 ret = -EINVAL;
1933 goto out;
1934 }
1935
1936 /* Drop the virtual mapping */
1937 its_send_discard(its_dev, event);
1938
1939 /* and restore the physical one */
1940 irqd_clr_forwarded_to_vcpu(d);
1941 its_send_mapti(its_dev, d->hwirq, event);
1942 lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1943 LPI_PROP_ENABLED |
1944 LPI_PROP_GROUP1));
1945
2247e1bf
MZ
1946 /* Potentially unmap the VM from this ITS */
1947 its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1948
d011e4e6
MZ
1949 /*
1950 * Drop the refcount and make the device available again if
1951 * this was the last VLPI.
1952 */
1953 if (!--its_dev->event_map.nr_vlpis) {
1954 its_dev->event_map.vm = NULL;
1955 kfree(its_dev->event_map.vlpi_maps);
1956 }
1957
1958out:
11635fa2 1959 raw_spin_unlock(&its_dev->event_map.vlpi_lock);
d011e4e6
MZ
1960 return ret;
1961}
1962
015ec038
MZ
1963static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1964{
1965 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1966
1967 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1968 return -EINVAL;
1969
1970 if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1971 lpi_update_config(d, 0xff, info->config);
1972 else
1973 lpi_write_config(d, 0xff, info->config);
1974 its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1975
1976 return 0;
1977}
1978
c808eea8
MZ
1979static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1980{
1981 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1982 struct its_cmd_info *info = vcpu_info;
1983
1984 /* Need a v4 ITS */
0dd57fed 1985 if (!is_v4(its_dev->its))
c808eea8
MZ
1986 return -EINVAL;
1987
d011e4e6
MZ
1988 /* Unmap request? */
1989 if (!info)
1990 return its_vlpi_unmap(d);
1991
c808eea8
MZ
1992 switch (info->cmd_type) {
1993 case MAP_VLPI:
d011e4e6 1994 return its_vlpi_map(d, info);
c808eea8
MZ
1995
1996 case GET_VLPI:
d011e4e6 1997 return its_vlpi_get(d, info);
c808eea8
MZ
1998
1999 case PROP_UPDATE_VLPI:
2000 case PROP_UPDATE_AND_INV_VLPI:
015ec038 2001 return its_vlpi_prop_update(d, info);
c808eea8
MZ
2002
2003 default:
2004 return -EINVAL;
2005 }
2006}
2007
c48ed51c
MZ
2008static struct irq_chip its_irq_chip = {
2009 .name = "ITS",
2010 .irq_mask = its_mask_irq,
2011 .irq_unmask = its_unmask_irq,
004fa08d 2012 .irq_eoi = irq_chip_eoi_parent,
c48ed51c 2013 .irq_set_affinity = its_set_affinity,
b48ac83d 2014 .irq_compose_msi_msg = its_irq_compose_msi_msg,
8d85dced 2015 .irq_set_irqchip_state = its_irq_set_irqchip_state,
5f774f5e 2016 .irq_retrigger = its_irq_retrigger,
c808eea8 2017 .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity,
b48ac83d
MZ
2018};
2019
880cb3cd 2020
bf9529f8
MZ
2021/*
2022 * How we allocate LPIs:
2023 *
880cb3cd
MZ
2024 * lpi_range_list contains ranges of LPIs that are to available to
2025 * allocate from. To allocate LPIs, just pick the first range that
2026 * fits the required allocation, and reduce it by the required
2027 * amount. Once empty, remove the range from the list.
2028 *
2029 * To free a range of LPIs, add a free range to the list, sort it and
2030 * merge the result if the new range happens to be adjacent to an
2031 * already free block.
bf9529f8 2032 *
880cb3cd
MZ
2033 * The consequence of the above is that allocation is cost is low, but
2034 * freeing is expensive. We assumes that freeing rarely occurs.
2035 */
4cb205c0 2036#define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */
880cb3cd 2037
880cb3cd
MZ
2038static DEFINE_MUTEX(lpi_range_lock);
2039static LIST_HEAD(lpi_range_list);
2040
2041struct lpi_range {
2042 struct list_head entry;
2043 u32 base_id;
2044 u32 span;
2045};
bf9529f8 2046
880cb3cd 2047static struct lpi_range *mk_lpi_range(u32 base, u32 span)
bf9529f8 2048{
880cb3cd
MZ
2049 struct lpi_range *range;
2050
1c73fac5 2051 range = kmalloc(sizeof(*range), GFP_KERNEL);
880cb3cd 2052 if (range) {
880cb3cd
MZ
2053 range->base_id = base;
2054 range->span = span;
2055 }
2056
2057 return range;
bf9529f8
MZ
2058}
2059
880cb3cd
MZ
2060static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2061{
2062 struct lpi_range *range, *tmp;
2063 int err = -ENOSPC;
2064
2065 mutex_lock(&lpi_range_lock);
2066
2067 list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2068 if (range->span >= nr_lpis) {
2069 *base = range->base_id;
2070 range->base_id += nr_lpis;
2071 range->span -= nr_lpis;
2072
2073 if (range->span == 0) {
2074 list_del(&range->entry);
2075 kfree(range);
2076 }
2077
2078 err = 0;
2079 break;
2080 }
2081 }
2082
2083 mutex_unlock(&lpi_range_lock);
2084
2085 pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2086 return err;
bf9529f8
MZ
2087}
2088
12eade12
RV
2089static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2090{
2091 if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2092 return;
2093 if (a->base_id + a->span != b->base_id)
2094 return;
2095 b->base_id = a->base_id;
2096 b->span += a->span;
2097 list_del(&a->entry);
2098 kfree(a);
2099}
2100
880cb3cd 2101static int free_lpi_range(u32 base, u32 nr_lpis)
bf9529f8 2102{
12eade12 2103 struct lpi_range *new, *old;
880cb3cd
MZ
2104
2105 new = mk_lpi_range(base, nr_lpis);
b31a3838
RV
2106 if (!new)
2107 return -ENOMEM;
880cb3cd
MZ
2108
2109 mutex_lock(&lpi_range_lock);
2110
12eade12
RV
2111 list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2112 if (old->base_id < base)
2113 break;
880cb3cd 2114 }
12eade12
RV
2115 /*
2116 * old is the last element with ->base_id smaller than base,
2117 * so new goes right after it. If there are no elements with
2118 * ->base_id smaller than base, &old->entry ends up pointing
2119 * at the head of the list, and inserting new it the start of
2120 * the list is the right thing to do in that case as well.
2121 */
2122 list_add(&new->entry, &old->entry);
2123 /*
2124 * Now check if we can merge with the preceding and/or
2125 * following ranges.
2126 */
2127 merge_lpi_ranges(old, new);
2128 merge_lpi_ranges(new, list_next_entry(new, entry));
880cb3cd 2129
880cb3cd 2130 mutex_unlock(&lpi_range_lock);
b31a3838 2131 return 0;
880cb3cd
MZ
2132}
2133
2134static int __init its_lpi_init(u32 id_bits)
2135{
2136 u32 lpis = (1UL << id_bits) - 8192;
12b2905a 2137 u32 numlpis;
880cb3cd
MZ
2138 int err;
2139
12b2905a
MZ
2140 numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2141
2142 if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2143 lpis = numlpis;
2144 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2145 lpis);
2146 }
2147
880cb3cd
MZ
2148 /*
2149 * Initializing the allocator is just the same as freeing the
2150 * full range of LPIs.
2151 */
2152 err = free_lpi_range(8192, lpis);
2153 pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2154 return err;
2155}
bf9529f8 2156
38dd7c49 2157static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
880cb3cd
MZ
2158{
2159 unsigned long *bitmap = NULL;
2160 int err = 0;
bf9529f8
MZ
2161
2162 do {
38dd7c49 2163 err = alloc_lpi_range(nr_irqs, base);
880cb3cd 2164 if (!err)
bf9529f8
MZ
2165 break;
2166
38dd7c49
MZ
2167 nr_irqs /= 2;
2168 } while (nr_irqs > 0);
bf9529f8 2169
45725e0f
MZ
2170 if (!nr_irqs)
2171 err = -ENOSPC;
2172
880cb3cd 2173 if (err)
bf9529f8
MZ
2174 goto out;
2175
ff5fe886 2176 bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC);
bf9529f8
MZ
2177 if (!bitmap)
2178 goto out;
2179
38dd7c49 2180 *nr_ids = nr_irqs;
bf9529f8
MZ
2181
2182out:
c8415b94
MZ
2183 if (!bitmap)
2184 *base = *nr_ids = 0;
2185
bf9529f8
MZ
2186 return bitmap;
2187}
2188
38dd7c49 2189static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
bf9529f8 2190{
880cb3cd 2191 WARN_ON(free_lpi_range(base, nr_ids));
ff5fe886 2192 bitmap_free(bitmap);
bf9529f8 2193}
1ac19ca6 2194
053be485
MZ
2195static void gic_reset_prop_table(void *va)
2196{
2197 /* Priority 0xa0, Group-1, disabled */
2198 memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2199
2200 /* Make sure the GIC will observe the written configuration */
2201 gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2202}
2203
0e5ccf91
MZ
2204static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2205{
2206 struct page *prop_page;
1ac19ca6 2207
0e5ccf91
MZ
2208 prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
2209 if (!prop_page)
2210 return NULL;
2211
053be485 2212 gic_reset_prop_table(page_address(prop_page));
0e5ccf91
MZ
2213
2214 return prop_page;
2215}
2216
7d75bbb4
MZ
2217static void its_free_prop_table(struct page *prop_page)
2218{
2219 free_pages((unsigned long)page_address(prop_page),
2220 get_order(LPI_PROPBASE_SZ));
2221}
1ac19ca6 2222
5e2c9f9a
MZ
2223static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2224{
2225 phys_addr_t start, end, addr_end;
2226 u64 i;
2227
2228 /*
2229 * We don't bother checking for a kdump kernel as by
2230 * construction, the LPI tables are out of this kernel's
2231 * memory map.
2232 */
2233 if (is_kdump_kernel())
2234 return true;
2235
2236 addr_end = addr + size - 1;
2237
9f3d5eaa 2238 for_each_reserved_mem_range(i, &start, &end) {
5e2c9f9a
MZ
2239 if (addr >= start && addr_end <= end)
2240 return true;
2241 }
2242
2243 /* Not found, not a good sign... */
2244 pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2245 &addr, &addr_end);
2246 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2247 return false;
2248}
2249
3fb68fae
MZ
2250static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2251{
2252 if (efi_enabled(EFI_CONFIG_TABLES))
2253 return efi_mem_reserve_persistent(addr, size);
2254
2255 return 0;
2256}
2257
11e37d35 2258static int __init its_setup_lpi_prop_table(void)
1ac19ca6 2259{
c440a9d9
MZ
2260 if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2261 u64 val;
1ac19ca6 2262
c440a9d9
MZ
2263 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2264 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
1ac19ca6 2265
c440a9d9
MZ
2266 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2267 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2268 LPI_PROPBASE_SZ,
2269 MEMREMAP_WB);
2270 gic_reset_prop_table(gic_rdists->prop_table_va);
2271 } else {
2272 struct page *page;
2273
2274 lpi_id_bits = min_t(u32,
2275 GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2276 ITS_MAX_LPI_NRBITS);
2277 page = its_allocate_prop_table(GFP_NOWAIT);
2278 if (!page) {
2279 pr_err("Failed to allocate PROPBASE\n");
2280 return -ENOMEM;
2281 }
2282
2283 gic_rdists->prop_table_pa = page_to_phys(page);
2284 gic_rdists->prop_table_va = page_address(page);
3fb68fae
MZ
2285 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2286 LPI_PROPBASE_SZ));
c440a9d9 2287 }
e1a2e201
MZ
2288
2289 pr_info("GICv3: using LPI property table @%pa\n",
2290 &gic_rdists->prop_table_pa);
1ac19ca6 2291
6c31e123 2292 return its_lpi_init(lpi_id_bits);
1ac19ca6
MZ
2293}
2294
2295static const char *its_base_type_string[] = {
2296 [GITS_BASER_TYPE_DEVICE] = "Devices",
2297 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs",
4f46de9d 2298 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)",
1ac19ca6
MZ
2299 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections",
2300 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)",
2301 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)",
2302 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)",
2303};
2304
2d81d425
SD
2305static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2306{
2307 u32 idx = baser - its->tables;
2308
0968a619 2309 return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2d81d425
SD
2310}
2311
2312static void its_write_baser(struct its_node *its, struct its_baser *baser,
2313 u64 val)
2314{
2315 u32 idx = baser - its->tables;
2316
0968a619 2317 gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2d81d425
SD
2318 baser->val = its_read_baser(its, baser);
2319}
2320
9347359a 2321static int its_setup_baser(struct its_node *its, struct its_baser *baser,
d5df9dc9 2322 u64 cache, u64 shr, u32 order, bool indirect)
9347359a
SD
2323{
2324 u64 val = its_read_baser(its, baser);
2325 u64 esz = GITS_BASER_ENTRY_SIZE(val);
2326 u64 type = GITS_BASER_TYPE(val);
30ae9610 2327 u64 baser_phys, tmp;
d5df9dc9 2328 u32 alloc_pages, psz;
539d3782 2329 struct page *page;
9347359a 2330 void *base;
9347359a 2331
d5df9dc9 2332 psz = baser->psz;
9347359a
SD
2333 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2334 if (alloc_pages > GITS_BASER_PAGES_MAX) {
2335 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2336 &its->phys_base, its_base_type_string[type],
2337 alloc_pages, GITS_BASER_PAGES_MAX);
2338 alloc_pages = GITS_BASER_PAGES_MAX;
2339 order = get_order(GITS_BASER_PAGES_MAX * psz);
2340 }
2341
539d3782
SD
2342 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2343 if (!page)
9347359a
SD
2344 return -ENOMEM;
2345
539d3782 2346 base = (void *)page_address(page);
30ae9610
SD
2347 baser_phys = virt_to_phys(base);
2348
2349 /* Check if the physical address of the memory is above 48bits */
2350 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2351
2352 /* 52bit PA is supported only when PageSize=64K */
2353 if (psz != SZ_64K) {
2354 pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2355 free_pages((unsigned long)base, order);
2356 return -ENXIO;
2357 }
2358
2359 /* Convert 52bit PA to 48bit field */
2360 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2361 }
2362
9347359a 2363retry_baser:
30ae9610 2364 val = (baser_phys |
9347359a
SD
2365 (type << GITS_BASER_TYPE_SHIFT) |
2366 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) |
2367 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) |
2368 cache |
2369 shr |
2370 GITS_BASER_VALID);
2371
3faf24ea
SD
2372 val |= indirect ? GITS_BASER_INDIRECT : 0x0;
2373
9347359a
SD
2374 switch (psz) {
2375 case SZ_4K:
2376 val |= GITS_BASER_PAGE_SIZE_4K;
2377 break;
2378 case SZ_16K:
2379 val |= GITS_BASER_PAGE_SIZE_16K;
2380 break;
2381 case SZ_64K:
2382 val |= GITS_BASER_PAGE_SIZE_64K;
2383 break;
2384 }
2385
2386 its_write_baser(its, baser, val);
2387 tmp = baser->val;
2388
a8707f55
SR
2389 if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE)
2390 tmp &= ~GITS_BASER_SHAREABILITY_MASK;
2391
9347359a
SD
2392 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2393 /*
2394 * Shareability didn't stick. Just use
2395 * whatever the read reported, which is likely
2396 * to be the only thing this redistributor
2397 * supports. If that's zero, make it
2398 * non-cacheable as well.
2399 */
2400 shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2401 if (!shr) {
2402 cache = GITS_BASER_nC;
328191c0 2403 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
9347359a
SD
2404 }
2405 goto retry_baser;
2406 }
2407
9347359a 2408 if (val != tmp) {
b11283eb 2409 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
9347359a 2410 &its->phys_base, its_base_type_string[type],
b11283eb 2411 val, tmp);
9347359a
SD
2412 free_pages((unsigned long)base, order);
2413 return -ENXIO;
2414 }
2415
2416 baser->order = order;
2417 baser->base = base;
2418 baser->psz = psz;
3faf24ea 2419 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
9347359a 2420
3faf24ea 2421 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
d524eaa2 2422 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
9347359a
SD
2423 its_base_type_string[type],
2424 (unsigned long)virt_to_phys(base),
3faf24ea 2425 indirect ? "indirect" : "flat", (int)esz,
9347359a
SD
2426 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2427
2428 return 0;
2429}
2430
4cacac57
MZ
2431static bool its_parse_indirect_baser(struct its_node *its,
2432 struct its_baser *baser,
d5df9dc9 2433 u32 *order, u32 ids)
4b75c459 2434{
4cacac57
MZ
2435 u64 tmp = its_read_baser(its, baser);
2436 u64 type = GITS_BASER_TYPE(tmp);
2437 u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2fd632a0 2438 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
4b75c459 2439 u32 new_order = *order;
d5df9dc9 2440 u32 psz = baser->psz;
3faf24ea
SD
2441 bool indirect = false;
2442
2443 /* No need to enable Indirection if memory requirement < (psz*2)bytes */
2444 if ((esz << ids) > (psz * 2)) {
2445 /*
2446 * Find out whether hw supports a single or two-level table by
2447 * table by reading bit at offset '62' after writing '1' to it.
2448 */
2449 its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2450 indirect = !!(baser->val & GITS_BASER_INDIRECT);
2451
2452 if (indirect) {
2453 /*
2454 * The size of the lvl2 table is equal to ITS page size
2455 * which is 'psz'. For computing lvl1 table size,
2456 * subtract ID bits that sparse lvl2 table from 'ids'
2457 * which is reported by ITS hardware times lvl1 table
2458 * entry size.
2459 */
d524eaa2 2460 ids -= ilog2(psz / (int)esz);
3faf24ea
SD
2461 esz = GITS_LVL1_ENTRY_SIZE;
2462 }
2463 }
4b75c459
SD
2464
2465 /*
2466 * Allocate as many entries as required to fit the
2467 * range of device IDs that the ITS can grok... The ID
2468 * space being incredibly sparse, this results in a
3faf24ea
SD
2469 * massive waste of memory if two-level device table
2470 * feature is not supported by hardware.
4b75c459
SD
2471 */
2472 new_order = max_t(u32, get_order(esz << ids), new_order);
23baf831
KS
2473 if (new_order > MAX_ORDER) {
2474 new_order = MAX_ORDER;
d524eaa2 2475 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
576a8342 2476 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
4cacac57 2477 &its->phys_base, its_base_type_string[type],
576a8342 2478 device_ids(its), ids);
4b75c459
SD
2479 }
2480
2481 *order = new_order;
3faf24ea
SD
2482
2483 return indirect;
4b75c459
SD
2484}
2485
5e516846
MZ
2486static u32 compute_common_aff(u64 val)
2487{
2488 u32 aff, clpiaff;
2489
2490 aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2491 clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2492
2493 return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2494}
2495
2496static u32 compute_its_aff(struct its_node *its)
2497{
2498 u64 val;
2499 u32 svpet;
2500
2501 /*
2502 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2503 * the resulting affinity. We then use that to see if this match
2504 * our own affinity.
2505 */
2506 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2507 val = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2508 val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2509 return compute_common_aff(val);
2510}
2511
2512static struct its_node *find_sibling_its(struct its_node *cur_its)
2513{
2514 struct its_node *its;
2515 u32 aff;
2516
2517 if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2518 return NULL;
2519
2520 aff = compute_its_aff(cur_its);
2521
2522 list_for_each_entry(its, &its_nodes, entry) {
2523 u64 baser;
2524
2525 if (!is_v4_1(its) || its == cur_its)
2526 continue;
2527
2528 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2529 continue;
2530
2531 if (aff != compute_its_aff(its))
2532 continue;
2533
2534 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2535 baser = its->tables[2].val;
2536 if (!(baser & GITS_BASER_VALID))
2537 continue;
2538
2539 return its;
2540 }
2541
2542 return NULL;
2543}
2544
1ac19ca6
MZ
2545static void its_free_tables(struct its_node *its)
2546{
2547 int i;
2548
2549 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1a485f4d
SD
2550 if (its->tables[i].base) {
2551 free_pages((unsigned long)its->tables[i].base,
2552 its->tables[i].order);
2553 its->tables[i].base = NULL;
1ac19ca6
MZ
2554 }
2555 }
2556}
2557
d5df9dc9
MZ
2558static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2559{
2560 u64 psz = SZ_64K;
2561
2562 while (psz) {
2563 u64 val, gpsz;
2564
2565 val = its_read_baser(its, baser);
2566 val &= ~GITS_BASER_PAGE_SIZE_MASK;
2567
2568 switch (psz) {
2569 case SZ_64K:
2570 gpsz = GITS_BASER_PAGE_SIZE_64K;
2571 break;
2572 case SZ_16K:
2573 gpsz = GITS_BASER_PAGE_SIZE_16K;
2574 break;
2575 case SZ_4K:
2576 default:
2577 gpsz = GITS_BASER_PAGE_SIZE_4K;
2578 break;
2579 }
2580
2581 gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2582
2583 val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2584 its_write_baser(its, baser, val);
2585
2586 if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2587 break;
2588
2589 switch (psz) {
2590 case SZ_64K:
2591 psz = SZ_16K;
2592 break;
2593 case SZ_16K:
2594 psz = SZ_4K;
2595 break;
2596 case SZ_4K:
2597 default:
2598 return -1;
2599 }
2600 }
2601
2602 baser->psz = psz;
2603 return 0;
2604}
2605
0e0b0f69 2606static int its_alloc_tables(struct its_node *its)
1ac19ca6 2607{
1ac19ca6 2608 u64 shr = GITS_BASER_InnerShareable;
2fd632a0 2609 u64 cache = GITS_BASER_RaWaWb;
9347359a 2610 int err, i;
94100970 2611
fa150019
AB
2612 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2613 /* erratum 24313: ignore memory access type */
2614 cache = GITS_BASER_nCnB;
466b7d16 2615
1ac19ca6 2616 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2d81d425
SD
2617 struct its_baser *baser = its->tables + i;
2618 u64 val = its_read_baser(its, baser);
1ac19ca6 2619 u64 type = GITS_BASER_TYPE(val);
3faf24ea 2620 bool indirect = false;
d5df9dc9 2621 u32 order;
1ac19ca6 2622
d5df9dc9 2623 if (type == GITS_BASER_TYPE_NONE)
1ac19ca6
MZ
2624 continue;
2625
d5df9dc9
MZ
2626 if (its_probe_baser_psz(its, baser)) {
2627 its_free_tables(its);
2628 return -ENXIO;
2629 }
2630
2631 order = get_order(baser->psz);
2632
2633 switch (type) {
4cacac57 2634 case GITS_BASER_TYPE_DEVICE:
d5df9dc9 2635 indirect = its_parse_indirect_baser(its, baser, &order,
576a8342 2636 device_ids(its));
8d565748
ZY
2637 break;
2638
4cacac57 2639 case GITS_BASER_TYPE_VCPU:
5e516846
MZ
2640 if (is_v4_1(its)) {
2641 struct its_node *sibling;
2642
2643 WARN_ON(i != 2);
2644 if ((sibling = find_sibling_its(its))) {
2645 *baser = sibling->tables[2];
2646 its_write_baser(its, baser, baser->val);
2647 continue;
2648 }
2649 }
2650
d5df9dc9 2651 indirect = its_parse_indirect_baser(its, baser, &order,
32bd44dc 2652 ITS_MAX_VPEID_BITS);
4cacac57
MZ
2653 break;
2654 }
f54b97ed 2655
d5df9dc9 2656 err = its_setup_baser(its, baser, cache, shr, order, indirect);
9347359a
SD
2657 if (err < 0) {
2658 its_free_tables(its);
2659 return err;
1ac19ca6
MZ
2660 }
2661
9347359a 2662 /* Update settings which will be used for next BASERn */
9347359a
SD
2663 cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2664 shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
1ac19ca6
MZ
2665 }
2666
2667 return 0;
1ac19ca6
MZ
2668}
2669
5e516846
MZ
2670static u64 inherit_vpe_l1_table_from_its(void)
2671{
2672 struct its_node *its;
2673 u64 val;
2674 u32 aff;
2675
2676 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2677 aff = compute_common_aff(val);
2678
2679 list_for_each_entry(its, &its_nodes, entry) {
2680 u64 baser, addr;
2681
2682 if (!is_v4_1(its))
2683 continue;
2684
2685 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2686 continue;
2687
2688 if (aff != compute_its_aff(its))
2689 continue;
2690
2691 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2692 baser = its->tables[2].val;
2693 if (!(baser & GITS_BASER_VALID))
2694 continue;
2695
2696 /* We have a winner! */
8b718d40
ZY
2697 gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2698
5e516846
MZ
2699 val = GICR_VPROPBASER_4_1_VALID;
2700 if (baser & GITS_BASER_INDIRECT)
2701 val |= GICR_VPROPBASER_4_1_INDIRECT;
2702 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2703 FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2704 switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2705 case GIC_PAGE_SIZE_64K:
2706 addr = GITS_BASER_ADDR_48_to_52(baser);
2707 break;
2708 default:
2709 addr = baser & GENMASK_ULL(47, 12);
2710 break;
2711 }
2712 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2713 val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2714 FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2715 val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2716 FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2717 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2718
2719 return val;
2720 }
2721
2722 return 0;
2723}
2724
2725static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2726{
2727 u32 aff;
2728 u64 val;
2729 int cpu;
2730
2731 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2732 aff = compute_common_aff(val);
2733
2734 for_each_possible_cpu(cpu) {
2735 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
5e516846
MZ
2736
2737 if (!base || cpu == smp_processor_id())
2738 continue;
2739
2740 val = gic_read_typer(base + GICR_TYPER);
4bccf1d7 2741 if (aff != compute_common_aff(val))
5e516846
MZ
2742 continue;
2743
2744 /*
2745 * At this point, we have a victim. This particular CPU
2746 * has already booted, and has an affinity that matches
2747 * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2748 * Make sure we don't write the Z bit in that case.
2749 */
5186a6cc 2750 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
5e516846
MZ
2751 val &= ~GICR_VPROPBASER_4_1_Z;
2752
8b718d40 2753 gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
5e516846
MZ
2754 *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2755
2756 return val;
2757 }
2758
2759 return 0;
2760}
2761
4e6437f1
ZY
2762static bool allocate_vpe_l2_table(int cpu, u32 id)
2763{
2764 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
490d332e
MZ
2765 unsigned int psz, esz, idx, npg, gpsz;
2766 u64 val;
4e6437f1
ZY
2767 struct page *page;
2768 __le64 *table;
2769
2770 if (!gic_rdists->has_rvpeid)
2771 return true;
2772
28d160de
MZ
2773 /* Skip non-present CPUs */
2774 if (!base)
2775 return true;
2776
5186a6cc 2777 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
4e6437f1
ZY
2778
2779 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2780 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2781 npg = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2782
2783 switch (gpsz) {
2784 default:
2785 WARN_ON(1);
df561f66 2786 fallthrough;
4e6437f1
ZY
2787 case GIC_PAGE_SIZE_4K:
2788 psz = SZ_4K;
2789 break;
2790 case GIC_PAGE_SIZE_16K:
2791 psz = SZ_16K;
2792 break;
2793 case GIC_PAGE_SIZE_64K:
2794 psz = SZ_64K;
2795 break;
2796 }
2797
2798 /* Don't allow vpe_id that exceeds single, flat table limit */
2799 if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2800 return (id < (npg * psz / (esz * SZ_8)));
2801
2802 /* Compute 1st level table index & check if that exceeds table limit */
2803 idx = id >> ilog2(psz / (esz * SZ_8));
2804 if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2805 return false;
2806
2807 table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2808
2809 /* Allocate memory for 2nd level table */
2810 if (!table[idx]) {
2811 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2812 if (!page)
2813 return false;
2814
2815 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
2816 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2817 gic_flush_dcache_to_poc(page_address(page), psz);
2818
2819 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2820
2821 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2822 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2823 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2824
2825 /* Ensure updated table contents are visible to RD hardware */
2826 dsb(sy);
2827 }
2828
2829 return true;
2830}
2831
5e516846
MZ
2832static int allocate_vpe_l1_table(void)
2833{
2834 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2835 u64 val, gpsz, npg, pa;
2836 unsigned int psz = SZ_64K;
2837 unsigned int np, epp, esz;
2838 struct page *page;
2839
2840 if (!gic_rdists->has_rvpeid)
2841 return 0;
2842
2843 /*
2844 * if VPENDBASER.Valid is set, disable any previously programmed
2845 * VPE by setting PendingLast while clearing Valid. This has the
2846 * effect of making sure no doorbell will be generated and we can
2847 * then safely clear VPROPBASER.Valid.
2848 */
5186a6cc
ZY
2849 if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2850 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
5e516846
MZ
2851 vlpi_base + GICR_VPENDBASER);
2852
2853 /*
2854 * If we can inherit the configuration from another RD, let's do
2855 * so. Otherwise, we have to go through the allocation process. We
2856 * assume that all RDs have the exact same requirements, as
2857 * nothing will work otherwise.
2858 */
2859 val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2860 if (val & GICR_VPROPBASER_4_1_VALID)
2861 goto out;
2862
d1bd7e0b 2863 gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
5e516846
MZ
2864 if (!gic_data_rdist()->vpe_table_mask)
2865 return -ENOMEM;
2866
2867 val = inherit_vpe_l1_table_from_its();
2868 if (val & GICR_VPROPBASER_4_1_VALID)
2869 goto out;
2870
2871 /* First probe the page size */
2872 val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
5186a6cc
ZY
2873 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2874 val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
5e516846
MZ
2875 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2876 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2877
2878 switch (gpsz) {
2879 default:
2880 gpsz = GIC_PAGE_SIZE_4K;
df561f66 2881 fallthrough;
5e516846
MZ
2882 case GIC_PAGE_SIZE_4K:
2883 psz = SZ_4K;
2884 break;
2885 case GIC_PAGE_SIZE_16K:
2886 psz = SZ_16K;
2887 break;
2888 case GIC_PAGE_SIZE_64K:
2889 psz = SZ_64K;
2890 break;
2891 }
2892
2893 /*
2894 * Start populating the register from scratch, including RO fields
2895 * (which we want to print in debug cases...)
2896 */
2897 val = 0;
2898 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2899 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2900
2901 /* How many entries per GIC page? */
2902 esz++;
2903 epp = psz / (esz * SZ_8);
2904
2905 /*
2906 * If we need more than just a single L1 page, flag the table
2907 * as indirect and compute the number of required L1 pages.
2908 */
2909 if (epp < ITS_MAX_VPEID) {
2910 int nl2;
2911
2912 val |= GICR_VPROPBASER_4_1_INDIRECT;
2913
2914 /* Number of L2 pages required to cover the VPEID space */
2915 nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2916
2917 /* Number of L1 pages to point to the L2 pages */
2918 npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2919 } else {
2920 npg = 1;
2921 }
2922
e88bd316 2923 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
5e516846
MZ
2924
2925 /* Right, that's the number of CPU pages we need for L1 */
2926 np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2927
2928 pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2929 np, npg, psz, epp, esz);
d1bd7e0b 2930 page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
5e516846
MZ
2931 if (!page)
2932 return -ENOMEM;
2933
8b718d40 2934 gic_data_rdist()->vpe_l1_base = page_address(page);
5e516846
MZ
2935 pa = virt_to_phys(page_address(page));
2936 WARN_ON(!IS_ALIGNED(pa, psz));
2937
2938 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
2939 val |= GICR_VPROPBASER_RaWb;
2940 val |= GICR_VPROPBASER_InnerShareable;
2941 val |= GICR_VPROPBASER_4_1_Z;
2942 val |= GICR_VPROPBASER_4_1_VALID;
2943
2944out:
5186a6cc 2945 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
5e516846
MZ
2946 cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
2947
2948 pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
2949 smp_processor_id(), val,
2950 cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
2951
2952 return 0;
2953}
2954
1ac19ca6
MZ
2955static int its_alloc_collections(struct its_node *its)
2956{
83559b47
MZ
2957 int i;
2958
6396bb22 2959 its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
1ac19ca6
MZ
2960 GFP_KERNEL);
2961 if (!its->collections)
2962 return -ENOMEM;
2963
83559b47
MZ
2964 for (i = 0; i < nr_cpu_ids; i++)
2965 its->collections[i].target_address = ~0ULL;
2966
1ac19ca6
MZ
2967 return 0;
2968}
2969
7c297a2d
MZ
2970static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2971{
2972 struct page *pend_page;
adaab500 2973
7c297a2d 2974 pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
adaab500 2975 get_order(LPI_PENDBASE_SZ));
7c297a2d
MZ
2976 if (!pend_page)
2977 return NULL;
2978
2979 /* Make sure the GIC will observe the zero-ed page */
2980 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2981
2982 return pend_page;
2983}
2984
7d75bbb4
MZ
2985static void its_free_pending_table(struct page *pt)
2986{
adaab500 2987 free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
7d75bbb4
MZ
2988}
2989
c6e2ccb6 2990/*
5e2c9f9a
MZ
2991 * Booting with kdump and LPIs enabled is generally fine. Any other
2992 * case is wrong in the absence of firmware/EFI support.
c6e2ccb6 2993 */
c440a9d9
MZ
2994static bool enabled_lpis_allowed(void)
2995{
5e2c9f9a
MZ
2996 phys_addr_t addr;
2997 u64 val;
c6e2ccb6 2998
5e2c9f9a
MZ
2999 /* Check whether the property table is in a reserved region */
3000 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
3001 addr = val & GENMASK_ULL(51, 12);
3002
3003 return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
c440a9d9
MZ
3004}
3005
11e37d35 3006static int __init allocate_lpi_tables(void)
1ac19ca6 3007{
c440a9d9 3008 u64 val;
11e37d35 3009 int err, cpu;
1ac19ca6 3010
c440a9d9
MZ
3011 /*
3012 * If LPIs are enabled while we run this from the boot CPU,
3013 * flag the RD tables as pre-allocated if the stars do align.
3014 */
3015 val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
3016 if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
3017 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
3018 RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
3019 pr_info("GICv3: Using preallocated redistributor tables\n");
3020 }
3021
11e37d35
MZ
3022 err = its_setup_lpi_prop_table();
3023 if (err)
3024 return err;
3025
3026 /*
3027 * We allocate all the pending tables anyway, as we may have a
3028 * mix of RDs that have had LPIs enabled, and some that
3029 * don't. We'll free the unused ones as each CPU comes online.
3030 */
3031 for_each_possible_cpu(cpu) {
3032 struct page *pend_page;
7c297a2d
MZ
3033
3034 pend_page = its_allocate_pending_table(GFP_NOWAIT);
1ac19ca6 3035 if (!pend_page) {
11e37d35
MZ
3036 pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
3037 return -ENOMEM;
1ac19ca6
MZ
3038 }
3039
11e37d35 3040 gic_data_rdist_cpu(cpu)->pend_page = pend_page;
1ac19ca6
MZ
3041 }
3042
11e37d35
MZ
3043 return 0;
3044}
3045
af27e416 3046static u64 read_vpend_dirty_clear(void __iomem *vlpi_base)
6479450f
HG
3047{
3048 u32 count = 1000000; /* 1s! */
3049 bool clean;
3050 u64 val;
3051
6479450f 3052 do {
5186a6cc 3053 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
6479450f
HG
3054 clean = !(val & GICR_VPENDBASER_Dirty);
3055 if (!clean) {
3056 count--;
3057 cpu_relax();
3058 udelay(1);
3059 }
3060 } while (!clean && count);
3061
af27e416 3062 if (unlikely(!clean))
e64fab1a 3063 pr_err_ratelimited("ITS virtual pending table not cleaning\n");
af27e416
MZ
3064
3065 return val;
3066}
3067
3068static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
3069{
3070 u64 val;
3071
3072 /* Make sure we wait until the RD is done with the initial scan */
3073 val = read_vpend_dirty_clear(vlpi_base);
3074 val &= ~GICR_VPENDBASER_Valid;
3075 val &= ~clr;
3076 val |= set;
3077 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3078
3079 val = read_vpend_dirty_clear(vlpi_base);
3080 if (unlikely(val & GICR_VPENDBASER_Dirty))
e64fab1a 3081 val |= GICR_VPENDBASER_PendingLast;
e64fab1a 3082
6479450f
HG
3083 return val;
3084}
3085
11e37d35
MZ
3086static void its_cpu_init_lpis(void)
3087{
3088 void __iomem *rbase = gic_data_rdist_rd_base();
3089 struct page *pend_page;
3090 phys_addr_t paddr;
3091 u64 val, tmp;
3092
c0cdc890 3093 if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED)
11e37d35
MZ
3094 return;
3095
c440a9d9
MZ
3096 val = readl_relaxed(rbase + GICR_CTLR);
3097 if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3098 (val & GICR_CTLR_ENABLE_LPIS)) {
f842ca8e
MZ
3099 /*
3100 * Check that we get the same property table on all
3101 * RDs. If we don't, this is hopeless.
3102 */
3103 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3104 paddr &= GENMASK_ULL(51, 12);
3105 if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3106 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3107
c440a9d9
MZ
3108 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3109 paddr &= GENMASK_ULL(51, 16);
3110
5e2c9f9a 3111 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
d23bc2bc 3112 gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED;
c440a9d9
MZ
3113
3114 goto out;
3115 }
3116
11e37d35
MZ
3117 pend_page = gic_data_rdist()->pend_page;
3118 paddr = page_to_phys(pend_page);
3119
1ac19ca6 3120 /* set PROPBASE */
e1a2e201 3121 val = (gic_rdists->prop_table_pa |
1ac19ca6 3122 GICR_PROPBASER_InnerShareable |
2fd632a0 3123 GICR_PROPBASER_RaWaWb |
1ac19ca6
MZ
3124 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3125
0968a619
VM
3126 gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3127 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
1ac19ca6 3128
a8707f55
SR
3129 if (gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE)
3130 tmp &= ~GICR_PROPBASER_SHAREABILITY_MASK;
3131
1ac19ca6 3132 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
241a386c
MZ
3133 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3134 /*
3135 * The HW reports non-shareable, we must
3136 * remove the cacheability attributes as
3137 * well.
3138 */
3139 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3140 GICR_PROPBASER_CACHEABILITY_MASK);
3141 val |= GICR_PROPBASER_nC;
0968a619 3142 gicr_write_propbaser(val, rbase + GICR_PROPBASER);
241a386c 3143 }
1ac19ca6
MZ
3144 pr_info_once("GIC: using cache flushing for LPI property table\n");
3145 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3146 }
3147
3148 /* set PENDBASE */
3149 val = (page_to_phys(pend_page) |
4ad3e363 3150 GICR_PENDBASER_InnerShareable |
2fd632a0 3151 GICR_PENDBASER_RaWaWb);
1ac19ca6 3152
0968a619
VM
3153 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3154 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
241a386c 3155
a8707f55
SR
3156 if (gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE)
3157 tmp &= ~GICR_PENDBASER_SHAREABILITY_MASK;
3158
241a386c
MZ
3159 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3160 /*
3161 * The HW reports non-shareable, we must remove the
3162 * cacheability attributes as well.
3163 */
3164 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3165 GICR_PENDBASER_CACHEABILITY_MASK);
3166 val |= GICR_PENDBASER_nC;
0968a619 3167 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
241a386c 3168 }
1ac19ca6
MZ
3169
3170 /* Enable LPIs */
3171 val = readl_relaxed(rbase + GICR_CTLR);
3172 val |= GICR_CTLR_ENABLE_LPIS;
3173 writel_relaxed(val, rbase + GICR_CTLR);
3174
5e516846 3175 if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
6479450f
HG
3176 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3177
3178 /*
3179 * It's possible for CPU to receive VLPIs before it is
a359f757 3180 * scheduled as a vPE, especially for the first CPU, and the
6479450f
HG
3181 * VLPI with INTID larger than 2^(IDbits+1) will be considered
3182 * as out of range and dropped by GIC.
3183 * So we initialize IDbits to known value to avoid VLPI drop.
3184 */
3185 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3186 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3187 smp_processor_id(), val);
5186a6cc 3188 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
6479450f
HG
3189
3190 /*
3191 * Also clear Valid bit of GICR_VPENDBASER, in case some
3192 * ancient programming gets left in and has possibility of
3193 * corrupting memory.
3194 */
e64fab1a 3195 val = its_clear_vpend_valid(vlpi_base, 0, 0);
6479450f
HG
3196 }
3197
5e516846
MZ
3198 if (allocate_vpe_l1_table()) {
3199 /*
3200 * If the allocation has failed, we're in massive trouble.
3201 * Disable direct injection, and pray that no VM was
3202 * already running...
3203 */
3204 gic_rdists->has_rvpeid = false;
3205 gic_rdists->has_vlpis = false;
3206 }
3207
1ac19ca6
MZ
3208 /* Make sure the GIC has seen the above */
3209 dsb(sy);
c440a9d9 3210out:
c0cdc890 3211 gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED;
c440a9d9 3212 pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
11e37d35 3213 smp_processor_id(),
d23bc2bc
VS
3214 gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ?
3215 "reserved" : "allocated",
11e37d35 3216 &paddr);
1ac19ca6
MZ
3217}
3218
920181ce 3219static void its_cpu_init_collection(struct its_node *its)
1ac19ca6 3220{
920181ce
DB
3221 int cpu = smp_processor_id();
3222 u64 target;
1ac19ca6 3223
920181ce
DB
3224 /* avoid cross node collections and its mapping */
3225 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3226 struct device_node *cpu_node;
fbf8f40e 3227
920181ce
DB
3228 cpu_node = of_get_cpu_node(cpu, NULL);
3229 if (its->numa_node != NUMA_NO_NODE &&
3230 its->numa_node != of_node_to_nid(cpu_node))
3231 return;
3232 }
fbf8f40e 3233
920181ce
DB
3234 /*
3235 * We now have to bind each collection to its target
3236 * redistributor.
3237 */
3238 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
1ac19ca6 3239 /*
920181ce 3240 * This ITS wants the physical address of the
1ac19ca6
MZ
3241 * redistributor.
3242 */
920181ce
DB
3243 target = gic_data_rdist()->phys_base;
3244 } else {
3245 /* This ITS wants a linear CPU number. */
3246 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3247 target = GICR_TYPER_CPU_NUMBER(target) << 16;
3248 }
1ac19ca6 3249
920181ce
DB
3250 /* Perform collection mapping */
3251 its->collections[cpu].target_address = target;
3252 its->collections[cpu].col_id = cpu;
1ac19ca6 3253
920181ce
DB
3254 its_send_mapc(its, &its->collections[cpu], 1);
3255 its_send_invall(its, &its->collections[cpu]);
3256}
3257
3258static void its_cpu_init_collections(void)
3259{
3260 struct its_node *its;
3261
a8db7456 3262 raw_spin_lock(&its_lock);
920181ce
DB
3263
3264 list_for_each_entry(its, &its_nodes, entry)
3265 its_cpu_init_collection(its);
1ac19ca6 3266
a8db7456 3267 raw_spin_unlock(&its_lock);
1ac19ca6 3268}
84a6a2e7
MZ
3269
3270static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3271{
3272 struct its_device *its_dev = NULL, *tmp;
3e39e8f5 3273 unsigned long flags;
84a6a2e7 3274
3e39e8f5 3275 raw_spin_lock_irqsave(&its->lock, flags);
84a6a2e7
MZ
3276
3277 list_for_each_entry(tmp, &its->its_device_list, entry) {
3278 if (tmp->device_id == dev_id) {
3279 its_dev = tmp;
3280 break;
3281 }
3282 }
3283
3e39e8f5 3284 raw_spin_unlock_irqrestore(&its->lock, flags);
84a6a2e7
MZ
3285
3286 return its_dev;
3287}
3288
466b7d16
SD
3289static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3290{
3291 int i;
3292
3293 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3294 if (GITS_BASER_TYPE(its->tables[i].val) == type)
3295 return &its->tables[i];
3296 }
3297
3298 return NULL;
3299}
3300
539d3782
SD
3301static bool its_alloc_table_entry(struct its_node *its,
3302 struct its_baser *baser, u32 id)
3faf24ea 3303{
3faf24ea
SD
3304 struct page *page;
3305 u32 esz, idx;
3306 __le64 *table;
3307
3faf24ea
SD
3308 /* Don't allow device id that exceeds single, flat table limit */
3309 esz = GITS_BASER_ENTRY_SIZE(baser->val);
3310 if (!(baser->val & GITS_BASER_INDIRECT))
70cc81ed 3311 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3faf24ea
SD
3312
3313 /* Compute 1st level table index & check if that exceeds table limit */
70cc81ed 3314 idx = id >> ilog2(baser->psz / esz);
3faf24ea
SD
3315 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3316 return false;
3317
3318 table = baser->base;
3319
3320 /* Allocate memory for 2nd level table */
3321 if (!table[idx]) {
539d3782
SD
3322 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3323 get_order(baser->psz));
3faf24ea
SD
3324 if (!page)
3325 return false;
3326
3327 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
3328 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
328191c0 3329 gic_flush_dcache_to_poc(page_address(page), baser->psz);
3faf24ea
SD
3330
3331 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3332
3333 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3334 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
328191c0 3335 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3faf24ea
SD
3336
3337 /* Ensure updated table contents are visible to ITS hardware */
3338 dsb(sy);
3339 }
3340
3341 return true;
3342}
3343
70cc81ed
MZ
3344static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3345{
3346 struct its_baser *baser;
3347
3348 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3349
3350 /* Don't allow device id that exceeds ITS hardware limit */
3351 if (!baser)
576a8342 3352 return (ilog2(dev_id) < device_ids(its));
70cc81ed 3353
539d3782 3354 return its_alloc_table_entry(its, baser, dev_id);
70cc81ed
MZ
3355}
3356
7d75bbb4
MZ
3357static bool its_alloc_vpe_table(u32 vpe_id)
3358{
3359 struct its_node *its;
4e6437f1 3360 int cpu;
7d75bbb4
MZ
3361
3362 /*
3363 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3364 * could try and only do it on ITSs corresponding to devices
3365 * that have interrupts targeted at this VPE, but the
3366 * complexity becomes crazy (and you have tons of memory
3367 * anyway, right?).
3368 */
3369 list_for_each_entry(its, &its_nodes, entry) {
3370 struct its_baser *baser;
3371
0dd57fed 3372 if (!is_v4(its))
7d75bbb4 3373 continue;
3faf24ea 3374
7d75bbb4
MZ
3375 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3376 if (!baser)
3377 return false;
3faf24ea 3378
539d3782 3379 if (!its_alloc_table_entry(its, baser, vpe_id))
7d75bbb4 3380 return false;
3faf24ea
SD
3381 }
3382
4e6437f1
ZY
3383 /* Non v4.1? No need to iterate RDs and go back early. */
3384 if (!gic_rdists->has_rvpeid)
3385 return true;
3386
3387 /*
3388 * Make sure the L2 tables are allocated for all copies of
3389 * the L1 table on *all* v4.1 RDs.
3390 */
3391 for_each_possible_cpu(cpu) {
3392 if (!allocate_vpe_l2_table(cpu, vpe_id))
3393 return false;
3394 }
3395
3faf24ea
SD
3396 return true;
3397}
3398
84a6a2e7 3399static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
93f94ea0 3400 int nvecs, bool alloc_lpis)
84a6a2e7
MZ
3401{
3402 struct its_device *dev;
93f94ea0 3403 unsigned long *lpi_map = NULL;
3e39e8f5 3404 unsigned long flags;
591e5bec 3405 u16 *col_map = NULL;
84a6a2e7
MZ
3406 void *itt;
3407 int lpi_base;
3408 int nr_lpis;
c8481267 3409 int nr_ites;
84a6a2e7
MZ
3410 int sz;
3411
3faf24ea 3412 if (!its_alloc_device_table(its, dev_id))
466b7d16
SD
3413 return NULL;
3414
147c8f37
MZ
3415 if (WARN_ON(!is_power_of_2(nvecs)))
3416 nvecs = roundup_pow_of_two(nvecs);
3417
84a6a2e7 3418 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
c8481267 3419 /*
147c8f37
MZ
3420 * Even if the device wants a single LPI, the ITT must be
3421 * sized as a power of two (and you need at least one bit...).
c8481267 3422 */
147c8f37 3423 nr_ites = max(2, nvecs);
ffedbf0c 3424 sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
84a6a2e7 3425 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
539d3782 3426 itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
93f94ea0 3427 if (alloc_lpis) {
38dd7c49 3428 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
93f94ea0 3429 if (lpi_map)
6396bb22 3430 col_map = kcalloc(nr_lpis, sizeof(*col_map),
93f94ea0
MZ
3431 GFP_KERNEL);
3432 } else {
6396bb22 3433 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
93f94ea0
MZ
3434 nr_lpis = 0;
3435 lpi_base = 0;
3436 }
84a6a2e7 3437
93f94ea0 3438 if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) {
84a6a2e7
MZ
3439 kfree(dev);
3440 kfree(itt);
ff5fe886 3441 bitmap_free(lpi_map);
591e5bec 3442 kfree(col_map);
84a6a2e7
MZ
3443 return NULL;
3444 }
3445
328191c0 3446 gic_flush_dcache_to_poc(itt, sz);
5a9a8915 3447
84a6a2e7
MZ
3448 dev->its = its;
3449 dev->itt = itt;
c8481267 3450 dev->nr_ites = nr_ites;
591e5bec
MZ
3451 dev->event_map.lpi_map = lpi_map;
3452 dev->event_map.col_map = col_map;
3453 dev->event_map.lpi_base = lpi_base;
3454 dev->event_map.nr_lpis = nr_lpis;
11635fa2 3455 raw_spin_lock_init(&dev->event_map.vlpi_lock);
84a6a2e7
MZ
3456 dev->device_id = dev_id;
3457 INIT_LIST_HEAD(&dev->entry);
3458
3e39e8f5 3459 raw_spin_lock_irqsave(&its->lock, flags);
84a6a2e7 3460 list_add(&dev->entry, &its->its_device_list);
3e39e8f5 3461 raw_spin_unlock_irqrestore(&its->lock, flags);
84a6a2e7 3462
84a6a2e7
MZ
3463 /* Map device to its ITT */
3464 its_send_mapd(dev, 1);
3465
3466 return dev;
3467}
3468
3469static void its_free_device(struct its_device *its_dev)
3470{
3e39e8f5
MZ
3471 unsigned long flags;
3472
3473 raw_spin_lock_irqsave(&its_dev->its->lock, flags);
84a6a2e7 3474 list_del(&its_dev->entry);
3e39e8f5 3475 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
898aa5ce 3476 kfree(its_dev->event_map.col_map);
84a6a2e7
MZ
3477 kfree(its_dev->itt);
3478 kfree(its_dev);
3479}
b48ac83d 3480
8208d170 3481static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
b48ac83d
MZ
3482{
3483 int idx;
3484
342be106 3485 /* Find a free LPI region in lpi_map and allocate them. */
8208d170
MZ
3486 idx = bitmap_find_free_region(dev->event_map.lpi_map,
3487 dev->event_map.nr_lpis,
3488 get_count_order(nvecs));
3489 if (idx < 0)
b48ac83d
MZ
3490 return -ENOSPC;
3491
591e5bec 3492 *hwirq = dev->event_map.lpi_base + idx;
b48ac83d 3493
b48ac83d
MZ
3494 return 0;
3495}
3496
54456db9
MZ
3497static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3498 int nvec, msi_alloc_info_t *info)
e8137f4f 3499{
b48ac83d 3500 struct its_node *its;
b48ac83d 3501 struct its_device *its_dev;
54456db9
MZ
3502 struct msi_domain_info *msi_info;
3503 u32 dev_id;
9791ec7d 3504 int err = 0;
54456db9
MZ
3505
3506 /*
a7c90f51 3507 * We ignore "dev" entirely, and rely on the dev_id that has
54456db9
MZ
3508 * been passed via the scratchpad. This limits this domain's
3509 * usefulness to upper layers that definitely know that they
3510 * are built on top of the ITS.
3511 */
3512 dev_id = info->scratchpad[0].ul;
3513
3514 msi_info = msi_get_domain_info(domain);
3515 its = msi_info->data;
e8137f4f 3516
20b3d54e
MZ
3517 if (!gic_rdists->has_direct_lpi &&
3518 vpe_proxy.dev &&
3519 vpe_proxy.dev->its == its &&
3520 dev_id == vpe_proxy.dev->device_id) {
3521 /* Bad luck. Get yourself a better implementation */
3522 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3523 dev_id);
3524 return -EINVAL;
3525 }
3526
9791ec7d 3527 mutex_lock(&its->dev_alloc_lock);
f130420e 3528 its_dev = its_find_device(its, dev_id);
e8137f4f
MZ
3529 if (its_dev) {
3530 /*
3531 * We already have seen this ID, probably through
3532 * another alias (PCI bridge of some sort). No need to
3533 * create the device.
3534 */
9791ec7d 3535 its_dev->shared = true;
f130420e 3536 pr_debug("Reusing ITT for devID %x\n", dev_id);
e8137f4f
MZ
3537 goto out;
3538 }
b48ac83d 3539
93f94ea0 3540 its_dev = its_create_device(its, dev_id, nvec, true);
9791ec7d
MZ
3541 if (!its_dev) {
3542 err = -ENOMEM;
3543 goto out;
3544 }
b48ac83d 3545
5fe71d27
MZ
3546 if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE)
3547 its_dev->shared = true;
3548
f130420e 3549 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
e8137f4f 3550out:
9791ec7d 3551 mutex_unlock(&its->dev_alloc_lock);
b48ac83d 3552 info->scratchpad[0].ptr = its_dev;
9791ec7d 3553 return err;
b48ac83d
MZ
3554}
3555
54456db9
MZ
3556static struct msi_domain_ops its_msi_domain_ops = {
3557 .msi_prepare = its_msi_prepare,
3558};
3559
b48ac83d
MZ
3560static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3561 unsigned int virq,
3562 irq_hw_number_t hwirq)
3563{
f833f57f
MZ
3564 struct irq_fwspec fwspec;
3565
3566 if (irq_domain_get_of_node(domain->parent)) {
3567 fwspec.fwnode = domain->parent->fwnode;
3568 fwspec.param_count = 3;
3569 fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3570 fwspec.param[1] = hwirq;
3571 fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3f010cf1
TN
3572 } else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3573 fwspec.fwnode = domain->parent->fwnode;
3574 fwspec.param_count = 2;
3575 fwspec.param[0] = hwirq;
3576 fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
f833f57f
MZ
3577 } else {
3578 return -EINVAL;
3579 }
b48ac83d 3580
f833f57f 3581 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
b48ac83d
MZ
3582}
3583
3584static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3585 unsigned int nr_irqs, void *args)
3586{
3587 msi_alloc_info_t *info = args;
3588 struct its_device *its_dev = info->scratchpad[0].ptr;
35ae7df2 3589 struct its_node *its = its_dev->its;
f0c7baca 3590 struct irq_data *irqd;
b48ac83d
MZ
3591 irq_hw_number_t hwirq;
3592 int err;
3593 int i;
3594
8208d170
MZ
3595 err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3596 if (err)
3597 return err;
b48ac83d 3598
35ae7df2
JG
3599 err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3600 if (err)
3601 return err;
3602
8208d170
MZ
3603 for (i = 0; i < nr_irqs; i++) {
3604 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
b48ac83d
MZ
3605 if (err)
3606 return err;
3607
3608 irq_domain_set_hwirq_and_chip(domain, virq + i,
8208d170 3609 hwirq + i, &its_irq_chip, its_dev);
f0c7baca
TG
3610 irqd = irq_get_irq_data(virq + i);
3611 irqd_set_single_target(irqd);
3612 irqd_set_affinity_on_activate(irqd);
8f4b5895 3613 irqd_set_resend_when_in_progress(irqd);
f130420e 3614 pr_debug("ID:%d pID:%d vID:%d\n",
8208d170
MZ
3615 (int)(hwirq + i - its_dev->event_map.lpi_base),
3616 (int)(hwirq + i), virq + i);
b48ac83d
MZ
3617 }
3618
3619 return 0;
3620}
3621
72491643 3622static int its_irq_domain_activate(struct irq_domain *domain,
702cb0a0 3623 struct irq_data *d, bool reserve)
aca268df
MZ
3624{
3625 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3626 u32 event = its_get_event_id(d);
0d224d35 3627 int cpu;
fbf8f40e 3628
c5d6082d
MZ
3629 cpu = its_select_cpu(d, cpu_online_mask);
3630 if (cpu < 0 || cpu >= nr_cpu_ids)
3631 return -EINVAL;
c1797b11 3632
2f13ff1d 3633 its_inc_lpi_count(d, cpu);
0d224d35
MZ
3634 its_dev->event_map.col_map[event] = cpu;
3635 irq_data_update_effective_affinity(d, cpumask_of(cpu));
591e5bec 3636
aca268df 3637 /* Map the GIC IRQ and event to the device */
6a25ad3a 3638 its_send_mapti(its_dev, d->hwirq, event);
72491643 3639 return 0;
aca268df
MZ
3640}
3641
3642static void its_irq_domain_deactivate(struct irq_domain *domain,
3643 struct irq_data *d)
3644{
3645 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3646 u32 event = its_get_event_id(d);
3647
2f13ff1d 3648 its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
aca268df
MZ
3649 /* Stop the delivery of interrupts */
3650 its_send_discard(its_dev, event);
3651}
3652
b48ac83d
MZ
3653static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3654 unsigned int nr_irqs)
3655{
3656 struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3657 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
9791ec7d 3658 struct its_node *its = its_dev->its;
b48ac83d
MZ
3659 int i;
3660
c9c96e30
MZ
3661 bitmap_release_region(its_dev->event_map.lpi_map,
3662 its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3663 get_count_order(nr_irqs));
3664
b48ac83d
MZ
3665 for (i = 0; i < nr_irqs; i++) {
3666 struct irq_data *data = irq_domain_get_irq_data(domain,
3667 virq + i);
b48ac83d 3668 /* Nuke the entry in the domain */
2da39949 3669 irq_domain_reset_irq_data(data);
b48ac83d
MZ
3670 }
3671
9791ec7d
MZ
3672 mutex_lock(&its->dev_alloc_lock);
3673
3674 /*
3675 * If all interrupts have been freed, start mopping the
a359f757 3676 * floor. This is conditioned on the device not being shared.
9791ec7d
MZ
3677 */
3678 if (!its_dev->shared &&
3679 bitmap_empty(its_dev->event_map.lpi_map,
591e5bec 3680 its_dev->event_map.nr_lpis)) {
38dd7c49
MZ
3681 its_lpi_free(its_dev->event_map.lpi_map,
3682 its_dev->event_map.lpi_base,
3683 its_dev->event_map.nr_lpis);
b48ac83d
MZ
3684
3685 /* Unmap device/itt */
3686 its_send_mapd(its_dev, 0);
3687 its_free_device(its_dev);
3688 }
3689
9791ec7d
MZ
3690 mutex_unlock(&its->dev_alloc_lock);
3691
b48ac83d
MZ
3692 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3693}
3694
3695static const struct irq_domain_ops its_domain_ops = {
3696 .alloc = its_irq_domain_alloc,
3697 .free = its_irq_domain_free,
aca268df
MZ
3698 .activate = its_irq_domain_activate,
3699 .deactivate = its_irq_domain_deactivate,
b48ac83d 3700};
4c21f3c2 3701
20b3d54e
MZ
3702/*
3703 * This is insane.
3704 *
0684c704 3705 * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
20b3d54e
MZ
3706 * likely), the only way to perform an invalidate is to use a fake
3707 * device to issue an INV command, implying that the LPI has first
3708 * been mapped to some event on that device. Since this is not exactly
3709 * cheap, we try to keep that mapping around as long as possible, and
3710 * only issue an UNMAP if we're short on available slots.
3711 *
3712 * Broken by design(tm).
0684c704
MZ
3713 *
3714 * GICv4.1, on the other hand, mandates that we're able to invalidate
3715 * by writing to a MMIO register. It doesn't implement the whole of
3716 * DirectLPI, but that's good enough. And most of the time, we don't
3717 * even have to invalidate anything, as the redistributor can be told
3718 * whether to generate a doorbell or not (we thus leave it enabled,
3719 * always).
20b3d54e
MZ
3720 */
3721static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3722{
0684c704
MZ
3723 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3724 if (gic_rdists->has_rvpeid)
3725 return;
3726
20b3d54e
MZ
3727 /* Already unmapped? */
3728 if (vpe->vpe_proxy_event == -1)
3729 return;
3730
3731 its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3732 vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3733
3734 /*
3735 * We don't track empty slots at all, so let's move the
3736 * next_victim pointer if we can quickly reuse that slot
3737 * instead of nuking an existing entry. Not clear that this is
3738 * always a win though, and this might just generate a ripple
3739 * effect... Let's just hope VPEs don't migrate too often.
3740 */
3741 if (vpe_proxy.vpes[vpe_proxy.next_victim])
3742 vpe_proxy.next_victim = vpe->vpe_proxy_event;
3743
3744 vpe->vpe_proxy_event = -1;
3745}
3746
3747static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3748{
0684c704
MZ
3749 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3750 if (gic_rdists->has_rvpeid)
3751 return;
3752
20b3d54e
MZ
3753 if (!gic_rdists->has_direct_lpi) {
3754 unsigned long flags;
3755
3756 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3757 its_vpe_db_proxy_unmap_locked(vpe);
3758 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3759 }
3760}
3761
3762static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3763{
0684c704
MZ
3764 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3765 if (gic_rdists->has_rvpeid)
3766 return;
3767
20b3d54e
MZ
3768 /* Already mapped? */
3769 if (vpe->vpe_proxy_event != -1)
3770 return;
3771
3772 /* This slot was already allocated. Kick the other VPE out. */
3773 if (vpe_proxy.vpes[vpe_proxy.next_victim])
3774 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3775
3776 /* Map the new VPE instead */
3777 vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3778 vpe->vpe_proxy_event = vpe_proxy.next_victim;
3779 vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3780
3781 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3782 its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3783}
3784
958b90d1
MZ
3785static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3786{
3787 unsigned long flags;
3788 struct its_collection *target_col;
3789
0684c704
MZ
3790 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3791 if (gic_rdists->has_rvpeid)
3792 return;
3793
958b90d1
MZ
3794 if (gic_rdists->has_direct_lpi) {
3795 void __iomem *rdbase;
3796
3797 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3798 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2f4f064b 3799 wait_for_syncr(rdbase);
958b90d1
MZ
3800
3801 return;
3802 }
3803
3804 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3805
3806 its_vpe_db_proxy_map_locked(vpe);
3807
3808 target_col = &vpe_proxy.dev->its->collections[to];
3809 its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3810 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3811
3812 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3813}
3814
3171a47a
MZ
3815static int its_vpe_set_affinity(struct irq_data *d,
3816 const struct cpumask *mask_val,
3817 bool force)
3818{
3819 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
dd3f050a 3820 int from, cpu = cpumask_first(mask_val);
f3a05921 3821 unsigned long flags;
3171a47a
MZ
3822
3823 /*
3824 * Changing affinity is mega expensive, so let's be as lazy as
20b3d54e 3825 * we can and only do it if we really have to. Also, if mapped
958b90d1
MZ
3826 * into the proxy device, we need to move the doorbell
3827 * interrupt to its new location.
f3a05921
MZ
3828 *
3829 * Another thing is that changing the affinity of a vPE affects
3830 * *other interrupts* such as all the vLPIs that are routed to
3831 * this vPE. This means that the irq_desc lock is not enough to
3832 * protect us, and that we must ensure nobody samples vpe->col_idx
3833 * during the update, hence the lock below which must also be
3834 * taken on any vLPI handling path that evaluates vpe->col_idx.
3171a47a 3835 */
f3a05921
MZ
3836 from = vpe_to_cpuid_lock(vpe, &flags);
3837 if (from == cpu)
dd3f050a 3838 goto out;
958b90d1 3839
dd3f050a
MZ
3840 vpe->col_idx = cpu;
3841
3842 /*
3843 * GICv4.1 allows us to skip VMOVP if moving to a cpu whose RD
3844 * is sharing its VPE table with the current one.
3845 */
3846 if (gic_data_rdist_cpu(cpu)->vpe_table_mask &&
3847 cpumask_test_cpu(from, gic_data_rdist_cpu(cpu)->vpe_table_mask))
3848 goto out;
3171a47a 3849
dd3f050a
MZ
3850 its_send_vmovp(vpe);
3851 its_vpe_db_proxy_move(vpe, from, cpu);
3852
3853out:
44c4c25e 3854 irq_data_update_effective_affinity(d, cpumask_of(cpu));
f3a05921 3855 vpe_to_cpuid_unlock(vpe, flags);
44c4c25e 3856
3171a47a
MZ
3857 return IRQ_SET_MASK_OK_DONE;
3858}
3859
96806229
MZ
3860static void its_wait_vpt_parse_complete(void)
3861{
3862 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3863 u64 val;
3864
3865 if (!gic_rdists->has_vpend_valid_dirty)
3866 return;
3867
31dbb6b1
ZY
3868 WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
3869 val,
3870 !(val & GICR_VPENDBASER_Dirty),
0b394982 3871 1, 500));
96806229
MZ
3872}
3873
e643d803
MZ
3874static void its_vpe_schedule(struct its_vpe *vpe)
3875{
50c33097 3876 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
e643d803
MZ
3877 u64 val;
3878
3879 /* Schedule the VPE */
3880 val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
3881 GENMASK_ULL(51, 12);
3882 val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3883 val |= GICR_VPROPBASER_RaWb;
3884 val |= GICR_VPROPBASER_InnerShareable;
5186a6cc 3885 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
e643d803
MZ
3886
3887 val = virt_to_phys(page_address(vpe->vpt_page)) &
3888 GENMASK_ULL(51, 16);
3889 val |= GICR_VPENDBASER_RaWaWb;
b2cb11f4 3890 val |= GICR_VPENDBASER_InnerShareable;
e643d803
MZ
3891 /*
3892 * There is no good way of finding out if the pending table is
3893 * empty as we can race against the doorbell interrupt very
3894 * easily. So in the end, vpe->pending_last is only an
3895 * indication that the vcpu has something pending, not one
3896 * that the pending table is empty. A good implementation
3897 * would be able to read its coarse map pretty quickly anyway,
3898 * making this a tolerable issue.
3899 */
3900 val |= GICR_VPENDBASER_PendingLast;
3901 val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
3902 val |= GICR_VPENDBASER_Valid;
5186a6cc 3903 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
e643d803
MZ
3904}
3905
3906static void its_vpe_deschedule(struct its_vpe *vpe)
3907{
50c33097 3908 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
e643d803
MZ
3909 u64 val;
3910
e64fab1a 3911 val = its_clear_vpend_valid(vlpi_base, 0, 0);
e643d803 3912
e64fab1a
MZ
3913 vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
3914 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
e643d803
MZ
3915}
3916
40619a2e
MZ
3917static void its_vpe_invall(struct its_vpe *vpe)
3918{
3919 struct its_node *its;
3920
3921 list_for_each_entry(its, &its_nodes, entry) {
0dd57fed 3922 if (!is_v4(its))
40619a2e
MZ
3923 continue;
3924
2247e1bf
MZ
3925 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
3926 continue;
3927
3c1cceeb
MZ
3928 /*
3929 * Sending a VINVALL to a single ITS is enough, as all
3930 * we need is to reach the redistributors.
3931 */
40619a2e 3932 its_send_vinvall(its, vpe);
3c1cceeb 3933 return;
40619a2e
MZ
3934 }
3935}
3936
e643d803
MZ
3937static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3938{
3939 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3940 struct its_cmd_info *info = vcpu_info;
3941
3942 switch (info->cmd_type) {
3943 case SCHEDULE_VPE:
3944 its_vpe_schedule(vpe);
3945 return 0;
3946
3947 case DESCHEDULE_VPE:
3948 its_vpe_deschedule(vpe);
3949 return 0;
3950
57e3cebd
SL
3951 case COMMIT_VPE:
3952 its_wait_vpt_parse_complete();
3953 return 0;
3954
5e2f7642 3955 case INVALL_VPE:
40619a2e 3956 its_vpe_invall(vpe);
5e2f7642
MZ
3957 return 0;
3958
e643d803
MZ
3959 default:
3960 return -EINVAL;
3961 }
3962}
3963
20b3d54e
MZ
3964static void its_vpe_send_cmd(struct its_vpe *vpe,
3965 void (*cmd)(struct its_device *, u32))
3966{
3967 unsigned long flags;
3968
3969 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3970
3971 its_vpe_db_proxy_map_locked(vpe);
3972 cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
3973
3974 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3975}
3976
f6a91da7
MZ
3977static void its_vpe_send_inv(struct irq_data *d)
3978{
3979 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
f6a91da7 3980
926846a7
MZ
3981 if (gic_rdists->has_direct_lpi)
3982 __direct_lpi_inv(d, d->parent_data->hwirq);
3983 else
20b3d54e 3984 its_vpe_send_cmd(vpe, its_send_inv);
f6a91da7
MZ
3985}
3986
3987static void its_vpe_mask_irq(struct irq_data *d)
3988{
3989 /*
3990 * We need to unmask the LPI, which is described by the parent
3991 * irq_data. Instead of calling into the parent (which won't
3992 * exactly do the right thing, let's simply use the
3993 * parent_data pointer. Yes, I'm naughty.
3994 */
3995 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
3996 its_vpe_send_inv(d);
3997}
3998
3999static void its_vpe_unmask_irq(struct irq_data *d)
4000{
4001 /* Same hack as above... */
4002 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4003 its_vpe_send_inv(d);
4004}
4005
e57a3e28
MZ
4006static int its_vpe_set_irqchip_state(struct irq_data *d,
4007 enum irqchip_irq_state which,
4008 bool state)
4009{
4010 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4011
4012 if (which != IRQCHIP_STATE_PENDING)
4013 return -EINVAL;
4014
4015 if (gic_rdists->has_direct_lpi) {
4016 void __iomem *rdbase;
4017
4018 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
4019 if (state) {
4020 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
4021 } else {
4022 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2f4f064b 4023 wait_for_syncr(rdbase);
e57a3e28
MZ
4024 }
4025 } else {
4026 if (state)
4027 its_vpe_send_cmd(vpe, its_send_int);
4028 else
4029 its_vpe_send_cmd(vpe, its_send_clear);
4030 }
4031
4032 return 0;
4033}
4034
7809f701
MZ
4035static int its_vpe_retrigger(struct irq_data *d)
4036{
4037 return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
4038}
4039
8fff27ae
MZ
4040static struct irq_chip its_vpe_irq_chip = {
4041 .name = "GICv4-vpe",
f6a91da7
MZ
4042 .irq_mask = its_vpe_mask_irq,
4043 .irq_unmask = its_vpe_unmask_irq,
4044 .irq_eoi = irq_chip_eoi_parent,
3171a47a 4045 .irq_set_affinity = its_vpe_set_affinity,
7809f701 4046 .irq_retrigger = its_vpe_retrigger,
e57a3e28 4047 .irq_set_irqchip_state = its_vpe_set_irqchip_state,
e643d803 4048 .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity,
8fff27ae
MZ
4049};
4050
d97c97ba
MZ
4051static struct its_node *find_4_1_its(void)
4052{
4053 static struct its_node *its = NULL;
4054
4055 if (!its) {
4056 list_for_each_entry(its, &its_nodes, entry) {
4057 if (is_v4_1(its))
4058 return its;
4059 }
4060
4061 /* Oops? */
4062 its = NULL;
4063 }
4064
4065 return its;
4066}
4067
4068static void its_vpe_4_1_send_inv(struct irq_data *d)
4069{
4070 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4071 struct its_node *its;
4072
4073 /*
4074 * GICv4.1 wants doorbells to be invalidated using the
4075 * INVDB command in order to be broadcast to all RDs. Send
4076 * it to the first valid ITS, and let the HW do its magic.
4077 */
4078 its = find_4_1_its();
4079 if (its)
4080 its_send_invdb(its, vpe);
4081}
4082
4083static void its_vpe_4_1_mask_irq(struct irq_data *d)
4084{
4085 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4086 its_vpe_4_1_send_inv(d);
4087}
4088
4089static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4090{
4091 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4092 its_vpe_4_1_send_inv(d);
4093}
4094
91bf6395
MZ
4095static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4096 struct its_cmd_info *info)
4097{
4098 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4099 u64 val = 0;
4100
4101 /* Schedule the VPE */
4102 val |= GICR_VPENDBASER_Valid;
4103 val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4104 val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4105 val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4106
5186a6cc 4107 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
91bf6395
MZ
4108}
4109
e64fab1a
MZ
4110static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4111 struct its_cmd_info *info)
4112{
4113 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4114 u64 val;
4115
4116 if (info->req_db) {
a3f574cd
MZ
4117 unsigned long flags;
4118
e64fab1a
MZ
4119 /*
4120 * vPE is going to block: make the vPE non-resident with
4121 * PendingLast clear and DB set. The GIC guarantees that if
4122 * we read-back PendingLast clear, then a doorbell will be
4123 * delivered when an interrupt comes.
a3f574cd
MZ
4124 *
4125 * Note the locking to deal with the concurrent update of
4126 * pending_last from the doorbell interrupt handler that can
4127 * run concurrently.
e64fab1a 4128 */
a3f574cd 4129 raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
e64fab1a
MZ
4130 val = its_clear_vpend_valid(vlpi_base,
4131 GICR_VPENDBASER_PendingLast,
4132 GICR_VPENDBASER_4_1_DB);
4133 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
a3f574cd 4134 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
e64fab1a
MZ
4135 } else {
4136 /*
4137 * We're not blocking, so just make the vPE non-resident
4138 * with PendingLast set, indicating that we'll be back.
4139 */
4140 val = its_clear_vpend_valid(vlpi_base,
4141 0,
4142 GICR_VPENDBASER_PendingLast);
4143 vpe->pending_last = true;
4144 }
4145}
4146
b4a4bd0f
MZ
4147static void its_vpe_4_1_invall(struct its_vpe *vpe)
4148{
4149 void __iomem *rdbase;
3af9571c 4150 unsigned long flags;
b4a4bd0f 4151 u64 val;
3af9571c 4152 int cpu;
b4a4bd0f
MZ
4153
4154 val = GICR_INVALLR_V;
4155 val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
4156
4157 /* Target the redistributor this vPE is currently known on */
3af9571c
ZY
4158 cpu = vpe_to_cpuid_lock(vpe, &flags);
4159 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4160 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
b4a4bd0f 4161 gic_write_lpir(val, rdbase + GICR_INVALLR);
b978c25f
ZY
4162
4163 wait_for_syncr(rdbase);
3af9571c
ZY
4164 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4165 vpe_to_cpuid_unlock(vpe, flags);
b4a4bd0f
MZ
4166}
4167
29c647f3
MZ
4168static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4169{
91bf6395 4170 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
29c647f3
MZ
4171 struct its_cmd_info *info = vcpu_info;
4172
4173 switch (info->cmd_type) {
4174 case SCHEDULE_VPE:
91bf6395 4175 its_vpe_4_1_schedule(vpe, info);
29c647f3
MZ
4176 return 0;
4177
4178 case DESCHEDULE_VPE:
e64fab1a 4179 its_vpe_4_1_deschedule(vpe, info);
29c647f3
MZ
4180 return 0;
4181
57e3cebd
SL
4182 case COMMIT_VPE:
4183 its_wait_vpt_parse_complete();
4184 return 0;
4185
29c647f3 4186 case INVALL_VPE:
b4a4bd0f 4187 its_vpe_4_1_invall(vpe);
29c647f3
MZ
4188 return 0;
4189
4190 default:
4191 return -EINVAL;
4192 }
4193}
4194
4195static struct irq_chip its_vpe_4_1_irq_chip = {
4196 .name = "GICv4.1-vpe",
d97c97ba
MZ
4197 .irq_mask = its_vpe_4_1_mask_irq,
4198 .irq_unmask = its_vpe_4_1_unmask_irq,
29c647f3
MZ
4199 .irq_eoi = irq_chip_eoi_parent,
4200 .irq_set_affinity = its_vpe_set_affinity,
4201 .irq_set_vcpu_affinity = its_vpe_4_1_set_vcpu_affinity,
4202};
4203
e252cf8a
MZ
4204static void its_configure_sgi(struct irq_data *d, bool clear)
4205{
4206 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4207 struct its_cmd_desc desc;
4208
4209 desc.its_vsgi_cmd.vpe = vpe;
4210 desc.its_vsgi_cmd.sgi = d->hwirq;
4211 desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4212 desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4213 desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4214 desc.its_vsgi_cmd.clear = clear;
4215
4216 /*
4217 * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4218 * destination VPE is mapped there. Since we map them eagerly at
4219 * activation time, we're pretty sure the first GICv4.1 ITS will do.
4220 */
4221 its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4222}
4223
b4e8d644
MZ
4224static void its_sgi_mask_irq(struct irq_data *d)
4225{
4226 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4227
4228 vpe->sgi_config[d->hwirq].enabled = false;
4229 its_configure_sgi(d, false);
4230}
4231
4232static void its_sgi_unmask_irq(struct irq_data *d)
4233{
4234 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4235
4236 vpe->sgi_config[d->hwirq].enabled = true;
4237 its_configure_sgi(d, false);
4238}
4239
166cba71
MZ
4240static int its_sgi_set_affinity(struct irq_data *d,
4241 const struct cpumask *mask_val,
4242 bool force)
4243{
4244 /*
4245 * There is no notion of affinity for virtual SGIs, at least
a359f757 4246 * not on the host (since they can only be targeting a vPE).
166cba71
MZ
4247 * Tell the kernel we've done whatever it asked for.
4248 */
4b2dfe1e 4249 irq_data_update_effective_affinity(d, mask_val);
166cba71
MZ
4250 return IRQ_SET_MASK_OK;
4251}
4252
7017ff0e
MZ
4253static int its_sgi_set_irqchip_state(struct irq_data *d,
4254 enum irqchip_irq_state which,
4255 bool state)
4256{
4257 if (which != IRQCHIP_STATE_PENDING)
4258 return -EINVAL;
4259
4260 if (state) {
4261 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4262 struct its_node *its = find_4_1_its();
4263 u64 val;
4264
4265 val = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4266 val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4267 writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4268 } else {
4269 its_configure_sgi(d, true);
4270 }
4271
4272 return 0;
4273}
4274
4275static int its_sgi_get_irqchip_state(struct irq_data *d,
4276 enum irqchip_irq_state which, bool *val)
4277{
4278 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4279 void __iomem *base;
4280 unsigned long flags;
4281 u32 count = 1000000; /* 1s! */
4282 u32 status;
4283 int cpu;
4284
4285 if (which != IRQCHIP_STATE_PENDING)
4286 return -EINVAL;
4287
4288 /*
4289 * Locking galore! We can race against two different events:
4290 *
a359f757 4291 * - Concurrent vPE affinity change: we must make sure it cannot
7017ff0e
MZ
4292 * happen, or we'll talk to the wrong redistributor. This is
4293 * identical to what happens with vLPIs.
4294 *
4295 * - Concurrent VSGIPENDR access: As it involves accessing two
4296 * MMIO registers, this must be made atomic one way or another.
4297 */
4298 cpu = vpe_to_cpuid_lock(vpe, &flags);
4299 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4300 base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4301 writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4302 do {
4303 status = readl_relaxed(base + GICR_VSGIPENDR);
4304 if (!(status & GICR_VSGIPENDR_BUSY))
4305 goto out;
4306
4307 count--;
4308 if (!count) {
4309 pr_err_ratelimited("Unable to get SGI status\n");
4310 goto out;
4311 }
4312 cpu_relax();
4313 udelay(1);
4314 } while (count);
4315
4316out:
4317 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4318 vpe_to_cpuid_unlock(vpe, flags);
4319
4320 if (!count)
4321 return -ENXIO;
4322
4323 *val = !!(status & (1 << d->hwirq));
4324
4325 return 0;
4326}
4327
05d32df1
MZ
4328static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4329{
4330 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4331 struct its_cmd_info *info = vcpu_info;
4332
4333 switch (info->cmd_type) {
4334 case PROP_UPDATE_VSGI:
4335 vpe->sgi_config[d->hwirq].priority = info->priority;
4336 vpe->sgi_config[d->hwirq].group = info->group;
4337 its_configure_sgi(d, false);
4338 return 0;
4339
4340 default:
4341 return -EINVAL;
4342 }
4343}
4344
166cba71
MZ
4345static struct irq_chip its_sgi_irq_chip = {
4346 .name = "GICv4.1-sgi",
b4e8d644
MZ
4347 .irq_mask = its_sgi_mask_irq,
4348 .irq_unmask = its_sgi_unmask_irq,
166cba71 4349 .irq_set_affinity = its_sgi_set_affinity,
7017ff0e
MZ
4350 .irq_set_irqchip_state = its_sgi_set_irqchip_state,
4351 .irq_get_irqchip_state = its_sgi_get_irqchip_state,
05d32df1 4352 .irq_set_vcpu_affinity = its_sgi_set_vcpu_affinity,
166cba71
MZ
4353};
4354
4355static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4356 unsigned int virq, unsigned int nr_irqs,
4357 void *args)
4358{
4359 struct its_vpe *vpe = args;
4360 int i;
4361
4362 /* Yes, we do want 16 SGIs */
4363 WARN_ON(nr_irqs != 16);
4364
4365 for (i = 0; i < 16; i++) {
4366 vpe->sgi_config[i].priority = 0;
4367 vpe->sgi_config[i].enabled = false;
4368 vpe->sgi_config[i].group = false;
4369
4370 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4371 &its_sgi_irq_chip, vpe);
4372 irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4373 }
4374
4375 return 0;
4376}
4377
4378static void its_sgi_irq_domain_free(struct irq_domain *domain,
4379 unsigned int virq,
4380 unsigned int nr_irqs)
4381{
4382 /* Nothing to do */
4383}
4384
4385static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4386 struct irq_data *d, bool reserve)
4387{
e252cf8a
MZ
4388 /* Write out the initial SGI configuration */
4389 its_configure_sgi(d, false);
166cba71
MZ
4390 return 0;
4391}
4392
4393static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4394 struct irq_data *d)
4395{
e252cf8a
MZ
4396 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4397
4398 /*
4399 * The VSGI command is awkward:
4400 *
4401 * - To change the configuration, CLEAR must be set to false,
4402 * leaving the pending bit unchanged.
4403 * - To clear the pending bit, CLEAR must be set to true, leaving
4404 * the configuration unchanged.
4405 *
4406 * You just can't do both at once, hence the two commands below.
4407 */
4408 vpe->sgi_config[d->hwirq].enabled = false;
4409 its_configure_sgi(d, false);
4410 its_configure_sgi(d, true);
166cba71
MZ
4411}
4412
4413static const struct irq_domain_ops its_sgi_domain_ops = {
4414 .alloc = its_sgi_irq_domain_alloc,
4415 .free = its_sgi_irq_domain_free,
4416 .activate = its_sgi_irq_domain_activate,
4417 .deactivate = its_sgi_irq_domain_deactivate,
4418};
4419
7d75bbb4
MZ
4420static int its_vpe_id_alloc(void)
4421{
32bd44dc 4422 return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
7d75bbb4
MZ
4423}
4424
4425static void its_vpe_id_free(u16 id)
4426{
4427 ida_simple_remove(&its_vpeid_ida, id);
4428}
4429
4430static int its_vpe_init(struct its_vpe *vpe)
4431{
4432 struct page *vpt_page;
4433 int vpe_id;
4434
4435 /* Allocate vpe_id */
4436 vpe_id = its_vpe_id_alloc();
4437 if (vpe_id < 0)
4438 return vpe_id;
4439
4440 /* Allocate VPT */
4441 vpt_page = its_allocate_pending_table(GFP_KERNEL);
4442 if (!vpt_page) {
4443 its_vpe_id_free(vpe_id);
4444 return -ENOMEM;
4445 }
4446
4447 if (!its_alloc_vpe_table(vpe_id)) {
4448 its_vpe_id_free(vpe_id);
34f8eb92 4449 its_free_pending_table(vpt_page);
7d75bbb4
MZ
4450 return -ENOMEM;
4451 }
4452
f3a05921 4453 raw_spin_lock_init(&vpe->vpe_lock);
7d75bbb4
MZ
4454 vpe->vpe_id = vpe_id;
4455 vpe->vpt_page = vpt_page;
64edfaa9
MZ
4456 if (gic_rdists->has_rvpeid)
4457 atomic_set(&vpe->vmapp_count, 0);
4458 else
4459 vpe->vpe_proxy_event = -1;
7d75bbb4
MZ
4460
4461 return 0;
4462}
4463
4464static void its_vpe_teardown(struct its_vpe *vpe)
4465{
20b3d54e 4466 its_vpe_db_proxy_unmap(vpe);
7d75bbb4
MZ
4467 its_vpe_id_free(vpe->vpe_id);
4468 its_free_pending_table(vpe->vpt_page);
4469}
4470
4471static void its_vpe_irq_domain_free(struct irq_domain *domain,
4472 unsigned int virq,
4473 unsigned int nr_irqs)
4474{
4475 struct its_vm *vm = domain->host_data;
4476 int i;
4477
4478 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4479
4480 for (i = 0; i < nr_irqs; i++) {
4481 struct irq_data *data = irq_domain_get_irq_data(domain,
4482 virq + i);
4483 struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4484
4485 BUG_ON(vm != vpe->its_vm);
4486
4487 clear_bit(data->hwirq, vm->db_bitmap);
4488 its_vpe_teardown(vpe);
4489 irq_domain_reset_irq_data(data);
4490 }
4491
4492 if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
38dd7c49 4493 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
7d75bbb4
MZ
4494 its_free_prop_table(vm->vprop_page);
4495 }
4496}
4497
4498static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4499 unsigned int nr_irqs, void *args)
4500{
29c647f3 4501 struct irq_chip *irqchip = &its_vpe_irq_chip;
7d75bbb4
MZ
4502 struct its_vm *vm = args;
4503 unsigned long *bitmap;
4504 struct page *vprop_page;
4505 int base, nr_ids, i, err = 0;
4506
4507 BUG_ON(!vm);
4508
38dd7c49 4509 bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
7d75bbb4
MZ
4510 if (!bitmap)
4511 return -ENOMEM;
4512
4513 if (nr_ids < nr_irqs) {
38dd7c49 4514 its_lpi_free(bitmap, base, nr_ids);
7d75bbb4
MZ
4515 return -ENOMEM;
4516 }
4517
4518 vprop_page = its_allocate_prop_table(GFP_KERNEL);
4519 if (!vprop_page) {
38dd7c49 4520 its_lpi_free(bitmap, base, nr_ids);
7d75bbb4
MZ
4521 return -ENOMEM;
4522 }
4523
4524 vm->db_bitmap = bitmap;
4525 vm->db_lpi_base = base;
4526 vm->nr_db_lpis = nr_ids;
4527 vm->vprop_page = vprop_page;
4528
29c647f3
MZ
4529 if (gic_rdists->has_rvpeid)
4530 irqchip = &its_vpe_4_1_irq_chip;
4531
7d75bbb4
MZ
4532 for (i = 0; i < nr_irqs; i++) {
4533 vm->vpes[i]->vpe_db_lpi = base + i;
4534 err = its_vpe_init(vm->vpes[i]);
4535 if (err)
4536 break;
4537 err = its_irq_gic_domain_alloc(domain, virq + i,
4538 vm->vpes[i]->vpe_db_lpi);
4539 if (err)
4540 break;
4541 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
29c647f3 4542 irqchip, vm->vpes[i]);
7d75bbb4 4543 set_bit(i, bitmap);
8f4b5895 4544 irqd_set_resend_when_in_progress(irq_get_irq_data(virq + i));
7d75bbb4
MZ
4545 }
4546
4547 if (err) {
4548 if (i > 0)
280bef51 4549 its_vpe_irq_domain_free(domain, virq, i);
7d75bbb4 4550
38dd7c49 4551 its_lpi_free(bitmap, base, nr_ids);
7d75bbb4
MZ
4552 its_free_prop_table(vprop_page);
4553 }
4554
4555 return err;
4556}
4557
72491643 4558static int its_vpe_irq_domain_activate(struct irq_domain *domain,
702cb0a0 4559 struct irq_data *d, bool reserve)
eb78192b
MZ
4560{
4561 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
40619a2e 4562 struct its_node *its;
eb78192b 4563
009384b3
MZ
4564 /*
4565 * If we use the list map, we issue VMAPP on demand... Unless
4566 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4567 * so that VSGIs can work.
4568 */
4569 if (!gic_requires_eager_mapping())
6ef930f2 4570 return 0;
eb78192b
MZ
4571
4572 /* Map the VPE to the first possible CPU */
4573 vpe->col_idx = cpumask_first(cpu_online_mask);
40619a2e
MZ
4574
4575 list_for_each_entry(its, &its_nodes, entry) {
0dd57fed 4576 if (!is_v4(its))
40619a2e
MZ
4577 continue;
4578
75fd951b 4579 its_send_vmapp(its, vpe, true);
40619a2e
MZ
4580 its_send_vinvall(its, vpe);
4581 }
4582
44c4c25e
MZ
4583 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4584
72491643 4585 return 0;
eb78192b
MZ
4586}
4587
4588static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4589 struct irq_data *d)
4590{
4591 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
75fd951b
MZ
4592 struct its_node *its;
4593
2247e1bf 4594 /*
009384b3
MZ
4595 * If we use the list map on GICv4.0, we unmap the VPE once no
4596 * VLPIs are associated with the VM.
2247e1bf 4597 */
009384b3 4598 if (!gic_requires_eager_mapping())
2247e1bf 4599 return;
eb78192b 4600
75fd951b 4601 list_for_each_entry(its, &its_nodes, entry) {
0dd57fed 4602 if (!is_v4(its))
75fd951b 4603 continue;
eb78192b 4604
75fd951b
MZ
4605 its_send_vmapp(its, vpe, false);
4606 }
301beaf1
MZ
4607
4608 /*
4609 * There may be a direct read to the VPT after unmapping the
4610 * vPE, to guarantee the validity of this, we make the VPT
4611 * memory coherent with the CPU caches here.
4612 */
4613 if (find_4_1_its() && !atomic_read(&vpe->vmapp_count))
4614 gic_flush_dcache_to_poc(page_address(vpe->vpt_page),
4615 LPI_PENDBASE_SZ);
eb78192b
MZ
4616}
4617
8fff27ae 4618static const struct irq_domain_ops its_vpe_domain_ops = {
7d75bbb4
MZ
4619 .alloc = its_vpe_irq_domain_alloc,
4620 .free = its_vpe_irq_domain_free,
eb78192b
MZ
4621 .activate = its_vpe_irq_domain_activate,
4622 .deactivate = its_vpe_irq_domain_deactivate,
8fff27ae
MZ
4623};
4624
4559fbb3
YW
4625static int its_force_quiescent(void __iomem *base)
4626{
4627 u32 count = 1000000; /* 1s */
4628 u32 val;
4629
4630 val = readl_relaxed(base + GITS_CTLR);
7611da86
DD
4631 /*
4632 * GIC architecture specification requires the ITS to be both
4633 * disabled and quiescent for writes to GITS_BASER<n> or
4634 * GITS_CBASER to not have UNPREDICTABLE results.
4635 */
4636 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4559fbb3
YW
4637 return 0;
4638
4639 /* Disable the generation of all interrupts to this ITS */
d51c4b4d 4640 val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4559fbb3
YW
4641 writel_relaxed(val, base + GITS_CTLR);
4642
4643 /* Poll GITS_CTLR and wait until ITS becomes quiescent */
4644 while (1) {
4645 val = readl_relaxed(base + GITS_CTLR);
4646 if (val & GITS_CTLR_QUIESCENT)
4647 return 0;
4648
4649 count--;
4650 if (!count)
4651 return -EBUSY;
4652
4653 cpu_relax();
4654 udelay(1);
4655 }
4656}
4657
9d111d49 4658static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
94100970
RR
4659{
4660 struct its_node *its = data;
4661
576a8342
MZ
4662 /* erratum 22375: only alloc 8MB table size (20 bits) */
4663 its->typer &= ~GITS_TYPER_DEVBITS;
4664 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
94100970 4665 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
9d111d49
AB
4666
4667 return true;
94100970
RR
4668}
4669
9d111d49 4670static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
fbf8f40e
GK
4671{
4672 struct its_node *its = data;
4673
4674 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
9d111d49
AB
4675
4676 return true;
fbf8f40e
GK
4677}
4678
9d111d49 4679static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
90922a2d
SD
4680{
4681 struct its_node *its = data;
4682
4683 /* On QDF2400, the size of the ITE is 16Bytes */
ffedbf0c
MZ
4684 its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4685 its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
9d111d49
AB
4686
4687 return true;
90922a2d
SD
4688}
4689
558b0165
AB
4690static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4691{
4692 struct its_node *its = its_dev->its;
4693
4694 /*
4695 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4696 * which maps 32-bit writes targeted at a separate window of
4697 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4698 * with device ID taken from bits [device_id_bits + 1:2] of
4699 * the window offset.
4700 */
4701 return its->pre_its_base + (its_dev->device_id << 2);
4702}
4703
4704static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4705{
4706 struct its_node *its = data;
4707 u32 pre_its_window[2];
4708 u32 ids;
4709
4710 if (!fwnode_property_read_u32_array(its->fwnode_handle,
4711 "socionext,synquacer-pre-its",
4712 pre_its_window,
4713 ARRAY_SIZE(pre_its_window))) {
4714
4715 its->pre_its_base = pre_its_window[0];
4716 its->get_msi_base = its_irq_get_msi_base_pre_its;
4717
4718 ids = ilog2(pre_its_window[1]) - 2;
576a8342
MZ
4719 if (device_ids(its) > ids) {
4720 its->typer &= ~GITS_TYPER_DEVBITS;
4721 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4722 }
558b0165
AB
4723
4724 /* the pre-ITS breaks isolation, so disable MSI remapping */
dcb83f6e 4725 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_ISOLATED_MSI;
558b0165
AB
4726 return true;
4727 }
4728 return false;
4729}
4730
5c9a882e
MZ
4731static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4732{
4733 struct its_node *its = data;
4734
4735 /*
4736 * Hip07 insists on using the wrong address for the VLPI
4737 * page. Trick it into doing the right thing...
4738 */
4739 its->vlpi_redist_offset = SZ_128K;
4740 return true;
90922a2d
SD
4741}
4742
a8707f55
SR
4743static bool __maybe_unused its_enable_rk3588001(void *data)
4744{
4745 struct its_node *its = data;
4746
567f67ac
SR
4747 if (!of_machine_is_compatible("rockchip,rk3588") &&
4748 !of_machine_is_compatible("rockchip,rk3588s"))
a8707f55
SR
4749 return false;
4750
4751 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4752 gic_rdists->flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
4753
4754 return true;
4755}
4756
67510cca 4757static const struct gic_quirk its_quirks[] = {
94100970
RR
4758#ifdef CONFIG_CAVIUM_ERRATUM_22375
4759 {
4760 .desc = "ITS: Cavium errata 22375, 24313",
4761 .iidr = 0xa100034c, /* ThunderX pass 1.x */
4762 .mask = 0xffff0fff,
4763 .init = its_enable_quirk_cavium_22375,
4764 },
fbf8f40e
GK
4765#endif
4766#ifdef CONFIG_CAVIUM_ERRATUM_23144
4767 {
4768 .desc = "ITS: Cavium erratum 23144",
4769 .iidr = 0xa100034c, /* ThunderX pass 1.x */
4770 .mask = 0xffff0fff,
4771 .init = its_enable_quirk_cavium_23144,
4772 },
90922a2d
SD
4773#endif
4774#ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4775 {
4776 .desc = "ITS: QDF2400 erratum 0065",
4777 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */
4778 .mask = 0xffffffff,
4779 .init = its_enable_quirk_qdf2400_e0065,
4780 },
558b0165
AB
4781#endif
4782#ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4783 {
4784 /*
4785 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4786 * implementation, but with a 'pre-ITS' added that requires
4787 * special handling in software.
4788 */
4789 .desc = "ITS: Socionext Synquacer pre-ITS",
4790 .iidr = 0x0001143b,
4791 .mask = 0xffffffff,
4792 .init = its_enable_quirk_socionext_synquacer,
4793 },
5c9a882e
MZ
4794#endif
4795#ifdef CONFIG_HISILICON_ERRATUM_161600802
4796 {
4797 .desc = "ITS: Hip07 erratum 161600802",
4798 .iidr = 0x00000004,
4799 .mask = 0xffffffff,
4800 .init = its_enable_quirk_hip07_161600802,
4801 },
a8707f55
SR
4802#endif
4803#ifdef CONFIG_ROCKCHIP_ERRATUM_3588001
4804 {
4805 .desc = "ITS: Rockchip erratum RK3588001",
4806 .iidr = 0x0201743b,
4807 .mask = 0xffffffff,
4808 .init = its_enable_rk3588001,
4809 },
94100970 4810#endif
67510cca
RR
4811 {
4812 }
4813};
4814
4815static void its_enable_quirks(struct its_node *its)
4816{
4817 u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4818
4819 gic_enable_quirks(iidr, its_quirks, its);
4820}
4821
dba0bc7b
DB
4822static int its_save_disable(void)
4823{
4824 struct its_node *its;
4825 int err = 0;
4826
a8db7456 4827 raw_spin_lock(&its_lock);
dba0bc7b
DB
4828 list_for_each_entry(its, &its_nodes, entry) {
4829 void __iomem *base;
4830
dba0bc7b
DB
4831 base = its->base;
4832 its->ctlr_save = readl_relaxed(base + GITS_CTLR);
4833 err = its_force_quiescent(base);
4834 if (err) {
4835 pr_err("ITS@%pa: failed to quiesce: %d\n",
4836 &its->phys_base, err);
4837 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4838 goto err;
4839 }
4840
4841 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
4842 }
4843
4844err:
4845 if (err) {
4846 list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
4847 void __iomem *base;
4848
dba0bc7b
DB
4849 base = its->base;
4850 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4851 }
4852 }
a8db7456 4853 raw_spin_unlock(&its_lock);
dba0bc7b
DB
4854
4855 return err;
4856}
4857
4858static void its_restore_enable(void)
4859{
4860 struct its_node *its;
4861 int ret;
4862
a8db7456 4863 raw_spin_lock(&its_lock);
dba0bc7b
DB
4864 list_for_each_entry(its, &its_nodes, entry) {
4865 void __iomem *base;
4866 int i;
4867
dba0bc7b
DB
4868 base = its->base;
4869
4870 /*
4871 * Make sure that the ITS is disabled. If it fails to quiesce,
4872 * don't restore it since writing to CBASER or BASER<n>
4873 * registers is undefined according to the GIC v3 ITS
4874 * Specification.
74cde1a5
XQ
4875 *
4876 * Firmware resuming with the ITS enabled is terminally broken.
dba0bc7b 4877 */
74cde1a5 4878 WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
dba0bc7b
DB
4879 ret = its_force_quiescent(base);
4880 if (ret) {
4881 pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
4882 &its->phys_base, ret);
4883 continue;
4884 }
4885
4886 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
4887
4888 /*
4889 * Writing CBASER resets CREADR to 0, so make CWRITER and
4890 * cmd_write line up with it.
4891 */
4892 its->cmd_write = its->cmd_base;
4893 gits_write_cwriter(0, base + GITS_CWRITER);
4894
4895 /* Restore GITS_BASER from the value cache. */
4896 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
4897 struct its_baser *baser = &its->tables[i];
4898
4899 if (!(baser->val & GITS_BASER_VALID))
4900 continue;
4901
4902 its_write_baser(its, baser, baser->val);
4903 }
4904 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
920181ce
DB
4905
4906 /*
4907 * Reinit the collection if it's stored in the ITS. This is
4908 * indicated by the col_id being less than the HCC field.
4909 * CID < HCC as specified in the GIC v3 Documentation.
4910 */
4911 if (its->collections[smp_processor_id()].col_id <
4912 GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
4913 its_cpu_init_collection(its);
dba0bc7b 4914 }
a8db7456 4915 raw_spin_unlock(&its_lock);
dba0bc7b
DB
4916}
4917
4918static struct syscore_ops its_syscore_ops = {
4919 .suspend = its_save_disable,
4920 .resume = its_restore_enable,
4921};
4922
c733ebb7
MZ
4923static void __init __iomem *its_map_one(struct resource *res, int *err)
4924{
4925 void __iomem *its_base;
4926 u32 val;
4927
4928 its_base = ioremap(res->start, SZ_64K);
4929 if (!its_base) {
4930 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
4931 *err = -ENOMEM;
4932 return NULL;
4933 }
4934
4935 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
4936 if (val != 0x30 && val != 0x40) {
4937 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
4938 *err = -ENODEV;
4939 goto out_unmap;
4940 }
4941
4942 *err = its_force_quiescent(its_base);
4943 if (*err) {
4944 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
4945 goto out_unmap;
4946 }
4947
4948 return its_base;
4949
4950out_unmap:
4951 iounmap(its_base);
4952 return NULL;
4953}
4954
9585a495 4955static int its_init_domain(struct its_node *its)
d14ae5e6
TN
4956{
4957 struct irq_domain *inner_domain;
4958 struct msi_domain_info *info;
4959
4960 info = kzalloc(sizeof(*info), GFP_KERNEL);
4961 if (!info)
4962 return -ENOMEM;
4963
1e46e040
JH
4964 info->ops = &its_msi_domain_ops;
4965 info->data = its;
4966
4967 inner_domain = irq_domain_create_hierarchy(its_parent,
4968 its->msi_domain_flags, 0,
9585a495 4969 its->fwnode_handle, &its_domain_ops,
1e46e040 4970 info);
d14ae5e6
TN
4971 if (!inner_domain) {
4972 kfree(info);
4973 return -ENOMEM;
4974 }
4975
96f0d93a 4976 irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
d14ae5e6
TN
4977
4978 return 0;
4979}
4980
8fff27ae
MZ
4981static int its_init_vpe_domain(void)
4982{
20b3d54e
MZ
4983 struct its_node *its;
4984 u32 devid;
4985 int entries;
4986
4987 if (gic_rdists->has_direct_lpi) {
4988 pr_info("ITS: Using DirectLPI for VPE invalidation\n");
4989 return 0;
4990 }
4991
4992 /* Any ITS will do, even if not v4 */
4993 its = list_first_entry(&its_nodes, struct its_node, entry);
4994
4995 entries = roundup_pow_of_two(nr_cpu_ids);
6396bb22 4996 vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
20b3d54e 4997 GFP_KERNEL);
944a1a17 4998 if (!vpe_proxy.vpes)
20b3d54e 4999 return -ENOMEM;
20b3d54e
MZ
5000
5001 /* Use the last possible DevID */
576a8342 5002 devid = GENMASK(device_ids(its) - 1, 0);
20b3d54e
MZ
5003 vpe_proxy.dev = its_create_device(its, devid, entries, false);
5004 if (!vpe_proxy.dev) {
5005 kfree(vpe_proxy.vpes);
5006 pr_err("ITS: Can't allocate GICv4 proxy device\n");
5007 return -ENOMEM;
5008 }
5009
c427a475 5010 BUG_ON(entries > vpe_proxy.dev->nr_ites);
20b3d54e
MZ
5011
5012 raw_spin_lock_init(&vpe_proxy.lock);
5013 vpe_proxy.next_victim = 0;
5014 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
5015 devid, vpe_proxy.dev->nr_ites);
5016
8fff27ae
MZ
5017 return 0;
5018}
5019
9585a495 5020static int __init its_compute_its_list_map(struct its_node *its)
3dfa576b
MZ
5021{
5022 int its_number;
5023 u32 ctlr;
5024
5025 /*
5026 * This is assumed to be done early enough that we're
5027 * guaranteed to be single-threaded, hence no
5028 * locking. Should this change, we should address
5029 * this.
5030 */
ab60491e
MZ
5031 its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
5032 if (its_number >= GICv4_ITS_LIST_MAX) {
3dfa576b 5033 pr_err("ITS@%pa: No ITSList entry available!\n",
9585a495 5034 &its->phys_base);
3dfa576b
MZ
5035 return -EINVAL;
5036 }
5037
9585a495 5038 ctlr = readl_relaxed(its->base + GITS_CTLR);
3dfa576b
MZ
5039 ctlr &= ~GITS_CTLR_ITS_NUMBER;
5040 ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
9585a495
MZ
5041 writel_relaxed(ctlr, its->base + GITS_CTLR);
5042 ctlr = readl_relaxed(its->base + GITS_CTLR);
3dfa576b
MZ
5043 if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
5044 its_number = ctlr & GITS_CTLR_ITS_NUMBER;
5045 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
5046 }
5047
5048 if (test_and_set_bit(its_number, &its_list_map)) {
5049 pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
9585a495 5050 &its->phys_base, its_number);
3dfa576b
MZ
5051 return -EINVAL;
5052 }
5053
5054 return its_number;
5055}
5056
9585a495 5057static int __init its_probe_one(struct its_node *its)
4c21f3c2 5058{
9585a495 5059 u64 baser, tmp;
539d3782 5060 struct page *page;
c733ebb7 5061 u32 ctlr;
4c21f3c2
MZ
5062 int err;
5063
0dd57fed 5064 if (is_v4(its)) {
9585a495
MZ
5065 if (!(its->typer & GITS_TYPER_VMOVP)) {
5066 err = its_compute_its_list_map(its);
3dfa576b 5067 if (err < 0)
9585a495 5068 goto out;
3dfa576b 5069
debf6d02
MZ
5070 its->list_nr = err;
5071
3dfa576b 5072 pr_info("ITS@%pa: Using ITS number %d\n",
9585a495 5073 &its->phys_base, err);
3dfa576b 5074 } else {
9585a495 5075 pr_info("ITS@%pa: Single VMOVP capable\n", &its->phys_base);
3dfa576b 5076 }
5e516846
MZ
5077
5078 if (is_v4_1(its)) {
9585a495 5079 u32 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
5e46a484 5080
9585a495 5081 its->sgir_base = ioremap(its->phys_base + SZ_128K, SZ_64K);
5e46a484
MZ
5082 if (!its->sgir_base) {
5083 err = -ENOMEM;
9585a495 5084 goto out;
5e46a484
MZ
5085 }
5086
9585a495 5087 its->mpidr = readl_relaxed(its->base + GITS_MPIDR);
5e516846
MZ
5088
5089 pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
9585a495 5090 &its->phys_base, its->mpidr, svpet);
5e516846 5091 }
3dfa576b
MZ
5092 }
5093
539d3782
SD
5094 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
5095 get_order(ITS_CMD_QUEUE_SZ));
5096 if (!page) {
4c21f3c2 5097 err = -ENOMEM;
5e46a484 5098 goto out_unmap_sgir;
4c21f3c2 5099 }
539d3782 5100 its->cmd_base = (void *)page_address(page);
4c21f3c2 5101 its->cmd_write = its->cmd_base;
558b0165 5102 its->get_msi_base = its_irq_get_msi_base;
dcb83f6e 5103 its->msi_domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI;
4c21f3c2 5104
0e0b0f69 5105 err = its_alloc_tables(its);
4c21f3c2
MZ
5106 if (err)
5107 goto out_free_cmd;
5108
5109 err = its_alloc_collections(its);
5110 if (err)
5111 goto out_free_tables;
5112
5113 baser = (virt_to_phys(its->cmd_base) |
2fd632a0 5114 GITS_CBASER_RaWaWb |
4c21f3c2
MZ
5115 GITS_CBASER_InnerShareable |
5116 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) |
5117 GITS_CBASER_VALID);
5118
0968a619
VM
5119 gits_write_cbaser(baser, its->base + GITS_CBASER);
5120 tmp = gits_read_cbaser(its->base + GITS_CBASER);
4c21f3c2 5121
a8707f55
SR
5122 if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE)
5123 tmp &= ~GITS_CBASER_SHAREABILITY_MASK;
5124
4ad3e363 5125 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
241a386c
MZ
5126 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5127 /*
5128 * The HW reports non-shareable, we must
5129 * remove the cacheability attributes as
5130 * well.
5131 */
5132 baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5133 GITS_CBASER_CACHEABILITY_MASK);
5134 baser |= GITS_CBASER_nC;
0968a619 5135 gits_write_cbaser(baser, its->base + GITS_CBASER);
241a386c 5136 }
4c21f3c2
MZ
5137 pr_info("ITS: using cache flushing for cmd queue\n");
5138 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5139 }
5140
0968a619 5141 gits_write_cwriter(0, its->base + GITS_CWRITER);
3dfa576b 5142 ctlr = readl_relaxed(its->base + GITS_CTLR);
d51c4b4d 5143 ctlr |= GITS_CTLR_ENABLE;
0dd57fed 5144 if (is_v4(its))
d51c4b4d
MZ
5145 ctlr |= GITS_CTLR_ImDe;
5146 writel_relaxed(ctlr, its->base + GITS_CTLR);
241a386c 5147
9585a495 5148 err = its_init_domain(its);
d14ae5e6
TN
5149 if (err)
5150 goto out_free_tables;
4c21f3c2 5151
a8db7456 5152 raw_spin_lock(&its_lock);
4c21f3c2 5153 list_add(&its->entry, &its_nodes);
a8db7456 5154 raw_spin_unlock(&its_lock);
4c21f3c2
MZ
5155
5156 return 0;
5157
4c21f3c2
MZ
5158out_free_tables:
5159 its_free_tables(its);
5160out_free_cmd:
5bc13c2c 5161 free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5e46a484
MZ
5162out_unmap_sgir:
5163 if (its->sgir_base)
5164 iounmap(its->sgir_base);
9585a495
MZ
5165out:
5166 pr_err("ITS@%pa: failed probing (%d)\n", &its->phys_base, err);
4c21f3c2
MZ
5167 return err;
5168}
5169
5170static bool gic_rdists_supports_plpis(void)
5171{
589ce5f4 5172 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
4c21f3c2
MZ
5173}
5174
6eb486b6
SD
5175static int redist_disable_lpis(void)
5176{
5177 void __iomem *rbase = gic_data_rdist_rd_base();
5178 u64 timeout = USEC_PER_SEC;
5179 u64 val;
5180
5181 if (!gic_rdists_supports_plpis()) {
5182 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5183 return -ENXIO;
5184 }
5185
5186 val = readl_relaxed(rbase + GICR_CTLR);
5187 if (!(val & GICR_CTLR_ENABLE_LPIS))
5188 return 0;
5189
11e37d35
MZ
5190 /*
5191 * If coming via a CPU hotplug event, we don't need to disable
5192 * LPIs before trying to re-enable them. They are already
5193 * configured and all is well in the world.
c440a9d9
MZ
5194 *
5195 * If running with preallocated tables, there is nothing to do.
11e37d35 5196 */
c0cdc890 5197 if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) ||
c440a9d9 5198 (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
11e37d35
MZ
5199 return 0;
5200
5201 /*
5202 * From that point on, we only try to do some damage control.
5203 */
5204 pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
6eb486b6
SD
5205 smp_processor_id());
5206 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5207
5208 /* Disable LPIs */
5209 val &= ~GICR_CTLR_ENABLE_LPIS;
5210 writel_relaxed(val, rbase + GICR_CTLR);
5211
5212 /* Make sure any change to GICR_CTLR is observable by the GIC */
5213 dsb(sy);
5214
5215 /*
5216 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5217 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5218 * Error out if we time out waiting for RWP to clear.
5219 */
5220 while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5221 if (!timeout) {
5222 pr_err("CPU%d: Timeout while disabling LPIs\n",
5223 smp_processor_id());
5224 return -ETIMEDOUT;
5225 }
5226 udelay(1);
5227 timeout--;
5228 }
5229
5230 /*
5231 * After it has been written to 1, it is IMPLEMENTATION
5232 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5233 * cleared to 0. Error out if clearing the bit failed.
5234 */
5235 if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5236 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5237 return -EBUSY;
5238 }
5239
5240 return 0;
5241}
5242
4c21f3c2
MZ
5243int its_cpu_init(void)
5244{
4c21f3c2 5245 if (!list_empty(&its_nodes)) {
6eb486b6
SD
5246 int ret;
5247
5248 ret = redist_disable_lpis();
5249 if (ret)
5250 return ret;
5251
4c21f3c2 5252 its_cpu_init_lpis();
920181ce 5253 its_cpu_init_collections();
4c21f3c2
MZ
5254 }
5255
5256 return 0;
5257}
5258
835f442f
VS
5259static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work)
5260{
5261 cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state);
5262 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5263}
5264
5265static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work,
5266 rdist_memreserve_cpuhp_cleanup_workfn);
5267
d23bc2bc
VS
5268static int its_cpu_memreserve_lpi(unsigned int cpu)
5269{
5270 struct page *pend_page;
5271 int ret = 0;
5272
5273 /* This gets to run exactly once per CPU */
5274 if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE)
5275 return 0;
5276
5277 pend_page = gic_data_rdist()->pend_page;
5278 if (WARN_ON(!pend_page)) {
5279 ret = -ENOMEM;
5280 goto out;
5281 }
5282 /*
5283 * If the pending table was pre-programmed, free the memory we
5284 * preemptively allocated. Otherwise, reserve that memory for
5285 * later kexecs.
5286 */
5287 if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) {
5288 its_free_pending_table(pend_page);
5289 gic_data_rdist()->pend_page = NULL;
5290 } else {
5291 phys_addr_t paddr = page_to_phys(pend_page);
5292 WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
5293 }
5294
5295out:
835f442f 5296 /* Last CPU being brought up gets to issue the cleanup */
16436f70
AB
5297 if (!IS_ENABLED(CONFIG_SMP) ||
5298 cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask))
835f442f
VS
5299 schedule_work(&rdist_memreserve_cpuhp_cleanup_work);
5300
d23bc2bc
VS
5301 gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE;
5302 return ret;
5303}
5304
c733ebb7
MZ
5305/* Mark all the BASER registers as invalid before they get reprogrammed */
5306static int __init its_reset_one(struct resource *res)
5307{
5308 void __iomem *its_base;
5309 int err, i;
5310
5311 its_base = its_map_one(res, &err);
5312 if (!its_base)
5313 return err;
5314
5315 for (i = 0; i < GITS_BASER_NR_REGS; i++)
5316 gits_write_baser(0, its_base + GITS_BASER + (i << 3));
5317
5318 iounmap(its_base);
5319 return 0;
5320}
5321
935bba7c 5322static const struct of_device_id its_device_id[] = {
4c21f3c2
MZ
5323 { .compatible = "arm,gic-v3-its", },
5324 {},
5325};
5326
9585a495
MZ
5327static struct its_node __init *its_node_init(struct resource *res,
5328 struct fwnode_handle *handle, int numa_node)
5329{
5330 void __iomem *its_base;
5331 struct its_node *its;
5332 int err;
5333
5334 its_base = its_map_one(res, &err);
5335 if (!its_base)
5336 return NULL;
5337
5338 pr_info("ITS %pR\n", res);
5339
5340 its = kzalloc(sizeof(*its), GFP_KERNEL);
5341 if (!its)
5342 goto out_unmap;
5343
5344 raw_spin_lock_init(&its->lock);
5345 mutex_init(&its->dev_alloc_lock);
5346 INIT_LIST_HEAD(&its->entry);
5347 INIT_LIST_HEAD(&its->its_device_list);
5348
5349 its->typer = gic_read_typer(its_base + GITS_TYPER);
5350 its->base = its_base;
5351 its->phys_base = res->start;
5352
5353 its->numa_node = numa_node;
5354 its->fwnode_handle = handle;
5355
5356 return its;
5357
5358out_unmap:
5359 iounmap(its_base);
5360 return NULL;
5361}
5362
5363static void its_node_destroy(struct its_node *its)
5364{
5365 iounmap(its->base);
5366 kfree(its);
5367}
5368
db40f0a7 5369static int __init its_of_probe(struct device_node *node)
4c21f3c2
MZ
5370{
5371 struct device_node *np;
db40f0a7 5372 struct resource res;
9585a495 5373 int err;
4c21f3c2 5374
c733ebb7
MZ
5375 /*
5376 * Make sure *all* the ITS are reset before we probe any, as
5377 * they may be sharing memory. If any of the ITS fails to
5378 * reset, don't even try to go any further, as this could
5379 * result in something even worse.
5380 */
5381 for (np = of_find_matching_node(node, its_device_id); np;
5382 np = of_find_matching_node(np, its_device_id)) {
c733ebb7
MZ
5383 if (!of_device_is_available(np) ||
5384 !of_property_read_bool(np, "msi-controller") ||
5385 of_address_to_resource(np, 0, &res))
5386 continue;
5387
5388 err = its_reset_one(&res);
5389 if (err)
5390 return err;
5391 }
5392
4c21f3c2
MZ
5393 for (np = of_find_matching_node(node, its_device_id); np;
5394 np = of_find_matching_node(np, its_device_id)) {
9585a495
MZ
5395 struct its_node *its;
5396
95a25625
SB
5397 if (!of_device_is_available(np))
5398 continue;
d14ae5e6 5399 if (!of_property_read_bool(np, "msi-controller")) {
e81f54c6
RH
5400 pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5401 np);
d14ae5e6
TN
5402 continue;
5403 }
5404
db40f0a7 5405 if (of_address_to_resource(np, 0, &res)) {
e81f54c6 5406 pr_warn("%pOF: no regs?\n", np);
db40f0a7
TN
5407 continue;
5408 }
5409
9585a495
MZ
5410
5411 its = its_node_init(&res, &np->fwnode, of_node_to_nid(np));
5412 if (!its)
5413 return -ENOMEM;
5414
5415 its_enable_quirks(its);
5416 err = its_probe_one(its);
5417 if (err) {
5418 its_node_destroy(its);
5419 return err;
5420 }
4c21f3c2 5421 }
db40f0a7
TN
5422 return 0;
5423}
5424
3f010cf1
TN
5425#ifdef CONFIG_ACPI
5426
5427#define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5428
d1ce263f 5429#ifdef CONFIG_ACPI_NUMA
dbd2b826
GK
5430struct its_srat_map {
5431 /* numa node id */
5432 u32 numa_node;
5433 /* GIC ITS ID */
5434 u32 its_id;
5435};
5436
fdf6e7a8 5437static struct its_srat_map *its_srat_maps __initdata;
dbd2b826
GK
5438static int its_in_srat __initdata;
5439
5440static int __init acpi_get_its_numa_node(u32 its_id)
5441{
5442 int i;
5443
5444 for (i = 0; i < its_in_srat; i++) {
5445 if (its_id == its_srat_maps[i].its_id)
5446 return its_srat_maps[i].numa_node;
5447 }
5448 return NUMA_NO_NODE;
5449}
5450
60574d1e 5451static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
fdf6e7a8
HG
5452 const unsigned long end)
5453{
5454 return 0;
5455}
5456
60574d1e 5457static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
dbd2b826
GK
5458 const unsigned long end)
5459{
5460 int node;
5461 struct acpi_srat_gic_its_affinity *its_affinity;
5462
5463 its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5464 if (!its_affinity)
5465 return -EINVAL;
5466
5467 if (its_affinity->header.length < sizeof(*its_affinity)) {
5468 pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5469 its_affinity->header.length);
5470 return -EINVAL;
5471 }
5472
95ac5bf4
JC
5473 /*
5474 * Note that in theory a new proximity node could be created by this
5475 * entry as it is an SRAT resource allocation structure.
5476 * We do not currently support doing so.
5477 */
5478 node = pxm_to_node(its_affinity->proximity_domain);
dbd2b826
GK
5479
5480 if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5481 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5482 return 0;
5483 }
5484
5485 its_srat_maps[its_in_srat].numa_node = node;
5486 its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5487 its_in_srat++;
5488 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5489 its_affinity->proximity_domain, its_affinity->its_id, node);
5490
5491 return 0;
5492}
5493
5494static void __init acpi_table_parse_srat_its(void)
5495{
fdf6e7a8
HG
5496 int count;
5497
5498 count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5499 sizeof(struct acpi_table_srat),
5500 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5501 gic_acpi_match_srat_its, 0);
5502 if (count <= 0)
5503 return;
5504
6da2ec56
KC
5505 its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5506 GFP_KERNEL);
944a1a17 5507 if (!its_srat_maps)
fdf6e7a8 5508 return;
fdf6e7a8 5509
dbd2b826
GK
5510 acpi_table_parse_entries(ACPI_SIG_SRAT,
5511 sizeof(struct acpi_table_srat),
5512 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5513 gic_acpi_parse_srat_its, 0);
5514}
fdf6e7a8
HG
5515
5516/* free the its_srat_maps after ITS probing */
5517static void __init acpi_its_srat_maps_free(void)
5518{
5519 kfree(its_srat_maps);
5520}
dbd2b826
GK
5521#else
5522static void __init acpi_table_parse_srat_its(void) { }
5523static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
fdf6e7a8 5524static void __init acpi_its_srat_maps_free(void) { }
dbd2b826
GK
5525#endif
5526
60574d1e 5527static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
3f010cf1
TN
5528 const unsigned long end)
5529{
5530 struct acpi_madt_generic_translator *its_entry;
5531 struct fwnode_handle *dom_handle;
9585a495 5532 struct its_node *its;
3f010cf1
TN
5533 struct resource res;
5534 int err;
5535
5536 its_entry = (struct acpi_madt_generic_translator *)header;
5537 memset(&res, 0, sizeof(res));
5538 res.start = its_entry->base_address;
5539 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5540 res.flags = IORESOURCE_MEM;
5541
5778cc77 5542 dom_handle = irq_domain_alloc_fwnode(&res.start);
3f010cf1
TN
5543 if (!dom_handle) {
5544 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5545 &res.start);
5546 return -ENOMEM;
5547 }
5548
8b4282e6
SK
5549 err = iort_register_domain_token(its_entry->translation_id, res.start,
5550 dom_handle);
3f010cf1
TN
5551 if (err) {
5552 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5553 &res.start, its_entry->translation_id);
5554 goto dom_err;
5555 }
5556
9585a495
MZ
5557 its = its_node_init(&res, dom_handle,
5558 acpi_get_its_numa_node(its_entry->translation_id));
5559 if (!its) {
5560 err = -ENOMEM;
5561 goto node_err;
5562 }
5563
5564 err = its_probe_one(its);
3f010cf1
TN
5565 if (!err)
5566 return 0;
5567
9585a495 5568node_err:
3f010cf1
TN
5569 iort_deregister_domain_token(its_entry->translation_id);
5570dom_err:
5571 irq_domain_free_fwnode(dom_handle);
5572 return err;
5573}
5574
c733ebb7
MZ
5575static int __init its_acpi_reset(union acpi_subtable_headers *header,
5576 const unsigned long end)
5577{
5578 struct acpi_madt_generic_translator *its_entry;
5579 struct resource res;
5580
5581 its_entry = (struct acpi_madt_generic_translator *)header;
5582 res = (struct resource) {
5583 .start = its_entry->base_address,
5584 .end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1,
5585 .flags = IORESOURCE_MEM,
5586 };
5587
5588 return its_reset_one(&res);
5589}
5590
3f010cf1
TN
5591static void __init its_acpi_probe(void)
5592{
dbd2b826 5593 acpi_table_parse_srat_its();
c733ebb7
MZ
5594 /*
5595 * Make sure *all* the ITS are reset before we probe any, as
5596 * they may be sharing memory. If any of the ITS fails to
5597 * reset, don't even try to go any further, as this could
5598 * result in something even worse.
5599 */
5600 if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5601 its_acpi_reset, 0) > 0)
5602 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5603 gic_acpi_parse_madt_its, 0);
fdf6e7a8 5604 acpi_its_srat_maps_free();
3f010cf1
TN
5605}
5606#else
5607static void __init its_acpi_probe(void) { }
5608#endif
5609
d23bc2bc
VS
5610int __init its_lpi_memreserve_init(void)
5611{
5612 int state;
5613
5614 if (!efi_enabled(EFI_CONFIG_TABLES))
5615 return 0;
5616
eba1e44b
MZ
5617 if (list_empty(&its_nodes))
5618 return 0;
5619
835f442f 5620 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
d23bc2bc
VS
5621 state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
5622 "irqchip/arm/gicv3/memreserve:online",
5623 its_cpu_memreserve_lpi,
5624 NULL);
5625 if (state < 0)
5626 return state;
5627
835f442f
VS
5628 gic_rdists->cpuhp_memreserve_state = state;
5629
d23bc2bc
VS
5630 return 0;
5631}
5632
db40f0a7
TN
5633int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5634 struct irq_domain *parent_domain)
5635{
5636 struct device_node *of_node;
8fff27ae
MZ
5637 struct its_node *its;
5638 bool has_v4 = false;
3c40706d 5639 bool has_v4_1 = false;
8fff27ae 5640 int err;
db40f0a7 5641
5e516846
MZ
5642 gic_rdists = rdists;
5643
db40f0a7
TN
5644 its_parent = parent_domain;
5645 of_node = to_of_node(handle);
5646 if (of_node)
5647 its_of_probe(of_node);
5648 else
3f010cf1 5649 its_acpi_probe();
4c21f3c2
MZ
5650
5651 if (list_empty(&its_nodes)) {
5652 pr_warn("ITS: No ITS available, not enabling LPIs\n");
5653 return -ENXIO;
5654 }
5655
11e37d35 5656 err = allocate_lpi_tables();
8fff27ae
MZ
5657 if (err)
5658 return err;
5659
3c40706d 5660 list_for_each_entry(its, &its_nodes, entry) {
0dd57fed 5661 has_v4 |= is_v4(its);
3c40706d
MZ
5662 has_v4_1 |= is_v4_1(its);
5663 }
5664
5665 /* Don't bother with inconsistent systems */
5666 if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5667 rdists->has_rvpeid = false;
8fff27ae
MZ
5668
5669 if (has_v4 & rdists->has_vlpis) {
166cba71
MZ
5670 const struct irq_domain_ops *sgi_ops;
5671
5672 if (has_v4_1)
5673 sgi_ops = &its_sgi_domain_ops;
5674 else
5675 sgi_ops = NULL;
5676
3d63cb53 5677 if (its_init_vpe_domain() ||
166cba71 5678 its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
8fff27ae
MZ
5679 rdists->has_vlpis = false;
5680 pr_err("ITS: Disabling GICv4 support\n");
5681 }
5682 }
5683
dba0bc7b
DB
5684 register_syscore_ops(&its_syscore_ops);
5685
8fff27ae 5686 return 0;
4c21f3c2 5687}