common: DMA-mapping: add DMA_ATTR_PRIVILEGED attribute
[linux-2.6-block.git] / drivers / iommu / dma-iommu.c
CommitLineData
0db2e5d1
RM
1/*
2 * A fairly generic DMA-API to IOMMU-API glue layer.
3 *
4 * Copyright (C) 2014-2015 ARM Ltd.
5 *
6 * based in part on arch/arm/mm/dma-mapping.c:
7 * Copyright (C) 2000-2004 Russell King
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 */
21
22#include <linux/device.h>
23#include <linux/dma-iommu.h>
5b11e9cd 24#include <linux/gfp.h>
0db2e5d1
RM
25#include <linux/huge_mm.h>
26#include <linux/iommu.h>
27#include <linux/iova.h>
44bb7e24 28#include <linux/irq.h>
0db2e5d1 29#include <linux/mm.h>
fade1ec0 30#include <linux/pci.h>
5b11e9cd
RM
31#include <linux/scatterlist.h>
32#include <linux/vmalloc.h>
0db2e5d1 33
44bb7e24
RM
34struct iommu_dma_msi_page {
35 struct list_head list;
36 dma_addr_t iova;
37 phys_addr_t phys;
38};
39
40struct iommu_dma_cookie {
41 struct iova_domain iovad;
42 struct list_head msi_page_list;
43 spinlock_t msi_lock;
44};
45
46static inline struct iova_domain *cookie_iovad(struct iommu_domain *domain)
47{
48 return &((struct iommu_dma_cookie *)domain->iova_cookie)->iovad;
49}
50
0db2e5d1
RM
51int iommu_dma_init(void)
52{
53 return iova_cache_get();
54}
55
56/**
57 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
58 * @domain: IOMMU domain to prepare for DMA-API usage
59 *
60 * IOMMU drivers should normally call this from their domain_alloc
61 * callback when domain->type == IOMMU_DOMAIN_DMA.
62 */
63int iommu_get_dma_cookie(struct iommu_domain *domain)
64{
44bb7e24 65 struct iommu_dma_cookie *cookie;
0db2e5d1
RM
66
67 if (domain->iova_cookie)
68 return -EEXIST;
69
44bb7e24
RM
70 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
71 if (!cookie)
72 return -ENOMEM;
0db2e5d1 73
44bb7e24
RM
74 spin_lock_init(&cookie->msi_lock);
75 INIT_LIST_HEAD(&cookie->msi_page_list);
76 domain->iova_cookie = cookie;
77 return 0;
0db2e5d1
RM
78}
79EXPORT_SYMBOL(iommu_get_dma_cookie);
80
81/**
82 * iommu_put_dma_cookie - Release a domain's DMA mapping resources
83 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
84 *
85 * IOMMU drivers should normally call this from their domain_free callback.
86 */
87void iommu_put_dma_cookie(struct iommu_domain *domain)
88{
44bb7e24
RM
89 struct iommu_dma_cookie *cookie = domain->iova_cookie;
90 struct iommu_dma_msi_page *msi, *tmp;
0db2e5d1 91
44bb7e24 92 if (!cookie)
0db2e5d1
RM
93 return;
94
44bb7e24
RM
95 if (cookie->iovad.granule)
96 put_iova_domain(&cookie->iovad);
97
98 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
99 list_del(&msi->list);
100 kfree(msi);
101 }
102 kfree(cookie);
0db2e5d1
RM
103 domain->iova_cookie = NULL;
104}
105EXPORT_SYMBOL(iommu_put_dma_cookie);
106
fade1ec0
RM
107static void iova_reserve_pci_windows(struct pci_dev *dev,
108 struct iova_domain *iovad)
109{
110 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
111 struct resource_entry *window;
112 unsigned long lo, hi;
113
114 resource_list_for_each_entry(window, &bridge->windows) {
115 if (resource_type(window->res) != IORESOURCE_MEM &&
116 resource_type(window->res) != IORESOURCE_IO)
117 continue;
118
119 lo = iova_pfn(iovad, window->res->start - window->offset);
120 hi = iova_pfn(iovad, window->res->end - window->offset);
121 reserve_iova(iovad, lo, hi);
122 }
123}
124
0db2e5d1
RM
125/**
126 * iommu_dma_init_domain - Initialise a DMA mapping domain
127 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
128 * @base: IOVA at which the mappable address space starts
129 * @size: Size of IOVA space
fade1ec0 130 * @dev: Device the domain is being initialised for
0db2e5d1
RM
131 *
132 * @base and @size should be exact multiples of IOMMU page granularity to
133 * avoid rounding surprises. If necessary, we reserve the page at address 0
134 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
135 * any change which could make prior IOVAs invalid will fail.
136 */
fade1ec0
RM
137int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
138 u64 size, struct device *dev)
0db2e5d1 139{
44bb7e24 140 struct iova_domain *iovad = cookie_iovad(domain);
0db2e5d1
RM
141 unsigned long order, base_pfn, end_pfn;
142
143 if (!iovad)
144 return -ENODEV;
145
146 /* Use the smallest supported page size for IOVA granularity */
d16e0faa 147 order = __ffs(domain->pgsize_bitmap);
0db2e5d1
RM
148 base_pfn = max_t(unsigned long, 1, base >> order);
149 end_pfn = (base + size - 1) >> order;
150
151 /* Check the domain allows at least some access to the device... */
152 if (domain->geometry.force_aperture) {
153 if (base > domain->geometry.aperture_end ||
154 base + size <= domain->geometry.aperture_start) {
155 pr_warn("specified DMA range outside IOMMU capability\n");
156 return -EFAULT;
157 }
158 /* ...then finally give it a kicking to make sure it fits */
159 base_pfn = max_t(unsigned long, base_pfn,
160 domain->geometry.aperture_start >> order);
161 end_pfn = min_t(unsigned long, end_pfn,
162 domain->geometry.aperture_end >> order);
163 }
164
165 /* All we can safely do with an existing domain is enlarge it */
166 if (iovad->start_pfn) {
167 if (1UL << order != iovad->granule ||
168 base_pfn != iovad->start_pfn ||
169 end_pfn < iovad->dma_32bit_pfn) {
170 pr_warn("Incompatible range for DMA domain\n");
171 return -EFAULT;
172 }
173 iovad->dma_32bit_pfn = end_pfn;
174 } else {
175 init_iova_domain(iovad, 1UL << order, base_pfn, end_pfn);
fade1ec0
RM
176 if (dev && dev_is_pci(dev))
177 iova_reserve_pci_windows(to_pci_dev(dev), iovad);
0db2e5d1
RM
178 }
179 return 0;
180}
181EXPORT_SYMBOL(iommu_dma_init_domain);
182
183/**
184 * dma_direction_to_prot - Translate DMA API directions to IOMMU API page flags
185 * @dir: Direction of DMA transfer
186 * @coherent: Is the DMA master cache-coherent?
187 *
188 * Return: corresponding IOMMU API page protection flags
189 */
190int dma_direction_to_prot(enum dma_data_direction dir, bool coherent)
191{
192 int prot = coherent ? IOMMU_CACHE : 0;
193
194 switch (dir) {
195 case DMA_BIDIRECTIONAL:
196 return prot | IOMMU_READ | IOMMU_WRITE;
197 case DMA_TO_DEVICE:
198 return prot | IOMMU_READ;
199 case DMA_FROM_DEVICE:
200 return prot | IOMMU_WRITE;
201 default:
202 return 0;
203 }
204}
205
c987ff0d 206static struct iova *__alloc_iova(struct iommu_domain *domain, size_t size,
0db2e5d1
RM
207 dma_addr_t dma_limit)
208{
44bb7e24 209 struct iova_domain *iovad = cookie_iovad(domain);
0db2e5d1
RM
210 unsigned long shift = iova_shift(iovad);
211 unsigned long length = iova_align(iovad, size) >> shift;
212
c987ff0d
RM
213 if (domain->geometry.force_aperture)
214 dma_limit = min(dma_limit, domain->geometry.aperture_end);
0db2e5d1
RM
215 /*
216 * Enforce size-alignment to be safe - there could perhaps be an
217 * attribute to control this per-device, or at least per-domain...
218 */
219 return alloc_iova(iovad, length, dma_limit >> shift, true);
220}
221
222/* The IOVA allocator knows what we mapped, so just unmap whatever that was */
223static void __iommu_dma_unmap(struct iommu_domain *domain, dma_addr_t dma_addr)
224{
44bb7e24 225 struct iova_domain *iovad = cookie_iovad(domain);
0db2e5d1
RM
226 unsigned long shift = iova_shift(iovad);
227 unsigned long pfn = dma_addr >> shift;
228 struct iova *iova = find_iova(iovad, pfn);
229 size_t size;
230
231 if (WARN_ON(!iova))
232 return;
233
234 size = iova_size(iova) << shift;
235 size -= iommu_unmap(domain, pfn << shift, size);
236 /* ...and if we can't, then something is horribly, horribly wrong */
237 WARN_ON(size > 0);
238 __free_iova(iovad, iova);
239}
240
241static void __iommu_dma_free_pages(struct page **pages, int count)
242{
243 while (count--)
244 __free_page(pages[count]);
245 kvfree(pages);
246}
247
3b6b7e19
RM
248static struct page **__iommu_dma_alloc_pages(unsigned int count,
249 unsigned long order_mask, gfp_t gfp)
0db2e5d1
RM
250{
251 struct page **pages;
252 unsigned int i = 0, array_size = count * sizeof(*pages);
3b6b7e19
RM
253
254 order_mask &= (2U << MAX_ORDER) - 1;
255 if (!order_mask)
256 return NULL;
0db2e5d1
RM
257
258 if (array_size <= PAGE_SIZE)
259 pages = kzalloc(array_size, GFP_KERNEL);
260 else
261 pages = vzalloc(array_size);
262 if (!pages)
263 return NULL;
264
265 /* IOMMU can map any pages, so himem can also be used here */
266 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
267
268 while (count) {
269 struct page *page = NULL;
3b6b7e19 270 unsigned int order_size;
0db2e5d1
RM
271
272 /*
273 * Higher-order allocations are a convenience rather
274 * than a necessity, hence using __GFP_NORETRY until
3b6b7e19 275 * falling back to minimum-order allocations.
0db2e5d1 276 */
3b6b7e19
RM
277 for (order_mask &= (2U << __fls(count)) - 1;
278 order_mask; order_mask &= ~order_size) {
279 unsigned int order = __fls(order_mask);
280
281 order_size = 1U << order;
282 page = alloc_pages((order_mask - order_size) ?
283 gfp | __GFP_NORETRY : gfp, order);
0db2e5d1
RM
284 if (!page)
285 continue;
3b6b7e19
RM
286 if (!order)
287 break;
288 if (!PageCompound(page)) {
0db2e5d1
RM
289 split_page(page, order);
290 break;
3b6b7e19
RM
291 } else if (!split_huge_page(page)) {
292 break;
0db2e5d1 293 }
3b6b7e19 294 __free_pages(page, order);
0db2e5d1 295 }
0db2e5d1
RM
296 if (!page) {
297 __iommu_dma_free_pages(pages, i);
298 return NULL;
299 }
3b6b7e19
RM
300 count -= order_size;
301 while (order_size--)
0db2e5d1
RM
302 pages[i++] = page++;
303 }
304 return pages;
305}
306
307/**
308 * iommu_dma_free - Free a buffer allocated by iommu_dma_alloc()
309 * @dev: Device which owns this buffer
310 * @pages: Array of buffer pages as returned by iommu_dma_alloc()
311 * @size: Size of buffer in bytes
312 * @handle: DMA address of buffer
313 *
314 * Frees both the pages associated with the buffer, and the array
315 * describing them
316 */
317void iommu_dma_free(struct device *dev, struct page **pages, size_t size,
318 dma_addr_t *handle)
319{
320 __iommu_dma_unmap(iommu_get_domain_for_dev(dev), *handle);
321 __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
322 *handle = DMA_ERROR_CODE;
323}
324
325/**
326 * iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space
327 * @dev: Device to allocate memory for. Must be a real device
328 * attached to an iommu_dma_domain
329 * @size: Size of buffer in bytes
330 * @gfp: Allocation flags
3b6b7e19 331 * @attrs: DMA attributes for this allocation
0db2e5d1
RM
332 * @prot: IOMMU mapping flags
333 * @handle: Out argument for allocated DMA handle
334 * @flush_page: Arch callback which must ensure PAGE_SIZE bytes from the
335 * given VA/PA are visible to the given non-coherent device.
336 *
337 * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
338 * but an IOMMU which supports smaller pages might not map the whole thing.
339 *
340 * Return: Array of struct page pointers describing the buffer,
341 * or NULL on failure.
342 */
3b6b7e19 343struct page **iommu_dma_alloc(struct device *dev, size_t size, gfp_t gfp,
00085f1e 344 unsigned long attrs, int prot, dma_addr_t *handle,
0db2e5d1
RM
345 void (*flush_page)(struct device *, const void *, phys_addr_t))
346{
347 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
44bb7e24 348 struct iova_domain *iovad = cookie_iovad(domain);
0db2e5d1
RM
349 struct iova *iova;
350 struct page **pages;
351 struct sg_table sgt;
352 dma_addr_t dma_addr;
3b6b7e19 353 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
0db2e5d1
RM
354
355 *handle = DMA_ERROR_CODE;
356
3b6b7e19
RM
357 min_size = alloc_sizes & -alloc_sizes;
358 if (min_size < PAGE_SIZE) {
359 min_size = PAGE_SIZE;
360 alloc_sizes |= PAGE_SIZE;
361 } else {
362 size = ALIGN(size, min_size);
363 }
00085f1e 364 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
3b6b7e19
RM
365 alloc_sizes = min_size;
366
367 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
368 pages = __iommu_dma_alloc_pages(count, alloc_sizes >> PAGE_SHIFT, gfp);
0db2e5d1
RM
369 if (!pages)
370 return NULL;
371
c987ff0d 372 iova = __alloc_iova(domain, size, dev->coherent_dma_mask);
0db2e5d1
RM
373 if (!iova)
374 goto out_free_pages;
375
376 size = iova_align(iovad, size);
377 if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
378 goto out_free_iova;
379
380 if (!(prot & IOMMU_CACHE)) {
381 struct sg_mapping_iter miter;
382 /*
383 * The CPU-centric flushing implied by SG_MITER_TO_SG isn't
384 * sufficient here, so skip it by using the "wrong" direction.
385 */
386 sg_miter_start(&miter, sgt.sgl, sgt.orig_nents, SG_MITER_FROM_SG);
387 while (sg_miter_next(&miter))
388 flush_page(dev, miter.addr, page_to_phys(miter.page));
389 sg_miter_stop(&miter);
390 }
391
392 dma_addr = iova_dma_addr(iovad, iova);
393 if (iommu_map_sg(domain, dma_addr, sgt.sgl, sgt.orig_nents, prot)
394 < size)
395 goto out_free_sg;
396
397 *handle = dma_addr;
398 sg_free_table(&sgt);
399 return pages;
400
401out_free_sg:
402 sg_free_table(&sgt);
403out_free_iova:
404 __free_iova(iovad, iova);
405out_free_pages:
406 __iommu_dma_free_pages(pages, count);
407 return NULL;
408}
409
410/**
411 * iommu_dma_mmap - Map a buffer into provided user VMA
412 * @pages: Array representing buffer from iommu_dma_alloc()
413 * @size: Size of buffer in bytes
414 * @vma: VMA describing requested userspace mapping
415 *
416 * Maps the pages of the buffer in @pages into @vma. The caller is responsible
417 * for verifying the correct size and protection of @vma beforehand.
418 */
419
420int iommu_dma_mmap(struct page **pages, size_t size, struct vm_area_struct *vma)
421{
422 unsigned long uaddr = vma->vm_start;
423 unsigned int i, count = PAGE_ALIGN(size) >> PAGE_SHIFT;
424 int ret = -ENXIO;
425
426 for (i = vma->vm_pgoff; i < count && uaddr < vma->vm_end; i++) {
427 ret = vm_insert_page(vma, uaddr, pages[i]);
428 if (ret)
429 break;
430 uaddr += PAGE_SIZE;
431 }
432 return ret;
433}
434
51f8cc9e
RM
435static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
436 size_t size, int prot)
0db2e5d1
RM
437{
438 dma_addr_t dma_addr;
439 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
44bb7e24 440 struct iova_domain *iovad = cookie_iovad(domain);
0db2e5d1
RM
441 size_t iova_off = iova_offset(iovad, phys);
442 size_t len = iova_align(iovad, size + iova_off);
c987ff0d 443 struct iova *iova = __alloc_iova(domain, len, dma_get_mask(dev));
0db2e5d1
RM
444
445 if (!iova)
446 return DMA_ERROR_CODE;
447
448 dma_addr = iova_dma_addr(iovad, iova);
449 if (iommu_map(domain, dma_addr, phys - iova_off, len, prot)) {
450 __free_iova(iovad, iova);
451 return DMA_ERROR_CODE;
452 }
453 return dma_addr + iova_off;
454}
455
51f8cc9e
RM
456dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
457 unsigned long offset, size_t size, int prot)
458{
459 return __iommu_dma_map(dev, page_to_phys(page) + offset, size, prot);
460}
461
0db2e5d1 462void iommu_dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size,
00085f1e 463 enum dma_data_direction dir, unsigned long attrs)
0db2e5d1
RM
464{
465 __iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle);
466}
467
468/*
469 * Prepare a successfully-mapped scatterlist to give back to the caller.
809eac54
RM
470 *
471 * At this point the segments are already laid out by iommu_dma_map_sg() to
472 * avoid individually crossing any boundaries, so we merely need to check a
473 * segment's start address to avoid concatenating across one.
0db2e5d1
RM
474 */
475static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
476 dma_addr_t dma_addr)
477{
809eac54
RM
478 struct scatterlist *s, *cur = sg;
479 unsigned long seg_mask = dma_get_seg_boundary(dev);
480 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
481 int i, count = 0;
0db2e5d1
RM
482
483 for_each_sg(sg, s, nents, i) {
809eac54
RM
484 /* Restore this segment's original unaligned fields first */
485 unsigned int s_iova_off = sg_dma_address(s);
0db2e5d1 486 unsigned int s_length = sg_dma_len(s);
809eac54 487 unsigned int s_iova_len = s->length;
0db2e5d1 488
809eac54 489 s->offset += s_iova_off;
0db2e5d1 490 s->length = s_length;
809eac54
RM
491 sg_dma_address(s) = DMA_ERROR_CODE;
492 sg_dma_len(s) = 0;
493
494 /*
495 * Now fill in the real DMA data. If...
496 * - there is a valid output segment to append to
497 * - and this segment starts on an IOVA page boundary
498 * - but doesn't fall at a segment boundary
499 * - and wouldn't make the resulting output segment too long
500 */
501 if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
502 (cur_len + s_length <= max_len)) {
503 /* ...then concatenate it with the previous one */
504 cur_len += s_length;
505 } else {
506 /* Otherwise start the next output segment */
507 if (i > 0)
508 cur = sg_next(cur);
509 cur_len = s_length;
510 count++;
511
512 sg_dma_address(cur) = dma_addr + s_iova_off;
513 }
514
515 sg_dma_len(cur) = cur_len;
516 dma_addr += s_iova_len;
517
518 if (s_length + s_iova_off < s_iova_len)
519 cur_len = 0;
0db2e5d1 520 }
809eac54 521 return count;
0db2e5d1
RM
522}
523
524/*
525 * If mapping failed, then just restore the original list,
526 * but making sure the DMA fields are invalidated.
527 */
528static void __invalidate_sg(struct scatterlist *sg, int nents)
529{
530 struct scatterlist *s;
531 int i;
532
533 for_each_sg(sg, s, nents, i) {
534 if (sg_dma_address(s) != DMA_ERROR_CODE)
07b48ac4 535 s->offset += sg_dma_address(s);
0db2e5d1
RM
536 if (sg_dma_len(s))
537 s->length = sg_dma_len(s);
538 sg_dma_address(s) = DMA_ERROR_CODE;
539 sg_dma_len(s) = 0;
540 }
541}
542
543/*
544 * The DMA API client is passing in a scatterlist which could describe
545 * any old buffer layout, but the IOMMU API requires everything to be
546 * aligned to IOMMU pages. Hence the need for this complicated bit of
547 * impedance-matching, to be able to hand off a suitably-aligned list,
548 * but still preserve the original offsets and sizes for the caller.
549 */
550int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
551 int nents, int prot)
552{
553 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
44bb7e24 554 struct iova_domain *iovad = cookie_iovad(domain);
0db2e5d1
RM
555 struct iova *iova;
556 struct scatterlist *s, *prev = NULL;
557 dma_addr_t dma_addr;
558 size_t iova_len = 0;
809eac54 559 unsigned long mask = dma_get_seg_boundary(dev);
0db2e5d1
RM
560 int i;
561
562 /*
563 * Work out how much IOVA space we need, and align the segments to
564 * IOVA granules for the IOMMU driver to handle. With some clever
565 * trickery we can modify the list in-place, but reversibly, by
809eac54 566 * stashing the unaligned parts in the as-yet-unused DMA fields.
0db2e5d1
RM
567 */
568 for_each_sg(sg, s, nents, i) {
809eac54 569 size_t s_iova_off = iova_offset(iovad, s->offset);
0db2e5d1 570 size_t s_length = s->length;
809eac54 571 size_t pad_len = (mask - iova_len + 1) & mask;
0db2e5d1 572
809eac54 573 sg_dma_address(s) = s_iova_off;
0db2e5d1 574 sg_dma_len(s) = s_length;
809eac54
RM
575 s->offset -= s_iova_off;
576 s_length = iova_align(iovad, s_length + s_iova_off);
0db2e5d1
RM
577 s->length = s_length;
578
579 /*
809eac54
RM
580 * Due to the alignment of our single IOVA allocation, we can
581 * depend on these assumptions about the segment boundary mask:
582 * - If mask size >= IOVA size, then the IOVA range cannot
583 * possibly fall across a boundary, so we don't care.
584 * - If mask size < IOVA size, then the IOVA range must start
585 * exactly on a boundary, therefore we can lay things out
586 * based purely on segment lengths without needing to know
587 * the actual addresses beforehand.
588 * - The mask must be a power of 2, so pad_len == 0 if
589 * iova_len == 0, thus we cannot dereference prev the first
590 * time through here (i.e. before it has a meaningful value).
0db2e5d1 591 */
809eac54 592 if (pad_len && pad_len < s_length - 1) {
0db2e5d1
RM
593 prev->length += pad_len;
594 iova_len += pad_len;
595 }
596
597 iova_len += s_length;
598 prev = s;
599 }
600
c987ff0d 601 iova = __alloc_iova(domain, iova_len, dma_get_mask(dev));
0db2e5d1
RM
602 if (!iova)
603 goto out_restore_sg;
604
605 /*
606 * We'll leave any physical concatenation to the IOMMU driver's
607 * implementation - it knows better than we do.
608 */
609 dma_addr = iova_dma_addr(iovad, iova);
610 if (iommu_map_sg(domain, dma_addr, sg, nents, prot) < iova_len)
611 goto out_free_iova;
612
613 return __finalise_sg(dev, sg, nents, dma_addr);
614
615out_free_iova:
616 __free_iova(iovad, iova);
617out_restore_sg:
618 __invalidate_sg(sg, nents);
619 return 0;
620}
621
622void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
00085f1e 623 enum dma_data_direction dir, unsigned long attrs)
0db2e5d1
RM
624{
625 /*
626 * The scatterlist segments are mapped into a single
627 * contiguous IOVA allocation, so this is incredibly easy.
628 */
629 __iommu_dma_unmap(iommu_get_domain_for_dev(dev), sg_dma_address(sg));
630}
631
51f8cc9e
RM
632dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
633 size_t size, enum dma_data_direction dir, unsigned long attrs)
634{
635 return __iommu_dma_map(dev, phys, size,
636 dma_direction_to_prot(dir, false) | IOMMU_MMIO);
637}
638
639void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
640 size_t size, enum dma_data_direction dir, unsigned long attrs)
641{
642 __iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle);
643}
644
0db2e5d1
RM
645int iommu_dma_supported(struct device *dev, u64 mask)
646{
647 /*
648 * 'Special' IOMMUs which don't have the same addressing capability
649 * as the CPU will have to wait until we have some way to query that
650 * before they'll be able to use this framework.
651 */
652 return 1;
653}
654
655int iommu_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
656{
657 return dma_addr == DMA_ERROR_CODE;
658}
44bb7e24
RM
659
660static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
661 phys_addr_t msi_addr, struct iommu_domain *domain)
662{
663 struct iommu_dma_cookie *cookie = domain->iova_cookie;
664 struct iommu_dma_msi_page *msi_page;
665 struct iova_domain *iovad = &cookie->iovad;
666 struct iova *iova;
667 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
668
669 msi_addr &= ~(phys_addr_t)iova_mask(iovad);
670 list_for_each_entry(msi_page, &cookie->msi_page_list, list)
671 if (msi_page->phys == msi_addr)
672 return msi_page;
673
674 msi_page = kzalloc(sizeof(*msi_page), GFP_ATOMIC);
675 if (!msi_page)
676 return NULL;
677
678 iova = __alloc_iova(domain, iovad->granule, dma_get_mask(dev));
679 if (!iova)
680 goto out_free_page;
681
682 msi_page->phys = msi_addr;
683 msi_page->iova = iova_dma_addr(iovad, iova);
684 if (iommu_map(domain, msi_page->iova, msi_addr, iovad->granule, prot))
685 goto out_free_iova;
686
687 INIT_LIST_HEAD(&msi_page->list);
688 list_add(&msi_page->list, &cookie->msi_page_list);
689 return msi_page;
690
691out_free_iova:
692 __free_iova(iovad, iova);
693out_free_page:
694 kfree(msi_page);
695 return NULL;
696}
697
698void iommu_dma_map_msi_msg(int irq, struct msi_msg *msg)
699{
700 struct device *dev = msi_desc_to_dev(irq_get_msi_desc(irq));
701 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
702 struct iommu_dma_cookie *cookie;
703 struct iommu_dma_msi_page *msi_page;
704 phys_addr_t msi_addr = (u64)msg->address_hi << 32 | msg->address_lo;
705 unsigned long flags;
706
707 if (!domain || !domain->iova_cookie)
708 return;
709
710 cookie = domain->iova_cookie;
711
712 /*
713 * We disable IRQs to rule out a possible inversion against
714 * irq_desc_lock if, say, someone tries to retarget the affinity
715 * of an MSI from within an IPI handler.
716 */
717 spin_lock_irqsave(&cookie->msi_lock, flags);
718 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
719 spin_unlock_irqrestore(&cookie->msi_lock, flags);
720
721 if (WARN_ON(!msi_page)) {
722 /*
723 * We're called from a void callback, so the best we can do is
724 * 'fail' by filling the message with obviously bogus values.
725 * Since we got this far due to an IOMMU being present, it's
726 * not like the existing address would have worked anyway...
727 */
728 msg->address_hi = ~0U;
729 msg->address_lo = ~0U;
730 msg->data = ~0U;
731 } else {
732 msg->address_hi = upper_32_bits(msi_page->iova);
733 msg->address_lo &= iova_mask(&cookie->iovad);
734 msg->address_lo += lower_32_bits(msi_page->iova);
735 }
736}