iommu/io-pgtable: Remove non-strict quirk
[linux-block.git] / drivers / iommu / dma-iommu.c
CommitLineData
caab277b 1// SPDX-License-Identifier: GPL-2.0-only
0db2e5d1
RM
2/*
3 * A fairly generic DMA-API to IOMMU-API glue layer.
4 *
5 * Copyright (C) 2014-2015 ARM Ltd.
6 *
7 * based in part on arch/arm/mm/dma-mapping.c:
8 * Copyright (C) 2000-2004 Russell King
0db2e5d1
RM
9 */
10
f51dc892 11#include <linux/acpi_iort.h>
0db2e5d1 12#include <linux/device.h>
0a0f0d8b 13#include <linux/dma-map-ops.h>
0db2e5d1 14#include <linux/dma-iommu.h>
5b11e9cd 15#include <linux/gfp.h>
0db2e5d1
RM
16#include <linux/huge_mm.h>
17#include <linux/iommu.h>
18#include <linux/iova.h>
44bb7e24 19#include <linux/irq.h>
0db2e5d1 20#include <linux/mm.h>
c1864790 21#include <linux/mutex.h>
fade1ec0 22#include <linux/pci.h>
82612d66 23#include <linux/swiotlb.h>
5b11e9cd
RM
24#include <linux/scatterlist.h>
25#include <linux/vmalloc.h>
795bbbb9 26#include <linux/crash_dump.h>
82612d66 27#include <linux/dma-direct.h>
0db2e5d1 28
44bb7e24
RM
29struct iommu_dma_msi_page {
30 struct list_head list;
31 dma_addr_t iova;
32 phys_addr_t phys;
33};
34
fdbe574e
RM
35enum iommu_dma_cookie_type {
36 IOMMU_DMA_IOVA_COOKIE,
37 IOMMU_DMA_MSI_COOKIE,
38};
39
44bb7e24 40struct iommu_dma_cookie {
fdbe574e
RM
41 enum iommu_dma_cookie_type type;
42 union {
43 /* Full allocator for IOMMU_DMA_IOVA_COOKIE */
44 struct iova_domain iovad;
45 /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
46 dma_addr_t msi_iova;
47 };
48 struct list_head msi_page_list;
2da274cd
ZL
49
50 /* Domain for flush queue callback; NULL if flush queue not in use */
51 struct iommu_domain *fq_domain;
44bb7e24
RM
52};
53
a8e8af35 54static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled);
3542dcb1
RM
55bool iommu_dma_forcedac __read_mostly;
56
57static int __init iommu_dma_forcedac_setup(char *str)
58{
59 int ret = kstrtobool(str, &iommu_dma_forcedac);
60
61 if (!ret && iommu_dma_forcedac)
62 pr_info("Forcing DAC for PCI devices\n");
63 return ret;
64}
65early_param("iommu.forcedac", iommu_dma_forcedac_setup);
a8e8af35 66
2a2b8eaa
TM
67static void iommu_dma_entry_dtor(unsigned long data)
68{
69 struct page *freelist = (struct page *)data;
70
71 while (freelist) {
72 unsigned long p = (unsigned long)page_address(freelist);
73
74 freelist = freelist->freelist;
75 free_page(p);
76 }
77}
78
fdbe574e
RM
79static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
80{
81 if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
82 return cookie->iovad.granule;
83 return PAGE_SIZE;
84}
85
fdbe574e
RM
86static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
87{
88 struct iommu_dma_cookie *cookie;
89
90 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
91 if (cookie) {
fdbe574e
RM
92 INIT_LIST_HEAD(&cookie->msi_page_list);
93 cookie->type = type;
94 }
95 return cookie;
44bb7e24
RM
96}
97
0db2e5d1
RM
98/**
99 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
100 * @domain: IOMMU domain to prepare for DMA-API usage
101 *
102 * IOMMU drivers should normally call this from their domain_alloc
103 * callback when domain->type == IOMMU_DOMAIN_DMA.
104 */
105int iommu_get_dma_cookie(struct iommu_domain *domain)
fdbe574e
RM
106{
107 if (domain->iova_cookie)
108 return -EEXIST;
109
110 domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
111 if (!domain->iova_cookie)
112 return -ENOMEM;
113
114 return 0;
115}
116EXPORT_SYMBOL(iommu_get_dma_cookie);
117
118/**
119 * iommu_get_msi_cookie - Acquire just MSI remapping resources
120 * @domain: IOMMU domain to prepare
121 * @base: Start address of IOVA region for MSI mappings
122 *
123 * Users who manage their own IOVA allocation and do not want DMA API support,
124 * but would still like to take advantage of automatic MSI remapping, can use
125 * this to initialise their own domain appropriately. Users should reserve a
126 * contiguous IOVA region, starting at @base, large enough to accommodate the
127 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
128 * used by the devices attached to @domain.
129 */
130int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
0db2e5d1 131{
44bb7e24 132 struct iommu_dma_cookie *cookie;
0db2e5d1 133
fdbe574e
RM
134 if (domain->type != IOMMU_DOMAIN_UNMANAGED)
135 return -EINVAL;
136
0db2e5d1
RM
137 if (domain->iova_cookie)
138 return -EEXIST;
139
fdbe574e 140 cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
44bb7e24
RM
141 if (!cookie)
142 return -ENOMEM;
0db2e5d1 143
fdbe574e 144 cookie->msi_iova = base;
44bb7e24
RM
145 domain->iova_cookie = cookie;
146 return 0;
0db2e5d1 147}
fdbe574e 148EXPORT_SYMBOL(iommu_get_msi_cookie);
0db2e5d1
RM
149
150/**
151 * iommu_put_dma_cookie - Release a domain's DMA mapping resources
fdbe574e
RM
152 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
153 * iommu_get_msi_cookie()
0db2e5d1
RM
154 *
155 * IOMMU drivers should normally call this from their domain_free callback.
156 */
157void iommu_put_dma_cookie(struct iommu_domain *domain)
158{
44bb7e24
RM
159 struct iommu_dma_cookie *cookie = domain->iova_cookie;
160 struct iommu_dma_msi_page *msi, *tmp;
0db2e5d1 161
44bb7e24 162 if (!cookie)
0db2e5d1
RM
163 return;
164
fdbe574e 165 if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
44bb7e24
RM
166 put_iova_domain(&cookie->iovad);
167
168 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
169 list_del(&msi->list);
170 kfree(msi);
171 }
172 kfree(cookie);
0db2e5d1
RM
173 domain->iova_cookie = NULL;
174}
175EXPORT_SYMBOL(iommu_put_dma_cookie);
176
273df963
RM
177/**
178 * iommu_dma_get_resv_regions - Reserved region driver helper
179 * @dev: Device from iommu_get_resv_regions()
180 * @list: Reserved region list from iommu_get_resv_regions()
181 *
182 * IOMMU drivers can use this to implement their .get_resv_regions callback
cd2c9fcf
SK
183 * for general non-IOMMU-specific reservations. Currently, this covers GICv3
184 * ITS region reservation on ACPI based ARM platforms that may require HW MSI
185 * reservation.
273df963
RM
186 */
187void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
fade1ec0 188{
fade1ec0 189
98cc4f71 190 if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
cd2c9fcf 191 iort_iommu_msi_get_resv_regions(dev, list);
273df963 192
fade1ec0 193}
273df963 194EXPORT_SYMBOL(iommu_dma_get_resv_regions);
fade1ec0 195
7c1b058c
RM
196static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
197 phys_addr_t start, phys_addr_t end)
198{
199 struct iova_domain *iovad = &cookie->iovad;
200 struct iommu_dma_msi_page *msi_page;
201 int i, num_pages;
202
203 start -= iova_offset(iovad, start);
204 num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
205
7c1b058c 206 for (i = 0; i < num_pages; i++) {
65ac74f1
MZ
207 msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL);
208 if (!msi_page)
209 return -ENOMEM;
210
211 msi_page->phys = start;
212 msi_page->iova = start;
213 INIT_LIST_HEAD(&msi_page->list);
214 list_add(&msi_page->list, &cookie->msi_page_list);
7c1b058c
RM
215 start += iovad->granule;
216 }
217
218 return 0;
219}
220
aadad097 221static int iova_reserve_pci_windows(struct pci_dev *dev,
cd2c9fcf
SK
222 struct iova_domain *iovad)
223{
224 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
225 struct resource_entry *window;
226 unsigned long lo, hi;
aadad097 227 phys_addr_t start = 0, end;
cd2c9fcf
SK
228
229 resource_list_for_each_entry(window, &bridge->windows) {
230 if (resource_type(window->res) != IORESOURCE_MEM)
231 continue;
232
233 lo = iova_pfn(iovad, window->res->start - window->offset);
234 hi = iova_pfn(iovad, window->res->end - window->offset);
235 reserve_iova(iovad, lo, hi);
236 }
aadad097
SM
237
238 /* Get reserved DMA windows from host bridge */
239 resource_list_for_each_entry(window, &bridge->dma_ranges) {
240 end = window->res->start - window->offset;
241resv_iova:
242 if (end > start) {
243 lo = iova_pfn(iovad, start);
244 hi = iova_pfn(iovad, end);
245 reserve_iova(iovad, lo, hi);
571f3160 246 } else if (end < start) {
aadad097 247 /* dma_ranges list should be sorted */
571f3160 248 dev_err(&dev->dev,
7154cbd3
JR
249 "Failed to reserve IOVA [%pa-%pa]\n",
250 &start, &end);
aadad097
SM
251 return -EINVAL;
252 }
253
254 start = window->res->end - window->offset + 1;
255 /* If window is last entry */
256 if (window->node.next == &bridge->dma_ranges &&
29fcea8c
AB
257 end != ~(phys_addr_t)0) {
258 end = ~(phys_addr_t)0;
aadad097
SM
259 goto resv_iova;
260 }
261 }
262
263 return 0;
cd2c9fcf
SK
264}
265
7c1b058c
RM
266static int iova_reserve_iommu_regions(struct device *dev,
267 struct iommu_domain *domain)
268{
269 struct iommu_dma_cookie *cookie = domain->iova_cookie;
270 struct iova_domain *iovad = &cookie->iovad;
271 struct iommu_resv_region *region;
272 LIST_HEAD(resv_regions);
273 int ret = 0;
274
aadad097
SM
275 if (dev_is_pci(dev)) {
276 ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
277 if (ret)
278 return ret;
279 }
cd2c9fcf 280
7c1b058c
RM
281 iommu_get_resv_regions(dev, &resv_regions);
282 list_for_each_entry(region, &resv_regions, list) {
283 unsigned long lo, hi;
284
285 /* We ARE the software that manages these! */
286 if (region->type == IOMMU_RESV_SW_MSI)
287 continue;
288
289 lo = iova_pfn(iovad, region->start);
290 hi = iova_pfn(iovad, region->start + region->length - 1);
291 reserve_iova(iovad, lo, hi);
292
293 if (region->type == IOMMU_RESV_MSI)
294 ret = cookie_init_hw_msi_region(cookie, region->start,
295 region->start + region->length);
296 if (ret)
297 break;
298 }
299 iommu_put_resv_regions(dev, &resv_regions);
300
301 return ret;
302}
303
2da274cd
ZL
304static void iommu_dma_flush_iotlb_all(struct iova_domain *iovad)
305{
306 struct iommu_dma_cookie *cookie;
307 struct iommu_domain *domain;
308
309 cookie = container_of(iovad, struct iommu_dma_cookie, iovad);
310 domain = cookie->fq_domain;
a250c23f 311
2da274cd
ZL
312 domain->ops->flush_iotlb_all(domain);
313}
314
82c3cefb
LB
315static bool dev_is_untrusted(struct device *dev)
316{
317 return dev_is_pci(dev) && to_pci_dev(dev)->untrusted;
318}
319
0db2e5d1
RM
320/**
321 * iommu_dma_init_domain - Initialise a DMA mapping domain
322 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
323 * @base: IOVA at which the mappable address space starts
ac6d7046 324 * @limit: Last address of the IOVA space
fade1ec0 325 * @dev: Device the domain is being initialised for
0db2e5d1 326 *
ac6d7046 327 * @base and @limit + 1 should be exact multiples of IOMMU page granularity to
0db2e5d1
RM
328 * avoid rounding surprises. If necessary, we reserve the page at address 0
329 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
330 * any change which could make prior IOVAs invalid will fail.
331 */
06d60728 332static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
ac6d7046 333 dma_addr_t limit, struct device *dev)
0db2e5d1 334{
fdbe574e 335 struct iommu_dma_cookie *cookie = domain->iova_cookie;
c61a4633 336 unsigned long order, base_pfn;
6b0c54e7 337 struct iova_domain *iovad;
0db2e5d1 338
fdbe574e
RM
339 if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
340 return -EINVAL;
0db2e5d1 341
6b0c54e7
YL
342 iovad = &cookie->iovad;
343
0db2e5d1 344 /* Use the smallest supported page size for IOVA granularity */
d16e0faa 345 order = __ffs(domain->pgsize_bitmap);
0db2e5d1 346 base_pfn = max_t(unsigned long, 1, base >> order);
0db2e5d1
RM
347
348 /* Check the domain allows at least some access to the device... */
349 if (domain->geometry.force_aperture) {
350 if (base > domain->geometry.aperture_end ||
ac6d7046 351 limit < domain->geometry.aperture_start) {
0db2e5d1
RM
352 pr_warn("specified DMA range outside IOMMU capability\n");
353 return -EFAULT;
354 }
355 /* ...then finally give it a kicking to make sure it fits */
356 base_pfn = max_t(unsigned long, base_pfn,
357 domain->geometry.aperture_start >> order);
0db2e5d1
RM
358 }
359
f51d7bb7 360 /* start_pfn is always nonzero for an already-initialised domain */
0db2e5d1
RM
361 if (iovad->start_pfn) {
362 if (1UL << order != iovad->granule ||
f51d7bb7 363 base_pfn != iovad->start_pfn) {
0db2e5d1
RM
364 pr_warn("Incompatible range for DMA domain\n");
365 return -EFAULT;
366 }
7c1b058c
RM
367
368 return 0;
0db2e5d1 369 }
7c1b058c 370
aa3ac946 371 init_iova_domain(iovad, 1UL << order, base_pfn);
2da274cd 372
8d971243 373 if (!cookie->fq_domain && !dev_is_untrusted(dev) &&
a250c23f 374 domain->ops->flush_iotlb_all && !iommu_get_dma_strict(domain)) {
b34e9b0d 375 if (init_iova_flush_queue(iovad, iommu_dma_flush_iotlb_all,
2a2b8eaa 376 iommu_dma_entry_dtor))
b34e9b0d
TM
377 pr_warn("iova flush queue initialization failed\n");
378 else
379 cookie->fq_domain = domain;
2da274cd
ZL
380 }
381
7c1b058c 382 return iova_reserve_iommu_regions(dev, domain);
0db2e5d1 383}
0db2e5d1
RM
384
385/**
737c85ca
MH
386 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
387 * page flags.
0db2e5d1
RM
388 * @dir: Direction of DMA transfer
389 * @coherent: Is the DMA master cache-coherent?
737c85ca 390 * @attrs: DMA attributes for the mapping
0db2e5d1
RM
391 *
392 * Return: corresponding IOMMU API page protection flags
393 */
06d60728 394static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
737c85ca 395 unsigned long attrs)
0db2e5d1
RM
396{
397 int prot = coherent ? IOMMU_CACHE : 0;
398
737c85ca
MH
399 if (attrs & DMA_ATTR_PRIVILEGED)
400 prot |= IOMMU_PRIV;
401
0db2e5d1
RM
402 switch (dir) {
403 case DMA_BIDIRECTIONAL:
404 return prot | IOMMU_READ | IOMMU_WRITE;
405 case DMA_TO_DEVICE:
406 return prot | IOMMU_READ;
407 case DMA_FROM_DEVICE:
408 return prot | IOMMU_WRITE;
409 default:
410 return 0;
411 }
412}
413
842fe519 414static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
bd036d2f 415 size_t size, u64 dma_limit, struct device *dev)
0db2e5d1 416{
a44e6657
RM
417 struct iommu_dma_cookie *cookie = domain->iova_cookie;
418 struct iova_domain *iovad = &cookie->iovad;
bb65a64c 419 unsigned long shift, iova_len, iova = 0;
0db2e5d1 420
a44e6657
RM
421 if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
422 cookie->msi_iova += size;
423 return cookie->msi_iova - size;
424 }
425
426 shift = iova_shift(iovad);
427 iova_len = size >> shift;
bb65a64c
RM
428 /*
429 * Freeing non-power-of-two-sized allocations back into the IOVA caches
430 * will come back to bite us badly, so we have to waste a bit of space
431 * rounding up anything cacheable to make sure that can't happen. The
432 * order of the unadjusted size will still match upon freeing.
433 */
434 if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1)))
435 iova_len = roundup_pow_of_two(iova_len);
a44e6657 436
a7ba70f1 437 dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit);
03bfdc31 438
c987ff0d 439 if (domain->geometry.force_aperture)
bd036d2f 440 dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end);
122fac03
RM
441
442 /* Try to get PCI devices a SAC address */
3542dcb1 443 if (dma_limit > DMA_BIT_MASK(32) && !iommu_dma_forcedac && dev_is_pci(dev))
538d5b33
TN
444 iova = alloc_iova_fast(iovad, iova_len,
445 DMA_BIT_MASK(32) >> shift, false);
bb65a64c 446
122fac03 447 if (!iova)
538d5b33
TN
448 iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
449 true);
122fac03 450
bb65a64c 451 return (dma_addr_t)iova << shift;
0db2e5d1
RM
452}
453
842fe519 454static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
2a2b8eaa 455 dma_addr_t iova, size_t size, struct page *freelist)
0db2e5d1 456{
842fe519 457 struct iova_domain *iovad = &cookie->iovad;
0db2e5d1 458
a44e6657 459 /* The MSI case is only ever cleaning up its most recent allocation */
bb65a64c 460 if (cookie->type == IOMMU_DMA_MSI_COOKIE)
a44e6657 461 cookie->msi_iova -= size;
2da274cd
ZL
462 else if (cookie->fq_domain) /* non-strict mode */
463 queue_iova(iovad, iova_pfn(iovad, iova),
2a2b8eaa
TM
464 size >> iova_shift(iovad),
465 (unsigned long)freelist);
bb65a64c 466 else
1cc896ed
RM
467 free_iova_fast(iovad, iova_pfn(iovad, iova),
468 size >> iova_shift(iovad));
842fe519
RM
469}
470
b61d271e 471static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
842fe519
RM
472 size_t size)
473{
b61d271e 474 struct iommu_domain *domain = iommu_get_dma_domain(dev);
a44e6657
RM
475 struct iommu_dma_cookie *cookie = domain->iova_cookie;
476 struct iova_domain *iovad = &cookie->iovad;
842fe519 477 size_t iova_off = iova_offset(iovad, dma_addr);
a7d20dc1
WD
478 struct iommu_iotlb_gather iotlb_gather;
479 size_t unmapped;
842fe519
RM
480
481 dma_addr -= iova_off;
482 size = iova_align(iovad, size + iova_off);
a7d20dc1 483 iommu_iotlb_gather_init(&iotlb_gather);
7a7c5bad 484 iotlb_gather.queued = cookie->fq_domain;
a7d20dc1
WD
485
486 unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather);
487 WARN_ON(unmapped != size);
842fe519 488
2da274cd 489 if (!cookie->fq_domain)
aae4c8e2 490 iommu_iotlb_sync(domain, &iotlb_gather);
2a2b8eaa 491 iommu_dma_free_iova(cookie, dma_addr, size, iotlb_gather.freelist);
0db2e5d1
RM
492}
493
82612d66
TM
494static void __iommu_dma_unmap_swiotlb(struct device *dev, dma_addr_t dma_addr,
495 size_t size, enum dma_data_direction dir,
496 unsigned long attrs)
497{
498 struct iommu_domain *domain = iommu_get_dma_domain(dev);
82612d66
TM
499 phys_addr_t phys;
500
501 phys = iommu_iova_to_phys(domain, dma_addr);
502 if (WARN_ON(!phys))
503 return;
504
505 __iommu_dma_unmap(dev, dma_addr, size);
506
507 if (unlikely(is_swiotlb_buffer(phys)))
2973073a 508 swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
82612d66
TM
509}
510
92aec09c 511static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
bd036d2f 512 size_t size, int prot, u64 dma_mask)
92aec09c 513{
b61d271e 514 struct iommu_domain *domain = iommu_get_dma_domain(dev);
92aec09c 515 struct iommu_dma_cookie *cookie = domain->iova_cookie;
8af23fad
RM
516 struct iova_domain *iovad = &cookie->iovad;
517 size_t iova_off = iova_offset(iovad, phys);
92aec09c
CH
518 dma_addr_t iova;
519
a8e8af35 520 if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
3ab65729 521 iommu_deferred_attach(dev, domain))
795bbbb9
TM
522 return DMA_MAPPING_ERROR;
523
8af23fad 524 size = iova_align(iovad, size + iova_off);
92aec09c 525
6e235020 526 iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev);
92aec09c
CH
527 if (!iova)
528 return DMA_MAPPING_ERROR;
529
781ca2de 530 if (iommu_map_atomic(domain, iova, phys - iova_off, size, prot)) {
2a2b8eaa 531 iommu_dma_free_iova(cookie, iova, size, NULL);
92aec09c
CH
532 return DMA_MAPPING_ERROR;
533 }
534 return iova + iova_off;
535}
536
82612d66
TM
537static dma_addr_t __iommu_dma_map_swiotlb(struct device *dev, phys_addr_t phys,
538 size_t org_size, dma_addr_t dma_mask, bool coherent,
539 enum dma_data_direction dir, unsigned long attrs)
540{
541 int prot = dma_info_to_prot(dir, coherent, attrs);
542 struct iommu_domain *domain = iommu_get_dma_domain(dev);
543 struct iommu_dma_cookie *cookie = domain->iova_cookie;
544 struct iova_domain *iovad = &cookie->iovad;
545 size_t aligned_size = org_size;
546 void *padding_start;
547 size_t padding_size;
548 dma_addr_t iova;
549
550 /*
551 * If both the physical buffer start address and size are
552 * page aligned, we don't need to use a bounce page.
553 */
554 if (IS_ENABLED(CONFIG_SWIOTLB) && dev_is_untrusted(dev) &&
555 iova_offset(iovad, phys | org_size)) {
556 aligned_size = iova_align(iovad, org_size);
557 phys = swiotlb_tbl_map_single(dev, phys, org_size,
558 aligned_size, dir, attrs);
559
560 if (phys == DMA_MAPPING_ERROR)
561 return DMA_MAPPING_ERROR;
562
563 /* Cleanup the padding area. */
564 padding_start = phys_to_virt(phys);
565 padding_size = aligned_size;
566
567 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
568 (dir == DMA_TO_DEVICE ||
569 dir == DMA_BIDIRECTIONAL)) {
570 padding_start += org_size;
571 padding_size -= org_size;
572 }
573
574 memset(padding_start, 0, padding_size);
575 }
576
577 iova = __iommu_dma_map(dev, phys, aligned_size, prot, dma_mask);
2973073a
CH
578 if (iova == DMA_MAPPING_ERROR && is_swiotlb_buffer(phys))
579 swiotlb_tbl_unmap_single(dev, phys, org_size, dir, attrs);
82612d66
TM
580 return iova;
581}
582
0db2e5d1
RM
583static void __iommu_dma_free_pages(struct page **pages, int count)
584{
585 while (count--)
586 __free_page(pages[count]);
587 kvfree(pages);
588}
589
c4b17afb
GK
590static struct page **__iommu_dma_alloc_pages(struct device *dev,
591 unsigned int count, unsigned long order_mask, gfp_t gfp)
0db2e5d1
RM
592{
593 struct page **pages;
c4b17afb 594 unsigned int i = 0, nid = dev_to_node(dev);
3b6b7e19
RM
595
596 order_mask &= (2U << MAX_ORDER) - 1;
597 if (!order_mask)
598 return NULL;
0db2e5d1 599
c4b17afb 600 pages = kvzalloc(count * sizeof(*pages), GFP_KERNEL);
0db2e5d1
RM
601 if (!pages)
602 return NULL;
603
604 /* IOMMU can map any pages, so himem can also be used here */
605 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
606
4604393c
RM
607 /* It makes no sense to muck about with huge pages */
608 gfp &= ~__GFP_COMP;
609
0db2e5d1
RM
610 while (count) {
611 struct page *page = NULL;
3b6b7e19 612 unsigned int order_size;
0db2e5d1
RM
613
614 /*
615 * Higher-order allocations are a convenience rather
616 * than a necessity, hence using __GFP_NORETRY until
3b6b7e19 617 * falling back to minimum-order allocations.
0db2e5d1 618 */
3b6b7e19
RM
619 for (order_mask &= (2U << __fls(count)) - 1;
620 order_mask; order_mask &= ~order_size) {
621 unsigned int order = __fls(order_mask);
c4b17afb 622 gfp_t alloc_flags = gfp;
3b6b7e19
RM
623
624 order_size = 1U << order;
c4b17afb
GK
625 if (order_mask > order_size)
626 alloc_flags |= __GFP_NORETRY;
627 page = alloc_pages_node(nid, alloc_flags, order);
0db2e5d1
RM
628 if (!page)
629 continue;
4604393c 630 if (order)
0db2e5d1 631 split_page(page, order);
4604393c 632 break;
0db2e5d1 633 }
0db2e5d1
RM
634 if (!page) {
635 __iommu_dma_free_pages(pages, i);
636 return NULL;
637 }
3b6b7e19
RM
638 count -= order_size;
639 while (order_size--)
0db2e5d1
RM
640 pages[i++] = page++;
641 }
642 return pages;
643}
644
8230ce9a
CH
645/*
646 * If size is less than PAGE_SIZE, then a full CPU page will be allocated,
0db2e5d1 647 * but an IOMMU which supports smaller pages might not map the whole thing.
0db2e5d1 648 */
8230ce9a
CH
649static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev,
650 size_t size, struct sg_table *sgt, gfp_t gfp, pgprot_t prot,
e8d39a90 651 unsigned long attrs)
0db2e5d1 652{
43c5bf11 653 struct iommu_domain *domain = iommu_get_dma_domain(dev);
842fe519
RM
654 struct iommu_dma_cookie *cookie = domain->iova_cookie;
655 struct iova_domain *iovad = &cookie->iovad;
21b95aaf
CH
656 bool coherent = dev_is_dma_coherent(dev);
657 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
21b95aaf 658 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
0db2e5d1 659 struct page **pages;
842fe519 660 dma_addr_t iova;
0db2e5d1 661
a8e8af35 662 if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
3ab65729 663 iommu_deferred_attach(dev, domain))
795bbbb9
TM
664 return NULL;
665
3b6b7e19
RM
666 min_size = alloc_sizes & -alloc_sizes;
667 if (min_size < PAGE_SIZE) {
668 min_size = PAGE_SIZE;
669 alloc_sizes |= PAGE_SIZE;
670 } else {
671 size = ALIGN(size, min_size);
672 }
00085f1e 673 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
3b6b7e19
RM
674 alloc_sizes = min_size;
675
676 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
c4b17afb
GK
677 pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
678 gfp);
0db2e5d1
RM
679 if (!pages)
680 return NULL;
681
842fe519
RM
682 size = iova_align(iovad, size);
683 iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
0db2e5d1
RM
684 if (!iova)
685 goto out_free_pages;
686
8230ce9a 687 if (sg_alloc_table_from_pages(sgt, pages, count, 0, size, GFP_KERNEL))
0db2e5d1
RM
688 goto out_free_iova;
689
21b95aaf 690 if (!(ioprot & IOMMU_CACHE)) {
23f88e0a
CH
691 struct scatterlist *sg;
692 int i;
693
8230ce9a 694 for_each_sg(sgt->sgl, sg, sgt->orig_nents, i)
23f88e0a 695 arch_dma_prep_coherent(sg_page(sg), sg->length);
0db2e5d1
RM
696 }
697
8230ce9a 698 if (iommu_map_sg_atomic(domain, iova, sgt->sgl, sgt->orig_nents, ioprot)
0db2e5d1
RM
699 < size)
700 goto out_free_sg;
701
8230ce9a 702 sgt->sgl->dma_address = iova;
e817ee5f 703 sgt->sgl->dma_length = size;
8230ce9a
CH
704 return pages;
705
706out_free_sg:
707 sg_free_table(sgt);
708out_free_iova:
709 iommu_dma_free_iova(cookie, iova, size, NULL);
710out_free_pages:
711 __iommu_dma_free_pages(pages, count);
712 return NULL;
713}
714
715static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
716 dma_addr_t *dma_handle, gfp_t gfp, pgprot_t prot,
717 unsigned long attrs)
718{
719 struct page **pages;
720 struct sg_table sgt;
721 void *vaddr;
722
723 pages = __iommu_dma_alloc_noncontiguous(dev, size, &sgt, gfp, prot,
724 attrs);
725 if (!pages)
726 return NULL;
727 *dma_handle = sgt.sgl->dma_address;
728 sg_free_table(&sgt);
51231740 729 vaddr = dma_common_pages_remap(pages, size, prot,
21b95aaf
CH
730 __builtin_return_address(0));
731 if (!vaddr)
732 goto out_unmap;
21b95aaf 733 return vaddr;
0db2e5d1 734
21b95aaf 735out_unmap:
8230ce9a
CH
736 __iommu_dma_unmap(dev, *dma_handle, size);
737 __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
0db2e5d1
RM
738 return NULL;
739}
740
e817ee5f
CH
741#ifdef CONFIG_DMA_REMAP
742static struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev,
743 size_t size, enum dma_data_direction dir, gfp_t gfp,
744 unsigned long attrs)
745{
746 struct dma_sgt_handle *sh;
747
748 sh = kmalloc(sizeof(*sh), gfp);
749 if (!sh)
750 return NULL;
751
752 sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, &sh->sgt, gfp,
753 PAGE_KERNEL, attrs);
754 if (!sh->pages) {
755 kfree(sh);
756 return NULL;
757 }
758 return &sh->sgt;
759}
760
761static void iommu_dma_free_noncontiguous(struct device *dev, size_t size,
762 struct sg_table *sgt, enum dma_data_direction dir)
763{
764 struct dma_sgt_handle *sh = sgt_handle(sgt);
765
766 __iommu_dma_unmap(dev, sgt->sgl->dma_address, size);
767 __iommu_dma_free_pages(sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
768 sg_free_table(&sh->sgt);
769}
770#endif /* CONFIG_DMA_REMAP */
771
06d60728
CH
772static void iommu_dma_sync_single_for_cpu(struct device *dev,
773 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
0db2e5d1 774{
06d60728 775 phys_addr_t phys;
0db2e5d1 776
82612d66 777 if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev))
06d60728 778 return;
1cc896ed 779
06d60728 780 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
82612d66
TM
781 if (!dev_is_dma_coherent(dev))
782 arch_sync_dma_for_cpu(phys, size, dir);
783
784 if (is_swiotlb_buffer(phys))
80808d27 785 swiotlb_sync_single_for_cpu(dev, phys, size, dir);
0db2e5d1 786}
0db2e5d1 787
06d60728
CH
788static void iommu_dma_sync_single_for_device(struct device *dev,
789 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
0db2e5d1 790{
06d60728 791 phys_addr_t phys;
0db2e5d1 792
82612d66 793 if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev))
06d60728 794 return;
1cc896ed 795
06d60728 796 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
82612d66 797 if (is_swiotlb_buffer(phys))
80808d27 798 swiotlb_sync_single_for_device(dev, phys, size, dir);
82612d66
TM
799
800 if (!dev_is_dma_coherent(dev))
801 arch_sync_dma_for_device(phys, size, dir);
06d60728 802}
0db2e5d1 803
06d60728
CH
804static void iommu_dma_sync_sg_for_cpu(struct device *dev,
805 struct scatterlist *sgl, int nelems,
806 enum dma_data_direction dir)
807{
808 struct scatterlist *sg;
809 int i;
810
82612d66 811 if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev))
06d60728
CH
812 return;
813
82612d66
TM
814 for_each_sg(sgl, sg, nelems, i) {
815 if (!dev_is_dma_coherent(dev))
816 arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
817
818 if (is_swiotlb_buffer(sg_phys(sg)))
80808d27
CH
819 swiotlb_sync_single_for_cpu(dev, sg_phys(sg),
820 sg->length, dir);
82612d66 821 }
06d60728
CH
822}
823
824static void iommu_dma_sync_sg_for_device(struct device *dev,
825 struct scatterlist *sgl, int nelems,
826 enum dma_data_direction dir)
827{
828 struct scatterlist *sg;
829 int i;
830
82612d66 831 if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev))
06d60728
CH
832 return;
833
82612d66
TM
834 for_each_sg(sgl, sg, nelems, i) {
835 if (is_swiotlb_buffer(sg_phys(sg)))
80808d27
CH
836 swiotlb_sync_single_for_device(dev, sg_phys(sg),
837 sg->length, dir);
82612d66
TM
838
839 if (!dev_is_dma_coherent(dev))
840 arch_sync_dma_for_device(sg_phys(sg), sg->length, dir);
841 }
0db2e5d1
RM
842}
843
06d60728
CH
844static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
845 unsigned long offset, size_t size, enum dma_data_direction dir,
846 unsigned long attrs)
51f8cc9e 847{
06d60728
CH
848 phys_addr_t phys = page_to_phys(page) + offset;
849 bool coherent = dev_is_dma_coherent(dev);
850 dma_addr_t dma_handle;
851
82612d66
TM
852 dma_handle = __iommu_dma_map_swiotlb(dev, phys, size, dma_get_mask(dev),
853 coherent, dir, attrs);
06d60728
CH
854 if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
855 dma_handle != DMA_MAPPING_ERROR)
56e35f9c 856 arch_sync_dma_for_device(phys, size, dir);
06d60728 857 return dma_handle;
51f8cc9e
RM
858}
859
06d60728
CH
860static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
861 size_t size, enum dma_data_direction dir, unsigned long attrs)
0db2e5d1 862{
06d60728
CH
863 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
864 iommu_dma_sync_single_for_cpu(dev, dma_handle, size, dir);
82612d66 865 __iommu_dma_unmap_swiotlb(dev, dma_handle, size, dir, attrs);
0db2e5d1
RM
866}
867
868/*
869 * Prepare a successfully-mapped scatterlist to give back to the caller.
809eac54
RM
870 *
871 * At this point the segments are already laid out by iommu_dma_map_sg() to
872 * avoid individually crossing any boundaries, so we merely need to check a
873 * segment's start address to avoid concatenating across one.
0db2e5d1
RM
874 */
875static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
876 dma_addr_t dma_addr)
877{
809eac54
RM
878 struct scatterlist *s, *cur = sg;
879 unsigned long seg_mask = dma_get_seg_boundary(dev);
880 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
881 int i, count = 0;
0db2e5d1
RM
882
883 for_each_sg(sg, s, nents, i) {
809eac54
RM
884 /* Restore this segment's original unaligned fields first */
885 unsigned int s_iova_off = sg_dma_address(s);
0db2e5d1 886 unsigned int s_length = sg_dma_len(s);
809eac54 887 unsigned int s_iova_len = s->length;
0db2e5d1 888
809eac54 889 s->offset += s_iova_off;
0db2e5d1 890 s->length = s_length;
cad34be7 891 sg_dma_address(s) = DMA_MAPPING_ERROR;
809eac54
RM
892 sg_dma_len(s) = 0;
893
894 /*
895 * Now fill in the real DMA data. If...
896 * - there is a valid output segment to append to
897 * - and this segment starts on an IOVA page boundary
898 * - but doesn't fall at a segment boundary
899 * - and wouldn't make the resulting output segment too long
900 */
901 if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
ab2cbeb0 902 (max_len - cur_len >= s_length)) {
809eac54
RM
903 /* ...then concatenate it with the previous one */
904 cur_len += s_length;
905 } else {
906 /* Otherwise start the next output segment */
907 if (i > 0)
908 cur = sg_next(cur);
909 cur_len = s_length;
910 count++;
911
912 sg_dma_address(cur) = dma_addr + s_iova_off;
913 }
914
915 sg_dma_len(cur) = cur_len;
916 dma_addr += s_iova_len;
917
918 if (s_length + s_iova_off < s_iova_len)
919 cur_len = 0;
0db2e5d1 920 }
809eac54 921 return count;
0db2e5d1
RM
922}
923
924/*
925 * If mapping failed, then just restore the original list,
926 * but making sure the DMA fields are invalidated.
927 */
928static void __invalidate_sg(struct scatterlist *sg, int nents)
929{
930 struct scatterlist *s;
931 int i;
932
933 for_each_sg(sg, s, nents, i) {
cad34be7 934 if (sg_dma_address(s) != DMA_MAPPING_ERROR)
07b48ac4 935 s->offset += sg_dma_address(s);
0db2e5d1
RM
936 if (sg_dma_len(s))
937 s->length = sg_dma_len(s);
cad34be7 938 sg_dma_address(s) = DMA_MAPPING_ERROR;
0db2e5d1
RM
939 sg_dma_len(s) = 0;
940 }
941}
942
82612d66
TM
943static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg,
944 int nents, enum dma_data_direction dir, unsigned long attrs)
945{
946 struct scatterlist *s;
947 int i;
948
949 for_each_sg(sg, s, nents, i)
950 __iommu_dma_unmap_swiotlb(dev, sg_dma_address(s),
951 sg_dma_len(s), dir, attrs);
952}
953
954static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg,
955 int nents, enum dma_data_direction dir, unsigned long attrs)
956{
957 struct scatterlist *s;
958 int i;
959
960 for_each_sg(sg, s, nents, i) {
961 sg_dma_address(s) = __iommu_dma_map_swiotlb(dev, sg_phys(s),
962 s->length, dma_get_mask(dev),
963 dev_is_dma_coherent(dev), dir, attrs);
964 if (sg_dma_address(s) == DMA_MAPPING_ERROR)
965 goto out_unmap;
966 sg_dma_len(s) = s->length;
967 }
968
969 return nents;
970
971out_unmap:
972 iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
973 return 0;
974}
975
0db2e5d1
RM
976/*
977 * The DMA API client is passing in a scatterlist which could describe
978 * any old buffer layout, but the IOMMU API requires everything to be
979 * aligned to IOMMU pages. Hence the need for this complicated bit of
980 * impedance-matching, to be able to hand off a suitably-aligned list,
981 * but still preserve the original offsets and sizes for the caller.
982 */
06d60728
CH
983static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
984 int nents, enum dma_data_direction dir, unsigned long attrs)
0db2e5d1 985{
43c5bf11 986 struct iommu_domain *domain = iommu_get_dma_domain(dev);
842fe519
RM
987 struct iommu_dma_cookie *cookie = domain->iova_cookie;
988 struct iova_domain *iovad = &cookie->iovad;
0db2e5d1 989 struct scatterlist *s, *prev = NULL;
06d60728 990 int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
842fe519 991 dma_addr_t iova;
0db2e5d1 992 size_t iova_len = 0;
809eac54 993 unsigned long mask = dma_get_seg_boundary(dev);
0db2e5d1
RM
994 int i;
995
a8e8af35 996 if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
3ab65729 997 iommu_deferred_attach(dev, domain))
795bbbb9
TM
998 return 0;
999
06d60728
CH
1000 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1001 iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
1002
82612d66
TM
1003 if (dev_is_untrusted(dev))
1004 return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs);
1005
0db2e5d1
RM
1006 /*
1007 * Work out how much IOVA space we need, and align the segments to
1008 * IOVA granules for the IOMMU driver to handle. With some clever
1009 * trickery we can modify the list in-place, but reversibly, by
809eac54 1010 * stashing the unaligned parts in the as-yet-unused DMA fields.
0db2e5d1
RM
1011 */
1012 for_each_sg(sg, s, nents, i) {
809eac54 1013 size_t s_iova_off = iova_offset(iovad, s->offset);
0db2e5d1 1014 size_t s_length = s->length;
809eac54 1015 size_t pad_len = (mask - iova_len + 1) & mask;
0db2e5d1 1016
809eac54 1017 sg_dma_address(s) = s_iova_off;
0db2e5d1 1018 sg_dma_len(s) = s_length;
809eac54
RM
1019 s->offset -= s_iova_off;
1020 s_length = iova_align(iovad, s_length + s_iova_off);
0db2e5d1
RM
1021 s->length = s_length;
1022
1023 /*
809eac54
RM
1024 * Due to the alignment of our single IOVA allocation, we can
1025 * depend on these assumptions about the segment boundary mask:
1026 * - If mask size >= IOVA size, then the IOVA range cannot
1027 * possibly fall across a boundary, so we don't care.
1028 * - If mask size < IOVA size, then the IOVA range must start
1029 * exactly on a boundary, therefore we can lay things out
1030 * based purely on segment lengths without needing to know
1031 * the actual addresses beforehand.
1032 * - The mask must be a power of 2, so pad_len == 0 if
1033 * iova_len == 0, thus we cannot dereference prev the first
1034 * time through here (i.e. before it has a meaningful value).
0db2e5d1 1035 */
809eac54 1036 if (pad_len && pad_len < s_length - 1) {
0db2e5d1
RM
1037 prev->length += pad_len;
1038 iova_len += pad_len;
1039 }
1040
1041 iova_len += s_length;
1042 prev = s;
1043 }
1044
842fe519 1045 iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
0db2e5d1
RM
1046 if (!iova)
1047 goto out_restore_sg;
1048
1049 /*
1050 * We'll leave any physical concatenation to the IOMMU driver's
1051 * implementation - it knows better than we do.
1052 */
781ca2de 1053 if (iommu_map_sg_atomic(domain, iova, sg, nents, prot) < iova_len)
0db2e5d1
RM
1054 goto out_free_iova;
1055
842fe519 1056 return __finalise_sg(dev, sg, nents, iova);
0db2e5d1
RM
1057
1058out_free_iova:
2a2b8eaa 1059 iommu_dma_free_iova(cookie, iova, iova_len, NULL);
0db2e5d1
RM
1060out_restore_sg:
1061 __invalidate_sg(sg, nents);
1062 return 0;
1063}
1064
06d60728
CH
1065static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
1066 int nents, enum dma_data_direction dir, unsigned long attrs)
0db2e5d1 1067{
842fe519
RM
1068 dma_addr_t start, end;
1069 struct scatterlist *tmp;
1070 int i;
06d60728 1071
1b961423 1072 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
06d60728
CH
1073 iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
1074
82612d66
TM
1075 if (dev_is_untrusted(dev)) {
1076 iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs);
1077 return;
1078 }
1079
0db2e5d1
RM
1080 /*
1081 * The scatterlist segments are mapped into a single
1082 * contiguous IOVA allocation, so this is incredibly easy.
1083 */
842fe519
RM
1084 start = sg_dma_address(sg);
1085 for_each_sg(sg_next(sg), tmp, nents - 1, i) {
1086 if (sg_dma_len(tmp) == 0)
1087 break;
1088 sg = tmp;
1089 }
1090 end = sg_dma_address(sg) + sg_dma_len(sg);
b61d271e 1091 __iommu_dma_unmap(dev, start, end - start);
0db2e5d1
RM
1092}
1093
06d60728 1094static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
51f8cc9e
RM
1095 size_t size, enum dma_data_direction dir, unsigned long attrs)
1096{
1097 return __iommu_dma_map(dev, phys, size,
6e235020
TM
1098 dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
1099 dma_get_mask(dev));
51f8cc9e
RM
1100}
1101
06d60728 1102static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
51f8cc9e
RM
1103 size_t size, enum dma_data_direction dir, unsigned long attrs)
1104{
b61d271e 1105 __iommu_dma_unmap(dev, handle, size);
51f8cc9e
RM
1106}
1107
8553f6e6 1108static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
bcf4b9c4
RM
1109{
1110 size_t alloc_size = PAGE_ALIGN(size);
1111 int count = alloc_size >> PAGE_SHIFT;
1112 struct page *page = NULL, **pages = NULL;
1113
bcf4b9c4 1114 /* Non-coherent atomic allocation? Easy */
e6475eb0 1115 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
c84dc6e6 1116 dma_free_from_pool(dev, cpu_addr, alloc_size))
bcf4b9c4
RM
1117 return;
1118
e6475eb0 1119 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
bcf4b9c4
RM
1120 /*
1121 * If it the address is remapped, then it's either non-coherent
1122 * or highmem CMA, or an iommu_dma_alloc_remap() construction.
1123 */
5cf45379 1124 pages = dma_common_find_pages(cpu_addr);
bcf4b9c4
RM
1125 if (!pages)
1126 page = vmalloc_to_page(cpu_addr);
51231740 1127 dma_common_free_remap(cpu_addr, alloc_size);
bcf4b9c4
RM
1128 } else {
1129 /* Lowmem means a coherent atomic or CMA allocation */
1130 page = virt_to_page(cpu_addr);
1131 }
1132
1133 if (pages)
1134 __iommu_dma_free_pages(pages, count);
591fcf3b
NC
1135 if (page)
1136 dma_free_contiguous(dev, page, alloc_size);
bcf4b9c4
RM
1137}
1138
8553f6e6
RM
1139static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
1140 dma_addr_t handle, unsigned long attrs)
1141{
1142 __iommu_dma_unmap(dev, handle, size);
1143 __iommu_dma_free(dev, size, cpu_addr);
1144}
1145
ee1ef05d
CH
1146static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
1147 struct page **pagep, gfp_t gfp, unsigned long attrs)
06d60728
CH
1148{
1149 bool coherent = dev_is_dma_coherent(dev);
9ad5d6ed 1150 size_t alloc_size = PAGE_ALIGN(size);
90ae409f 1151 int node = dev_to_node(dev);
9a4ab94a 1152 struct page *page = NULL;
9ad5d6ed 1153 void *cpu_addr;
06d60728 1154
591fcf3b 1155 page = dma_alloc_contiguous(dev, alloc_size, gfp);
90ae409f
CH
1156 if (!page)
1157 page = alloc_pages_node(node, gfp, get_order(alloc_size));
072bebc0
RM
1158 if (!page)
1159 return NULL;
1160
e6475eb0 1161 if (IS_ENABLED(CONFIG_DMA_REMAP) && (!coherent || PageHighMem(page))) {
33dcb37c 1162 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
072bebc0 1163
9ad5d6ed 1164 cpu_addr = dma_common_contiguous_remap(page, alloc_size,
51231740 1165 prot, __builtin_return_address(0));
9ad5d6ed 1166 if (!cpu_addr)
ee1ef05d 1167 goto out_free_pages;
8680aa5a
RM
1168
1169 if (!coherent)
9ad5d6ed 1170 arch_dma_prep_coherent(page, size);
8680aa5a 1171 } else {
9ad5d6ed 1172 cpu_addr = page_address(page);
8680aa5a 1173 }
ee1ef05d
CH
1174
1175 *pagep = page;
9ad5d6ed
RM
1176 memset(cpu_addr, 0, alloc_size);
1177 return cpu_addr;
072bebc0 1178out_free_pages:
591fcf3b 1179 dma_free_contiguous(dev, page, alloc_size);
072bebc0 1180 return NULL;
06d60728
CH
1181}
1182
ee1ef05d
CH
1183static void *iommu_dma_alloc(struct device *dev, size_t size,
1184 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1185{
1186 bool coherent = dev_is_dma_coherent(dev);
1187 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
1188 struct page *page = NULL;
1189 void *cpu_addr;
1190
1191 gfp |= __GFP_ZERO;
1192
e6475eb0 1193 if (IS_ENABLED(CONFIG_DMA_REMAP) && gfpflags_allow_blocking(gfp) &&
e8d39a90
CH
1194 !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) {
1195 return iommu_dma_alloc_remap(dev, size, handle, gfp,
1196 dma_pgprot(dev, PAGE_KERNEL, attrs), attrs);
1197 }
ee1ef05d 1198
e6475eb0
CH
1199 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1200 !gfpflags_allow_blocking(gfp) && !coherent)
9420139f
CH
1201 page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr,
1202 gfp, NULL);
ee1ef05d
CH
1203 else
1204 cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
1205 if (!cpu_addr)
1206 return NULL;
1207
6e235020
TM
1208 *handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot,
1209 dev->coherent_dma_mask);
ee1ef05d
CH
1210 if (*handle == DMA_MAPPING_ERROR) {
1211 __iommu_dma_free(dev, size, cpu_addr);
1212 return NULL;
1213 }
1214
1215 return cpu_addr;
1216}
1217
06d60728
CH
1218static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1219 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1220 unsigned long attrs)
1221{
1222 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
efd9f10b 1223 unsigned long pfn, off = vma->vm_pgoff;
06d60728
CH
1224 int ret;
1225
33dcb37c 1226 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
06d60728
CH
1227
1228 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
1229 return ret;
1230
1231 if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1232 return -ENXIO;
1233
e6475eb0 1234 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
5cf45379 1235 struct page **pages = dma_common_find_pages(cpu_addr);
06d60728 1236
efd9f10b 1237 if (pages)
71fe89ce 1238 return vm_map_pages(vma, pages, nr_pages);
efd9f10b
CH
1239 pfn = vmalloc_to_pfn(cpu_addr);
1240 } else {
1241 pfn = page_to_pfn(virt_to_page(cpu_addr));
06d60728
CH
1242 }
1243
efd9f10b
CH
1244 return remap_pfn_range(vma, vma->vm_start, pfn + off,
1245 vma->vm_end - vma->vm_start,
1246 vma->vm_page_prot);
06d60728
CH
1247}
1248
06d60728
CH
1249static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1250 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1251 unsigned long attrs)
1252{
3fb3378b
CH
1253 struct page *page;
1254 int ret;
06d60728 1255
e6475eb0 1256 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
5cf45379 1257 struct page **pages = dma_common_find_pages(cpu_addr);
06d60728 1258
3fb3378b
CH
1259 if (pages) {
1260 return sg_alloc_table_from_pages(sgt, pages,
1261 PAGE_ALIGN(size) >> PAGE_SHIFT,
1262 0, size, GFP_KERNEL);
1263 }
1264
1265 page = vmalloc_to_page(cpu_addr);
1266 } else {
1267 page = virt_to_page(cpu_addr);
06d60728
CH
1268 }
1269
3fb3378b
CH
1270 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1271 if (!ret)
1272 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
1273 return ret;
06d60728
CH
1274}
1275
158a6d3c
YS
1276static unsigned long iommu_dma_get_merge_boundary(struct device *dev)
1277{
1278 struct iommu_domain *domain = iommu_get_dma_domain(dev);
1279
1280 return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
1281}
1282
06d60728
CH
1283static const struct dma_map_ops iommu_dma_ops = {
1284 .alloc = iommu_dma_alloc,
1285 .free = iommu_dma_free,
efa70f2f
CH
1286 .alloc_pages = dma_common_alloc_pages,
1287 .free_pages = dma_common_free_pages,
e817ee5f
CH
1288#ifdef CONFIG_DMA_REMAP
1289 .alloc_noncontiguous = iommu_dma_alloc_noncontiguous,
1290 .free_noncontiguous = iommu_dma_free_noncontiguous,
1291#endif
06d60728
CH
1292 .mmap = iommu_dma_mmap,
1293 .get_sgtable = iommu_dma_get_sgtable,
1294 .map_page = iommu_dma_map_page,
1295 .unmap_page = iommu_dma_unmap_page,
1296 .map_sg = iommu_dma_map_sg,
1297 .unmap_sg = iommu_dma_unmap_sg,
1298 .sync_single_for_cpu = iommu_dma_sync_single_for_cpu,
1299 .sync_single_for_device = iommu_dma_sync_single_for_device,
1300 .sync_sg_for_cpu = iommu_dma_sync_sg_for_cpu,
1301 .sync_sg_for_device = iommu_dma_sync_sg_for_device,
1302 .map_resource = iommu_dma_map_resource,
1303 .unmap_resource = iommu_dma_unmap_resource,
158a6d3c 1304 .get_merge_boundary = iommu_dma_get_merge_boundary,
06d60728
CH
1305};
1306
1307/*
1308 * The IOMMU core code allocates the default DMA domain, which the underlying
1309 * IOMMU driver needs to support via the dma-iommu layer.
1310 */
ac6d7046 1311void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 dma_limit)
06d60728
CH
1312{
1313 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1314
1315 if (!domain)
1316 goto out_err;
1317
1318 /*
1319 * The IOMMU core code allocates the default DMA domain, which the
1320 * underlying IOMMU driver needs to support via the dma-iommu layer.
1321 */
1322 if (domain->type == IOMMU_DOMAIN_DMA) {
ac6d7046 1323 if (iommu_dma_init_domain(domain, dma_base, dma_limit, dev))
06d60728
CH
1324 goto out_err;
1325 dev->dma_ops = &iommu_dma_ops;
1326 }
1327
1328 return;
1329out_err:
1330 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
1331 dev_name(dev));
51f8cc9e 1332}
8ce4904b 1333EXPORT_SYMBOL_GPL(iommu_setup_dma_ops);
51f8cc9e 1334
44bb7e24
RM
1335static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
1336 phys_addr_t msi_addr, struct iommu_domain *domain)
1337{
1338 struct iommu_dma_cookie *cookie = domain->iova_cookie;
1339 struct iommu_dma_msi_page *msi_page;
842fe519 1340 dma_addr_t iova;
44bb7e24 1341 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
fdbe574e 1342 size_t size = cookie_msi_granule(cookie);
44bb7e24 1343
fdbe574e 1344 msi_addr &= ~(phys_addr_t)(size - 1);
44bb7e24
RM
1345 list_for_each_entry(msi_page, &cookie->msi_page_list, list)
1346 if (msi_page->phys == msi_addr)
1347 return msi_page;
1348
c1864790 1349 msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL);
44bb7e24
RM
1350 if (!msi_page)
1351 return NULL;
1352
8af23fad
RM
1353 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
1354 if (!iova)
a44e6657 1355 goto out_free_page;
44bb7e24 1356
8af23fad
RM
1357 if (iommu_map(domain, iova, msi_addr, size, prot))
1358 goto out_free_iova;
1359
44bb7e24 1360 INIT_LIST_HEAD(&msi_page->list);
a44e6657
RM
1361 msi_page->phys = msi_addr;
1362 msi_page->iova = iova;
44bb7e24
RM
1363 list_add(&msi_page->list, &cookie->msi_page_list);
1364 return msi_page;
1365
8af23fad 1366out_free_iova:
2a2b8eaa 1367 iommu_dma_free_iova(cookie, iova, size, NULL);
44bb7e24
RM
1368out_free_page:
1369 kfree(msi_page);
1370 return NULL;
1371}
1372
ece6e6f0 1373int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
44bb7e24 1374{
ece6e6f0 1375 struct device *dev = msi_desc_to_dev(desc);
44bb7e24 1376 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
44bb7e24 1377 struct iommu_dma_msi_page *msi_page;
c1864790 1378 static DEFINE_MUTEX(msi_prepare_lock); /* see below */
44bb7e24 1379
ece6e6f0
JG
1380 if (!domain || !domain->iova_cookie) {
1381 desc->iommu_cookie = NULL;
1382 return 0;
1383 }
44bb7e24 1384
44bb7e24 1385 /*
c1864790
RM
1386 * In fact the whole prepare operation should already be serialised by
1387 * irq_domain_mutex further up the callchain, but that's pretty subtle
1388 * on its own, so consider this locking as failsafe documentation...
44bb7e24 1389 */
c1864790 1390 mutex_lock(&msi_prepare_lock);
44bb7e24 1391 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
c1864790 1392 mutex_unlock(&msi_prepare_lock);
44bb7e24 1393
ece6e6f0
JG
1394 msi_desc_set_iommu_cookie(desc, msi_page);
1395
1396 if (!msi_page)
1397 return -ENOMEM;
1398 return 0;
1399}
1400
1401void iommu_dma_compose_msi_msg(struct msi_desc *desc,
1402 struct msi_msg *msg)
1403{
1404 struct device *dev = msi_desc_to_dev(desc);
1405 const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1406 const struct iommu_dma_msi_page *msi_page;
1407
1408 msi_page = msi_desc_get_iommu_cookie(desc);
1409
1410 if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
1411 return;
1412
1413 msg->address_hi = upper_32_bits(msi_page->iova);
1414 msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
1415 msg->address_lo += lower_32_bits(msi_page->iova);
44bb7e24 1416}
06d60728
CH
1417
1418static int iommu_dma_init(void)
1419{
a8e8af35
LJ
1420 if (is_kdump_kernel())
1421 static_branch_enable(&iommu_deferred_attach_enabled);
1422
06d60728 1423 return iova_cache_get();
44bb7e24 1424}
06d60728 1425arch_initcall(iommu_dma_init);