iommu/dma: Refactor iommu_dma_alloc
[linux-block.git] / drivers / iommu / dma-iommu.c
CommitLineData
0db2e5d1
RM
1/*
2 * A fairly generic DMA-API to IOMMU-API glue layer.
3 *
4 * Copyright (C) 2014-2015 ARM Ltd.
5 *
6 * based in part on arch/arm/mm/dma-mapping.c:
7 * Copyright (C) 2000-2004 Russell King
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 */
21
f51dc892 22#include <linux/acpi_iort.h>
0db2e5d1 23#include <linux/device.h>
06d60728 24#include <linux/dma-contiguous.h>
0db2e5d1 25#include <linux/dma-iommu.h>
af751d43 26#include <linux/dma-noncoherent.h>
5b11e9cd 27#include <linux/gfp.h>
0db2e5d1
RM
28#include <linux/huge_mm.h>
29#include <linux/iommu.h>
30#include <linux/iova.h>
44bb7e24 31#include <linux/irq.h>
0db2e5d1 32#include <linux/mm.h>
fade1ec0 33#include <linux/pci.h>
5b11e9cd
RM
34#include <linux/scatterlist.h>
35#include <linux/vmalloc.h>
0db2e5d1 36
44bb7e24
RM
37struct iommu_dma_msi_page {
38 struct list_head list;
39 dma_addr_t iova;
40 phys_addr_t phys;
41};
42
fdbe574e
RM
43enum iommu_dma_cookie_type {
44 IOMMU_DMA_IOVA_COOKIE,
45 IOMMU_DMA_MSI_COOKIE,
46};
47
44bb7e24 48struct iommu_dma_cookie {
fdbe574e
RM
49 enum iommu_dma_cookie_type type;
50 union {
51 /* Full allocator for IOMMU_DMA_IOVA_COOKIE */
52 struct iova_domain iovad;
53 /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
54 dma_addr_t msi_iova;
55 };
56 struct list_head msi_page_list;
57 spinlock_t msi_lock;
2da274cd
ZL
58
59 /* Domain for flush queue callback; NULL if flush queue not in use */
60 struct iommu_domain *fq_domain;
44bb7e24
RM
61};
62
fdbe574e
RM
63static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
64{
65 if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
66 return cookie->iovad.granule;
67 return PAGE_SIZE;
68}
69
fdbe574e
RM
70static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
71{
72 struct iommu_dma_cookie *cookie;
73
74 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
75 if (cookie) {
76 spin_lock_init(&cookie->msi_lock);
77 INIT_LIST_HEAD(&cookie->msi_page_list);
78 cookie->type = type;
79 }
80 return cookie;
44bb7e24
RM
81}
82
0db2e5d1
RM
83/**
84 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
85 * @domain: IOMMU domain to prepare for DMA-API usage
86 *
87 * IOMMU drivers should normally call this from their domain_alloc
88 * callback when domain->type == IOMMU_DOMAIN_DMA.
89 */
90int iommu_get_dma_cookie(struct iommu_domain *domain)
fdbe574e
RM
91{
92 if (domain->iova_cookie)
93 return -EEXIST;
94
95 domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
96 if (!domain->iova_cookie)
97 return -ENOMEM;
98
99 return 0;
100}
101EXPORT_SYMBOL(iommu_get_dma_cookie);
102
103/**
104 * iommu_get_msi_cookie - Acquire just MSI remapping resources
105 * @domain: IOMMU domain to prepare
106 * @base: Start address of IOVA region for MSI mappings
107 *
108 * Users who manage their own IOVA allocation and do not want DMA API support,
109 * but would still like to take advantage of automatic MSI remapping, can use
110 * this to initialise their own domain appropriately. Users should reserve a
111 * contiguous IOVA region, starting at @base, large enough to accommodate the
112 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
113 * used by the devices attached to @domain.
114 */
115int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
0db2e5d1 116{
44bb7e24 117 struct iommu_dma_cookie *cookie;
0db2e5d1 118
fdbe574e
RM
119 if (domain->type != IOMMU_DOMAIN_UNMANAGED)
120 return -EINVAL;
121
0db2e5d1
RM
122 if (domain->iova_cookie)
123 return -EEXIST;
124
fdbe574e 125 cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
44bb7e24
RM
126 if (!cookie)
127 return -ENOMEM;
0db2e5d1 128
fdbe574e 129 cookie->msi_iova = base;
44bb7e24
RM
130 domain->iova_cookie = cookie;
131 return 0;
0db2e5d1 132}
fdbe574e 133EXPORT_SYMBOL(iommu_get_msi_cookie);
0db2e5d1
RM
134
135/**
136 * iommu_put_dma_cookie - Release a domain's DMA mapping resources
fdbe574e
RM
137 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
138 * iommu_get_msi_cookie()
0db2e5d1
RM
139 *
140 * IOMMU drivers should normally call this from their domain_free callback.
141 */
142void iommu_put_dma_cookie(struct iommu_domain *domain)
143{
44bb7e24
RM
144 struct iommu_dma_cookie *cookie = domain->iova_cookie;
145 struct iommu_dma_msi_page *msi, *tmp;
0db2e5d1 146
44bb7e24 147 if (!cookie)
0db2e5d1
RM
148 return;
149
fdbe574e 150 if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
44bb7e24
RM
151 put_iova_domain(&cookie->iovad);
152
153 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
154 list_del(&msi->list);
155 kfree(msi);
156 }
157 kfree(cookie);
0db2e5d1
RM
158 domain->iova_cookie = NULL;
159}
160EXPORT_SYMBOL(iommu_put_dma_cookie);
161
273df963
RM
162/**
163 * iommu_dma_get_resv_regions - Reserved region driver helper
164 * @dev: Device from iommu_get_resv_regions()
165 * @list: Reserved region list from iommu_get_resv_regions()
166 *
167 * IOMMU drivers can use this to implement their .get_resv_regions callback
cd2c9fcf
SK
168 * for general non-IOMMU-specific reservations. Currently, this covers GICv3
169 * ITS region reservation on ACPI based ARM platforms that may require HW MSI
170 * reservation.
273df963
RM
171 */
172void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
fade1ec0 173{
fade1ec0 174
98cc4f71 175 if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
cd2c9fcf 176 iort_iommu_msi_get_resv_regions(dev, list);
273df963 177
fade1ec0 178}
273df963 179EXPORT_SYMBOL(iommu_dma_get_resv_regions);
fade1ec0 180
7c1b058c
RM
181static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
182 phys_addr_t start, phys_addr_t end)
183{
184 struct iova_domain *iovad = &cookie->iovad;
185 struct iommu_dma_msi_page *msi_page;
186 int i, num_pages;
187
188 start -= iova_offset(iovad, start);
189 num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
190
191 msi_page = kcalloc(num_pages, sizeof(*msi_page), GFP_KERNEL);
192 if (!msi_page)
193 return -ENOMEM;
194
195 for (i = 0; i < num_pages; i++) {
196 msi_page[i].phys = start;
197 msi_page[i].iova = start;
198 INIT_LIST_HEAD(&msi_page[i].list);
199 list_add(&msi_page[i].list, &cookie->msi_page_list);
200 start += iovad->granule;
201 }
202
203 return 0;
204}
205
aadad097 206static int iova_reserve_pci_windows(struct pci_dev *dev,
cd2c9fcf
SK
207 struct iova_domain *iovad)
208{
209 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
210 struct resource_entry *window;
211 unsigned long lo, hi;
aadad097 212 phys_addr_t start = 0, end;
cd2c9fcf
SK
213
214 resource_list_for_each_entry(window, &bridge->windows) {
215 if (resource_type(window->res) != IORESOURCE_MEM)
216 continue;
217
218 lo = iova_pfn(iovad, window->res->start - window->offset);
219 hi = iova_pfn(iovad, window->res->end - window->offset);
220 reserve_iova(iovad, lo, hi);
221 }
aadad097
SM
222
223 /* Get reserved DMA windows from host bridge */
224 resource_list_for_each_entry(window, &bridge->dma_ranges) {
225 end = window->res->start - window->offset;
226resv_iova:
227 if (end > start) {
228 lo = iova_pfn(iovad, start);
229 hi = iova_pfn(iovad, end);
230 reserve_iova(iovad, lo, hi);
231 } else {
232 /* dma_ranges list should be sorted */
233 dev_err(&dev->dev, "Failed to reserve IOVA\n");
234 return -EINVAL;
235 }
236
237 start = window->res->end - window->offset + 1;
238 /* If window is last entry */
239 if (window->node.next == &bridge->dma_ranges &&
240 end != ~(dma_addr_t)0) {
241 end = ~(dma_addr_t)0;
242 goto resv_iova;
243 }
244 }
245
246 return 0;
cd2c9fcf
SK
247}
248
7c1b058c
RM
249static int iova_reserve_iommu_regions(struct device *dev,
250 struct iommu_domain *domain)
251{
252 struct iommu_dma_cookie *cookie = domain->iova_cookie;
253 struct iova_domain *iovad = &cookie->iovad;
254 struct iommu_resv_region *region;
255 LIST_HEAD(resv_regions);
256 int ret = 0;
257
aadad097
SM
258 if (dev_is_pci(dev)) {
259 ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
260 if (ret)
261 return ret;
262 }
cd2c9fcf 263
7c1b058c
RM
264 iommu_get_resv_regions(dev, &resv_regions);
265 list_for_each_entry(region, &resv_regions, list) {
266 unsigned long lo, hi;
267
268 /* We ARE the software that manages these! */
269 if (region->type == IOMMU_RESV_SW_MSI)
270 continue;
271
272 lo = iova_pfn(iovad, region->start);
273 hi = iova_pfn(iovad, region->start + region->length - 1);
274 reserve_iova(iovad, lo, hi);
275
276 if (region->type == IOMMU_RESV_MSI)
277 ret = cookie_init_hw_msi_region(cookie, region->start,
278 region->start + region->length);
279 if (ret)
280 break;
281 }
282 iommu_put_resv_regions(dev, &resv_regions);
283
284 return ret;
285}
286
2da274cd
ZL
287static void iommu_dma_flush_iotlb_all(struct iova_domain *iovad)
288{
289 struct iommu_dma_cookie *cookie;
290 struct iommu_domain *domain;
291
292 cookie = container_of(iovad, struct iommu_dma_cookie, iovad);
293 domain = cookie->fq_domain;
294 /*
295 * The IOMMU driver supporting DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE
296 * implies that ops->flush_iotlb_all must be non-NULL.
297 */
298 domain->ops->flush_iotlb_all(domain);
299}
300
0db2e5d1
RM
301/**
302 * iommu_dma_init_domain - Initialise a DMA mapping domain
303 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
304 * @base: IOVA at which the mappable address space starts
305 * @size: Size of IOVA space
fade1ec0 306 * @dev: Device the domain is being initialised for
0db2e5d1
RM
307 *
308 * @base and @size should be exact multiples of IOMMU page granularity to
309 * avoid rounding surprises. If necessary, we reserve the page at address 0
310 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
311 * any change which could make prior IOVAs invalid will fail.
312 */
06d60728 313static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
fade1ec0 314 u64 size, struct device *dev)
0db2e5d1 315{
fdbe574e
RM
316 struct iommu_dma_cookie *cookie = domain->iova_cookie;
317 struct iova_domain *iovad = &cookie->iovad;
c61a4633 318 unsigned long order, base_pfn;
2da274cd 319 int attr;
0db2e5d1 320
fdbe574e
RM
321 if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
322 return -EINVAL;
0db2e5d1
RM
323
324 /* Use the smallest supported page size for IOVA granularity */
d16e0faa 325 order = __ffs(domain->pgsize_bitmap);
0db2e5d1 326 base_pfn = max_t(unsigned long, 1, base >> order);
0db2e5d1
RM
327
328 /* Check the domain allows at least some access to the device... */
329 if (domain->geometry.force_aperture) {
330 if (base > domain->geometry.aperture_end ||
331 base + size <= domain->geometry.aperture_start) {
332 pr_warn("specified DMA range outside IOMMU capability\n");
333 return -EFAULT;
334 }
335 /* ...then finally give it a kicking to make sure it fits */
336 base_pfn = max_t(unsigned long, base_pfn,
337 domain->geometry.aperture_start >> order);
0db2e5d1
RM
338 }
339
f51d7bb7 340 /* start_pfn is always nonzero for an already-initialised domain */
0db2e5d1
RM
341 if (iovad->start_pfn) {
342 if (1UL << order != iovad->granule ||
f51d7bb7 343 base_pfn != iovad->start_pfn) {
0db2e5d1
RM
344 pr_warn("Incompatible range for DMA domain\n");
345 return -EFAULT;
346 }
7c1b058c
RM
347
348 return 0;
0db2e5d1 349 }
7c1b058c 350
aa3ac946 351 init_iova_domain(iovad, 1UL << order, base_pfn);
2da274cd
ZL
352
353 if (!cookie->fq_domain && !iommu_domain_get_attr(domain,
354 DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE, &attr) && attr) {
355 cookie->fq_domain = domain;
356 init_iova_flush_queue(iovad, iommu_dma_flush_iotlb_all, NULL);
357 }
358
7c1b058c
RM
359 if (!dev)
360 return 0;
361
362 return iova_reserve_iommu_regions(dev, domain);
0db2e5d1 363}
0db2e5d1
RM
364
365/**
737c85ca
MH
366 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
367 * page flags.
0db2e5d1
RM
368 * @dir: Direction of DMA transfer
369 * @coherent: Is the DMA master cache-coherent?
737c85ca 370 * @attrs: DMA attributes for the mapping
0db2e5d1
RM
371 *
372 * Return: corresponding IOMMU API page protection flags
373 */
06d60728 374static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
737c85ca 375 unsigned long attrs)
0db2e5d1
RM
376{
377 int prot = coherent ? IOMMU_CACHE : 0;
378
737c85ca
MH
379 if (attrs & DMA_ATTR_PRIVILEGED)
380 prot |= IOMMU_PRIV;
381
0db2e5d1
RM
382 switch (dir) {
383 case DMA_BIDIRECTIONAL:
384 return prot | IOMMU_READ | IOMMU_WRITE;
385 case DMA_TO_DEVICE:
386 return prot | IOMMU_READ;
387 case DMA_FROM_DEVICE:
388 return prot | IOMMU_WRITE;
389 default:
390 return 0;
391 }
392}
393
842fe519
RM
394static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
395 size_t size, dma_addr_t dma_limit, struct device *dev)
0db2e5d1 396{
a44e6657
RM
397 struct iommu_dma_cookie *cookie = domain->iova_cookie;
398 struct iova_domain *iovad = &cookie->iovad;
bb65a64c 399 unsigned long shift, iova_len, iova = 0;
0db2e5d1 400
a44e6657
RM
401 if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
402 cookie->msi_iova += size;
403 return cookie->msi_iova - size;
404 }
405
406 shift = iova_shift(iovad);
407 iova_len = size >> shift;
bb65a64c
RM
408 /*
409 * Freeing non-power-of-two-sized allocations back into the IOVA caches
410 * will come back to bite us badly, so we have to waste a bit of space
411 * rounding up anything cacheable to make sure that can't happen. The
412 * order of the unadjusted size will still match upon freeing.
413 */
414 if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1)))
415 iova_len = roundup_pow_of_two(iova_len);
a44e6657 416
03bfdc31
RM
417 if (dev->bus_dma_mask)
418 dma_limit &= dev->bus_dma_mask;
419
c987ff0d
RM
420 if (domain->geometry.force_aperture)
421 dma_limit = min(dma_limit, domain->geometry.aperture_end);
122fac03
RM
422
423 /* Try to get PCI devices a SAC address */
424 if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev))
538d5b33
TN
425 iova = alloc_iova_fast(iovad, iova_len,
426 DMA_BIT_MASK(32) >> shift, false);
bb65a64c 427
122fac03 428 if (!iova)
538d5b33
TN
429 iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
430 true);
122fac03 431
bb65a64c 432 return (dma_addr_t)iova << shift;
0db2e5d1
RM
433}
434
842fe519
RM
435static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
436 dma_addr_t iova, size_t size)
0db2e5d1 437{
842fe519 438 struct iova_domain *iovad = &cookie->iovad;
0db2e5d1 439
a44e6657 440 /* The MSI case is only ever cleaning up its most recent allocation */
bb65a64c 441 if (cookie->type == IOMMU_DMA_MSI_COOKIE)
a44e6657 442 cookie->msi_iova -= size;
2da274cd
ZL
443 else if (cookie->fq_domain) /* non-strict mode */
444 queue_iova(iovad, iova_pfn(iovad, iova),
445 size >> iova_shift(iovad), 0);
bb65a64c 446 else
1cc896ed
RM
447 free_iova_fast(iovad, iova_pfn(iovad, iova),
448 size >> iova_shift(iovad));
842fe519
RM
449}
450
b61d271e 451static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
842fe519
RM
452 size_t size)
453{
b61d271e 454 struct iommu_domain *domain = iommu_get_dma_domain(dev);
a44e6657
RM
455 struct iommu_dma_cookie *cookie = domain->iova_cookie;
456 struct iova_domain *iovad = &cookie->iovad;
842fe519
RM
457 size_t iova_off = iova_offset(iovad, dma_addr);
458
459 dma_addr -= iova_off;
460 size = iova_align(iovad, size + iova_off);
461
2da274cd
ZL
462 WARN_ON(iommu_unmap_fast(domain, dma_addr, size) != size);
463 if (!cookie->fq_domain)
464 iommu_tlb_sync(domain);
a44e6657 465 iommu_dma_free_iova(cookie, dma_addr, size);
0db2e5d1
RM
466}
467
92aec09c 468static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
b61d271e 469 size_t size, int prot)
92aec09c 470{
b61d271e 471 struct iommu_domain *domain = iommu_get_dma_domain(dev);
92aec09c
CH
472 struct iommu_dma_cookie *cookie = domain->iova_cookie;
473 size_t iova_off = 0;
474 dma_addr_t iova;
475
476 if (cookie->type == IOMMU_DMA_IOVA_COOKIE) {
477 iova_off = iova_offset(&cookie->iovad, phys);
478 size = iova_align(&cookie->iovad, size + iova_off);
479 }
480
481 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
482 if (!iova)
483 return DMA_MAPPING_ERROR;
484
485 if (iommu_map(domain, iova, phys - iova_off, size, prot)) {
486 iommu_dma_free_iova(cookie, iova, size);
487 return DMA_MAPPING_ERROR;
488 }
489 return iova + iova_off;
490}
491
0db2e5d1
RM
492static void __iommu_dma_free_pages(struct page **pages, int count)
493{
494 while (count--)
495 __free_page(pages[count]);
496 kvfree(pages);
497}
498
c4b17afb
GK
499static struct page **__iommu_dma_alloc_pages(struct device *dev,
500 unsigned int count, unsigned long order_mask, gfp_t gfp)
0db2e5d1
RM
501{
502 struct page **pages;
c4b17afb 503 unsigned int i = 0, nid = dev_to_node(dev);
3b6b7e19
RM
504
505 order_mask &= (2U << MAX_ORDER) - 1;
506 if (!order_mask)
507 return NULL;
0db2e5d1 508
c4b17afb 509 pages = kvzalloc(count * sizeof(*pages), GFP_KERNEL);
0db2e5d1
RM
510 if (!pages)
511 return NULL;
512
513 /* IOMMU can map any pages, so himem can also be used here */
514 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
515
516 while (count) {
517 struct page *page = NULL;
3b6b7e19 518 unsigned int order_size;
0db2e5d1
RM
519
520 /*
521 * Higher-order allocations are a convenience rather
522 * than a necessity, hence using __GFP_NORETRY until
3b6b7e19 523 * falling back to minimum-order allocations.
0db2e5d1 524 */
3b6b7e19
RM
525 for (order_mask &= (2U << __fls(count)) - 1;
526 order_mask; order_mask &= ~order_size) {
527 unsigned int order = __fls(order_mask);
c4b17afb 528 gfp_t alloc_flags = gfp;
3b6b7e19
RM
529
530 order_size = 1U << order;
c4b17afb
GK
531 if (order_mask > order_size)
532 alloc_flags |= __GFP_NORETRY;
533 page = alloc_pages_node(nid, alloc_flags, order);
0db2e5d1
RM
534 if (!page)
535 continue;
3b6b7e19
RM
536 if (!order)
537 break;
538 if (!PageCompound(page)) {
0db2e5d1
RM
539 split_page(page, order);
540 break;
3b6b7e19
RM
541 } else if (!split_huge_page(page)) {
542 break;
0db2e5d1 543 }
3b6b7e19 544 __free_pages(page, order);
0db2e5d1 545 }
0db2e5d1
RM
546 if (!page) {
547 __iommu_dma_free_pages(pages, i);
548 return NULL;
549 }
3b6b7e19
RM
550 count -= order_size;
551 while (order_size--)
0db2e5d1
RM
552 pages[i++] = page++;
553 }
554 return pages;
555}
556
4c360ace
RM
557static struct page **__iommu_dma_get_pages(void *cpu_addr)
558{
559 struct vm_struct *area = find_vm_area(cpu_addr);
560
561 if (!area || !area->pages)
562 return NULL;
563 return area->pages;
564}
565
0db2e5d1 566/**
21b95aaf 567 * iommu_dma_alloc_remap - Allocate and map a buffer contiguous in IOVA space
0db2e5d1
RM
568 * @dev: Device to allocate memory for. Must be a real device
569 * attached to an iommu_dma_domain
570 * @size: Size of buffer in bytes
21b95aaf 571 * @dma_handle: Out argument for allocated DMA handle
0db2e5d1 572 * @gfp: Allocation flags
3b6b7e19 573 * @attrs: DMA attributes for this allocation
0db2e5d1
RM
574 *
575 * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
576 * but an IOMMU which supports smaller pages might not map the whole thing.
577 *
21b95aaf 578 * Return: Mapped virtual address, or NULL on failure.
0db2e5d1 579 */
21b95aaf
CH
580static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
581 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
0db2e5d1 582{
43c5bf11 583 struct iommu_domain *domain = iommu_get_dma_domain(dev);
842fe519
RM
584 struct iommu_dma_cookie *cookie = domain->iova_cookie;
585 struct iova_domain *iovad = &cookie->iovad;
21b95aaf
CH
586 bool coherent = dev_is_dma_coherent(dev);
587 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
588 pgprot_t prot = arch_dma_mmap_pgprot(dev, PAGE_KERNEL, attrs);
589 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
0db2e5d1
RM
590 struct page **pages;
591 struct sg_table sgt;
842fe519 592 dma_addr_t iova;
21b95aaf 593 void *vaddr;
0db2e5d1 594
21b95aaf 595 *dma_handle = DMA_MAPPING_ERROR;
0db2e5d1 596
3b6b7e19
RM
597 min_size = alloc_sizes & -alloc_sizes;
598 if (min_size < PAGE_SIZE) {
599 min_size = PAGE_SIZE;
600 alloc_sizes |= PAGE_SIZE;
601 } else {
602 size = ALIGN(size, min_size);
603 }
00085f1e 604 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
3b6b7e19
RM
605 alloc_sizes = min_size;
606
607 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
c4b17afb
GK
608 pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
609 gfp);
0db2e5d1
RM
610 if (!pages)
611 return NULL;
612
842fe519
RM
613 size = iova_align(iovad, size);
614 iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
0db2e5d1
RM
615 if (!iova)
616 goto out_free_pages;
617
0db2e5d1
RM
618 if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
619 goto out_free_iova;
620
21b95aaf 621 if (!(ioprot & IOMMU_CACHE)) {
23f88e0a
CH
622 struct scatterlist *sg;
623 int i;
624
625 for_each_sg(sgt.sgl, sg, sgt.orig_nents, i)
626 arch_dma_prep_coherent(sg_page(sg), sg->length);
0db2e5d1
RM
627 }
628
21b95aaf 629 if (iommu_map_sg(domain, iova, sgt.sgl, sgt.orig_nents, ioprot)
0db2e5d1
RM
630 < size)
631 goto out_free_sg;
632
21b95aaf
CH
633 vaddr = dma_common_pages_remap(pages, size, VM_USERMAP, prot,
634 __builtin_return_address(0));
635 if (!vaddr)
636 goto out_unmap;
637
638 *dma_handle = iova;
0db2e5d1 639 sg_free_table(&sgt);
21b95aaf 640 return vaddr;
0db2e5d1 641
21b95aaf
CH
642out_unmap:
643 __iommu_dma_unmap(dev, iova, size);
0db2e5d1
RM
644out_free_sg:
645 sg_free_table(&sgt);
646out_free_iova:
842fe519 647 iommu_dma_free_iova(cookie, iova, size);
0db2e5d1
RM
648out_free_pages:
649 __iommu_dma_free_pages(pages, count);
650 return NULL;
651}
652
653/**
06d60728
CH
654 * __iommu_dma_mmap - Map a buffer into provided user VMA
655 * @pages: Array representing buffer from __iommu_dma_alloc()
0db2e5d1
RM
656 * @size: Size of buffer in bytes
657 * @vma: VMA describing requested userspace mapping
658 *
659 * Maps the pages of the buffer in @pages into @vma. The caller is responsible
660 * for verifying the correct size and protection of @vma beforehand.
661 */
06d60728
CH
662static int __iommu_dma_mmap(struct page **pages, size_t size,
663 struct vm_area_struct *vma)
0db2e5d1 664{
b0d0084f 665 return vm_map_pages(vma, pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
0db2e5d1
RM
666}
667
06d60728
CH
668static void iommu_dma_sync_single_for_cpu(struct device *dev,
669 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
670{
671 phys_addr_t phys;
672
673 if (dev_is_dma_coherent(dev))
674 return;
675
676 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
677 arch_sync_dma_for_cpu(dev, phys, size, dir);
678}
679
680static void iommu_dma_sync_single_for_device(struct device *dev,
681 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
682{
683 phys_addr_t phys;
684
685 if (dev_is_dma_coherent(dev))
686 return;
687
688 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
689 arch_sync_dma_for_device(dev, phys, size, dir);
690}
691
692static void iommu_dma_sync_sg_for_cpu(struct device *dev,
693 struct scatterlist *sgl, int nelems,
694 enum dma_data_direction dir)
695{
696 struct scatterlist *sg;
697 int i;
698
699 if (dev_is_dma_coherent(dev))
700 return;
701
702 for_each_sg(sgl, sg, nelems, i)
703 arch_sync_dma_for_cpu(dev, sg_phys(sg), sg->length, dir);
704}
705
706static void iommu_dma_sync_sg_for_device(struct device *dev,
707 struct scatterlist *sgl, int nelems,
708 enum dma_data_direction dir)
709{
710 struct scatterlist *sg;
711 int i;
712
713 if (dev_is_dma_coherent(dev))
714 return;
715
716 for_each_sg(sgl, sg, nelems, i)
717 arch_sync_dma_for_device(dev, sg_phys(sg), sg->length, dir);
718}
719
06d60728
CH
720static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
721 unsigned long offset, size_t size, enum dma_data_direction dir,
722 unsigned long attrs)
723{
724 phys_addr_t phys = page_to_phys(page) + offset;
725 bool coherent = dev_is_dma_coherent(dev);
b61d271e 726 int prot = dma_info_to_prot(dir, coherent, attrs);
06d60728
CH
727 dma_addr_t dma_handle;
728
b61d271e 729 dma_handle =__iommu_dma_map(dev, phys, size, prot);
06d60728
CH
730 if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
731 dma_handle != DMA_MAPPING_ERROR)
732 arch_sync_dma_for_device(dev, phys, size, dir);
733 return dma_handle;
734}
735
736static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
737 size_t size, enum dma_data_direction dir, unsigned long attrs)
738{
739 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
740 iommu_dma_sync_single_for_cpu(dev, dma_handle, size, dir);
b61d271e 741 __iommu_dma_unmap(dev, dma_handle, size);
06d60728
CH
742}
743
0db2e5d1
RM
744/*
745 * Prepare a successfully-mapped scatterlist to give back to the caller.
809eac54
RM
746 *
747 * At this point the segments are already laid out by iommu_dma_map_sg() to
748 * avoid individually crossing any boundaries, so we merely need to check a
749 * segment's start address to avoid concatenating across one.
0db2e5d1
RM
750 */
751static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
752 dma_addr_t dma_addr)
753{
809eac54
RM
754 struct scatterlist *s, *cur = sg;
755 unsigned long seg_mask = dma_get_seg_boundary(dev);
756 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
757 int i, count = 0;
0db2e5d1
RM
758
759 for_each_sg(sg, s, nents, i) {
809eac54
RM
760 /* Restore this segment's original unaligned fields first */
761 unsigned int s_iova_off = sg_dma_address(s);
0db2e5d1 762 unsigned int s_length = sg_dma_len(s);
809eac54 763 unsigned int s_iova_len = s->length;
0db2e5d1 764
809eac54 765 s->offset += s_iova_off;
0db2e5d1 766 s->length = s_length;
cad34be7 767 sg_dma_address(s) = DMA_MAPPING_ERROR;
809eac54
RM
768 sg_dma_len(s) = 0;
769
770 /*
771 * Now fill in the real DMA data. If...
772 * - there is a valid output segment to append to
773 * - and this segment starts on an IOVA page boundary
774 * - but doesn't fall at a segment boundary
775 * - and wouldn't make the resulting output segment too long
776 */
777 if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
778 (cur_len + s_length <= max_len)) {
779 /* ...then concatenate it with the previous one */
780 cur_len += s_length;
781 } else {
782 /* Otherwise start the next output segment */
783 if (i > 0)
784 cur = sg_next(cur);
785 cur_len = s_length;
786 count++;
787
788 sg_dma_address(cur) = dma_addr + s_iova_off;
789 }
790
791 sg_dma_len(cur) = cur_len;
792 dma_addr += s_iova_len;
793
794 if (s_length + s_iova_off < s_iova_len)
795 cur_len = 0;
0db2e5d1 796 }
809eac54 797 return count;
0db2e5d1
RM
798}
799
800/*
801 * If mapping failed, then just restore the original list,
802 * but making sure the DMA fields are invalidated.
803 */
804static void __invalidate_sg(struct scatterlist *sg, int nents)
805{
806 struct scatterlist *s;
807 int i;
808
809 for_each_sg(sg, s, nents, i) {
cad34be7 810 if (sg_dma_address(s) != DMA_MAPPING_ERROR)
07b48ac4 811 s->offset += sg_dma_address(s);
0db2e5d1
RM
812 if (sg_dma_len(s))
813 s->length = sg_dma_len(s);
cad34be7 814 sg_dma_address(s) = DMA_MAPPING_ERROR;
0db2e5d1
RM
815 sg_dma_len(s) = 0;
816 }
817}
818
819/*
820 * The DMA API client is passing in a scatterlist which could describe
821 * any old buffer layout, but the IOMMU API requires everything to be
822 * aligned to IOMMU pages. Hence the need for this complicated bit of
823 * impedance-matching, to be able to hand off a suitably-aligned list,
824 * but still preserve the original offsets and sizes for the caller.
825 */
06d60728
CH
826static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
827 int nents, enum dma_data_direction dir, unsigned long attrs)
0db2e5d1 828{
43c5bf11 829 struct iommu_domain *domain = iommu_get_dma_domain(dev);
842fe519
RM
830 struct iommu_dma_cookie *cookie = domain->iova_cookie;
831 struct iova_domain *iovad = &cookie->iovad;
0db2e5d1 832 struct scatterlist *s, *prev = NULL;
06d60728 833 int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
842fe519 834 dma_addr_t iova;
0db2e5d1 835 size_t iova_len = 0;
809eac54 836 unsigned long mask = dma_get_seg_boundary(dev);
0db2e5d1
RM
837 int i;
838
06d60728
CH
839 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
840 iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
841
0db2e5d1
RM
842 /*
843 * Work out how much IOVA space we need, and align the segments to
844 * IOVA granules for the IOMMU driver to handle. With some clever
845 * trickery we can modify the list in-place, but reversibly, by
809eac54 846 * stashing the unaligned parts in the as-yet-unused DMA fields.
0db2e5d1
RM
847 */
848 for_each_sg(sg, s, nents, i) {
809eac54 849 size_t s_iova_off = iova_offset(iovad, s->offset);
0db2e5d1 850 size_t s_length = s->length;
809eac54 851 size_t pad_len = (mask - iova_len + 1) & mask;
0db2e5d1 852
809eac54 853 sg_dma_address(s) = s_iova_off;
0db2e5d1 854 sg_dma_len(s) = s_length;
809eac54
RM
855 s->offset -= s_iova_off;
856 s_length = iova_align(iovad, s_length + s_iova_off);
0db2e5d1
RM
857 s->length = s_length;
858
859 /*
809eac54
RM
860 * Due to the alignment of our single IOVA allocation, we can
861 * depend on these assumptions about the segment boundary mask:
862 * - If mask size >= IOVA size, then the IOVA range cannot
863 * possibly fall across a boundary, so we don't care.
864 * - If mask size < IOVA size, then the IOVA range must start
865 * exactly on a boundary, therefore we can lay things out
866 * based purely on segment lengths without needing to know
867 * the actual addresses beforehand.
868 * - The mask must be a power of 2, so pad_len == 0 if
869 * iova_len == 0, thus we cannot dereference prev the first
870 * time through here (i.e. before it has a meaningful value).
0db2e5d1 871 */
809eac54 872 if (pad_len && pad_len < s_length - 1) {
0db2e5d1
RM
873 prev->length += pad_len;
874 iova_len += pad_len;
875 }
876
877 iova_len += s_length;
878 prev = s;
879 }
880
842fe519 881 iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
0db2e5d1
RM
882 if (!iova)
883 goto out_restore_sg;
884
885 /*
886 * We'll leave any physical concatenation to the IOMMU driver's
887 * implementation - it knows better than we do.
888 */
842fe519 889 if (iommu_map_sg(domain, iova, sg, nents, prot) < iova_len)
0db2e5d1
RM
890 goto out_free_iova;
891
842fe519 892 return __finalise_sg(dev, sg, nents, iova);
0db2e5d1
RM
893
894out_free_iova:
842fe519 895 iommu_dma_free_iova(cookie, iova, iova_len);
0db2e5d1
RM
896out_restore_sg:
897 __invalidate_sg(sg, nents);
898 return 0;
899}
900
06d60728
CH
901static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
902 int nents, enum dma_data_direction dir, unsigned long attrs)
0db2e5d1 903{
842fe519
RM
904 dma_addr_t start, end;
905 struct scatterlist *tmp;
906 int i;
06d60728
CH
907
908 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
909 iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
910
0db2e5d1
RM
911 /*
912 * The scatterlist segments are mapped into a single
913 * contiguous IOVA allocation, so this is incredibly easy.
914 */
842fe519
RM
915 start = sg_dma_address(sg);
916 for_each_sg(sg_next(sg), tmp, nents - 1, i) {
917 if (sg_dma_len(tmp) == 0)
918 break;
919 sg = tmp;
920 }
921 end = sg_dma_address(sg) + sg_dma_len(sg);
b61d271e 922 __iommu_dma_unmap(dev, start, end - start);
0db2e5d1
RM
923}
924
06d60728 925static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
51f8cc9e
RM
926 size_t size, enum dma_data_direction dir, unsigned long attrs)
927{
928 return __iommu_dma_map(dev, phys, size,
b61d271e 929 dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO);
51f8cc9e
RM
930}
931
06d60728 932static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
51f8cc9e
RM
933 size_t size, enum dma_data_direction dir, unsigned long attrs)
934{
b61d271e 935 __iommu_dma_unmap(dev, handle, size);
51f8cc9e
RM
936}
937
bcf4b9c4
RM
938static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
939 dma_addr_t handle, unsigned long attrs)
940{
941 size_t alloc_size = PAGE_ALIGN(size);
942 int count = alloc_size >> PAGE_SHIFT;
943 struct page *page = NULL, **pages = NULL;
944
945 __iommu_dma_unmap(dev, handle, size);
946
947 /* Non-coherent atomic allocation? Easy */
948 if (dma_free_from_pool(cpu_addr, alloc_size))
949 return;
950
951 if (is_vmalloc_addr(cpu_addr)) {
952 /*
953 * If it the address is remapped, then it's either non-coherent
954 * or highmem CMA, or an iommu_dma_alloc_remap() construction.
955 */
956 pages = __iommu_dma_get_pages(cpu_addr);
957 if (!pages)
958 page = vmalloc_to_page(cpu_addr);
959 dma_common_free_remap(cpu_addr, alloc_size, VM_USERMAP);
960 } else {
961 /* Lowmem means a coherent atomic or CMA allocation */
962 page = virt_to_page(cpu_addr);
963 }
964
965 if (pages)
966 __iommu_dma_free_pages(pages, count);
967 if (page && !dma_release_from_contiguous(dev, page, count))
968 __free_pages(page, get_order(alloc_size));
969}
970
06d60728
CH
971static void *iommu_dma_alloc(struct device *dev, size_t size,
972 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
973{
974 bool coherent = dev_is_dma_coherent(dev);
975 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
072bebc0 976 pgprot_t prot = arch_dma_mmap_pgprot(dev, PAGE_KERNEL, attrs);
06d60728 977 size_t iosize = size;
072bebc0 978 struct page *page;
06d60728
CH
979 void *addr;
980
981 size = PAGE_ALIGN(size);
982 gfp |= __GFP_ZERO;
983
072bebc0
RM
984 if (gfpflags_allow_blocking(gfp) &&
985 !(attrs & DMA_ATTR_FORCE_CONTIGUOUS))
986 return iommu_dma_alloc_remap(dev, iosize, handle, gfp, attrs);
987
06d60728 988 if (!gfpflags_allow_blocking(gfp)) {
06d60728
CH
989 /*
990 * In atomic context we can't remap anything, so we'll only
991 * get the virtually contiguous buffer we need by way of a
992 * physically contiguous allocation.
993 */
994 if (coherent) {
995 page = alloc_pages(gfp, get_order(size));
996 addr = page ? page_address(page) : NULL;
997 } else {
998 addr = dma_alloc_from_pool(size, &page, gfp);
999 }
1000 if (!addr)
1001 return NULL;
1002
796a08cf
RM
1003 *handle = __iommu_dma_map(dev, page_to_phys(page), iosize,
1004 ioprot);
06d60728
CH
1005 if (*handle == DMA_MAPPING_ERROR) {
1006 if (coherent)
1007 __free_pages(page, get_order(size));
1008 else
1009 dma_free_from_pool(addr, size);
06d60728 1010 return NULL;
06d60728 1011 }
072bebc0 1012 return addr;
06d60728 1013 }
072bebc0
RM
1014
1015 page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
1016 get_order(size), gfp & __GFP_NOWARN);
1017 if (!page)
1018 return NULL;
1019
1020 *handle = __iommu_dma_map(dev, page_to_phys(page), iosize, ioprot);
1021 if (*handle == DMA_MAPPING_ERROR)
1022 goto out_free_pages;
1023
1024 addr = dma_common_contiguous_remap(page, size, VM_USERMAP, prot,
1025 __builtin_return_address(0));
1026 if (!addr)
1027 goto out_unmap;
1028
1029 if (!coherent)
1030 arch_dma_prep_coherent(page, iosize);
1031 memset(addr, 0, size);
06d60728 1032 return addr;
072bebc0
RM
1033out_unmap:
1034 __iommu_dma_unmap(dev, *handle, iosize);
1035out_free_pages:
1036 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
1037 return NULL;
06d60728
CH
1038}
1039
06d60728
CH
1040static int __iommu_dma_mmap_pfn(struct vm_area_struct *vma,
1041 unsigned long pfn, size_t size)
1042{
1043 int ret = -ENXIO;
1044 unsigned long nr_vma_pages = vma_pages(vma);
1045 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1046 unsigned long off = vma->vm_pgoff;
1047
1048 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
1049 ret = remap_pfn_range(vma, vma->vm_start,
1050 pfn + off,
1051 vma->vm_end - vma->vm_start,
1052 vma->vm_page_prot);
1053 }
1054
1055 return ret;
1056}
1057
1058static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1059 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1060 unsigned long attrs)
1061{
1062 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1063 unsigned long off = vma->vm_pgoff;
4c360ace 1064 struct page **pages;
06d60728
CH
1065 int ret;
1066
1067 vma->vm_page_prot = arch_dma_mmap_pgprot(dev, vma->vm_page_prot, attrs);
1068
1069 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
1070 return ret;
1071
1072 if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1073 return -ENXIO;
1074
1075 if (!is_vmalloc_addr(cpu_addr)) {
1076 unsigned long pfn = page_to_pfn(virt_to_page(cpu_addr));
1077 return __iommu_dma_mmap_pfn(vma, pfn, size);
1078 }
1079
1080 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
1081 /*
1082 * DMA_ATTR_FORCE_CONTIGUOUS allocations are always remapped,
1083 * hence in the vmalloc space.
1084 */
1085 unsigned long pfn = vmalloc_to_pfn(cpu_addr);
1086 return __iommu_dma_mmap_pfn(vma, pfn, size);
1087 }
1088
4c360ace
RM
1089 pages = __iommu_dma_get_pages(cpu_addr);
1090 if (!pages)
06d60728 1091 return -ENXIO;
4c360ace 1092 return __iommu_dma_mmap(pages, size, vma);
06d60728
CH
1093}
1094
1095static int __iommu_dma_get_sgtable_page(struct sg_table *sgt, struct page *page,
1096 size_t size)
1097{
1098 int ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1099
1100 if (!ret)
1101 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
1102 return ret;
1103}
1104
1105static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1106 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1107 unsigned long attrs)
1108{
1109 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
4c360ace 1110 struct page **pages;
06d60728
CH
1111
1112 if (!is_vmalloc_addr(cpu_addr)) {
1113 struct page *page = virt_to_page(cpu_addr);
1114 return __iommu_dma_get_sgtable_page(sgt, page, size);
1115 }
1116
1117 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
1118 /*
1119 * DMA_ATTR_FORCE_CONTIGUOUS allocations are always remapped,
1120 * hence in the vmalloc space.
1121 */
1122 struct page *page = vmalloc_to_page(cpu_addr);
1123 return __iommu_dma_get_sgtable_page(sgt, page, size);
1124 }
1125
4c360ace
RM
1126 pages = __iommu_dma_get_pages(cpu_addr);
1127 if (!pages)
06d60728 1128 return -ENXIO;
4c360ace 1129 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
06d60728
CH
1130 GFP_KERNEL);
1131}
1132
1133static const struct dma_map_ops iommu_dma_ops = {
1134 .alloc = iommu_dma_alloc,
1135 .free = iommu_dma_free,
1136 .mmap = iommu_dma_mmap,
1137 .get_sgtable = iommu_dma_get_sgtable,
1138 .map_page = iommu_dma_map_page,
1139 .unmap_page = iommu_dma_unmap_page,
1140 .map_sg = iommu_dma_map_sg,
1141 .unmap_sg = iommu_dma_unmap_sg,
1142 .sync_single_for_cpu = iommu_dma_sync_single_for_cpu,
1143 .sync_single_for_device = iommu_dma_sync_single_for_device,
1144 .sync_sg_for_cpu = iommu_dma_sync_sg_for_cpu,
1145 .sync_sg_for_device = iommu_dma_sync_sg_for_device,
1146 .map_resource = iommu_dma_map_resource,
1147 .unmap_resource = iommu_dma_unmap_resource,
1148};
1149
1150/*
1151 * The IOMMU core code allocates the default DMA domain, which the underlying
1152 * IOMMU driver needs to support via the dma-iommu layer.
1153 */
1154void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size)
1155{
1156 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1157
1158 if (!domain)
1159 goto out_err;
1160
1161 /*
1162 * The IOMMU core code allocates the default DMA domain, which the
1163 * underlying IOMMU driver needs to support via the dma-iommu layer.
1164 */
1165 if (domain->type == IOMMU_DOMAIN_DMA) {
1166 if (iommu_dma_init_domain(domain, dma_base, size, dev))
1167 goto out_err;
1168 dev->dma_ops = &iommu_dma_ops;
1169 }
1170
1171 return;
1172out_err:
1173 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
1174 dev_name(dev));
1175}
1176
44bb7e24
RM
1177static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
1178 phys_addr_t msi_addr, struct iommu_domain *domain)
1179{
1180 struct iommu_dma_cookie *cookie = domain->iova_cookie;
1181 struct iommu_dma_msi_page *msi_page;
842fe519 1182 dma_addr_t iova;
44bb7e24 1183 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
fdbe574e 1184 size_t size = cookie_msi_granule(cookie);
44bb7e24 1185
fdbe574e 1186 msi_addr &= ~(phys_addr_t)(size - 1);
44bb7e24
RM
1187 list_for_each_entry(msi_page, &cookie->msi_page_list, list)
1188 if (msi_page->phys == msi_addr)
1189 return msi_page;
1190
1191 msi_page = kzalloc(sizeof(*msi_page), GFP_ATOMIC);
1192 if (!msi_page)
1193 return NULL;
1194
b61d271e 1195 iova = __iommu_dma_map(dev, msi_addr, size, prot);
cad34be7 1196 if (iova == DMA_MAPPING_ERROR)
a44e6657 1197 goto out_free_page;
44bb7e24
RM
1198
1199 INIT_LIST_HEAD(&msi_page->list);
a44e6657
RM
1200 msi_page->phys = msi_addr;
1201 msi_page->iova = iova;
44bb7e24
RM
1202 list_add(&msi_page->list, &cookie->msi_page_list);
1203 return msi_page;
1204
44bb7e24
RM
1205out_free_page:
1206 kfree(msi_page);
1207 return NULL;
1208}
1209
ece6e6f0 1210int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
44bb7e24 1211{
ece6e6f0 1212 struct device *dev = msi_desc_to_dev(desc);
44bb7e24
RM
1213 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1214 struct iommu_dma_cookie *cookie;
1215 struct iommu_dma_msi_page *msi_page;
44bb7e24
RM
1216 unsigned long flags;
1217
ece6e6f0
JG
1218 if (!domain || !domain->iova_cookie) {
1219 desc->iommu_cookie = NULL;
1220 return 0;
1221 }
44bb7e24
RM
1222
1223 cookie = domain->iova_cookie;
1224
1225 /*
1226 * We disable IRQs to rule out a possible inversion against
1227 * irq_desc_lock if, say, someone tries to retarget the affinity
1228 * of an MSI from within an IPI handler.
1229 */
1230 spin_lock_irqsave(&cookie->msi_lock, flags);
1231 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
1232 spin_unlock_irqrestore(&cookie->msi_lock, flags);
1233
ece6e6f0
JG
1234 msi_desc_set_iommu_cookie(desc, msi_page);
1235
1236 if (!msi_page)
1237 return -ENOMEM;
1238 return 0;
1239}
1240
1241void iommu_dma_compose_msi_msg(struct msi_desc *desc,
1242 struct msi_msg *msg)
1243{
1244 struct device *dev = msi_desc_to_dev(desc);
1245 const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1246 const struct iommu_dma_msi_page *msi_page;
1247
1248 msi_page = msi_desc_get_iommu_cookie(desc);
1249
1250 if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
1251 return;
1252
1253 msg->address_hi = upper_32_bits(msi_page->iova);
1254 msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
1255 msg->address_lo += lower_32_bits(msi_page->iova);
44bb7e24 1256}
06d60728
CH
1257
1258static int iommu_dma_init(void)
1259{
1260 return iova_cache_get();
1261}
1262arch_initcall(iommu_dma_init);