iommu/dma: Move __iommu_dma_map
[linux-block.git] / drivers / iommu / dma-iommu.c
CommitLineData
0db2e5d1
RM
1/*
2 * A fairly generic DMA-API to IOMMU-API glue layer.
3 *
4 * Copyright (C) 2014-2015 ARM Ltd.
5 *
6 * based in part on arch/arm/mm/dma-mapping.c:
7 * Copyright (C) 2000-2004 Russell King
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 */
21
f51dc892 22#include <linux/acpi_iort.h>
0db2e5d1 23#include <linux/device.h>
06d60728 24#include <linux/dma-contiguous.h>
0db2e5d1 25#include <linux/dma-iommu.h>
af751d43 26#include <linux/dma-noncoherent.h>
5b11e9cd 27#include <linux/gfp.h>
0db2e5d1
RM
28#include <linux/huge_mm.h>
29#include <linux/iommu.h>
30#include <linux/iova.h>
44bb7e24 31#include <linux/irq.h>
0db2e5d1 32#include <linux/mm.h>
fade1ec0 33#include <linux/pci.h>
5b11e9cd
RM
34#include <linux/scatterlist.h>
35#include <linux/vmalloc.h>
0db2e5d1 36
44bb7e24
RM
37struct iommu_dma_msi_page {
38 struct list_head list;
39 dma_addr_t iova;
40 phys_addr_t phys;
41};
42
fdbe574e
RM
43enum iommu_dma_cookie_type {
44 IOMMU_DMA_IOVA_COOKIE,
45 IOMMU_DMA_MSI_COOKIE,
46};
47
44bb7e24 48struct iommu_dma_cookie {
fdbe574e
RM
49 enum iommu_dma_cookie_type type;
50 union {
51 /* Full allocator for IOMMU_DMA_IOVA_COOKIE */
52 struct iova_domain iovad;
53 /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
54 dma_addr_t msi_iova;
55 };
56 struct list_head msi_page_list;
57 spinlock_t msi_lock;
2da274cd
ZL
58
59 /* Domain for flush queue callback; NULL if flush queue not in use */
60 struct iommu_domain *fq_domain;
44bb7e24
RM
61};
62
fdbe574e
RM
63static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
64{
65 if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
66 return cookie->iovad.granule;
67 return PAGE_SIZE;
68}
69
fdbe574e
RM
70static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
71{
72 struct iommu_dma_cookie *cookie;
73
74 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
75 if (cookie) {
76 spin_lock_init(&cookie->msi_lock);
77 INIT_LIST_HEAD(&cookie->msi_page_list);
78 cookie->type = type;
79 }
80 return cookie;
44bb7e24
RM
81}
82
0db2e5d1
RM
83/**
84 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
85 * @domain: IOMMU domain to prepare for DMA-API usage
86 *
87 * IOMMU drivers should normally call this from their domain_alloc
88 * callback when domain->type == IOMMU_DOMAIN_DMA.
89 */
90int iommu_get_dma_cookie(struct iommu_domain *domain)
fdbe574e
RM
91{
92 if (domain->iova_cookie)
93 return -EEXIST;
94
95 domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
96 if (!domain->iova_cookie)
97 return -ENOMEM;
98
99 return 0;
100}
101EXPORT_SYMBOL(iommu_get_dma_cookie);
102
103/**
104 * iommu_get_msi_cookie - Acquire just MSI remapping resources
105 * @domain: IOMMU domain to prepare
106 * @base: Start address of IOVA region for MSI mappings
107 *
108 * Users who manage their own IOVA allocation and do not want DMA API support,
109 * but would still like to take advantage of automatic MSI remapping, can use
110 * this to initialise their own domain appropriately. Users should reserve a
111 * contiguous IOVA region, starting at @base, large enough to accommodate the
112 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
113 * used by the devices attached to @domain.
114 */
115int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
0db2e5d1 116{
44bb7e24 117 struct iommu_dma_cookie *cookie;
0db2e5d1 118
fdbe574e
RM
119 if (domain->type != IOMMU_DOMAIN_UNMANAGED)
120 return -EINVAL;
121
0db2e5d1
RM
122 if (domain->iova_cookie)
123 return -EEXIST;
124
fdbe574e 125 cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
44bb7e24
RM
126 if (!cookie)
127 return -ENOMEM;
0db2e5d1 128
fdbe574e 129 cookie->msi_iova = base;
44bb7e24
RM
130 domain->iova_cookie = cookie;
131 return 0;
0db2e5d1 132}
fdbe574e 133EXPORT_SYMBOL(iommu_get_msi_cookie);
0db2e5d1
RM
134
135/**
136 * iommu_put_dma_cookie - Release a domain's DMA mapping resources
fdbe574e
RM
137 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
138 * iommu_get_msi_cookie()
0db2e5d1
RM
139 *
140 * IOMMU drivers should normally call this from their domain_free callback.
141 */
142void iommu_put_dma_cookie(struct iommu_domain *domain)
143{
44bb7e24
RM
144 struct iommu_dma_cookie *cookie = domain->iova_cookie;
145 struct iommu_dma_msi_page *msi, *tmp;
0db2e5d1 146
44bb7e24 147 if (!cookie)
0db2e5d1
RM
148 return;
149
fdbe574e 150 if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
44bb7e24
RM
151 put_iova_domain(&cookie->iovad);
152
153 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
154 list_del(&msi->list);
155 kfree(msi);
156 }
157 kfree(cookie);
0db2e5d1
RM
158 domain->iova_cookie = NULL;
159}
160EXPORT_SYMBOL(iommu_put_dma_cookie);
161
273df963
RM
162/**
163 * iommu_dma_get_resv_regions - Reserved region driver helper
164 * @dev: Device from iommu_get_resv_regions()
165 * @list: Reserved region list from iommu_get_resv_regions()
166 *
167 * IOMMU drivers can use this to implement their .get_resv_regions callback
cd2c9fcf
SK
168 * for general non-IOMMU-specific reservations. Currently, this covers GICv3
169 * ITS region reservation on ACPI based ARM platforms that may require HW MSI
170 * reservation.
273df963
RM
171 */
172void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
fade1ec0 173{
fade1ec0 174
98cc4f71 175 if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
cd2c9fcf 176 iort_iommu_msi_get_resv_regions(dev, list);
273df963 177
fade1ec0 178}
273df963 179EXPORT_SYMBOL(iommu_dma_get_resv_regions);
fade1ec0 180
7c1b058c
RM
181static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
182 phys_addr_t start, phys_addr_t end)
183{
184 struct iova_domain *iovad = &cookie->iovad;
185 struct iommu_dma_msi_page *msi_page;
186 int i, num_pages;
187
188 start -= iova_offset(iovad, start);
189 num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
190
191 msi_page = kcalloc(num_pages, sizeof(*msi_page), GFP_KERNEL);
192 if (!msi_page)
193 return -ENOMEM;
194
195 for (i = 0; i < num_pages; i++) {
196 msi_page[i].phys = start;
197 msi_page[i].iova = start;
198 INIT_LIST_HEAD(&msi_page[i].list);
199 list_add(&msi_page[i].list, &cookie->msi_page_list);
200 start += iovad->granule;
201 }
202
203 return 0;
204}
205
aadad097 206static int iova_reserve_pci_windows(struct pci_dev *dev,
cd2c9fcf
SK
207 struct iova_domain *iovad)
208{
209 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
210 struct resource_entry *window;
211 unsigned long lo, hi;
aadad097 212 phys_addr_t start = 0, end;
cd2c9fcf
SK
213
214 resource_list_for_each_entry(window, &bridge->windows) {
215 if (resource_type(window->res) != IORESOURCE_MEM)
216 continue;
217
218 lo = iova_pfn(iovad, window->res->start - window->offset);
219 hi = iova_pfn(iovad, window->res->end - window->offset);
220 reserve_iova(iovad, lo, hi);
221 }
aadad097
SM
222
223 /* Get reserved DMA windows from host bridge */
224 resource_list_for_each_entry(window, &bridge->dma_ranges) {
225 end = window->res->start - window->offset;
226resv_iova:
227 if (end > start) {
228 lo = iova_pfn(iovad, start);
229 hi = iova_pfn(iovad, end);
230 reserve_iova(iovad, lo, hi);
231 } else {
232 /* dma_ranges list should be sorted */
233 dev_err(&dev->dev, "Failed to reserve IOVA\n");
234 return -EINVAL;
235 }
236
237 start = window->res->end - window->offset + 1;
238 /* If window is last entry */
239 if (window->node.next == &bridge->dma_ranges &&
240 end != ~(dma_addr_t)0) {
241 end = ~(dma_addr_t)0;
242 goto resv_iova;
243 }
244 }
245
246 return 0;
cd2c9fcf
SK
247}
248
7c1b058c
RM
249static int iova_reserve_iommu_regions(struct device *dev,
250 struct iommu_domain *domain)
251{
252 struct iommu_dma_cookie *cookie = domain->iova_cookie;
253 struct iova_domain *iovad = &cookie->iovad;
254 struct iommu_resv_region *region;
255 LIST_HEAD(resv_regions);
256 int ret = 0;
257
aadad097
SM
258 if (dev_is_pci(dev)) {
259 ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
260 if (ret)
261 return ret;
262 }
cd2c9fcf 263
7c1b058c
RM
264 iommu_get_resv_regions(dev, &resv_regions);
265 list_for_each_entry(region, &resv_regions, list) {
266 unsigned long lo, hi;
267
268 /* We ARE the software that manages these! */
269 if (region->type == IOMMU_RESV_SW_MSI)
270 continue;
271
272 lo = iova_pfn(iovad, region->start);
273 hi = iova_pfn(iovad, region->start + region->length - 1);
274 reserve_iova(iovad, lo, hi);
275
276 if (region->type == IOMMU_RESV_MSI)
277 ret = cookie_init_hw_msi_region(cookie, region->start,
278 region->start + region->length);
279 if (ret)
280 break;
281 }
282 iommu_put_resv_regions(dev, &resv_regions);
283
284 return ret;
285}
286
2da274cd
ZL
287static void iommu_dma_flush_iotlb_all(struct iova_domain *iovad)
288{
289 struct iommu_dma_cookie *cookie;
290 struct iommu_domain *domain;
291
292 cookie = container_of(iovad, struct iommu_dma_cookie, iovad);
293 domain = cookie->fq_domain;
294 /*
295 * The IOMMU driver supporting DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE
296 * implies that ops->flush_iotlb_all must be non-NULL.
297 */
298 domain->ops->flush_iotlb_all(domain);
299}
300
0db2e5d1
RM
301/**
302 * iommu_dma_init_domain - Initialise a DMA mapping domain
303 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
304 * @base: IOVA at which the mappable address space starts
305 * @size: Size of IOVA space
fade1ec0 306 * @dev: Device the domain is being initialised for
0db2e5d1
RM
307 *
308 * @base and @size should be exact multiples of IOMMU page granularity to
309 * avoid rounding surprises. If necessary, we reserve the page at address 0
310 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
311 * any change which could make prior IOVAs invalid will fail.
312 */
06d60728 313static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
fade1ec0 314 u64 size, struct device *dev)
0db2e5d1 315{
fdbe574e
RM
316 struct iommu_dma_cookie *cookie = domain->iova_cookie;
317 struct iova_domain *iovad = &cookie->iovad;
c61a4633 318 unsigned long order, base_pfn;
2da274cd 319 int attr;
0db2e5d1 320
fdbe574e
RM
321 if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
322 return -EINVAL;
0db2e5d1
RM
323
324 /* Use the smallest supported page size for IOVA granularity */
d16e0faa 325 order = __ffs(domain->pgsize_bitmap);
0db2e5d1 326 base_pfn = max_t(unsigned long, 1, base >> order);
0db2e5d1
RM
327
328 /* Check the domain allows at least some access to the device... */
329 if (domain->geometry.force_aperture) {
330 if (base > domain->geometry.aperture_end ||
331 base + size <= domain->geometry.aperture_start) {
332 pr_warn("specified DMA range outside IOMMU capability\n");
333 return -EFAULT;
334 }
335 /* ...then finally give it a kicking to make sure it fits */
336 base_pfn = max_t(unsigned long, base_pfn,
337 domain->geometry.aperture_start >> order);
0db2e5d1
RM
338 }
339
f51d7bb7 340 /* start_pfn is always nonzero for an already-initialised domain */
0db2e5d1
RM
341 if (iovad->start_pfn) {
342 if (1UL << order != iovad->granule ||
f51d7bb7 343 base_pfn != iovad->start_pfn) {
0db2e5d1
RM
344 pr_warn("Incompatible range for DMA domain\n");
345 return -EFAULT;
346 }
7c1b058c
RM
347
348 return 0;
0db2e5d1 349 }
7c1b058c 350
aa3ac946 351 init_iova_domain(iovad, 1UL << order, base_pfn);
2da274cd
ZL
352
353 if (!cookie->fq_domain && !iommu_domain_get_attr(domain,
354 DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE, &attr) && attr) {
355 cookie->fq_domain = domain;
356 init_iova_flush_queue(iovad, iommu_dma_flush_iotlb_all, NULL);
357 }
358
7c1b058c
RM
359 if (!dev)
360 return 0;
361
362 return iova_reserve_iommu_regions(dev, domain);
0db2e5d1 363}
0db2e5d1
RM
364
365/**
737c85ca
MH
366 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
367 * page flags.
0db2e5d1
RM
368 * @dir: Direction of DMA transfer
369 * @coherent: Is the DMA master cache-coherent?
737c85ca 370 * @attrs: DMA attributes for the mapping
0db2e5d1
RM
371 *
372 * Return: corresponding IOMMU API page protection flags
373 */
06d60728 374static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
737c85ca 375 unsigned long attrs)
0db2e5d1
RM
376{
377 int prot = coherent ? IOMMU_CACHE : 0;
378
737c85ca
MH
379 if (attrs & DMA_ATTR_PRIVILEGED)
380 prot |= IOMMU_PRIV;
381
0db2e5d1
RM
382 switch (dir) {
383 case DMA_BIDIRECTIONAL:
384 return prot | IOMMU_READ | IOMMU_WRITE;
385 case DMA_TO_DEVICE:
386 return prot | IOMMU_READ;
387 case DMA_FROM_DEVICE:
388 return prot | IOMMU_WRITE;
389 default:
390 return 0;
391 }
392}
393
842fe519
RM
394static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
395 size_t size, dma_addr_t dma_limit, struct device *dev)
0db2e5d1 396{
a44e6657
RM
397 struct iommu_dma_cookie *cookie = domain->iova_cookie;
398 struct iova_domain *iovad = &cookie->iovad;
bb65a64c 399 unsigned long shift, iova_len, iova = 0;
0db2e5d1 400
a44e6657
RM
401 if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
402 cookie->msi_iova += size;
403 return cookie->msi_iova - size;
404 }
405
406 shift = iova_shift(iovad);
407 iova_len = size >> shift;
bb65a64c
RM
408 /*
409 * Freeing non-power-of-two-sized allocations back into the IOVA caches
410 * will come back to bite us badly, so we have to waste a bit of space
411 * rounding up anything cacheable to make sure that can't happen. The
412 * order of the unadjusted size will still match upon freeing.
413 */
414 if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1)))
415 iova_len = roundup_pow_of_two(iova_len);
a44e6657 416
03bfdc31
RM
417 if (dev->bus_dma_mask)
418 dma_limit &= dev->bus_dma_mask;
419
c987ff0d
RM
420 if (domain->geometry.force_aperture)
421 dma_limit = min(dma_limit, domain->geometry.aperture_end);
122fac03
RM
422
423 /* Try to get PCI devices a SAC address */
424 if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev))
538d5b33
TN
425 iova = alloc_iova_fast(iovad, iova_len,
426 DMA_BIT_MASK(32) >> shift, false);
bb65a64c 427
122fac03 428 if (!iova)
538d5b33
TN
429 iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
430 true);
122fac03 431
bb65a64c 432 return (dma_addr_t)iova << shift;
0db2e5d1
RM
433}
434
842fe519
RM
435static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
436 dma_addr_t iova, size_t size)
0db2e5d1 437{
842fe519 438 struct iova_domain *iovad = &cookie->iovad;
0db2e5d1 439
a44e6657 440 /* The MSI case is only ever cleaning up its most recent allocation */
bb65a64c 441 if (cookie->type == IOMMU_DMA_MSI_COOKIE)
a44e6657 442 cookie->msi_iova -= size;
2da274cd
ZL
443 else if (cookie->fq_domain) /* non-strict mode */
444 queue_iova(iovad, iova_pfn(iovad, iova),
445 size >> iova_shift(iovad), 0);
bb65a64c 446 else
1cc896ed
RM
447 free_iova_fast(iovad, iova_pfn(iovad, iova),
448 size >> iova_shift(iovad));
842fe519
RM
449}
450
451static void __iommu_dma_unmap(struct iommu_domain *domain, dma_addr_t dma_addr,
452 size_t size)
453{
a44e6657
RM
454 struct iommu_dma_cookie *cookie = domain->iova_cookie;
455 struct iova_domain *iovad = &cookie->iovad;
842fe519
RM
456 size_t iova_off = iova_offset(iovad, dma_addr);
457
458 dma_addr -= iova_off;
459 size = iova_align(iovad, size + iova_off);
460
2da274cd
ZL
461 WARN_ON(iommu_unmap_fast(domain, dma_addr, size) != size);
462 if (!cookie->fq_domain)
463 iommu_tlb_sync(domain);
a44e6657 464 iommu_dma_free_iova(cookie, dma_addr, size);
0db2e5d1
RM
465}
466
92aec09c
CH
467static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
468 size_t size, int prot, struct iommu_domain *domain)
469{
470 struct iommu_dma_cookie *cookie = domain->iova_cookie;
471 size_t iova_off = 0;
472 dma_addr_t iova;
473
474 if (cookie->type == IOMMU_DMA_IOVA_COOKIE) {
475 iova_off = iova_offset(&cookie->iovad, phys);
476 size = iova_align(&cookie->iovad, size + iova_off);
477 }
478
479 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
480 if (!iova)
481 return DMA_MAPPING_ERROR;
482
483 if (iommu_map(domain, iova, phys - iova_off, size, prot)) {
484 iommu_dma_free_iova(cookie, iova, size);
485 return DMA_MAPPING_ERROR;
486 }
487 return iova + iova_off;
488}
489
0db2e5d1
RM
490static void __iommu_dma_free_pages(struct page **pages, int count)
491{
492 while (count--)
493 __free_page(pages[count]);
494 kvfree(pages);
495}
496
c4b17afb
GK
497static struct page **__iommu_dma_alloc_pages(struct device *dev,
498 unsigned int count, unsigned long order_mask, gfp_t gfp)
0db2e5d1
RM
499{
500 struct page **pages;
c4b17afb 501 unsigned int i = 0, nid = dev_to_node(dev);
3b6b7e19
RM
502
503 order_mask &= (2U << MAX_ORDER) - 1;
504 if (!order_mask)
505 return NULL;
0db2e5d1 506
c4b17afb 507 pages = kvzalloc(count * sizeof(*pages), GFP_KERNEL);
0db2e5d1
RM
508 if (!pages)
509 return NULL;
510
511 /* IOMMU can map any pages, so himem can also be used here */
512 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
513
514 while (count) {
515 struct page *page = NULL;
3b6b7e19 516 unsigned int order_size;
0db2e5d1
RM
517
518 /*
519 * Higher-order allocations are a convenience rather
520 * than a necessity, hence using __GFP_NORETRY until
3b6b7e19 521 * falling back to minimum-order allocations.
0db2e5d1 522 */
3b6b7e19
RM
523 for (order_mask &= (2U << __fls(count)) - 1;
524 order_mask; order_mask &= ~order_size) {
525 unsigned int order = __fls(order_mask);
c4b17afb 526 gfp_t alloc_flags = gfp;
3b6b7e19
RM
527
528 order_size = 1U << order;
c4b17afb
GK
529 if (order_mask > order_size)
530 alloc_flags |= __GFP_NORETRY;
531 page = alloc_pages_node(nid, alloc_flags, order);
0db2e5d1
RM
532 if (!page)
533 continue;
3b6b7e19
RM
534 if (!order)
535 break;
536 if (!PageCompound(page)) {
0db2e5d1
RM
537 split_page(page, order);
538 break;
3b6b7e19
RM
539 } else if (!split_huge_page(page)) {
540 break;
0db2e5d1 541 }
3b6b7e19 542 __free_pages(page, order);
0db2e5d1 543 }
0db2e5d1
RM
544 if (!page) {
545 __iommu_dma_free_pages(pages, i);
546 return NULL;
547 }
3b6b7e19
RM
548 count -= order_size;
549 while (order_size--)
0db2e5d1
RM
550 pages[i++] = page++;
551 }
552 return pages;
553}
554
555/**
06d60728 556 * iommu_dma_free - Free a buffer allocated by __iommu_dma_alloc()
0db2e5d1 557 * @dev: Device which owns this buffer
06d60728 558 * @pages: Array of buffer pages as returned by __iommu_dma_alloc()
0db2e5d1
RM
559 * @size: Size of buffer in bytes
560 * @handle: DMA address of buffer
561 *
562 * Frees both the pages associated with the buffer, and the array
563 * describing them
564 */
06d60728
CH
565static void __iommu_dma_free(struct device *dev, struct page **pages,
566 size_t size, dma_addr_t *handle)
0db2e5d1 567{
43c5bf11 568 __iommu_dma_unmap(iommu_get_dma_domain(dev), *handle, size);
0db2e5d1 569 __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
cad34be7 570 *handle = DMA_MAPPING_ERROR;
0db2e5d1
RM
571}
572
573/**
06d60728 574 * __iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space
0db2e5d1
RM
575 * @dev: Device to allocate memory for. Must be a real device
576 * attached to an iommu_dma_domain
577 * @size: Size of buffer in bytes
578 * @gfp: Allocation flags
3b6b7e19 579 * @attrs: DMA attributes for this allocation
0db2e5d1
RM
580 * @prot: IOMMU mapping flags
581 * @handle: Out argument for allocated DMA handle
0db2e5d1
RM
582 *
583 * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
584 * but an IOMMU which supports smaller pages might not map the whole thing.
585 *
586 * Return: Array of struct page pointers describing the buffer,
587 * or NULL on failure.
588 */
06d60728
CH
589static struct page **__iommu_dma_alloc(struct device *dev, size_t size,
590 gfp_t gfp, unsigned long attrs, int prot, dma_addr_t *handle)
0db2e5d1 591{
43c5bf11 592 struct iommu_domain *domain = iommu_get_dma_domain(dev);
842fe519
RM
593 struct iommu_dma_cookie *cookie = domain->iova_cookie;
594 struct iova_domain *iovad = &cookie->iovad;
0db2e5d1
RM
595 struct page **pages;
596 struct sg_table sgt;
842fe519 597 dma_addr_t iova;
3b6b7e19 598 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
0db2e5d1 599
cad34be7 600 *handle = DMA_MAPPING_ERROR;
0db2e5d1 601
3b6b7e19
RM
602 min_size = alloc_sizes & -alloc_sizes;
603 if (min_size < PAGE_SIZE) {
604 min_size = PAGE_SIZE;
605 alloc_sizes |= PAGE_SIZE;
606 } else {
607 size = ALIGN(size, min_size);
608 }
00085f1e 609 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
3b6b7e19
RM
610 alloc_sizes = min_size;
611
612 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
c4b17afb
GK
613 pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
614 gfp);
0db2e5d1
RM
615 if (!pages)
616 return NULL;
617
842fe519
RM
618 size = iova_align(iovad, size);
619 iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
0db2e5d1
RM
620 if (!iova)
621 goto out_free_pages;
622
0db2e5d1
RM
623 if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
624 goto out_free_iova;
625
626 if (!(prot & IOMMU_CACHE)) {
23f88e0a
CH
627 struct scatterlist *sg;
628 int i;
629
630 for_each_sg(sgt.sgl, sg, sgt.orig_nents, i)
631 arch_dma_prep_coherent(sg_page(sg), sg->length);
0db2e5d1
RM
632 }
633
842fe519 634 if (iommu_map_sg(domain, iova, sgt.sgl, sgt.orig_nents, prot)
0db2e5d1
RM
635 < size)
636 goto out_free_sg;
637
842fe519 638 *handle = iova;
0db2e5d1
RM
639 sg_free_table(&sgt);
640 return pages;
641
642out_free_sg:
643 sg_free_table(&sgt);
644out_free_iova:
842fe519 645 iommu_dma_free_iova(cookie, iova, size);
0db2e5d1
RM
646out_free_pages:
647 __iommu_dma_free_pages(pages, count);
648 return NULL;
649}
650
651/**
06d60728
CH
652 * __iommu_dma_mmap - Map a buffer into provided user VMA
653 * @pages: Array representing buffer from __iommu_dma_alloc()
0db2e5d1
RM
654 * @size: Size of buffer in bytes
655 * @vma: VMA describing requested userspace mapping
656 *
657 * Maps the pages of the buffer in @pages into @vma. The caller is responsible
658 * for verifying the correct size and protection of @vma beforehand.
659 */
06d60728
CH
660static int __iommu_dma_mmap(struct page **pages, size_t size,
661 struct vm_area_struct *vma)
0db2e5d1 662{
b0d0084f 663 return vm_map_pages(vma, pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
0db2e5d1
RM
664}
665
06d60728
CH
666static void iommu_dma_sync_single_for_cpu(struct device *dev,
667 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
668{
669 phys_addr_t phys;
670
671 if (dev_is_dma_coherent(dev))
672 return;
673
674 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
675 arch_sync_dma_for_cpu(dev, phys, size, dir);
676}
677
678static void iommu_dma_sync_single_for_device(struct device *dev,
679 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
680{
681 phys_addr_t phys;
682
683 if (dev_is_dma_coherent(dev))
684 return;
685
686 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
687 arch_sync_dma_for_device(dev, phys, size, dir);
688}
689
690static void iommu_dma_sync_sg_for_cpu(struct device *dev,
691 struct scatterlist *sgl, int nelems,
692 enum dma_data_direction dir)
693{
694 struct scatterlist *sg;
695 int i;
696
697 if (dev_is_dma_coherent(dev))
698 return;
699
700 for_each_sg(sgl, sg, nelems, i)
701 arch_sync_dma_for_cpu(dev, sg_phys(sg), sg->length, dir);
702}
703
704static void iommu_dma_sync_sg_for_device(struct device *dev,
705 struct scatterlist *sgl, int nelems,
706 enum dma_data_direction dir)
707{
708 struct scatterlist *sg;
709 int i;
710
711 if (dev_is_dma_coherent(dev))
712 return;
713
714 for_each_sg(sgl, sg, nelems, i)
715 arch_sync_dma_for_device(dev, sg_phys(sg), sg->length, dir);
716}
717
06d60728 718static dma_addr_t __iommu_dma_map_page(struct device *dev, struct page *page,
51f8cc9e
RM
719 unsigned long offset, size_t size, int prot)
720{
43c5bf11
RM
721 return __iommu_dma_map(dev, page_to_phys(page) + offset, size, prot,
722 iommu_get_dma_domain(dev));
51f8cc9e
RM
723}
724
06d60728
CH
725static void __iommu_dma_unmap_page(struct device *dev, dma_addr_t handle,
726 size_t size, enum dma_data_direction dir, unsigned long attrs)
0db2e5d1 727{
43c5bf11 728 __iommu_dma_unmap(iommu_get_dma_domain(dev), handle, size);
0db2e5d1
RM
729}
730
06d60728
CH
731static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
732 unsigned long offset, size_t size, enum dma_data_direction dir,
733 unsigned long attrs)
734{
735 phys_addr_t phys = page_to_phys(page) + offset;
736 bool coherent = dev_is_dma_coherent(dev);
737 dma_addr_t dma_handle;
738
739 dma_handle =__iommu_dma_map(dev, phys, size,
740 dma_info_to_prot(dir, coherent, attrs),
741 iommu_get_dma_domain(dev));
742 if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
743 dma_handle != DMA_MAPPING_ERROR)
744 arch_sync_dma_for_device(dev, phys, size, dir);
745 return dma_handle;
746}
747
748static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
749 size_t size, enum dma_data_direction dir, unsigned long attrs)
750{
751 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
752 iommu_dma_sync_single_for_cpu(dev, dma_handle, size, dir);
753 __iommu_dma_unmap(iommu_get_dma_domain(dev), dma_handle, size);
754}
755
0db2e5d1
RM
756/*
757 * Prepare a successfully-mapped scatterlist to give back to the caller.
809eac54
RM
758 *
759 * At this point the segments are already laid out by iommu_dma_map_sg() to
760 * avoid individually crossing any boundaries, so we merely need to check a
761 * segment's start address to avoid concatenating across one.
0db2e5d1
RM
762 */
763static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
764 dma_addr_t dma_addr)
765{
809eac54
RM
766 struct scatterlist *s, *cur = sg;
767 unsigned long seg_mask = dma_get_seg_boundary(dev);
768 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
769 int i, count = 0;
0db2e5d1
RM
770
771 for_each_sg(sg, s, nents, i) {
809eac54
RM
772 /* Restore this segment's original unaligned fields first */
773 unsigned int s_iova_off = sg_dma_address(s);
0db2e5d1 774 unsigned int s_length = sg_dma_len(s);
809eac54 775 unsigned int s_iova_len = s->length;
0db2e5d1 776
809eac54 777 s->offset += s_iova_off;
0db2e5d1 778 s->length = s_length;
cad34be7 779 sg_dma_address(s) = DMA_MAPPING_ERROR;
809eac54
RM
780 sg_dma_len(s) = 0;
781
782 /*
783 * Now fill in the real DMA data. If...
784 * - there is a valid output segment to append to
785 * - and this segment starts on an IOVA page boundary
786 * - but doesn't fall at a segment boundary
787 * - and wouldn't make the resulting output segment too long
788 */
789 if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
790 (cur_len + s_length <= max_len)) {
791 /* ...then concatenate it with the previous one */
792 cur_len += s_length;
793 } else {
794 /* Otherwise start the next output segment */
795 if (i > 0)
796 cur = sg_next(cur);
797 cur_len = s_length;
798 count++;
799
800 sg_dma_address(cur) = dma_addr + s_iova_off;
801 }
802
803 sg_dma_len(cur) = cur_len;
804 dma_addr += s_iova_len;
805
806 if (s_length + s_iova_off < s_iova_len)
807 cur_len = 0;
0db2e5d1 808 }
809eac54 809 return count;
0db2e5d1
RM
810}
811
812/*
813 * If mapping failed, then just restore the original list,
814 * but making sure the DMA fields are invalidated.
815 */
816static void __invalidate_sg(struct scatterlist *sg, int nents)
817{
818 struct scatterlist *s;
819 int i;
820
821 for_each_sg(sg, s, nents, i) {
cad34be7 822 if (sg_dma_address(s) != DMA_MAPPING_ERROR)
07b48ac4 823 s->offset += sg_dma_address(s);
0db2e5d1
RM
824 if (sg_dma_len(s))
825 s->length = sg_dma_len(s);
cad34be7 826 sg_dma_address(s) = DMA_MAPPING_ERROR;
0db2e5d1
RM
827 sg_dma_len(s) = 0;
828 }
829}
830
831/*
832 * The DMA API client is passing in a scatterlist which could describe
833 * any old buffer layout, but the IOMMU API requires everything to be
834 * aligned to IOMMU pages. Hence the need for this complicated bit of
835 * impedance-matching, to be able to hand off a suitably-aligned list,
836 * but still preserve the original offsets and sizes for the caller.
837 */
06d60728
CH
838static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
839 int nents, enum dma_data_direction dir, unsigned long attrs)
0db2e5d1 840{
43c5bf11 841 struct iommu_domain *domain = iommu_get_dma_domain(dev);
842fe519
RM
842 struct iommu_dma_cookie *cookie = domain->iova_cookie;
843 struct iova_domain *iovad = &cookie->iovad;
0db2e5d1 844 struct scatterlist *s, *prev = NULL;
06d60728 845 int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
842fe519 846 dma_addr_t iova;
0db2e5d1 847 size_t iova_len = 0;
809eac54 848 unsigned long mask = dma_get_seg_boundary(dev);
0db2e5d1
RM
849 int i;
850
06d60728
CH
851 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
852 iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
853
0db2e5d1
RM
854 /*
855 * Work out how much IOVA space we need, and align the segments to
856 * IOVA granules for the IOMMU driver to handle. With some clever
857 * trickery we can modify the list in-place, but reversibly, by
809eac54 858 * stashing the unaligned parts in the as-yet-unused DMA fields.
0db2e5d1
RM
859 */
860 for_each_sg(sg, s, nents, i) {
809eac54 861 size_t s_iova_off = iova_offset(iovad, s->offset);
0db2e5d1 862 size_t s_length = s->length;
809eac54 863 size_t pad_len = (mask - iova_len + 1) & mask;
0db2e5d1 864
809eac54 865 sg_dma_address(s) = s_iova_off;
0db2e5d1 866 sg_dma_len(s) = s_length;
809eac54
RM
867 s->offset -= s_iova_off;
868 s_length = iova_align(iovad, s_length + s_iova_off);
0db2e5d1
RM
869 s->length = s_length;
870
871 /*
809eac54
RM
872 * Due to the alignment of our single IOVA allocation, we can
873 * depend on these assumptions about the segment boundary mask:
874 * - If mask size >= IOVA size, then the IOVA range cannot
875 * possibly fall across a boundary, so we don't care.
876 * - If mask size < IOVA size, then the IOVA range must start
877 * exactly on a boundary, therefore we can lay things out
878 * based purely on segment lengths without needing to know
879 * the actual addresses beforehand.
880 * - The mask must be a power of 2, so pad_len == 0 if
881 * iova_len == 0, thus we cannot dereference prev the first
882 * time through here (i.e. before it has a meaningful value).
0db2e5d1 883 */
809eac54 884 if (pad_len && pad_len < s_length - 1) {
0db2e5d1
RM
885 prev->length += pad_len;
886 iova_len += pad_len;
887 }
888
889 iova_len += s_length;
890 prev = s;
891 }
892
842fe519 893 iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
0db2e5d1
RM
894 if (!iova)
895 goto out_restore_sg;
896
897 /*
898 * We'll leave any physical concatenation to the IOMMU driver's
899 * implementation - it knows better than we do.
900 */
842fe519 901 if (iommu_map_sg(domain, iova, sg, nents, prot) < iova_len)
0db2e5d1
RM
902 goto out_free_iova;
903
842fe519 904 return __finalise_sg(dev, sg, nents, iova);
0db2e5d1
RM
905
906out_free_iova:
842fe519 907 iommu_dma_free_iova(cookie, iova, iova_len);
0db2e5d1
RM
908out_restore_sg:
909 __invalidate_sg(sg, nents);
910 return 0;
911}
912
06d60728
CH
913static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
914 int nents, enum dma_data_direction dir, unsigned long attrs)
0db2e5d1 915{
842fe519
RM
916 dma_addr_t start, end;
917 struct scatterlist *tmp;
918 int i;
06d60728
CH
919
920 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
921 iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
922
0db2e5d1
RM
923 /*
924 * The scatterlist segments are mapped into a single
925 * contiguous IOVA allocation, so this is incredibly easy.
926 */
842fe519
RM
927 start = sg_dma_address(sg);
928 for_each_sg(sg_next(sg), tmp, nents - 1, i) {
929 if (sg_dma_len(tmp) == 0)
930 break;
931 sg = tmp;
932 }
933 end = sg_dma_address(sg) + sg_dma_len(sg);
43c5bf11 934 __iommu_dma_unmap(iommu_get_dma_domain(dev), start, end - start);
0db2e5d1
RM
935}
936
06d60728 937static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
51f8cc9e
RM
938 size_t size, enum dma_data_direction dir, unsigned long attrs)
939{
940 return __iommu_dma_map(dev, phys, size,
43c5bf11
RM
941 dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
942 iommu_get_dma_domain(dev));
51f8cc9e
RM
943}
944
06d60728 945static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
51f8cc9e
RM
946 size_t size, enum dma_data_direction dir, unsigned long attrs)
947{
43c5bf11 948 __iommu_dma_unmap(iommu_get_dma_domain(dev), handle, size);
51f8cc9e
RM
949}
950
06d60728
CH
951static void *iommu_dma_alloc(struct device *dev, size_t size,
952 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
953{
954 bool coherent = dev_is_dma_coherent(dev);
955 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
956 size_t iosize = size;
957 void *addr;
958
959 size = PAGE_ALIGN(size);
960 gfp |= __GFP_ZERO;
961
962 if (!gfpflags_allow_blocking(gfp)) {
963 struct page *page;
964 /*
965 * In atomic context we can't remap anything, so we'll only
966 * get the virtually contiguous buffer we need by way of a
967 * physically contiguous allocation.
968 */
969 if (coherent) {
970 page = alloc_pages(gfp, get_order(size));
971 addr = page ? page_address(page) : NULL;
972 } else {
973 addr = dma_alloc_from_pool(size, &page, gfp);
974 }
975 if (!addr)
976 return NULL;
977
978 *handle = __iommu_dma_map_page(dev, page, 0, iosize, ioprot);
979 if (*handle == DMA_MAPPING_ERROR) {
980 if (coherent)
981 __free_pages(page, get_order(size));
982 else
983 dma_free_from_pool(addr, size);
984 addr = NULL;
985 }
986 } else if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
987 pgprot_t prot = arch_dma_mmap_pgprot(dev, PAGE_KERNEL, attrs);
988 struct page *page;
989
990 page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
991 get_order(size), gfp & __GFP_NOWARN);
992 if (!page)
993 return NULL;
994
995 *handle = __iommu_dma_map_page(dev, page, 0, iosize, ioprot);
996 if (*handle == DMA_MAPPING_ERROR) {
997 dma_release_from_contiguous(dev, page,
998 size >> PAGE_SHIFT);
999 return NULL;
1000 }
1001 addr = dma_common_contiguous_remap(page, size, VM_USERMAP,
1002 prot,
1003 __builtin_return_address(0));
1004 if (addr) {
1005 if (!coherent)
1006 arch_dma_prep_coherent(page, iosize);
1007 memset(addr, 0, size);
1008 } else {
1009 __iommu_dma_unmap_page(dev, *handle, iosize, 0, attrs);
1010 dma_release_from_contiguous(dev, page,
1011 size >> PAGE_SHIFT);
1012 }
1013 } else {
1014 pgprot_t prot = arch_dma_mmap_pgprot(dev, PAGE_KERNEL, attrs);
1015 struct page **pages;
1016
1017 pages = __iommu_dma_alloc(dev, iosize, gfp, attrs, ioprot,
1018 handle);
1019 if (!pages)
1020 return NULL;
1021
1022 addr = dma_common_pages_remap(pages, size, VM_USERMAP, prot,
1023 __builtin_return_address(0));
1024 if (!addr)
1025 __iommu_dma_free(dev, pages, iosize, handle);
1026 }
1027 return addr;
1028}
1029
1030static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
1031 dma_addr_t handle, unsigned long attrs)
1032{
1033 size_t iosize = size;
1034
1035 size = PAGE_ALIGN(size);
1036 /*
1037 * @cpu_addr will be one of 4 things depending on how it was allocated:
1038 * - A remapped array of pages for contiguous allocations.
1039 * - A remapped array of pages from __iommu_dma_alloc(), for all
1040 * non-atomic allocations.
1041 * - A non-cacheable alias from the atomic pool, for atomic
1042 * allocations by non-coherent devices.
1043 * - A normal lowmem address, for atomic allocations by
1044 * coherent devices.
1045 * Hence how dodgy the below logic looks...
1046 */
1047 if (dma_in_atomic_pool(cpu_addr, size)) {
1048 __iommu_dma_unmap_page(dev, handle, iosize, 0, 0);
1049 dma_free_from_pool(cpu_addr, size);
1050 } else if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
1051 struct page *page = vmalloc_to_page(cpu_addr);
1052
1053 __iommu_dma_unmap_page(dev, handle, iosize, 0, attrs);
1054 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
1055 dma_common_free_remap(cpu_addr, size, VM_USERMAP);
1056 } else if (is_vmalloc_addr(cpu_addr)){
1057 struct vm_struct *area = find_vm_area(cpu_addr);
1058
1059 if (WARN_ON(!area || !area->pages))
1060 return;
1061 __iommu_dma_free(dev, area->pages, iosize, &handle);
1062 dma_common_free_remap(cpu_addr, size, VM_USERMAP);
1063 } else {
1064 __iommu_dma_unmap_page(dev, handle, iosize, 0, 0);
1065 __free_pages(virt_to_page(cpu_addr), get_order(size));
1066 }
1067}
1068
1069static int __iommu_dma_mmap_pfn(struct vm_area_struct *vma,
1070 unsigned long pfn, size_t size)
1071{
1072 int ret = -ENXIO;
1073 unsigned long nr_vma_pages = vma_pages(vma);
1074 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1075 unsigned long off = vma->vm_pgoff;
1076
1077 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
1078 ret = remap_pfn_range(vma, vma->vm_start,
1079 pfn + off,
1080 vma->vm_end - vma->vm_start,
1081 vma->vm_page_prot);
1082 }
1083
1084 return ret;
1085}
1086
1087static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1088 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1089 unsigned long attrs)
1090{
1091 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1092 unsigned long off = vma->vm_pgoff;
1093 struct vm_struct *area;
1094 int ret;
1095
1096 vma->vm_page_prot = arch_dma_mmap_pgprot(dev, vma->vm_page_prot, attrs);
1097
1098 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
1099 return ret;
1100
1101 if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1102 return -ENXIO;
1103
1104 if (!is_vmalloc_addr(cpu_addr)) {
1105 unsigned long pfn = page_to_pfn(virt_to_page(cpu_addr));
1106 return __iommu_dma_mmap_pfn(vma, pfn, size);
1107 }
1108
1109 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
1110 /*
1111 * DMA_ATTR_FORCE_CONTIGUOUS allocations are always remapped,
1112 * hence in the vmalloc space.
1113 */
1114 unsigned long pfn = vmalloc_to_pfn(cpu_addr);
1115 return __iommu_dma_mmap_pfn(vma, pfn, size);
1116 }
1117
1118 area = find_vm_area(cpu_addr);
1119 if (WARN_ON(!area || !area->pages))
1120 return -ENXIO;
1121
1122 return __iommu_dma_mmap(area->pages, size, vma);
1123}
1124
1125static int __iommu_dma_get_sgtable_page(struct sg_table *sgt, struct page *page,
1126 size_t size)
1127{
1128 int ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1129
1130 if (!ret)
1131 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
1132 return ret;
1133}
1134
1135static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1136 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1137 unsigned long attrs)
1138{
1139 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1140 struct vm_struct *area = find_vm_area(cpu_addr);
1141
1142 if (!is_vmalloc_addr(cpu_addr)) {
1143 struct page *page = virt_to_page(cpu_addr);
1144 return __iommu_dma_get_sgtable_page(sgt, page, size);
1145 }
1146
1147 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
1148 /*
1149 * DMA_ATTR_FORCE_CONTIGUOUS allocations are always remapped,
1150 * hence in the vmalloc space.
1151 */
1152 struct page *page = vmalloc_to_page(cpu_addr);
1153 return __iommu_dma_get_sgtable_page(sgt, page, size);
1154 }
1155
1156 if (WARN_ON(!area || !area->pages))
1157 return -ENXIO;
1158
1159 return sg_alloc_table_from_pages(sgt, area->pages, count, 0, size,
1160 GFP_KERNEL);
1161}
1162
1163static const struct dma_map_ops iommu_dma_ops = {
1164 .alloc = iommu_dma_alloc,
1165 .free = iommu_dma_free,
1166 .mmap = iommu_dma_mmap,
1167 .get_sgtable = iommu_dma_get_sgtable,
1168 .map_page = iommu_dma_map_page,
1169 .unmap_page = iommu_dma_unmap_page,
1170 .map_sg = iommu_dma_map_sg,
1171 .unmap_sg = iommu_dma_unmap_sg,
1172 .sync_single_for_cpu = iommu_dma_sync_single_for_cpu,
1173 .sync_single_for_device = iommu_dma_sync_single_for_device,
1174 .sync_sg_for_cpu = iommu_dma_sync_sg_for_cpu,
1175 .sync_sg_for_device = iommu_dma_sync_sg_for_device,
1176 .map_resource = iommu_dma_map_resource,
1177 .unmap_resource = iommu_dma_unmap_resource,
1178};
1179
1180/*
1181 * The IOMMU core code allocates the default DMA domain, which the underlying
1182 * IOMMU driver needs to support via the dma-iommu layer.
1183 */
1184void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size)
1185{
1186 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1187
1188 if (!domain)
1189 goto out_err;
1190
1191 /*
1192 * The IOMMU core code allocates the default DMA domain, which the
1193 * underlying IOMMU driver needs to support via the dma-iommu layer.
1194 */
1195 if (domain->type == IOMMU_DOMAIN_DMA) {
1196 if (iommu_dma_init_domain(domain, dma_base, size, dev))
1197 goto out_err;
1198 dev->dma_ops = &iommu_dma_ops;
1199 }
1200
1201 return;
1202out_err:
1203 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
1204 dev_name(dev));
1205}
1206
44bb7e24
RM
1207static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
1208 phys_addr_t msi_addr, struct iommu_domain *domain)
1209{
1210 struct iommu_dma_cookie *cookie = domain->iova_cookie;
1211 struct iommu_dma_msi_page *msi_page;
842fe519 1212 dma_addr_t iova;
44bb7e24 1213 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
fdbe574e 1214 size_t size = cookie_msi_granule(cookie);
44bb7e24 1215
fdbe574e 1216 msi_addr &= ~(phys_addr_t)(size - 1);
44bb7e24
RM
1217 list_for_each_entry(msi_page, &cookie->msi_page_list, list)
1218 if (msi_page->phys == msi_addr)
1219 return msi_page;
1220
1221 msi_page = kzalloc(sizeof(*msi_page), GFP_ATOMIC);
1222 if (!msi_page)
1223 return NULL;
1224
43c5bf11 1225 iova = __iommu_dma_map(dev, msi_addr, size, prot, domain);
cad34be7 1226 if (iova == DMA_MAPPING_ERROR)
a44e6657 1227 goto out_free_page;
44bb7e24
RM
1228
1229 INIT_LIST_HEAD(&msi_page->list);
a44e6657
RM
1230 msi_page->phys = msi_addr;
1231 msi_page->iova = iova;
44bb7e24
RM
1232 list_add(&msi_page->list, &cookie->msi_page_list);
1233 return msi_page;
1234
44bb7e24
RM
1235out_free_page:
1236 kfree(msi_page);
1237 return NULL;
1238}
1239
ece6e6f0 1240int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
44bb7e24 1241{
ece6e6f0 1242 struct device *dev = msi_desc_to_dev(desc);
44bb7e24
RM
1243 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1244 struct iommu_dma_cookie *cookie;
1245 struct iommu_dma_msi_page *msi_page;
44bb7e24
RM
1246 unsigned long flags;
1247
ece6e6f0
JG
1248 if (!domain || !domain->iova_cookie) {
1249 desc->iommu_cookie = NULL;
1250 return 0;
1251 }
44bb7e24
RM
1252
1253 cookie = domain->iova_cookie;
1254
1255 /*
1256 * We disable IRQs to rule out a possible inversion against
1257 * irq_desc_lock if, say, someone tries to retarget the affinity
1258 * of an MSI from within an IPI handler.
1259 */
1260 spin_lock_irqsave(&cookie->msi_lock, flags);
1261 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
1262 spin_unlock_irqrestore(&cookie->msi_lock, flags);
1263
ece6e6f0
JG
1264 msi_desc_set_iommu_cookie(desc, msi_page);
1265
1266 if (!msi_page)
1267 return -ENOMEM;
1268 return 0;
1269}
1270
1271void iommu_dma_compose_msi_msg(struct msi_desc *desc,
1272 struct msi_msg *msg)
1273{
1274 struct device *dev = msi_desc_to_dev(desc);
1275 const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1276 const struct iommu_dma_msi_page *msi_page;
1277
1278 msi_page = msi_desc_get_iommu_cookie(desc);
1279
1280 if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
1281 return;
1282
1283 msg->address_hi = upper_32_bits(msi_page->iova);
1284 msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
1285 msg->address_lo += lower_32_bits(msi_page->iova);
44bb7e24 1286}
06d60728
CH
1287
1288static int iommu_dma_init(void)
1289{
1290 return iova_cache_get();
1291}
1292arch_initcall(iommu_dma_init);