Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
[linux-2.6-block.git] / drivers / iommu / dma-iommu.c
CommitLineData
caab277b 1// SPDX-License-Identifier: GPL-2.0-only
0db2e5d1
RM
2/*
3 * A fairly generic DMA-API to IOMMU-API glue layer.
4 *
5 * Copyright (C) 2014-2015 ARM Ltd.
6 *
7 * based in part on arch/arm/mm/dma-mapping.c:
8 * Copyright (C) 2000-2004 Russell King
0db2e5d1
RM
9 */
10
f51dc892 11#include <linux/acpi_iort.h>
a17e3026
RM
12#include <linux/atomic.h>
13#include <linux/crash_dump.h>
0db2e5d1 14#include <linux/device.h>
a17e3026 15#include <linux/dma-direct.h>
a17e3026 16#include <linux/dma-map-ops.h>
5b11e9cd 17#include <linux/gfp.h>
0db2e5d1
RM
18#include <linux/huge_mm.h>
19#include <linux/iommu.h>
20#include <linux/iova.h>
44bb7e24 21#include <linux/irq.h>
b8397a8f 22#include <linux/list_sort.h>
30280eee 23#include <linux/memremap.h>
0db2e5d1 24#include <linux/mm.h>
c1864790 25#include <linux/mutex.h>
fade1ec0 26#include <linux/pci.h>
5b11e9cd 27#include <linux/scatterlist.h>
a17e3026
RM
28#include <linux/spinlock.h>
29#include <linux/swiotlb.h>
5b11e9cd 30#include <linux/vmalloc.h>
0db2e5d1 31
f2042ed2
RM
32#include "dma-iommu.h"
33
44bb7e24
RM
34struct iommu_dma_msi_page {
35 struct list_head list;
36 dma_addr_t iova;
37 phys_addr_t phys;
38};
39
fdbe574e
RM
40enum iommu_dma_cookie_type {
41 IOMMU_DMA_IOVA_COOKIE,
42 IOMMU_DMA_MSI_COOKIE,
43};
44
44bb7e24 45struct iommu_dma_cookie {
fdbe574e
RM
46 enum iommu_dma_cookie_type type;
47 union {
48 /* Full allocator for IOMMU_DMA_IOVA_COOKIE */
a17e3026
RM
49 struct {
50 struct iova_domain iovad;
51
52 struct iova_fq __percpu *fq; /* Flush queue */
53 /* Number of TLB flushes that have been started */
54 atomic64_t fq_flush_start_cnt;
55 /* Number of TLB flushes that have been finished */
56 atomic64_t fq_flush_finish_cnt;
57 /* Timer to regularily empty the flush queues */
58 struct timer_list fq_timer;
59 /* 1 when timer is active, 0 when not */
60 atomic_t fq_timer_on;
61 };
fdbe574e
RM
62 /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
63 dma_addr_t msi_iova;
64 };
65 struct list_head msi_page_list;
2da274cd
ZL
66
67 /* Domain for flush queue callback; NULL if flush queue not in use */
68 struct iommu_domain *fq_domain;
ac9a5d52 69 struct mutex mutex;
44bb7e24
RM
70};
71
a8e8af35 72static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled);
af3e9579 73bool iommu_dma_forcedac __read_mostly;
3542dcb1
RM
74
75static int __init iommu_dma_forcedac_setup(char *str)
76{
77 int ret = kstrtobool(str, &iommu_dma_forcedac);
78
79 if (!ret && iommu_dma_forcedac)
80 pr_info("Forcing DAC for PCI devices\n");
81 return ret;
82}
83early_param("iommu.forcedac", iommu_dma_forcedac_setup);
a8e8af35 84
a17e3026
RM
85/* Number of entries per flush queue */
86#define IOVA_FQ_SIZE 256
87
88/* Timeout (in ms) after which entries are flushed from the queue */
89#define IOVA_FQ_TIMEOUT 10
90
91/* Flush queue entry for deferred flushing */
92struct iova_fq_entry {
93 unsigned long iova_pfn;
94 unsigned long pages;
95 struct list_head freelist;
96 u64 counter; /* Flush counter when this entry was added */
97};
98
99/* Per-CPU flush queue structure */
100struct iova_fq {
101 struct iova_fq_entry entries[IOVA_FQ_SIZE];
102 unsigned int head, tail;
103 spinlock_t lock;
104};
105
f7f07484
RM
106#define fq_ring_for_each(i, fq) \
107 for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) % IOVA_FQ_SIZE)
108
109static inline bool fq_full(struct iova_fq *fq)
110{
111 assert_spin_locked(&fq->lock);
112 return (((fq->tail + 1) % IOVA_FQ_SIZE) == fq->head);
113}
114
a17e3026 115static inline unsigned int fq_ring_add(struct iova_fq *fq)
f7f07484 116{
a17e3026 117 unsigned int idx = fq->tail;
f7f07484
RM
118
119 assert_spin_locked(&fq->lock);
120
121 fq->tail = (idx + 1) % IOVA_FQ_SIZE;
122
123 return idx;
124}
125
a17e3026 126static void fq_ring_free(struct iommu_dma_cookie *cookie, struct iova_fq *fq)
f7f07484 127{
a17e3026
RM
128 u64 counter = atomic64_read(&cookie->fq_flush_finish_cnt);
129 unsigned int idx;
f7f07484
RM
130
131 assert_spin_locked(&fq->lock);
132
133 fq_ring_for_each(idx, fq) {
134
135 if (fq->entries[idx].counter >= counter)
136 break;
137
138 put_pages_list(&fq->entries[idx].freelist);
a17e3026 139 free_iova_fast(&cookie->iovad,
f7f07484
RM
140 fq->entries[idx].iova_pfn,
141 fq->entries[idx].pages);
142
143 fq->head = (fq->head + 1) % IOVA_FQ_SIZE;
144 }
145}
146
a17e3026 147static void fq_flush_iotlb(struct iommu_dma_cookie *cookie)
f7f07484 148{
a17e3026
RM
149 atomic64_inc(&cookie->fq_flush_start_cnt);
150 cookie->fq_domain->ops->flush_iotlb_all(cookie->fq_domain);
151 atomic64_inc(&cookie->fq_flush_finish_cnt);
f7f07484
RM
152}
153
154static void fq_flush_timeout(struct timer_list *t)
155{
a17e3026 156 struct iommu_dma_cookie *cookie = from_timer(cookie, t, fq_timer);
f7f07484
RM
157 int cpu;
158
a17e3026
RM
159 atomic_set(&cookie->fq_timer_on, 0);
160 fq_flush_iotlb(cookie);
f7f07484
RM
161
162 for_each_possible_cpu(cpu) {
163 unsigned long flags;
164 struct iova_fq *fq;
165
a17e3026 166 fq = per_cpu_ptr(cookie->fq, cpu);
f7f07484 167 spin_lock_irqsave(&fq->lock, flags);
a17e3026 168 fq_ring_free(cookie, fq);
f7f07484
RM
169 spin_unlock_irqrestore(&fq->lock, flags);
170 }
171}
172
a17e3026 173static void queue_iova(struct iommu_dma_cookie *cookie,
f7f07484
RM
174 unsigned long pfn, unsigned long pages,
175 struct list_head *freelist)
176{
177 struct iova_fq *fq;
178 unsigned long flags;
a17e3026 179 unsigned int idx;
f7f07484
RM
180
181 /*
182 * Order against the IOMMU driver's pagetable update from unmapping
a17e3026 183 * @pte, to guarantee that fq_flush_iotlb() observes that if called
f7f07484
RM
184 * from a different CPU before we release the lock below. Full barrier
185 * so it also pairs with iommu_dma_init_fq() to avoid seeing partially
186 * written fq state here.
187 */
188 smp_mb();
189
a17e3026 190 fq = raw_cpu_ptr(cookie->fq);
f7f07484
RM
191 spin_lock_irqsave(&fq->lock, flags);
192
193 /*
194 * First remove all entries from the flush queue that have already been
195 * flushed out on another CPU. This makes the fq_full() check below less
196 * likely to be true.
197 */
a17e3026 198 fq_ring_free(cookie, fq);
f7f07484
RM
199
200 if (fq_full(fq)) {
a17e3026
RM
201 fq_flush_iotlb(cookie);
202 fq_ring_free(cookie, fq);
f7f07484
RM
203 }
204
205 idx = fq_ring_add(fq);
206
207 fq->entries[idx].iova_pfn = pfn;
208 fq->entries[idx].pages = pages;
a17e3026 209 fq->entries[idx].counter = atomic64_read(&cookie->fq_flush_start_cnt);
f7f07484
RM
210 list_splice(freelist, &fq->entries[idx].freelist);
211
212 spin_unlock_irqrestore(&fq->lock, flags);
213
214 /* Avoid false sharing as much as possible. */
a17e3026
RM
215 if (!atomic_read(&cookie->fq_timer_on) &&
216 !atomic_xchg(&cookie->fq_timer_on, 1))
217 mod_timer(&cookie->fq_timer,
f7f07484
RM
218 jiffies + msecs_to_jiffies(IOVA_FQ_TIMEOUT));
219}
220
a17e3026 221static void iommu_dma_free_fq(struct iommu_dma_cookie *cookie)
f7f07484
RM
222{
223 int cpu, idx;
224
a17e3026 225 if (!cookie->fq)
f7f07484
RM
226 return;
227
a17e3026
RM
228 del_timer_sync(&cookie->fq_timer);
229 /* The IOVAs will be torn down separately, so just free our queued pages */
f7f07484 230 for_each_possible_cpu(cpu) {
a17e3026 231 struct iova_fq *fq = per_cpu_ptr(cookie->fq, cpu);
f7f07484
RM
232
233 fq_ring_for_each(idx, fq)
234 put_pages_list(&fq->entries[idx].freelist);
235 }
236
a17e3026 237 free_percpu(cookie->fq);
f7f07484
RM
238}
239
a17e3026
RM
240/* sysfs updates are serialised by the mutex of the group owning @domain */
241int iommu_dma_init_fq(struct iommu_domain *domain)
f7f07484 242{
a17e3026 243 struct iommu_dma_cookie *cookie = domain->iova_cookie;
f7f07484
RM
244 struct iova_fq __percpu *queue;
245 int i, cpu;
246
a17e3026
RM
247 if (cookie->fq_domain)
248 return 0;
249
250 atomic64_set(&cookie->fq_flush_start_cnt, 0);
251 atomic64_set(&cookie->fq_flush_finish_cnt, 0);
f7f07484
RM
252
253 queue = alloc_percpu(struct iova_fq);
a17e3026
RM
254 if (!queue) {
255 pr_warn("iova flush queue initialization failed\n");
f7f07484 256 return -ENOMEM;
a17e3026 257 }
f7f07484
RM
258
259 for_each_possible_cpu(cpu) {
260 struct iova_fq *fq = per_cpu_ptr(queue, cpu);
261
262 fq->head = 0;
263 fq->tail = 0;
264
265 spin_lock_init(&fq->lock);
266
267 for (i = 0; i < IOVA_FQ_SIZE; i++)
268 INIT_LIST_HEAD(&fq->entries[i].freelist);
269 }
270
a17e3026 271 cookie->fq = queue;
f7f07484 272
a17e3026
RM
273 timer_setup(&cookie->fq_timer, fq_flush_timeout, 0);
274 atomic_set(&cookie->fq_timer_on, 0);
275 /*
276 * Prevent incomplete fq state being observable. Pairs with path from
277 * __iommu_dma_unmap() through iommu_dma_free_iova() to queue_iova()
278 */
279 smp_wmb();
280 WRITE_ONCE(cookie->fq_domain, domain);
f7f07484
RM
281 return 0;
282}
283
fdbe574e
RM
284static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
285{
286 if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
287 return cookie->iovad.granule;
288 return PAGE_SIZE;
289}
290
fdbe574e
RM
291static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
292{
293 struct iommu_dma_cookie *cookie;
294
295 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
296 if (cookie) {
fdbe574e
RM
297 INIT_LIST_HEAD(&cookie->msi_page_list);
298 cookie->type = type;
299 }
300 return cookie;
44bb7e24
RM
301}
302
0db2e5d1
RM
303/**
304 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
305 * @domain: IOMMU domain to prepare for DMA-API usage
0db2e5d1
RM
306 */
307int iommu_get_dma_cookie(struct iommu_domain *domain)
fdbe574e
RM
308{
309 if (domain->iova_cookie)
310 return -EEXIST;
311
312 domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
313 if (!domain->iova_cookie)
314 return -ENOMEM;
315
ac9a5d52 316 mutex_init(&domain->iova_cookie->mutex);
fdbe574e
RM
317 return 0;
318}
fdbe574e
RM
319
320/**
321 * iommu_get_msi_cookie - Acquire just MSI remapping resources
322 * @domain: IOMMU domain to prepare
323 * @base: Start address of IOVA region for MSI mappings
324 *
325 * Users who manage their own IOVA allocation and do not want DMA API support,
326 * but would still like to take advantage of automatic MSI remapping, can use
327 * this to initialise their own domain appropriately. Users should reserve a
328 * contiguous IOVA region, starting at @base, large enough to accommodate the
329 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
330 * used by the devices attached to @domain.
331 */
332int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
0db2e5d1 333{
44bb7e24 334 struct iommu_dma_cookie *cookie;
0db2e5d1 335
fdbe574e
RM
336 if (domain->type != IOMMU_DOMAIN_UNMANAGED)
337 return -EINVAL;
338
0db2e5d1
RM
339 if (domain->iova_cookie)
340 return -EEXIST;
341
fdbe574e 342 cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
44bb7e24
RM
343 if (!cookie)
344 return -ENOMEM;
0db2e5d1 345
fdbe574e 346 cookie->msi_iova = base;
44bb7e24
RM
347 domain->iova_cookie = cookie;
348 return 0;
0db2e5d1 349}
fdbe574e 350EXPORT_SYMBOL(iommu_get_msi_cookie);
0db2e5d1
RM
351
352/**
353 * iommu_put_dma_cookie - Release a domain's DMA mapping resources
fdbe574e
RM
354 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
355 * iommu_get_msi_cookie()
0db2e5d1
RM
356 */
357void iommu_put_dma_cookie(struct iommu_domain *domain)
358{
44bb7e24
RM
359 struct iommu_dma_cookie *cookie = domain->iova_cookie;
360 struct iommu_dma_msi_page *msi, *tmp;
0db2e5d1 361
44bb7e24 362 if (!cookie)
0db2e5d1
RM
363 return;
364
f7f07484 365 if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule) {
a17e3026 366 iommu_dma_free_fq(cookie);
44bb7e24 367 put_iova_domain(&cookie->iovad);
f7f07484 368 }
44bb7e24
RM
369
370 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
371 list_del(&msi->list);
372 kfree(msi);
373 }
374 kfree(cookie);
0db2e5d1
RM
375 domain->iova_cookie = NULL;
376}
0db2e5d1 377
273df963
RM
378/**
379 * iommu_dma_get_resv_regions - Reserved region driver helper
380 * @dev: Device from iommu_get_resv_regions()
381 * @list: Reserved region list from iommu_get_resv_regions()
382 *
383 * IOMMU drivers can use this to implement their .get_resv_regions callback
cd2c9fcf
SK
384 * for general non-IOMMU-specific reservations. Currently, this covers GICv3
385 * ITS region reservation on ACPI based ARM platforms that may require HW MSI
386 * reservation.
273df963
RM
387 */
388void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
fade1ec0 389{
fade1ec0 390
98cc4f71 391 if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
55be25b8 392 iort_iommu_get_resv_regions(dev, list);
273df963 393
fade1ec0 394}
273df963 395EXPORT_SYMBOL(iommu_dma_get_resv_regions);
fade1ec0 396
7c1b058c
RM
397static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
398 phys_addr_t start, phys_addr_t end)
399{
400 struct iova_domain *iovad = &cookie->iovad;
401 struct iommu_dma_msi_page *msi_page;
402 int i, num_pages;
403
404 start -= iova_offset(iovad, start);
405 num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
406
7c1b058c 407 for (i = 0; i < num_pages; i++) {
65ac74f1
MZ
408 msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL);
409 if (!msi_page)
410 return -ENOMEM;
411
412 msi_page->phys = start;
413 msi_page->iova = start;
414 INIT_LIST_HEAD(&msi_page->list);
415 list_add(&msi_page->list, &cookie->msi_page_list);
7c1b058c
RM
416 start += iovad->granule;
417 }
418
419 return 0;
420}
421
b8397a8f
RM
422static int iommu_dma_ranges_sort(void *priv, const struct list_head *a,
423 const struct list_head *b)
424{
425 struct resource_entry *res_a = list_entry(a, typeof(*res_a), node);
426 struct resource_entry *res_b = list_entry(b, typeof(*res_b), node);
427
428 return res_a->res->start > res_b->res->start;
429}
430
aadad097 431static int iova_reserve_pci_windows(struct pci_dev *dev,
cd2c9fcf
SK
432 struct iova_domain *iovad)
433{
434 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
435 struct resource_entry *window;
436 unsigned long lo, hi;
aadad097 437 phys_addr_t start = 0, end;
cd2c9fcf
SK
438
439 resource_list_for_each_entry(window, &bridge->windows) {
440 if (resource_type(window->res) != IORESOURCE_MEM)
441 continue;
442
443 lo = iova_pfn(iovad, window->res->start - window->offset);
444 hi = iova_pfn(iovad, window->res->end - window->offset);
445 reserve_iova(iovad, lo, hi);
446 }
aadad097
SM
447
448 /* Get reserved DMA windows from host bridge */
b8397a8f 449 list_sort(NULL, &bridge->dma_ranges, iommu_dma_ranges_sort);
aadad097
SM
450 resource_list_for_each_entry(window, &bridge->dma_ranges) {
451 end = window->res->start - window->offset;
452resv_iova:
453 if (end > start) {
454 lo = iova_pfn(iovad, start);
455 hi = iova_pfn(iovad, end);
456 reserve_iova(iovad, lo, hi);
571f3160 457 } else if (end < start) {
b8397a8f 458 /* DMA ranges should be non-overlapping */
571f3160 459 dev_err(&dev->dev,
7154cbd3
JR
460 "Failed to reserve IOVA [%pa-%pa]\n",
461 &start, &end);
aadad097
SM
462 return -EINVAL;
463 }
464
465 start = window->res->end - window->offset + 1;
466 /* If window is last entry */
467 if (window->node.next == &bridge->dma_ranges &&
29fcea8c
AB
468 end != ~(phys_addr_t)0) {
469 end = ~(phys_addr_t)0;
aadad097
SM
470 goto resv_iova;
471 }
472 }
473
474 return 0;
cd2c9fcf
SK
475}
476
7c1b058c
RM
477static int iova_reserve_iommu_regions(struct device *dev,
478 struct iommu_domain *domain)
479{
480 struct iommu_dma_cookie *cookie = domain->iova_cookie;
481 struct iova_domain *iovad = &cookie->iovad;
482 struct iommu_resv_region *region;
483 LIST_HEAD(resv_regions);
484 int ret = 0;
485
aadad097
SM
486 if (dev_is_pci(dev)) {
487 ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
488 if (ret)
489 return ret;
490 }
cd2c9fcf 491
7c1b058c
RM
492 iommu_get_resv_regions(dev, &resv_regions);
493 list_for_each_entry(region, &resv_regions, list) {
494 unsigned long lo, hi;
495
496 /* We ARE the software that manages these! */
497 if (region->type == IOMMU_RESV_SW_MSI)
498 continue;
499
500 lo = iova_pfn(iovad, region->start);
501 hi = iova_pfn(iovad, region->start + region->length - 1);
502 reserve_iova(iovad, lo, hi);
503
504 if (region->type == IOMMU_RESV_MSI)
505 ret = cookie_init_hw_msi_region(cookie, region->start,
506 region->start + region->length);
507 if (ret)
508 break;
509 }
510 iommu_put_resv_regions(dev, &resv_regions);
511
512 return ret;
513}
514
82c3cefb
LB
515static bool dev_is_untrusted(struct device *dev)
516{
517 return dev_is_pci(dev) && to_pci_dev(dev)->untrusted;
518}
519
2e727bff
DS
520static bool dev_use_swiotlb(struct device *dev)
521{
522 return IS_ENABLED(CONFIG_SWIOTLB) && dev_is_untrusted(dev);
523}
524
0db2e5d1
RM
525/**
526 * iommu_dma_init_domain - Initialise a DMA mapping domain
527 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
528 * @base: IOVA at which the mappable address space starts
ac6d7046 529 * @limit: Last address of the IOVA space
fade1ec0 530 * @dev: Device the domain is being initialised for
0db2e5d1 531 *
ac6d7046 532 * @base and @limit + 1 should be exact multiples of IOMMU page granularity to
0db2e5d1
RM
533 * avoid rounding surprises. If necessary, we reserve the page at address 0
534 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
535 * any change which could make prior IOVAs invalid will fail.
536 */
06d60728 537static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
ac6d7046 538 dma_addr_t limit, struct device *dev)
0db2e5d1 539{
fdbe574e 540 struct iommu_dma_cookie *cookie = domain->iova_cookie;
c61a4633 541 unsigned long order, base_pfn;
6b0c54e7 542 struct iova_domain *iovad;
32e92d9f 543 int ret;
0db2e5d1 544
fdbe574e
RM
545 if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
546 return -EINVAL;
0db2e5d1 547
6b0c54e7
YL
548 iovad = &cookie->iovad;
549
0db2e5d1 550 /* Use the smallest supported page size for IOVA granularity */
d16e0faa 551 order = __ffs(domain->pgsize_bitmap);
0db2e5d1 552 base_pfn = max_t(unsigned long, 1, base >> order);
0db2e5d1
RM
553
554 /* Check the domain allows at least some access to the device... */
555 if (domain->geometry.force_aperture) {
556 if (base > domain->geometry.aperture_end ||
ac6d7046 557 limit < domain->geometry.aperture_start) {
0db2e5d1
RM
558 pr_warn("specified DMA range outside IOMMU capability\n");
559 return -EFAULT;
560 }
561 /* ...then finally give it a kicking to make sure it fits */
562 base_pfn = max_t(unsigned long, base_pfn,
563 domain->geometry.aperture_start >> order);
0db2e5d1
RM
564 }
565
f51d7bb7 566 /* start_pfn is always nonzero for an already-initialised domain */
ac9a5d52 567 mutex_lock(&cookie->mutex);
0db2e5d1
RM
568 if (iovad->start_pfn) {
569 if (1UL << order != iovad->granule ||
f51d7bb7 570 base_pfn != iovad->start_pfn) {
0db2e5d1 571 pr_warn("Incompatible range for DMA domain\n");
ac9a5d52
YW
572 ret = -EFAULT;
573 goto done_unlock;
0db2e5d1 574 }
7c1b058c 575
ac9a5d52
YW
576 ret = 0;
577 goto done_unlock;
0db2e5d1 578 }
7c1b058c 579
aa3ac946 580 init_iova_domain(iovad, 1UL << order, base_pfn);
32e92d9f
JG
581 ret = iova_domain_init_rcaches(iovad);
582 if (ret)
ac9a5d52 583 goto done_unlock;
2da274cd 584
c208916f 585 /* If the FQ fails we can simply fall back to strict mode */
452e69b5
RM
586 if (domain->type == IOMMU_DOMAIN_DMA_FQ && iommu_dma_init_fq(domain))
587 domain->type = IOMMU_DOMAIN_DMA;
7c1b058c 588
ac9a5d52
YW
589 ret = iova_reserve_iommu_regions(dev, domain);
590
591done_unlock:
592 mutex_unlock(&cookie->mutex);
593 return ret;
0db2e5d1 594}
0db2e5d1
RM
595
596/**
737c85ca
MH
597 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
598 * page flags.
0db2e5d1
RM
599 * @dir: Direction of DMA transfer
600 * @coherent: Is the DMA master cache-coherent?
737c85ca 601 * @attrs: DMA attributes for the mapping
0db2e5d1
RM
602 *
603 * Return: corresponding IOMMU API page protection flags
604 */
06d60728 605static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
737c85ca 606 unsigned long attrs)
0db2e5d1
RM
607{
608 int prot = coherent ? IOMMU_CACHE : 0;
609
737c85ca
MH
610 if (attrs & DMA_ATTR_PRIVILEGED)
611 prot |= IOMMU_PRIV;
612
0db2e5d1
RM
613 switch (dir) {
614 case DMA_BIDIRECTIONAL:
615 return prot | IOMMU_READ | IOMMU_WRITE;
616 case DMA_TO_DEVICE:
617 return prot | IOMMU_READ;
618 case DMA_FROM_DEVICE:
619 return prot | IOMMU_WRITE;
620 default:
621 return 0;
622 }
623}
624
842fe519 625static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
bd036d2f 626 size_t size, u64 dma_limit, struct device *dev)
0db2e5d1 627{
a44e6657
RM
628 struct iommu_dma_cookie *cookie = domain->iova_cookie;
629 struct iova_domain *iovad = &cookie->iovad;
bb65a64c 630 unsigned long shift, iova_len, iova = 0;
0db2e5d1 631
a44e6657
RM
632 if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
633 cookie->msi_iova += size;
634 return cookie->msi_iova - size;
635 }
636
637 shift = iova_shift(iovad);
638 iova_len = size >> shift;
639
a7ba70f1 640 dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit);
03bfdc31 641
c987ff0d 642 if (domain->geometry.force_aperture)
bd036d2f 643 dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end);
122fac03
RM
644
645 /* Try to get PCI devices a SAC address */
3542dcb1 646 if (dma_limit > DMA_BIT_MASK(32) && !iommu_dma_forcedac && dev_is_pci(dev))
538d5b33
TN
647 iova = alloc_iova_fast(iovad, iova_len,
648 DMA_BIT_MASK(32) >> shift, false);
bb65a64c 649
122fac03 650 if (!iova)
538d5b33
TN
651 iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
652 true);
122fac03 653
bb65a64c 654 return (dma_addr_t)iova << shift;
0db2e5d1
RM
655}
656
842fe519 657static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
452e69b5 658 dma_addr_t iova, size_t size, struct iommu_iotlb_gather *gather)
0db2e5d1 659{
842fe519 660 struct iova_domain *iovad = &cookie->iovad;
0db2e5d1 661
a44e6657 662 /* The MSI case is only ever cleaning up its most recent allocation */
bb65a64c 663 if (cookie->type == IOMMU_DMA_MSI_COOKIE)
a44e6657 664 cookie->msi_iova -= size;
452e69b5 665 else if (gather && gather->queued)
a17e3026 666 queue_iova(cookie, iova_pfn(iovad, iova),
2a2b8eaa 667 size >> iova_shift(iovad),
87f60cc6 668 &gather->freelist);
bb65a64c 669 else
1cc896ed
RM
670 free_iova_fast(iovad, iova_pfn(iovad, iova),
671 size >> iova_shift(iovad));
842fe519
RM
672}
673
b61d271e 674static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
842fe519
RM
675 size_t size)
676{
b61d271e 677 struct iommu_domain *domain = iommu_get_dma_domain(dev);
a44e6657
RM
678 struct iommu_dma_cookie *cookie = domain->iova_cookie;
679 struct iova_domain *iovad = &cookie->iovad;
842fe519 680 size_t iova_off = iova_offset(iovad, dma_addr);
a7d20dc1
WD
681 struct iommu_iotlb_gather iotlb_gather;
682 size_t unmapped;
842fe519
RM
683
684 dma_addr -= iova_off;
685 size = iova_align(iovad, size + iova_off);
a7d20dc1 686 iommu_iotlb_gather_init(&iotlb_gather);
452e69b5 687 iotlb_gather.queued = READ_ONCE(cookie->fq_domain);
a7d20dc1
WD
688
689 unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather);
690 WARN_ON(unmapped != size);
842fe519 691
452e69b5 692 if (!iotlb_gather.queued)
aae4c8e2 693 iommu_iotlb_sync(domain, &iotlb_gather);
452e69b5 694 iommu_dma_free_iova(cookie, dma_addr, size, &iotlb_gather);
0db2e5d1
RM
695}
696
92aec09c 697static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
bd036d2f 698 size_t size, int prot, u64 dma_mask)
92aec09c 699{
b61d271e 700 struct iommu_domain *domain = iommu_get_dma_domain(dev);
92aec09c 701 struct iommu_dma_cookie *cookie = domain->iova_cookie;
8af23fad
RM
702 struct iova_domain *iovad = &cookie->iovad;
703 size_t iova_off = iova_offset(iovad, phys);
92aec09c
CH
704 dma_addr_t iova;
705
a8e8af35 706 if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
3ab65729 707 iommu_deferred_attach(dev, domain))
795bbbb9
TM
708 return DMA_MAPPING_ERROR;
709
8af23fad 710 size = iova_align(iovad, size + iova_off);
92aec09c 711
6e235020 712 iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev);
92aec09c
CH
713 if (!iova)
714 return DMA_MAPPING_ERROR;
715
781ca2de 716 if (iommu_map_atomic(domain, iova, phys - iova_off, size, prot)) {
2a2b8eaa 717 iommu_dma_free_iova(cookie, iova, size, NULL);
92aec09c
CH
718 return DMA_MAPPING_ERROR;
719 }
720 return iova + iova_off;
721}
722
0db2e5d1
RM
723static void __iommu_dma_free_pages(struct page **pages, int count)
724{
725 while (count--)
726 __free_page(pages[count]);
727 kvfree(pages);
728}
729
c4b17afb
GK
730static struct page **__iommu_dma_alloc_pages(struct device *dev,
731 unsigned int count, unsigned long order_mask, gfp_t gfp)
0db2e5d1
RM
732{
733 struct page **pages;
c4b17afb 734 unsigned int i = 0, nid = dev_to_node(dev);
3b6b7e19
RM
735
736 order_mask &= (2U << MAX_ORDER) - 1;
737 if (!order_mask)
738 return NULL;
0db2e5d1 739
ab6f4b00 740 pages = kvcalloc(count, sizeof(*pages), GFP_KERNEL);
0db2e5d1
RM
741 if (!pages)
742 return NULL;
743
744 /* IOMMU can map any pages, so himem can also be used here */
745 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
746
747 while (count) {
748 struct page *page = NULL;
3b6b7e19 749 unsigned int order_size;
0db2e5d1
RM
750
751 /*
752 * Higher-order allocations are a convenience rather
753 * than a necessity, hence using __GFP_NORETRY until
3b6b7e19 754 * falling back to minimum-order allocations.
0db2e5d1 755 */
3b6b7e19
RM
756 for (order_mask &= (2U << __fls(count)) - 1;
757 order_mask; order_mask &= ~order_size) {
758 unsigned int order = __fls(order_mask);
c4b17afb 759 gfp_t alloc_flags = gfp;
3b6b7e19
RM
760
761 order_size = 1U << order;
c4b17afb
GK
762 if (order_mask > order_size)
763 alloc_flags |= __GFP_NORETRY;
764 page = alloc_pages_node(nid, alloc_flags, order);
0db2e5d1
RM
765 if (!page)
766 continue;
4604393c 767 if (order)
0db2e5d1 768 split_page(page, order);
4604393c 769 break;
0db2e5d1 770 }
0db2e5d1
RM
771 if (!page) {
772 __iommu_dma_free_pages(pages, i);
773 return NULL;
774 }
3b6b7e19
RM
775 count -= order_size;
776 while (order_size--)
0db2e5d1
RM
777 pages[i++] = page++;
778 }
779 return pages;
780}
781
8230ce9a
CH
782/*
783 * If size is less than PAGE_SIZE, then a full CPU page will be allocated,
0db2e5d1 784 * but an IOMMU which supports smaller pages might not map the whole thing.
0db2e5d1 785 */
8230ce9a
CH
786static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev,
787 size_t size, struct sg_table *sgt, gfp_t gfp, pgprot_t prot,
e8d39a90 788 unsigned long attrs)
0db2e5d1 789{
43c5bf11 790 struct iommu_domain *domain = iommu_get_dma_domain(dev);
842fe519
RM
791 struct iommu_dma_cookie *cookie = domain->iova_cookie;
792 struct iova_domain *iovad = &cookie->iovad;
21b95aaf
CH
793 bool coherent = dev_is_dma_coherent(dev);
794 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
21b95aaf 795 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
0db2e5d1 796 struct page **pages;
842fe519 797 dma_addr_t iova;
a3884774 798 ssize_t ret;
0db2e5d1 799
a8e8af35 800 if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
3ab65729 801 iommu_deferred_attach(dev, domain))
795bbbb9
TM
802 return NULL;
803
3b6b7e19
RM
804 min_size = alloc_sizes & -alloc_sizes;
805 if (min_size < PAGE_SIZE) {
806 min_size = PAGE_SIZE;
807 alloc_sizes |= PAGE_SIZE;
808 } else {
809 size = ALIGN(size, min_size);
810 }
00085f1e 811 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
3b6b7e19
RM
812 alloc_sizes = min_size;
813
814 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
c4b17afb
GK
815 pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
816 gfp);
0db2e5d1
RM
817 if (!pages)
818 return NULL;
819
842fe519
RM
820 size = iova_align(iovad, size);
821 iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
0db2e5d1
RM
822 if (!iova)
823 goto out_free_pages;
824
8230ce9a 825 if (sg_alloc_table_from_pages(sgt, pages, count, 0, size, GFP_KERNEL))
0db2e5d1
RM
826 goto out_free_iova;
827
21b95aaf 828 if (!(ioprot & IOMMU_CACHE)) {
23f88e0a
CH
829 struct scatterlist *sg;
830 int i;
831
8230ce9a 832 for_each_sg(sgt->sgl, sg, sgt->orig_nents, i)
23f88e0a 833 arch_dma_prep_coherent(sg_page(sg), sg->length);
0db2e5d1
RM
834 }
835
a3884774
YW
836 ret = iommu_map_sg_atomic(domain, iova, sgt->sgl, sgt->orig_nents, ioprot);
837 if (ret < 0 || ret < size)
0db2e5d1
RM
838 goto out_free_sg;
839
8230ce9a 840 sgt->sgl->dma_address = iova;
e817ee5f 841 sgt->sgl->dma_length = size;
8230ce9a
CH
842 return pages;
843
844out_free_sg:
845 sg_free_table(sgt);
846out_free_iova:
847 iommu_dma_free_iova(cookie, iova, size, NULL);
848out_free_pages:
849 __iommu_dma_free_pages(pages, count);
850 return NULL;
851}
852
853static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
854 dma_addr_t *dma_handle, gfp_t gfp, pgprot_t prot,
855 unsigned long attrs)
856{
857 struct page **pages;
858 struct sg_table sgt;
859 void *vaddr;
860
861 pages = __iommu_dma_alloc_noncontiguous(dev, size, &sgt, gfp, prot,
862 attrs);
863 if (!pages)
864 return NULL;
865 *dma_handle = sgt.sgl->dma_address;
866 sg_free_table(&sgt);
51231740 867 vaddr = dma_common_pages_remap(pages, size, prot,
21b95aaf
CH
868 __builtin_return_address(0));
869 if (!vaddr)
870 goto out_unmap;
21b95aaf 871 return vaddr;
0db2e5d1 872
21b95aaf 873out_unmap:
8230ce9a
CH
874 __iommu_dma_unmap(dev, *dma_handle, size);
875 __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
0db2e5d1
RM
876 return NULL;
877}
878
e817ee5f
CH
879static struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev,
880 size_t size, enum dma_data_direction dir, gfp_t gfp,
881 unsigned long attrs)
882{
883 struct dma_sgt_handle *sh;
884
885 sh = kmalloc(sizeof(*sh), gfp);
886 if (!sh)
887 return NULL;
888
889 sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, &sh->sgt, gfp,
890 PAGE_KERNEL, attrs);
891 if (!sh->pages) {
892 kfree(sh);
893 return NULL;
894 }
895 return &sh->sgt;
896}
897
898static void iommu_dma_free_noncontiguous(struct device *dev, size_t size,
899 struct sg_table *sgt, enum dma_data_direction dir)
900{
901 struct dma_sgt_handle *sh = sgt_handle(sgt);
902
903 __iommu_dma_unmap(dev, sgt->sgl->dma_address, size);
904 __iommu_dma_free_pages(sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
905 sg_free_table(&sh->sgt);
0fbea680 906 kfree(sh);
e817ee5f 907}
e817ee5f 908
06d60728
CH
909static void iommu_dma_sync_single_for_cpu(struct device *dev,
910 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
0db2e5d1 911{
06d60728 912 phys_addr_t phys;
0db2e5d1 913
2e727bff 914 if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev))
06d60728 915 return;
1cc896ed 916
06d60728 917 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
82612d66
TM
918 if (!dev_is_dma_coherent(dev))
919 arch_sync_dma_for_cpu(phys, size, dir);
920
7fd856aa 921 if (is_swiotlb_buffer(dev, phys))
80808d27 922 swiotlb_sync_single_for_cpu(dev, phys, size, dir);
0db2e5d1 923}
0db2e5d1 924
06d60728
CH
925static void iommu_dma_sync_single_for_device(struct device *dev,
926 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
0db2e5d1 927{
06d60728 928 phys_addr_t phys;
0db2e5d1 929
2e727bff 930 if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev))
06d60728 931 return;
1cc896ed 932
06d60728 933 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
7fd856aa 934 if (is_swiotlb_buffer(dev, phys))
80808d27 935 swiotlb_sync_single_for_device(dev, phys, size, dir);
82612d66
TM
936
937 if (!dev_is_dma_coherent(dev))
938 arch_sync_dma_for_device(phys, size, dir);
06d60728 939}
0db2e5d1 940
06d60728
CH
941static void iommu_dma_sync_sg_for_cpu(struct device *dev,
942 struct scatterlist *sgl, int nelems,
943 enum dma_data_direction dir)
944{
945 struct scatterlist *sg;
946 int i;
947
2e727bff 948 if (dev_use_swiotlb(dev))
08ae5d4a
DS
949 for_each_sg(sgl, sg, nelems, i)
950 iommu_dma_sync_single_for_cpu(dev, sg_dma_address(sg),
951 sg->length, dir);
952 else if (!dev_is_dma_coherent(dev))
953 for_each_sg(sgl, sg, nelems, i)
82612d66 954 arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
06d60728
CH
955}
956
957static void iommu_dma_sync_sg_for_device(struct device *dev,
958 struct scatterlist *sgl, int nelems,
959 enum dma_data_direction dir)
960{
961 struct scatterlist *sg;
962 int i;
963
2e727bff 964 if (dev_use_swiotlb(dev))
08ae5d4a
DS
965 for_each_sg(sgl, sg, nelems, i)
966 iommu_dma_sync_single_for_device(dev,
967 sg_dma_address(sg),
968 sg->length, dir);
969 else if (!dev_is_dma_coherent(dev))
970 for_each_sg(sgl, sg, nelems, i)
82612d66 971 arch_sync_dma_for_device(sg_phys(sg), sg->length, dir);
0db2e5d1
RM
972}
973
06d60728
CH
974static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
975 unsigned long offset, size_t size, enum dma_data_direction dir,
976 unsigned long attrs)
51f8cc9e 977{
06d60728
CH
978 phys_addr_t phys = page_to_phys(page) + offset;
979 bool coherent = dev_is_dma_coherent(dev);
9b49bbc2
DS
980 int prot = dma_info_to_prot(dir, coherent, attrs);
981 struct iommu_domain *domain = iommu_get_dma_domain(dev);
982 struct iommu_dma_cookie *cookie = domain->iova_cookie;
983 struct iova_domain *iovad = &cookie->iovad;
9b49bbc2
DS
984 dma_addr_t iova, dma_mask = dma_get_mask(dev);
985
986 /*
987 * If both the physical buffer start address and size are
988 * page aligned, we don't need to use a bounce page.
989 */
2e727bff 990 if (dev_use_swiotlb(dev) && iova_offset(iovad, phys | size)) {
9b49bbc2 991 void *padding_start;
2cbc61a1 992 size_t padding_size, aligned_size;
9b49bbc2 993
f316ba0a
ML
994 if (!is_swiotlb_active(dev)) {
995 dev_warn_once(dev, "DMA bounce buffers are inactive, unable to map unaligned transaction.\n");
996 return DMA_MAPPING_ERROR;
997 }
998
9b49bbc2 999 aligned_size = iova_align(iovad, size);
e81e99ba
DS
1000 phys = swiotlb_tbl_map_single(dev, phys, size, aligned_size,
1001 iova_mask(iovad), dir, attrs);
9b49bbc2
DS
1002
1003 if (phys == DMA_MAPPING_ERROR)
1004 return DMA_MAPPING_ERROR;
06d60728 1005
9b49bbc2
DS
1006 /* Cleanup the padding area. */
1007 padding_start = phys_to_virt(phys);
1008 padding_size = aligned_size;
1009
1010 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
1011 (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) {
1012 padding_start += size;
1013 padding_size -= size;
1014 }
1015
1016 memset(padding_start, 0, padding_size);
1017 }
06d60728 1018
9b49bbc2 1019 if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
56e35f9c 1020 arch_sync_dma_for_device(phys, size, dir);
9b49bbc2 1021
2cbc61a1 1022 iova = __iommu_dma_map(dev, phys, size, prot, dma_mask);
9b49bbc2
DS
1023 if (iova == DMA_MAPPING_ERROR && is_swiotlb_buffer(dev, phys))
1024 swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
1025 return iova;
51f8cc9e
RM
1026}
1027
06d60728
CH
1028static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
1029 size_t size, enum dma_data_direction dir, unsigned long attrs)
0db2e5d1 1030{
9b49bbc2
DS
1031 struct iommu_domain *domain = iommu_get_dma_domain(dev);
1032 phys_addr_t phys;
1033
1034 phys = iommu_iova_to_phys(domain, dma_handle);
1035 if (WARN_ON(!phys))
1036 return;
1037
1038 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && !dev_is_dma_coherent(dev))
1039 arch_sync_dma_for_cpu(phys, size, dir);
1040
1041 __iommu_dma_unmap(dev, dma_handle, size);
1042
1043 if (unlikely(is_swiotlb_buffer(dev, phys)))
1044 swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
0db2e5d1
RM
1045}
1046
1047/*
1048 * Prepare a successfully-mapped scatterlist to give back to the caller.
809eac54
RM
1049 *
1050 * At this point the segments are already laid out by iommu_dma_map_sg() to
1051 * avoid individually crossing any boundaries, so we merely need to check a
1052 * segment's start address to avoid concatenating across one.
0db2e5d1
RM
1053 */
1054static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
1055 dma_addr_t dma_addr)
1056{
809eac54
RM
1057 struct scatterlist *s, *cur = sg;
1058 unsigned long seg_mask = dma_get_seg_boundary(dev);
1059 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
1060 int i, count = 0;
0db2e5d1
RM
1061
1062 for_each_sg(sg, s, nents, i) {
809eac54 1063 /* Restore this segment's original unaligned fields first */
30280eee 1064 dma_addr_t s_dma_addr = sg_dma_address(s);
809eac54 1065 unsigned int s_iova_off = sg_dma_address(s);
0db2e5d1 1066 unsigned int s_length = sg_dma_len(s);
809eac54 1067 unsigned int s_iova_len = s->length;
0db2e5d1 1068
cad34be7 1069 sg_dma_address(s) = DMA_MAPPING_ERROR;
809eac54
RM
1070 sg_dma_len(s) = 0;
1071
30280eee
LG
1072 if (sg_is_dma_bus_address(s)) {
1073 if (i > 0)
1074 cur = sg_next(cur);
1075
1076 sg_dma_unmark_bus_address(s);
1077 sg_dma_address(cur) = s_dma_addr;
1078 sg_dma_len(cur) = s_length;
1079 sg_dma_mark_bus_address(cur);
1080 count++;
1081 cur_len = 0;
1082 continue;
1083 }
1084
1085 s->offset += s_iova_off;
1086 s->length = s_length;
1087
809eac54
RM
1088 /*
1089 * Now fill in the real DMA data. If...
1090 * - there is a valid output segment to append to
1091 * - and this segment starts on an IOVA page boundary
1092 * - but doesn't fall at a segment boundary
1093 * - and wouldn't make the resulting output segment too long
1094 */
1095 if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
ab2cbeb0 1096 (max_len - cur_len >= s_length)) {
809eac54
RM
1097 /* ...then concatenate it with the previous one */
1098 cur_len += s_length;
1099 } else {
1100 /* Otherwise start the next output segment */
1101 if (i > 0)
1102 cur = sg_next(cur);
1103 cur_len = s_length;
1104 count++;
1105
1106 sg_dma_address(cur) = dma_addr + s_iova_off;
1107 }
1108
1109 sg_dma_len(cur) = cur_len;
1110 dma_addr += s_iova_len;
1111
1112 if (s_length + s_iova_off < s_iova_len)
1113 cur_len = 0;
0db2e5d1 1114 }
809eac54 1115 return count;
0db2e5d1
RM
1116}
1117
1118/*
1119 * If mapping failed, then just restore the original list,
1120 * but making sure the DMA fields are invalidated.
1121 */
1122static void __invalidate_sg(struct scatterlist *sg, int nents)
1123{
1124 struct scatterlist *s;
1125 int i;
1126
1127 for_each_sg(sg, s, nents, i) {
30280eee
LG
1128 if (sg_is_dma_bus_address(s)) {
1129 sg_dma_unmark_bus_address(s);
1130 } else {
1131 if (sg_dma_address(s) != DMA_MAPPING_ERROR)
1132 s->offset += sg_dma_address(s);
1133 if (sg_dma_len(s))
1134 s->length = sg_dma_len(s);
1135 }
cad34be7 1136 sg_dma_address(s) = DMA_MAPPING_ERROR;
0db2e5d1
RM
1137 sg_dma_len(s) = 0;
1138 }
1139}
1140
82612d66
TM
1141static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg,
1142 int nents, enum dma_data_direction dir, unsigned long attrs)
1143{
1144 struct scatterlist *s;
1145 int i;
1146
1147 for_each_sg(sg, s, nents, i)
9b49bbc2 1148 iommu_dma_unmap_page(dev, sg_dma_address(s),
82612d66
TM
1149 sg_dma_len(s), dir, attrs);
1150}
1151
1152static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg,
1153 int nents, enum dma_data_direction dir, unsigned long attrs)
1154{
1155 struct scatterlist *s;
1156 int i;
1157
1158 for_each_sg(sg, s, nents, i) {
9b49bbc2
DS
1159 sg_dma_address(s) = iommu_dma_map_page(dev, sg_page(s),
1160 s->offset, s->length, dir, attrs);
82612d66
TM
1161 if (sg_dma_address(s) == DMA_MAPPING_ERROR)
1162 goto out_unmap;
1163 sg_dma_len(s) = s->length;
1164 }
1165
1166 return nents;
1167
1168out_unmap:
1169 iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
dabb16f6 1170 return -EIO;
82612d66
TM
1171}
1172
0db2e5d1
RM
1173/*
1174 * The DMA API client is passing in a scatterlist which could describe
1175 * any old buffer layout, but the IOMMU API requires everything to be
1176 * aligned to IOMMU pages. Hence the need for this complicated bit of
1177 * impedance-matching, to be able to hand off a suitably-aligned list,
1178 * but still preserve the original offsets and sizes for the caller.
1179 */
06d60728
CH
1180static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
1181 int nents, enum dma_data_direction dir, unsigned long attrs)
0db2e5d1 1182{
43c5bf11 1183 struct iommu_domain *domain = iommu_get_dma_domain(dev);
842fe519
RM
1184 struct iommu_dma_cookie *cookie = domain->iova_cookie;
1185 struct iova_domain *iovad = &cookie->iovad;
0db2e5d1 1186 struct scatterlist *s, *prev = NULL;
06d60728 1187 int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
30280eee
LG
1188 struct pci_p2pdma_map_state p2pdma_state = {};
1189 enum pci_p2pdma_map_type map;
842fe519 1190 dma_addr_t iova;
0db2e5d1 1191 size_t iova_len = 0;
809eac54 1192 unsigned long mask = dma_get_seg_boundary(dev);
dabb16f6 1193 ssize_t ret;
0db2e5d1
RM
1194 int i;
1195
dabb16f6
LG
1196 if (static_branch_unlikely(&iommu_deferred_attach_enabled)) {
1197 ret = iommu_deferred_attach(dev, domain);
ac315f96
LG
1198 if (ret)
1199 goto out;
dabb16f6 1200 }
795bbbb9 1201
2e727bff 1202 if (dev_use_swiotlb(dev))
82612d66
TM
1203 return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs);
1204
06d60728
CH
1205 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1206 iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
1207
0db2e5d1
RM
1208 /*
1209 * Work out how much IOVA space we need, and align the segments to
1210 * IOVA granules for the IOMMU driver to handle. With some clever
1211 * trickery we can modify the list in-place, but reversibly, by
809eac54 1212 * stashing the unaligned parts in the as-yet-unused DMA fields.
0db2e5d1
RM
1213 */
1214 for_each_sg(sg, s, nents, i) {
809eac54 1215 size_t s_iova_off = iova_offset(iovad, s->offset);
0db2e5d1 1216 size_t s_length = s->length;
809eac54 1217 size_t pad_len = (mask - iova_len + 1) & mask;
0db2e5d1 1218
30280eee
LG
1219 if (is_pci_p2pdma_page(sg_page(s))) {
1220 map = pci_p2pdma_map_segment(&p2pdma_state, dev, s);
1221 switch (map) {
1222 case PCI_P2PDMA_MAP_BUS_ADDR:
1223 /*
1224 * iommu_map_sg() will skip this segment as
1225 * it is marked as a bus address,
1226 * __finalise_sg() will copy the dma address
1227 * into the output segment.
1228 */
1229 continue;
1230 case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
1231 /*
1232 * Mapping through host bridge should be
1233 * mapped with regular IOVAs, thus we
1234 * do nothing here and continue below.
1235 */
1236 break;
1237 default:
1238 ret = -EREMOTEIO;
1239 goto out_restore_sg;
1240 }
1241 }
1242
809eac54 1243 sg_dma_address(s) = s_iova_off;
0db2e5d1 1244 sg_dma_len(s) = s_length;
809eac54
RM
1245 s->offset -= s_iova_off;
1246 s_length = iova_align(iovad, s_length + s_iova_off);
0db2e5d1
RM
1247 s->length = s_length;
1248
1249 /*
809eac54
RM
1250 * Due to the alignment of our single IOVA allocation, we can
1251 * depend on these assumptions about the segment boundary mask:
1252 * - If mask size >= IOVA size, then the IOVA range cannot
1253 * possibly fall across a boundary, so we don't care.
1254 * - If mask size < IOVA size, then the IOVA range must start
1255 * exactly on a boundary, therefore we can lay things out
1256 * based purely on segment lengths without needing to know
1257 * the actual addresses beforehand.
1258 * - The mask must be a power of 2, so pad_len == 0 if
1259 * iova_len == 0, thus we cannot dereference prev the first
1260 * time through here (i.e. before it has a meaningful value).
0db2e5d1 1261 */
809eac54 1262 if (pad_len && pad_len < s_length - 1) {
0db2e5d1
RM
1263 prev->length += pad_len;
1264 iova_len += pad_len;
1265 }
1266
1267 iova_len += s_length;
1268 prev = s;
1269 }
1270
30280eee
LG
1271 if (!iova_len)
1272 return __finalise_sg(dev, sg, nents, 0);
1273
842fe519 1274 iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
dabb16f6
LG
1275 if (!iova) {
1276 ret = -ENOMEM;
0db2e5d1 1277 goto out_restore_sg;
dabb16f6 1278 }
0db2e5d1
RM
1279
1280 /*
1281 * We'll leave any physical concatenation to the IOMMU driver's
1282 * implementation - it knows better than we do.
1283 */
dabb16f6 1284 ret = iommu_map_sg_atomic(domain, iova, sg, nents, prot);
a3884774 1285 if (ret < 0 || ret < iova_len)
0db2e5d1
RM
1286 goto out_free_iova;
1287
842fe519 1288 return __finalise_sg(dev, sg, nents, iova);
0db2e5d1
RM
1289
1290out_free_iova:
2a2b8eaa 1291 iommu_dma_free_iova(cookie, iova, iova_len, NULL);
0db2e5d1
RM
1292out_restore_sg:
1293 __invalidate_sg(sg, nents);
dabb16f6 1294out:
30280eee 1295 if (ret != -ENOMEM && ret != -EREMOTEIO)
dabb16f6
LG
1296 return -EINVAL;
1297 return ret;
0db2e5d1
RM
1298}
1299
06d60728
CH
1300static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
1301 int nents, enum dma_data_direction dir, unsigned long attrs)
0db2e5d1 1302{
30280eee 1303 dma_addr_t end = 0, start;
842fe519
RM
1304 struct scatterlist *tmp;
1305 int i;
06d60728 1306
2e727bff 1307 if (dev_use_swiotlb(dev)) {
82612d66
TM
1308 iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs);
1309 return;
1310 }
1311
ee9d4097
DS
1312 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1313 iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
1314
0db2e5d1
RM
1315 /*
1316 * The scatterlist segments are mapped into a single
30280eee
LG
1317 * contiguous IOVA allocation, the start and end points
1318 * just have to be determined.
0db2e5d1 1319 */
30280eee
LG
1320 for_each_sg(sg, tmp, nents, i) {
1321 if (sg_is_dma_bus_address(tmp)) {
1322 sg_dma_unmark_bus_address(tmp);
1323 continue;
1324 }
1325
842fe519
RM
1326 if (sg_dma_len(tmp) == 0)
1327 break;
30280eee
LG
1328
1329 start = sg_dma_address(tmp);
1330 break;
842fe519 1331 }
30280eee
LG
1332
1333 nents -= i;
1334 for_each_sg(tmp, tmp, nents, i) {
1335 if (sg_is_dma_bus_address(tmp)) {
1336 sg_dma_unmark_bus_address(tmp);
1337 continue;
1338 }
1339
842fe519
RM
1340 if (sg_dma_len(tmp) == 0)
1341 break;
30280eee
LG
1342
1343 end = sg_dma_address(tmp) + sg_dma_len(tmp);
842fe519 1344 }
30280eee
LG
1345
1346 if (end)
1347 __iommu_dma_unmap(dev, start, end - start);
0db2e5d1
RM
1348}
1349
06d60728 1350static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
51f8cc9e
RM
1351 size_t size, enum dma_data_direction dir, unsigned long attrs)
1352{
1353 return __iommu_dma_map(dev, phys, size,
6e235020
TM
1354 dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
1355 dma_get_mask(dev));
51f8cc9e
RM
1356}
1357
06d60728 1358static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
51f8cc9e
RM
1359 size_t size, enum dma_data_direction dir, unsigned long attrs)
1360{
b61d271e 1361 __iommu_dma_unmap(dev, handle, size);
51f8cc9e
RM
1362}
1363
8553f6e6 1364static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
bcf4b9c4
RM
1365{
1366 size_t alloc_size = PAGE_ALIGN(size);
1367 int count = alloc_size >> PAGE_SHIFT;
1368 struct page *page = NULL, **pages = NULL;
1369
bcf4b9c4 1370 /* Non-coherent atomic allocation? Easy */
e6475eb0 1371 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
c84dc6e6 1372 dma_free_from_pool(dev, cpu_addr, alloc_size))
bcf4b9c4
RM
1373 return;
1374
f5ff79fd 1375 if (is_vmalloc_addr(cpu_addr)) {
bcf4b9c4
RM
1376 /*
1377 * If it the address is remapped, then it's either non-coherent
1378 * or highmem CMA, or an iommu_dma_alloc_remap() construction.
1379 */
5cf45379 1380 pages = dma_common_find_pages(cpu_addr);
bcf4b9c4
RM
1381 if (!pages)
1382 page = vmalloc_to_page(cpu_addr);
51231740 1383 dma_common_free_remap(cpu_addr, alloc_size);
bcf4b9c4
RM
1384 } else {
1385 /* Lowmem means a coherent atomic or CMA allocation */
1386 page = virt_to_page(cpu_addr);
1387 }
1388
1389 if (pages)
1390 __iommu_dma_free_pages(pages, count);
591fcf3b
NC
1391 if (page)
1392 dma_free_contiguous(dev, page, alloc_size);
bcf4b9c4
RM
1393}
1394
8553f6e6
RM
1395static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
1396 dma_addr_t handle, unsigned long attrs)
1397{
1398 __iommu_dma_unmap(dev, handle, size);
1399 __iommu_dma_free(dev, size, cpu_addr);
1400}
1401
ee1ef05d
CH
1402static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
1403 struct page **pagep, gfp_t gfp, unsigned long attrs)
06d60728
CH
1404{
1405 bool coherent = dev_is_dma_coherent(dev);
9ad5d6ed 1406 size_t alloc_size = PAGE_ALIGN(size);
90ae409f 1407 int node = dev_to_node(dev);
9a4ab94a 1408 struct page *page = NULL;
9ad5d6ed 1409 void *cpu_addr;
06d60728 1410
591fcf3b 1411 page = dma_alloc_contiguous(dev, alloc_size, gfp);
90ae409f
CH
1412 if (!page)
1413 page = alloc_pages_node(node, gfp, get_order(alloc_size));
072bebc0
RM
1414 if (!page)
1415 return NULL;
1416
f5ff79fd 1417 if (!coherent || PageHighMem(page)) {
33dcb37c 1418 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
072bebc0 1419
9ad5d6ed 1420 cpu_addr = dma_common_contiguous_remap(page, alloc_size,
51231740 1421 prot, __builtin_return_address(0));
9ad5d6ed 1422 if (!cpu_addr)
ee1ef05d 1423 goto out_free_pages;
8680aa5a
RM
1424
1425 if (!coherent)
9ad5d6ed 1426 arch_dma_prep_coherent(page, size);
8680aa5a 1427 } else {
9ad5d6ed 1428 cpu_addr = page_address(page);
8680aa5a 1429 }
ee1ef05d
CH
1430
1431 *pagep = page;
9ad5d6ed
RM
1432 memset(cpu_addr, 0, alloc_size);
1433 return cpu_addr;
072bebc0 1434out_free_pages:
591fcf3b 1435 dma_free_contiguous(dev, page, alloc_size);
072bebc0 1436 return NULL;
06d60728
CH
1437}
1438
ee1ef05d
CH
1439static void *iommu_dma_alloc(struct device *dev, size_t size,
1440 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1441{
1442 bool coherent = dev_is_dma_coherent(dev);
1443 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
1444 struct page *page = NULL;
1445 void *cpu_addr;
1446
1447 gfp |= __GFP_ZERO;
1448
f5ff79fd 1449 if (gfpflags_allow_blocking(gfp) &&
e8d39a90
CH
1450 !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) {
1451 return iommu_dma_alloc_remap(dev, size, handle, gfp,
1452 dma_pgprot(dev, PAGE_KERNEL, attrs), attrs);
1453 }
ee1ef05d 1454
e6475eb0
CH
1455 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1456 !gfpflags_allow_blocking(gfp) && !coherent)
9420139f
CH
1457 page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr,
1458 gfp, NULL);
ee1ef05d
CH
1459 else
1460 cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
1461 if (!cpu_addr)
1462 return NULL;
1463
6e235020
TM
1464 *handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot,
1465 dev->coherent_dma_mask);
ee1ef05d
CH
1466 if (*handle == DMA_MAPPING_ERROR) {
1467 __iommu_dma_free(dev, size, cpu_addr);
1468 return NULL;
1469 }
1470
1471 return cpu_addr;
1472}
1473
06d60728
CH
1474static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1475 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1476 unsigned long attrs)
1477{
1478 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
efd9f10b 1479 unsigned long pfn, off = vma->vm_pgoff;
06d60728
CH
1480 int ret;
1481
33dcb37c 1482 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
06d60728
CH
1483
1484 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
1485 return ret;
1486
1487 if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1488 return -ENXIO;
1489
f5ff79fd 1490 if (is_vmalloc_addr(cpu_addr)) {
5cf45379 1491 struct page **pages = dma_common_find_pages(cpu_addr);
06d60728 1492
efd9f10b 1493 if (pages)
71fe89ce 1494 return vm_map_pages(vma, pages, nr_pages);
efd9f10b
CH
1495 pfn = vmalloc_to_pfn(cpu_addr);
1496 } else {
1497 pfn = page_to_pfn(virt_to_page(cpu_addr));
06d60728
CH
1498 }
1499
efd9f10b
CH
1500 return remap_pfn_range(vma, vma->vm_start, pfn + off,
1501 vma->vm_end - vma->vm_start,
1502 vma->vm_page_prot);
06d60728
CH
1503}
1504
06d60728
CH
1505static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1506 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1507 unsigned long attrs)
1508{
3fb3378b
CH
1509 struct page *page;
1510 int ret;
06d60728 1511
f5ff79fd 1512 if (is_vmalloc_addr(cpu_addr)) {
5cf45379 1513 struct page **pages = dma_common_find_pages(cpu_addr);
06d60728 1514
3fb3378b
CH
1515 if (pages) {
1516 return sg_alloc_table_from_pages(sgt, pages,
1517 PAGE_ALIGN(size) >> PAGE_SHIFT,
1518 0, size, GFP_KERNEL);
1519 }
1520
1521 page = vmalloc_to_page(cpu_addr);
1522 } else {
1523 page = virt_to_page(cpu_addr);
06d60728
CH
1524 }
1525
3fb3378b
CH
1526 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1527 if (!ret)
1528 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
1529 return ret;
06d60728
CH
1530}
1531
158a6d3c
YS
1532static unsigned long iommu_dma_get_merge_boundary(struct device *dev)
1533{
1534 struct iommu_domain *domain = iommu_get_dma_domain(dev);
1535
1536 return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
1537}
1538
6d9870b7
JG
1539static size_t iommu_dma_opt_mapping_size(void)
1540{
1541 return iova_rcache_range();
1542}
1543
06d60728 1544static const struct dma_map_ops iommu_dma_ops = {
30280eee 1545 .flags = DMA_F_PCI_P2PDMA_SUPPORTED,
06d60728
CH
1546 .alloc = iommu_dma_alloc,
1547 .free = iommu_dma_free,
efa70f2f
CH
1548 .alloc_pages = dma_common_alloc_pages,
1549 .free_pages = dma_common_free_pages,
e817ee5f
CH
1550 .alloc_noncontiguous = iommu_dma_alloc_noncontiguous,
1551 .free_noncontiguous = iommu_dma_free_noncontiguous,
06d60728
CH
1552 .mmap = iommu_dma_mmap,
1553 .get_sgtable = iommu_dma_get_sgtable,
1554 .map_page = iommu_dma_map_page,
1555 .unmap_page = iommu_dma_unmap_page,
1556 .map_sg = iommu_dma_map_sg,
1557 .unmap_sg = iommu_dma_unmap_sg,
1558 .sync_single_for_cpu = iommu_dma_sync_single_for_cpu,
1559 .sync_single_for_device = iommu_dma_sync_single_for_device,
1560 .sync_sg_for_cpu = iommu_dma_sync_sg_for_cpu,
1561 .sync_sg_for_device = iommu_dma_sync_sg_for_device,
1562 .map_resource = iommu_dma_map_resource,
1563 .unmap_resource = iommu_dma_unmap_resource,
158a6d3c 1564 .get_merge_boundary = iommu_dma_get_merge_boundary,
6d9870b7 1565 .opt_mapping_size = iommu_dma_opt_mapping_size,
06d60728
CH
1566};
1567
1568/*
1569 * The IOMMU core code allocates the default DMA domain, which the underlying
1570 * IOMMU driver needs to support via the dma-iommu layer.
1571 */
ac6d7046 1572void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 dma_limit)
06d60728
CH
1573{
1574 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1575
1576 if (!domain)
1577 goto out_err;
1578
1579 /*
1580 * The IOMMU core code allocates the default DMA domain, which the
1581 * underlying IOMMU driver needs to support via the dma-iommu layer.
1582 */
bf3aed46 1583 if (iommu_is_dma_domain(domain)) {
ac6d7046 1584 if (iommu_dma_init_domain(domain, dma_base, dma_limit, dev))
06d60728
CH
1585 goto out_err;
1586 dev->dma_ops = &iommu_dma_ops;
1587 }
1588
1589 return;
1590out_err:
1591 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
1592 dev_name(dev));
51f8cc9e 1593}
8ce4904b 1594EXPORT_SYMBOL_GPL(iommu_setup_dma_ops);
51f8cc9e 1595
44bb7e24
RM
1596static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
1597 phys_addr_t msi_addr, struct iommu_domain *domain)
1598{
1599 struct iommu_dma_cookie *cookie = domain->iova_cookie;
1600 struct iommu_dma_msi_page *msi_page;
842fe519 1601 dma_addr_t iova;
44bb7e24 1602 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
fdbe574e 1603 size_t size = cookie_msi_granule(cookie);
44bb7e24 1604
fdbe574e 1605 msi_addr &= ~(phys_addr_t)(size - 1);
44bb7e24
RM
1606 list_for_each_entry(msi_page, &cookie->msi_page_list, list)
1607 if (msi_page->phys == msi_addr)
1608 return msi_page;
1609
c1864790 1610 msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL);
44bb7e24
RM
1611 if (!msi_page)
1612 return NULL;
1613
8af23fad
RM
1614 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
1615 if (!iova)
a44e6657 1616 goto out_free_page;
44bb7e24 1617
8af23fad
RM
1618 if (iommu_map(domain, iova, msi_addr, size, prot))
1619 goto out_free_iova;
1620
44bb7e24 1621 INIT_LIST_HEAD(&msi_page->list);
a44e6657
RM
1622 msi_page->phys = msi_addr;
1623 msi_page->iova = iova;
44bb7e24
RM
1624 list_add(&msi_page->list, &cookie->msi_page_list);
1625 return msi_page;
1626
8af23fad 1627out_free_iova:
2a2b8eaa 1628 iommu_dma_free_iova(cookie, iova, size, NULL);
44bb7e24
RM
1629out_free_page:
1630 kfree(msi_page);
1631 return NULL;
1632}
1633
fa49364c
RM
1634/**
1635 * iommu_dma_prepare_msi() - Map the MSI page in the IOMMU domain
1636 * @desc: MSI descriptor, will store the MSI page
1637 * @msi_addr: MSI target address to be mapped
1638 *
1639 * Return: 0 on success or negative error code if the mapping failed.
1640 */
ece6e6f0 1641int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
44bb7e24 1642{
ece6e6f0 1643 struct device *dev = msi_desc_to_dev(desc);
44bb7e24 1644 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
44bb7e24 1645 struct iommu_dma_msi_page *msi_page;
c1864790 1646 static DEFINE_MUTEX(msi_prepare_lock); /* see below */
44bb7e24 1647
ece6e6f0
JG
1648 if (!domain || !domain->iova_cookie) {
1649 desc->iommu_cookie = NULL;
1650 return 0;
1651 }
44bb7e24 1652
44bb7e24 1653 /*
c1864790
RM
1654 * In fact the whole prepare operation should already be serialised by
1655 * irq_domain_mutex further up the callchain, but that's pretty subtle
1656 * on its own, so consider this locking as failsafe documentation...
44bb7e24 1657 */
c1864790 1658 mutex_lock(&msi_prepare_lock);
44bb7e24 1659 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
c1864790 1660 mutex_unlock(&msi_prepare_lock);
44bb7e24 1661
ece6e6f0
JG
1662 msi_desc_set_iommu_cookie(desc, msi_page);
1663
1664 if (!msi_page)
1665 return -ENOMEM;
1666 return 0;
1667}
1668
fa49364c
RM
1669/**
1670 * iommu_dma_compose_msi_msg() - Apply translation to an MSI message
1671 * @desc: MSI descriptor prepared by iommu_dma_prepare_msi()
1672 * @msg: MSI message containing target physical address
1673 */
1674void iommu_dma_compose_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
ece6e6f0
JG
1675{
1676 struct device *dev = msi_desc_to_dev(desc);
1677 const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1678 const struct iommu_dma_msi_page *msi_page;
1679
1680 msi_page = msi_desc_get_iommu_cookie(desc);
1681
1682 if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
1683 return;
1684
1685 msg->address_hi = upper_32_bits(msi_page->iova);
1686 msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
1687 msg->address_lo += lower_32_bits(msi_page->iova);
44bb7e24 1688}
06d60728
CH
1689
1690static int iommu_dma_init(void)
1691{
a8e8af35
LJ
1692 if (is_kdump_kernel())
1693 static_branch_enable(&iommu_deferred_attach_enabled);
1694
06d60728 1695 return iova_cache_get();
44bb7e24 1696}
06d60728 1697arch_initcall(iommu_dma_init);