Merge tag 'pm-5.12-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[linux-2.6-block.git] / drivers / irqchip / irq-gic-v3-its.c
CommitLineData
caab277b 1// SPDX-License-Identifier: GPL-2.0-only
cc2d3216 2/*
d7276b80 3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
cc2d3216 4 * Author: Marc Zyngier <marc.zyngier@arm.com>
cc2d3216
MZ
5 */
6
3f010cf1 7#include <linux/acpi.h>
8d3554b8 8#include <linux/acpi_iort.h>
ffedbf0c 9#include <linux/bitfield.h>
cc2d3216
MZ
10#include <linux/bitmap.h>
11#include <linux/cpu.h>
c6e2ccb6 12#include <linux/crash_dump.h>
cc2d3216 13#include <linux/delay.h>
44bb7e24 14#include <linux/dma-iommu.h>
3fb68fae 15#include <linux/efi.h>
cc2d3216 16#include <linux/interrupt.h>
96806229 17#include <linux/iopoll.h>
3f010cf1 18#include <linux/irqdomain.h>
880cb3cd 19#include <linux/list.h>
cc2d3216 20#include <linux/log2.h>
5e2c9f9a 21#include <linux/memblock.h>
cc2d3216
MZ
22#include <linux/mm.h>
23#include <linux/msi.h>
24#include <linux/of.h>
25#include <linux/of_address.h>
26#include <linux/of_irq.h>
27#include <linux/of_pci.h>
28#include <linux/of_platform.h>
29#include <linux/percpu.h>
30#include <linux/slab.h>
dba0bc7b 31#include <linux/syscore_ops.h>
cc2d3216 32
41a83e06 33#include <linux/irqchip.h>
cc2d3216 34#include <linux/irqchip/arm-gic-v3.h>
c808eea8 35#include <linux/irqchip/arm-gic-v4.h>
cc2d3216 36
cc2d3216
MZ
37#include <asm/cputype.h>
38#include <asm/exception.h>
39
67510cca
RR
40#include "irq-gic-common.h"
41
94100970
RR
42#define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0)
43#define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1)
fbf8f40e 44#define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2)
cc2d3216 45
c48ed51c 46#define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0)
c440a9d9 47#define RDIST_FLAGS_RD_TABLES_PREALLOCATED (1 << 1)
c48ed51c 48
a13b0404
MZ
49static u32 lpi_id_bits;
50
51/*
52 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
53 * deal with (one configuration byte per interrupt). PENDBASE has to
54 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
55 */
56#define LPI_NRBITS lpi_id_bits
57#define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K)
58#define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
59
2130b789 60#define LPI_PROP_DEFAULT_PRIO GICD_INT_DEF_PRI
a13b0404 61
cc2d3216
MZ
62/*
63 * Collection structure - just an ID, and a redistributor address to
64 * ping. We use one per CPU as a bag of interrupts assigned to this
65 * CPU.
66 */
67struct its_collection {
68 u64 target_address;
69 u16 col_id;
70};
71
466b7d16 72/*
9347359a
SD
73 * The ITS_BASER structure - contains memory information, cached
74 * value of BASER register configuration and ITS page size.
466b7d16
SD
75 */
76struct its_baser {
77 void *base;
78 u64 val;
79 u32 order;
9347359a 80 u32 psz;
466b7d16
SD
81};
82
558b0165
AB
83struct its_device;
84
cc2d3216
MZ
85/*
86 * The ITS structure - contains most of the infrastructure, with the
841514ab
MZ
87 * top-level MSI domain, the command queue, the collections, and the
88 * list of devices writing to it.
9791ec7d
MZ
89 *
90 * dev_alloc_lock has to be taken for device allocations, while the
91 * spinlock must be taken to parse data structures such as the device
92 * list.
cc2d3216
MZ
93 */
94struct its_node {
95 raw_spinlock_t lock;
9791ec7d 96 struct mutex dev_alloc_lock;
cc2d3216 97 struct list_head entry;
cc2d3216 98 void __iomem *base;
5e46a484 99 void __iomem *sgir_base;
db40f0a7 100 phys_addr_t phys_base;
cc2d3216
MZ
101 struct its_cmd_block *cmd_base;
102 struct its_cmd_block *cmd_write;
466b7d16 103 struct its_baser tables[GITS_BASER_NR_REGS];
cc2d3216 104 struct its_collection *collections;
558b0165
AB
105 struct fwnode_handle *fwnode_handle;
106 u64 (*get_msi_base)(struct its_device *its_dev);
0dd57fed 107 u64 typer;
dba0bc7b
DB
108 u64 cbaser_save;
109 u32 ctlr_save;
5e516846 110 u32 mpidr;
cc2d3216
MZ
111 struct list_head its_device_list;
112 u64 flags;
debf6d02 113 unsigned long list_nr;
fbf8f40e 114 int numa_node;
558b0165
AB
115 unsigned int msi_domain_flags;
116 u32 pre_its_base; /* for Socionext Synquacer */
5c9a882e 117 int vlpi_redist_offset;
cc2d3216
MZ
118};
119
0dd57fed 120#define is_v4(its) (!!((its)->typer & GITS_TYPER_VLPIS))
5e516846 121#define is_v4_1(its) (!!((its)->typer & GITS_TYPER_VMAPP))
576a8342 122#define device_ids(its) (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
0dd57fed 123
cc2d3216
MZ
124#define ITS_ITT_ALIGN SZ_256
125
32bd44dc 126/* The maximum number of VPEID bits supported by VLPI commands */
f2d83409
MZ
127#define ITS_MAX_VPEID_BITS \
128 ({ \
129 int nvpeid = 16; \
130 if (gic_rdists->has_rvpeid && \
131 gic_rdists->gicd_typer2 & GICD_TYPER2_VIL) \
132 nvpeid = 1 + (gic_rdists->gicd_typer2 & \
133 GICD_TYPER2_VID); \
134 \
135 nvpeid; \
136 })
32bd44dc
SD
137#define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS))
138
2eca0d6c
SD
139/* Convert page order to size in bytes */
140#define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o))
141
591e5bec
MZ
142struct event_lpi_map {
143 unsigned long *lpi_map;
144 u16 *col_map;
145 irq_hw_number_t lpi_base;
146 int nr_lpis;
11635fa2 147 raw_spinlock_t vlpi_lock;
d011e4e6
MZ
148 struct its_vm *vm;
149 struct its_vlpi_map *vlpi_maps;
150 int nr_vlpis;
591e5bec
MZ
151};
152
cc2d3216 153/*
d011e4e6
MZ
154 * The ITS view of a device - belongs to an ITS, owns an interrupt
155 * translation table, and a list of interrupts. If it some of its
156 * LPIs are injected into a guest (GICv4), the event_map.vm field
157 * indicates which one.
cc2d3216
MZ
158 */
159struct its_device {
160 struct list_head entry;
161 struct its_node *its;
591e5bec 162 struct event_lpi_map event_map;
cc2d3216 163 void *itt;
cc2d3216
MZ
164 u32 nr_ites;
165 u32 device_id;
9791ec7d 166 bool shared;
cc2d3216
MZ
167};
168
20b3d54e
MZ
169static struct {
170 raw_spinlock_t lock;
171 struct its_device *dev;
172 struct its_vpe **vpes;
173 int next_victim;
174} vpe_proxy;
175
2f13ff1d
MZ
176struct cpu_lpi_count {
177 atomic_t managed;
178 atomic_t unmanaged;
179};
180
181static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
182
1ac19ca6 183static LIST_HEAD(its_nodes);
a8db7456 184static DEFINE_RAW_SPINLOCK(its_lock);
1ac19ca6 185static struct rdists *gic_rdists;
db40f0a7 186static struct irq_domain *its_parent;
1ac19ca6 187
3dfa576b 188static unsigned long its_list_map;
3171a47a
MZ
189static u16 vmovp_seq_num;
190static DEFINE_RAW_SPINLOCK(vmovp_lock);
191
7d75bbb4 192static DEFINE_IDA(its_vpeid_ida);
3dfa576b 193
1ac19ca6 194#define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist))
11e37d35 195#define gic_data_rdist_cpu(cpu) (per_cpu_ptr(gic_rdists->rdist, cpu))
1ac19ca6 196#define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base)
e643d803 197#define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K)
1ac19ca6 198
009384b3
MZ
199/*
200 * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
201 * always have vSGIs mapped.
202 */
203static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
204{
205 return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
206}
207
84243125
ZY
208static u16 get_its_list(struct its_vm *vm)
209{
210 struct its_node *its;
211 unsigned long its_list = 0;
212
213 list_for_each_entry(its, &its_nodes, entry) {
0dd57fed 214 if (!is_v4(its))
84243125
ZY
215 continue;
216
009384b3 217 if (require_its_list_vmovp(vm, its))
84243125
ZY
218 __set_bit(its->list_nr, &its_list);
219 }
220
221 return (u16)its_list;
222}
223
425c09be
MZ
224static inline u32 its_get_event_id(struct irq_data *d)
225{
226 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
227 return d->hwirq - its_dev->event_map.lpi_base;
228}
229
591e5bec
MZ
230static struct its_collection *dev_event_to_col(struct its_device *its_dev,
231 u32 event)
232{
233 struct its_node *its = its_dev->its;
234
235 return its->collections + its_dev->event_map.col_map[event];
236}
237
c1d4d5cd
MZ
238static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
239 u32 event)
240{
241 if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
242 return NULL;
243
244 return &its_dev->event_map.vlpi_maps[event];
245}
246
f4a81f5a
MZ
247static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
248{
249 if (irqd_is_forwarded_to_vcpu(d)) {
250 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
251 u32 event = its_get_event_id(d);
252
253 return dev_event_to_vlpi_map(its_dev, event);
254 }
255
256 return NULL;
257}
258
f3a05921
MZ
259static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
260{
261 raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
262 return vpe->col_idx;
263}
264
265static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
266{
267 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
268}
269
270static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
425c09be 271{
f4a81f5a 272 struct its_vlpi_map *map = get_vlpi_map(d);
f3a05921 273 int cpu;
f4a81f5a 274
f3a05921
MZ
275 if (map) {
276 cpu = vpe_to_cpuid_lock(map->vpe, flags);
277 } else {
278 /* Physical LPIs are already locked via the irq_desc lock */
279 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
280 cpu = its_dev->event_map.col_map[its_get_event_id(d)];
281 /* Keep GCC quiet... */
282 *flags = 0;
283 }
425c09be 284
f3a05921
MZ
285 return cpu;
286}
287
288static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
425c09be 289{
f4a81f5a
MZ
290 struct its_vlpi_map *map = get_vlpi_map(d);
291
292 if (map)
f3a05921 293 vpe_to_cpuid_unlock(map->vpe, flags);
425c09be
MZ
294}
295
83559b47
MZ
296static struct its_collection *valid_col(struct its_collection *col)
297{
20faba84 298 if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
83559b47
MZ
299 return NULL;
300
301 return col;
302}
303
205e065d
MZ
304static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
305{
306 if (valid_col(its->collections + vpe->col_idx))
307 return vpe;
308
309 return NULL;
310}
311
cc2d3216
MZ
312/*
313 * ITS command descriptors - parameters to be encoded in a command
314 * block.
315 */
316struct its_cmd_desc {
317 union {
318 struct {
319 struct its_device *dev;
320 u32 event_id;
321 } its_inv_cmd;
322
8d85dced
MZ
323 struct {
324 struct its_device *dev;
325 u32 event_id;
326 } its_clear_cmd;
327
cc2d3216
MZ
328 struct {
329 struct its_device *dev;
330 u32 event_id;
331 } its_int_cmd;
332
333 struct {
334 struct its_device *dev;
335 int valid;
336 } its_mapd_cmd;
337
338 struct {
339 struct its_collection *col;
340 int valid;
341 } its_mapc_cmd;
342
343 struct {
344 struct its_device *dev;
345 u32 phys_id;
346 u32 event_id;
6a25ad3a 347 } its_mapti_cmd;
cc2d3216
MZ
348
349 struct {
350 struct its_device *dev;
351 struct its_collection *col;
591e5bec 352 u32 event_id;
cc2d3216
MZ
353 } its_movi_cmd;
354
355 struct {
356 struct its_device *dev;
357 u32 event_id;
358 } its_discard_cmd;
359
360 struct {
361 struct its_collection *col;
362 } its_invall_cmd;
d011e4e6 363
eb78192b
MZ
364 struct {
365 struct its_vpe *vpe;
366 } its_vinvall_cmd;
367
368 struct {
369 struct its_vpe *vpe;
370 struct its_collection *col;
371 bool valid;
372 } its_vmapp_cmd;
373
d011e4e6
MZ
374 struct {
375 struct its_vpe *vpe;
376 struct its_device *dev;
377 u32 virt_id;
378 u32 event_id;
379 bool db_enabled;
380 } its_vmapti_cmd;
381
382 struct {
383 struct its_vpe *vpe;
384 struct its_device *dev;
385 u32 event_id;
386 bool db_enabled;
387 } its_vmovi_cmd;
3171a47a
MZ
388
389 struct {
390 struct its_vpe *vpe;
391 struct its_collection *col;
392 u16 seq_num;
393 u16 its_list;
394 } its_vmovp_cmd;
d97c97ba
MZ
395
396 struct {
397 struct its_vpe *vpe;
398 } its_invdb_cmd;
e252cf8a
MZ
399
400 struct {
401 struct its_vpe *vpe;
402 u8 sgi;
403 u8 priority;
404 bool enable;
405 bool group;
406 bool clear;
407 } its_vsgi_cmd;
cc2d3216
MZ
408 };
409};
410
411/*
412 * The ITS command block, which is what the ITS actually parses.
413 */
414struct its_cmd_block {
2bbdfcc5
BDC
415 union {
416 u64 raw_cmd[4];
417 __le64 raw_cmd_le[4];
418 };
cc2d3216
MZ
419};
420
421#define ITS_CMD_QUEUE_SZ SZ_64K
422#define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
423
67047f90
MZ
424typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
425 struct its_cmd_block *,
cc2d3216
MZ
426 struct its_cmd_desc *);
427
67047f90
MZ
428typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
429 struct its_cmd_block *,
d011e4e6
MZ
430 struct its_cmd_desc *);
431
4d36f136
MZ
432static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
433{
434 u64 mask = GENMASK_ULL(h, l);
435 *raw_cmd &= ~mask;
436 *raw_cmd |= (val << l) & mask;
437}
438
cc2d3216
MZ
439static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
440{
4d36f136 441 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
cc2d3216
MZ
442}
443
444static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
445{
4d36f136 446 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
cc2d3216
MZ
447}
448
449static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
450{
4d36f136 451 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
cc2d3216
MZ
452}
453
454static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
455{
4d36f136 456 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
cc2d3216
MZ
457}
458
459static void its_encode_size(struct its_cmd_block *cmd, u8 size)
460{
4d36f136 461 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
cc2d3216
MZ
462}
463
464static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
465{
30ae9610 466 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
cc2d3216
MZ
467}
468
469static void its_encode_valid(struct its_cmd_block *cmd, int valid)
470{
4d36f136 471 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
cc2d3216
MZ
472}
473
474static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
475{
30ae9610 476 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
cc2d3216
MZ
477}
478
479static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
480{
4d36f136 481 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
cc2d3216
MZ
482}
483
d011e4e6
MZ
484static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
485{
486 its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
487}
488
489static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
490{
491 its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
492}
493
494static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
495{
496 its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
497}
498
499static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
500{
501 its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
502}
503
3171a47a
MZ
504static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
505{
506 its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
507}
508
509static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
510{
511 its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
512}
513
eb78192b
MZ
514static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
515{
30ae9610 516 its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
eb78192b
MZ
517}
518
519static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
520{
521 its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
522}
523
64edfaa9
MZ
524static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
525{
526 its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
527}
528
529static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
530{
531 its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
532}
533
534static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
535{
536 its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
537}
538
539static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
540 u32 vpe_db_lpi)
541{
542 its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
543}
544
dd3f050a
MZ
545static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
546 u32 vpe_db_lpi)
547{
548 its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
549}
550
551static void its_encode_db(struct its_cmd_block *cmd, bool db)
552{
553 its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
554}
555
e252cf8a
MZ
556static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
557{
558 its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
559}
560
561static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
562{
563 its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
564}
565
566static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
567{
568 its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
569}
570
571static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
572{
573 its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
574}
575
576static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
577{
578 its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
579}
580
cc2d3216
MZ
581static inline void its_fixup_cmd(struct its_cmd_block *cmd)
582{
583 /* Let's fixup BE commands */
2bbdfcc5
BDC
584 cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
585 cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
586 cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
587 cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
cc2d3216
MZ
588}
589
67047f90
MZ
590static struct its_collection *its_build_mapd_cmd(struct its_node *its,
591 struct its_cmd_block *cmd,
cc2d3216
MZ
592 struct its_cmd_desc *desc)
593{
594 unsigned long itt_addr;
c8481267 595 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
cc2d3216
MZ
596
597 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
598 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
599
600 its_encode_cmd(cmd, GITS_CMD_MAPD);
601 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
602 its_encode_size(cmd, size - 1);
603 its_encode_itt(cmd, itt_addr);
604 its_encode_valid(cmd, desc->its_mapd_cmd.valid);
605
606 its_fixup_cmd(cmd);
607
591e5bec 608 return NULL;
cc2d3216
MZ
609}
610
67047f90
MZ
611static struct its_collection *its_build_mapc_cmd(struct its_node *its,
612 struct its_cmd_block *cmd,
cc2d3216
MZ
613 struct its_cmd_desc *desc)
614{
615 its_encode_cmd(cmd, GITS_CMD_MAPC);
616 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
617 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
618 its_encode_valid(cmd, desc->its_mapc_cmd.valid);
619
620 its_fixup_cmd(cmd);
621
622 return desc->its_mapc_cmd.col;
623}
624
67047f90
MZ
625static struct its_collection *its_build_mapti_cmd(struct its_node *its,
626 struct its_cmd_block *cmd,
cc2d3216
MZ
627 struct its_cmd_desc *desc)
628{
591e5bec
MZ
629 struct its_collection *col;
630
6a25ad3a
MZ
631 col = dev_event_to_col(desc->its_mapti_cmd.dev,
632 desc->its_mapti_cmd.event_id);
591e5bec 633
6a25ad3a
MZ
634 its_encode_cmd(cmd, GITS_CMD_MAPTI);
635 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
636 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
637 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
591e5bec 638 its_encode_collection(cmd, col->col_id);
cc2d3216
MZ
639
640 its_fixup_cmd(cmd);
641
83559b47 642 return valid_col(col);
cc2d3216
MZ
643}
644
67047f90
MZ
645static struct its_collection *its_build_movi_cmd(struct its_node *its,
646 struct its_cmd_block *cmd,
cc2d3216
MZ
647 struct its_cmd_desc *desc)
648{
591e5bec
MZ
649 struct its_collection *col;
650
651 col = dev_event_to_col(desc->its_movi_cmd.dev,
652 desc->its_movi_cmd.event_id);
653
cc2d3216
MZ
654 its_encode_cmd(cmd, GITS_CMD_MOVI);
655 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
591e5bec 656 its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
cc2d3216
MZ
657 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
658
659 its_fixup_cmd(cmd);
660
83559b47 661 return valid_col(col);
cc2d3216
MZ
662}
663
67047f90
MZ
664static struct its_collection *its_build_discard_cmd(struct its_node *its,
665 struct its_cmd_block *cmd,
cc2d3216
MZ
666 struct its_cmd_desc *desc)
667{
591e5bec
MZ
668 struct its_collection *col;
669
670 col = dev_event_to_col(desc->its_discard_cmd.dev,
671 desc->its_discard_cmd.event_id);
672
cc2d3216
MZ
673 its_encode_cmd(cmd, GITS_CMD_DISCARD);
674 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
675 its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
676
677 its_fixup_cmd(cmd);
678
83559b47 679 return valid_col(col);
cc2d3216
MZ
680}
681
67047f90
MZ
682static struct its_collection *its_build_inv_cmd(struct its_node *its,
683 struct its_cmd_block *cmd,
cc2d3216
MZ
684 struct its_cmd_desc *desc)
685{
591e5bec
MZ
686 struct its_collection *col;
687
688 col = dev_event_to_col(desc->its_inv_cmd.dev,
689 desc->its_inv_cmd.event_id);
690
cc2d3216
MZ
691 its_encode_cmd(cmd, GITS_CMD_INV);
692 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
693 its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
694
695 its_fixup_cmd(cmd);
696
83559b47 697 return valid_col(col);
cc2d3216
MZ
698}
699
67047f90
MZ
700static struct its_collection *its_build_int_cmd(struct its_node *its,
701 struct its_cmd_block *cmd,
8d85dced
MZ
702 struct its_cmd_desc *desc)
703{
704 struct its_collection *col;
705
706 col = dev_event_to_col(desc->its_int_cmd.dev,
707 desc->its_int_cmd.event_id);
708
709 its_encode_cmd(cmd, GITS_CMD_INT);
710 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
711 its_encode_event_id(cmd, desc->its_int_cmd.event_id);
712
713 its_fixup_cmd(cmd);
714
83559b47 715 return valid_col(col);
8d85dced
MZ
716}
717
67047f90
MZ
718static struct its_collection *its_build_clear_cmd(struct its_node *its,
719 struct its_cmd_block *cmd,
8d85dced
MZ
720 struct its_cmd_desc *desc)
721{
722 struct its_collection *col;
723
724 col = dev_event_to_col(desc->its_clear_cmd.dev,
725 desc->its_clear_cmd.event_id);
726
727 its_encode_cmd(cmd, GITS_CMD_CLEAR);
728 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
729 its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
730
731 its_fixup_cmd(cmd);
732
83559b47 733 return valid_col(col);
8d85dced
MZ
734}
735
67047f90
MZ
736static struct its_collection *its_build_invall_cmd(struct its_node *its,
737 struct its_cmd_block *cmd,
cc2d3216
MZ
738 struct its_cmd_desc *desc)
739{
740 its_encode_cmd(cmd, GITS_CMD_INVALL);
10794522 741 its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
cc2d3216
MZ
742
743 its_fixup_cmd(cmd);
744
745 return NULL;
746}
747
67047f90
MZ
748static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
749 struct its_cmd_block *cmd,
eb78192b
MZ
750 struct its_cmd_desc *desc)
751{
752 its_encode_cmd(cmd, GITS_CMD_VINVALL);
753 its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
754
755 its_fixup_cmd(cmd);
756
205e065d 757 return valid_vpe(its, desc->its_vinvall_cmd.vpe);
eb78192b
MZ
758}
759
67047f90
MZ
760static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
761 struct its_cmd_block *cmd,
eb78192b
MZ
762 struct its_cmd_desc *desc)
763{
64edfaa9 764 unsigned long vpt_addr, vconf_addr;
5c9a882e 765 u64 target;
64edfaa9 766 bool alloc;
eb78192b
MZ
767
768 its_encode_cmd(cmd, GITS_CMD_VMAPP);
769 its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
770 its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
64edfaa9
MZ
771
772 if (!desc->its_vmapp_cmd.valid) {
773 if (is_v4_1(its)) {
774 alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
775 its_encode_alloc(cmd, alloc);
776 }
777
778 goto out;
779 }
780
781 vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
782 target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
783
5c9a882e 784 its_encode_target(cmd, target);
eb78192b
MZ
785 its_encode_vpt_addr(cmd, vpt_addr);
786 its_encode_vpt_size(cmd, LPI_NRBITS - 1);
787
64edfaa9
MZ
788 if (!is_v4_1(its))
789 goto out;
790
791 vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
792
793 alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
794
795 its_encode_alloc(cmd, alloc);
796
797 /* We can only signal PTZ when alloc==1. Why do we have two bits? */
798 its_encode_ptz(cmd, alloc);
799 its_encode_vconf_addr(cmd, vconf_addr);
800 its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
801
802out:
eb78192b
MZ
803 its_fixup_cmd(cmd);
804
205e065d 805 return valid_vpe(its, desc->its_vmapp_cmd.vpe);
eb78192b
MZ
806}
807
67047f90
MZ
808static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
809 struct its_cmd_block *cmd,
d011e4e6
MZ
810 struct its_cmd_desc *desc)
811{
812 u32 db;
813
3858d4df 814 if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
d011e4e6
MZ
815 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
816 else
817 db = 1023;
818
819 its_encode_cmd(cmd, GITS_CMD_VMAPTI);
820 its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
821 its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
822 its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
823 its_encode_db_phys_id(cmd, db);
824 its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
825
826 its_fixup_cmd(cmd);
827
205e065d 828 return valid_vpe(its, desc->its_vmapti_cmd.vpe);
d011e4e6
MZ
829}
830
67047f90
MZ
831static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
832 struct its_cmd_block *cmd,
d011e4e6
MZ
833 struct its_cmd_desc *desc)
834{
835 u32 db;
836
3858d4df 837 if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
d011e4e6
MZ
838 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
839 else
840 db = 1023;
841
842 its_encode_cmd(cmd, GITS_CMD_VMOVI);
843 its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
844 its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
845 its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
846 its_encode_db_phys_id(cmd, db);
847 its_encode_db_valid(cmd, true);
848
849 its_fixup_cmd(cmd);
850
205e065d 851 return valid_vpe(its, desc->its_vmovi_cmd.vpe);
d011e4e6
MZ
852}
853
67047f90
MZ
854static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
855 struct its_cmd_block *cmd,
3171a47a
MZ
856 struct its_cmd_desc *desc)
857{
5c9a882e
MZ
858 u64 target;
859
860 target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
3171a47a
MZ
861 its_encode_cmd(cmd, GITS_CMD_VMOVP);
862 its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
863 its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
864 its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
5c9a882e 865 its_encode_target(cmd, target);
3171a47a 866
dd3f050a
MZ
867 if (is_v4_1(its)) {
868 its_encode_db(cmd, true);
869 its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
870 }
871
3171a47a
MZ
872 its_fixup_cmd(cmd);
873
205e065d 874 return valid_vpe(its, desc->its_vmovp_cmd.vpe);
3171a47a
MZ
875}
876
28614696
MZ
877static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
878 struct its_cmd_block *cmd,
879 struct its_cmd_desc *desc)
880{
881 struct its_vlpi_map *map;
882
883 map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
884 desc->its_inv_cmd.event_id);
885
886 its_encode_cmd(cmd, GITS_CMD_INV);
887 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
888 its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
889
890 its_fixup_cmd(cmd);
891
892 return valid_vpe(its, map->vpe);
893}
894
ed0e4aa9
MZ
895static struct its_vpe *its_build_vint_cmd(struct its_node *its,
896 struct its_cmd_block *cmd,
897 struct its_cmd_desc *desc)
898{
899 struct its_vlpi_map *map;
900
901 map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
902 desc->its_int_cmd.event_id);
903
904 its_encode_cmd(cmd, GITS_CMD_INT);
905 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
906 its_encode_event_id(cmd, desc->its_int_cmd.event_id);
907
908 its_fixup_cmd(cmd);
909
910 return valid_vpe(its, map->vpe);
911}
912
913static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
914 struct its_cmd_block *cmd,
915 struct its_cmd_desc *desc)
916{
917 struct its_vlpi_map *map;
918
919 map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
920 desc->its_clear_cmd.event_id);
921
922 its_encode_cmd(cmd, GITS_CMD_CLEAR);
923 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
924 its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
925
926 its_fixup_cmd(cmd);
927
928 return valid_vpe(its, map->vpe);
929}
930
d97c97ba
MZ
931static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
932 struct its_cmd_block *cmd,
933 struct its_cmd_desc *desc)
934{
935 if (WARN_ON(!is_v4_1(its)))
936 return NULL;
937
938 its_encode_cmd(cmd, GITS_CMD_INVDB);
939 its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
940
941 its_fixup_cmd(cmd);
942
943 return valid_vpe(its, desc->its_invdb_cmd.vpe);
944}
945
e252cf8a
MZ
946static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
947 struct its_cmd_block *cmd,
948 struct its_cmd_desc *desc)
949{
950 if (WARN_ON(!is_v4_1(its)))
951 return NULL;
952
953 its_encode_cmd(cmd, GITS_CMD_VSGI);
954 its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
955 its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
956 its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
957 its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
958 its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
959 its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
960
961 its_fixup_cmd(cmd);
962
963 return valid_vpe(its, desc->its_vsgi_cmd.vpe);
964}
965
cc2d3216
MZ
966static u64 its_cmd_ptr_to_offset(struct its_node *its,
967 struct its_cmd_block *ptr)
968{
969 return (ptr - its->cmd_base) * sizeof(*ptr);
970}
971
972static int its_queue_full(struct its_node *its)
973{
974 int widx;
975 int ridx;
976
977 widx = its->cmd_write - its->cmd_base;
978 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
979
980 /* This is incredibly unlikely to happen, unless the ITS locks up. */
981 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
982 return 1;
983
984 return 0;
985}
986
987static struct its_cmd_block *its_allocate_entry(struct its_node *its)
988{
989 struct its_cmd_block *cmd;
990 u32 count = 1000000; /* 1s! */
991
992 while (its_queue_full(its)) {
993 count--;
994 if (!count) {
995 pr_err_ratelimited("ITS queue not draining\n");
996 return NULL;
997 }
998 cpu_relax();
999 udelay(1);
1000 }
1001
1002 cmd = its->cmd_write++;
1003
1004 /* Handle queue wrapping */
1005 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1006 its->cmd_write = its->cmd_base;
1007
34d677a9
MZ
1008 /* Clear command */
1009 cmd->raw_cmd[0] = 0;
1010 cmd->raw_cmd[1] = 0;
1011 cmd->raw_cmd[2] = 0;
1012 cmd->raw_cmd[3] = 0;
1013
cc2d3216
MZ
1014 return cmd;
1015}
1016
1017static struct its_cmd_block *its_post_commands(struct its_node *its)
1018{
1019 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1020
1021 writel_relaxed(wr, its->base + GITS_CWRITER);
1022
1023 return its->cmd_write;
1024}
1025
1026static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1027{
1028 /*
1029 * Make sure the commands written to memory are observable by
1030 * the ITS.
1031 */
1032 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
328191c0 1033 gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
cc2d3216
MZ
1034 else
1035 dsb(ishst);
1036}
1037
a19b462f 1038static int its_wait_for_range_completion(struct its_node *its,
a050fa54 1039 u64 prev_idx,
a19b462f 1040 struct its_cmd_block *to)
cc2d3216 1041{
a050fa54 1042 u64 rd_idx, to_idx, linear_idx;
cc2d3216
MZ
1043 u32 count = 1000000; /* 1s! */
1044
a050fa54 1045 /* Linearize to_idx if the command set has wrapped around */
cc2d3216 1046 to_idx = its_cmd_ptr_to_offset(its, to);
a050fa54
HG
1047 if (to_idx < prev_idx)
1048 to_idx += ITS_CMD_QUEUE_SZ;
1049
1050 linear_idx = prev_idx;
cc2d3216
MZ
1051
1052 while (1) {
a050fa54
HG
1053 s64 delta;
1054
cc2d3216 1055 rd_idx = readl_relaxed(its->base + GITS_CREADR);
9bdd8b1c 1056
a050fa54
HG
1057 /*
1058 * Compute the read pointer progress, taking the
1059 * potential wrap-around into account.
1060 */
1061 delta = rd_idx - prev_idx;
1062 if (rd_idx < prev_idx)
1063 delta += ITS_CMD_QUEUE_SZ;
9bdd8b1c 1064
a050fa54
HG
1065 linear_idx += delta;
1066 if (linear_idx >= to_idx)
cc2d3216
MZ
1067 break;
1068
1069 count--;
1070 if (!count) {
a050fa54
HG
1071 pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1072 to_idx, linear_idx);
a19b462f 1073 return -1;
cc2d3216 1074 }
a050fa54 1075 prev_idx = rd_idx;
cc2d3216
MZ
1076 cpu_relax();
1077 udelay(1);
1078 }
a19b462f
MZ
1079
1080 return 0;
cc2d3216
MZ
1081}
1082
e4f9094b
MZ
1083/* Warning, macro hell follows */
1084#define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \
1085void name(struct its_node *its, \
1086 buildtype builder, \
1087 struct its_cmd_desc *desc) \
1088{ \
1089 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \
1090 synctype *sync_obj; \
1091 unsigned long flags; \
a050fa54 1092 u64 rd_idx; \
e4f9094b
MZ
1093 \
1094 raw_spin_lock_irqsave(&its->lock, flags); \
1095 \
1096 cmd = its_allocate_entry(its); \
1097 if (!cmd) { /* We're soooooo screewed... */ \
1098 raw_spin_unlock_irqrestore(&its->lock, flags); \
1099 return; \
1100 } \
67047f90 1101 sync_obj = builder(its, cmd, desc); \
e4f9094b
MZ
1102 its_flush_cmd(its, cmd); \
1103 \
1104 if (sync_obj) { \
1105 sync_cmd = its_allocate_entry(its); \
1106 if (!sync_cmd) \
1107 goto post; \
1108 \
67047f90 1109 buildfn(its, sync_cmd, sync_obj); \
e4f9094b
MZ
1110 its_flush_cmd(its, sync_cmd); \
1111 } \
1112 \
1113post: \
a050fa54 1114 rd_idx = readl_relaxed(its->base + GITS_CREADR); \
e4f9094b
MZ
1115 next_cmd = its_post_commands(its); \
1116 raw_spin_unlock_irqrestore(&its->lock, flags); \
1117 \
a050fa54 1118 if (its_wait_for_range_completion(its, rd_idx, next_cmd)) \
a19b462f 1119 pr_err_ratelimited("ITS cmd %ps failed\n", builder); \
e4f9094b 1120}
cc2d3216 1121
67047f90
MZ
1122static void its_build_sync_cmd(struct its_node *its,
1123 struct its_cmd_block *sync_cmd,
e4f9094b
MZ
1124 struct its_collection *sync_col)
1125{
1126 its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1127 its_encode_target(sync_cmd, sync_col->target_address);
cc2d3216 1128
e4f9094b 1129 its_fixup_cmd(sync_cmd);
cc2d3216
MZ
1130}
1131
e4f9094b
MZ
1132static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1133 struct its_collection, its_build_sync_cmd)
1134
67047f90
MZ
1135static void its_build_vsync_cmd(struct its_node *its,
1136 struct its_cmd_block *sync_cmd,
d011e4e6
MZ
1137 struct its_vpe *sync_vpe)
1138{
1139 its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1140 its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1141
1142 its_fixup_cmd(sync_cmd);
1143}
1144
1145static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1146 struct its_vpe, its_build_vsync_cmd)
1147
8d85dced 1148static void its_send_int(struct its_device *dev, u32 event_id)
cc2d3216 1149{
8d85dced 1150 struct its_cmd_desc desc;
cc2d3216 1151
8d85dced
MZ
1152 desc.its_int_cmd.dev = dev;
1153 desc.its_int_cmd.event_id = event_id;
cc2d3216 1154
8d85dced
MZ
1155 its_send_single_command(dev->its, its_build_int_cmd, &desc);
1156}
cc2d3216 1157
8d85dced
MZ
1158static void its_send_clear(struct its_device *dev, u32 event_id)
1159{
1160 struct its_cmd_desc desc;
cc2d3216 1161
8d85dced
MZ
1162 desc.its_clear_cmd.dev = dev;
1163 desc.its_clear_cmd.event_id = event_id;
cc2d3216 1164
8d85dced 1165 its_send_single_command(dev->its, its_build_clear_cmd, &desc);
cc2d3216
MZ
1166}
1167
1168static void its_send_inv(struct its_device *dev, u32 event_id)
1169{
1170 struct its_cmd_desc desc;
1171
1172 desc.its_inv_cmd.dev = dev;
1173 desc.its_inv_cmd.event_id = event_id;
1174
1175 its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1176}
1177
1178static void its_send_mapd(struct its_device *dev, int valid)
1179{
1180 struct its_cmd_desc desc;
1181
1182 desc.its_mapd_cmd.dev = dev;
1183 desc.its_mapd_cmd.valid = !!valid;
1184
1185 its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1186}
1187
1188static void its_send_mapc(struct its_node *its, struct its_collection *col,
1189 int valid)
1190{
1191 struct its_cmd_desc desc;
1192
1193 desc.its_mapc_cmd.col = col;
1194 desc.its_mapc_cmd.valid = !!valid;
1195
1196 its_send_single_command(its, its_build_mapc_cmd, &desc);
1197}
1198
6a25ad3a 1199static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
cc2d3216
MZ
1200{
1201 struct its_cmd_desc desc;
1202
6a25ad3a
MZ
1203 desc.its_mapti_cmd.dev = dev;
1204 desc.its_mapti_cmd.phys_id = irq_id;
1205 desc.its_mapti_cmd.event_id = id;
cc2d3216 1206
6a25ad3a 1207 its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
cc2d3216
MZ
1208}
1209
1210static void its_send_movi(struct its_device *dev,
1211 struct its_collection *col, u32 id)
1212{
1213 struct its_cmd_desc desc;
1214
1215 desc.its_movi_cmd.dev = dev;
1216 desc.its_movi_cmd.col = col;
591e5bec 1217 desc.its_movi_cmd.event_id = id;
cc2d3216
MZ
1218
1219 its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1220}
1221
1222static void its_send_discard(struct its_device *dev, u32 id)
1223{
1224 struct its_cmd_desc desc;
1225
1226 desc.its_discard_cmd.dev = dev;
1227 desc.its_discard_cmd.event_id = id;
1228
1229 its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1230}
1231
1232static void its_send_invall(struct its_node *its, struct its_collection *col)
1233{
1234 struct its_cmd_desc desc;
1235
1236 desc.its_invall_cmd.col = col;
1237
1238 its_send_single_command(its, its_build_invall_cmd, &desc);
1239}
c48ed51c 1240
d011e4e6
MZ
1241static void its_send_vmapti(struct its_device *dev, u32 id)
1242{
c1d4d5cd 1243 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
d011e4e6
MZ
1244 struct its_cmd_desc desc;
1245
1246 desc.its_vmapti_cmd.vpe = map->vpe;
1247 desc.its_vmapti_cmd.dev = dev;
1248 desc.its_vmapti_cmd.virt_id = map->vintid;
1249 desc.its_vmapti_cmd.event_id = id;
1250 desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1251
1252 its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1253}
1254
1255static void its_send_vmovi(struct its_device *dev, u32 id)
1256{
c1d4d5cd 1257 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
d011e4e6
MZ
1258 struct its_cmd_desc desc;
1259
1260 desc.its_vmovi_cmd.vpe = map->vpe;
1261 desc.its_vmovi_cmd.dev = dev;
1262 desc.its_vmovi_cmd.event_id = id;
1263 desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1264
1265 its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1266}
1267
75fd951b
MZ
1268static void its_send_vmapp(struct its_node *its,
1269 struct its_vpe *vpe, bool valid)
eb78192b
MZ
1270{
1271 struct its_cmd_desc desc;
eb78192b
MZ
1272
1273 desc.its_vmapp_cmd.vpe = vpe;
1274 desc.its_vmapp_cmd.valid = valid;
75fd951b 1275 desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
eb78192b 1276
75fd951b 1277 its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
eb78192b
MZ
1278}
1279
3171a47a
MZ
1280static void its_send_vmovp(struct its_vpe *vpe)
1281{
84243125 1282 struct its_cmd_desc desc = {};
3171a47a
MZ
1283 struct its_node *its;
1284 unsigned long flags;
1285 int col_id = vpe->col_idx;
1286
1287 desc.its_vmovp_cmd.vpe = vpe;
3171a47a
MZ
1288
1289 if (!its_list_map) {
1290 its = list_first_entry(&its_nodes, struct its_node, entry);
3171a47a
MZ
1291 desc.its_vmovp_cmd.col = &its->collections[col_id];
1292 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1293 return;
1294 }
1295
1296 /*
1297 * Yet another marvel of the architecture. If using the
1298 * its_list "feature", we need to make sure that all ITSs
1299 * receive all VMOVP commands in the same order. The only way
1300 * to guarantee this is to make vmovp a serialization point.
1301 *
1302 * Wall <-- Head.
1303 */
1304 raw_spin_lock_irqsave(&vmovp_lock, flags);
1305
1306 desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
84243125 1307 desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
3171a47a
MZ
1308
1309 /* Emit VMOVPs */
1310 list_for_each_entry(its, &its_nodes, entry) {
0dd57fed 1311 if (!is_v4(its))
3171a47a
MZ
1312 continue;
1313
009384b3 1314 if (!require_its_list_vmovp(vpe->its_vm, its))
2247e1bf
MZ
1315 continue;
1316
3171a47a
MZ
1317 desc.its_vmovp_cmd.col = &its->collections[col_id];
1318 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1319 }
1320
1321 raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1322}
1323
40619a2e 1324static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
eb78192b
MZ
1325{
1326 struct its_cmd_desc desc;
eb78192b
MZ
1327
1328 desc.its_vinvall_cmd.vpe = vpe;
40619a2e 1329 its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
eb78192b
MZ
1330}
1331
28614696
MZ
1332static void its_send_vinv(struct its_device *dev, u32 event_id)
1333{
1334 struct its_cmd_desc desc;
1335
1336 /*
1337 * There is no real VINV command. This is just a normal INV,
1338 * with a VSYNC instead of a SYNC.
1339 */
1340 desc.its_inv_cmd.dev = dev;
1341 desc.its_inv_cmd.event_id = event_id;
1342
1343 its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1344}
1345
ed0e4aa9
MZ
1346static void its_send_vint(struct its_device *dev, u32 event_id)
1347{
1348 struct its_cmd_desc desc;
1349
1350 /*
1351 * There is no real VINT command. This is just a normal INT,
1352 * with a VSYNC instead of a SYNC.
1353 */
1354 desc.its_int_cmd.dev = dev;
1355 desc.its_int_cmd.event_id = event_id;
1356
1357 its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1358}
1359
1360static void its_send_vclear(struct its_device *dev, u32 event_id)
1361{
1362 struct its_cmd_desc desc;
1363
1364 /*
1365 * There is no real VCLEAR command. This is just a normal CLEAR,
1366 * with a VSYNC instead of a SYNC.
1367 */
1368 desc.its_clear_cmd.dev = dev;
1369 desc.its_clear_cmd.event_id = event_id;
1370
1371 its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1372}
1373
d97c97ba
MZ
1374static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1375{
1376 struct its_cmd_desc desc;
1377
1378 desc.its_invdb_cmd.vpe = vpe;
1379 its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1380}
1381
c48ed51c
MZ
1382/*
1383 * irqchip functions - assumes MSI, mostly.
1384 */
015ec038 1385static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
c48ed51c 1386{
c1d4d5cd 1387 struct its_vlpi_map *map = get_vlpi_map(d);
015ec038 1388 irq_hw_number_t hwirq;
e1a2e201 1389 void *va;
adcdb94e 1390 u8 *cfg;
c48ed51c 1391
c1d4d5cd
MZ
1392 if (map) {
1393 va = page_address(map->vm->vprop_page);
d4d7b4ad
MZ
1394 hwirq = map->vintid;
1395
1396 /* Remember the updated property */
1397 map->properties &= ~clr;
1398 map->properties |= set | LPI_PROP_GROUP1;
015ec038 1399 } else {
e1a2e201 1400 va = gic_rdists->prop_table_va;
015ec038
MZ
1401 hwirq = d->hwirq;
1402 }
adcdb94e 1403
e1a2e201 1404 cfg = va + hwirq - 8192;
adcdb94e 1405 *cfg &= ~clr;
015ec038 1406 *cfg |= set | LPI_PROP_GROUP1;
c48ed51c
MZ
1407
1408 /*
1409 * Make the above write visible to the redistributors.
1410 * And yes, we're flushing exactly: One. Single. Byte.
1411 * Humpf...
1412 */
1413 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
328191c0 1414 gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
c48ed51c
MZ
1415 else
1416 dsb(ishst);
015ec038
MZ
1417}
1418
2f4f064b
MZ
1419static void wait_for_syncr(void __iomem *rdbase)
1420{
04d80dbe 1421 while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
2f4f064b
MZ
1422 cpu_relax();
1423}
1424
425c09be
MZ
1425static void direct_lpi_inv(struct irq_data *d)
1426{
f4a81f5a 1427 struct its_vlpi_map *map = get_vlpi_map(d);
425c09be 1428 void __iomem *rdbase;
f3a05921 1429 unsigned long flags;
f4a81f5a 1430 u64 val;
f3a05921 1431 int cpu;
f4a81f5a
MZ
1432
1433 if (map) {
1434 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1435
1436 WARN_ON(!is_v4_1(its_dev->its));
1437
1438 val = GICR_INVLPIR_V;
1439 val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1440 val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1441 } else {
1442 val = d->hwirq;
1443 }
425c09be
MZ
1444
1445 /* Target the redistributor this LPI is currently routed to */
f3a05921 1446 cpu = irq_to_cpuid_lock(d, &flags);
9058a4e9 1447 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
f3a05921 1448 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
f4a81f5a 1449 gic_write_lpir(val, rdbase + GICR_INVLPIR);
425c09be
MZ
1450
1451 wait_for_syncr(rdbase);
9058a4e9 1452 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
f3a05921 1453 irq_to_cpuid_unlock(d, flags);
425c09be
MZ
1454}
1455
015ec038
MZ
1456static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1457{
1458 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1459
1460 lpi_write_config(d, clr, set);
f4a81f5a
MZ
1461 if (gic_rdists->has_direct_lpi &&
1462 (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
425c09be 1463 direct_lpi_inv(d);
28614696 1464 else if (!irqd_is_forwarded_to_vcpu(d))
425c09be 1465 its_send_inv(its_dev, its_get_event_id(d));
28614696
MZ
1466 else
1467 its_send_vinv(its_dev, its_get_event_id(d));
c48ed51c
MZ
1468}
1469
015ec038
MZ
1470static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1471{
1472 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1473 u32 event = its_get_event_id(d);
c1d4d5cd 1474 struct its_vlpi_map *map;
015ec038 1475
3858d4df
MZ
1476 /*
1477 * GICv4.1 does away with the per-LPI nonsense, nothing to do
1478 * here.
1479 */
1480 if (is_v4_1(its_dev->its))
1481 return;
1482
c1d4d5cd
MZ
1483 map = dev_event_to_vlpi_map(its_dev, event);
1484
1485 if (map->db_enabled == enable)
015ec038
MZ
1486 return;
1487
c1d4d5cd 1488 map->db_enabled = enable;
015ec038
MZ
1489
1490 /*
1491 * More fun with the architecture:
1492 *
1493 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1494 * value or to 1023, depending on the enable bit. But that
1495 * would be issueing a mapping for an /existing/ DevID+EventID
1496 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1497 * to the /same/ vPE, using this opportunity to adjust the
1498 * doorbell. Mouahahahaha. We loves it, Precious.
1499 */
1500 its_send_vmovi(its_dev, event);
c48ed51c
MZ
1501}
1502
1503static void its_mask_irq(struct irq_data *d)
1504{
015ec038
MZ
1505 if (irqd_is_forwarded_to_vcpu(d))
1506 its_vlpi_set_doorbell(d, false);
1507
adcdb94e 1508 lpi_update_config(d, LPI_PROP_ENABLED, 0);
c48ed51c
MZ
1509}
1510
1511static void its_unmask_irq(struct irq_data *d)
1512{
015ec038
MZ
1513 if (irqd_is_forwarded_to_vcpu(d))
1514 its_vlpi_set_doorbell(d, true);
1515
adcdb94e 1516 lpi_update_config(d, 0, LPI_PROP_ENABLED);
c48ed51c
MZ
1517}
1518
2f13ff1d
MZ
1519static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1520{
1521 if (irqd_affinity_is_managed(d))
1522 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1523
1524 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1525}
1526
1527static void its_inc_lpi_count(struct irq_data *d, int cpu)
1528{
1529 if (irqd_affinity_is_managed(d))
1530 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1531 else
1532 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1533}
1534
1535static void its_dec_lpi_count(struct irq_data *d, int cpu)
1536{
1537 if (irqd_affinity_is_managed(d))
1538 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1539 else
1540 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1541}
1542
c5d6082d
MZ
1543static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1544 const struct cpumask *cpu_mask)
1545{
1546 unsigned int cpu = nr_cpu_ids, tmp;
1547 int count = S32_MAX;
1548
1549 for_each_cpu(tmp, cpu_mask) {
1550 int this_count = its_read_lpi_count(d, tmp);
1551 if (this_count < count) {
1552 cpu = tmp;
1553 count = this_count;
1554 }
1555 }
1556
1557 return cpu;
1558}
1559
1560/*
1561 * As suggested by Thomas Gleixner in:
1562 * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de
1563 */
1564static int its_select_cpu(struct irq_data *d,
1565 const struct cpumask *aff_mask)
1566{
1567 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1568 cpumask_var_t tmpmask;
1569 int cpu, node;
1570
1571 if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
1572 return -ENOMEM;
1573
1574 node = its_dev->its->numa_node;
1575
1576 if (!irqd_affinity_is_managed(d)) {
1577 /* First try the NUMA node */
1578 if (node != NUMA_NO_NODE) {
1579 /*
1580 * Try the intersection of the affinity mask and the
1581 * node mask (and the online mask, just to be safe).
1582 */
1583 cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1584 cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1585
1586 /*
1587 * Ideally, we would check if the mask is empty, and
1588 * try again on the full node here.
1589 *
1590 * But it turns out that the way ACPI describes the
1591 * affinity for ITSs only deals about memory, and
1592 * not target CPUs, so it cannot describe a single
1593 * ITS placed next to two NUMA nodes.
1594 *
1595 * Instead, just fallback on the online mask. This
1596 * diverges from Thomas' suggestion above.
1597 */
1598 cpu = cpumask_pick_least_loaded(d, tmpmask);
1599 if (cpu < nr_cpu_ids)
1600 goto out;
1601
1602 /* If we can't cross sockets, give up */
1603 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1604 goto out;
1605
1606 /* If the above failed, expand the search */
1607 }
1608
1609 /* Try the intersection of the affinity and online masks */
1610 cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1611
1612 /* If that doesn't fly, the online mask is the last resort */
1613 if (cpumask_empty(tmpmask))
1614 cpumask_copy(tmpmask, cpu_online_mask);
1615
1616 cpu = cpumask_pick_least_loaded(d, tmpmask);
1617 } else {
1618 cpumask_and(tmpmask, irq_data_get_affinity_mask(d), cpu_online_mask);
1619
1620 /* If we cannot cross sockets, limit the search to that node */
1621 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1622 node != NUMA_NO_NODE)
1623 cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1624
1625 cpu = cpumask_pick_least_loaded(d, tmpmask);
1626 }
1627out:
1628 free_cpumask_var(tmpmask);
1629
1630 pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1631 return cpu;
1632}
1633
c48ed51c
MZ
1634static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1635 bool force)
1636{
c48ed51c
MZ
1637 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1638 struct its_collection *target_col;
1639 u32 id = its_get_event_id(d);
c5d6082d 1640 int cpu, prev_cpu;
c48ed51c 1641
015ec038
MZ
1642 /* A forwarded interrupt should use irq_set_vcpu_affinity */
1643 if (irqd_is_forwarded_to_vcpu(d))
1644 return -EINVAL;
1645
2f13ff1d
MZ
1646 prev_cpu = its_dev->event_map.col_map[id];
1647 its_dec_lpi_count(d, prev_cpu);
1648
c5d6082d
MZ
1649 if (!force)
1650 cpu = its_select_cpu(d, mask_val);
1651 else
1652 cpu = cpumask_pick_least_loaded(d, mask_val);
fbf8f40e 1653
c5d6082d 1654 if (cpu < 0 || cpu >= nr_cpu_ids)
2f13ff1d 1655 goto err;
c48ed51c 1656
8b8d94a7 1657 /* don't set the affinity when the target cpu is same as current one */
2f13ff1d 1658 if (cpu != prev_cpu) {
8b8d94a7
M
1659 target_col = &its_dev->its->collections[cpu];
1660 its_send_movi(its_dev, target_col, id);
1661 its_dev->event_map.col_map[id] = cpu;
0d224d35 1662 irq_data_update_effective_affinity(d, cpumask_of(cpu));
8b8d94a7 1663 }
c48ed51c 1664
2f13ff1d
MZ
1665 its_inc_lpi_count(d, cpu);
1666
c48ed51c 1667 return IRQ_SET_MASK_OK_DONE;
2f13ff1d
MZ
1668
1669err:
1670 its_inc_lpi_count(d, prev_cpu);
1671 return -EINVAL;
c48ed51c
MZ
1672}
1673
558b0165
AB
1674static u64 its_irq_get_msi_base(struct its_device *its_dev)
1675{
1676 struct its_node *its = its_dev->its;
1677
1678 return its->phys_base + GITS_TRANSLATER;
1679}
1680
b48ac83d
MZ
1681static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1682{
1683 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1684 struct its_node *its;
1685 u64 addr;
1686
1687 its = its_dev->its;
558b0165 1688 addr = its->get_msi_base(its_dev);
b48ac83d 1689
b11283eb
VM
1690 msg->address_lo = lower_32_bits(addr);
1691 msg->address_hi = upper_32_bits(addr);
b48ac83d 1692 msg->data = its_get_event_id(d);
44bb7e24 1693
35ae7df2 1694 iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
b48ac83d
MZ
1695}
1696
8d85dced
MZ
1697static int its_irq_set_irqchip_state(struct irq_data *d,
1698 enum irqchip_irq_state which,
1699 bool state)
1700{
1701 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1702 u32 event = its_get_event_id(d);
1703
1704 if (which != IRQCHIP_STATE_PENDING)
1705 return -EINVAL;
1706
ed0e4aa9
MZ
1707 if (irqd_is_forwarded_to_vcpu(d)) {
1708 if (state)
1709 its_send_vint(its_dev, event);
1710 else
1711 its_send_vclear(its_dev, event);
1712 } else {
1713 if (state)
1714 its_send_int(its_dev, event);
1715 else
1716 its_send_clear(its_dev, event);
1717 }
8d85dced
MZ
1718
1719 return 0;
1720}
1721
5f774f5e
MZ
1722static int its_irq_retrigger(struct irq_data *d)
1723{
1724 return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
1725}
1726
009384b3
MZ
1727/*
1728 * Two favourable cases:
1729 *
1730 * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1731 * for vSGI delivery
1732 *
1733 * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1734 * and we're better off mapping all VPEs always
1735 *
1736 * If neither (a) nor (b) is true, then we map vPEs on demand.
1737 *
1738 */
1739static bool gic_requires_eager_mapping(void)
1740{
1741 if (!its_list_map || gic_rdists->has_rvpeid)
1742 return true;
1743
1744 return false;
1745}
1746
2247e1bf
MZ
1747static void its_map_vm(struct its_node *its, struct its_vm *vm)
1748{
1749 unsigned long flags;
1750
009384b3 1751 if (gic_requires_eager_mapping())
2247e1bf
MZ
1752 return;
1753
1754 raw_spin_lock_irqsave(&vmovp_lock, flags);
1755
1756 /*
1757 * If the VM wasn't mapped yet, iterate over the vpes and get
1758 * them mapped now.
1759 */
1760 vm->vlpi_count[its->list_nr]++;
1761
1762 if (vm->vlpi_count[its->list_nr] == 1) {
1763 int i;
1764
1765 for (i = 0; i < vm->nr_vpes; i++) {
1766 struct its_vpe *vpe = vm->vpes[i];
44c4c25e 1767 struct irq_data *d = irq_get_irq_data(vpe->irq);
2247e1bf
MZ
1768
1769 /* Map the VPE to the first possible CPU */
1770 vpe->col_idx = cpumask_first(cpu_online_mask);
1771 its_send_vmapp(its, vpe, true);
1772 its_send_vinvall(its, vpe);
44c4c25e 1773 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
2247e1bf
MZ
1774 }
1775 }
1776
1777 raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1778}
1779
1780static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1781{
1782 unsigned long flags;
1783
1784 /* Not using the ITS list? Everything is always mapped. */
009384b3 1785 if (gic_requires_eager_mapping())
2247e1bf
MZ
1786 return;
1787
1788 raw_spin_lock_irqsave(&vmovp_lock, flags);
1789
1790 if (!--vm->vlpi_count[its->list_nr]) {
1791 int i;
1792
1793 for (i = 0; i < vm->nr_vpes; i++)
1794 its_send_vmapp(its, vm->vpes[i], false);
1795 }
1796
1797 raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1798}
1799
d011e4e6
MZ
1800static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1801{
1802 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1803 u32 event = its_get_event_id(d);
1804 int ret = 0;
1805
1806 if (!info->map)
1807 return -EINVAL;
1808
11635fa2 1809 raw_spin_lock(&its_dev->event_map.vlpi_lock);
d011e4e6
MZ
1810
1811 if (!its_dev->event_map.vm) {
1812 struct its_vlpi_map *maps;
1813
6396bb22 1814 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
11635fa2 1815 GFP_ATOMIC);
d011e4e6
MZ
1816 if (!maps) {
1817 ret = -ENOMEM;
1818 goto out;
1819 }
1820
1821 its_dev->event_map.vm = info->map->vm;
1822 its_dev->event_map.vlpi_maps = maps;
1823 } else if (its_dev->event_map.vm != info->map->vm) {
1824 ret = -EINVAL;
1825 goto out;
1826 }
1827
1828 /* Get our private copy of the mapping information */
1829 its_dev->event_map.vlpi_maps[event] = *info->map;
1830
1831 if (irqd_is_forwarded_to_vcpu(d)) {
1832 /* Already mapped, move it around */
1833 its_send_vmovi(its_dev, event);
1834 } else {
2247e1bf
MZ
1835 /* Ensure all the VPEs are mapped on this ITS */
1836 its_map_vm(its_dev->its, info->map->vm);
1837
d4d7b4ad
MZ
1838 /*
1839 * Flag the interrupt as forwarded so that we can
1840 * start poking the virtual property table.
1841 */
1842 irqd_set_forwarded_to_vcpu(d);
1843
1844 /* Write out the property to the prop table */
1845 lpi_write_config(d, 0xff, info->map->properties);
1846
d011e4e6
MZ
1847 /* Drop the physical mapping */
1848 its_send_discard(its_dev, event);
1849
1850 /* and install the virtual one */
1851 its_send_vmapti(its_dev, event);
d011e4e6
MZ
1852
1853 /* Increment the number of VLPIs */
1854 its_dev->event_map.nr_vlpis++;
1855 }
1856
1857out:
11635fa2 1858 raw_spin_unlock(&its_dev->event_map.vlpi_lock);
d011e4e6
MZ
1859 return ret;
1860}
1861
1862static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1863{
1864 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
046b5054 1865 struct its_vlpi_map *map;
d011e4e6
MZ
1866 int ret = 0;
1867
11635fa2 1868 raw_spin_lock(&its_dev->event_map.vlpi_lock);
d011e4e6 1869
046b5054
MZ
1870 map = get_vlpi_map(d);
1871
1872 if (!its_dev->event_map.vm || !map) {
d011e4e6
MZ
1873 ret = -EINVAL;
1874 goto out;
1875 }
1876
1877 /* Copy our mapping information to the incoming request */
c1d4d5cd 1878 *info->map = *map;
d011e4e6
MZ
1879
1880out:
11635fa2 1881 raw_spin_unlock(&its_dev->event_map.vlpi_lock);
d011e4e6
MZ
1882 return ret;
1883}
1884
1885static int its_vlpi_unmap(struct irq_data *d)
1886{
1887 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1888 u32 event = its_get_event_id(d);
1889 int ret = 0;
1890
11635fa2 1891 raw_spin_lock(&its_dev->event_map.vlpi_lock);
d011e4e6
MZ
1892
1893 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1894 ret = -EINVAL;
1895 goto out;
1896 }
1897
1898 /* Drop the virtual mapping */
1899 its_send_discard(its_dev, event);
1900
1901 /* and restore the physical one */
1902 irqd_clr_forwarded_to_vcpu(d);
1903 its_send_mapti(its_dev, d->hwirq, event);
1904 lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1905 LPI_PROP_ENABLED |
1906 LPI_PROP_GROUP1));
1907
2247e1bf
MZ
1908 /* Potentially unmap the VM from this ITS */
1909 its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1910
d011e4e6
MZ
1911 /*
1912 * Drop the refcount and make the device available again if
1913 * this was the last VLPI.
1914 */
1915 if (!--its_dev->event_map.nr_vlpis) {
1916 its_dev->event_map.vm = NULL;
1917 kfree(its_dev->event_map.vlpi_maps);
1918 }
1919
1920out:
11635fa2 1921 raw_spin_unlock(&its_dev->event_map.vlpi_lock);
d011e4e6
MZ
1922 return ret;
1923}
1924
015ec038
MZ
1925static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1926{
1927 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1928
1929 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1930 return -EINVAL;
1931
1932 if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1933 lpi_update_config(d, 0xff, info->config);
1934 else
1935 lpi_write_config(d, 0xff, info->config);
1936 its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1937
1938 return 0;
1939}
1940
c808eea8
MZ
1941static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1942{
1943 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1944 struct its_cmd_info *info = vcpu_info;
1945
1946 /* Need a v4 ITS */
0dd57fed 1947 if (!is_v4(its_dev->its))
c808eea8
MZ
1948 return -EINVAL;
1949
d011e4e6
MZ
1950 /* Unmap request? */
1951 if (!info)
1952 return its_vlpi_unmap(d);
1953
c808eea8
MZ
1954 switch (info->cmd_type) {
1955 case MAP_VLPI:
d011e4e6 1956 return its_vlpi_map(d, info);
c808eea8
MZ
1957
1958 case GET_VLPI:
d011e4e6 1959 return its_vlpi_get(d, info);
c808eea8
MZ
1960
1961 case PROP_UPDATE_VLPI:
1962 case PROP_UPDATE_AND_INV_VLPI:
015ec038 1963 return its_vlpi_prop_update(d, info);
c808eea8
MZ
1964
1965 default:
1966 return -EINVAL;
1967 }
1968}
1969
c48ed51c
MZ
1970static struct irq_chip its_irq_chip = {
1971 .name = "ITS",
1972 .irq_mask = its_mask_irq,
1973 .irq_unmask = its_unmask_irq,
004fa08d 1974 .irq_eoi = irq_chip_eoi_parent,
c48ed51c 1975 .irq_set_affinity = its_set_affinity,
b48ac83d 1976 .irq_compose_msi_msg = its_irq_compose_msi_msg,
8d85dced 1977 .irq_set_irqchip_state = its_irq_set_irqchip_state,
5f774f5e 1978 .irq_retrigger = its_irq_retrigger,
c808eea8 1979 .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity,
b48ac83d
MZ
1980};
1981
880cb3cd 1982
bf9529f8
MZ
1983/*
1984 * How we allocate LPIs:
1985 *
880cb3cd
MZ
1986 * lpi_range_list contains ranges of LPIs that are to available to
1987 * allocate from. To allocate LPIs, just pick the first range that
1988 * fits the required allocation, and reduce it by the required
1989 * amount. Once empty, remove the range from the list.
1990 *
1991 * To free a range of LPIs, add a free range to the list, sort it and
1992 * merge the result if the new range happens to be adjacent to an
1993 * already free block.
bf9529f8 1994 *
880cb3cd
MZ
1995 * The consequence of the above is that allocation is cost is low, but
1996 * freeing is expensive. We assumes that freeing rarely occurs.
1997 */
4cb205c0 1998#define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */
880cb3cd 1999
880cb3cd
MZ
2000static DEFINE_MUTEX(lpi_range_lock);
2001static LIST_HEAD(lpi_range_list);
2002
2003struct lpi_range {
2004 struct list_head entry;
2005 u32 base_id;
2006 u32 span;
2007};
bf9529f8 2008
880cb3cd 2009static struct lpi_range *mk_lpi_range(u32 base, u32 span)
bf9529f8 2010{
880cb3cd
MZ
2011 struct lpi_range *range;
2012
1c73fac5 2013 range = kmalloc(sizeof(*range), GFP_KERNEL);
880cb3cd 2014 if (range) {
880cb3cd
MZ
2015 range->base_id = base;
2016 range->span = span;
2017 }
2018
2019 return range;
bf9529f8
MZ
2020}
2021
880cb3cd
MZ
2022static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2023{
2024 struct lpi_range *range, *tmp;
2025 int err = -ENOSPC;
2026
2027 mutex_lock(&lpi_range_lock);
2028
2029 list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2030 if (range->span >= nr_lpis) {
2031 *base = range->base_id;
2032 range->base_id += nr_lpis;
2033 range->span -= nr_lpis;
2034
2035 if (range->span == 0) {
2036 list_del(&range->entry);
2037 kfree(range);
2038 }
2039
2040 err = 0;
2041 break;
2042 }
2043 }
2044
2045 mutex_unlock(&lpi_range_lock);
2046
2047 pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2048 return err;
bf9529f8
MZ
2049}
2050
12eade12
RV
2051static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2052{
2053 if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2054 return;
2055 if (a->base_id + a->span != b->base_id)
2056 return;
2057 b->base_id = a->base_id;
2058 b->span += a->span;
2059 list_del(&a->entry);
2060 kfree(a);
2061}
2062
880cb3cd 2063static int free_lpi_range(u32 base, u32 nr_lpis)
bf9529f8 2064{
12eade12 2065 struct lpi_range *new, *old;
880cb3cd
MZ
2066
2067 new = mk_lpi_range(base, nr_lpis);
b31a3838
RV
2068 if (!new)
2069 return -ENOMEM;
880cb3cd
MZ
2070
2071 mutex_lock(&lpi_range_lock);
2072
12eade12
RV
2073 list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2074 if (old->base_id < base)
2075 break;
880cb3cd 2076 }
12eade12
RV
2077 /*
2078 * old is the last element with ->base_id smaller than base,
2079 * so new goes right after it. If there are no elements with
2080 * ->base_id smaller than base, &old->entry ends up pointing
2081 * at the head of the list, and inserting new it the start of
2082 * the list is the right thing to do in that case as well.
2083 */
2084 list_add(&new->entry, &old->entry);
2085 /*
2086 * Now check if we can merge with the preceding and/or
2087 * following ranges.
2088 */
2089 merge_lpi_ranges(old, new);
2090 merge_lpi_ranges(new, list_next_entry(new, entry));
880cb3cd 2091
880cb3cd 2092 mutex_unlock(&lpi_range_lock);
b31a3838 2093 return 0;
880cb3cd
MZ
2094}
2095
2096static int __init its_lpi_init(u32 id_bits)
2097{
2098 u32 lpis = (1UL << id_bits) - 8192;
12b2905a 2099 u32 numlpis;
880cb3cd
MZ
2100 int err;
2101
12b2905a
MZ
2102 numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2103
2104 if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2105 lpis = numlpis;
2106 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2107 lpis);
2108 }
2109
880cb3cd
MZ
2110 /*
2111 * Initializing the allocator is just the same as freeing the
2112 * full range of LPIs.
2113 */
2114 err = free_lpi_range(8192, lpis);
2115 pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2116 return err;
2117}
bf9529f8 2118
38dd7c49 2119static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
880cb3cd
MZ
2120{
2121 unsigned long *bitmap = NULL;
2122 int err = 0;
bf9529f8
MZ
2123
2124 do {
38dd7c49 2125 err = alloc_lpi_range(nr_irqs, base);
880cb3cd 2126 if (!err)
bf9529f8
MZ
2127 break;
2128
38dd7c49
MZ
2129 nr_irqs /= 2;
2130 } while (nr_irqs > 0);
bf9529f8 2131
45725e0f
MZ
2132 if (!nr_irqs)
2133 err = -ENOSPC;
2134
880cb3cd 2135 if (err)
bf9529f8
MZ
2136 goto out;
2137
38dd7c49 2138 bitmap = kcalloc(BITS_TO_LONGS(nr_irqs), sizeof (long), GFP_ATOMIC);
bf9529f8
MZ
2139 if (!bitmap)
2140 goto out;
2141
38dd7c49 2142 *nr_ids = nr_irqs;
bf9529f8
MZ
2143
2144out:
c8415b94
MZ
2145 if (!bitmap)
2146 *base = *nr_ids = 0;
2147
bf9529f8
MZ
2148 return bitmap;
2149}
2150
38dd7c49 2151static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
bf9529f8 2152{
880cb3cd 2153 WARN_ON(free_lpi_range(base, nr_ids));
cf2be8ba 2154 kfree(bitmap);
bf9529f8 2155}
1ac19ca6 2156
053be485
MZ
2157static void gic_reset_prop_table(void *va)
2158{
2159 /* Priority 0xa0, Group-1, disabled */
2160 memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2161
2162 /* Make sure the GIC will observe the written configuration */
2163 gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2164}
2165
0e5ccf91
MZ
2166static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2167{
2168 struct page *prop_page;
1ac19ca6 2169
0e5ccf91
MZ
2170 prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
2171 if (!prop_page)
2172 return NULL;
2173
053be485 2174 gic_reset_prop_table(page_address(prop_page));
0e5ccf91
MZ
2175
2176 return prop_page;
2177}
2178
7d75bbb4
MZ
2179static void its_free_prop_table(struct page *prop_page)
2180{
2181 free_pages((unsigned long)page_address(prop_page),
2182 get_order(LPI_PROPBASE_SZ));
2183}
1ac19ca6 2184
5e2c9f9a
MZ
2185static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2186{
2187 phys_addr_t start, end, addr_end;
2188 u64 i;
2189
2190 /*
2191 * We don't bother checking for a kdump kernel as by
2192 * construction, the LPI tables are out of this kernel's
2193 * memory map.
2194 */
2195 if (is_kdump_kernel())
2196 return true;
2197
2198 addr_end = addr + size - 1;
2199
9f3d5eaa 2200 for_each_reserved_mem_range(i, &start, &end) {
5e2c9f9a
MZ
2201 if (addr >= start && addr_end <= end)
2202 return true;
2203 }
2204
2205 /* Not found, not a good sign... */
2206 pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2207 &addr, &addr_end);
2208 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2209 return false;
2210}
2211
3fb68fae
MZ
2212static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2213{
2214 if (efi_enabled(EFI_CONFIG_TABLES))
2215 return efi_mem_reserve_persistent(addr, size);
2216
2217 return 0;
2218}
2219
11e37d35 2220static int __init its_setup_lpi_prop_table(void)
1ac19ca6 2221{
c440a9d9
MZ
2222 if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2223 u64 val;
1ac19ca6 2224
c440a9d9
MZ
2225 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2226 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
1ac19ca6 2227
c440a9d9
MZ
2228 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2229 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2230 LPI_PROPBASE_SZ,
2231 MEMREMAP_WB);
2232 gic_reset_prop_table(gic_rdists->prop_table_va);
2233 } else {
2234 struct page *page;
2235
2236 lpi_id_bits = min_t(u32,
2237 GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2238 ITS_MAX_LPI_NRBITS);
2239 page = its_allocate_prop_table(GFP_NOWAIT);
2240 if (!page) {
2241 pr_err("Failed to allocate PROPBASE\n");
2242 return -ENOMEM;
2243 }
2244
2245 gic_rdists->prop_table_pa = page_to_phys(page);
2246 gic_rdists->prop_table_va = page_address(page);
3fb68fae
MZ
2247 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2248 LPI_PROPBASE_SZ));
c440a9d9 2249 }
e1a2e201
MZ
2250
2251 pr_info("GICv3: using LPI property table @%pa\n",
2252 &gic_rdists->prop_table_pa);
1ac19ca6 2253
6c31e123 2254 return its_lpi_init(lpi_id_bits);
1ac19ca6
MZ
2255}
2256
2257static const char *its_base_type_string[] = {
2258 [GITS_BASER_TYPE_DEVICE] = "Devices",
2259 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs",
4f46de9d 2260 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)",
1ac19ca6
MZ
2261 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections",
2262 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)",
2263 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)",
2264 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)",
2265};
2266
2d81d425
SD
2267static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2268{
2269 u32 idx = baser - its->tables;
2270
0968a619 2271 return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2d81d425
SD
2272}
2273
2274static void its_write_baser(struct its_node *its, struct its_baser *baser,
2275 u64 val)
2276{
2277 u32 idx = baser - its->tables;
2278
0968a619 2279 gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2d81d425
SD
2280 baser->val = its_read_baser(its, baser);
2281}
2282
9347359a 2283static int its_setup_baser(struct its_node *its, struct its_baser *baser,
d5df9dc9 2284 u64 cache, u64 shr, u32 order, bool indirect)
9347359a
SD
2285{
2286 u64 val = its_read_baser(its, baser);
2287 u64 esz = GITS_BASER_ENTRY_SIZE(val);
2288 u64 type = GITS_BASER_TYPE(val);
30ae9610 2289 u64 baser_phys, tmp;
d5df9dc9 2290 u32 alloc_pages, psz;
539d3782 2291 struct page *page;
9347359a 2292 void *base;
9347359a 2293
d5df9dc9 2294 psz = baser->psz;
9347359a
SD
2295 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2296 if (alloc_pages > GITS_BASER_PAGES_MAX) {
2297 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2298 &its->phys_base, its_base_type_string[type],
2299 alloc_pages, GITS_BASER_PAGES_MAX);
2300 alloc_pages = GITS_BASER_PAGES_MAX;
2301 order = get_order(GITS_BASER_PAGES_MAX * psz);
2302 }
2303
539d3782
SD
2304 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2305 if (!page)
9347359a
SD
2306 return -ENOMEM;
2307
539d3782 2308 base = (void *)page_address(page);
30ae9610
SD
2309 baser_phys = virt_to_phys(base);
2310
2311 /* Check if the physical address of the memory is above 48bits */
2312 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2313
2314 /* 52bit PA is supported only when PageSize=64K */
2315 if (psz != SZ_64K) {
2316 pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2317 free_pages((unsigned long)base, order);
2318 return -ENXIO;
2319 }
2320
2321 /* Convert 52bit PA to 48bit field */
2322 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2323 }
2324
9347359a 2325retry_baser:
30ae9610 2326 val = (baser_phys |
9347359a
SD
2327 (type << GITS_BASER_TYPE_SHIFT) |
2328 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) |
2329 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) |
2330 cache |
2331 shr |
2332 GITS_BASER_VALID);
2333
3faf24ea
SD
2334 val |= indirect ? GITS_BASER_INDIRECT : 0x0;
2335
9347359a
SD
2336 switch (psz) {
2337 case SZ_4K:
2338 val |= GITS_BASER_PAGE_SIZE_4K;
2339 break;
2340 case SZ_16K:
2341 val |= GITS_BASER_PAGE_SIZE_16K;
2342 break;
2343 case SZ_64K:
2344 val |= GITS_BASER_PAGE_SIZE_64K;
2345 break;
2346 }
2347
2348 its_write_baser(its, baser, val);
2349 tmp = baser->val;
2350
2351 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2352 /*
2353 * Shareability didn't stick. Just use
2354 * whatever the read reported, which is likely
2355 * to be the only thing this redistributor
2356 * supports. If that's zero, make it
2357 * non-cacheable as well.
2358 */
2359 shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2360 if (!shr) {
2361 cache = GITS_BASER_nC;
328191c0 2362 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
9347359a
SD
2363 }
2364 goto retry_baser;
2365 }
2366
9347359a 2367 if (val != tmp) {
b11283eb 2368 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
9347359a 2369 &its->phys_base, its_base_type_string[type],
b11283eb 2370 val, tmp);
9347359a
SD
2371 free_pages((unsigned long)base, order);
2372 return -ENXIO;
2373 }
2374
2375 baser->order = order;
2376 baser->base = base;
2377 baser->psz = psz;
3faf24ea 2378 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
9347359a 2379
3faf24ea 2380 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
d524eaa2 2381 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
9347359a
SD
2382 its_base_type_string[type],
2383 (unsigned long)virt_to_phys(base),
3faf24ea 2384 indirect ? "indirect" : "flat", (int)esz,
9347359a
SD
2385 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2386
2387 return 0;
2388}
2389
4cacac57
MZ
2390static bool its_parse_indirect_baser(struct its_node *its,
2391 struct its_baser *baser,
d5df9dc9 2392 u32 *order, u32 ids)
4b75c459 2393{
4cacac57
MZ
2394 u64 tmp = its_read_baser(its, baser);
2395 u64 type = GITS_BASER_TYPE(tmp);
2396 u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2fd632a0 2397 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
4b75c459 2398 u32 new_order = *order;
d5df9dc9 2399 u32 psz = baser->psz;
3faf24ea
SD
2400 bool indirect = false;
2401
2402 /* No need to enable Indirection if memory requirement < (psz*2)bytes */
2403 if ((esz << ids) > (psz * 2)) {
2404 /*
2405 * Find out whether hw supports a single or two-level table by
2406 * table by reading bit at offset '62' after writing '1' to it.
2407 */
2408 its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2409 indirect = !!(baser->val & GITS_BASER_INDIRECT);
2410
2411 if (indirect) {
2412 /*
2413 * The size of the lvl2 table is equal to ITS page size
2414 * which is 'psz'. For computing lvl1 table size,
2415 * subtract ID bits that sparse lvl2 table from 'ids'
2416 * which is reported by ITS hardware times lvl1 table
2417 * entry size.
2418 */
d524eaa2 2419 ids -= ilog2(psz / (int)esz);
3faf24ea
SD
2420 esz = GITS_LVL1_ENTRY_SIZE;
2421 }
2422 }
4b75c459
SD
2423
2424 /*
2425 * Allocate as many entries as required to fit the
2426 * range of device IDs that the ITS can grok... The ID
2427 * space being incredibly sparse, this results in a
3faf24ea
SD
2428 * massive waste of memory if two-level device table
2429 * feature is not supported by hardware.
4b75c459
SD
2430 */
2431 new_order = max_t(u32, get_order(esz << ids), new_order);
2432 if (new_order >= MAX_ORDER) {
2433 new_order = MAX_ORDER - 1;
d524eaa2 2434 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
576a8342 2435 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
4cacac57 2436 &its->phys_base, its_base_type_string[type],
576a8342 2437 device_ids(its), ids);
4b75c459
SD
2438 }
2439
2440 *order = new_order;
3faf24ea
SD
2441
2442 return indirect;
4b75c459
SD
2443}
2444
5e516846
MZ
2445static u32 compute_common_aff(u64 val)
2446{
2447 u32 aff, clpiaff;
2448
2449 aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2450 clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2451
2452 return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2453}
2454
2455static u32 compute_its_aff(struct its_node *its)
2456{
2457 u64 val;
2458 u32 svpet;
2459
2460 /*
2461 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2462 * the resulting affinity. We then use that to see if this match
2463 * our own affinity.
2464 */
2465 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2466 val = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2467 val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2468 return compute_common_aff(val);
2469}
2470
2471static struct its_node *find_sibling_its(struct its_node *cur_its)
2472{
2473 struct its_node *its;
2474 u32 aff;
2475
2476 if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2477 return NULL;
2478
2479 aff = compute_its_aff(cur_its);
2480
2481 list_for_each_entry(its, &its_nodes, entry) {
2482 u64 baser;
2483
2484 if (!is_v4_1(its) || its == cur_its)
2485 continue;
2486
2487 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2488 continue;
2489
2490 if (aff != compute_its_aff(its))
2491 continue;
2492
2493 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2494 baser = its->tables[2].val;
2495 if (!(baser & GITS_BASER_VALID))
2496 continue;
2497
2498 return its;
2499 }
2500
2501 return NULL;
2502}
2503
1ac19ca6
MZ
2504static void its_free_tables(struct its_node *its)
2505{
2506 int i;
2507
2508 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1a485f4d
SD
2509 if (its->tables[i].base) {
2510 free_pages((unsigned long)its->tables[i].base,
2511 its->tables[i].order);
2512 its->tables[i].base = NULL;
1ac19ca6
MZ
2513 }
2514 }
2515}
2516
d5df9dc9
MZ
2517static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2518{
2519 u64 psz = SZ_64K;
2520
2521 while (psz) {
2522 u64 val, gpsz;
2523
2524 val = its_read_baser(its, baser);
2525 val &= ~GITS_BASER_PAGE_SIZE_MASK;
2526
2527 switch (psz) {
2528 case SZ_64K:
2529 gpsz = GITS_BASER_PAGE_SIZE_64K;
2530 break;
2531 case SZ_16K:
2532 gpsz = GITS_BASER_PAGE_SIZE_16K;
2533 break;
2534 case SZ_4K:
2535 default:
2536 gpsz = GITS_BASER_PAGE_SIZE_4K;
2537 break;
2538 }
2539
2540 gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2541
2542 val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2543 its_write_baser(its, baser, val);
2544
2545 if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2546 break;
2547
2548 switch (psz) {
2549 case SZ_64K:
2550 psz = SZ_16K;
2551 break;
2552 case SZ_16K:
2553 psz = SZ_4K;
2554 break;
2555 case SZ_4K:
2556 default:
2557 return -1;
2558 }
2559 }
2560
2561 baser->psz = psz;
2562 return 0;
2563}
2564
0e0b0f69 2565static int its_alloc_tables(struct its_node *its)
1ac19ca6 2566{
1ac19ca6 2567 u64 shr = GITS_BASER_InnerShareable;
2fd632a0 2568 u64 cache = GITS_BASER_RaWaWb;
9347359a 2569 int err, i;
94100970 2570
fa150019
AB
2571 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2572 /* erratum 24313: ignore memory access type */
2573 cache = GITS_BASER_nCnB;
466b7d16 2574
1ac19ca6 2575 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2d81d425
SD
2576 struct its_baser *baser = its->tables + i;
2577 u64 val = its_read_baser(its, baser);
1ac19ca6 2578 u64 type = GITS_BASER_TYPE(val);
3faf24ea 2579 bool indirect = false;
d5df9dc9 2580 u32 order;
1ac19ca6 2581
d5df9dc9 2582 if (type == GITS_BASER_TYPE_NONE)
1ac19ca6
MZ
2583 continue;
2584
d5df9dc9
MZ
2585 if (its_probe_baser_psz(its, baser)) {
2586 its_free_tables(its);
2587 return -ENXIO;
2588 }
2589
2590 order = get_order(baser->psz);
2591
2592 switch (type) {
4cacac57 2593 case GITS_BASER_TYPE_DEVICE:
d5df9dc9 2594 indirect = its_parse_indirect_baser(its, baser, &order,
576a8342 2595 device_ids(its));
8d565748
ZY
2596 break;
2597
4cacac57 2598 case GITS_BASER_TYPE_VCPU:
5e516846
MZ
2599 if (is_v4_1(its)) {
2600 struct its_node *sibling;
2601
2602 WARN_ON(i != 2);
2603 if ((sibling = find_sibling_its(its))) {
2604 *baser = sibling->tables[2];
2605 its_write_baser(its, baser, baser->val);
2606 continue;
2607 }
2608 }
2609
d5df9dc9 2610 indirect = its_parse_indirect_baser(its, baser, &order,
32bd44dc 2611 ITS_MAX_VPEID_BITS);
4cacac57
MZ
2612 break;
2613 }
f54b97ed 2614
d5df9dc9 2615 err = its_setup_baser(its, baser, cache, shr, order, indirect);
9347359a
SD
2616 if (err < 0) {
2617 its_free_tables(its);
2618 return err;
1ac19ca6
MZ
2619 }
2620
9347359a 2621 /* Update settings which will be used for next BASERn */
9347359a
SD
2622 cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2623 shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
1ac19ca6
MZ
2624 }
2625
2626 return 0;
1ac19ca6
MZ
2627}
2628
5e516846
MZ
2629static u64 inherit_vpe_l1_table_from_its(void)
2630{
2631 struct its_node *its;
2632 u64 val;
2633 u32 aff;
2634
2635 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2636 aff = compute_common_aff(val);
2637
2638 list_for_each_entry(its, &its_nodes, entry) {
2639 u64 baser, addr;
2640
2641 if (!is_v4_1(its))
2642 continue;
2643
2644 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2645 continue;
2646
2647 if (aff != compute_its_aff(its))
2648 continue;
2649
2650 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2651 baser = its->tables[2].val;
2652 if (!(baser & GITS_BASER_VALID))
2653 continue;
2654
2655 /* We have a winner! */
8b718d40
ZY
2656 gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2657
5e516846
MZ
2658 val = GICR_VPROPBASER_4_1_VALID;
2659 if (baser & GITS_BASER_INDIRECT)
2660 val |= GICR_VPROPBASER_4_1_INDIRECT;
2661 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2662 FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2663 switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2664 case GIC_PAGE_SIZE_64K:
2665 addr = GITS_BASER_ADDR_48_to_52(baser);
2666 break;
2667 default:
2668 addr = baser & GENMASK_ULL(47, 12);
2669 break;
2670 }
2671 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2672 val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2673 FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2674 val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2675 FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2676 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2677
2678 return val;
2679 }
2680
2681 return 0;
2682}
2683
2684static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2685{
2686 u32 aff;
2687 u64 val;
2688 int cpu;
2689
2690 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2691 aff = compute_common_aff(val);
2692
2693 for_each_possible_cpu(cpu) {
2694 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
5e516846
MZ
2695
2696 if (!base || cpu == smp_processor_id())
2697 continue;
2698
2699 val = gic_read_typer(base + GICR_TYPER);
4bccf1d7 2700 if (aff != compute_common_aff(val))
5e516846
MZ
2701 continue;
2702
2703 /*
2704 * At this point, we have a victim. This particular CPU
2705 * has already booted, and has an affinity that matches
2706 * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2707 * Make sure we don't write the Z bit in that case.
2708 */
5186a6cc 2709 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
5e516846
MZ
2710 val &= ~GICR_VPROPBASER_4_1_Z;
2711
8b718d40 2712 gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
5e516846
MZ
2713 *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2714
2715 return val;
2716 }
2717
2718 return 0;
2719}
2720
4e6437f1
ZY
2721static bool allocate_vpe_l2_table(int cpu, u32 id)
2722{
2723 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
490d332e
MZ
2724 unsigned int psz, esz, idx, npg, gpsz;
2725 u64 val;
4e6437f1
ZY
2726 struct page *page;
2727 __le64 *table;
2728
2729 if (!gic_rdists->has_rvpeid)
2730 return true;
2731
28d160de
MZ
2732 /* Skip non-present CPUs */
2733 if (!base)
2734 return true;
2735
5186a6cc 2736 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
4e6437f1
ZY
2737
2738 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2739 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2740 npg = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2741
2742 switch (gpsz) {
2743 default:
2744 WARN_ON(1);
df561f66 2745 fallthrough;
4e6437f1
ZY
2746 case GIC_PAGE_SIZE_4K:
2747 psz = SZ_4K;
2748 break;
2749 case GIC_PAGE_SIZE_16K:
2750 psz = SZ_16K;
2751 break;
2752 case GIC_PAGE_SIZE_64K:
2753 psz = SZ_64K;
2754 break;
2755 }
2756
2757 /* Don't allow vpe_id that exceeds single, flat table limit */
2758 if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2759 return (id < (npg * psz / (esz * SZ_8)));
2760
2761 /* Compute 1st level table index & check if that exceeds table limit */
2762 idx = id >> ilog2(psz / (esz * SZ_8));
2763 if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2764 return false;
2765
2766 table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2767
2768 /* Allocate memory for 2nd level table */
2769 if (!table[idx]) {
2770 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2771 if (!page)
2772 return false;
2773
2774 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
2775 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2776 gic_flush_dcache_to_poc(page_address(page), psz);
2777
2778 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2779
2780 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2781 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2782 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2783
2784 /* Ensure updated table contents are visible to RD hardware */
2785 dsb(sy);
2786 }
2787
2788 return true;
2789}
2790
5e516846
MZ
2791static int allocate_vpe_l1_table(void)
2792{
2793 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2794 u64 val, gpsz, npg, pa;
2795 unsigned int psz = SZ_64K;
2796 unsigned int np, epp, esz;
2797 struct page *page;
2798
2799 if (!gic_rdists->has_rvpeid)
2800 return 0;
2801
2802 /*
2803 * if VPENDBASER.Valid is set, disable any previously programmed
2804 * VPE by setting PendingLast while clearing Valid. This has the
2805 * effect of making sure no doorbell will be generated and we can
2806 * then safely clear VPROPBASER.Valid.
2807 */
5186a6cc
ZY
2808 if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2809 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
5e516846
MZ
2810 vlpi_base + GICR_VPENDBASER);
2811
2812 /*
2813 * If we can inherit the configuration from another RD, let's do
2814 * so. Otherwise, we have to go through the allocation process. We
2815 * assume that all RDs have the exact same requirements, as
2816 * nothing will work otherwise.
2817 */
2818 val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2819 if (val & GICR_VPROPBASER_4_1_VALID)
2820 goto out;
2821
d1bd7e0b 2822 gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
5e516846
MZ
2823 if (!gic_data_rdist()->vpe_table_mask)
2824 return -ENOMEM;
2825
2826 val = inherit_vpe_l1_table_from_its();
2827 if (val & GICR_VPROPBASER_4_1_VALID)
2828 goto out;
2829
2830 /* First probe the page size */
2831 val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
5186a6cc
ZY
2832 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2833 val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
5e516846
MZ
2834 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2835 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2836
2837 switch (gpsz) {
2838 default:
2839 gpsz = GIC_PAGE_SIZE_4K;
df561f66 2840 fallthrough;
5e516846
MZ
2841 case GIC_PAGE_SIZE_4K:
2842 psz = SZ_4K;
2843 break;
2844 case GIC_PAGE_SIZE_16K:
2845 psz = SZ_16K;
2846 break;
2847 case GIC_PAGE_SIZE_64K:
2848 psz = SZ_64K;
2849 break;
2850 }
2851
2852 /*
2853 * Start populating the register from scratch, including RO fields
2854 * (which we want to print in debug cases...)
2855 */
2856 val = 0;
2857 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2858 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2859
2860 /* How many entries per GIC page? */
2861 esz++;
2862 epp = psz / (esz * SZ_8);
2863
2864 /*
2865 * If we need more than just a single L1 page, flag the table
2866 * as indirect and compute the number of required L1 pages.
2867 */
2868 if (epp < ITS_MAX_VPEID) {
2869 int nl2;
2870
2871 val |= GICR_VPROPBASER_4_1_INDIRECT;
2872
2873 /* Number of L2 pages required to cover the VPEID space */
2874 nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2875
2876 /* Number of L1 pages to point to the L2 pages */
2877 npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2878 } else {
2879 npg = 1;
2880 }
2881
e88bd316 2882 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
5e516846
MZ
2883
2884 /* Right, that's the number of CPU pages we need for L1 */
2885 np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2886
2887 pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2888 np, npg, psz, epp, esz);
d1bd7e0b 2889 page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
5e516846
MZ
2890 if (!page)
2891 return -ENOMEM;
2892
8b718d40 2893 gic_data_rdist()->vpe_l1_base = page_address(page);
5e516846
MZ
2894 pa = virt_to_phys(page_address(page));
2895 WARN_ON(!IS_ALIGNED(pa, psz));
2896
2897 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
2898 val |= GICR_VPROPBASER_RaWb;
2899 val |= GICR_VPROPBASER_InnerShareable;
2900 val |= GICR_VPROPBASER_4_1_Z;
2901 val |= GICR_VPROPBASER_4_1_VALID;
2902
2903out:
5186a6cc 2904 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
5e516846
MZ
2905 cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
2906
2907 pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
2908 smp_processor_id(), val,
2909 cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
2910
2911 return 0;
2912}
2913
1ac19ca6
MZ
2914static int its_alloc_collections(struct its_node *its)
2915{
83559b47
MZ
2916 int i;
2917
6396bb22 2918 its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
1ac19ca6
MZ
2919 GFP_KERNEL);
2920 if (!its->collections)
2921 return -ENOMEM;
2922
83559b47
MZ
2923 for (i = 0; i < nr_cpu_ids; i++)
2924 its->collections[i].target_address = ~0ULL;
2925
1ac19ca6
MZ
2926 return 0;
2927}
2928
7c297a2d
MZ
2929static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2930{
2931 struct page *pend_page;
adaab500 2932
7c297a2d 2933 pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
adaab500 2934 get_order(LPI_PENDBASE_SZ));
7c297a2d
MZ
2935 if (!pend_page)
2936 return NULL;
2937
2938 /* Make sure the GIC will observe the zero-ed page */
2939 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2940
2941 return pend_page;
2942}
2943
7d75bbb4
MZ
2944static void its_free_pending_table(struct page *pt)
2945{
adaab500 2946 free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
7d75bbb4
MZ
2947}
2948
c6e2ccb6 2949/*
5e2c9f9a
MZ
2950 * Booting with kdump and LPIs enabled is generally fine. Any other
2951 * case is wrong in the absence of firmware/EFI support.
c6e2ccb6 2952 */
c440a9d9
MZ
2953static bool enabled_lpis_allowed(void)
2954{
5e2c9f9a
MZ
2955 phys_addr_t addr;
2956 u64 val;
c6e2ccb6 2957
5e2c9f9a
MZ
2958 /* Check whether the property table is in a reserved region */
2959 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2960 addr = val & GENMASK_ULL(51, 12);
2961
2962 return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
c440a9d9
MZ
2963}
2964
11e37d35 2965static int __init allocate_lpi_tables(void)
1ac19ca6 2966{
c440a9d9 2967 u64 val;
11e37d35 2968 int err, cpu;
1ac19ca6 2969
c440a9d9
MZ
2970 /*
2971 * If LPIs are enabled while we run this from the boot CPU,
2972 * flag the RD tables as pre-allocated if the stars do align.
2973 */
2974 val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
2975 if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
2976 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
2977 RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
2978 pr_info("GICv3: Using preallocated redistributor tables\n");
2979 }
2980
11e37d35
MZ
2981 err = its_setup_lpi_prop_table();
2982 if (err)
2983 return err;
2984
2985 /*
2986 * We allocate all the pending tables anyway, as we may have a
2987 * mix of RDs that have had LPIs enabled, and some that
2988 * don't. We'll free the unused ones as each CPU comes online.
2989 */
2990 for_each_possible_cpu(cpu) {
2991 struct page *pend_page;
7c297a2d
MZ
2992
2993 pend_page = its_allocate_pending_table(GFP_NOWAIT);
1ac19ca6 2994 if (!pend_page) {
11e37d35
MZ
2995 pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
2996 return -ENOMEM;
1ac19ca6
MZ
2997 }
2998
11e37d35 2999 gic_data_rdist_cpu(cpu)->pend_page = pend_page;
1ac19ca6
MZ
3000 }
3001
11e37d35
MZ
3002 return 0;
3003}
3004
e64fab1a 3005static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
6479450f
HG
3006{
3007 u32 count = 1000000; /* 1s! */
3008 bool clean;
3009 u64 val;
3010
5186a6cc 3011 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
6479450f 3012 val &= ~GICR_VPENDBASER_Valid;
e64fab1a
MZ
3013 val &= ~clr;
3014 val |= set;
5186a6cc 3015 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
6479450f
HG
3016
3017 do {
5186a6cc 3018 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
6479450f
HG
3019 clean = !(val & GICR_VPENDBASER_Dirty);
3020 if (!clean) {
3021 count--;
3022 cpu_relax();
3023 udelay(1);
3024 }
3025 } while (!clean && count);
3026
e64fab1a
MZ
3027 if (unlikely(val & GICR_VPENDBASER_Dirty)) {
3028 pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3029 val |= GICR_VPENDBASER_PendingLast;
3030 }
3031
6479450f
HG
3032 return val;
3033}
3034
11e37d35
MZ
3035static void its_cpu_init_lpis(void)
3036{
3037 void __iomem *rbase = gic_data_rdist_rd_base();
3038 struct page *pend_page;
3039 phys_addr_t paddr;
3040 u64 val, tmp;
3041
3042 if (gic_data_rdist()->lpi_enabled)
3043 return;
3044
c440a9d9
MZ
3045 val = readl_relaxed(rbase + GICR_CTLR);
3046 if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3047 (val & GICR_CTLR_ENABLE_LPIS)) {
f842ca8e
MZ
3048 /*
3049 * Check that we get the same property table on all
3050 * RDs. If we don't, this is hopeless.
3051 */
3052 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3053 paddr &= GENMASK_ULL(51, 12);
3054 if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3055 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3056
c440a9d9
MZ
3057 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3058 paddr &= GENMASK_ULL(51, 16);
3059
5e2c9f9a 3060 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
c440a9d9
MZ
3061 its_free_pending_table(gic_data_rdist()->pend_page);
3062 gic_data_rdist()->pend_page = NULL;
3063
3064 goto out;
3065 }
3066
11e37d35
MZ
3067 pend_page = gic_data_rdist()->pend_page;
3068 paddr = page_to_phys(pend_page);
3fb68fae 3069 WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
11e37d35 3070
1ac19ca6 3071 /* set PROPBASE */
e1a2e201 3072 val = (gic_rdists->prop_table_pa |
1ac19ca6 3073 GICR_PROPBASER_InnerShareable |
2fd632a0 3074 GICR_PROPBASER_RaWaWb |
1ac19ca6
MZ
3075 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3076
0968a619
VM
3077 gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3078 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
1ac19ca6
MZ
3079
3080 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
241a386c
MZ
3081 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3082 /*
3083 * The HW reports non-shareable, we must
3084 * remove the cacheability attributes as
3085 * well.
3086 */
3087 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3088 GICR_PROPBASER_CACHEABILITY_MASK);
3089 val |= GICR_PROPBASER_nC;
0968a619 3090 gicr_write_propbaser(val, rbase + GICR_PROPBASER);
241a386c 3091 }
1ac19ca6
MZ
3092 pr_info_once("GIC: using cache flushing for LPI property table\n");
3093 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3094 }
3095
3096 /* set PENDBASE */
3097 val = (page_to_phys(pend_page) |
4ad3e363 3098 GICR_PENDBASER_InnerShareable |
2fd632a0 3099 GICR_PENDBASER_RaWaWb);
1ac19ca6 3100
0968a619
VM
3101 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3102 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
241a386c
MZ
3103
3104 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3105 /*
3106 * The HW reports non-shareable, we must remove the
3107 * cacheability attributes as well.
3108 */
3109 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3110 GICR_PENDBASER_CACHEABILITY_MASK);
3111 val |= GICR_PENDBASER_nC;
0968a619 3112 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
241a386c 3113 }
1ac19ca6
MZ
3114
3115 /* Enable LPIs */
3116 val = readl_relaxed(rbase + GICR_CTLR);
3117 val |= GICR_CTLR_ENABLE_LPIS;
3118 writel_relaxed(val, rbase + GICR_CTLR);
3119
5e516846 3120 if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
6479450f
HG
3121 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3122
3123 /*
3124 * It's possible for CPU to receive VLPIs before it is
3125 * sheduled as a vPE, especially for the first CPU, and the
3126 * VLPI with INTID larger than 2^(IDbits+1) will be considered
3127 * as out of range and dropped by GIC.
3128 * So we initialize IDbits to known value to avoid VLPI drop.
3129 */
3130 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3131 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3132 smp_processor_id(), val);
5186a6cc 3133 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
6479450f
HG
3134
3135 /*
3136 * Also clear Valid bit of GICR_VPENDBASER, in case some
3137 * ancient programming gets left in and has possibility of
3138 * corrupting memory.
3139 */
e64fab1a 3140 val = its_clear_vpend_valid(vlpi_base, 0, 0);
6479450f
HG
3141 }
3142
5e516846
MZ
3143 if (allocate_vpe_l1_table()) {
3144 /*
3145 * If the allocation has failed, we're in massive trouble.
3146 * Disable direct injection, and pray that no VM was
3147 * already running...
3148 */
3149 gic_rdists->has_rvpeid = false;
3150 gic_rdists->has_vlpis = false;
3151 }
3152
1ac19ca6
MZ
3153 /* Make sure the GIC has seen the above */
3154 dsb(sy);
c440a9d9 3155out:
11e37d35 3156 gic_data_rdist()->lpi_enabled = true;
c440a9d9 3157 pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
11e37d35 3158 smp_processor_id(),
c440a9d9 3159 gic_data_rdist()->pend_page ? "allocated" : "reserved",
11e37d35 3160 &paddr);
1ac19ca6
MZ
3161}
3162
920181ce 3163static void its_cpu_init_collection(struct its_node *its)
1ac19ca6 3164{
920181ce
DB
3165 int cpu = smp_processor_id();
3166 u64 target;
1ac19ca6 3167
920181ce
DB
3168 /* avoid cross node collections and its mapping */
3169 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3170 struct device_node *cpu_node;
fbf8f40e 3171
920181ce
DB
3172 cpu_node = of_get_cpu_node(cpu, NULL);
3173 if (its->numa_node != NUMA_NO_NODE &&
3174 its->numa_node != of_node_to_nid(cpu_node))
3175 return;
3176 }
fbf8f40e 3177
920181ce
DB
3178 /*
3179 * We now have to bind each collection to its target
3180 * redistributor.
3181 */
3182 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
1ac19ca6 3183 /*
920181ce 3184 * This ITS wants the physical address of the
1ac19ca6
MZ
3185 * redistributor.
3186 */
920181ce
DB
3187 target = gic_data_rdist()->phys_base;
3188 } else {
3189 /* This ITS wants a linear CPU number. */
3190 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3191 target = GICR_TYPER_CPU_NUMBER(target) << 16;
3192 }
1ac19ca6 3193
920181ce
DB
3194 /* Perform collection mapping */
3195 its->collections[cpu].target_address = target;
3196 its->collections[cpu].col_id = cpu;
1ac19ca6 3197
920181ce
DB
3198 its_send_mapc(its, &its->collections[cpu], 1);
3199 its_send_invall(its, &its->collections[cpu]);
3200}
3201
3202static void its_cpu_init_collections(void)
3203{
3204 struct its_node *its;
3205
a8db7456 3206 raw_spin_lock(&its_lock);
920181ce
DB
3207
3208 list_for_each_entry(its, &its_nodes, entry)
3209 its_cpu_init_collection(its);
1ac19ca6 3210
a8db7456 3211 raw_spin_unlock(&its_lock);
1ac19ca6 3212}
84a6a2e7
MZ
3213
3214static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3215{
3216 struct its_device *its_dev = NULL, *tmp;
3e39e8f5 3217 unsigned long flags;
84a6a2e7 3218
3e39e8f5 3219 raw_spin_lock_irqsave(&its->lock, flags);
84a6a2e7
MZ
3220
3221 list_for_each_entry(tmp, &its->its_device_list, entry) {
3222 if (tmp->device_id == dev_id) {
3223 its_dev = tmp;
3224 break;
3225 }
3226 }
3227
3e39e8f5 3228 raw_spin_unlock_irqrestore(&its->lock, flags);
84a6a2e7
MZ
3229
3230 return its_dev;
3231}
3232
466b7d16
SD
3233static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3234{
3235 int i;
3236
3237 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3238 if (GITS_BASER_TYPE(its->tables[i].val) == type)
3239 return &its->tables[i];
3240 }
3241
3242 return NULL;
3243}
3244
539d3782
SD
3245static bool its_alloc_table_entry(struct its_node *its,
3246 struct its_baser *baser, u32 id)
3faf24ea 3247{
3faf24ea
SD
3248 struct page *page;
3249 u32 esz, idx;
3250 __le64 *table;
3251
3faf24ea
SD
3252 /* Don't allow device id that exceeds single, flat table limit */
3253 esz = GITS_BASER_ENTRY_SIZE(baser->val);
3254 if (!(baser->val & GITS_BASER_INDIRECT))
70cc81ed 3255 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3faf24ea
SD
3256
3257 /* Compute 1st level table index & check if that exceeds table limit */
70cc81ed 3258 idx = id >> ilog2(baser->psz / esz);
3faf24ea
SD
3259 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3260 return false;
3261
3262 table = baser->base;
3263
3264 /* Allocate memory for 2nd level table */
3265 if (!table[idx]) {
539d3782
SD
3266 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3267 get_order(baser->psz));
3faf24ea
SD
3268 if (!page)
3269 return false;
3270
3271 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
3272 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
328191c0 3273 gic_flush_dcache_to_poc(page_address(page), baser->psz);
3faf24ea
SD
3274
3275 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3276
3277 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3278 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
328191c0 3279 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3faf24ea
SD
3280
3281 /* Ensure updated table contents are visible to ITS hardware */
3282 dsb(sy);
3283 }
3284
3285 return true;
3286}
3287
70cc81ed
MZ
3288static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3289{
3290 struct its_baser *baser;
3291
3292 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3293
3294 /* Don't allow device id that exceeds ITS hardware limit */
3295 if (!baser)
576a8342 3296 return (ilog2(dev_id) < device_ids(its));
70cc81ed 3297
539d3782 3298 return its_alloc_table_entry(its, baser, dev_id);
70cc81ed
MZ
3299}
3300
7d75bbb4
MZ
3301static bool its_alloc_vpe_table(u32 vpe_id)
3302{
3303 struct its_node *its;
4e6437f1 3304 int cpu;
7d75bbb4
MZ
3305
3306 /*
3307 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3308 * could try and only do it on ITSs corresponding to devices
3309 * that have interrupts targeted at this VPE, but the
3310 * complexity becomes crazy (and you have tons of memory
3311 * anyway, right?).
3312 */
3313 list_for_each_entry(its, &its_nodes, entry) {
3314 struct its_baser *baser;
3315
0dd57fed 3316 if (!is_v4(its))
7d75bbb4 3317 continue;
3faf24ea 3318
7d75bbb4
MZ
3319 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3320 if (!baser)
3321 return false;
3faf24ea 3322
539d3782 3323 if (!its_alloc_table_entry(its, baser, vpe_id))
7d75bbb4 3324 return false;
3faf24ea
SD
3325 }
3326
4e6437f1
ZY
3327 /* Non v4.1? No need to iterate RDs and go back early. */
3328 if (!gic_rdists->has_rvpeid)
3329 return true;
3330
3331 /*
3332 * Make sure the L2 tables are allocated for all copies of
3333 * the L1 table on *all* v4.1 RDs.
3334 */
3335 for_each_possible_cpu(cpu) {
3336 if (!allocate_vpe_l2_table(cpu, vpe_id))
3337 return false;
3338 }
3339
3faf24ea
SD
3340 return true;
3341}
3342
84a6a2e7 3343static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
93f94ea0 3344 int nvecs, bool alloc_lpis)
84a6a2e7
MZ
3345{
3346 struct its_device *dev;
93f94ea0 3347 unsigned long *lpi_map = NULL;
3e39e8f5 3348 unsigned long flags;
591e5bec 3349 u16 *col_map = NULL;
84a6a2e7
MZ
3350 void *itt;
3351 int lpi_base;
3352 int nr_lpis;
c8481267 3353 int nr_ites;
84a6a2e7
MZ
3354 int sz;
3355
3faf24ea 3356 if (!its_alloc_device_table(its, dev_id))
466b7d16
SD
3357 return NULL;
3358
147c8f37
MZ
3359 if (WARN_ON(!is_power_of_2(nvecs)))
3360 nvecs = roundup_pow_of_two(nvecs);
3361
84a6a2e7 3362 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
c8481267 3363 /*
147c8f37
MZ
3364 * Even if the device wants a single LPI, the ITT must be
3365 * sized as a power of two (and you need at least one bit...).
c8481267 3366 */
147c8f37 3367 nr_ites = max(2, nvecs);
ffedbf0c 3368 sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
84a6a2e7 3369 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
539d3782 3370 itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
93f94ea0 3371 if (alloc_lpis) {
38dd7c49 3372 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
93f94ea0 3373 if (lpi_map)
6396bb22 3374 col_map = kcalloc(nr_lpis, sizeof(*col_map),
93f94ea0
MZ
3375 GFP_KERNEL);
3376 } else {
6396bb22 3377 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
93f94ea0
MZ
3378 nr_lpis = 0;
3379 lpi_base = 0;
3380 }
84a6a2e7 3381
93f94ea0 3382 if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) {
84a6a2e7
MZ
3383 kfree(dev);
3384 kfree(itt);
3385 kfree(lpi_map);
591e5bec 3386 kfree(col_map);
84a6a2e7
MZ
3387 return NULL;
3388 }
3389
328191c0 3390 gic_flush_dcache_to_poc(itt, sz);
5a9a8915 3391
84a6a2e7
MZ
3392 dev->its = its;
3393 dev->itt = itt;
c8481267 3394 dev->nr_ites = nr_ites;
591e5bec
MZ
3395 dev->event_map.lpi_map = lpi_map;
3396 dev->event_map.col_map = col_map;
3397 dev->event_map.lpi_base = lpi_base;
3398 dev->event_map.nr_lpis = nr_lpis;
11635fa2 3399 raw_spin_lock_init(&dev->event_map.vlpi_lock);
84a6a2e7
MZ
3400 dev->device_id = dev_id;
3401 INIT_LIST_HEAD(&dev->entry);
3402
3e39e8f5 3403 raw_spin_lock_irqsave(&its->lock, flags);
84a6a2e7 3404 list_add(&dev->entry, &its->its_device_list);
3e39e8f5 3405 raw_spin_unlock_irqrestore(&its->lock, flags);
84a6a2e7 3406
84a6a2e7
MZ
3407 /* Map device to its ITT */
3408 its_send_mapd(dev, 1);
3409
3410 return dev;
3411}
3412
3413static void its_free_device(struct its_device *its_dev)
3414{
3e39e8f5
MZ
3415 unsigned long flags;
3416
3417 raw_spin_lock_irqsave(&its_dev->its->lock, flags);
84a6a2e7 3418 list_del(&its_dev->entry);
3e39e8f5 3419 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
898aa5ce 3420 kfree(its_dev->event_map.col_map);
84a6a2e7
MZ
3421 kfree(its_dev->itt);
3422 kfree(its_dev);
3423}
b48ac83d 3424
8208d170 3425static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
b48ac83d
MZ
3426{
3427 int idx;
3428
342be106 3429 /* Find a free LPI region in lpi_map and allocate them. */
8208d170
MZ
3430 idx = bitmap_find_free_region(dev->event_map.lpi_map,
3431 dev->event_map.nr_lpis,
3432 get_count_order(nvecs));
3433 if (idx < 0)
b48ac83d
MZ
3434 return -ENOSPC;
3435
591e5bec 3436 *hwirq = dev->event_map.lpi_base + idx;
b48ac83d 3437
b48ac83d
MZ
3438 return 0;
3439}
3440
54456db9
MZ
3441static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3442 int nvec, msi_alloc_info_t *info)
e8137f4f 3443{
b48ac83d 3444 struct its_node *its;
b48ac83d 3445 struct its_device *its_dev;
54456db9
MZ
3446 struct msi_domain_info *msi_info;
3447 u32 dev_id;
9791ec7d 3448 int err = 0;
54456db9
MZ
3449
3450 /*
a7c90f51 3451 * We ignore "dev" entirely, and rely on the dev_id that has
54456db9
MZ
3452 * been passed via the scratchpad. This limits this domain's
3453 * usefulness to upper layers that definitely know that they
3454 * are built on top of the ITS.
3455 */
3456 dev_id = info->scratchpad[0].ul;
3457
3458 msi_info = msi_get_domain_info(domain);
3459 its = msi_info->data;
e8137f4f 3460
20b3d54e
MZ
3461 if (!gic_rdists->has_direct_lpi &&
3462 vpe_proxy.dev &&
3463 vpe_proxy.dev->its == its &&
3464 dev_id == vpe_proxy.dev->device_id) {
3465 /* Bad luck. Get yourself a better implementation */
3466 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3467 dev_id);
3468 return -EINVAL;
3469 }
3470
9791ec7d 3471 mutex_lock(&its->dev_alloc_lock);
f130420e 3472 its_dev = its_find_device(its, dev_id);
e8137f4f
MZ
3473 if (its_dev) {
3474 /*
3475 * We already have seen this ID, probably through
3476 * another alias (PCI bridge of some sort). No need to
3477 * create the device.
3478 */
9791ec7d 3479 its_dev->shared = true;
f130420e 3480 pr_debug("Reusing ITT for devID %x\n", dev_id);
e8137f4f
MZ
3481 goto out;
3482 }
b48ac83d 3483
93f94ea0 3484 its_dev = its_create_device(its, dev_id, nvec, true);
9791ec7d
MZ
3485 if (!its_dev) {
3486 err = -ENOMEM;
3487 goto out;
3488 }
b48ac83d 3489
5fe71d27
MZ
3490 if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE)
3491 its_dev->shared = true;
3492
f130420e 3493 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
e8137f4f 3494out:
9791ec7d 3495 mutex_unlock(&its->dev_alloc_lock);
b48ac83d 3496 info->scratchpad[0].ptr = its_dev;
9791ec7d 3497 return err;
b48ac83d
MZ
3498}
3499
54456db9
MZ
3500static struct msi_domain_ops its_msi_domain_ops = {
3501 .msi_prepare = its_msi_prepare,
3502};
3503
b48ac83d
MZ
3504static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3505 unsigned int virq,
3506 irq_hw_number_t hwirq)
3507{
f833f57f
MZ
3508 struct irq_fwspec fwspec;
3509
3510 if (irq_domain_get_of_node(domain->parent)) {
3511 fwspec.fwnode = domain->parent->fwnode;
3512 fwspec.param_count = 3;
3513 fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3514 fwspec.param[1] = hwirq;
3515 fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3f010cf1
TN
3516 } else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3517 fwspec.fwnode = domain->parent->fwnode;
3518 fwspec.param_count = 2;
3519 fwspec.param[0] = hwirq;
3520 fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
f833f57f
MZ
3521 } else {
3522 return -EINVAL;
3523 }
b48ac83d 3524
f833f57f 3525 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
b48ac83d
MZ
3526}
3527
3528static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3529 unsigned int nr_irqs, void *args)
3530{
3531 msi_alloc_info_t *info = args;
3532 struct its_device *its_dev = info->scratchpad[0].ptr;
35ae7df2 3533 struct its_node *its = its_dev->its;
f0c7baca 3534 struct irq_data *irqd;
b48ac83d
MZ
3535 irq_hw_number_t hwirq;
3536 int err;
3537 int i;
3538
8208d170
MZ
3539 err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3540 if (err)
3541 return err;
b48ac83d 3542
35ae7df2
JG
3543 err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3544 if (err)
3545 return err;
3546
8208d170
MZ
3547 for (i = 0; i < nr_irqs; i++) {
3548 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
b48ac83d
MZ
3549 if (err)
3550 return err;
3551
3552 irq_domain_set_hwirq_and_chip(domain, virq + i,
8208d170 3553 hwirq + i, &its_irq_chip, its_dev);
f0c7baca
TG
3554 irqd = irq_get_irq_data(virq + i);
3555 irqd_set_single_target(irqd);
3556 irqd_set_affinity_on_activate(irqd);
f130420e 3557 pr_debug("ID:%d pID:%d vID:%d\n",
8208d170
MZ
3558 (int)(hwirq + i - its_dev->event_map.lpi_base),
3559 (int)(hwirq + i), virq + i);
b48ac83d
MZ
3560 }
3561
3562 return 0;
3563}
3564
72491643 3565static int its_irq_domain_activate(struct irq_domain *domain,
702cb0a0 3566 struct irq_data *d, bool reserve)
aca268df
MZ
3567{
3568 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3569 u32 event = its_get_event_id(d);
0d224d35 3570 int cpu;
fbf8f40e 3571
c5d6082d
MZ
3572 cpu = its_select_cpu(d, cpu_online_mask);
3573 if (cpu < 0 || cpu >= nr_cpu_ids)
3574 return -EINVAL;
c1797b11 3575
2f13ff1d 3576 its_inc_lpi_count(d, cpu);
0d224d35
MZ
3577 its_dev->event_map.col_map[event] = cpu;
3578 irq_data_update_effective_affinity(d, cpumask_of(cpu));
591e5bec 3579
aca268df 3580 /* Map the GIC IRQ and event to the device */
6a25ad3a 3581 its_send_mapti(its_dev, d->hwirq, event);
72491643 3582 return 0;
aca268df
MZ
3583}
3584
3585static void its_irq_domain_deactivate(struct irq_domain *domain,
3586 struct irq_data *d)
3587{
3588 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3589 u32 event = its_get_event_id(d);
3590
2f13ff1d 3591 its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
aca268df
MZ
3592 /* Stop the delivery of interrupts */
3593 its_send_discard(its_dev, event);
3594}
3595
b48ac83d
MZ
3596static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3597 unsigned int nr_irqs)
3598{
3599 struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3600 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
9791ec7d 3601 struct its_node *its = its_dev->its;
b48ac83d
MZ
3602 int i;
3603
c9c96e30
MZ
3604 bitmap_release_region(its_dev->event_map.lpi_map,
3605 its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3606 get_count_order(nr_irqs));
3607
b48ac83d
MZ
3608 for (i = 0; i < nr_irqs; i++) {
3609 struct irq_data *data = irq_domain_get_irq_data(domain,
3610 virq + i);
b48ac83d 3611 /* Nuke the entry in the domain */
2da39949 3612 irq_domain_reset_irq_data(data);
b48ac83d
MZ
3613 }
3614
9791ec7d
MZ
3615 mutex_lock(&its->dev_alloc_lock);
3616
3617 /*
3618 * If all interrupts have been freed, start mopping the
3619 * floor. This is conditionned on the device not being shared.
3620 */
3621 if (!its_dev->shared &&
3622 bitmap_empty(its_dev->event_map.lpi_map,
591e5bec 3623 its_dev->event_map.nr_lpis)) {
38dd7c49
MZ
3624 its_lpi_free(its_dev->event_map.lpi_map,
3625 its_dev->event_map.lpi_base,
3626 its_dev->event_map.nr_lpis);
b48ac83d
MZ
3627
3628 /* Unmap device/itt */
3629 its_send_mapd(its_dev, 0);
3630 its_free_device(its_dev);
3631 }
3632
9791ec7d
MZ
3633 mutex_unlock(&its->dev_alloc_lock);
3634
b48ac83d
MZ
3635 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3636}
3637
3638static const struct irq_domain_ops its_domain_ops = {
3639 .alloc = its_irq_domain_alloc,
3640 .free = its_irq_domain_free,
aca268df
MZ
3641 .activate = its_irq_domain_activate,
3642 .deactivate = its_irq_domain_deactivate,
b48ac83d 3643};
4c21f3c2 3644
20b3d54e
MZ
3645/*
3646 * This is insane.
3647 *
0684c704 3648 * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
20b3d54e
MZ
3649 * likely), the only way to perform an invalidate is to use a fake
3650 * device to issue an INV command, implying that the LPI has first
3651 * been mapped to some event on that device. Since this is not exactly
3652 * cheap, we try to keep that mapping around as long as possible, and
3653 * only issue an UNMAP if we're short on available slots.
3654 *
3655 * Broken by design(tm).
0684c704
MZ
3656 *
3657 * GICv4.1, on the other hand, mandates that we're able to invalidate
3658 * by writing to a MMIO register. It doesn't implement the whole of
3659 * DirectLPI, but that's good enough. And most of the time, we don't
3660 * even have to invalidate anything, as the redistributor can be told
3661 * whether to generate a doorbell or not (we thus leave it enabled,
3662 * always).
20b3d54e
MZ
3663 */
3664static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3665{
0684c704
MZ
3666 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3667 if (gic_rdists->has_rvpeid)
3668 return;
3669
20b3d54e
MZ
3670 /* Already unmapped? */
3671 if (vpe->vpe_proxy_event == -1)
3672 return;
3673
3674 its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3675 vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3676
3677 /*
3678 * We don't track empty slots at all, so let's move the
3679 * next_victim pointer if we can quickly reuse that slot
3680 * instead of nuking an existing entry. Not clear that this is
3681 * always a win though, and this might just generate a ripple
3682 * effect... Let's just hope VPEs don't migrate too often.
3683 */
3684 if (vpe_proxy.vpes[vpe_proxy.next_victim])
3685 vpe_proxy.next_victim = vpe->vpe_proxy_event;
3686
3687 vpe->vpe_proxy_event = -1;
3688}
3689
3690static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3691{
0684c704
MZ
3692 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3693 if (gic_rdists->has_rvpeid)
3694 return;
3695
20b3d54e
MZ
3696 if (!gic_rdists->has_direct_lpi) {
3697 unsigned long flags;
3698
3699 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3700 its_vpe_db_proxy_unmap_locked(vpe);
3701 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3702 }
3703}
3704
3705static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3706{
0684c704
MZ
3707 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3708 if (gic_rdists->has_rvpeid)
3709 return;
3710
20b3d54e
MZ
3711 /* Already mapped? */
3712 if (vpe->vpe_proxy_event != -1)
3713 return;
3714
3715 /* This slot was already allocated. Kick the other VPE out. */
3716 if (vpe_proxy.vpes[vpe_proxy.next_victim])
3717 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3718
3719 /* Map the new VPE instead */
3720 vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3721 vpe->vpe_proxy_event = vpe_proxy.next_victim;
3722 vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3723
3724 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3725 its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3726}
3727
958b90d1
MZ
3728static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3729{
3730 unsigned long flags;
3731 struct its_collection *target_col;
3732
0684c704
MZ
3733 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3734 if (gic_rdists->has_rvpeid)
3735 return;
3736
958b90d1
MZ
3737 if (gic_rdists->has_direct_lpi) {
3738 void __iomem *rdbase;
3739
3740 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3741 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2f4f064b 3742 wait_for_syncr(rdbase);
958b90d1
MZ
3743
3744 return;
3745 }
3746
3747 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3748
3749 its_vpe_db_proxy_map_locked(vpe);
3750
3751 target_col = &vpe_proxy.dev->its->collections[to];
3752 its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3753 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3754
3755 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3756}
3757
3171a47a
MZ
3758static int its_vpe_set_affinity(struct irq_data *d,
3759 const struct cpumask *mask_val,
3760 bool force)
3761{
3762 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
dd3f050a 3763 int from, cpu = cpumask_first(mask_val);
f3a05921 3764 unsigned long flags;
3171a47a
MZ
3765
3766 /*
3767 * Changing affinity is mega expensive, so let's be as lazy as
20b3d54e 3768 * we can and only do it if we really have to. Also, if mapped
958b90d1
MZ
3769 * into the proxy device, we need to move the doorbell
3770 * interrupt to its new location.
f3a05921
MZ
3771 *
3772 * Another thing is that changing the affinity of a vPE affects
3773 * *other interrupts* such as all the vLPIs that are routed to
3774 * this vPE. This means that the irq_desc lock is not enough to
3775 * protect us, and that we must ensure nobody samples vpe->col_idx
3776 * during the update, hence the lock below which must also be
3777 * taken on any vLPI handling path that evaluates vpe->col_idx.
3171a47a 3778 */
f3a05921
MZ
3779 from = vpe_to_cpuid_lock(vpe, &flags);
3780 if (from == cpu)
dd3f050a 3781 goto out;
958b90d1 3782
dd3f050a
MZ
3783 vpe->col_idx = cpu;
3784
3785 /*
3786 * GICv4.1 allows us to skip VMOVP if moving to a cpu whose RD
3787 * is sharing its VPE table with the current one.
3788 */
3789 if (gic_data_rdist_cpu(cpu)->vpe_table_mask &&
3790 cpumask_test_cpu(from, gic_data_rdist_cpu(cpu)->vpe_table_mask))
3791 goto out;
3171a47a 3792
dd3f050a
MZ
3793 its_send_vmovp(vpe);
3794 its_vpe_db_proxy_move(vpe, from, cpu);
3795
3796out:
44c4c25e 3797 irq_data_update_effective_affinity(d, cpumask_of(cpu));
f3a05921 3798 vpe_to_cpuid_unlock(vpe, flags);
44c4c25e 3799
3171a47a
MZ
3800 return IRQ_SET_MASK_OK_DONE;
3801}
3802
96806229
MZ
3803static void its_wait_vpt_parse_complete(void)
3804{
3805 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3806 u64 val;
3807
3808 if (!gic_rdists->has_vpend_valid_dirty)
3809 return;
3810
31dbb6b1
ZY
3811 WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
3812 val,
3813 !(val & GICR_VPENDBASER_Dirty),
0b394982 3814 1, 500));
96806229
MZ
3815}
3816
e643d803
MZ
3817static void its_vpe_schedule(struct its_vpe *vpe)
3818{
50c33097 3819 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
e643d803
MZ
3820 u64 val;
3821
3822 /* Schedule the VPE */
3823 val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
3824 GENMASK_ULL(51, 12);
3825 val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3826 val |= GICR_VPROPBASER_RaWb;
3827 val |= GICR_VPROPBASER_InnerShareable;
5186a6cc 3828 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
e643d803
MZ
3829
3830 val = virt_to_phys(page_address(vpe->vpt_page)) &
3831 GENMASK_ULL(51, 16);
3832 val |= GICR_VPENDBASER_RaWaWb;
b2cb11f4 3833 val |= GICR_VPENDBASER_InnerShareable;
e643d803
MZ
3834 /*
3835 * There is no good way of finding out if the pending table is
3836 * empty as we can race against the doorbell interrupt very
3837 * easily. So in the end, vpe->pending_last is only an
3838 * indication that the vcpu has something pending, not one
3839 * that the pending table is empty. A good implementation
3840 * would be able to read its coarse map pretty quickly anyway,
3841 * making this a tolerable issue.
3842 */
3843 val |= GICR_VPENDBASER_PendingLast;
3844 val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
3845 val |= GICR_VPENDBASER_Valid;
5186a6cc 3846 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
e643d803
MZ
3847}
3848
3849static void its_vpe_deschedule(struct its_vpe *vpe)
3850{
50c33097 3851 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
e643d803
MZ
3852 u64 val;
3853
e64fab1a 3854 val = its_clear_vpend_valid(vlpi_base, 0, 0);
e643d803 3855
e64fab1a
MZ
3856 vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
3857 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
e643d803
MZ
3858}
3859
40619a2e
MZ
3860static void its_vpe_invall(struct its_vpe *vpe)
3861{
3862 struct its_node *its;
3863
3864 list_for_each_entry(its, &its_nodes, entry) {
0dd57fed 3865 if (!is_v4(its))
40619a2e
MZ
3866 continue;
3867
2247e1bf
MZ
3868 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
3869 continue;
3870
3c1cceeb
MZ
3871 /*
3872 * Sending a VINVALL to a single ITS is enough, as all
3873 * we need is to reach the redistributors.
3874 */
40619a2e 3875 its_send_vinvall(its, vpe);
3c1cceeb 3876 return;
40619a2e
MZ
3877 }
3878}
3879
e643d803
MZ
3880static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3881{
3882 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3883 struct its_cmd_info *info = vcpu_info;
3884
3885 switch (info->cmd_type) {
3886 case SCHEDULE_VPE:
3887 its_vpe_schedule(vpe);
3888 return 0;
3889
3890 case DESCHEDULE_VPE:
3891 its_vpe_deschedule(vpe);
3892 return 0;
3893
57e3cebd
SL
3894 case COMMIT_VPE:
3895 its_wait_vpt_parse_complete();
3896 return 0;
3897
5e2f7642 3898 case INVALL_VPE:
40619a2e 3899 its_vpe_invall(vpe);
5e2f7642
MZ
3900 return 0;
3901
e643d803
MZ
3902 default:
3903 return -EINVAL;
3904 }
3905}
3906
20b3d54e
MZ
3907static void its_vpe_send_cmd(struct its_vpe *vpe,
3908 void (*cmd)(struct its_device *, u32))
3909{
3910 unsigned long flags;
3911
3912 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3913
3914 its_vpe_db_proxy_map_locked(vpe);
3915 cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
3916
3917 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3918}
3919
f6a91da7
MZ
3920static void its_vpe_send_inv(struct irq_data *d)
3921{
3922 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
f6a91da7 3923
20b3d54e
MZ
3924 if (gic_rdists->has_direct_lpi) {
3925 void __iomem *rdbase;
3926
425c09be 3927 /* Target the redistributor this VPE is currently known on */
9058a4e9 3928 raw_spin_lock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
20b3d54e 3929 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
425c09be 3930 gic_write_lpir(d->parent_data->hwirq, rdbase + GICR_INVLPIR);
2f4f064b 3931 wait_for_syncr(rdbase);
9058a4e9 3932 raw_spin_unlock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
20b3d54e
MZ
3933 } else {
3934 its_vpe_send_cmd(vpe, its_send_inv);
3935 }
f6a91da7
MZ
3936}
3937
3938static void its_vpe_mask_irq(struct irq_data *d)
3939{
3940 /*
3941 * We need to unmask the LPI, which is described by the parent
3942 * irq_data. Instead of calling into the parent (which won't
3943 * exactly do the right thing, let's simply use the
3944 * parent_data pointer. Yes, I'm naughty.
3945 */
3946 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
3947 its_vpe_send_inv(d);
3948}
3949
3950static void its_vpe_unmask_irq(struct irq_data *d)
3951{
3952 /* Same hack as above... */
3953 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
3954 its_vpe_send_inv(d);
3955}
3956
e57a3e28
MZ
3957static int its_vpe_set_irqchip_state(struct irq_data *d,
3958 enum irqchip_irq_state which,
3959 bool state)
3960{
3961 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3962
3963 if (which != IRQCHIP_STATE_PENDING)
3964 return -EINVAL;
3965
3966 if (gic_rdists->has_direct_lpi) {
3967 void __iomem *rdbase;
3968
3969 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
3970 if (state) {
3971 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
3972 } else {
3973 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2f4f064b 3974 wait_for_syncr(rdbase);
e57a3e28
MZ
3975 }
3976 } else {
3977 if (state)
3978 its_vpe_send_cmd(vpe, its_send_int);
3979 else
3980 its_vpe_send_cmd(vpe, its_send_clear);
3981 }
3982
3983 return 0;
3984}
3985
7809f701
MZ
3986static int its_vpe_retrigger(struct irq_data *d)
3987{
3988 return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
3989}
3990
8fff27ae
MZ
3991static struct irq_chip its_vpe_irq_chip = {
3992 .name = "GICv4-vpe",
f6a91da7
MZ
3993 .irq_mask = its_vpe_mask_irq,
3994 .irq_unmask = its_vpe_unmask_irq,
3995 .irq_eoi = irq_chip_eoi_parent,
3171a47a 3996 .irq_set_affinity = its_vpe_set_affinity,
7809f701 3997 .irq_retrigger = its_vpe_retrigger,
e57a3e28 3998 .irq_set_irqchip_state = its_vpe_set_irqchip_state,
e643d803 3999 .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity,
8fff27ae
MZ
4000};
4001
d97c97ba
MZ
4002static struct its_node *find_4_1_its(void)
4003{
4004 static struct its_node *its = NULL;
4005
4006 if (!its) {
4007 list_for_each_entry(its, &its_nodes, entry) {
4008 if (is_v4_1(its))
4009 return its;
4010 }
4011
4012 /* Oops? */
4013 its = NULL;
4014 }
4015
4016 return its;
4017}
4018
4019static void its_vpe_4_1_send_inv(struct irq_data *d)
4020{
4021 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4022 struct its_node *its;
4023
4024 /*
4025 * GICv4.1 wants doorbells to be invalidated using the
4026 * INVDB command in order to be broadcast to all RDs. Send
4027 * it to the first valid ITS, and let the HW do its magic.
4028 */
4029 its = find_4_1_its();
4030 if (its)
4031 its_send_invdb(its, vpe);
4032}
4033
4034static void its_vpe_4_1_mask_irq(struct irq_data *d)
4035{
4036 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4037 its_vpe_4_1_send_inv(d);
4038}
4039
4040static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4041{
4042 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4043 its_vpe_4_1_send_inv(d);
4044}
4045
91bf6395
MZ
4046static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4047 struct its_cmd_info *info)
4048{
4049 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4050 u64 val = 0;
4051
4052 /* Schedule the VPE */
4053 val |= GICR_VPENDBASER_Valid;
4054 val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4055 val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4056 val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4057
5186a6cc 4058 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
91bf6395
MZ
4059}
4060
e64fab1a
MZ
4061static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4062 struct its_cmd_info *info)
4063{
4064 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4065 u64 val;
4066
4067 if (info->req_db) {
a3f574cd
MZ
4068 unsigned long flags;
4069
e64fab1a
MZ
4070 /*
4071 * vPE is going to block: make the vPE non-resident with
4072 * PendingLast clear and DB set. The GIC guarantees that if
4073 * we read-back PendingLast clear, then a doorbell will be
4074 * delivered when an interrupt comes.
a3f574cd
MZ
4075 *
4076 * Note the locking to deal with the concurrent update of
4077 * pending_last from the doorbell interrupt handler that can
4078 * run concurrently.
e64fab1a 4079 */
a3f574cd 4080 raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
e64fab1a
MZ
4081 val = its_clear_vpend_valid(vlpi_base,
4082 GICR_VPENDBASER_PendingLast,
4083 GICR_VPENDBASER_4_1_DB);
4084 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
a3f574cd 4085 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
e64fab1a
MZ
4086 } else {
4087 /*
4088 * We're not blocking, so just make the vPE non-resident
4089 * with PendingLast set, indicating that we'll be back.
4090 */
4091 val = its_clear_vpend_valid(vlpi_base,
4092 0,
4093 GICR_VPENDBASER_PendingLast);
4094 vpe->pending_last = true;
4095 }
4096}
4097
b4a4bd0f
MZ
4098static void its_vpe_4_1_invall(struct its_vpe *vpe)
4099{
4100 void __iomem *rdbase;
3af9571c 4101 unsigned long flags;
b4a4bd0f 4102 u64 val;
3af9571c 4103 int cpu;
b4a4bd0f
MZ
4104
4105 val = GICR_INVALLR_V;
4106 val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
4107
4108 /* Target the redistributor this vPE is currently known on */
3af9571c
ZY
4109 cpu = vpe_to_cpuid_lock(vpe, &flags);
4110 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4111 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
b4a4bd0f 4112 gic_write_lpir(val, rdbase + GICR_INVALLR);
b978c25f
ZY
4113
4114 wait_for_syncr(rdbase);
3af9571c
ZY
4115 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4116 vpe_to_cpuid_unlock(vpe, flags);
b4a4bd0f
MZ
4117}
4118
29c647f3
MZ
4119static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4120{
91bf6395 4121 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
29c647f3
MZ
4122 struct its_cmd_info *info = vcpu_info;
4123
4124 switch (info->cmd_type) {
4125 case SCHEDULE_VPE:
91bf6395 4126 its_vpe_4_1_schedule(vpe, info);
29c647f3
MZ
4127 return 0;
4128
4129 case DESCHEDULE_VPE:
e64fab1a 4130 its_vpe_4_1_deschedule(vpe, info);
29c647f3
MZ
4131 return 0;
4132
57e3cebd
SL
4133 case COMMIT_VPE:
4134 its_wait_vpt_parse_complete();
4135 return 0;
4136
29c647f3 4137 case INVALL_VPE:
b4a4bd0f 4138 its_vpe_4_1_invall(vpe);
29c647f3
MZ
4139 return 0;
4140
4141 default:
4142 return -EINVAL;
4143 }
4144}
4145
4146static struct irq_chip its_vpe_4_1_irq_chip = {
4147 .name = "GICv4.1-vpe",
d97c97ba
MZ
4148 .irq_mask = its_vpe_4_1_mask_irq,
4149 .irq_unmask = its_vpe_4_1_unmask_irq,
29c647f3
MZ
4150 .irq_eoi = irq_chip_eoi_parent,
4151 .irq_set_affinity = its_vpe_set_affinity,
4152 .irq_set_vcpu_affinity = its_vpe_4_1_set_vcpu_affinity,
4153};
4154
e252cf8a
MZ
4155static void its_configure_sgi(struct irq_data *d, bool clear)
4156{
4157 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4158 struct its_cmd_desc desc;
4159
4160 desc.its_vsgi_cmd.vpe = vpe;
4161 desc.its_vsgi_cmd.sgi = d->hwirq;
4162 desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4163 desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4164 desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4165 desc.its_vsgi_cmd.clear = clear;
4166
4167 /*
4168 * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4169 * destination VPE is mapped there. Since we map them eagerly at
4170 * activation time, we're pretty sure the first GICv4.1 ITS will do.
4171 */
4172 its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4173}
4174
b4e8d644
MZ
4175static void its_sgi_mask_irq(struct irq_data *d)
4176{
4177 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4178
4179 vpe->sgi_config[d->hwirq].enabled = false;
4180 its_configure_sgi(d, false);
4181}
4182
4183static void its_sgi_unmask_irq(struct irq_data *d)
4184{
4185 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4186
4187 vpe->sgi_config[d->hwirq].enabled = true;
4188 its_configure_sgi(d, false);
4189}
4190
166cba71
MZ
4191static int its_sgi_set_affinity(struct irq_data *d,
4192 const struct cpumask *mask_val,
4193 bool force)
4194{
4195 /*
4196 * There is no notion of affinity for virtual SGIs, at least
4197 * not on the host (since they can only be targetting a vPE).
4198 * Tell the kernel we've done whatever it asked for.
4199 */
4b2dfe1e 4200 irq_data_update_effective_affinity(d, mask_val);
166cba71
MZ
4201 return IRQ_SET_MASK_OK;
4202}
4203
7017ff0e
MZ
4204static int its_sgi_set_irqchip_state(struct irq_data *d,
4205 enum irqchip_irq_state which,
4206 bool state)
4207{
4208 if (which != IRQCHIP_STATE_PENDING)
4209 return -EINVAL;
4210
4211 if (state) {
4212 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4213 struct its_node *its = find_4_1_its();
4214 u64 val;
4215
4216 val = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4217 val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4218 writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4219 } else {
4220 its_configure_sgi(d, true);
4221 }
4222
4223 return 0;
4224}
4225
4226static int its_sgi_get_irqchip_state(struct irq_data *d,
4227 enum irqchip_irq_state which, bool *val)
4228{
4229 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4230 void __iomem *base;
4231 unsigned long flags;
4232 u32 count = 1000000; /* 1s! */
4233 u32 status;
4234 int cpu;
4235
4236 if (which != IRQCHIP_STATE_PENDING)
4237 return -EINVAL;
4238
4239 /*
4240 * Locking galore! We can race against two different events:
4241 *
4242 * - Concurent vPE affinity change: we must make sure it cannot
4243 * happen, or we'll talk to the wrong redistributor. This is
4244 * identical to what happens with vLPIs.
4245 *
4246 * - Concurrent VSGIPENDR access: As it involves accessing two
4247 * MMIO registers, this must be made atomic one way or another.
4248 */
4249 cpu = vpe_to_cpuid_lock(vpe, &flags);
4250 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4251 base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4252 writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4253 do {
4254 status = readl_relaxed(base + GICR_VSGIPENDR);
4255 if (!(status & GICR_VSGIPENDR_BUSY))
4256 goto out;
4257
4258 count--;
4259 if (!count) {
4260 pr_err_ratelimited("Unable to get SGI status\n");
4261 goto out;
4262 }
4263 cpu_relax();
4264 udelay(1);
4265 } while (count);
4266
4267out:
4268 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4269 vpe_to_cpuid_unlock(vpe, flags);
4270
4271 if (!count)
4272 return -ENXIO;
4273
4274 *val = !!(status & (1 << d->hwirq));
4275
4276 return 0;
4277}
4278
05d32df1
MZ
4279static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4280{
4281 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4282 struct its_cmd_info *info = vcpu_info;
4283
4284 switch (info->cmd_type) {
4285 case PROP_UPDATE_VSGI:
4286 vpe->sgi_config[d->hwirq].priority = info->priority;
4287 vpe->sgi_config[d->hwirq].group = info->group;
4288 its_configure_sgi(d, false);
4289 return 0;
4290
4291 default:
4292 return -EINVAL;
4293 }
4294}
4295
166cba71
MZ
4296static struct irq_chip its_sgi_irq_chip = {
4297 .name = "GICv4.1-sgi",
b4e8d644
MZ
4298 .irq_mask = its_sgi_mask_irq,
4299 .irq_unmask = its_sgi_unmask_irq,
166cba71 4300 .irq_set_affinity = its_sgi_set_affinity,
7017ff0e
MZ
4301 .irq_set_irqchip_state = its_sgi_set_irqchip_state,
4302 .irq_get_irqchip_state = its_sgi_get_irqchip_state,
05d32df1 4303 .irq_set_vcpu_affinity = its_sgi_set_vcpu_affinity,
166cba71
MZ
4304};
4305
4306static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4307 unsigned int virq, unsigned int nr_irqs,
4308 void *args)
4309{
4310 struct its_vpe *vpe = args;
4311 int i;
4312
4313 /* Yes, we do want 16 SGIs */
4314 WARN_ON(nr_irqs != 16);
4315
4316 for (i = 0; i < 16; i++) {
4317 vpe->sgi_config[i].priority = 0;
4318 vpe->sgi_config[i].enabled = false;
4319 vpe->sgi_config[i].group = false;
4320
4321 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4322 &its_sgi_irq_chip, vpe);
4323 irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4324 }
4325
4326 return 0;
4327}
4328
4329static void its_sgi_irq_domain_free(struct irq_domain *domain,
4330 unsigned int virq,
4331 unsigned int nr_irqs)
4332{
4333 /* Nothing to do */
4334}
4335
4336static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4337 struct irq_data *d, bool reserve)
4338{
e252cf8a
MZ
4339 /* Write out the initial SGI configuration */
4340 its_configure_sgi(d, false);
166cba71
MZ
4341 return 0;
4342}
4343
4344static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4345 struct irq_data *d)
4346{
e252cf8a
MZ
4347 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4348
4349 /*
4350 * The VSGI command is awkward:
4351 *
4352 * - To change the configuration, CLEAR must be set to false,
4353 * leaving the pending bit unchanged.
4354 * - To clear the pending bit, CLEAR must be set to true, leaving
4355 * the configuration unchanged.
4356 *
4357 * You just can't do both at once, hence the two commands below.
4358 */
4359 vpe->sgi_config[d->hwirq].enabled = false;
4360 its_configure_sgi(d, false);
4361 its_configure_sgi(d, true);
166cba71
MZ
4362}
4363
4364static const struct irq_domain_ops its_sgi_domain_ops = {
4365 .alloc = its_sgi_irq_domain_alloc,
4366 .free = its_sgi_irq_domain_free,
4367 .activate = its_sgi_irq_domain_activate,
4368 .deactivate = its_sgi_irq_domain_deactivate,
4369};
4370
7d75bbb4
MZ
4371static int its_vpe_id_alloc(void)
4372{
32bd44dc 4373 return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
7d75bbb4
MZ
4374}
4375
4376static void its_vpe_id_free(u16 id)
4377{
4378 ida_simple_remove(&its_vpeid_ida, id);
4379}
4380
4381static int its_vpe_init(struct its_vpe *vpe)
4382{
4383 struct page *vpt_page;
4384 int vpe_id;
4385
4386 /* Allocate vpe_id */
4387 vpe_id = its_vpe_id_alloc();
4388 if (vpe_id < 0)
4389 return vpe_id;
4390
4391 /* Allocate VPT */
4392 vpt_page = its_allocate_pending_table(GFP_KERNEL);
4393 if (!vpt_page) {
4394 its_vpe_id_free(vpe_id);
4395 return -ENOMEM;
4396 }
4397
4398 if (!its_alloc_vpe_table(vpe_id)) {
4399 its_vpe_id_free(vpe_id);
34f8eb92 4400 its_free_pending_table(vpt_page);
7d75bbb4
MZ
4401 return -ENOMEM;
4402 }
4403
f3a05921 4404 raw_spin_lock_init(&vpe->vpe_lock);
7d75bbb4
MZ
4405 vpe->vpe_id = vpe_id;
4406 vpe->vpt_page = vpt_page;
64edfaa9
MZ
4407 if (gic_rdists->has_rvpeid)
4408 atomic_set(&vpe->vmapp_count, 0);
4409 else
4410 vpe->vpe_proxy_event = -1;
7d75bbb4
MZ
4411
4412 return 0;
4413}
4414
4415static void its_vpe_teardown(struct its_vpe *vpe)
4416{
20b3d54e 4417 its_vpe_db_proxy_unmap(vpe);
7d75bbb4
MZ
4418 its_vpe_id_free(vpe->vpe_id);
4419 its_free_pending_table(vpe->vpt_page);
4420}
4421
4422static void its_vpe_irq_domain_free(struct irq_domain *domain,
4423 unsigned int virq,
4424 unsigned int nr_irqs)
4425{
4426 struct its_vm *vm = domain->host_data;
4427 int i;
4428
4429 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4430
4431 for (i = 0; i < nr_irqs; i++) {
4432 struct irq_data *data = irq_domain_get_irq_data(domain,
4433 virq + i);
4434 struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4435
4436 BUG_ON(vm != vpe->its_vm);
4437
4438 clear_bit(data->hwirq, vm->db_bitmap);
4439 its_vpe_teardown(vpe);
4440 irq_domain_reset_irq_data(data);
4441 }
4442
4443 if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
38dd7c49 4444 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
7d75bbb4
MZ
4445 its_free_prop_table(vm->vprop_page);
4446 }
4447}
4448
4449static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4450 unsigned int nr_irqs, void *args)
4451{
29c647f3 4452 struct irq_chip *irqchip = &its_vpe_irq_chip;
7d75bbb4
MZ
4453 struct its_vm *vm = args;
4454 unsigned long *bitmap;
4455 struct page *vprop_page;
4456 int base, nr_ids, i, err = 0;
4457
4458 BUG_ON(!vm);
4459
38dd7c49 4460 bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
7d75bbb4
MZ
4461 if (!bitmap)
4462 return -ENOMEM;
4463
4464 if (nr_ids < nr_irqs) {
38dd7c49 4465 its_lpi_free(bitmap, base, nr_ids);
7d75bbb4
MZ
4466 return -ENOMEM;
4467 }
4468
4469 vprop_page = its_allocate_prop_table(GFP_KERNEL);
4470 if (!vprop_page) {
38dd7c49 4471 its_lpi_free(bitmap, base, nr_ids);
7d75bbb4
MZ
4472 return -ENOMEM;
4473 }
4474
4475 vm->db_bitmap = bitmap;
4476 vm->db_lpi_base = base;
4477 vm->nr_db_lpis = nr_ids;
4478 vm->vprop_page = vprop_page;
4479
29c647f3
MZ
4480 if (gic_rdists->has_rvpeid)
4481 irqchip = &its_vpe_4_1_irq_chip;
4482
7d75bbb4
MZ
4483 for (i = 0; i < nr_irqs; i++) {
4484 vm->vpes[i]->vpe_db_lpi = base + i;
4485 err = its_vpe_init(vm->vpes[i]);
4486 if (err)
4487 break;
4488 err = its_irq_gic_domain_alloc(domain, virq + i,
4489 vm->vpes[i]->vpe_db_lpi);
4490 if (err)
4491 break;
4492 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
29c647f3 4493 irqchip, vm->vpes[i]);
7d75bbb4
MZ
4494 set_bit(i, bitmap);
4495 }
4496
4497 if (err) {
4498 if (i > 0)
4499 its_vpe_irq_domain_free(domain, virq, i - 1);
4500
38dd7c49 4501 its_lpi_free(bitmap, base, nr_ids);
7d75bbb4
MZ
4502 its_free_prop_table(vprop_page);
4503 }
4504
4505 return err;
4506}
4507
72491643 4508static int its_vpe_irq_domain_activate(struct irq_domain *domain,
702cb0a0 4509 struct irq_data *d, bool reserve)
eb78192b
MZ
4510{
4511 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
40619a2e 4512 struct its_node *its;
eb78192b 4513
009384b3
MZ
4514 /*
4515 * If we use the list map, we issue VMAPP on demand... Unless
4516 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4517 * so that VSGIs can work.
4518 */
4519 if (!gic_requires_eager_mapping())
6ef930f2 4520 return 0;
eb78192b
MZ
4521
4522 /* Map the VPE to the first possible CPU */
4523 vpe->col_idx = cpumask_first(cpu_online_mask);
40619a2e
MZ
4524
4525 list_for_each_entry(its, &its_nodes, entry) {
0dd57fed 4526 if (!is_v4(its))
40619a2e
MZ
4527 continue;
4528
75fd951b 4529 its_send_vmapp(its, vpe, true);
40619a2e
MZ
4530 its_send_vinvall(its, vpe);
4531 }
4532
44c4c25e
MZ
4533 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4534
72491643 4535 return 0;
eb78192b
MZ
4536}
4537
4538static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4539 struct irq_data *d)
4540{
4541 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
75fd951b
MZ
4542 struct its_node *its;
4543
2247e1bf 4544 /*
009384b3
MZ
4545 * If we use the list map on GICv4.0, we unmap the VPE once no
4546 * VLPIs are associated with the VM.
2247e1bf 4547 */
009384b3 4548 if (!gic_requires_eager_mapping())
2247e1bf 4549 return;
eb78192b 4550
75fd951b 4551 list_for_each_entry(its, &its_nodes, entry) {
0dd57fed 4552 if (!is_v4(its))
75fd951b 4553 continue;
eb78192b 4554
75fd951b
MZ
4555 its_send_vmapp(its, vpe, false);
4556 }
eb78192b
MZ
4557}
4558
8fff27ae 4559static const struct irq_domain_ops its_vpe_domain_ops = {
7d75bbb4
MZ
4560 .alloc = its_vpe_irq_domain_alloc,
4561 .free = its_vpe_irq_domain_free,
eb78192b
MZ
4562 .activate = its_vpe_irq_domain_activate,
4563 .deactivate = its_vpe_irq_domain_deactivate,
8fff27ae
MZ
4564};
4565
4559fbb3
YW
4566static int its_force_quiescent(void __iomem *base)
4567{
4568 u32 count = 1000000; /* 1s */
4569 u32 val;
4570
4571 val = readl_relaxed(base + GITS_CTLR);
7611da86
DD
4572 /*
4573 * GIC architecture specification requires the ITS to be both
4574 * disabled and quiescent for writes to GITS_BASER<n> or
4575 * GITS_CBASER to not have UNPREDICTABLE results.
4576 */
4577 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4559fbb3
YW
4578 return 0;
4579
4580 /* Disable the generation of all interrupts to this ITS */
d51c4b4d 4581 val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4559fbb3
YW
4582 writel_relaxed(val, base + GITS_CTLR);
4583
4584 /* Poll GITS_CTLR and wait until ITS becomes quiescent */
4585 while (1) {
4586 val = readl_relaxed(base + GITS_CTLR);
4587 if (val & GITS_CTLR_QUIESCENT)
4588 return 0;
4589
4590 count--;
4591 if (!count)
4592 return -EBUSY;
4593
4594 cpu_relax();
4595 udelay(1);
4596 }
4597}
4598
9d111d49 4599static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
94100970
RR
4600{
4601 struct its_node *its = data;
4602
576a8342
MZ
4603 /* erratum 22375: only alloc 8MB table size (20 bits) */
4604 its->typer &= ~GITS_TYPER_DEVBITS;
4605 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
94100970 4606 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
9d111d49
AB
4607
4608 return true;
94100970
RR
4609}
4610
9d111d49 4611static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
fbf8f40e
GK
4612{
4613 struct its_node *its = data;
4614
4615 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
9d111d49
AB
4616
4617 return true;
fbf8f40e
GK
4618}
4619
9d111d49 4620static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
90922a2d
SD
4621{
4622 struct its_node *its = data;
4623
4624 /* On QDF2400, the size of the ITE is 16Bytes */
ffedbf0c
MZ
4625 its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4626 its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
9d111d49
AB
4627
4628 return true;
90922a2d
SD
4629}
4630
558b0165
AB
4631static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4632{
4633 struct its_node *its = its_dev->its;
4634
4635 /*
4636 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4637 * which maps 32-bit writes targeted at a separate window of
4638 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4639 * with device ID taken from bits [device_id_bits + 1:2] of
4640 * the window offset.
4641 */
4642 return its->pre_its_base + (its_dev->device_id << 2);
4643}
4644
4645static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4646{
4647 struct its_node *its = data;
4648 u32 pre_its_window[2];
4649 u32 ids;
4650
4651 if (!fwnode_property_read_u32_array(its->fwnode_handle,
4652 "socionext,synquacer-pre-its",
4653 pre_its_window,
4654 ARRAY_SIZE(pre_its_window))) {
4655
4656 its->pre_its_base = pre_its_window[0];
4657 its->get_msi_base = its_irq_get_msi_base_pre_its;
4658
4659 ids = ilog2(pre_its_window[1]) - 2;
576a8342
MZ
4660 if (device_ids(its) > ids) {
4661 its->typer &= ~GITS_TYPER_DEVBITS;
4662 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4663 }
558b0165
AB
4664
4665 /* the pre-ITS breaks isolation, so disable MSI remapping */
4666 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP;
4667 return true;
4668 }
4669 return false;
4670}
4671
5c9a882e
MZ
4672static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4673{
4674 struct its_node *its = data;
4675
4676 /*
4677 * Hip07 insists on using the wrong address for the VLPI
4678 * page. Trick it into doing the right thing...
4679 */
4680 its->vlpi_redist_offset = SZ_128K;
4681 return true;
90922a2d
SD
4682}
4683
67510cca 4684static const struct gic_quirk its_quirks[] = {
94100970
RR
4685#ifdef CONFIG_CAVIUM_ERRATUM_22375
4686 {
4687 .desc = "ITS: Cavium errata 22375, 24313",
4688 .iidr = 0xa100034c, /* ThunderX pass 1.x */
4689 .mask = 0xffff0fff,
4690 .init = its_enable_quirk_cavium_22375,
4691 },
fbf8f40e
GK
4692#endif
4693#ifdef CONFIG_CAVIUM_ERRATUM_23144
4694 {
4695 .desc = "ITS: Cavium erratum 23144",
4696 .iidr = 0xa100034c, /* ThunderX pass 1.x */
4697 .mask = 0xffff0fff,
4698 .init = its_enable_quirk_cavium_23144,
4699 },
90922a2d
SD
4700#endif
4701#ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4702 {
4703 .desc = "ITS: QDF2400 erratum 0065",
4704 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */
4705 .mask = 0xffffffff,
4706 .init = its_enable_quirk_qdf2400_e0065,
4707 },
558b0165
AB
4708#endif
4709#ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4710 {
4711 /*
4712 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4713 * implementation, but with a 'pre-ITS' added that requires
4714 * special handling in software.
4715 */
4716 .desc = "ITS: Socionext Synquacer pre-ITS",
4717 .iidr = 0x0001143b,
4718 .mask = 0xffffffff,
4719 .init = its_enable_quirk_socionext_synquacer,
4720 },
5c9a882e
MZ
4721#endif
4722#ifdef CONFIG_HISILICON_ERRATUM_161600802
4723 {
4724 .desc = "ITS: Hip07 erratum 161600802",
4725 .iidr = 0x00000004,
4726 .mask = 0xffffffff,
4727 .init = its_enable_quirk_hip07_161600802,
4728 },
94100970 4729#endif
67510cca
RR
4730 {
4731 }
4732};
4733
4734static void its_enable_quirks(struct its_node *its)
4735{
4736 u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4737
4738 gic_enable_quirks(iidr, its_quirks, its);
4739}
4740
dba0bc7b
DB
4741static int its_save_disable(void)
4742{
4743 struct its_node *its;
4744 int err = 0;
4745
a8db7456 4746 raw_spin_lock(&its_lock);
dba0bc7b
DB
4747 list_for_each_entry(its, &its_nodes, entry) {
4748 void __iomem *base;
4749
dba0bc7b
DB
4750 base = its->base;
4751 its->ctlr_save = readl_relaxed(base + GITS_CTLR);
4752 err = its_force_quiescent(base);
4753 if (err) {
4754 pr_err("ITS@%pa: failed to quiesce: %d\n",
4755 &its->phys_base, err);
4756 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4757 goto err;
4758 }
4759
4760 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
4761 }
4762
4763err:
4764 if (err) {
4765 list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
4766 void __iomem *base;
4767
dba0bc7b
DB
4768 base = its->base;
4769 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4770 }
4771 }
a8db7456 4772 raw_spin_unlock(&its_lock);
dba0bc7b
DB
4773
4774 return err;
4775}
4776
4777static void its_restore_enable(void)
4778{
4779 struct its_node *its;
4780 int ret;
4781
a8db7456 4782 raw_spin_lock(&its_lock);
dba0bc7b
DB
4783 list_for_each_entry(its, &its_nodes, entry) {
4784 void __iomem *base;
4785 int i;
4786
dba0bc7b
DB
4787 base = its->base;
4788
4789 /*
4790 * Make sure that the ITS is disabled. If it fails to quiesce,
4791 * don't restore it since writing to CBASER or BASER<n>
4792 * registers is undefined according to the GIC v3 ITS
4793 * Specification.
74cde1a5
XQ
4794 *
4795 * Firmware resuming with the ITS enabled is terminally broken.
dba0bc7b 4796 */
74cde1a5 4797 WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
dba0bc7b
DB
4798 ret = its_force_quiescent(base);
4799 if (ret) {
4800 pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
4801 &its->phys_base, ret);
4802 continue;
4803 }
4804
4805 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
4806
4807 /*
4808 * Writing CBASER resets CREADR to 0, so make CWRITER and
4809 * cmd_write line up with it.
4810 */
4811 its->cmd_write = its->cmd_base;
4812 gits_write_cwriter(0, base + GITS_CWRITER);
4813
4814 /* Restore GITS_BASER from the value cache. */
4815 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
4816 struct its_baser *baser = &its->tables[i];
4817
4818 if (!(baser->val & GITS_BASER_VALID))
4819 continue;
4820
4821 its_write_baser(its, baser, baser->val);
4822 }
4823 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
920181ce
DB
4824
4825 /*
4826 * Reinit the collection if it's stored in the ITS. This is
4827 * indicated by the col_id being less than the HCC field.
4828 * CID < HCC as specified in the GIC v3 Documentation.
4829 */
4830 if (its->collections[smp_processor_id()].col_id <
4831 GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
4832 its_cpu_init_collection(its);
dba0bc7b 4833 }
a8db7456 4834 raw_spin_unlock(&its_lock);
dba0bc7b
DB
4835}
4836
4837static struct syscore_ops its_syscore_ops = {
4838 .suspend = its_save_disable,
4839 .resume = its_restore_enable,
4840};
4841
db40f0a7 4842static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
d14ae5e6
TN
4843{
4844 struct irq_domain *inner_domain;
4845 struct msi_domain_info *info;
4846
4847 info = kzalloc(sizeof(*info), GFP_KERNEL);
4848 if (!info)
4849 return -ENOMEM;
4850
db40f0a7 4851 inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
d14ae5e6
TN
4852 if (!inner_domain) {
4853 kfree(info);
4854 return -ENOMEM;
4855 }
4856
db40f0a7 4857 inner_domain->parent = its_parent;
96f0d93a 4858 irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
558b0165 4859 inner_domain->flags |= its->msi_domain_flags;
d14ae5e6
TN
4860 info->ops = &its_msi_domain_ops;
4861 info->data = its;
4862 inner_domain->host_data = info;
4863
4864 return 0;
4865}
4866
8fff27ae
MZ
4867static int its_init_vpe_domain(void)
4868{
20b3d54e
MZ
4869 struct its_node *its;
4870 u32 devid;
4871 int entries;
4872
4873 if (gic_rdists->has_direct_lpi) {
4874 pr_info("ITS: Using DirectLPI for VPE invalidation\n");
4875 return 0;
4876 }
4877
4878 /* Any ITS will do, even if not v4 */
4879 its = list_first_entry(&its_nodes, struct its_node, entry);
4880
4881 entries = roundup_pow_of_two(nr_cpu_ids);
6396bb22 4882 vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
20b3d54e
MZ
4883 GFP_KERNEL);
4884 if (!vpe_proxy.vpes) {
4885 pr_err("ITS: Can't allocate GICv4 proxy device array\n");
4886 return -ENOMEM;
4887 }
4888
4889 /* Use the last possible DevID */
576a8342 4890 devid = GENMASK(device_ids(its) - 1, 0);
20b3d54e
MZ
4891 vpe_proxy.dev = its_create_device(its, devid, entries, false);
4892 if (!vpe_proxy.dev) {
4893 kfree(vpe_proxy.vpes);
4894 pr_err("ITS: Can't allocate GICv4 proxy device\n");
4895 return -ENOMEM;
4896 }
4897
c427a475 4898 BUG_ON(entries > vpe_proxy.dev->nr_ites);
20b3d54e
MZ
4899
4900 raw_spin_lock_init(&vpe_proxy.lock);
4901 vpe_proxy.next_victim = 0;
4902 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
4903 devid, vpe_proxy.dev->nr_ites);
4904
8fff27ae
MZ
4905 return 0;
4906}
4907
3dfa576b
MZ
4908static int __init its_compute_its_list_map(struct resource *res,
4909 void __iomem *its_base)
4910{
4911 int its_number;
4912 u32 ctlr;
4913
4914 /*
4915 * This is assumed to be done early enough that we're
4916 * guaranteed to be single-threaded, hence no
4917 * locking. Should this change, we should address
4918 * this.
4919 */
ab60491e
MZ
4920 its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
4921 if (its_number >= GICv4_ITS_LIST_MAX) {
3dfa576b
MZ
4922 pr_err("ITS@%pa: No ITSList entry available!\n",
4923 &res->start);
4924 return -EINVAL;
4925 }
4926
4927 ctlr = readl_relaxed(its_base + GITS_CTLR);
4928 ctlr &= ~GITS_CTLR_ITS_NUMBER;
4929 ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
4930 writel_relaxed(ctlr, its_base + GITS_CTLR);
4931 ctlr = readl_relaxed(its_base + GITS_CTLR);
4932 if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
4933 its_number = ctlr & GITS_CTLR_ITS_NUMBER;
4934 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
4935 }
4936
4937 if (test_and_set_bit(its_number, &its_list_map)) {
4938 pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
4939 &res->start, its_number);
4940 return -EINVAL;
4941 }
4942
4943 return its_number;
4944}
4945
db40f0a7
TN
4946static int __init its_probe_one(struct resource *res,
4947 struct fwnode_handle *handle, int numa_node)
4c21f3c2 4948{
4c21f3c2
MZ
4949 struct its_node *its;
4950 void __iomem *its_base;
3dfa576b
MZ
4951 u32 val, ctlr;
4952 u64 baser, tmp, typer;
539d3782 4953 struct page *page;
4c21f3c2
MZ
4954 int err;
4955
5e46a484 4956 its_base = ioremap(res->start, SZ_64K);
4c21f3c2 4957 if (!its_base) {
db40f0a7 4958 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
4c21f3c2
MZ
4959 return -ENOMEM;
4960 }
4961
4962 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
4963 if (val != 0x30 && val != 0x40) {
db40f0a7 4964 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
4c21f3c2
MZ
4965 err = -ENODEV;
4966 goto out_unmap;
4967 }
4968
4559fbb3
YW
4969 err = its_force_quiescent(its_base);
4970 if (err) {
db40f0a7 4971 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
4559fbb3
YW
4972 goto out_unmap;
4973 }
4974
db40f0a7 4975 pr_info("ITS %pR\n", res);
4c21f3c2
MZ
4976
4977 its = kzalloc(sizeof(*its), GFP_KERNEL);
4978 if (!its) {
4979 err = -ENOMEM;
4980 goto out_unmap;
4981 }
4982
4983 raw_spin_lock_init(&its->lock);
9791ec7d 4984 mutex_init(&its->dev_alloc_lock);
4c21f3c2
MZ
4985 INIT_LIST_HEAD(&its->entry);
4986 INIT_LIST_HEAD(&its->its_device_list);
3dfa576b 4987 typer = gic_read_typer(its_base + GITS_TYPER);
0dd57fed 4988 its->typer = typer;
4c21f3c2 4989 its->base = its_base;
db40f0a7 4990 its->phys_base = res->start;
0dd57fed 4991 if (is_v4(its)) {
3dfa576b
MZ
4992 if (!(typer & GITS_TYPER_VMOVP)) {
4993 err = its_compute_its_list_map(res, its_base);
4994 if (err < 0)
4995 goto out_free_its;
4996
debf6d02
MZ
4997 its->list_nr = err;
4998
3dfa576b
MZ
4999 pr_info("ITS@%pa: Using ITS number %d\n",
5000 &res->start, err);
5001 } else {
5002 pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
5003 }
5e516846
MZ
5004
5005 if (is_v4_1(its)) {
5006 u32 svpet = FIELD_GET(GITS_TYPER_SVPET, typer);
5e46a484
MZ
5007
5008 its->sgir_base = ioremap(res->start + SZ_128K, SZ_64K);
5009 if (!its->sgir_base) {
5010 err = -ENOMEM;
5011 goto out_free_its;
5012 }
5013
5e516846
MZ
5014 its->mpidr = readl_relaxed(its_base + GITS_MPIDR);
5015
5016 pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5017 &res->start, its->mpidr, svpet);
5018 }
3dfa576b
MZ
5019 }
5020
db40f0a7 5021 its->numa_node = numa_node;
4c21f3c2 5022
539d3782
SD
5023 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
5024 get_order(ITS_CMD_QUEUE_SZ));
5025 if (!page) {
4c21f3c2 5026 err = -ENOMEM;
5e46a484 5027 goto out_unmap_sgir;
4c21f3c2 5028 }
539d3782 5029 its->cmd_base = (void *)page_address(page);
4c21f3c2 5030 its->cmd_write = its->cmd_base;
558b0165
AB
5031 its->fwnode_handle = handle;
5032 its->get_msi_base = its_irq_get_msi_base;
5033 its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP;
4c21f3c2 5034
67510cca
RR
5035 its_enable_quirks(its);
5036
0e0b0f69 5037 err = its_alloc_tables(its);
4c21f3c2
MZ
5038 if (err)
5039 goto out_free_cmd;
5040
5041 err = its_alloc_collections(its);
5042 if (err)
5043 goto out_free_tables;
5044
5045 baser = (virt_to_phys(its->cmd_base) |
2fd632a0 5046 GITS_CBASER_RaWaWb |
4c21f3c2
MZ
5047 GITS_CBASER_InnerShareable |
5048 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) |
5049 GITS_CBASER_VALID);
5050
0968a619
VM
5051 gits_write_cbaser(baser, its->base + GITS_CBASER);
5052 tmp = gits_read_cbaser(its->base + GITS_CBASER);
4c21f3c2 5053
4ad3e363 5054 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
241a386c
MZ
5055 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5056 /*
5057 * The HW reports non-shareable, we must
5058 * remove the cacheability attributes as
5059 * well.
5060 */
5061 baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5062 GITS_CBASER_CACHEABILITY_MASK);
5063 baser |= GITS_CBASER_nC;
0968a619 5064 gits_write_cbaser(baser, its->base + GITS_CBASER);
241a386c 5065 }
4c21f3c2
MZ
5066 pr_info("ITS: using cache flushing for cmd queue\n");
5067 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5068 }
5069
0968a619 5070 gits_write_cwriter(0, its->base + GITS_CWRITER);
3dfa576b 5071 ctlr = readl_relaxed(its->base + GITS_CTLR);
d51c4b4d 5072 ctlr |= GITS_CTLR_ENABLE;
0dd57fed 5073 if (is_v4(its))
d51c4b4d
MZ
5074 ctlr |= GITS_CTLR_ImDe;
5075 writel_relaxed(ctlr, its->base + GITS_CTLR);
241a386c 5076
db40f0a7 5077 err = its_init_domain(handle, its);
d14ae5e6
TN
5078 if (err)
5079 goto out_free_tables;
4c21f3c2 5080
a8db7456 5081 raw_spin_lock(&its_lock);
4c21f3c2 5082 list_add(&its->entry, &its_nodes);
a8db7456 5083 raw_spin_unlock(&its_lock);
4c21f3c2
MZ
5084
5085 return 0;
5086
4c21f3c2
MZ
5087out_free_tables:
5088 its_free_tables(its);
5089out_free_cmd:
5bc13c2c 5090 free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5e46a484
MZ
5091out_unmap_sgir:
5092 if (its->sgir_base)
5093 iounmap(its->sgir_base);
4c21f3c2
MZ
5094out_free_its:
5095 kfree(its);
5096out_unmap:
5097 iounmap(its_base);
db40f0a7 5098 pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
4c21f3c2
MZ
5099 return err;
5100}
5101
5102static bool gic_rdists_supports_plpis(void)
5103{
589ce5f4 5104 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
4c21f3c2
MZ
5105}
5106
6eb486b6
SD
5107static int redist_disable_lpis(void)
5108{
5109 void __iomem *rbase = gic_data_rdist_rd_base();
5110 u64 timeout = USEC_PER_SEC;
5111 u64 val;
5112
5113 if (!gic_rdists_supports_plpis()) {
5114 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5115 return -ENXIO;
5116 }
5117
5118 val = readl_relaxed(rbase + GICR_CTLR);
5119 if (!(val & GICR_CTLR_ENABLE_LPIS))
5120 return 0;
5121
11e37d35
MZ
5122 /*
5123 * If coming via a CPU hotplug event, we don't need to disable
5124 * LPIs before trying to re-enable them. They are already
5125 * configured and all is well in the world.
c440a9d9
MZ
5126 *
5127 * If running with preallocated tables, there is nothing to do.
11e37d35 5128 */
c440a9d9
MZ
5129 if (gic_data_rdist()->lpi_enabled ||
5130 (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
11e37d35
MZ
5131 return 0;
5132
5133 /*
5134 * From that point on, we only try to do some damage control.
5135 */
5136 pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
6eb486b6
SD
5137 smp_processor_id());
5138 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5139
5140 /* Disable LPIs */
5141 val &= ~GICR_CTLR_ENABLE_LPIS;
5142 writel_relaxed(val, rbase + GICR_CTLR);
5143
5144 /* Make sure any change to GICR_CTLR is observable by the GIC */
5145 dsb(sy);
5146
5147 /*
5148 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5149 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5150 * Error out if we time out waiting for RWP to clear.
5151 */
5152 while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5153 if (!timeout) {
5154 pr_err("CPU%d: Timeout while disabling LPIs\n",
5155 smp_processor_id());
5156 return -ETIMEDOUT;
5157 }
5158 udelay(1);
5159 timeout--;
5160 }
5161
5162 /*
5163 * After it has been written to 1, it is IMPLEMENTATION
5164 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5165 * cleared to 0. Error out if clearing the bit failed.
5166 */
5167 if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5168 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5169 return -EBUSY;
5170 }
5171
5172 return 0;
5173}
5174
4c21f3c2
MZ
5175int its_cpu_init(void)
5176{
4c21f3c2 5177 if (!list_empty(&its_nodes)) {
6eb486b6
SD
5178 int ret;
5179
5180 ret = redist_disable_lpis();
5181 if (ret)
5182 return ret;
5183
4c21f3c2 5184 its_cpu_init_lpis();
920181ce 5185 its_cpu_init_collections();
4c21f3c2
MZ
5186 }
5187
5188 return 0;
5189}
5190
935bba7c 5191static const struct of_device_id its_device_id[] = {
4c21f3c2
MZ
5192 { .compatible = "arm,gic-v3-its", },
5193 {},
5194};
5195
db40f0a7 5196static int __init its_of_probe(struct device_node *node)
4c21f3c2
MZ
5197{
5198 struct device_node *np;
db40f0a7 5199 struct resource res;
4c21f3c2
MZ
5200
5201 for (np = of_find_matching_node(node, its_device_id); np;
5202 np = of_find_matching_node(np, its_device_id)) {
95a25625
SB
5203 if (!of_device_is_available(np))
5204 continue;
d14ae5e6 5205 if (!of_property_read_bool(np, "msi-controller")) {
e81f54c6
RH
5206 pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5207 np);
d14ae5e6
TN
5208 continue;
5209 }
5210
db40f0a7 5211 if (of_address_to_resource(np, 0, &res)) {
e81f54c6 5212 pr_warn("%pOF: no regs?\n", np);
db40f0a7
TN
5213 continue;
5214 }
5215
5216 its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
4c21f3c2 5217 }
db40f0a7
TN
5218 return 0;
5219}
5220
3f010cf1
TN
5221#ifdef CONFIG_ACPI
5222
5223#define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5224
d1ce263f 5225#ifdef CONFIG_ACPI_NUMA
dbd2b826
GK
5226struct its_srat_map {
5227 /* numa node id */
5228 u32 numa_node;
5229 /* GIC ITS ID */
5230 u32 its_id;
5231};
5232
fdf6e7a8 5233static struct its_srat_map *its_srat_maps __initdata;
dbd2b826
GK
5234static int its_in_srat __initdata;
5235
5236static int __init acpi_get_its_numa_node(u32 its_id)
5237{
5238 int i;
5239
5240 for (i = 0; i < its_in_srat; i++) {
5241 if (its_id == its_srat_maps[i].its_id)
5242 return its_srat_maps[i].numa_node;
5243 }
5244 return NUMA_NO_NODE;
5245}
5246
60574d1e 5247static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
fdf6e7a8
HG
5248 const unsigned long end)
5249{
5250 return 0;
5251}
5252
60574d1e 5253static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
dbd2b826
GK
5254 const unsigned long end)
5255{
5256 int node;
5257 struct acpi_srat_gic_its_affinity *its_affinity;
5258
5259 its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5260 if (!its_affinity)
5261 return -EINVAL;
5262
5263 if (its_affinity->header.length < sizeof(*its_affinity)) {
5264 pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5265 its_affinity->header.length);
5266 return -EINVAL;
5267 }
5268
95ac5bf4
JC
5269 /*
5270 * Note that in theory a new proximity node could be created by this
5271 * entry as it is an SRAT resource allocation structure.
5272 * We do not currently support doing so.
5273 */
5274 node = pxm_to_node(its_affinity->proximity_domain);
dbd2b826
GK
5275
5276 if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5277 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5278 return 0;
5279 }
5280
5281 its_srat_maps[its_in_srat].numa_node = node;
5282 its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5283 its_in_srat++;
5284 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5285 its_affinity->proximity_domain, its_affinity->its_id, node);
5286
5287 return 0;
5288}
5289
5290static void __init acpi_table_parse_srat_its(void)
5291{
fdf6e7a8
HG
5292 int count;
5293
5294 count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5295 sizeof(struct acpi_table_srat),
5296 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5297 gic_acpi_match_srat_its, 0);
5298 if (count <= 0)
5299 return;
5300
6da2ec56
KC
5301 its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5302 GFP_KERNEL);
fdf6e7a8
HG
5303 if (!its_srat_maps) {
5304 pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n");
5305 return;
5306 }
5307
dbd2b826
GK
5308 acpi_table_parse_entries(ACPI_SIG_SRAT,
5309 sizeof(struct acpi_table_srat),
5310 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5311 gic_acpi_parse_srat_its, 0);
5312}
fdf6e7a8
HG
5313
5314/* free the its_srat_maps after ITS probing */
5315static void __init acpi_its_srat_maps_free(void)
5316{
5317 kfree(its_srat_maps);
5318}
dbd2b826
GK
5319#else
5320static void __init acpi_table_parse_srat_its(void) { }
5321static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
fdf6e7a8 5322static void __init acpi_its_srat_maps_free(void) { }
dbd2b826
GK
5323#endif
5324
60574d1e 5325static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
3f010cf1
TN
5326 const unsigned long end)
5327{
5328 struct acpi_madt_generic_translator *its_entry;
5329 struct fwnode_handle *dom_handle;
5330 struct resource res;
5331 int err;
5332
5333 its_entry = (struct acpi_madt_generic_translator *)header;
5334 memset(&res, 0, sizeof(res));
5335 res.start = its_entry->base_address;
5336 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5337 res.flags = IORESOURCE_MEM;
5338
5778cc77 5339 dom_handle = irq_domain_alloc_fwnode(&res.start);
3f010cf1
TN
5340 if (!dom_handle) {
5341 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5342 &res.start);
5343 return -ENOMEM;
5344 }
5345
8b4282e6
SK
5346 err = iort_register_domain_token(its_entry->translation_id, res.start,
5347 dom_handle);
3f010cf1
TN
5348 if (err) {
5349 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5350 &res.start, its_entry->translation_id);
5351 goto dom_err;
5352 }
5353
dbd2b826
GK
5354 err = its_probe_one(&res, dom_handle,
5355 acpi_get_its_numa_node(its_entry->translation_id));
3f010cf1
TN
5356 if (!err)
5357 return 0;
5358
5359 iort_deregister_domain_token(its_entry->translation_id);
5360dom_err:
5361 irq_domain_free_fwnode(dom_handle);
5362 return err;
5363}
5364
5365static void __init its_acpi_probe(void)
5366{
dbd2b826 5367 acpi_table_parse_srat_its();
3f010cf1
TN
5368 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5369 gic_acpi_parse_madt_its, 0);
fdf6e7a8 5370 acpi_its_srat_maps_free();
3f010cf1
TN
5371}
5372#else
5373static void __init its_acpi_probe(void) { }
5374#endif
5375
db40f0a7
TN
5376int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5377 struct irq_domain *parent_domain)
5378{
5379 struct device_node *of_node;
8fff27ae
MZ
5380 struct its_node *its;
5381 bool has_v4 = false;
3c40706d 5382 bool has_v4_1 = false;
8fff27ae 5383 int err;
db40f0a7 5384
5e516846
MZ
5385 gic_rdists = rdists;
5386
db40f0a7
TN
5387 its_parent = parent_domain;
5388 of_node = to_of_node(handle);
5389 if (of_node)
5390 its_of_probe(of_node);
5391 else
3f010cf1 5392 its_acpi_probe();
4c21f3c2
MZ
5393
5394 if (list_empty(&its_nodes)) {
5395 pr_warn("ITS: No ITS available, not enabling LPIs\n");
5396 return -ENXIO;
5397 }
5398
11e37d35 5399 err = allocate_lpi_tables();
8fff27ae
MZ
5400 if (err)
5401 return err;
5402
3c40706d 5403 list_for_each_entry(its, &its_nodes, entry) {
0dd57fed 5404 has_v4 |= is_v4(its);
3c40706d
MZ
5405 has_v4_1 |= is_v4_1(its);
5406 }
5407
5408 /* Don't bother with inconsistent systems */
5409 if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5410 rdists->has_rvpeid = false;
8fff27ae
MZ
5411
5412 if (has_v4 & rdists->has_vlpis) {
166cba71
MZ
5413 const struct irq_domain_ops *sgi_ops;
5414
5415 if (has_v4_1)
5416 sgi_ops = &its_sgi_domain_ops;
5417 else
5418 sgi_ops = NULL;
5419
3d63cb53 5420 if (its_init_vpe_domain() ||
166cba71 5421 its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
8fff27ae
MZ
5422 rdists->has_vlpis = false;
5423 pr_err("ITS: Disabling GICv4 support\n");
5424 }
5425 }
5426
dba0bc7b
DB
5427 register_syscore_ops(&its_syscore_ops);
5428
8fff27ae 5429 return 0;
4c21f3c2 5430}