net/mlx4_core: Reduce harmless SRIOV error message to debug level
[linux-2.6-block.git] / drivers / iommu / dma-iommu.c
CommitLineData
0db2e5d1
RM
1/*
2 * A fairly generic DMA-API to IOMMU-API glue layer.
3 *
4 * Copyright (C) 2014-2015 ARM Ltd.
5 *
6 * based in part on arch/arm/mm/dma-mapping.c:
7 * Copyright (C) 2000-2004 Russell King
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 */
21
22#include <linux/device.h>
23#include <linux/dma-iommu.h>
5b11e9cd 24#include <linux/gfp.h>
0db2e5d1
RM
25#include <linux/huge_mm.h>
26#include <linux/iommu.h>
27#include <linux/iova.h>
44bb7e24 28#include <linux/irq.h>
0db2e5d1 29#include <linux/mm.h>
fade1ec0 30#include <linux/pci.h>
5b11e9cd
RM
31#include <linux/scatterlist.h>
32#include <linux/vmalloc.h>
0db2e5d1 33
44bb7e24
RM
34struct iommu_dma_msi_page {
35 struct list_head list;
36 dma_addr_t iova;
37 phys_addr_t phys;
38};
39
fdbe574e
RM
40enum iommu_dma_cookie_type {
41 IOMMU_DMA_IOVA_COOKIE,
42 IOMMU_DMA_MSI_COOKIE,
43};
44
44bb7e24 45struct iommu_dma_cookie {
fdbe574e
RM
46 enum iommu_dma_cookie_type type;
47 union {
48 /* Full allocator for IOMMU_DMA_IOVA_COOKIE */
49 struct iova_domain iovad;
50 /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
51 dma_addr_t msi_iova;
52 };
53 struct list_head msi_page_list;
54 spinlock_t msi_lock;
44bb7e24
RM
55};
56
fdbe574e
RM
57static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
58{
59 if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
60 return cookie->iovad.granule;
61 return PAGE_SIZE;
62}
63
44bb7e24
RM
64static inline struct iova_domain *cookie_iovad(struct iommu_domain *domain)
65{
fdbe574e
RM
66 struct iommu_dma_cookie *cookie = domain->iova_cookie;
67
68 if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
69 return &cookie->iovad;
70 return NULL;
71}
72
73static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
74{
75 struct iommu_dma_cookie *cookie;
76
77 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
78 if (cookie) {
79 spin_lock_init(&cookie->msi_lock);
80 INIT_LIST_HEAD(&cookie->msi_page_list);
81 cookie->type = type;
82 }
83 return cookie;
44bb7e24
RM
84}
85
0db2e5d1
RM
86int iommu_dma_init(void)
87{
88 return iova_cache_get();
89}
90
91/**
92 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
93 * @domain: IOMMU domain to prepare for DMA-API usage
94 *
95 * IOMMU drivers should normally call this from their domain_alloc
96 * callback when domain->type == IOMMU_DOMAIN_DMA.
97 */
98int iommu_get_dma_cookie(struct iommu_domain *domain)
fdbe574e
RM
99{
100 if (domain->iova_cookie)
101 return -EEXIST;
102
103 domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
104 if (!domain->iova_cookie)
105 return -ENOMEM;
106
107 return 0;
108}
109EXPORT_SYMBOL(iommu_get_dma_cookie);
110
111/**
112 * iommu_get_msi_cookie - Acquire just MSI remapping resources
113 * @domain: IOMMU domain to prepare
114 * @base: Start address of IOVA region for MSI mappings
115 *
116 * Users who manage their own IOVA allocation and do not want DMA API support,
117 * but would still like to take advantage of automatic MSI remapping, can use
118 * this to initialise their own domain appropriately. Users should reserve a
119 * contiguous IOVA region, starting at @base, large enough to accommodate the
120 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
121 * used by the devices attached to @domain.
122 */
123int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
0db2e5d1 124{
44bb7e24 125 struct iommu_dma_cookie *cookie;
0db2e5d1 126
fdbe574e
RM
127 if (domain->type != IOMMU_DOMAIN_UNMANAGED)
128 return -EINVAL;
129
0db2e5d1
RM
130 if (domain->iova_cookie)
131 return -EEXIST;
132
fdbe574e 133 cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
44bb7e24
RM
134 if (!cookie)
135 return -ENOMEM;
0db2e5d1 136
fdbe574e 137 cookie->msi_iova = base;
44bb7e24
RM
138 domain->iova_cookie = cookie;
139 return 0;
0db2e5d1 140}
fdbe574e 141EXPORT_SYMBOL(iommu_get_msi_cookie);
0db2e5d1
RM
142
143/**
144 * iommu_put_dma_cookie - Release a domain's DMA mapping resources
fdbe574e
RM
145 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
146 * iommu_get_msi_cookie()
0db2e5d1
RM
147 *
148 * IOMMU drivers should normally call this from their domain_free callback.
149 */
150void iommu_put_dma_cookie(struct iommu_domain *domain)
151{
44bb7e24
RM
152 struct iommu_dma_cookie *cookie = domain->iova_cookie;
153 struct iommu_dma_msi_page *msi, *tmp;
0db2e5d1 154
44bb7e24 155 if (!cookie)
0db2e5d1
RM
156 return;
157
fdbe574e 158 if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
44bb7e24
RM
159 put_iova_domain(&cookie->iovad);
160
161 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
162 list_del(&msi->list);
163 kfree(msi);
164 }
165 kfree(cookie);
0db2e5d1
RM
166 domain->iova_cookie = NULL;
167}
168EXPORT_SYMBOL(iommu_put_dma_cookie);
169
fade1ec0
RM
170static void iova_reserve_pci_windows(struct pci_dev *dev,
171 struct iova_domain *iovad)
172{
173 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
174 struct resource_entry *window;
175 unsigned long lo, hi;
176
177 resource_list_for_each_entry(window, &bridge->windows) {
178 if (resource_type(window->res) != IORESOURCE_MEM &&
179 resource_type(window->res) != IORESOURCE_IO)
180 continue;
181
182 lo = iova_pfn(iovad, window->res->start - window->offset);
183 hi = iova_pfn(iovad, window->res->end - window->offset);
184 reserve_iova(iovad, lo, hi);
185 }
186}
187
0db2e5d1
RM
188/**
189 * iommu_dma_init_domain - Initialise a DMA mapping domain
190 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
191 * @base: IOVA at which the mappable address space starts
192 * @size: Size of IOVA space
fade1ec0 193 * @dev: Device the domain is being initialised for
0db2e5d1
RM
194 *
195 * @base and @size should be exact multiples of IOMMU page granularity to
196 * avoid rounding surprises. If necessary, we reserve the page at address 0
197 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
198 * any change which could make prior IOVAs invalid will fail.
199 */
fade1ec0
RM
200int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
201 u64 size, struct device *dev)
0db2e5d1 202{
fdbe574e
RM
203 struct iommu_dma_cookie *cookie = domain->iova_cookie;
204 struct iova_domain *iovad = &cookie->iovad;
0db2e5d1 205 unsigned long order, base_pfn, end_pfn;
f51d7bb7 206 bool pci = dev && dev_is_pci(dev);
0db2e5d1 207
fdbe574e
RM
208 if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
209 return -EINVAL;
0db2e5d1
RM
210
211 /* Use the smallest supported page size for IOVA granularity */
d16e0faa 212 order = __ffs(domain->pgsize_bitmap);
0db2e5d1
RM
213 base_pfn = max_t(unsigned long, 1, base >> order);
214 end_pfn = (base + size - 1) >> order;
215
216 /* Check the domain allows at least some access to the device... */
217 if (domain->geometry.force_aperture) {
218 if (base > domain->geometry.aperture_end ||
219 base + size <= domain->geometry.aperture_start) {
220 pr_warn("specified DMA range outside IOMMU capability\n");
221 return -EFAULT;
222 }
223 /* ...then finally give it a kicking to make sure it fits */
224 base_pfn = max_t(unsigned long, base_pfn,
225 domain->geometry.aperture_start >> order);
226 end_pfn = min_t(unsigned long, end_pfn,
227 domain->geometry.aperture_end >> order);
228 }
f51d7bb7
RM
229 /*
230 * PCI devices may have larger DMA masks, but still prefer allocating
231 * within a 32-bit mask to avoid DAC addressing. Such limitations don't
232 * apply to the typical platform device, so for those we may as well
233 * leave the cache limit at the top of their range to save an rb_last()
234 * traversal on every allocation.
235 */
236 if (pci)
237 end_pfn &= DMA_BIT_MASK(32) >> order;
0db2e5d1 238
f51d7bb7 239 /* start_pfn is always nonzero for an already-initialised domain */
0db2e5d1
RM
240 if (iovad->start_pfn) {
241 if (1UL << order != iovad->granule ||
f51d7bb7 242 base_pfn != iovad->start_pfn) {
0db2e5d1
RM
243 pr_warn("Incompatible range for DMA domain\n");
244 return -EFAULT;
245 }
f51d7bb7
RM
246 /*
247 * If we have devices with different DMA masks, move the free
248 * area cache limit down for the benefit of the smaller one.
249 */
250 iovad->dma_32bit_pfn = min(end_pfn, iovad->dma_32bit_pfn);
0db2e5d1
RM
251 } else {
252 init_iova_domain(iovad, 1UL << order, base_pfn, end_pfn);
f51d7bb7 253 if (pci)
fade1ec0 254 iova_reserve_pci_windows(to_pci_dev(dev), iovad);
0db2e5d1
RM
255 }
256 return 0;
257}
258EXPORT_SYMBOL(iommu_dma_init_domain);
259
260/**
737c85ca
MH
261 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
262 * page flags.
0db2e5d1
RM
263 * @dir: Direction of DMA transfer
264 * @coherent: Is the DMA master cache-coherent?
737c85ca 265 * @attrs: DMA attributes for the mapping
0db2e5d1
RM
266 *
267 * Return: corresponding IOMMU API page protection flags
268 */
737c85ca
MH
269int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
270 unsigned long attrs)
0db2e5d1
RM
271{
272 int prot = coherent ? IOMMU_CACHE : 0;
273
737c85ca
MH
274 if (attrs & DMA_ATTR_PRIVILEGED)
275 prot |= IOMMU_PRIV;
276
0db2e5d1
RM
277 switch (dir) {
278 case DMA_BIDIRECTIONAL:
279 return prot | IOMMU_READ | IOMMU_WRITE;
280 case DMA_TO_DEVICE:
281 return prot | IOMMU_READ;
282 case DMA_FROM_DEVICE:
283 return prot | IOMMU_WRITE;
284 default:
285 return 0;
286 }
287}
288
c987ff0d 289static struct iova *__alloc_iova(struct iommu_domain *domain, size_t size,
122fac03 290 dma_addr_t dma_limit, struct device *dev)
0db2e5d1 291{
44bb7e24 292 struct iova_domain *iovad = cookie_iovad(domain);
0db2e5d1
RM
293 unsigned long shift = iova_shift(iovad);
294 unsigned long length = iova_align(iovad, size) >> shift;
122fac03 295 struct iova *iova = NULL;
0db2e5d1 296
c987ff0d
RM
297 if (domain->geometry.force_aperture)
298 dma_limit = min(dma_limit, domain->geometry.aperture_end);
122fac03
RM
299
300 /* Try to get PCI devices a SAC address */
301 if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev))
302 iova = alloc_iova(iovad, length, DMA_BIT_MASK(32) >> shift,
303 true);
0db2e5d1
RM
304 /*
305 * Enforce size-alignment to be safe - there could perhaps be an
306 * attribute to control this per-device, or at least per-domain...
307 */
122fac03
RM
308 if (!iova)
309 iova = alloc_iova(iovad, length, dma_limit >> shift, true);
310
311 return iova;
0db2e5d1
RM
312}
313
314/* The IOVA allocator knows what we mapped, so just unmap whatever that was */
315static void __iommu_dma_unmap(struct iommu_domain *domain, dma_addr_t dma_addr)
316{
44bb7e24 317 struct iova_domain *iovad = cookie_iovad(domain);
0db2e5d1
RM
318 unsigned long shift = iova_shift(iovad);
319 unsigned long pfn = dma_addr >> shift;
320 struct iova *iova = find_iova(iovad, pfn);
321 size_t size;
322
323 if (WARN_ON(!iova))
324 return;
325
326 size = iova_size(iova) << shift;
327 size -= iommu_unmap(domain, pfn << shift, size);
328 /* ...and if we can't, then something is horribly, horribly wrong */
329 WARN_ON(size > 0);
330 __free_iova(iovad, iova);
331}
332
333static void __iommu_dma_free_pages(struct page **pages, int count)
334{
335 while (count--)
336 __free_page(pages[count]);
337 kvfree(pages);
338}
339
3b6b7e19
RM
340static struct page **__iommu_dma_alloc_pages(unsigned int count,
341 unsigned long order_mask, gfp_t gfp)
0db2e5d1
RM
342{
343 struct page **pages;
344 unsigned int i = 0, array_size = count * sizeof(*pages);
3b6b7e19
RM
345
346 order_mask &= (2U << MAX_ORDER) - 1;
347 if (!order_mask)
348 return NULL;
0db2e5d1
RM
349
350 if (array_size <= PAGE_SIZE)
351 pages = kzalloc(array_size, GFP_KERNEL);
352 else
353 pages = vzalloc(array_size);
354 if (!pages)
355 return NULL;
356
357 /* IOMMU can map any pages, so himem can also be used here */
358 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
359
360 while (count) {
361 struct page *page = NULL;
3b6b7e19 362 unsigned int order_size;
0db2e5d1
RM
363
364 /*
365 * Higher-order allocations are a convenience rather
366 * than a necessity, hence using __GFP_NORETRY until
3b6b7e19 367 * falling back to minimum-order allocations.
0db2e5d1 368 */
3b6b7e19
RM
369 for (order_mask &= (2U << __fls(count)) - 1;
370 order_mask; order_mask &= ~order_size) {
371 unsigned int order = __fls(order_mask);
372
373 order_size = 1U << order;
374 page = alloc_pages((order_mask - order_size) ?
375 gfp | __GFP_NORETRY : gfp, order);
0db2e5d1
RM
376 if (!page)
377 continue;
3b6b7e19
RM
378 if (!order)
379 break;
380 if (!PageCompound(page)) {
0db2e5d1
RM
381 split_page(page, order);
382 break;
3b6b7e19
RM
383 } else if (!split_huge_page(page)) {
384 break;
0db2e5d1 385 }
3b6b7e19 386 __free_pages(page, order);
0db2e5d1 387 }
0db2e5d1
RM
388 if (!page) {
389 __iommu_dma_free_pages(pages, i);
390 return NULL;
391 }
3b6b7e19
RM
392 count -= order_size;
393 while (order_size--)
0db2e5d1
RM
394 pages[i++] = page++;
395 }
396 return pages;
397}
398
399/**
400 * iommu_dma_free - Free a buffer allocated by iommu_dma_alloc()
401 * @dev: Device which owns this buffer
402 * @pages: Array of buffer pages as returned by iommu_dma_alloc()
403 * @size: Size of buffer in bytes
404 * @handle: DMA address of buffer
405 *
406 * Frees both the pages associated with the buffer, and the array
407 * describing them
408 */
409void iommu_dma_free(struct device *dev, struct page **pages, size_t size,
410 dma_addr_t *handle)
411{
412 __iommu_dma_unmap(iommu_get_domain_for_dev(dev), *handle);
413 __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
414 *handle = DMA_ERROR_CODE;
415}
416
417/**
418 * iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space
419 * @dev: Device to allocate memory for. Must be a real device
420 * attached to an iommu_dma_domain
421 * @size: Size of buffer in bytes
422 * @gfp: Allocation flags
3b6b7e19 423 * @attrs: DMA attributes for this allocation
0db2e5d1
RM
424 * @prot: IOMMU mapping flags
425 * @handle: Out argument for allocated DMA handle
426 * @flush_page: Arch callback which must ensure PAGE_SIZE bytes from the
427 * given VA/PA are visible to the given non-coherent device.
428 *
429 * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
430 * but an IOMMU which supports smaller pages might not map the whole thing.
431 *
432 * Return: Array of struct page pointers describing the buffer,
433 * or NULL on failure.
434 */
3b6b7e19 435struct page **iommu_dma_alloc(struct device *dev, size_t size, gfp_t gfp,
00085f1e 436 unsigned long attrs, int prot, dma_addr_t *handle,
0db2e5d1
RM
437 void (*flush_page)(struct device *, const void *, phys_addr_t))
438{
439 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
44bb7e24 440 struct iova_domain *iovad = cookie_iovad(domain);
0db2e5d1
RM
441 struct iova *iova;
442 struct page **pages;
443 struct sg_table sgt;
444 dma_addr_t dma_addr;
3b6b7e19 445 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
0db2e5d1
RM
446
447 *handle = DMA_ERROR_CODE;
448
3b6b7e19
RM
449 min_size = alloc_sizes & -alloc_sizes;
450 if (min_size < PAGE_SIZE) {
451 min_size = PAGE_SIZE;
452 alloc_sizes |= PAGE_SIZE;
453 } else {
454 size = ALIGN(size, min_size);
455 }
00085f1e 456 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
3b6b7e19
RM
457 alloc_sizes = min_size;
458
459 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
460 pages = __iommu_dma_alloc_pages(count, alloc_sizes >> PAGE_SHIFT, gfp);
0db2e5d1
RM
461 if (!pages)
462 return NULL;
463
122fac03 464 iova = __alloc_iova(domain, size, dev->coherent_dma_mask, dev);
0db2e5d1
RM
465 if (!iova)
466 goto out_free_pages;
467
468 size = iova_align(iovad, size);
469 if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
470 goto out_free_iova;
471
472 if (!(prot & IOMMU_CACHE)) {
473 struct sg_mapping_iter miter;
474 /*
475 * The CPU-centric flushing implied by SG_MITER_TO_SG isn't
476 * sufficient here, so skip it by using the "wrong" direction.
477 */
478 sg_miter_start(&miter, sgt.sgl, sgt.orig_nents, SG_MITER_FROM_SG);
479 while (sg_miter_next(&miter))
480 flush_page(dev, miter.addr, page_to_phys(miter.page));
481 sg_miter_stop(&miter);
482 }
483
484 dma_addr = iova_dma_addr(iovad, iova);
485 if (iommu_map_sg(domain, dma_addr, sgt.sgl, sgt.orig_nents, prot)
486 < size)
487 goto out_free_sg;
488
489 *handle = dma_addr;
490 sg_free_table(&sgt);
491 return pages;
492
493out_free_sg:
494 sg_free_table(&sgt);
495out_free_iova:
496 __free_iova(iovad, iova);
497out_free_pages:
498 __iommu_dma_free_pages(pages, count);
499 return NULL;
500}
501
502/**
503 * iommu_dma_mmap - Map a buffer into provided user VMA
504 * @pages: Array representing buffer from iommu_dma_alloc()
505 * @size: Size of buffer in bytes
506 * @vma: VMA describing requested userspace mapping
507 *
508 * Maps the pages of the buffer in @pages into @vma. The caller is responsible
509 * for verifying the correct size and protection of @vma beforehand.
510 */
511
512int iommu_dma_mmap(struct page **pages, size_t size, struct vm_area_struct *vma)
513{
514 unsigned long uaddr = vma->vm_start;
515 unsigned int i, count = PAGE_ALIGN(size) >> PAGE_SHIFT;
516 int ret = -ENXIO;
517
518 for (i = vma->vm_pgoff; i < count && uaddr < vma->vm_end; i++) {
519 ret = vm_insert_page(vma, uaddr, pages[i]);
520 if (ret)
521 break;
522 uaddr += PAGE_SIZE;
523 }
524 return ret;
525}
526
51f8cc9e
RM
527static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
528 size_t size, int prot)
0db2e5d1
RM
529{
530 dma_addr_t dma_addr;
531 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
44bb7e24 532 struct iova_domain *iovad = cookie_iovad(domain);
0db2e5d1
RM
533 size_t iova_off = iova_offset(iovad, phys);
534 size_t len = iova_align(iovad, size + iova_off);
122fac03 535 struct iova *iova = __alloc_iova(domain, len, dma_get_mask(dev), dev);
0db2e5d1
RM
536
537 if (!iova)
538 return DMA_ERROR_CODE;
539
540 dma_addr = iova_dma_addr(iovad, iova);
541 if (iommu_map(domain, dma_addr, phys - iova_off, len, prot)) {
542 __free_iova(iovad, iova);
543 return DMA_ERROR_CODE;
544 }
545 return dma_addr + iova_off;
546}
547
51f8cc9e
RM
548dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
549 unsigned long offset, size_t size, int prot)
550{
551 return __iommu_dma_map(dev, page_to_phys(page) + offset, size, prot);
552}
553
0db2e5d1 554void iommu_dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size,
00085f1e 555 enum dma_data_direction dir, unsigned long attrs)
0db2e5d1
RM
556{
557 __iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle);
558}
559
560/*
561 * Prepare a successfully-mapped scatterlist to give back to the caller.
809eac54
RM
562 *
563 * At this point the segments are already laid out by iommu_dma_map_sg() to
564 * avoid individually crossing any boundaries, so we merely need to check a
565 * segment's start address to avoid concatenating across one.
0db2e5d1
RM
566 */
567static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
568 dma_addr_t dma_addr)
569{
809eac54
RM
570 struct scatterlist *s, *cur = sg;
571 unsigned long seg_mask = dma_get_seg_boundary(dev);
572 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
573 int i, count = 0;
0db2e5d1
RM
574
575 for_each_sg(sg, s, nents, i) {
809eac54
RM
576 /* Restore this segment's original unaligned fields first */
577 unsigned int s_iova_off = sg_dma_address(s);
0db2e5d1 578 unsigned int s_length = sg_dma_len(s);
809eac54 579 unsigned int s_iova_len = s->length;
0db2e5d1 580
809eac54 581 s->offset += s_iova_off;
0db2e5d1 582 s->length = s_length;
809eac54
RM
583 sg_dma_address(s) = DMA_ERROR_CODE;
584 sg_dma_len(s) = 0;
585
586 /*
587 * Now fill in the real DMA data. If...
588 * - there is a valid output segment to append to
589 * - and this segment starts on an IOVA page boundary
590 * - but doesn't fall at a segment boundary
591 * - and wouldn't make the resulting output segment too long
592 */
593 if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
594 (cur_len + s_length <= max_len)) {
595 /* ...then concatenate it with the previous one */
596 cur_len += s_length;
597 } else {
598 /* Otherwise start the next output segment */
599 if (i > 0)
600 cur = sg_next(cur);
601 cur_len = s_length;
602 count++;
603
604 sg_dma_address(cur) = dma_addr + s_iova_off;
605 }
606
607 sg_dma_len(cur) = cur_len;
608 dma_addr += s_iova_len;
609
610 if (s_length + s_iova_off < s_iova_len)
611 cur_len = 0;
0db2e5d1 612 }
809eac54 613 return count;
0db2e5d1
RM
614}
615
616/*
617 * If mapping failed, then just restore the original list,
618 * but making sure the DMA fields are invalidated.
619 */
620static void __invalidate_sg(struct scatterlist *sg, int nents)
621{
622 struct scatterlist *s;
623 int i;
624
625 for_each_sg(sg, s, nents, i) {
626 if (sg_dma_address(s) != DMA_ERROR_CODE)
07b48ac4 627 s->offset += sg_dma_address(s);
0db2e5d1
RM
628 if (sg_dma_len(s))
629 s->length = sg_dma_len(s);
630 sg_dma_address(s) = DMA_ERROR_CODE;
631 sg_dma_len(s) = 0;
632 }
633}
634
635/*
636 * The DMA API client is passing in a scatterlist which could describe
637 * any old buffer layout, but the IOMMU API requires everything to be
638 * aligned to IOMMU pages. Hence the need for this complicated bit of
639 * impedance-matching, to be able to hand off a suitably-aligned list,
640 * but still preserve the original offsets and sizes for the caller.
641 */
642int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
643 int nents, int prot)
644{
645 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
44bb7e24 646 struct iova_domain *iovad = cookie_iovad(domain);
0db2e5d1
RM
647 struct iova *iova;
648 struct scatterlist *s, *prev = NULL;
649 dma_addr_t dma_addr;
650 size_t iova_len = 0;
809eac54 651 unsigned long mask = dma_get_seg_boundary(dev);
0db2e5d1
RM
652 int i;
653
654 /*
655 * Work out how much IOVA space we need, and align the segments to
656 * IOVA granules for the IOMMU driver to handle. With some clever
657 * trickery we can modify the list in-place, but reversibly, by
809eac54 658 * stashing the unaligned parts in the as-yet-unused DMA fields.
0db2e5d1
RM
659 */
660 for_each_sg(sg, s, nents, i) {
809eac54 661 size_t s_iova_off = iova_offset(iovad, s->offset);
0db2e5d1 662 size_t s_length = s->length;
809eac54 663 size_t pad_len = (mask - iova_len + 1) & mask;
0db2e5d1 664
809eac54 665 sg_dma_address(s) = s_iova_off;
0db2e5d1 666 sg_dma_len(s) = s_length;
809eac54
RM
667 s->offset -= s_iova_off;
668 s_length = iova_align(iovad, s_length + s_iova_off);
0db2e5d1
RM
669 s->length = s_length;
670
671 /*
809eac54
RM
672 * Due to the alignment of our single IOVA allocation, we can
673 * depend on these assumptions about the segment boundary mask:
674 * - If mask size >= IOVA size, then the IOVA range cannot
675 * possibly fall across a boundary, so we don't care.
676 * - If mask size < IOVA size, then the IOVA range must start
677 * exactly on a boundary, therefore we can lay things out
678 * based purely on segment lengths without needing to know
679 * the actual addresses beforehand.
680 * - The mask must be a power of 2, so pad_len == 0 if
681 * iova_len == 0, thus we cannot dereference prev the first
682 * time through here (i.e. before it has a meaningful value).
0db2e5d1 683 */
809eac54 684 if (pad_len && pad_len < s_length - 1) {
0db2e5d1
RM
685 prev->length += pad_len;
686 iova_len += pad_len;
687 }
688
689 iova_len += s_length;
690 prev = s;
691 }
692
122fac03 693 iova = __alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
0db2e5d1
RM
694 if (!iova)
695 goto out_restore_sg;
696
697 /*
698 * We'll leave any physical concatenation to the IOMMU driver's
699 * implementation - it knows better than we do.
700 */
701 dma_addr = iova_dma_addr(iovad, iova);
702 if (iommu_map_sg(domain, dma_addr, sg, nents, prot) < iova_len)
703 goto out_free_iova;
704
705 return __finalise_sg(dev, sg, nents, dma_addr);
706
707out_free_iova:
708 __free_iova(iovad, iova);
709out_restore_sg:
710 __invalidate_sg(sg, nents);
711 return 0;
712}
713
714void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
00085f1e 715 enum dma_data_direction dir, unsigned long attrs)
0db2e5d1
RM
716{
717 /*
718 * The scatterlist segments are mapped into a single
719 * contiguous IOVA allocation, so this is incredibly easy.
720 */
721 __iommu_dma_unmap(iommu_get_domain_for_dev(dev), sg_dma_address(sg));
722}
723
51f8cc9e
RM
724dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
725 size_t size, enum dma_data_direction dir, unsigned long attrs)
726{
727 return __iommu_dma_map(dev, phys, size,
737c85ca 728 dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO);
51f8cc9e
RM
729}
730
731void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
732 size_t size, enum dma_data_direction dir, unsigned long attrs)
733{
734 __iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle);
735}
736
0db2e5d1
RM
737int iommu_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
738{
739 return dma_addr == DMA_ERROR_CODE;
740}
44bb7e24
RM
741
742static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
743 phys_addr_t msi_addr, struct iommu_domain *domain)
744{
745 struct iommu_dma_cookie *cookie = domain->iova_cookie;
746 struct iommu_dma_msi_page *msi_page;
fdbe574e 747 struct iova_domain *iovad = cookie_iovad(domain);
44bb7e24
RM
748 struct iova *iova;
749 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
fdbe574e 750 size_t size = cookie_msi_granule(cookie);
44bb7e24 751
fdbe574e 752 msi_addr &= ~(phys_addr_t)(size - 1);
44bb7e24
RM
753 list_for_each_entry(msi_page, &cookie->msi_page_list, list)
754 if (msi_page->phys == msi_addr)
755 return msi_page;
756
757 msi_page = kzalloc(sizeof(*msi_page), GFP_ATOMIC);
758 if (!msi_page)
759 return NULL;
760
44bb7e24 761 msi_page->phys = msi_addr;
fdbe574e 762 if (iovad) {
122fac03 763 iova = __alloc_iova(domain, size, dma_get_mask(dev), dev);
fdbe574e
RM
764 if (!iova)
765 goto out_free_page;
766 msi_page->iova = iova_dma_addr(iovad, iova);
767 } else {
768 msi_page->iova = cookie->msi_iova;
769 cookie->msi_iova += size;
770 }
771
772 if (iommu_map(domain, msi_page->iova, msi_addr, size, prot))
44bb7e24
RM
773 goto out_free_iova;
774
775 INIT_LIST_HEAD(&msi_page->list);
776 list_add(&msi_page->list, &cookie->msi_page_list);
777 return msi_page;
778
779out_free_iova:
fdbe574e
RM
780 if (iovad)
781 __free_iova(iovad, iova);
782 else
783 cookie->msi_iova -= size;
44bb7e24
RM
784out_free_page:
785 kfree(msi_page);
786 return NULL;
787}
788
789void iommu_dma_map_msi_msg(int irq, struct msi_msg *msg)
790{
791 struct device *dev = msi_desc_to_dev(irq_get_msi_desc(irq));
792 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
793 struct iommu_dma_cookie *cookie;
794 struct iommu_dma_msi_page *msi_page;
795 phys_addr_t msi_addr = (u64)msg->address_hi << 32 | msg->address_lo;
796 unsigned long flags;
797
798 if (!domain || !domain->iova_cookie)
799 return;
800
801 cookie = domain->iova_cookie;
802
803 /*
804 * We disable IRQs to rule out a possible inversion against
805 * irq_desc_lock if, say, someone tries to retarget the affinity
806 * of an MSI from within an IPI handler.
807 */
808 spin_lock_irqsave(&cookie->msi_lock, flags);
809 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
810 spin_unlock_irqrestore(&cookie->msi_lock, flags);
811
812 if (WARN_ON(!msi_page)) {
813 /*
814 * We're called from a void callback, so the best we can do is
815 * 'fail' by filling the message with obviously bogus values.
816 * Since we got this far due to an IOMMU being present, it's
817 * not like the existing address would have worked anyway...
818 */
819 msg->address_hi = ~0U;
820 msg->address_lo = ~0U;
821 msg->data = ~0U;
822 } else {
823 msg->address_hi = upper_32_bits(msi_page->iova);
fdbe574e 824 msg->address_lo &= cookie_msi_granule(cookie) - 1;
44bb7e24
RM
825 msg->address_lo += lower_32_bits(msi_page->iova);
826 }
827}