x86/PCI: sta2x11: use default DMA address translation
[linux-block.git] / drivers / iommu / dma-iommu.c
CommitLineData
caab277b 1// SPDX-License-Identifier: GPL-2.0-only
0db2e5d1
RM
2/*
3 * A fairly generic DMA-API to IOMMU-API glue layer.
4 *
5 * Copyright (C) 2014-2015 ARM Ltd.
6 *
7 * based in part on arch/arm/mm/dma-mapping.c:
8 * Copyright (C) 2000-2004 Russell King
0db2e5d1
RM
9 */
10
f51dc892 11#include <linux/acpi_iort.h>
0db2e5d1 12#include <linux/device.h>
06d60728 13#include <linux/dma-contiguous.h>
0db2e5d1 14#include <linux/dma-iommu.h>
af751d43 15#include <linux/dma-noncoherent.h>
5b11e9cd 16#include <linux/gfp.h>
0db2e5d1
RM
17#include <linux/huge_mm.h>
18#include <linux/iommu.h>
19#include <linux/iova.h>
44bb7e24 20#include <linux/irq.h>
0db2e5d1 21#include <linux/mm.h>
fade1ec0 22#include <linux/pci.h>
5b11e9cd
RM
23#include <linux/scatterlist.h>
24#include <linux/vmalloc.h>
0db2e5d1 25
44bb7e24
RM
26struct iommu_dma_msi_page {
27 struct list_head list;
28 dma_addr_t iova;
29 phys_addr_t phys;
30};
31
fdbe574e
RM
32enum iommu_dma_cookie_type {
33 IOMMU_DMA_IOVA_COOKIE,
34 IOMMU_DMA_MSI_COOKIE,
35};
36
44bb7e24 37struct iommu_dma_cookie {
fdbe574e
RM
38 enum iommu_dma_cookie_type type;
39 union {
40 /* Full allocator for IOMMU_DMA_IOVA_COOKIE */
41 struct iova_domain iovad;
42 /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
43 dma_addr_t msi_iova;
44 };
45 struct list_head msi_page_list;
46 spinlock_t msi_lock;
2da274cd
ZL
47
48 /* Domain for flush queue callback; NULL if flush queue not in use */
49 struct iommu_domain *fq_domain;
44bb7e24
RM
50};
51
fdbe574e
RM
52static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
53{
54 if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
55 return cookie->iovad.granule;
56 return PAGE_SIZE;
57}
58
fdbe574e
RM
59static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
60{
61 struct iommu_dma_cookie *cookie;
62
63 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
64 if (cookie) {
65 spin_lock_init(&cookie->msi_lock);
66 INIT_LIST_HEAD(&cookie->msi_page_list);
67 cookie->type = type;
68 }
69 return cookie;
44bb7e24
RM
70}
71
0db2e5d1
RM
72/**
73 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
74 * @domain: IOMMU domain to prepare for DMA-API usage
75 *
76 * IOMMU drivers should normally call this from their domain_alloc
77 * callback when domain->type == IOMMU_DOMAIN_DMA.
78 */
79int iommu_get_dma_cookie(struct iommu_domain *domain)
fdbe574e
RM
80{
81 if (domain->iova_cookie)
82 return -EEXIST;
83
84 domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
85 if (!domain->iova_cookie)
86 return -ENOMEM;
87
88 return 0;
89}
90EXPORT_SYMBOL(iommu_get_dma_cookie);
91
92/**
93 * iommu_get_msi_cookie - Acquire just MSI remapping resources
94 * @domain: IOMMU domain to prepare
95 * @base: Start address of IOVA region for MSI mappings
96 *
97 * Users who manage their own IOVA allocation and do not want DMA API support,
98 * but would still like to take advantage of automatic MSI remapping, can use
99 * this to initialise their own domain appropriately. Users should reserve a
100 * contiguous IOVA region, starting at @base, large enough to accommodate the
101 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
102 * used by the devices attached to @domain.
103 */
104int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
0db2e5d1 105{
44bb7e24 106 struct iommu_dma_cookie *cookie;
0db2e5d1 107
fdbe574e
RM
108 if (domain->type != IOMMU_DOMAIN_UNMANAGED)
109 return -EINVAL;
110
0db2e5d1
RM
111 if (domain->iova_cookie)
112 return -EEXIST;
113
fdbe574e 114 cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
44bb7e24
RM
115 if (!cookie)
116 return -ENOMEM;
0db2e5d1 117
fdbe574e 118 cookie->msi_iova = base;
44bb7e24
RM
119 domain->iova_cookie = cookie;
120 return 0;
0db2e5d1 121}
fdbe574e 122EXPORT_SYMBOL(iommu_get_msi_cookie);
0db2e5d1
RM
123
124/**
125 * iommu_put_dma_cookie - Release a domain's DMA mapping resources
fdbe574e
RM
126 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
127 * iommu_get_msi_cookie()
0db2e5d1
RM
128 *
129 * IOMMU drivers should normally call this from their domain_free callback.
130 */
131void iommu_put_dma_cookie(struct iommu_domain *domain)
132{
44bb7e24
RM
133 struct iommu_dma_cookie *cookie = domain->iova_cookie;
134 struct iommu_dma_msi_page *msi, *tmp;
0db2e5d1 135
44bb7e24 136 if (!cookie)
0db2e5d1
RM
137 return;
138
fdbe574e 139 if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
44bb7e24
RM
140 put_iova_domain(&cookie->iovad);
141
142 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
143 list_del(&msi->list);
144 kfree(msi);
145 }
146 kfree(cookie);
0db2e5d1
RM
147 domain->iova_cookie = NULL;
148}
149EXPORT_SYMBOL(iommu_put_dma_cookie);
150
273df963
RM
151/**
152 * iommu_dma_get_resv_regions - Reserved region driver helper
153 * @dev: Device from iommu_get_resv_regions()
154 * @list: Reserved region list from iommu_get_resv_regions()
155 *
156 * IOMMU drivers can use this to implement their .get_resv_regions callback
cd2c9fcf
SK
157 * for general non-IOMMU-specific reservations. Currently, this covers GICv3
158 * ITS region reservation on ACPI based ARM platforms that may require HW MSI
159 * reservation.
273df963
RM
160 */
161void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
fade1ec0 162{
fade1ec0 163
98cc4f71 164 if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
cd2c9fcf 165 iort_iommu_msi_get_resv_regions(dev, list);
273df963 166
fade1ec0 167}
273df963 168EXPORT_SYMBOL(iommu_dma_get_resv_regions);
fade1ec0 169
7c1b058c
RM
170static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
171 phys_addr_t start, phys_addr_t end)
172{
173 struct iova_domain *iovad = &cookie->iovad;
174 struct iommu_dma_msi_page *msi_page;
175 int i, num_pages;
176
177 start -= iova_offset(iovad, start);
178 num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
179
180 msi_page = kcalloc(num_pages, sizeof(*msi_page), GFP_KERNEL);
181 if (!msi_page)
182 return -ENOMEM;
183
184 for (i = 0; i < num_pages; i++) {
185 msi_page[i].phys = start;
186 msi_page[i].iova = start;
187 INIT_LIST_HEAD(&msi_page[i].list);
188 list_add(&msi_page[i].list, &cookie->msi_page_list);
189 start += iovad->granule;
190 }
191
192 return 0;
193}
194
aadad097 195static int iova_reserve_pci_windows(struct pci_dev *dev,
cd2c9fcf
SK
196 struct iova_domain *iovad)
197{
198 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
199 struct resource_entry *window;
200 unsigned long lo, hi;
aadad097 201 phys_addr_t start = 0, end;
cd2c9fcf
SK
202
203 resource_list_for_each_entry(window, &bridge->windows) {
204 if (resource_type(window->res) != IORESOURCE_MEM)
205 continue;
206
207 lo = iova_pfn(iovad, window->res->start - window->offset);
208 hi = iova_pfn(iovad, window->res->end - window->offset);
209 reserve_iova(iovad, lo, hi);
210 }
aadad097
SM
211
212 /* Get reserved DMA windows from host bridge */
213 resource_list_for_each_entry(window, &bridge->dma_ranges) {
214 end = window->res->start - window->offset;
215resv_iova:
216 if (end > start) {
217 lo = iova_pfn(iovad, start);
218 hi = iova_pfn(iovad, end);
219 reserve_iova(iovad, lo, hi);
220 } else {
221 /* dma_ranges list should be sorted */
222 dev_err(&dev->dev, "Failed to reserve IOVA\n");
223 return -EINVAL;
224 }
225
226 start = window->res->end - window->offset + 1;
227 /* If window is last entry */
228 if (window->node.next == &bridge->dma_ranges &&
29fcea8c
AB
229 end != ~(phys_addr_t)0) {
230 end = ~(phys_addr_t)0;
aadad097
SM
231 goto resv_iova;
232 }
233 }
234
235 return 0;
cd2c9fcf
SK
236}
237
7c1b058c
RM
238static int iova_reserve_iommu_regions(struct device *dev,
239 struct iommu_domain *domain)
240{
241 struct iommu_dma_cookie *cookie = domain->iova_cookie;
242 struct iova_domain *iovad = &cookie->iovad;
243 struct iommu_resv_region *region;
244 LIST_HEAD(resv_regions);
245 int ret = 0;
246
aadad097
SM
247 if (dev_is_pci(dev)) {
248 ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
249 if (ret)
250 return ret;
251 }
cd2c9fcf 252
7c1b058c
RM
253 iommu_get_resv_regions(dev, &resv_regions);
254 list_for_each_entry(region, &resv_regions, list) {
255 unsigned long lo, hi;
256
257 /* We ARE the software that manages these! */
258 if (region->type == IOMMU_RESV_SW_MSI)
259 continue;
260
261 lo = iova_pfn(iovad, region->start);
262 hi = iova_pfn(iovad, region->start + region->length - 1);
263 reserve_iova(iovad, lo, hi);
264
265 if (region->type == IOMMU_RESV_MSI)
266 ret = cookie_init_hw_msi_region(cookie, region->start,
267 region->start + region->length);
268 if (ret)
269 break;
270 }
271 iommu_put_resv_regions(dev, &resv_regions);
272
273 return ret;
274}
275
2da274cd
ZL
276static void iommu_dma_flush_iotlb_all(struct iova_domain *iovad)
277{
278 struct iommu_dma_cookie *cookie;
279 struct iommu_domain *domain;
280
281 cookie = container_of(iovad, struct iommu_dma_cookie, iovad);
282 domain = cookie->fq_domain;
283 /*
284 * The IOMMU driver supporting DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE
285 * implies that ops->flush_iotlb_all must be non-NULL.
286 */
287 domain->ops->flush_iotlb_all(domain);
288}
289
0db2e5d1
RM
290/**
291 * iommu_dma_init_domain - Initialise a DMA mapping domain
292 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
293 * @base: IOVA at which the mappable address space starts
294 * @size: Size of IOVA space
fade1ec0 295 * @dev: Device the domain is being initialised for
0db2e5d1
RM
296 *
297 * @base and @size should be exact multiples of IOMMU page granularity to
298 * avoid rounding surprises. If necessary, we reserve the page at address 0
299 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
300 * any change which could make prior IOVAs invalid will fail.
301 */
06d60728 302static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
fade1ec0 303 u64 size, struct device *dev)
0db2e5d1 304{
fdbe574e 305 struct iommu_dma_cookie *cookie = domain->iova_cookie;
c61a4633 306 unsigned long order, base_pfn;
6b0c54e7 307 struct iova_domain *iovad;
2da274cd 308 int attr;
0db2e5d1 309
fdbe574e
RM
310 if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
311 return -EINVAL;
0db2e5d1 312
6b0c54e7
YL
313 iovad = &cookie->iovad;
314
0db2e5d1 315 /* Use the smallest supported page size for IOVA granularity */
d16e0faa 316 order = __ffs(domain->pgsize_bitmap);
0db2e5d1 317 base_pfn = max_t(unsigned long, 1, base >> order);
0db2e5d1
RM
318
319 /* Check the domain allows at least some access to the device... */
320 if (domain->geometry.force_aperture) {
321 if (base > domain->geometry.aperture_end ||
322 base + size <= domain->geometry.aperture_start) {
323 pr_warn("specified DMA range outside IOMMU capability\n");
324 return -EFAULT;
325 }
326 /* ...then finally give it a kicking to make sure it fits */
327 base_pfn = max_t(unsigned long, base_pfn,
328 domain->geometry.aperture_start >> order);
0db2e5d1
RM
329 }
330
f51d7bb7 331 /* start_pfn is always nonzero for an already-initialised domain */
0db2e5d1
RM
332 if (iovad->start_pfn) {
333 if (1UL << order != iovad->granule ||
f51d7bb7 334 base_pfn != iovad->start_pfn) {
0db2e5d1
RM
335 pr_warn("Incompatible range for DMA domain\n");
336 return -EFAULT;
337 }
7c1b058c
RM
338
339 return 0;
0db2e5d1 340 }
7c1b058c 341
aa3ac946 342 init_iova_domain(iovad, 1UL << order, base_pfn);
2da274cd
ZL
343
344 if (!cookie->fq_domain && !iommu_domain_get_attr(domain,
345 DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE, &attr) && attr) {
346 cookie->fq_domain = domain;
347 init_iova_flush_queue(iovad, iommu_dma_flush_iotlb_all, NULL);
348 }
349
7c1b058c
RM
350 if (!dev)
351 return 0;
352
353 return iova_reserve_iommu_regions(dev, domain);
0db2e5d1 354}
0db2e5d1
RM
355
356/**
737c85ca
MH
357 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
358 * page flags.
0db2e5d1
RM
359 * @dir: Direction of DMA transfer
360 * @coherent: Is the DMA master cache-coherent?
737c85ca 361 * @attrs: DMA attributes for the mapping
0db2e5d1
RM
362 *
363 * Return: corresponding IOMMU API page protection flags
364 */
06d60728 365static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
737c85ca 366 unsigned long attrs)
0db2e5d1
RM
367{
368 int prot = coherent ? IOMMU_CACHE : 0;
369
737c85ca
MH
370 if (attrs & DMA_ATTR_PRIVILEGED)
371 prot |= IOMMU_PRIV;
372
0db2e5d1
RM
373 switch (dir) {
374 case DMA_BIDIRECTIONAL:
375 return prot | IOMMU_READ | IOMMU_WRITE;
376 case DMA_TO_DEVICE:
377 return prot | IOMMU_READ;
378 case DMA_FROM_DEVICE:
379 return prot | IOMMU_WRITE;
380 default:
381 return 0;
382 }
383}
384
842fe519
RM
385static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
386 size_t size, dma_addr_t dma_limit, struct device *dev)
0db2e5d1 387{
a44e6657
RM
388 struct iommu_dma_cookie *cookie = domain->iova_cookie;
389 struct iova_domain *iovad = &cookie->iovad;
bb65a64c 390 unsigned long shift, iova_len, iova = 0;
0db2e5d1 391
a44e6657
RM
392 if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
393 cookie->msi_iova += size;
394 return cookie->msi_iova - size;
395 }
396
397 shift = iova_shift(iovad);
398 iova_len = size >> shift;
bb65a64c
RM
399 /*
400 * Freeing non-power-of-two-sized allocations back into the IOVA caches
401 * will come back to bite us badly, so we have to waste a bit of space
402 * rounding up anything cacheable to make sure that can't happen. The
403 * order of the unadjusted size will still match upon freeing.
404 */
405 if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1)))
406 iova_len = roundup_pow_of_two(iova_len);
a44e6657 407
03bfdc31
RM
408 if (dev->bus_dma_mask)
409 dma_limit &= dev->bus_dma_mask;
410
c987ff0d
RM
411 if (domain->geometry.force_aperture)
412 dma_limit = min(dma_limit, domain->geometry.aperture_end);
122fac03
RM
413
414 /* Try to get PCI devices a SAC address */
415 if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev))
538d5b33
TN
416 iova = alloc_iova_fast(iovad, iova_len,
417 DMA_BIT_MASK(32) >> shift, false);
bb65a64c 418
122fac03 419 if (!iova)
538d5b33
TN
420 iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
421 true);
122fac03 422
bb65a64c 423 return (dma_addr_t)iova << shift;
0db2e5d1
RM
424}
425
842fe519
RM
426static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
427 dma_addr_t iova, size_t size)
0db2e5d1 428{
842fe519 429 struct iova_domain *iovad = &cookie->iovad;
0db2e5d1 430
a44e6657 431 /* The MSI case is only ever cleaning up its most recent allocation */
bb65a64c 432 if (cookie->type == IOMMU_DMA_MSI_COOKIE)
a44e6657 433 cookie->msi_iova -= size;
2da274cd
ZL
434 else if (cookie->fq_domain) /* non-strict mode */
435 queue_iova(iovad, iova_pfn(iovad, iova),
436 size >> iova_shift(iovad), 0);
bb65a64c 437 else
1cc896ed
RM
438 free_iova_fast(iovad, iova_pfn(iovad, iova),
439 size >> iova_shift(iovad));
842fe519
RM
440}
441
b61d271e 442static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
842fe519
RM
443 size_t size)
444{
b61d271e 445 struct iommu_domain *domain = iommu_get_dma_domain(dev);
a44e6657
RM
446 struct iommu_dma_cookie *cookie = domain->iova_cookie;
447 struct iova_domain *iovad = &cookie->iovad;
842fe519 448 size_t iova_off = iova_offset(iovad, dma_addr);
a7d20dc1
WD
449 struct iommu_iotlb_gather iotlb_gather;
450 size_t unmapped;
842fe519
RM
451
452 dma_addr -= iova_off;
453 size = iova_align(iovad, size + iova_off);
a7d20dc1
WD
454 iommu_iotlb_gather_init(&iotlb_gather);
455
456 unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather);
457 WARN_ON(unmapped != size);
842fe519 458
2da274cd 459 if (!cookie->fq_domain)
a7d20dc1 460 iommu_tlb_sync(domain, &iotlb_gather);
a44e6657 461 iommu_dma_free_iova(cookie, dma_addr, size);
0db2e5d1
RM
462}
463
92aec09c 464static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
b61d271e 465 size_t size, int prot)
92aec09c 466{
b61d271e 467 struct iommu_domain *domain = iommu_get_dma_domain(dev);
92aec09c 468 struct iommu_dma_cookie *cookie = domain->iova_cookie;
8af23fad
RM
469 struct iova_domain *iovad = &cookie->iovad;
470 size_t iova_off = iova_offset(iovad, phys);
92aec09c
CH
471 dma_addr_t iova;
472
8af23fad 473 size = iova_align(iovad, size + iova_off);
92aec09c
CH
474
475 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
476 if (!iova)
477 return DMA_MAPPING_ERROR;
478
479 if (iommu_map(domain, iova, phys - iova_off, size, prot)) {
480 iommu_dma_free_iova(cookie, iova, size);
481 return DMA_MAPPING_ERROR;
482 }
483 return iova + iova_off;
484}
485
0db2e5d1
RM
486static void __iommu_dma_free_pages(struct page **pages, int count)
487{
488 while (count--)
489 __free_page(pages[count]);
490 kvfree(pages);
491}
492
c4b17afb
GK
493static struct page **__iommu_dma_alloc_pages(struct device *dev,
494 unsigned int count, unsigned long order_mask, gfp_t gfp)
0db2e5d1
RM
495{
496 struct page **pages;
c4b17afb 497 unsigned int i = 0, nid = dev_to_node(dev);
3b6b7e19
RM
498
499 order_mask &= (2U << MAX_ORDER) - 1;
500 if (!order_mask)
501 return NULL;
0db2e5d1 502
c4b17afb 503 pages = kvzalloc(count * sizeof(*pages), GFP_KERNEL);
0db2e5d1
RM
504 if (!pages)
505 return NULL;
506
507 /* IOMMU can map any pages, so himem can also be used here */
508 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
509
510 while (count) {
511 struct page *page = NULL;
3b6b7e19 512 unsigned int order_size;
0db2e5d1
RM
513
514 /*
515 * Higher-order allocations are a convenience rather
516 * than a necessity, hence using __GFP_NORETRY until
3b6b7e19 517 * falling back to minimum-order allocations.
0db2e5d1 518 */
3b6b7e19
RM
519 for (order_mask &= (2U << __fls(count)) - 1;
520 order_mask; order_mask &= ~order_size) {
521 unsigned int order = __fls(order_mask);
c4b17afb 522 gfp_t alloc_flags = gfp;
3b6b7e19
RM
523
524 order_size = 1U << order;
c4b17afb
GK
525 if (order_mask > order_size)
526 alloc_flags |= __GFP_NORETRY;
527 page = alloc_pages_node(nid, alloc_flags, order);
0db2e5d1
RM
528 if (!page)
529 continue;
3b6b7e19
RM
530 if (!order)
531 break;
532 if (!PageCompound(page)) {
0db2e5d1
RM
533 split_page(page, order);
534 break;
3b6b7e19
RM
535 } else if (!split_huge_page(page)) {
536 break;
0db2e5d1 537 }
3b6b7e19 538 __free_pages(page, order);
0db2e5d1 539 }
0db2e5d1
RM
540 if (!page) {
541 __iommu_dma_free_pages(pages, i);
542 return NULL;
543 }
3b6b7e19
RM
544 count -= order_size;
545 while (order_size--)
0db2e5d1
RM
546 pages[i++] = page++;
547 }
548 return pages;
549}
550
0db2e5d1 551/**
21b95aaf 552 * iommu_dma_alloc_remap - Allocate and map a buffer contiguous in IOVA space
0db2e5d1
RM
553 * @dev: Device to allocate memory for. Must be a real device
554 * attached to an iommu_dma_domain
555 * @size: Size of buffer in bytes
21b95aaf 556 * @dma_handle: Out argument for allocated DMA handle
0db2e5d1 557 * @gfp: Allocation flags
3b6b7e19 558 * @attrs: DMA attributes for this allocation
0db2e5d1
RM
559 *
560 * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
561 * but an IOMMU which supports smaller pages might not map the whole thing.
562 *
21b95aaf 563 * Return: Mapped virtual address, or NULL on failure.
0db2e5d1 564 */
21b95aaf
CH
565static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
566 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
0db2e5d1 567{
43c5bf11 568 struct iommu_domain *domain = iommu_get_dma_domain(dev);
842fe519
RM
569 struct iommu_dma_cookie *cookie = domain->iova_cookie;
570 struct iova_domain *iovad = &cookie->iovad;
21b95aaf
CH
571 bool coherent = dev_is_dma_coherent(dev);
572 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
33dcb37c 573 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
21b95aaf 574 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
0db2e5d1
RM
575 struct page **pages;
576 struct sg_table sgt;
842fe519 577 dma_addr_t iova;
21b95aaf 578 void *vaddr;
0db2e5d1 579
21b95aaf 580 *dma_handle = DMA_MAPPING_ERROR;
0db2e5d1 581
3b6b7e19
RM
582 min_size = alloc_sizes & -alloc_sizes;
583 if (min_size < PAGE_SIZE) {
584 min_size = PAGE_SIZE;
585 alloc_sizes |= PAGE_SIZE;
586 } else {
587 size = ALIGN(size, min_size);
588 }
00085f1e 589 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
3b6b7e19
RM
590 alloc_sizes = min_size;
591
592 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
c4b17afb
GK
593 pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
594 gfp);
0db2e5d1
RM
595 if (!pages)
596 return NULL;
597
842fe519
RM
598 size = iova_align(iovad, size);
599 iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
0db2e5d1
RM
600 if (!iova)
601 goto out_free_pages;
602
0db2e5d1
RM
603 if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
604 goto out_free_iova;
605
21b95aaf 606 if (!(ioprot & IOMMU_CACHE)) {
23f88e0a
CH
607 struct scatterlist *sg;
608 int i;
609
610 for_each_sg(sgt.sgl, sg, sgt.orig_nents, i)
611 arch_dma_prep_coherent(sg_page(sg), sg->length);
0db2e5d1
RM
612 }
613
21b95aaf 614 if (iommu_map_sg(domain, iova, sgt.sgl, sgt.orig_nents, ioprot)
0db2e5d1
RM
615 < size)
616 goto out_free_sg;
617
51231740 618 vaddr = dma_common_pages_remap(pages, size, prot,
21b95aaf
CH
619 __builtin_return_address(0));
620 if (!vaddr)
621 goto out_unmap;
622
623 *dma_handle = iova;
0db2e5d1 624 sg_free_table(&sgt);
21b95aaf 625 return vaddr;
0db2e5d1 626
21b95aaf
CH
627out_unmap:
628 __iommu_dma_unmap(dev, iova, size);
0db2e5d1
RM
629out_free_sg:
630 sg_free_table(&sgt);
631out_free_iova:
842fe519 632 iommu_dma_free_iova(cookie, iova, size);
0db2e5d1
RM
633out_free_pages:
634 __iommu_dma_free_pages(pages, count);
635 return NULL;
636}
637
638/**
06d60728
CH
639 * __iommu_dma_mmap - Map a buffer into provided user VMA
640 * @pages: Array representing buffer from __iommu_dma_alloc()
0db2e5d1
RM
641 * @size: Size of buffer in bytes
642 * @vma: VMA describing requested userspace mapping
643 *
644 * Maps the pages of the buffer in @pages into @vma. The caller is responsible
645 * for verifying the correct size and protection of @vma beforehand.
646 */
06d60728
CH
647static int __iommu_dma_mmap(struct page **pages, size_t size,
648 struct vm_area_struct *vma)
0db2e5d1 649{
b0d0084f 650 return vm_map_pages(vma, pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
0db2e5d1
RM
651}
652
06d60728
CH
653static void iommu_dma_sync_single_for_cpu(struct device *dev,
654 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
0db2e5d1 655{
06d60728 656 phys_addr_t phys;
0db2e5d1 657
06d60728
CH
658 if (dev_is_dma_coherent(dev))
659 return;
1cc896ed 660
06d60728
CH
661 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
662 arch_sync_dma_for_cpu(dev, phys, size, dir);
0db2e5d1 663}
0db2e5d1 664
06d60728
CH
665static void iommu_dma_sync_single_for_device(struct device *dev,
666 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
0db2e5d1 667{
06d60728 668 phys_addr_t phys;
0db2e5d1 669
06d60728
CH
670 if (dev_is_dma_coherent(dev))
671 return;
1cc896ed 672
06d60728
CH
673 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
674 arch_sync_dma_for_device(dev, phys, size, dir);
675}
0db2e5d1 676
06d60728
CH
677static void iommu_dma_sync_sg_for_cpu(struct device *dev,
678 struct scatterlist *sgl, int nelems,
679 enum dma_data_direction dir)
680{
681 struct scatterlist *sg;
682 int i;
683
684 if (dev_is_dma_coherent(dev))
685 return;
686
687 for_each_sg(sgl, sg, nelems, i)
688 arch_sync_dma_for_cpu(dev, sg_phys(sg), sg->length, dir);
689}
690
691static void iommu_dma_sync_sg_for_device(struct device *dev,
692 struct scatterlist *sgl, int nelems,
693 enum dma_data_direction dir)
694{
695 struct scatterlist *sg;
696 int i;
697
698 if (dev_is_dma_coherent(dev))
699 return;
700
701 for_each_sg(sgl, sg, nelems, i)
702 arch_sync_dma_for_device(dev, sg_phys(sg), sg->length, dir);
0db2e5d1
RM
703}
704
06d60728
CH
705static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
706 unsigned long offset, size_t size, enum dma_data_direction dir,
707 unsigned long attrs)
51f8cc9e 708{
06d60728
CH
709 phys_addr_t phys = page_to_phys(page) + offset;
710 bool coherent = dev_is_dma_coherent(dev);
b61d271e 711 int prot = dma_info_to_prot(dir, coherent, attrs);
06d60728
CH
712 dma_addr_t dma_handle;
713
b61d271e 714 dma_handle =__iommu_dma_map(dev, phys, size, prot);
06d60728
CH
715 if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
716 dma_handle != DMA_MAPPING_ERROR)
717 arch_sync_dma_for_device(dev, phys, size, dir);
718 return dma_handle;
51f8cc9e
RM
719}
720
06d60728
CH
721static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
722 size_t size, enum dma_data_direction dir, unsigned long attrs)
0db2e5d1 723{
06d60728
CH
724 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
725 iommu_dma_sync_single_for_cpu(dev, dma_handle, size, dir);
b61d271e 726 __iommu_dma_unmap(dev, dma_handle, size);
0db2e5d1
RM
727}
728
729/*
730 * Prepare a successfully-mapped scatterlist to give back to the caller.
809eac54
RM
731 *
732 * At this point the segments are already laid out by iommu_dma_map_sg() to
733 * avoid individually crossing any boundaries, so we merely need to check a
734 * segment's start address to avoid concatenating across one.
0db2e5d1
RM
735 */
736static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
737 dma_addr_t dma_addr)
738{
809eac54
RM
739 struct scatterlist *s, *cur = sg;
740 unsigned long seg_mask = dma_get_seg_boundary(dev);
741 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
742 int i, count = 0;
0db2e5d1
RM
743
744 for_each_sg(sg, s, nents, i) {
809eac54
RM
745 /* Restore this segment's original unaligned fields first */
746 unsigned int s_iova_off = sg_dma_address(s);
0db2e5d1 747 unsigned int s_length = sg_dma_len(s);
809eac54 748 unsigned int s_iova_len = s->length;
0db2e5d1 749
809eac54 750 s->offset += s_iova_off;
0db2e5d1 751 s->length = s_length;
cad34be7 752 sg_dma_address(s) = DMA_MAPPING_ERROR;
809eac54
RM
753 sg_dma_len(s) = 0;
754
755 /*
756 * Now fill in the real DMA data. If...
757 * - there is a valid output segment to append to
758 * - and this segment starts on an IOVA page boundary
759 * - but doesn't fall at a segment boundary
760 * - and wouldn't make the resulting output segment too long
761 */
762 if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
ab2cbeb0 763 (max_len - cur_len >= s_length)) {
809eac54
RM
764 /* ...then concatenate it with the previous one */
765 cur_len += s_length;
766 } else {
767 /* Otherwise start the next output segment */
768 if (i > 0)
769 cur = sg_next(cur);
770 cur_len = s_length;
771 count++;
772
773 sg_dma_address(cur) = dma_addr + s_iova_off;
774 }
775
776 sg_dma_len(cur) = cur_len;
777 dma_addr += s_iova_len;
778
779 if (s_length + s_iova_off < s_iova_len)
780 cur_len = 0;
0db2e5d1 781 }
809eac54 782 return count;
0db2e5d1
RM
783}
784
785/*
786 * If mapping failed, then just restore the original list,
787 * but making sure the DMA fields are invalidated.
788 */
789static void __invalidate_sg(struct scatterlist *sg, int nents)
790{
791 struct scatterlist *s;
792 int i;
793
794 for_each_sg(sg, s, nents, i) {
cad34be7 795 if (sg_dma_address(s) != DMA_MAPPING_ERROR)
07b48ac4 796 s->offset += sg_dma_address(s);
0db2e5d1
RM
797 if (sg_dma_len(s))
798 s->length = sg_dma_len(s);
cad34be7 799 sg_dma_address(s) = DMA_MAPPING_ERROR;
0db2e5d1
RM
800 sg_dma_len(s) = 0;
801 }
802}
803
804/*
805 * The DMA API client is passing in a scatterlist which could describe
806 * any old buffer layout, but the IOMMU API requires everything to be
807 * aligned to IOMMU pages. Hence the need for this complicated bit of
808 * impedance-matching, to be able to hand off a suitably-aligned list,
809 * but still preserve the original offsets and sizes for the caller.
810 */
06d60728
CH
811static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
812 int nents, enum dma_data_direction dir, unsigned long attrs)
0db2e5d1 813{
43c5bf11 814 struct iommu_domain *domain = iommu_get_dma_domain(dev);
842fe519
RM
815 struct iommu_dma_cookie *cookie = domain->iova_cookie;
816 struct iova_domain *iovad = &cookie->iovad;
0db2e5d1 817 struct scatterlist *s, *prev = NULL;
06d60728 818 int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
842fe519 819 dma_addr_t iova;
0db2e5d1 820 size_t iova_len = 0;
809eac54 821 unsigned long mask = dma_get_seg_boundary(dev);
0db2e5d1
RM
822 int i;
823
06d60728
CH
824 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
825 iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
826
0db2e5d1
RM
827 /*
828 * Work out how much IOVA space we need, and align the segments to
829 * IOVA granules for the IOMMU driver to handle. With some clever
830 * trickery we can modify the list in-place, but reversibly, by
809eac54 831 * stashing the unaligned parts in the as-yet-unused DMA fields.
0db2e5d1
RM
832 */
833 for_each_sg(sg, s, nents, i) {
809eac54 834 size_t s_iova_off = iova_offset(iovad, s->offset);
0db2e5d1 835 size_t s_length = s->length;
809eac54 836 size_t pad_len = (mask - iova_len + 1) & mask;
0db2e5d1 837
809eac54 838 sg_dma_address(s) = s_iova_off;
0db2e5d1 839 sg_dma_len(s) = s_length;
809eac54
RM
840 s->offset -= s_iova_off;
841 s_length = iova_align(iovad, s_length + s_iova_off);
0db2e5d1
RM
842 s->length = s_length;
843
844 /*
809eac54
RM
845 * Due to the alignment of our single IOVA allocation, we can
846 * depend on these assumptions about the segment boundary mask:
847 * - If mask size >= IOVA size, then the IOVA range cannot
848 * possibly fall across a boundary, so we don't care.
849 * - If mask size < IOVA size, then the IOVA range must start
850 * exactly on a boundary, therefore we can lay things out
851 * based purely on segment lengths without needing to know
852 * the actual addresses beforehand.
853 * - The mask must be a power of 2, so pad_len == 0 if
854 * iova_len == 0, thus we cannot dereference prev the first
855 * time through here (i.e. before it has a meaningful value).
0db2e5d1 856 */
809eac54 857 if (pad_len && pad_len < s_length - 1) {
0db2e5d1
RM
858 prev->length += pad_len;
859 iova_len += pad_len;
860 }
861
862 iova_len += s_length;
863 prev = s;
864 }
865
842fe519 866 iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
0db2e5d1
RM
867 if (!iova)
868 goto out_restore_sg;
869
870 /*
871 * We'll leave any physical concatenation to the IOMMU driver's
872 * implementation - it knows better than we do.
873 */
842fe519 874 if (iommu_map_sg(domain, iova, sg, nents, prot) < iova_len)
0db2e5d1
RM
875 goto out_free_iova;
876
842fe519 877 return __finalise_sg(dev, sg, nents, iova);
0db2e5d1
RM
878
879out_free_iova:
842fe519 880 iommu_dma_free_iova(cookie, iova, iova_len);
0db2e5d1
RM
881out_restore_sg:
882 __invalidate_sg(sg, nents);
883 return 0;
884}
885
06d60728
CH
886static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
887 int nents, enum dma_data_direction dir, unsigned long attrs)
0db2e5d1 888{
842fe519
RM
889 dma_addr_t start, end;
890 struct scatterlist *tmp;
891 int i;
06d60728 892
1b961423 893 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
06d60728
CH
894 iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
895
0db2e5d1
RM
896 /*
897 * The scatterlist segments are mapped into a single
898 * contiguous IOVA allocation, so this is incredibly easy.
899 */
842fe519
RM
900 start = sg_dma_address(sg);
901 for_each_sg(sg_next(sg), tmp, nents - 1, i) {
902 if (sg_dma_len(tmp) == 0)
903 break;
904 sg = tmp;
905 }
906 end = sg_dma_address(sg) + sg_dma_len(sg);
b61d271e 907 __iommu_dma_unmap(dev, start, end - start);
0db2e5d1
RM
908}
909
06d60728 910static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
51f8cc9e
RM
911 size_t size, enum dma_data_direction dir, unsigned long attrs)
912{
913 return __iommu_dma_map(dev, phys, size,
b61d271e 914 dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO);
51f8cc9e
RM
915}
916
06d60728 917static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
51f8cc9e
RM
918 size_t size, enum dma_data_direction dir, unsigned long attrs)
919{
b61d271e 920 __iommu_dma_unmap(dev, handle, size);
51f8cc9e
RM
921}
922
8553f6e6 923static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
bcf4b9c4
RM
924{
925 size_t alloc_size = PAGE_ALIGN(size);
926 int count = alloc_size >> PAGE_SHIFT;
927 struct page *page = NULL, **pages = NULL;
928
bcf4b9c4 929 /* Non-coherent atomic allocation? Easy */
e6475eb0
CH
930 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
931 dma_free_from_pool(cpu_addr, alloc_size))
bcf4b9c4
RM
932 return;
933
e6475eb0 934 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
bcf4b9c4
RM
935 /*
936 * If it the address is remapped, then it's either non-coherent
937 * or highmem CMA, or an iommu_dma_alloc_remap() construction.
938 */
5cf45379 939 pages = dma_common_find_pages(cpu_addr);
bcf4b9c4
RM
940 if (!pages)
941 page = vmalloc_to_page(cpu_addr);
51231740 942 dma_common_free_remap(cpu_addr, alloc_size);
bcf4b9c4
RM
943 } else {
944 /* Lowmem means a coherent atomic or CMA allocation */
945 page = virt_to_page(cpu_addr);
946 }
947
948 if (pages)
949 __iommu_dma_free_pages(pages, count);
591fcf3b
NC
950 if (page)
951 dma_free_contiguous(dev, page, alloc_size);
bcf4b9c4
RM
952}
953
8553f6e6
RM
954static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
955 dma_addr_t handle, unsigned long attrs)
956{
957 __iommu_dma_unmap(dev, handle, size);
958 __iommu_dma_free(dev, size, cpu_addr);
959}
960
ee1ef05d
CH
961static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
962 struct page **pagep, gfp_t gfp, unsigned long attrs)
06d60728
CH
963{
964 bool coherent = dev_is_dma_coherent(dev);
9ad5d6ed 965 size_t alloc_size = PAGE_ALIGN(size);
90ae409f 966 int node = dev_to_node(dev);
9a4ab94a 967 struct page *page = NULL;
9ad5d6ed 968 void *cpu_addr;
06d60728 969
591fcf3b 970 page = dma_alloc_contiguous(dev, alloc_size, gfp);
90ae409f
CH
971 if (!page)
972 page = alloc_pages_node(node, gfp, get_order(alloc_size));
072bebc0
RM
973 if (!page)
974 return NULL;
975
e6475eb0 976 if (IS_ENABLED(CONFIG_DMA_REMAP) && (!coherent || PageHighMem(page))) {
33dcb37c 977 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
072bebc0 978
9ad5d6ed 979 cpu_addr = dma_common_contiguous_remap(page, alloc_size,
51231740 980 prot, __builtin_return_address(0));
9ad5d6ed 981 if (!cpu_addr)
ee1ef05d 982 goto out_free_pages;
8680aa5a
RM
983
984 if (!coherent)
9ad5d6ed 985 arch_dma_prep_coherent(page, size);
8680aa5a 986 } else {
9ad5d6ed 987 cpu_addr = page_address(page);
8680aa5a 988 }
ee1ef05d
CH
989
990 *pagep = page;
9ad5d6ed
RM
991 memset(cpu_addr, 0, alloc_size);
992 return cpu_addr;
072bebc0 993out_free_pages:
591fcf3b 994 dma_free_contiguous(dev, page, alloc_size);
072bebc0 995 return NULL;
06d60728
CH
996}
997
ee1ef05d
CH
998static void *iommu_dma_alloc(struct device *dev, size_t size,
999 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1000{
1001 bool coherent = dev_is_dma_coherent(dev);
1002 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
1003 struct page *page = NULL;
1004 void *cpu_addr;
1005
1006 gfp |= __GFP_ZERO;
1007
e6475eb0 1008 if (IS_ENABLED(CONFIG_DMA_REMAP) && gfpflags_allow_blocking(gfp) &&
ee1ef05d
CH
1009 !(attrs & DMA_ATTR_FORCE_CONTIGUOUS))
1010 return iommu_dma_alloc_remap(dev, size, handle, gfp, attrs);
1011
e6475eb0
CH
1012 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1013 !gfpflags_allow_blocking(gfp) && !coherent)
ee1ef05d
CH
1014 cpu_addr = dma_alloc_from_pool(PAGE_ALIGN(size), &page, gfp);
1015 else
1016 cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
1017 if (!cpu_addr)
1018 return NULL;
1019
1020 *handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot);
1021 if (*handle == DMA_MAPPING_ERROR) {
1022 __iommu_dma_free(dev, size, cpu_addr);
1023 return NULL;
1024 }
1025
1026 return cpu_addr;
1027}
1028
06d60728
CH
1029static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1030 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1031 unsigned long attrs)
1032{
1033 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
efd9f10b 1034 unsigned long pfn, off = vma->vm_pgoff;
06d60728
CH
1035 int ret;
1036
33dcb37c 1037 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
06d60728
CH
1038
1039 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
1040 return ret;
1041
1042 if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1043 return -ENXIO;
1044
e6475eb0 1045 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
5cf45379 1046 struct page **pages = dma_common_find_pages(cpu_addr);
06d60728 1047
efd9f10b
CH
1048 if (pages)
1049 return __iommu_dma_mmap(pages, size, vma);
1050 pfn = vmalloc_to_pfn(cpu_addr);
1051 } else {
1052 pfn = page_to_pfn(virt_to_page(cpu_addr));
06d60728
CH
1053 }
1054
efd9f10b
CH
1055 return remap_pfn_range(vma, vma->vm_start, pfn + off,
1056 vma->vm_end - vma->vm_start,
1057 vma->vm_page_prot);
06d60728
CH
1058}
1059
06d60728
CH
1060static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1061 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1062 unsigned long attrs)
1063{
3fb3378b
CH
1064 struct page *page;
1065 int ret;
06d60728 1066
e6475eb0 1067 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
5cf45379 1068 struct page **pages = dma_common_find_pages(cpu_addr);
06d60728 1069
3fb3378b
CH
1070 if (pages) {
1071 return sg_alloc_table_from_pages(sgt, pages,
1072 PAGE_ALIGN(size) >> PAGE_SHIFT,
1073 0, size, GFP_KERNEL);
1074 }
1075
1076 page = vmalloc_to_page(cpu_addr);
1077 } else {
1078 page = virt_to_page(cpu_addr);
06d60728
CH
1079 }
1080
3fb3378b
CH
1081 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1082 if (!ret)
1083 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
1084 return ret;
06d60728
CH
1085}
1086
158a6d3c
YS
1087static unsigned long iommu_dma_get_merge_boundary(struct device *dev)
1088{
1089 struct iommu_domain *domain = iommu_get_dma_domain(dev);
1090
1091 return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
1092}
1093
06d60728
CH
1094static const struct dma_map_ops iommu_dma_ops = {
1095 .alloc = iommu_dma_alloc,
1096 .free = iommu_dma_free,
1097 .mmap = iommu_dma_mmap,
1098 .get_sgtable = iommu_dma_get_sgtable,
1099 .map_page = iommu_dma_map_page,
1100 .unmap_page = iommu_dma_unmap_page,
1101 .map_sg = iommu_dma_map_sg,
1102 .unmap_sg = iommu_dma_unmap_sg,
1103 .sync_single_for_cpu = iommu_dma_sync_single_for_cpu,
1104 .sync_single_for_device = iommu_dma_sync_single_for_device,
1105 .sync_sg_for_cpu = iommu_dma_sync_sg_for_cpu,
1106 .sync_sg_for_device = iommu_dma_sync_sg_for_device,
1107 .map_resource = iommu_dma_map_resource,
1108 .unmap_resource = iommu_dma_unmap_resource,
158a6d3c 1109 .get_merge_boundary = iommu_dma_get_merge_boundary,
06d60728
CH
1110};
1111
1112/*
1113 * The IOMMU core code allocates the default DMA domain, which the underlying
1114 * IOMMU driver needs to support via the dma-iommu layer.
1115 */
1116void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size)
1117{
1118 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1119
1120 if (!domain)
1121 goto out_err;
1122
1123 /*
1124 * The IOMMU core code allocates the default DMA domain, which the
1125 * underlying IOMMU driver needs to support via the dma-iommu layer.
1126 */
1127 if (domain->type == IOMMU_DOMAIN_DMA) {
1128 if (iommu_dma_init_domain(domain, dma_base, size, dev))
1129 goto out_err;
1130 dev->dma_ops = &iommu_dma_ops;
1131 }
1132
1133 return;
1134out_err:
1135 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
1136 dev_name(dev));
51f8cc9e
RM
1137}
1138
44bb7e24
RM
1139static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
1140 phys_addr_t msi_addr, struct iommu_domain *domain)
1141{
1142 struct iommu_dma_cookie *cookie = domain->iova_cookie;
1143 struct iommu_dma_msi_page *msi_page;
842fe519 1144 dma_addr_t iova;
44bb7e24 1145 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
fdbe574e 1146 size_t size = cookie_msi_granule(cookie);
44bb7e24 1147
fdbe574e 1148 msi_addr &= ~(phys_addr_t)(size - 1);
44bb7e24
RM
1149 list_for_each_entry(msi_page, &cookie->msi_page_list, list)
1150 if (msi_page->phys == msi_addr)
1151 return msi_page;
1152
1153 msi_page = kzalloc(sizeof(*msi_page), GFP_ATOMIC);
1154 if (!msi_page)
1155 return NULL;
1156
8af23fad
RM
1157 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
1158 if (!iova)
a44e6657 1159 goto out_free_page;
44bb7e24 1160
8af23fad
RM
1161 if (iommu_map(domain, iova, msi_addr, size, prot))
1162 goto out_free_iova;
1163
44bb7e24 1164 INIT_LIST_HEAD(&msi_page->list);
a44e6657
RM
1165 msi_page->phys = msi_addr;
1166 msi_page->iova = iova;
44bb7e24
RM
1167 list_add(&msi_page->list, &cookie->msi_page_list);
1168 return msi_page;
1169
8af23fad
RM
1170out_free_iova:
1171 iommu_dma_free_iova(cookie, iova, size);
44bb7e24
RM
1172out_free_page:
1173 kfree(msi_page);
1174 return NULL;
1175}
1176
ece6e6f0 1177int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
44bb7e24 1178{
ece6e6f0 1179 struct device *dev = msi_desc_to_dev(desc);
44bb7e24
RM
1180 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1181 struct iommu_dma_cookie *cookie;
1182 struct iommu_dma_msi_page *msi_page;
44bb7e24
RM
1183 unsigned long flags;
1184
ece6e6f0
JG
1185 if (!domain || !domain->iova_cookie) {
1186 desc->iommu_cookie = NULL;
1187 return 0;
1188 }
44bb7e24
RM
1189
1190 cookie = domain->iova_cookie;
1191
1192 /*
1193 * We disable IRQs to rule out a possible inversion against
1194 * irq_desc_lock if, say, someone tries to retarget the affinity
1195 * of an MSI from within an IPI handler.
1196 */
1197 spin_lock_irqsave(&cookie->msi_lock, flags);
1198 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
1199 spin_unlock_irqrestore(&cookie->msi_lock, flags);
1200
ece6e6f0
JG
1201 msi_desc_set_iommu_cookie(desc, msi_page);
1202
1203 if (!msi_page)
1204 return -ENOMEM;
1205 return 0;
1206}
1207
1208void iommu_dma_compose_msi_msg(struct msi_desc *desc,
1209 struct msi_msg *msg)
1210{
1211 struct device *dev = msi_desc_to_dev(desc);
1212 const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1213 const struct iommu_dma_msi_page *msi_page;
1214
1215 msi_page = msi_desc_get_iommu_cookie(desc);
1216
1217 if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
1218 return;
1219
1220 msg->address_hi = upper_32_bits(msi_page->iova);
1221 msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
1222 msg->address_lo += lower_32_bits(msi_page->iova);
44bb7e24 1223}
06d60728
CH
1224
1225static int iommu_dma_init(void)
1226{
1227 return iova_cache_get();
44bb7e24 1228}
06d60728 1229arch_initcall(iommu_dma_init);