ACPI/IORT: Add support for ARM SMMU platform devices creation
[linux-block.git] / drivers / iommu / arm-smmu-v3.c
CommitLineData
48ec83bc
WD
1/*
2 * IOMMU API for ARM architected SMMUv3 implementations.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program. If not, see <http://www.gnu.org/licenses/>.
15 *
16 * Copyright (C) 2015 ARM Limited
17 *
18 * Author: Will Deacon <will.deacon@arm.com>
19 *
20 * This driver is powered by bad coffee and bombay mix.
21 */
22
23#include <linux/delay.h>
9adb9594 24#include <linux/dma-iommu.h>
48ec83bc
WD
25#include <linux/err.h>
26#include <linux/interrupt.h>
27#include <linux/iommu.h>
28#include <linux/iopoll.h>
29#include <linux/module.h>
166bdbd2 30#include <linux/msi.h>
48ec83bc
WD
31#include <linux/of.h>
32#include <linux/of_address.h>
8f785154 33#include <linux/of_iommu.h>
941a802d 34#include <linux/of_platform.h>
48ec83bc
WD
35#include <linux/pci.h>
36#include <linux/platform_device.h>
37
08d4ca2a
RM
38#include <linux/amba/bus.h>
39
48ec83bc
WD
40#include "io-pgtable.h"
41
42/* MMIO registers */
43#define ARM_SMMU_IDR0 0x0
44#define IDR0_ST_LVL_SHIFT 27
45#define IDR0_ST_LVL_MASK 0x3
46#define IDR0_ST_LVL_2LVL (1 << IDR0_ST_LVL_SHIFT)
6380be05
PM
47#define IDR0_STALL_MODEL_SHIFT 24
48#define IDR0_STALL_MODEL_MASK 0x3
49#define IDR0_STALL_MODEL_STALL (0 << IDR0_STALL_MODEL_SHIFT)
50#define IDR0_STALL_MODEL_FORCE (2 << IDR0_STALL_MODEL_SHIFT)
48ec83bc
WD
51#define IDR0_TTENDIAN_SHIFT 21
52#define IDR0_TTENDIAN_MASK 0x3
53#define IDR0_TTENDIAN_LE (2 << IDR0_TTENDIAN_SHIFT)
54#define IDR0_TTENDIAN_BE (3 << IDR0_TTENDIAN_SHIFT)
55#define IDR0_TTENDIAN_MIXED (0 << IDR0_TTENDIAN_SHIFT)
56#define IDR0_CD2L (1 << 19)
57#define IDR0_VMID16 (1 << 18)
58#define IDR0_PRI (1 << 16)
59#define IDR0_SEV (1 << 14)
60#define IDR0_MSI (1 << 13)
61#define IDR0_ASID16 (1 << 12)
62#define IDR0_ATS (1 << 10)
63#define IDR0_HYP (1 << 9)
64#define IDR0_COHACC (1 << 4)
65#define IDR0_TTF_SHIFT 2
66#define IDR0_TTF_MASK 0x3
67#define IDR0_TTF_AARCH64 (2 << IDR0_TTF_SHIFT)
f0c453db 68#define IDR0_TTF_AARCH32_64 (3 << IDR0_TTF_SHIFT)
48ec83bc
WD
69#define IDR0_S1P (1 << 1)
70#define IDR0_S2P (1 << 0)
71
72#define ARM_SMMU_IDR1 0x4
73#define IDR1_TABLES_PRESET (1 << 30)
74#define IDR1_QUEUES_PRESET (1 << 29)
75#define IDR1_REL (1 << 28)
76#define IDR1_CMDQ_SHIFT 21
77#define IDR1_CMDQ_MASK 0x1f
78#define IDR1_EVTQ_SHIFT 16
79#define IDR1_EVTQ_MASK 0x1f
80#define IDR1_PRIQ_SHIFT 11
81#define IDR1_PRIQ_MASK 0x1f
82#define IDR1_SSID_SHIFT 6
83#define IDR1_SSID_MASK 0x1f
84#define IDR1_SID_SHIFT 0
85#define IDR1_SID_MASK 0x3f
86
87#define ARM_SMMU_IDR5 0x14
88#define IDR5_STALL_MAX_SHIFT 16
89#define IDR5_STALL_MAX_MASK 0xffff
90#define IDR5_GRAN64K (1 << 6)
91#define IDR5_GRAN16K (1 << 5)
92#define IDR5_GRAN4K (1 << 4)
93#define IDR5_OAS_SHIFT 0
94#define IDR5_OAS_MASK 0x7
95#define IDR5_OAS_32_BIT (0 << IDR5_OAS_SHIFT)
96#define IDR5_OAS_36_BIT (1 << IDR5_OAS_SHIFT)
97#define IDR5_OAS_40_BIT (2 << IDR5_OAS_SHIFT)
98#define IDR5_OAS_42_BIT (3 << IDR5_OAS_SHIFT)
99#define IDR5_OAS_44_BIT (4 << IDR5_OAS_SHIFT)
100#define IDR5_OAS_48_BIT (5 << IDR5_OAS_SHIFT)
101
102#define ARM_SMMU_CR0 0x20
103#define CR0_CMDQEN (1 << 3)
104#define CR0_EVTQEN (1 << 2)
105#define CR0_PRIQEN (1 << 1)
106#define CR0_SMMUEN (1 << 0)
107
108#define ARM_SMMU_CR0ACK 0x24
109
110#define ARM_SMMU_CR1 0x28
111#define CR1_SH_NSH 0
112#define CR1_SH_OSH 2
113#define CR1_SH_ISH 3
114#define CR1_CACHE_NC 0
115#define CR1_CACHE_WB 1
116#define CR1_CACHE_WT 2
117#define CR1_TABLE_SH_SHIFT 10
118#define CR1_TABLE_OC_SHIFT 8
119#define CR1_TABLE_IC_SHIFT 6
120#define CR1_QUEUE_SH_SHIFT 4
121#define CR1_QUEUE_OC_SHIFT 2
122#define CR1_QUEUE_IC_SHIFT 0
123
124#define ARM_SMMU_CR2 0x2c
125#define CR2_PTM (1 << 2)
126#define CR2_RECINVSID (1 << 1)
127#define CR2_E2H (1 << 0)
128
dc87a98d
RM
129#define ARM_SMMU_GBPA 0x44
130#define GBPA_ABORT (1 << 20)
131#define GBPA_UPDATE (1 << 31)
132
48ec83bc
WD
133#define ARM_SMMU_IRQ_CTRL 0x50
134#define IRQ_CTRL_EVTQ_IRQEN (1 << 2)
ccd6385d 135#define IRQ_CTRL_PRIQ_IRQEN (1 << 1)
48ec83bc
WD
136#define IRQ_CTRL_GERROR_IRQEN (1 << 0)
137
138#define ARM_SMMU_IRQ_CTRLACK 0x54
139
140#define ARM_SMMU_GERROR 0x60
141#define GERROR_SFM_ERR (1 << 8)
142#define GERROR_MSI_GERROR_ABT_ERR (1 << 7)
143#define GERROR_MSI_PRIQ_ABT_ERR (1 << 6)
144#define GERROR_MSI_EVTQ_ABT_ERR (1 << 5)
145#define GERROR_MSI_CMDQ_ABT_ERR (1 << 4)
146#define GERROR_PRIQ_ABT_ERR (1 << 3)
147#define GERROR_EVTQ_ABT_ERR (1 << 2)
148#define GERROR_CMDQ_ERR (1 << 0)
149#define GERROR_ERR_MASK 0xfd
150
151#define ARM_SMMU_GERRORN 0x64
152
153#define ARM_SMMU_GERROR_IRQ_CFG0 0x68
154#define ARM_SMMU_GERROR_IRQ_CFG1 0x70
155#define ARM_SMMU_GERROR_IRQ_CFG2 0x74
156
157#define ARM_SMMU_STRTAB_BASE 0x80
158#define STRTAB_BASE_RA (1UL << 62)
159#define STRTAB_BASE_ADDR_SHIFT 6
160#define STRTAB_BASE_ADDR_MASK 0x3ffffffffffUL
161
162#define ARM_SMMU_STRTAB_BASE_CFG 0x88
163#define STRTAB_BASE_CFG_LOG2SIZE_SHIFT 0
164#define STRTAB_BASE_CFG_LOG2SIZE_MASK 0x3f
165#define STRTAB_BASE_CFG_SPLIT_SHIFT 6
166#define STRTAB_BASE_CFG_SPLIT_MASK 0x1f
167#define STRTAB_BASE_CFG_FMT_SHIFT 16
168#define STRTAB_BASE_CFG_FMT_MASK 0x3
169#define STRTAB_BASE_CFG_FMT_LINEAR (0 << STRTAB_BASE_CFG_FMT_SHIFT)
170#define STRTAB_BASE_CFG_FMT_2LVL (1 << STRTAB_BASE_CFG_FMT_SHIFT)
171
172#define ARM_SMMU_CMDQ_BASE 0x90
173#define ARM_SMMU_CMDQ_PROD 0x98
174#define ARM_SMMU_CMDQ_CONS 0x9c
175
176#define ARM_SMMU_EVTQ_BASE 0xa0
177#define ARM_SMMU_EVTQ_PROD 0x100a8
178#define ARM_SMMU_EVTQ_CONS 0x100ac
179#define ARM_SMMU_EVTQ_IRQ_CFG0 0xb0
180#define ARM_SMMU_EVTQ_IRQ_CFG1 0xb8
181#define ARM_SMMU_EVTQ_IRQ_CFG2 0xbc
182
183#define ARM_SMMU_PRIQ_BASE 0xc0
184#define ARM_SMMU_PRIQ_PROD 0x100c8
185#define ARM_SMMU_PRIQ_CONS 0x100cc
186#define ARM_SMMU_PRIQ_IRQ_CFG0 0xd0
187#define ARM_SMMU_PRIQ_IRQ_CFG1 0xd8
188#define ARM_SMMU_PRIQ_IRQ_CFG2 0xdc
189
190/* Common MSI config fields */
48ec83bc
WD
191#define MSI_CFG0_ADDR_SHIFT 2
192#define MSI_CFG0_ADDR_MASK 0x3fffffffffffUL
ec11d63c
MZ
193#define MSI_CFG2_SH_SHIFT 4
194#define MSI_CFG2_SH_NSH (0UL << MSI_CFG2_SH_SHIFT)
195#define MSI_CFG2_SH_OSH (2UL << MSI_CFG2_SH_SHIFT)
196#define MSI_CFG2_SH_ISH (3UL << MSI_CFG2_SH_SHIFT)
197#define MSI_CFG2_MEMATTR_SHIFT 0
198#define MSI_CFG2_MEMATTR_DEVICE_nGnRE (0x1 << MSI_CFG2_MEMATTR_SHIFT)
48ec83bc
WD
199
200#define Q_IDX(q, p) ((p) & ((1 << (q)->max_n_shift) - 1))
201#define Q_WRP(q, p) ((p) & (1 << (q)->max_n_shift))
202#define Q_OVERFLOW_FLAG (1 << 31)
203#define Q_OVF(q, p) ((p) & Q_OVERFLOW_FLAG)
204#define Q_ENT(q, p) ((q)->base + \
205 Q_IDX(q, p) * (q)->ent_dwords)
206
207#define Q_BASE_RWA (1UL << 62)
208#define Q_BASE_ADDR_SHIFT 5
209#define Q_BASE_ADDR_MASK 0xfffffffffffUL
210#define Q_BASE_LOG2SIZE_SHIFT 0
211#define Q_BASE_LOG2SIZE_MASK 0x1fUL
212
213/*
214 * Stream table.
215 *
216 * Linear: Enough to cover 1 << IDR1.SIDSIZE entries
e2f4c233
ZL
217 * 2lvl: 128k L1 entries,
218 * 256 lazy entries per table (each table covers a PCI bus)
48ec83bc 219 */
e2f4c233 220#define STRTAB_L1_SZ_SHIFT 20
48ec83bc
WD
221#define STRTAB_SPLIT 8
222
223#define STRTAB_L1_DESC_DWORDS 1
224#define STRTAB_L1_DESC_SPAN_SHIFT 0
225#define STRTAB_L1_DESC_SPAN_MASK 0x1fUL
226#define STRTAB_L1_DESC_L2PTR_SHIFT 6
227#define STRTAB_L1_DESC_L2PTR_MASK 0x3ffffffffffUL
228
229#define STRTAB_STE_DWORDS 8
230#define STRTAB_STE_0_V (1UL << 0)
231#define STRTAB_STE_0_CFG_SHIFT 1
232#define STRTAB_STE_0_CFG_MASK 0x7UL
233#define STRTAB_STE_0_CFG_ABORT (0UL << STRTAB_STE_0_CFG_SHIFT)
234#define STRTAB_STE_0_CFG_BYPASS (4UL << STRTAB_STE_0_CFG_SHIFT)
235#define STRTAB_STE_0_CFG_S1_TRANS (5UL << STRTAB_STE_0_CFG_SHIFT)
236#define STRTAB_STE_0_CFG_S2_TRANS (6UL << STRTAB_STE_0_CFG_SHIFT)
237
238#define STRTAB_STE_0_S1FMT_SHIFT 4
239#define STRTAB_STE_0_S1FMT_LINEAR (0UL << STRTAB_STE_0_S1FMT_SHIFT)
240#define STRTAB_STE_0_S1CTXPTR_SHIFT 6
241#define STRTAB_STE_0_S1CTXPTR_MASK 0x3ffffffffffUL
242#define STRTAB_STE_0_S1CDMAX_SHIFT 59
243#define STRTAB_STE_0_S1CDMAX_MASK 0x1fUL
244
245#define STRTAB_STE_1_S1C_CACHE_NC 0UL
246#define STRTAB_STE_1_S1C_CACHE_WBRA 1UL
247#define STRTAB_STE_1_S1C_CACHE_WT 2UL
248#define STRTAB_STE_1_S1C_CACHE_WB 3UL
249#define STRTAB_STE_1_S1C_SH_NSH 0UL
250#define STRTAB_STE_1_S1C_SH_OSH 2UL
251#define STRTAB_STE_1_S1C_SH_ISH 3UL
252#define STRTAB_STE_1_S1CIR_SHIFT 2
253#define STRTAB_STE_1_S1COR_SHIFT 4
254#define STRTAB_STE_1_S1CSH_SHIFT 6
255
256#define STRTAB_STE_1_S1STALLD (1UL << 27)
257
258#define STRTAB_STE_1_EATS_ABT 0UL
259#define STRTAB_STE_1_EATS_TRANS 1UL
260#define STRTAB_STE_1_EATS_S1CHK 2UL
261#define STRTAB_STE_1_EATS_SHIFT 28
262
263#define STRTAB_STE_1_STRW_NSEL1 0UL
264#define STRTAB_STE_1_STRW_EL2 2UL
265#define STRTAB_STE_1_STRW_SHIFT 30
266
a0eacd89
WD
267#define STRTAB_STE_1_SHCFG_INCOMING 1UL
268#define STRTAB_STE_1_SHCFG_SHIFT 44
269
95fa99aa
RM
270#define STRTAB_STE_1_PRIVCFG_UNPRIV 2UL
271#define STRTAB_STE_1_PRIVCFG_SHIFT 48
272
48ec83bc
WD
273#define STRTAB_STE_2_S2VMID_SHIFT 0
274#define STRTAB_STE_2_S2VMID_MASK 0xffffUL
275#define STRTAB_STE_2_VTCR_SHIFT 32
276#define STRTAB_STE_2_VTCR_MASK 0x7ffffUL
277#define STRTAB_STE_2_S2AA64 (1UL << 51)
278#define STRTAB_STE_2_S2ENDI (1UL << 52)
279#define STRTAB_STE_2_S2PTW (1UL << 54)
280#define STRTAB_STE_2_S2R (1UL << 58)
281
282#define STRTAB_STE_3_S2TTB_SHIFT 4
283#define STRTAB_STE_3_S2TTB_MASK 0xfffffffffffUL
284
285/* Context descriptor (stage-1 only) */
286#define CTXDESC_CD_DWORDS 8
287#define CTXDESC_CD_0_TCR_T0SZ_SHIFT 0
288#define ARM64_TCR_T0SZ_SHIFT 0
289#define ARM64_TCR_T0SZ_MASK 0x1fUL
290#define CTXDESC_CD_0_TCR_TG0_SHIFT 6
291#define ARM64_TCR_TG0_SHIFT 14
292#define ARM64_TCR_TG0_MASK 0x3UL
293#define CTXDESC_CD_0_TCR_IRGN0_SHIFT 8
5d58c620 294#define ARM64_TCR_IRGN0_SHIFT 8
48ec83bc
WD
295#define ARM64_TCR_IRGN0_MASK 0x3UL
296#define CTXDESC_CD_0_TCR_ORGN0_SHIFT 10
5d58c620 297#define ARM64_TCR_ORGN0_SHIFT 10
48ec83bc
WD
298#define ARM64_TCR_ORGN0_MASK 0x3UL
299#define CTXDESC_CD_0_TCR_SH0_SHIFT 12
300#define ARM64_TCR_SH0_SHIFT 12
301#define ARM64_TCR_SH0_MASK 0x3UL
302#define CTXDESC_CD_0_TCR_EPD0_SHIFT 14
303#define ARM64_TCR_EPD0_SHIFT 7
304#define ARM64_TCR_EPD0_MASK 0x1UL
305#define CTXDESC_CD_0_TCR_EPD1_SHIFT 30
306#define ARM64_TCR_EPD1_SHIFT 23
307#define ARM64_TCR_EPD1_MASK 0x1UL
308
309#define CTXDESC_CD_0_ENDI (1UL << 15)
310#define CTXDESC_CD_0_V (1UL << 31)
311
312#define CTXDESC_CD_0_TCR_IPS_SHIFT 32
313#define ARM64_TCR_IPS_SHIFT 32
314#define ARM64_TCR_IPS_MASK 0x7UL
315#define CTXDESC_CD_0_TCR_TBI0_SHIFT 38
316#define ARM64_TCR_TBI0_SHIFT 37
317#define ARM64_TCR_TBI0_MASK 0x1UL
318
319#define CTXDESC_CD_0_AA64 (1UL << 41)
320#define CTXDESC_CD_0_R (1UL << 45)
321#define CTXDESC_CD_0_A (1UL << 46)
322#define CTXDESC_CD_0_ASET_SHIFT 47
323#define CTXDESC_CD_0_ASET_SHARED (0UL << CTXDESC_CD_0_ASET_SHIFT)
324#define CTXDESC_CD_0_ASET_PRIVATE (1UL << CTXDESC_CD_0_ASET_SHIFT)
325#define CTXDESC_CD_0_ASID_SHIFT 48
326#define CTXDESC_CD_0_ASID_MASK 0xffffUL
327
328#define CTXDESC_CD_1_TTB0_SHIFT 4
329#define CTXDESC_CD_1_TTB0_MASK 0xfffffffffffUL
330
331#define CTXDESC_CD_3_MAIR_SHIFT 0
332
333/* Convert between AArch64 (CPU) TCR format and SMMU CD format */
334#define ARM_SMMU_TCR2CD(tcr, fld) \
335 (((tcr) >> ARM64_TCR_##fld##_SHIFT & ARM64_TCR_##fld##_MASK) \
336 << CTXDESC_CD_0_TCR_##fld##_SHIFT)
337
338/* Command queue */
339#define CMDQ_ENT_DWORDS 2
340#define CMDQ_MAX_SZ_SHIFT 8
341
342#define CMDQ_ERR_SHIFT 24
343#define CMDQ_ERR_MASK 0x7f
344#define CMDQ_ERR_CERROR_NONE_IDX 0
345#define CMDQ_ERR_CERROR_ILL_IDX 1
346#define CMDQ_ERR_CERROR_ABT_IDX 2
347
348#define CMDQ_0_OP_SHIFT 0
349#define CMDQ_0_OP_MASK 0xffUL
350#define CMDQ_0_SSV (1UL << 11)
351
352#define CMDQ_PREFETCH_0_SID_SHIFT 32
353#define CMDQ_PREFETCH_1_SIZE_SHIFT 0
354#define CMDQ_PREFETCH_1_ADDR_MASK ~0xfffUL
355
356#define CMDQ_CFGI_0_SID_SHIFT 32
357#define CMDQ_CFGI_0_SID_MASK 0xffffffffUL
358#define CMDQ_CFGI_1_LEAF (1UL << 0)
359#define CMDQ_CFGI_1_RANGE_SHIFT 0
360#define CMDQ_CFGI_1_RANGE_MASK 0x1fUL
361
362#define CMDQ_TLBI_0_VMID_SHIFT 32
363#define CMDQ_TLBI_0_ASID_SHIFT 48
364#define CMDQ_TLBI_1_LEAF (1UL << 0)
1c27df1c
WD
365#define CMDQ_TLBI_1_VA_MASK ~0xfffUL
366#define CMDQ_TLBI_1_IPA_MASK 0xfffffffff000UL
48ec83bc
WD
367
368#define CMDQ_PRI_0_SSID_SHIFT 12
369#define CMDQ_PRI_0_SSID_MASK 0xfffffUL
370#define CMDQ_PRI_0_SID_SHIFT 32
371#define CMDQ_PRI_0_SID_MASK 0xffffffffUL
372#define CMDQ_PRI_1_GRPID_SHIFT 0
373#define CMDQ_PRI_1_GRPID_MASK 0x1ffUL
374#define CMDQ_PRI_1_RESP_SHIFT 12
375#define CMDQ_PRI_1_RESP_DENY (0UL << CMDQ_PRI_1_RESP_SHIFT)
376#define CMDQ_PRI_1_RESP_FAIL (1UL << CMDQ_PRI_1_RESP_SHIFT)
377#define CMDQ_PRI_1_RESP_SUCC (2UL << CMDQ_PRI_1_RESP_SHIFT)
378
379#define CMDQ_SYNC_0_CS_SHIFT 12
380#define CMDQ_SYNC_0_CS_NONE (0UL << CMDQ_SYNC_0_CS_SHIFT)
381#define CMDQ_SYNC_0_CS_SEV (2UL << CMDQ_SYNC_0_CS_SHIFT)
382
383/* Event queue */
384#define EVTQ_ENT_DWORDS 4
385#define EVTQ_MAX_SZ_SHIFT 7
386
387#define EVTQ_0_ID_SHIFT 0
388#define EVTQ_0_ID_MASK 0xffUL
389
390/* PRI queue */
391#define PRIQ_ENT_DWORDS 2
392#define PRIQ_MAX_SZ_SHIFT 8
393
394#define PRIQ_0_SID_SHIFT 0
395#define PRIQ_0_SID_MASK 0xffffffffUL
396#define PRIQ_0_SSID_SHIFT 32
397#define PRIQ_0_SSID_MASK 0xfffffUL
48ec83bc
WD
398#define PRIQ_0_PERM_PRIV (1UL << 58)
399#define PRIQ_0_PERM_EXEC (1UL << 59)
400#define PRIQ_0_PERM_READ (1UL << 60)
401#define PRIQ_0_PERM_WRITE (1UL << 61)
402#define PRIQ_0_PRG_LAST (1UL << 62)
403#define PRIQ_0_SSID_V (1UL << 63)
404
405#define PRIQ_1_PRG_IDX_SHIFT 0
406#define PRIQ_1_PRG_IDX_MASK 0x1ffUL
407#define PRIQ_1_ADDR_SHIFT 12
408#define PRIQ_1_ADDR_MASK 0xfffffffffffffUL
409
410/* High-level queue structures */
411#define ARM_SMMU_POLL_TIMEOUT_US 100
412
413static bool disable_bypass;
414module_param_named(disable_bypass, disable_bypass, bool, S_IRUGO);
415MODULE_PARM_DESC(disable_bypass,
416 "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
417
418enum pri_resp {
419 PRI_RESP_DENY,
420 PRI_RESP_FAIL,
421 PRI_RESP_SUCC,
422};
423
166bdbd2
MZ
424enum arm_smmu_msi_index {
425 EVTQ_MSI_INDEX,
426 GERROR_MSI_INDEX,
427 PRIQ_MSI_INDEX,
428 ARM_SMMU_MAX_MSIS,
429};
430
431static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
432 [EVTQ_MSI_INDEX] = {
433 ARM_SMMU_EVTQ_IRQ_CFG0,
434 ARM_SMMU_EVTQ_IRQ_CFG1,
435 ARM_SMMU_EVTQ_IRQ_CFG2,
436 },
437 [GERROR_MSI_INDEX] = {
438 ARM_SMMU_GERROR_IRQ_CFG0,
439 ARM_SMMU_GERROR_IRQ_CFG1,
440 ARM_SMMU_GERROR_IRQ_CFG2,
441 },
442 [PRIQ_MSI_INDEX] = {
443 ARM_SMMU_PRIQ_IRQ_CFG0,
444 ARM_SMMU_PRIQ_IRQ_CFG1,
445 ARM_SMMU_PRIQ_IRQ_CFG2,
446 },
447};
448
48ec83bc
WD
449struct arm_smmu_cmdq_ent {
450 /* Common fields */
451 u8 opcode;
452 bool substream_valid;
453
454 /* Command-specific fields */
455 union {
456 #define CMDQ_OP_PREFETCH_CFG 0x1
457 struct {
458 u32 sid;
459 u8 size;
460 u64 addr;
461 } prefetch;
462
463 #define CMDQ_OP_CFGI_STE 0x3
464 #define CMDQ_OP_CFGI_ALL 0x4
465 struct {
466 u32 sid;
467 union {
468 bool leaf;
469 u8 span;
470 };
471 } cfgi;
472
473 #define CMDQ_OP_TLBI_NH_ASID 0x11
474 #define CMDQ_OP_TLBI_NH_VA 0x12
475 #define CMDQ_OP_TLBI_EL2_ALL 0x20
476 #define CMDQ_OP_TLBI_S12_VMALL 0x28
477 #define CMDQ_OP_TLBI_S2_IPA 0x2a
478 #define CMDQ_OP_TLBI_NSNH_ALL 0x30
479 struct {
480 u16 asid;
481 u16 vmid;
482 bool leaf;
483 u64 addr;
484 } tlbi;
485
486 #define CMDQ_OP_PRI_RESP 0x41
487 struct {
488 u32 sid;
489 u32 ssid;
490 u16 grpid;
491 enum pri_resp resp;
492 } pri;
493
494 #define CMDQ_OP_CMD_SYNC 0x46
495 };
496};
497
498struct arm_smmu_queue {
499 int irq; /* Wired interrupt */
500
501 __le64 *base;
502 dma_addr_t base_dma;
503 u64 q_base;
504
505 size_t ent_dwords;
506 u32 max_n_shift;
507 u32 prod;
508 u32 cons;
509
510 u32 __iomem *prod_reg;
511 u32 __iomem *cons_reg;
512};
513
514struct arm_smmu_cmdq {
515 struct arm_smmu_queue q;
516 spinlock_t lock;
517};
518
519struct arm_smmu_evtq {
520 struct arm_smmu_queue q;
521 u32 max_stalls;
522};
523
524struct arm_smmu_priq {
525 struct arm_smmu_queue q;
526};
527
528/* High-level stream table and context descriptor structures */
529struct arm_smmu_strtab_l1_desc {
530 u8 span;
531
532 __le64 *l2ptr;
533 dma_addr_t l2ptr_dma;
534};
535
536struct arm_smmu_s1_cfg {
537 __le64 *cdptr;
538 dma_addr_t cdptr_dma;
539
540 struct arm_smmu_ctx_desc {
541 u16 asid;
542 u64 ttbr;
543 u64 tcr;
544 u64 mair;
545 } cd;
546};
547
548struct arm_smmu_s2_cfg {
549 u16 vmid;
550 u64 vttbr;
551 u64 vtcr;
552};
553
554struct arm_smmu_strtab_ent {
555 bool valid;
556
557 bool bypass; /* Overrides s1/s2 config */
558 struct arm_smmu_s1_cfg *s1_cfg;
559 struct arm_smmu_s2_cfg *s2_cfg;
560};
561
562struct arm_smmu_strtab_cfg {
563 __le64 *strtab;
564 dma_addr_t strtab_dma;
565 struct arm_smmu_strtab_l1_desc *l1_desc;
566 unsigned int num_l1_ents;
567
568 u64 strtab_base;
569 u32 strtab_base_cfg;
570};
571
572/* An SMMUv3 instance */
573struct arm_smmu_device {
574 struct device *dev;
575 void __iomem *base;
576
577#define ARM_SMMU_FEAT_2_LVL_STRTAB (1 << 0)
578#define ARM_SMMU_FEAT_2_LVL_CDTAB (1 << 1)
579#define ARM_SMMU_FEAT_TT_LE (1 << 2)
580#define ARM_SMMU_FEAT_TT_BE (1 << 3)
581#define ARM_SMMU_FEAT_PRI (1 << 4)
582#define ARM_SMMU_FEAT_ATS (1 << 5)
583#define ARM_SMMU_FEAT_SEV (1 << 6)
584#define ARM_SMMU_FEAT_MSI (1 << 7)
585#define ARM_SMMU_FEAT_COHERENCY (1 << 8)
586#define ARM_SMMU_FEAT_TRANS_S1 (1 << 9)
587#define ARM_SMMU_FEAT_TRANS_S2 (1 << 10)
588#define ARM_SMMU_FEAT_STALLS (1 << 11)
589#define ARM_SMMU_FEAT_HYP (1 << 12)
590 u32 features;
591
5e92946c
ZL
592#define ARM_SMMU_OPT_SKIP_PREFETCH (1 << 0)
593 u32 options;
594
48ec83bc
WD
595 struct arm_smmu_cmdq cmdq;
596 struct arm_smmu_evtq evtq;
597 struct arm_smmu_priq priq;
598
599 int gerr_irq;
600
601 unsigned long ias; /* IPA */
602 unsigned long oas; /* PA */
d5466357 603 unsigned long pgsize_bitmap;
48ec83bc
WD
604
605#define ARM_SMMU_MAX_ASIDS (1 << 16)
606 unsigned int asid_bits;
607 DECLARE_BITMAP(asid_map, ARM_SMMU_MAX_ASIDS);
608
609#define ARM_SMMU_MAX_VMIDS (1 << 16)
610 unsigned int vmid_bits;
611 DECLARE_BITMAP(vmid_map, ARM_SMMU_MAX_VMIDS);
612
613 unsigned int ssid_bits;
614 unsigned int sid_bits;
615
616 struct arm_smmu_strtab_cfg strtab_cfg;
48ec83bc
WD
617};
618
8f785154
RM
619/* SMMU private data for each master */
620struct arm_smmu_master_data {
48ec83bc 621 struct arm_smmu_device *smmu;
48ec83bc
WD
622 struct arm_smmu_strtab_ent ste;
623};
624
625/* SMMU private data for an IOMMU domain */
626enum arm_smmu_domain_stage {
627 ARM_SMMU_DOMAIN_S1 = 0,
628 ARM_SMMU_DOMAIN_S2,
629 ARM_SMMU_DOMAIN_NESTED,
630};
631
632struct arm_smmu_domain {
633 struct arm_smmu_device *smmu;
634 struct mutex init_mutex; /* Protects smmu pointer */
635
636 struct io_pgtable_ops *pgtbl_ops;
637 spinlock_t pgtbl_lock;
638
639 enum arm_smmu_domain_stage stage;
640 union {
641 struct arm_smmu_s1_cfg s1_cfg;
642 struct arm_smmu_s2_cfg s2_cfg;
643 };
644
645 struct iommu_domain domain;
646};
647
5e92946c
ZL
648struct arm_smmu_option_prop {
649 u32 opt;
650 const char *prop;
651};
652
653static struct arm_smmu_option_prop arm_smmu_options[] = {
654 { ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
655 { 0, NULL},
656};
657
48ec83bc
WD
658static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
659{
660 return container_of(dom, struct arm_smmu_domain, domain);
661}
662
5e92946c
ZL
663static void parse_driver_options(struct arm_smmu_device *smmu)
664{
665 int i = 0;
666
667 do {
668 if (of_property_read_bool(smmu->dev->of_node,
669 arm_smmu_options[i].prop)) {
670 smmu->options |= arm_smmu_options[i].opt;
671 dev_notice(smmu->dev, "option %s\n",
672 arm_smmu_options[i].prop);
673 }
674 } while (arm_smmu_options[++i].opt);
675}
676
48ec83bc
WD
677/* Low-level queue manipulation functions */
678static bool queue_full(struct arm_smmu_queue *q)
679{
680 return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
681 Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
682}
683
684static bool queue_empty(struct arm_smmu_queue *q)
685{
686 return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
687 Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
688}
689
690static void queue_sync_cons(struct arm_smmu_queue *q)
691{
692 q->cons = readl_relaxed(q->cons_reg);
693}
694
695static void queue_inc_cons(struct arm_smmu_queue *q)
696{
697 u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
698
699 q->cons = Q_OVF(q, q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
700 writel(q->cons, q->cons_reg);
701}
702
703static int queue_sync_prod(struct arm_smmu_queue *q)
704{
705 int ret = 0;
706 u32 prod = readl_relaxed(q->prod_reg);
707
708 if (Q_OVF(q, prod) != Q_OVF(q, q->prod))
709 ret = -EOVERFLOW;
710
711 q->prod = prod;
712 return ret;
713}
714
715static void queue_inc_prod(struct arm_smmu_queue *q)
716{
717 u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + 1;
718
719 q->prod = Q_OVF(q, q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
720 writel(q->prod, q->prod_reg);
721}
722
bcfced15
JPB
723/*
724 * Wait for the SMMU to consume items. If drain is true, wait until the queue
725 * is empty. Otherwise, wait until there is at least one free slot.
726 */
727static int queue_poll_cons(struct arm_smmu_queue *q, bool drain, bool wfe)
48ec83bc
WD
728{
729 ktime_t timeout = ktime_add_us(ktime_get(), ARM_SMMU_POLL_TIMEOUT_US);
730
bcfced15 731 while (queue_sync_cons(q), (drain ? !queue_empty(q) : queue_full(q))) {
48ec83bc
WD
732 if (ktime_compare(ktime_get(), timeout) > 0)
733 return -ETIMEDOUT;
734
735 if (wfe) {
736 wfe();
737 } else {
738 cpu_relax();
739 udelay(1);
740 }
741 }
742
743 return 0;
744}
745
746static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
747{
748 int i;
749
750 for (i = 0; i < n_dwords; ++i)
751 *dst++ = cpu_to_le64(*src++);
752}
753
754static int queue_insert_raw(struct arm_smmu_queue *q, u64 *ent)
755{
756 if (queue_full(q))
757 return -ENOSPC;
758
759 queue_write(Q_ENT(q, q->prod), ent, q->ent_dwords);
760 queue_inc_prod(q);
761 return 0;
762}
763
764static void queue_read(__le64 *dst, u64 *src, size_t n_dwords)
765{
766 int i;
767
768 for (i = 0; i < n_dwords; ++i)
769 *dst++ = le64_to_cpu(*src++);
770}
771
772static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
773{
774 if (queue_empty(q))
775 return -EAGAIN;
776
777 queue_read(ent, Q_ENT(q, q->cons), q->ent_dwords);
778 queue_inc_cons(q);
779 return 0;
780}
781
782/* High-level queue accessors */
783static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
784{
785 memset(cmd, 0, CMDQ_ENT_DWORDS << 3);
786 cmd[0] |= (ent->opcode & CMDQ_0_OP_MASK) << CMDQ_0_OP_SHIFT;
787
788 switch (ent->opcode) {
789 case CMDQ_OP_TLBI_EL2_ALL:
790 case CMDQ_OP_TLBI_NSNH_ALL:
791 break;
792 case CMDQ_OP_PREFETCH_CFG:
793 cmd[0] |= (u64)ent->prefetch.sid << CMDQ_PREFETCH_0_SID_SHIFT;
794 cmd[1] |= ent->prefetch.size << CMDQ_PREFETCH_1_SIZE_SHIFT;
795 cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
796 break;
797 case CMDQ_OP_CFGI_STE:
798 cmd[0] |= (u64)ent->cfgi.sid << CMDQ_CFGI_0_SID_SHIFT;
799 cmd[1] |= ent->cfgi.leaf ? CMDQ_CFGI_1_LEAF : 0;
800 break;
801 case CMDQ_OP_CFGI_ALL:
802 /* Cover the entire SID range */
803 cmd[1] |= CMDQ_CFGI_1_RANGE_MASK << CMDQ_CFGI_1_RANGE_SHIFT;
804 break;
805 case CMDQ_OP_TLBI_NH_VA:
806 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
1c27df1c
WD
807 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
808 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK;
809 break;
48ec83bc
WD
810 case CMDQ_OP_TLBI_S2_IPA:
811 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
812 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
1c27df1c 813 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK;
48ec83bc
WD
814 break;
815 case CMDQ_OP_TLBI_NH_ASID:
816 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
817 /* Fallthrough */
818 case CMDQ_OP_TLBI_S12_VMALL:
819 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
820 break;
821 case CMDQ_OP_PRI_RESP:
822 cmd[0] |= ent->substream_valid ? CMDQ_0_SSV : 0;
823 cmd[0] |= ent->pri.ssid << CMDQ_PRI_0_SSID_SHIFT;
824 cmd[0] |= (u64)ent->pri.sid << CMDQ_PRI_0_SID_SHIFT;
825 cmd[1] |= ent->pri.grpid << CMDQ_PRI_1_GRPID_SHIFT;
826 switch (ent->pri.resp) {
827 case PRI_RESP_DENY:
828 cmd[1] |= CMDQ_PRI_1_RESP_DENY;
829 break;
830 case PRI_RESP_FAIL:
831 cmd[1] |= CMDQ_PRI_1_RESP_FAIL;
832 break;
833 case PRI_RESP_SUCC:
834 cmd[1] |= CMDQ_PRI_1_RESP_SUCC;
835 break;
836 default:
837 return -EINVAL;
838 }
839 break;
840 case CMDQ_OP_CMD_SYNC:
841 cmd[0] |= CMDQ_SYNC_0_CS_SEV;
842 break;
843 default:
844 return -ENOENT;
845 }
846
847 return 0;
848}
849
850static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
851{
852 static const char *cerror_str[] = {
853 [CMDQ_ERR_CERROR_NONE_IDX] = "No error",
854 [CMDQ_ERR_CERROR_ILL_IDX] = "Illegal command",
855 [CMDQ_ERR_CERROR_ABT_IDX] = "Abort on command fetch",
856 };
857
858 int i;
859 u64 cmd[CMDQ_ENT_DWORDS];
860 struct arm_smmu_queue *q = &smmu->cmdq.q;
861 u32 cons = readl_relaxed(q->cons_reg);
862 u32 idx = cons >> CMDQ_ERR_SHIFT & CMDQ_ERR_MASK;
863 struct arm_smmu_cmdq_ent cmd_sync = {
864 .opcode = CMDQ_OP_CMD_SYNC,
865 };
866
867 dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
a0d5c04c 868 idx < ARRAY_SIZE(cerror_str) ? cerror_str[idx] : "Unknown");
48ec83bc
WD
869
870 switch (idx) {
48ec83bc
WD
871 case CMDQ_ERR_CERROR_ABT_IDX:
872 dev_err(smmu->dev, "retrying command fetch\n");
873 case CMDQ_ERR_CERROR_NONE_IDX:
874 return;
a0d5c04c
WD
875 case CMDQ_ERR_CERROR_ILL_IDX:
876 /* Fallthrough */
877 default:
878 break;
48ec83bc
WD
879 }
880
881 /*
882 * We may have concurrent producers, so we need to be careful
883 * not to touch any of the shadow cmdq state.
884 */
aea2037e 885 queue_read(cmd, Q_ENT(q, cons), q->ent_dwords);
48ec83bc
WD
886 dev_err(smmu->dev, "skipping command in error state:\n");
887 for (i = 0; i < ARRAY_SIZE(cmd); ++i)
888 dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);
889
890 /* Convert the erroneous command into a CMD_SYNC */
891 if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
892 dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
893 return;
894 }
895
aea2037e 896 queue_write(Q_ENT(q, cons), cmd, q->ent_dwords);
48ec83bc
WD
897}
898
899static void arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
900 struct arm_smmu_cmdq_ent *ent)
901{
48ec83bc 902 u64 cmd[CMDQ_ENT_DWORDS];
8ded2909 903 unsigned long flags;
48ec83bc
WD
904 bool wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
905 struct arm_smmu_queue *q = &smmu->cmdq.q;
906
907 if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
908 dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
909 ent->opcode);
910 return;
911 }
912
8ded2909 913 spin_lock_irqsave(&smmu->cmdq.lock, flags);
bcfced15
JPB
914 while (queue_insert_raw(q, cmd) == -ENOSPC) {
915 if (queue_poll_cons(q, false, wfe))
48ec83bc
WD
916 dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
917 }
918
bcfced15 919 if (ent->opcode == CMDQ_OP_CMD_SYNC && queue_poll_cons(q, true, wfe))
48ec83bc 920 dev_err_ratelimited(smmu->dev, "CMD_SYNC timeout\n");
8ded2909 921 spin_unlock_irqrestore(&smmu->cmdq.lock, flags);
48ec83bc
WD
922}
923
924/* Context descriptor manipulation functions */
925static u64 arm_smmu_cpu_tcr_to_cd(u64 tcr)
926{
927 u64 val = 0;
928
929 /* Repack the TCR. Just care about TTBR0 for now */
930 val |= ARM_SMMU_TCR2CD(tcr, T0SZ);
931 val |= ARM_SMMU_TCR2CD(tcr, TG0);
932 val |= ARM_SMMU_TCR2CD(tcr, IRGN0);
933 val |= ARM_SMMU_TCR2CD(tcr, ORGN0);
934 val |= ARM_SMMU_TCR2CD(tcr, SH0);
935 val |= ARM_SMMU_TCR2CD(tcr, EPD0);
936 val |= ARM_SMMU_TCR2CD(tcr, EPD1);
937 val |= ARM_SMMU_TCR2CD(tcr, IPS);
938 val |= ARM_SMMU_TCR2CD(tcr, TBI0);
939
940 return val;
941}
942
943static void arm_smmu_write_ctx_desc(struct arm_smmu_device *smmu,
944 struct arm_smmu_s1_cfg *cfg)
945{
946 u64 val;
947
948 /*
949 * We don't need to issue any invalidation here, as we'll invalidate
950 * the STE when installing the new entry anyway.
951 */
952 val = arm_smmu_cpu_tcr_to_cd(cfg->cd.tcr) |
953#ifdef __BIG_ENDIAN
954 CTXDESC_CD_0_ENDI |
955#endif
956 CTXDESC_CD_0_R | CTXDESC_CD_0_A | CTXDESC_CD_0_ASET_PRIVATE |
957 CTXDESC_CD_0_AA64 | (u64)cfg->cd.asid << CTXDESC_CD_0_ASID_SHIFT |
958 CTXDESC_CD_0_V;
959 cfg->cdptr[0] = cpu_to_le64(val);
960
961 val = cfg->cd.ttbr & CTXDESC_CD_1_TTB0_MASK << CTXDESC_CD_1_TTB0_SHIFT;
962 cfg->cdptr[1] = cpu_to_le64(val);
963
964 cfg->cdptr[3] = cpu_to_le64(cfg->cd.mair << CTXDESC_CD_3_MAIR_SHIFT);
965}
966
967/* Stream table manipulation functions */
968static void
969arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
970{
971 u64 val = 0;
972
973 val |= (desc->span & STRTAB_L1_DESC_SPAN_MASK)
974 << STRTAB_L1_DESC_SPAN_SHIFT;
975 val |= desc->l2ptr_dma &
976 STRTAB_L1_DESC_L2PTR_MASK << STRTAB_L1_DESC_L2PTR_SHIFT;
977
978 *dst = cpu_to_le64(val);
979}
980
981static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
982{
983 struct arm_smmu_cmdq_ent cmd = {
984 .opcode = CMDQ_OP_CFGI_STE,
985 .cfgi = {
986 .sid = sid,
987 .leaf = true,
988 },
989 };
990
991 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
992 cmd.opcode = CMDQ_OP_CMD_SYNC;
993 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
994}
995
996static void arm_smmu_write_strtab_ent(struct arm_smmu_device *smmu, u32 sid,
997 __le64 *dst, struct arm_smmu_strtab_ent *ste)
998{
999 /*
1000 * This is hideously complicated, but we only really care about
1001 * three cases at the moment:
1002 *
1003 * 1. Invalid (all zero) -> bypass (init)
1004 * 2. Bypass -> translation (attach)
1005 * 3. Translation -> bypass (detach)
1006 *
1007 * Given that we can't update the STE atomically and the SMMU
1008 * doesn't read the thing in a defined order, that leaves us
1009 * with the following maintenance requirements:
1010 *
1011 * 1. Update Config, return (init time STEs aren't live)
1012 * 2. Write everything apart from dword 0, sync, write dword 0, sync
1013 * 3. Update Config, sync
1014 */
1015 u64 val = le64_to_cpu(dst[0]);
1016 bool ste_live = false;
1017 struct arm_smmu_cmdq_ent prefetch_cmd = {
1018 .opcode = CMDQ_OP_PREFETCH_CFG,
1019 .prefetch = {
1020 .sid = sid,
1021 },
1022 };
1023
1024 if (val & STRTAB_STE_0_V) {
1025 u64 cfg;
1026
1027 cfg = val & STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT;
1028 switch (cfg) {
1029 case STRTAB_STE_0_CFG_BYPASS:
1030 break;
1031 case STRTAB_STE_0_CFG_S1_TRANS:
1032 case STRTAB_STE_0_CFG_S2_TRANS:
1033 ste_live = true;
1034 break;
5bc0a116
WD
1035 case STRTAB_STE_0_CFG_ABORT:
1036 if (disable_bypass)
1037 break;
48ec83bc
WD
1038 default:
1039 BUG(); /* STE corruption */
1040 }
1041 }
1042
1043 /* Nuke the existing Config, as we're going to rewrite it */
1044 val &= ~(STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT);
1045
1046 if (ste->valid)
1047 val |= STRTAB_STE_0_V;
1048 else
1049 val &= ~STRTAB_STE_0_V;
1050
1051 if (ste->bypass) {
1052 val |= disable_bypass ? STRTAB_STE_0_CFG_ABORT
1053 : STRTAB_STE_0_CFG_BYPASS;
1054 dst[0] = cpu_to_le64(val);
a0eacd89
WD
1055 dst[1] = cpu_to_le64(STRTAB_STE_1_SHCFG_INCOMING
1056 << STRTAB_STE_1_SHCFG_SHIFT);
48ec83bc
WD
1057 dst[2] = 0; /* Nuke the VMID */
1058 if (ste_live)
1059 arm_smmu_sync_ste_for_sid(smmu, sid);
1060 return;
1061 }
1062
1063 if (ste->s1_cfg) {
1064 BUG_ON(ste_live);
1065 dst[1] = cpu_to_le64(
1066 STRTAB_STE_1_S1C_CACHE_WBRA
1067 << STRTAB_STE_1_S1CIR_SHIFT |
1068 STRTAB_STE_1_S1C_CACHE_WBRA
1069 << STRTAB_STE_1_S1COR_SHIFT |
1070 STRTAB_STE_1_S1C_SH_ISH << STRTAB_STE_1_S1CSH_SHIFT |
48ec83bc
WD
1071#ifdef CONFIG_PCI_ATS
1072 STRTAB_STE_1_EATS_TRANS << STRTAB_STE_1_EATS_SHIFT |
1073#endif
95fa99aa
RM
1074 STRTAB_STE_1_STRW_NSEL1 << STRTAB_STE_1_STRW_SHIFT |
1075 STRTAB_STE_1_PRIVCFG_UNPRIV <<
1076 STRTAB_STE_1_PRIVCFG_SHIFT);
48ec83bc 1077
6380be05
PM
1078 if (smmu->features & ARM_SMMU_FEAT_STALLS)
1079 dst[1] |= cpu_to_le64(STRTAB_STE_1_S1STALLD);
1080
48ec83bc
WD
1081 val |= (ste->s1_cfg->cdptr_dma & STRTAB_STE_0_S1CTXPTR_MASK
1082 << STRTAB_STE_0_S1CTXPTR_SHIFT) |
1083 STRTAB_STE_0_CFG_S1_TRANS;
1084
1085 }
1086
1087 if (ste->s2_cfg) {
1088 BUG_ON(ste_live);
1089 dst[2] = cpu_to_le64(
1090 ste->s2_cfg->vmid << STRTAB_STE_2_S2VMID_SHIFT |
1091 (ste->s2_cfg->vtcr & STRTAB_STE_2_VTCR_MASK)
1092 << STRTAB_STE_2_VTCR_SHIFT |
1093#ifdef __BIG_ENDIAN
1094 STRTAB_STE_2_S2ENDI |
1095#endif
1096 STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
1097 STRTAB_STE_2_S2R);
1098
1099 dst[3] = cpu_to_le64(ste->s2_cfg->vttbr &
1100 STRTAB_STE_3_S2TTB_MASK << STRTAB_STE_3_S2TTB_SHIFT);
1101
1102 val |= STRTAB_STE_0_CFG_S2_TRANS;
1103 }
1104
1105 arm_smmu_sync_ste_for_sid(smmu, sid);
1106 dst[0] = cpu_to_le64(val);
1107 arm_smmu_sync_ste_for_sid(smmu, sid);
1108
1109 /* It's likely that we'll want to use the new STE soon */
5e92946c
ZL
1110 if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
1111 arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
48ec83bc
WD
1112}
1113
1114static void arm_smmu_init_bypass_stes(u64 *strtab, unsigned int nent)
1115{
1116 unsigned int i;
1117 struct arm_smmu_strtab_ent ste = {
1118 .valid = true,
1119 .bypass = true,
1120 };
1121
1122 for (i = 0; i < nent; ++i) {
1123 arm_smmu_write_strtab_ent(NULL, -1, strtab, &ste);
1124 strtab += STRTAB_STE_DWORDS;
1125 }
1126}
1127
1128static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
1129{
1130 size_t size;
1131 void *strtab;
1132 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1133 struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];
1134
1135 if (desc->l2ptr)
1136 return 0;
1137
1138 size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
69146e7b 1139 strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
48ec83bc
WD
1140
1141 desc->span = STRTAB_SPLIT + 1;
04fa26c7
WD
1142 desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
1143 GFP_KERNEL | __GFP_ZERO);
48ec83bc
WD
1144 if (!desc->l2ptr) {
1145 dev_err(smmu->dev,
1146 "failed to allocate l2 stream table for SID %u\n",
1147 sid);
1148 return -ENOMEM;
1149 }
1150
1151 arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
1152 arm_smmu_write_strtab_l1_desc(strtab, desc);
1153 return 0;
1154}
1155
1156/* IRQ and event handlers */
1157static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
1158{
1159 int i;
1160 struct arm_smmu_device *smmu = dev;
1161 struct arm_smmu_queue *q = &smmu->evtq.q;
1162 u64 evt[EVTQ_ENT_DWORDS];
1163
b4163fb3
JPB
1164 do {
1165 while (!queue_remove_raw(q, evt)) {
1166 u8 id = evt[0] >> EVTQ_0_ID_SHIFT & EVTQ_0_ID_MASK;
48ec83bc 1167
b4163fb3
JPB
1168 dev_info(smmu->dev, "event 0x%02x received:\n", id);
1169 for (i = 0; i < ARRAY_SIZE(evt); ++i)
1170 dev_info(smmu->dev, "\t0x%016llx\n",
1171 (unsigned long long)evt[i]);
1172
1173 }
1174
1175 /*
1176 * Not much we can do on overflow, so scream and pretend we're
1177 * trying harder.
1178 */
1179 if (queue_sync_prod(q) == -EOVERFLOW)
1180 dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
1181 } while (!queue_empty(q));
48ec83bc
WD
1182
1183 /* Sync our overflow flag, as we believe we're up to speed */
1184 q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1185 return IRQ_HANDLED;
1186}
1187
b4163fb3
JPB
1188static void arm_smmu_handle_ppr(struct arm_smmu_device *smmu, u64 *evt)
1189{
1190 u32 sid, ssid;
1191 u16 grpid;
1192 bool ssv, last;
1193
1194 sid = evt[0] >> PRIQ_0_SID_SHIFT & PRIQ_0_SID_MASK;
1195 ssv = evt[0] & PRIQ_0_SSID_V;
1196 ssid = ssv ? evt[0] >> PRIQ_0_SSID_SHIFT & PRIQ_0_SSID_MASK : 0;
1197 last = evt[0] & PRIQ_0_PRG_LAST;
1198 grpid = evt[1] >> PRIQ_1_PRG_IDX_SHIFT & PRIQ_1_PRG_IDX_MASK;
1199
1200 dev_info(smmu->dev, "unexpected PRI request received:\n");
1201 dev_info(smmu->dev,
1202 "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
1203 sid, ssid, grpid, last ? "L" : "",
1204 evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
1205 evt[0] & PRIQ_0_PERM_READ ? "R" : "",
1206 evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
1207 evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1208 evt[1] & PRIQ_1_ADDR_MASK << PRIQ_1_ADDR_SHIFT);
1209
1210 if (last) {
1211 struct arm_smmu_cmdq_ent cmd = {
1212 .opcode = CMDQ_OP_PRI_RESP,
1213 .substream_valid = ssv,
1214 .pri = {
1215 .sid = sid,
1216 .ssid = ssid,
1217 .grpid = grpid,
1218 .resp = PRI_RESP_DENY,
1219 },
1220 };
48ec83bc 1221
b4163fb3
JPB
1222 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1223 }
48ec83bc
WD
1224}
1225
1226static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
1227{
1228 struct arm_smmu_device *smmu = dev;
1229 struct arm_smmu_queue *q = &smmu->priq.q;
1230 u64 evt[PRIQ_ENT_DWORDS];
1231
b4163fb3
JPB
1232 do {
1233 while (!queue_remove_raw(q, evt))
1234 arm_smmu_handle_ppr(smmu, evt);
48ec83bc 1235
b4163fb3
JPB
1236 if (queue_sync_prod(q) == -EOVERFLOW)
1237 dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
1238 } while (!queue_empty(q));
48ec83bc
WD
1239
1240 /* Sync our overflow flag, as we believe we're up to speed */
1241 q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1242 return IRQ_HANDLED;
1243}
1244
48ec83bc
WD
1245static irqreturn_t arm_smmu_cmdq_sync_handler(int irq, void *dev)
1246{
1247 /* We don't actually use CMD_SYNC interrupts for anything */
1248 return IRQ_HANDLED;
1249}
1250
1251static int arm_smmu_device_disable(struct arm_smmu_device *smmu);
1252
1253static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
1254{
324ba108 1255 u32 gerror, gerrorn, active;
48ec83bc
WD
1256 struct arm_smmu_device *smmu = dev;
1257
1258 gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
1259 gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);
1260
324ba108
PM
1261 active = gerror ^ gerrorn;
1262 if (!(active & GERROR_ERR_MASK))
48ec83bc
WD
1263 return IRQ_NONE; /* No errors pending */
1264
1265 dev_warn(smmu->dev,
1266 "unexpected global error reported (0x%08x), this could be serious\n",
324ba108 1267 active);
48ec83bc 1268
324ba108 1269 if (active & GERROR_SFM_ERR) {
48ec83bc
WD
1270 dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
1271 arm_smmu_device_disable(smmu);
1272 }
1273
324ba108 1274 if (active & GERROR_MSI_GERROR_ABT_ERR)
48ec83bc
WD
1275 dev_warn(smmu->dev, "GERROR MSI write aborted\n");
1276
b4163fb3 1277 if (active & GERROR_MSI_PRIQ_ABT_ERR)
48ec83bc 1278 dev_warn(smmu->dev, "PRIQ MSI write aborted\n");
48ec83bc 1279
b4163fb3 1280 if (active & GERROR_MSI_EVTQ_ABT_ERR)
48ec83bc 1281 dev_warn(smmu->dev, "EVTQ MSI write aborted\n");
48ec83bc 1282
324ba108 1283 if (active & GERROR_MSI_CMDQ_ABT_ERR) {
48ec83bc
WD
1284 dev_warn(smmu->dev, "CMDQ MSI write aborted\n");
1285 arm_smmu_cmdq_sync_handler(irq, smmu->dev);
1286 }
1287
324ba108 1288 if (active & GERROR_PRIQ_ABT_ERR)
48ec83bc
WD
1289 dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");
1290
324ba108 1291 if (active & GERROR_EVTQ_ABT_ERR)
48ec83bc
WD
1292 dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");
1293
324ba108 1294 if (active & GERROR_CMDQ_ERR)
48ec83bc
WD
1295 arm_smmu_cmdq_skip_err(smmu);
1296
1297 writel(gerror, smmu->base + ARM_SMMU_GERRORN);
1298 return IRQ_HANDLED;
1299}
1300
1301/* IO_PGTABLE API */
1302static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
1303{
1304 struct arm_smmu_cmdq_ent cmd;
1305
1306 cmd.opcode = CMDQ_OP_CMD_SYNC;
1307 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1308}
1309
1310static void arm_smmu_tlb_sync(void *cookie)
1311{
1312 struct arm_smmu_domain *smmu_domain = cookie;
1313 __arm_smmu_tlb_sync(smmu_domain->smmu);
1314}
1315
1316static void arm_smmu_tlb_inv_context(void *cookie)
1317{
1318 struct arm_smmu_domain *smmu_domain = cookie;
1319 struct arm_smmu_device *smmu = smmu_domain->smmu;
1320 struct arm_smmu_cmdq_ent cmd;
1321
1322 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1323 cmd.opcode = CMDQ_OP_TLBI_NH_ASID;
1324 cmd.tlbi.asid = smmu_domain->s1_cfg.cd.asid;
1325 cmd.tlbi.vmid = 0;
1326 } else {
1327 cmd.opcode = CMDQ_OP_TLBI_S12_VMALL;
1328 cmd.tlbi.vmid = smmu_domain->s2_cfg.vmid;
1329 }
1330
1331 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1332 __arm_smmu_tlb_sync(smmu);
1333}
1334
1335static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
06c610e8 1336 size_t granule, bool leaf, void *cookie)
48ec83bc
WD
1337{
1338 struct arm_smmu_domain *smmu_domain = cookie;
1339 struct arm_smmu_device *smmu = smmu_domain->smmu;
1340 struct arm_smmu_cmdq_ent cmd = {
1341 .tlbi = {
1342 .leaf = leaf,
1343 .addr = iova,
1344 },
1345 };
1346
1347 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1348 cmd.opcode = CMDQ_OP_TLBI_NH_VA;
1349 cmd.tlbi.asid = smmu_domain->s1_cfg.cd.asid;
1350 } else {
1351 cmd.opcode = CMDQ_OP_TLBI_S2_IPA;
1352 cmd.tlbi.vmid = smmu_domain->s2_cfg.vmid;
1353 }
1354
75df1386
RM
1355 do {
1356 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1357 cmd.tlbi.addr += granule;
1358 } while (size -= granule);
48ec83bc
WD
1359}
1360
ca297aad 1361static const struct iommu_gather_ops arm_smmu_gather_ops = {
48ec83bc
WD
1362 .tlb_flush_all = arm_smmu_tlb_inv_context,
1363 .tlb_add_flush = arm_smmu_tlb_inv_range_nosync,
1364 .tlb_sync = arm_smmu_tlb_sync,
48ec83bc
WD
1365};
1366
1367/* IOMMU API */
1368static bool arm_smmu_capable(enum iommu_cap cap)
1369{
1370 switch (cap) {
1371 case IOMMU_CAP_CACHE_COHERENCY:
1372 return true;
1373 case IOMMU_CAP_INTR_REMAP:
1374 return true; /* MSIs are just memory writes */
1375 case IOMMU_CAP_NOEXEC:
1376 return true;
1377 default:
1378 return false;
1379 }
1380}
1381
1382static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1383{
1384 struct arm_smmu_domain *smmu_domain;
1385
9adb9594 1386 if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
48ec83bc
WD
1387 return NULL;
1388
1389 /*
1390 * Allocate the domain and initialise some of its data structures.
1391 * We can't really do anything meaningful until we've added a
1392 * master.
1393 */
1394 smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
1395 if (!smmu_domain)
1396 return NULL;
1397
9adb9594
RM
1398 if (type == IOMMU_DOMAIN_DMA &&
1399 iommu_get_dma_cookie(&smmu_domain->domain)) {
1400 kfree(smmu_domain);
1401 return NULL;
1402 }
1403
48ec83bc
WD
1404 mutex_init(&smmu_domain->init_mutex);
1405 spin_lock_init(&smmu_domain->pgtbl_lock);
1406 return &smmu_domain->domain;
1407}
1408
1409static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
1410{
1411 int idx, size = 1 << span;
1412
1413 do {
1414 idx = find_first_zero_bit(map, size);
1415 if (idx == size)
1416 return -ENOSPC;
1417 } while (test_and_set_bit(idx, map));
1418
1419 return idx;
1420}
1421
1422static void arm_smmu_bitmap_free(unsigned long *map, int idx)
1423{
1424 clear_bit(idx, map);
1425}
1426
1427static void arm_smmu_domain_free(struct iommu_domain *domain)
1428{
1429 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1430 struct arm_smmu_device *smmu = smmu_domain->smmu;
1431
9adb9594 1432 iommu_put_dma_cookie(domain);
a6e08fb2 1433 free_io_pgtable_ops(smmu_domain->pgtbl_ops);
48ec83bc
WD
1434
1435 /* Free the CD and ASID, if we allocated them */
1436 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1437 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1438
1439 if (cfg->cdptr) {
04fa26c7
WD
1440 dmam_free_coherent(smmu_domain->smmu->dev,
1441 CTXDESC_CD_DWORDS << 3,
1442 cfg->cdptr,
1443 cfg->cdptr_dma);
48ec83bc
WD
1444
1445 arm_smmu_bitmap_free(smmu->asid_map, cfg->cd.asid);
1446 }
1447 } else {
1448 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1449 if (cfg->vmid)
1450 arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
1451 }
1452
1453 kfree(smmu_domain);
1454}
1455
1456static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
1457 struct io_pgtable_cfg *pgtbl_cfg)
1458{
1459 int ret;
c0733a2c 1460 int asid;
48ec83bc
WD
1461 struct arm_smmu_device *smmu = smmu_domain->smmu;
1462 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1463
1464 asid = arm_smmu_bitmap_alloc(smmu->asid_map, smmu->asid_bits);
287980e4 1465 if (asid < 0)
48ec83bc
WD
1466 return asid;
1467
04fa26c7
WD
1468 cfg->cdptr = dmam_alloc_coherent(smmu->dev, CTXDESC_CD_DWORDS << 3,
1469 &cfg->cdptr_dma,
1470 GFP_KERNEL | __GFP_ZERO);
48ec83bc
WD
1471 if (!cfg->cdptr) {
1472 dev_warn(smmu->dev, "failed to allocate context descriptor\n");
c0733a2c 1473 ret = -ENOMEM;
48ec83bc
WD
1474 goto out_free_asid;
1475 }
1476
c0733a2c 1477 cfg->cd.asid = (u16)asid;
48ec83bc
WD
1478 cfg->cd.ttbr = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
1479 cfg->cd.tcr = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
1480 cfg->cd.mair = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
1481 return 0;
1482
1483out_free_asid:
1484 arm_smmu_bitmap_free(smmu->asid_map, asid);
1485 return ret;
1486}
1487
1488static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
1489 struct io_pgtable_cfg *pgtbl_cfg)
1490{
c0733a2c 1491 int vmid;
48ec83bc
WD
1492 struct arm_smmu_device *smmu = smmu_domain->smmu;
1493 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1494
1495 vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
287980e4 1496 if (vmid < 0)
48ec83bc
WD
1497 return vmid;
1498
c0733a2c 1499 cfg->vmid = (u16)vmid;
48ec83bc
WD
1500 cfg->vttbr = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
1501 cfg->vtcr = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
1502 return 0;
1503}
1504
48ec83bc
WD
1505static int arm_smmu_domain_finalise(struct iommu_domain *domain)
1506{
1507 int ret;
1508 unsigned long ias, oas;
1509 enum io_pgtable_fmt fmt;
1510 struct io_pgtable_cfg pgtbl_cfg;
1511 struct io_pgtable_ops *pgtbl_ops;
1512 int (*finalise_stage_fn)(struct arm_smmu_domain *,
1513 struct io_pgtable_cfg *);
1514 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1515 struct arm_smmu_device *smmu = smmu_domain->smmu;
1516
1517 /* Restrict the stage to what we can actually support */
1518 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
1519 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
1520 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
1521 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1522
1523 switch (smmu_domain->stage) {
1524 case ARM_SMMU_DOMAIN_S1:
1525 ias = VA_BITS;
1526 oas = smmu->ias;
1527 fmt = ARM_64_LPAE_S1;
1528 finalise_stage_fn = arm_smmu_domain_finalise_s1;
1529 break;
1530 case ARM_SMMU_DOMAIN_NESTED:
1531 case ARM_SMMU_DOMAIN_S2:
1532 ias = smmu->ias;
1533 oas = smmu->oas;
1534 fmt = ARM_64_LPAE_S2;
1535 finalise_stage_fn = arm_smmu_domain_finalise_s2;
1536 break;
1537 default:
1538 return -EINVAL;
1539 }
1540
1541 pgtbl_cfg = (struct io_pgtable_cfg) {
d5466357 1542 .pgsize_bitmap = smmu->pgsize_bitmap,
48ec83bc
WD
1543 .ias = ias,
1544 .oas = oas,
1545 .tlb = &arm_smmu_gather_ops,
bdc6d973 1546 .iommu_dev = smmu->dev,
48ec83bc
WD
1547 };
1548
1549 pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
1550 if (!pgtbl_ops)
1551 return -ENOMEM;
1552
d5466357 1553 domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
455eb7d3
RM
1554 domain->geometry.aperture_end = (1UL << ias) - 1;
1555 domain->geometry.force_aperture = true;
48ec83bc
WD
1556 smmu_domain->pgtbl_ops = pgtbl_ops;
1557
1558 ret = finalise_stage_fn(smmu_domain, &pgtbl_cfg);
287980e4 1559 if (ret < 0)
48ec83bc
WD
1560 free_io_pgtable_ops(pgtbl_ops);
1561
1562 return ret;
1563}
1564
48ec83bc
WD
1565static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
1566{
1567 __le64 *step;
1568 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1569
1570 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1571 struct arm_smmu_strtab_l1_desc *l1_desc;
1572 int idx;
1573
1574 /* Two-level walk */
1575 idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
1576 l1_desc = &cfg->l1_desc[idx];
1577 idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
1578 step = &l1_desc->l2ptr[idx];
1579 } else {
1580 /* Simple linear lookup */
1581 step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
1582 }
1583
1584 return step;
1585}
1586
8f785154 1587static int arm_smmu_install_ste_for_dev(struct iommu_fwspec *fwspec)
48ec83bc
WD
1588{
1589 int i;
8f785154
RM
1590 struct arm_smmu_master_data *master = fwspec->iommu_priv;
1591 struct arm_smmu_device *smmu = master->smmu;
48ec83bc 1592
8f785154
RM
1593 for (i = 0; i < fwspec->num_ids; ++i) {
1594 u32 sid = fwspec->ids[i];
48ec83bc
WD
1595 __le64 *step = arm_smmu_get_step_for_sid(smmu, sid);
1596
8f785154 1597 arm_smmu_write_strtab_ent(smmu, sid, step, &master->ste);
48ec83bc
WD
1598 }
1599
1600 return 0;
1601}
1602
bc7f2ce0
WD
1603static void arm_smmu_detach_dev(struct device *dev)
1604{
8f785154 1605 struct arm_smmu_master_data *master = dev->iommu_fwspec->iommu_priv;
bc7f2ce0 1606
8f785154
RM
1607 master->ste.bypass = true;
1608 if (arm_smmu_install_ste_for_dev(dev->iommu_fwspec) < 0)
bc7f2ce0 1609 dev_warn(dev, "failed to install bypass STE\n");
bc7f2ce0
WD
1610}
1611
48ec83bc
WD
1612static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1613{
1614 int ret = 0;
1615 struct arm_smmu_device *smmu;
1616 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
8f785154
RM
1617 struct arm_smmu_master_data *master;
1618 struct arm_smmu_strtab_ent *ste;
48ec83bc 1619
8f785154 1620 if (!dev->iommu_fwspec)
48ec83bc
WD
1621 return -ENOENT;
1622
8f785154
RM
1623 master = dev->iommu_fwspec->iommu_priv;
1624 smmu = master->smmu;
1625 ste = &master->ste;
1626
48ec83bc 1627 /* Already attached to a different domain? */
8f785154 1628 if (!ste->bypass)
bc7f2ce0 1629 arm_smmu_detach_dev(dev);
48ec83bc 1630
48ec83bc
WD
1631 mutex_lock(&smmu_domain->init_mutex);
1632
1633 if (!smmu_domain->smmu) {
1634 smmu_domain->smmu = smmu;
1635 ret = arm_smmu_domain_finalise(domain);
1636 if (ret) {
1637 smmu_domain->smmu = NULL;
1638 goto out_unlock;
1639 }
1640 } else if (smmu_domain->smmu != smmu) {
1641 dev_err(dev,
1642 "cannot attach to SMMU %s (upstream of %s)\n",
1643 dev_name(smmu_domain->smmu->dev),
1644 dev_name(smmu->dev));
1645 ret = -ENXIO;
1646 goto out_unlock;
1647 }
1648
8f785154
RM
1649 ste->bypass = false;
1650 ste->valid = true;
cbf8277e 1651
8f785154
RM
1652 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1653 ste->s1_cfg = &smmu_domain->s1_cfg;
1654 ste->s2_cfg = NULL;
1655 arm_smmu_write_ctx_desc(smmu, ste->s1_cfg);
1656 } else {
1657 ste->s1_cfg = NULL;
1658 ste->s2_cfg = &smmu_domain->s2_cfg;
1659 }
48ec83bc 1660
8f785154 1661 ret = arm_smmu_install_ste_for_dev(dev->iommu_fwspec);
287980e4 1662 if (ret < 0)
8f785154 1663 ste->valid = false;
48ec83bc
WD
1664
1665out_unlock:
1666 mutex_unlock(&smmu_domain->init_mutex);
1667 return ret;
1668}
1669
48ec83bc
WD
1670static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1671 phys_addr_t paddr, size_t size, int prot)
1672{
1673 int ret;
1674 unsigned long flags;
1675 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1676 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1677
1678 if (!ops)
1679 return -ENODEV;
1680
1681 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1682 ret = ops->map(ops, iova, paddr, size, prot);
1683 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1684 return ret;
1685}
1686
1687static size_t
1688arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size)
1689{
1690 size_t ret;
1691 unsigned long flags;
1692 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1693 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1694
1695 if (!ops)
1696 return 0;
1697
1698 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1699 ret = ops->unmap(ops, iova, size);
1700 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1701 return ret;
1702}
1703
1704static phys_addr_t
1705arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1706{
1707 phys_addr_t ret;
1708 unsigned long flags;
1709 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1710 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1711
1712 if (!ops)
1713 return 0;
1714
1715 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1716 ret = ops->iova_to_phys(ops, iova);
1717 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1718
1719 return ret;
1720}
1721
8f785154 1722static struct platform_driver arm_smmu_driver;
48ec83bc 1723
8f785154 1724static int arm_smmu_match_node(struct device *dev, void *data)
48ec83bc 1725{
778de074 1726 return dev->fwnode == data;
48ec83bc
WD
1727}
1728
778de074
LP
1729static
1730struct arm_smmu_device *arm_smmu_get_by_fwnode(struct fwnode_handle *fwnode)
48ec83bc 1731{
8f785154 1732 struct device *dev = driver_find_device(&arm_smmu_driver.driver, NULL,
778de074 1733 fwnode, arm_smmu_match_node);
8f785154
RM
1734 put_device(dev);
1735 return dev ? dev_get_drvdata(dev) : NULL;
48ec83bc
WD
1736}
1737
1738static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
1739{
1740 unsigned long limit = smmu->strtab_cfg.num_l1_ents;
1741
1742 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
1743 limit *= 1UL << STRTAB_SPLIT;
1744
1745 return sid < limit;
1746}
1747
8f785154
RM
1748static struct iommu_ops arm_smmu_ops;
1749
48ec83bc
WD
1750static int arm_smmu_add_device(struct device *dev)
1751{
1752 int i, ret;
48ec83bc 1753 struct arm_smmu_device *smmu;
8f785154
RM
1754 struct arm_smmu_master_data *master;
1755 struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1756 struct iommu_group *group;
48ec83bc 1757
8f785154 1758 if (!fwspec || fwspec->ops != &arm_smmu_ops)
48ec83bc 1759 return -ENODEV;
8f785154
RM
1760 /*
1761 * We _can_ actually withstand dodgy bus code re-calling add_device()
1762 * without an intervening remove_device()/of_xlate() sequence, but
1763 * we're not going to do so quietly...
1764 */
1765 if (WARN_ON_ONCE(fwspec->iommu_priv)) {
1766 master = fwspec->iommu_priv;
1767 smmu = master->smmu;
48ec83bc 1768 } else {
778de074 1769 smmu = arm_smmu_get_by_fwnode(fwspec->iommu_fwnode);
8f785154
RM
1770 if (!smmu)
1771 return -ENODEV;
1772 master = kzalloc(sizeof(*master), GFP_KERNEL);
1773 if (!master)
1774 return -ENOMEM;
1775
1776 master->smmu = smmu;
1777 fwspec->iommu_priv = master;
48ec83bc
WD
1778 }
1779
8f785154
RM
1780 /* Check the SIDs are in range of the SMMU and our stream table */
1781 for (i = 0; i < fwspec->num_ids; i++) {
1782 u32 sid = fwspec->ids[i];
48ec83bc 1783
8f785154
RM
1784 if (!arm_smmu_sid_in_range(smmu, sid))
1785 return -ERANGE;
48ec83bc 1786
8f785154
RM
1787 /* Ensure l2 strtab is initialised */
1788 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1789 ret = arm_smmu_init_l2_strtab(smmu, sid);
1790 if (ret)
1791 return ret;
1792 }
48ec83bc
WD
1793 }
1794
8f785154
RM
1795 group = iommu_group_get_for_dev(dev);
1796 if (!IS_ERR(group))
1797 iommu_group_put(group);
9a4a9d8c 1798
8f785154 1799 return PTR_ERR_OR_ZERO(group);
48ec83bc
WD
1800}
1801
1802static void arm_smmu_remove_device(struct device *dev)
1803{
8f785154
RM
1804 struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1805 struct arm_smmu_master_data *master;
1806
1807 if (!fwspec || fwspec->ops != &arm_smmu_ops)
1808 return;
1809
1810 master = fwspec->iommu_priv;
1811 if (master && master->ste.valid)
1812 arm_smmu_detach_dev(dev);
48ec83bc 1813 iommu_group_remove_device(dev);
8f785154
RM
1814 kfree(master);
1815 iommu_fwspec_free(dev);
48ec83bc
WD
1816}
1817
08d4ca2a
RM
1818static struct iommu_group *arm_smmu_device_group(struct device *dev)
1819{
1820 struct iommu_group *group;
1821
1822 /*
1823 * We don't support devices sharing stream IDs other than PCI RID
1824 * aliases, since the necessary ID-to-device lookup becomes rather
1825 * impractical given a potential sparse 32-bit stream ID space.
1826 */
1827 if (dev_is_pci(dev))
1828 group = pci_device_group(dev);
1829 else
1830 group = generic_device_group(dev);
1831
1832 return group;
1833}
1834
48ec83bc
WD
1835static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1836 enum iommu_attr attr, void *data)
1837{
1838 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1839
1840 switch (attr) {
1841 case DOMAIN_ATTR_NESTING:
1842 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1843 return 0;
1844 default:
1845 return -ENODEV;
1846 }
1847}
1848
1849static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1850 enum iommu_attr attr, void *data)
1851{
1852 int ret = 0;
1853 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1854
1855 mutex_lock(&smmu_domain->init_mutex);
1856
1857 switch (attr) {
1858 case DOMAIN_ATTR_NESTING:
1859 if (smmu_domain->smmu) {
1860 ret = -EPERM;
1861 goto out_unlock;
1862 }
1863
1864 if (*(int *)data)
1865 smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1866 else
1867 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1868
1869 break;
1870 default:
1871 ret = -ENODEV;
1872 }
1873
1874out_unlock:
1875 mutex_unlock(&smmu_domain->init_mutex);
1876 return ret;
1877}
1878
8f785154
RM
1879static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args)
1880{
8f785154
RM
1881 return iommu_fwspec_add_ids(dev, args->args, 1);
1882}
1883
48ec83bc
WD
1884static struct iommu_ops arm_smmu_ops = {
1885 .capable = arm_smmu_capable,
1886 .domain_alloc = arm_smmu_domain_alloc,
1887 .domain_free = arm_smmu_domain_free,
1888 .attach_dev = arm_smmu_attach_dev,
48ec83bc
WD
1889 .map = arm_smmu_map,
1890 .unmap = arm_smmu_unmap,
9aeb26cf 1891 .map_sg = default_iommu_map_sg,
48ec83bc
WD
1892 .iova_to_phys = arm_smmu_iova_to_phys,
1893 .add_device = arm_smmu_add_device,
1894 .remove_device = arm_smmu_remove_device,
08d4ca2a 1895 .device_group = arm_smmu_device_group,
48ec83bc
WD
1896 .domain_get_attr = arm_smmu_domain_get_attr,
1897 .domain_set_attr = arm_smmu_domain_set_attr,
8f785154 1898 .of_xlate = arm_smmu_of_xlate,
48ec83bc
WD
1899 .pgsize_bitmap = -1UL, /* Restricted during device attach */
1900};
1901
1902/* Probing and initialisation functions */
1903static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
1904 struct arm_smmu_queue *q,
1905 unsigned long prod_off,
1906 unsigned long cons_off,
1907 size_t dwords)
1908{
1909 size_t qsz = ((1 << q->max_n_shift) * dwords) << 3;
1910
04fa26c7 1911 q->base = dmam_alloc_coherent(smmu->dev, qsz, &q->base_dma, GFP_KERNEL);
48ec83bc
WD
1912 if (!q->base) {
1913 dev_err(smmu->dev, "failed to allocate queue (0x%zx bytes)\n",
1914 qsz);
1915 return -ENOMEM;
1916 }
1917
1918 q->prod_reg = smmu->base + prod_off;
1919 q->cons_reg = smmu->base + cons_off;
1920 q->ent_dwords = dwords;
1921
1922 q->q_base = Q_BASE_RWA;
1923 q->q_base |= q->base_dma & Q_BASE_ADDR_MASK << Q_BASE_ADDR_SHIFT;
1924 q->q_base |= (q->max_n_shift & Q_BASE_LOG2SIZE_MASK)
1925 << Q_BASE_LOG2SIZE_SHIFT;
1926
1927 q->prod = q->cons = 0;
1928 return 0;
1929}
1930
48ec83bc
WD
1931static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
1932{
1933 int ret;
1934
1935 /* cmdq */
1936 spin_lock_init(&smmu->cmdq.lock);
1937 ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, ARM_SMMU_CMDQ_PROD,
1938 ARM_SMMU_CMDQ_CONS, CMDQ_ENT_DWORDS);
1939 if (ret)
04fa26c7 1940 return ret;
48ec83bc
WD
1941
1942 /* evtq */
1943 ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, ARM_SMMU_EVTQ_PROD,
1944 ARM_SMMU_EVTQ_CONS, EVTQ_ENT_DWORDS);
1945 if (ret)
04fa26c7 1946 return ret;
48ec83bc
WD
1947
1948 /* priq */
1949 if (!(smmu->features & ARM_SMMU_FEAT_PRI))
1950 return 0;
1951
04fa26c7
WD
1952 return arm_smmu_init_one_queue(smmu, &smmu->priq.q, ARM_SMMU_PRIQ_PROD,
1953 ARM_SMMU_PRIQ_CONS, PRIQ_ENT_DWORDS);
48ec83bc
WD
1954}
1955
1956static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
1957{
1958 unsigned int i;
1959 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1960 size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
1961 void *strtab = smmu->strtab_cfg.strtab;
1962
1963 cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
1964 if (!cfg->l1_desc) {
1965 dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
1966 return -ENOMEM;
1967 }
1968
1969 for (i = 0; i < cfg->num_l1_ents; ++i) {
1970 arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
1971 strtab += STRTAB_L1_DESC_DWORDS << 3;
1972 }
1973
1974 return 0;
1975}
1976
1977static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
1978{
1979 void *strtab;
1980 u64 reg;
d2e88e7c 1981 u32 size, l1size;
48ec83bc
WD
1982 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1983
28c8b404
WD
1984 /*
1985 * If we can resolve everything with a single L2 table, then we
1986 * just need a single L1 descriptor. Otherwise, calculate the L1
1987 * size, capped to the SIDSIZE.
1988 */
1989 if (smmu->sid_bits < STRTAB_SPLIT) {
1990 size = 0;
1991 } else {
1992 size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
1993 size = min(size, smmu->sid_bits - STRTAB_SPLIT);
1994 }
d2e88e7c
WD
1995 cfg->num_l1_ents = 1 << size;
1996
1997 size += STRTAB_SPLIT;
1998 if (size < smmu->sid_bits)
48ec83bc
WD
1999 dev_warn(smmu->dev,
2000 "2-level strtab only covers %u/%u bits of SID\n",
d2e88e7c 2001 size, smmu->sid_bits);
48ec83bc 2002
d2e88e7c 2003 l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
04fa26c7
WD
2004 strtab = dmam_alloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
2005 GFP_KERNEL | __GFP_ZERO);
48ec83bc
WD
2006 if (!strtab) {
2007 dev_err(smmu->dev,
2008 "failed to allocate l1 stream table (%u bytes)\n",
2009 size);
2010 return -ENOMEM;
2011 }
2012 cfg->strtab = strtab;
2013
2014 /* Configure strtab_base_cfg for 2 levels */
2015 reg = STRTAB_BASE_CFG_FMT_2LVL;
2016 reg |= (size & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2017 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2018 reg |= (STRTAB_SPLIT & STRTAB_BASE_CFG_SPLIT_MASK)
2019 << STRTAB_BASE_CFG_SPLIT_SHIFT;
2020 cfg->strtab_base_cfg = reg;
2021
04fa26c7 2022 return arm_smmu_init_l1_strtab(smmu);
48ec83bc
WD
2023}
2024
2025static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
2026{
2027 void *strtab;
2028 u64 reg;
2029 u32 size;
2030 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2031
2032 size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
04fa26c7
WD
2033 strtab = dmam_alloc_coherent(smmu->dev, size, &cfg->strtab_dma,
2034 GFP_KERNEL | __GFP_ZERO);
48ec83bc
WD
2035 if (!strtab) {
2036 dev_err(smmu->dev,
2037 "failed to allocate linear stream table (%u bytes)\n",
2038 size);
2039 return -ENOMEM;
2040 }
2041 cfg->strtab = strtab;
2042 cfg->num_l1_ents = 1 << smmu->sid_bits;
2043
2044 /* Configure strtab_base_cfg for a linear table covering all SIDs */
2045 reg = STRTAB_BASE_CFG_FMT_LINEAR;
2046 reg |= (smmu->sid_bits & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2047 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2048 cfg->strtab_base_cfg = reg;
2049
2050 arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
2051 return 0;
2052}
2053
2054static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
2055{
2056 u64 reg;
2057 int ret;
2058
2059 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
2060 ret = arm_smmu_init_strtab_2lvl(smmu);
2061 else
2062 ret = arm_smmu_init_strtab_linear(smmu);
2063
2064 if (ret)
2065 return ret;
2066
2067 /* Set the strtab base address */
2068 reg = smmu->strtab_cfg.strtab_dma &
2069 STRTAB_BASE_ADDR_MASK << STRTAB_BASE_ADDR_SHIFT;
2070 reg |= STRTAB_BASE_RA;
2071 smmu->strtab_cfg.strtab_base = reg;
2072
2073 /* Allocate the first VMID for stage-2 bypass STEs */
2074 set_bit(0, smmu->vmid_map);
2075 return 0;
2076}
2077
48ec83bc
WD
2078static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
2079{
2080 int ret;
2081
2082 ret = arm_smmu_init_queues(smmu);
2083 if (ret)
2084 return ret;
2085
04fa26c7 2086 return arm_smmu_init_strtab(smmu);
48ec83bc
WD
2087}
2088
2089static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
2090 unsigned int reg_off, unsigned int ack_off)
2091{
2092 u32 reg;
2093
2094 writel_relaxed(val, smmu->base + reg_off);
2095 return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
2096 1, ARM_SMMU_POLL_TIMEOUT_US);
2097}
2098
dc87a98d
RM
2099/* GBPA is "special" */
2100static int arm_smmu_update_gbpa(struct arm_smmu_device *smmu, u32 set, u32 clr)
2101{
2102 int ret;
2103 u32 reg, __iomem *gbpa = smmu->base + ARM_SMMU_GBPA;
2104
2105 ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
2106 1, ARM_SMMU_POLL_TIMEOUT_US);
2107 if (ret)
2108 return ret;
2109
2110 reg &= ~clr;
2111 reg |= set;
2112 writel_relaxed(reg | GBPA_UPDATE, gbpa);
2113 return readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
2114 1, ARM_SMMU_POLL_TIMEOUT_US);
2115}
2116
166bdbd2
MZ
2117static void arm_smmu_free_msis(void *data)
2118{
2119 struct device *dev = data;
2120 platform_msi_domain_free_irqs(dev);
2121}
2122
2123static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
2124{
2125 phys_addr_t doorbell;
2126 struct device *dev = msi_desc_to_dev(desc);
2127 struct arm_smmu_device *smmu = dev_get_drvdata(dev);
2128 phys_addr_t *cfg = arm_smmu_msi_cfg[desc->platform.msi_index];
2129
2130 doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
2131 doorbell &= MSI_CFG0_ADDR_MASK << MSI_CFG0_ADDR_SHIFT;
2132
2133 writeq_relaxed(doorbell, smmu->base + cfg[0]);
2134 writel_relaxed(msg->data, smmu->base + cfg[1]);
2135 writel_relaxed(MSI_CFG2_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
2136}
2137
2138static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
2139{
2140 struct msi_desc *desc;
2141 int ret, nvec = ARM_SMMU_MAX_MSIS;
2142 struct device *dev = smmu->dev;
2143
2144 /* Clear the MSI address regs */
2145 writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
2146 writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);
2147
2148 if (smmu->features & ARM_SMMU_FEAT_PRI)
2149 writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
2150 else
2151 nvec--;
2152
2153 if (!(smmu->features & ARM_SMMU_FEAT_MSI))
2154 return;
2155
2156 /* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
2157 ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
2158 if (ret) {
2159 dev_warn(dev, "failed to allocate MSIs\n");
2160 return;
2161 }
2162
2163 for_each_msi_entry(desc, dev) {
2164 switch (desc->platform.msi_index) {
2165 case EVTQ_MSI_INDEX:
2166 smmu->evtq.q.irq = desc->irq;
2167 break;
2168 case GERROR_MSI_INDEX:
2169 smmu->gerr_irq = desc->irq;
2170 break;
2171 case PRIQ_MSI_INDEX:
2172 smmu->priq.q.irq = desc->irq;
2173 break;
2174 default: /* Unknown */
2175 continue;
2176 }
2177 }
2178
2179 /* Add callback to free MSIs on teardown */
2180 devm_add_action(dev, arm_smmu_free_msis, dev);
2181}
2182
48ec83bc
WD
2183static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
2184{
2185 int ret, irq;
ccd6385d 2186 u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;
48ec83bc
WD
2187
2188 /* Disable IRQs first */
2189 ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
2190 ARM_SMMU_IRQ_CTRLACK);
2191 if (ret) {
2192 dev_err(smmu->dev, "failed to disable irqs\n");
2193 return ret;
2194 }
2195
166bdbd2 2196 arm_smmu_setup_msis(smmu);
48ec83bc 2197
166bdbd2 2198 /* Request interrupt lines */
48ec83bc
WD
2199 irq = smmu->evtq.q.irq;
2200 if (irq) {
b4163fb3 2201 ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
48ec83bc 2202 arm_smmu_evtq_thread,
b4163fb3
JPB
2203 IRQF_ONESHOT,
2204 "arm-smmu-v3-evtq", smmu);
287980e4 2205 if (ret < 0)
48ec83bc
WD
2206 dev_warn(smmu->dev, "failed to enable evtq irq\n");
2207 }
2208
2209 irq = smmu->cmdq.q.irq;
2210 if (irq) {
2211 ret = devm_request_irq(smmu->dev, irq,
2212 arm_smmu_cmdq_sync_handler, 0,
2213 "arm-smmu-v3-cmdq-sync", smmu);
287980e4 2214 if (ret < 0)
48ec83bc
WD
2215 dev_warn(smmu->dev, "failed to enable cmdq-sync irq\n");
2216 }
2217
2218 irq = smmu->gerr_irq;
2219 if (irq) {
2220 ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
2221 0, "arm-smmu-v3-gerror", smmu);
287980e4 2222 if (ret < 0)
48ec83bc
WD
2223 dev_warn(smmu->dev, "failed to enable gerror irq\n");
2224 }
2225
2226 if (smmu->features & ARM_SMMU_FEAT_PRI) {
48ec83bc
WD
2227 irq = smmu->priq.q.irq;
2228 if (irq) {
b4163fb3 2229 ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
48ec83bc 2230 arm_smmu_priq_thread,
b4163fb3
JPB
2231 IRQF_ONESHOT,
2232 "arm-smmu-v3-priq",
48ec83bc 2233 smmu);
287980e4 2234 if (ret < 0)
48ec83bc
WD
2235 dev_warn(smmu->dev,
2236 "failed to enable priq irq\n");
ccd6385d
MZ
2237 else
2238 irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
48ec83bc
WD
2239 }
2240 }
2241
2242 /* Enable interrupt generation on the SMMU */
ccd6385d 2243 ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
48ec83bc
WD
2244 ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
2245 if (ret)
2246 dev_warn(smmu->dev, "failed to enable irqs\n");
2247
2248 return 0;
2249}
2250
2251static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
2252{
2253 int ret;
2254
2255 ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
2256 if (ret)
2257 dev_err(smmu->dev, "failed to clear cr0\n");
2258
2259 return ret;
2260}
2261
dc87a98d 2262static int arm_smmu_device_reset(struct arm_smmu_device *smmu, bool bypass)
48ec83bc
WD
2263{
2264 int ret;
2265 u32 reg, enables;
2266 struct arm_smmu_cmdq_ent cmd;
2267
2268 /* Clear CR0 and sync (disables SMMU and queue processing) */
2269 reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
2270 if (reg & CR0_SMMUEN)
2271 dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
2272
2273 ret = arm_smmu_device_disable(smmu);
2274 if (ret)
2275 return ret;
2276
2277 /* CR1 (table and queue memory attributes) */
2278 reg = (CR1_SH_ISH << CR1_TABLE_SH_SHIFT) |
2279 (CR1_CACHE_WB << CR1_TABLE_OC_SHIFT) |
2280 (CR1_CACHE_WB << CR1_TABLE_IC_SHIFT) |
2281 (CR1_SH_ISH << CR1_QUEUE_SH_SHIFT) |
2282 (CR1_CACHE_WB << CR1_QUEUE_OC_SHIFT) |
2283 (CR1_CACHE_WB << CR1_QUEUE_IC_SHIFT);
2284 writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);
2285
2286 /* CR2 (random crap) */
2287 reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
2288 writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);
2289
2290 /* Stream table */
2291 writeq_relaxed(smmu->strtab_cfg.strtab_base,
2292 smmu->base + ARM_SMMU_STRTAB_BASE);
2293 writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
2294 smmu->base + ARM_SMMU_STRTAB_BASE_CFG);
2295
2296 /* Command queue */
2297 writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
2298 writel_relaxed(smmu->cmdq.q.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
2299 writel_relaxed(smmu->cmdq.q.cons, smmu->base + ARM_SMMU_CMDQ_CONS);
2300
2301 enables = CR0_CMDQEN;
2302 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2303 ARM_SMMU_CR0ACK);
2304 if (ret) {
2305 dev_err(smmu->dev, "failed to enable command queue\n");
2306 return ret;
2307 }
2308
2309 /* Invalidate any cached configuration */
2310 cmd.opcode = CMDQ_OP_CFGI_ALL;
2311 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2312 cmd.opcode = CMDQ_OP_CMD_SYNC;
2313 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2314
2315 /* Invalidate any stale TLB entries */
2316 if (smmu->features & ARM_SMMU_FEAT_HYP) {
2317 cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
2318 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2319 }
2320
2321 cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
2322 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2323 cmd.opcode = CMDQ_OP_CMD_SYNC;
2324 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2325
2326 /* Event queue */
2327 writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
2328 writel_relaxed(smmu->evtq.q.prod, smmu->base + ARM_SMMU_EVTQ_PROD);
2329 writel_relaxed(smmu->evtq.q.cons, smmu->base + ARM_SMMU_EVTQ_CONS);
2330
2331 enables |= CR0_EVTQEN;
2332 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2333 ARM_SMMU_CR0ACK);
2334 if (ret) {
2335 dev_err(smmu->dev, "failed to enable event queue\n");
2336 return ret;
2337 }
2338
2339 /* PRI queue */
2340 if (smmu->features & ARM_SMMU_FEAT_PRI) {
2341 writeq_relaxed(smmu->priq.q.q_base,
2342 smmu->base + ARM_SMMU_PRIQ_BASE);
2343 writel_relaxed(smmu->priq.q.prod,
2344 smmu->base + ARM_SMMU_PRIQ_PROD);
2345 writel_relaxed(smmu->priq.q.cons,
2346 smmu->base + ARM_SMMU_PRIQ_CONS);
2347
2348 enables |= CR0_PRIQEN;
2349 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2350 ARM_SMMU_CR0ACK);
2351 if (ret) {
2352 dev_err(smmu->dev, "failed to enable PRI queue\n");
2353 return ret;
2354 }
2355 }
2356
2357 ret = arm_smmu_setup_irqs(smmu);
2358 if (ret) {
2359 dev_err(smmu->dev, "failed to setup irqs\n");
2360 return ret;
2361 }
2362
dc87a98d
RM
2363
2364 /* Enable the SMMU interface, or ensure bypass */
2365 if (!bypass || disable_bypass) {
2366 enables |= CR0_SMMUEN;
2367 } else {
2368 ret = arm_smmu_update_gbpa(smmu, 0, GBPA_ABORT);
2369 if (ret) {
2370 dev_err(smmu->dev, "GBPA not responding to update\n");
2371 return ret;
2372 }
2373 }
48ec83bc
WD
2374 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2375 ARM_SMMU_CR0ACK);
2376 if (ret) {
2377 dev_err(smmu->dev, "failed to enable SMMU interface\n");
2378 return ret;
2379 }
2380
2381 return 0;
2382}
2383
2384static int arm_smmu_device_probe(struct arm_smmu_device *smmu)
2385{
2386 u32 reg;
2387 bool coherent;
48ec83bc
WD
2388
2389 /* IDR0 */
2390 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);
2391
2392 /* 2-level structures */
2393 if ((reg & IDR0_ST_LVL_MASK << IDR0_ST_LVL_SHIFT) == IDR0_ST_LVL_2LVL)
2394 smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;
2395
2396 if (reg & IDR0_CD2L)
2397 smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;
2398
2399 /*
2400 * Translation table endianness.
2401 * We currently require the same endianness as the CPU, but this
2402 * could be changed later by adding a new IO_PGTABLE_QUIRK.
2403 */
2404 switch (reg & IDR0_TTENDIAN_MASK << IDR0_TTENDIAN_SHIFT) {
2405 case IDR0_TTENDIAN_MIXED:
2406 smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
2407 break;
2408#ifdef __BIG_ENDIAN
2409 case IDR0_TTENDIAN_BE:
2410 smmu->features |= ARM_SMMU_FEAT_TT_BE;
2411 break;
2412#else
2413 case IDR0_TTENDIAN_LE:
2414 smmu->features |= ARM_SMMU_FEAT_TT_LE;
2415 break;
2416#endif
2417 default:
2418 dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
2419 return -ENXIO;
2420 }
2421
2422 /* Boolean feature flags */
2423 if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
2424 smmu->features |= ARM_SMMU_FEAT_PRI;
2425
2426 if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
2427 smmu->features |= ARM_SMMU_FEAT_ATS;
2428
2429 if (reg & IDR0_SEV)
2430 smmu->features |= ARM_SMMU_FEAT_SEV;
2431
2432 if (reg & IDR0_MSI)
2433 smmu->features |= ARM_SMMU_FEAT_MSI;
2434
2435 if (reg & IDR0_HYP)
2436 smmu->features |= ARM_SMMU_FEAT_HYP;
2437
2438 /*
2439 * The dma-coherent property is used in preference to the ID
2440 * register, but warn on mismatch.
2441 */
2442 coherent = of_dma_is_coherent(smmu->dev->of_node);
2443 if (coherent)
2444 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2445
2446 if (!!(reg & IDR0_COHACC) != coherent)
2447 dev_warn(smmu->dev, "IDR0.COHACC overridden by dma-coherent property (%s)\n",
2448 coherent ? "true" : "false");
2449
6380be05
PM
2450 switch (reg & IDR0_STALL_MODEL_MASK << IDR0_STALL_MODEL_SHIFT) {
2451 case IDR0_STALL_MODEL_STALL:
2452 /* Fallthrough */
2453 case IDR0_STALL_MODEL_FORCE:
48ec83bc 2454 smmu->features |= ARM_SMMU_FEAT_STALLS;
6380be05 2455 }
48ec83bc
WD
2456
2457 if (reg & IDR0_S1P)
2458 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
2459
2460 if (reg & IDR0_S2P)
2461 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
2462
2463 if (!(reg & (IDR0_S1P | IDR0_S2P))) {
2464 dev_err(smmu->dev, "no translation support!\n");
2465 return -ENXIO;
2466 }
2467
2468 /* We only support the AArch64 table format at present */
f0c453db
WD
2469 switch (reg & IDR0_TTF_MASK << IDR0_TTF_SHIFT) {
2470 case IDR0_TTF_AARCH32_64:
2471 smmu->ias = 40;
2472 /* Fallthrough */
2473 case IDR0_TTF_AARCH64:
2474 break;
2475 default:
48ec83bc
WD
2476 dev_err(smmu->dev, "AArch64 table format not supported!\n");
2477 return -ENXIO;
2478 }
2479
2480 /* ASID/VMID sizes */
2481 smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
2482 smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;
2483
2484 /* IDR1 */
2485 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
2486 if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
2487 dev_err(smmu->dev, "embedded implementation not supported\n");
2488 return -ENXIO;
2489 }
2490
2491 /* Queue sizes, capped at 4k */
2492 smmu->cmdq.q.max_n_shift = min((u32)CMDQ_MAX_SZ_SHIFT,
2493 reg >> IDR1_CMDQ_SHIFT & IDR1_CMDQ_MASK);
2494 if (!smmu->cmdq.q.max_n_shift) {
2495 /* Odd alignment restrictions on the base, so ignore for now */
2496 dev_err(smmu->dev, "unit-length command queue not supported\n");
2497 return -ENXIO;
2498 }
2499
2500 smmu->evtq.q.max_n_shift = min((u32)EVTQ_MAX_SZ_SHIFT,
2501 reg >> IDR1_EVTQ_SHIFT & IDR1_EVTQ_MASK);
2502 smmu->priq.q.max_n_shift = min((u32)PRIQ_MAX_SZ_SHIFT,
2503 reg >> IDR1_PRIQ_SHIFT & IDR1_PRIQ_MASK);
2504
2505 /* SID/SSID sizes */
2506 smmu->ssid_bits = reg >> IDR1_SSID_SHIFT & IDR1_SSID_MASK;
2507 smmu->sid_bits = reg >> IDR1_SID_SHIFT & IDR1_SID_MASK;
2508
2509 /* IDR5 */
2510 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);
2511
2512 /* Maximum number of outstanding stalls */
2513 smmu->evtq.max_stalls = reg >> IDR5_STALL_MAX_SHIFT
2514 & IDR5_STALL_MAX_MASK;
2515
2516 /* Page sizes */
2517 if (reg & IDR5_GRAN64K)
d5466357 2518 smmu->pgsize_bitmap |= SZ_64K | SZ_512M;
48ec83bc 2519 if (reg & IDR5_GRAN16K)
d5466357 2520 smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
48ec83bc 2521 if (reg & IDR5_GRAN4K)
d5466357 2522 smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
48ec83bc 2523
d5466357
RM
2524 if (arm_smmu_ops.pgsize_bitmap == -1UL)
2525 arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
2526 else
2527 arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;
48ec83bc
WD
2528
2529 /* Output address size */
2530 switch (reg & IDR5_OAS_MASK << IDR5_OAS_SHIFT) {
2531 case IDR5_OAS_32_BIT:
2532 smmu->oas = 32;
2533 break;
2534 case IDR5_OAS_36_BIT:
2535 smmu->oas = 36;
2536 break;
2537 case IDR5_OAS_40_BIT:
2538 smmu->oas = 40;
2539 break;
2540 case IDR5_OAS_42_BIT:
2541 smmu->oas = 42;
2542 break;
2543 case IDR5_OAS_44_BIT:
2544 smmu->oas = 44;
2545 break;
85430968
WD
2546 default:
2547 dev_info(smmu->dev,
2548 "unknown output address size. Truncating to 48-bit\n");
2549 /* Fallthrough */
48ec83bc
WD
2550 case IDR5_OAS_48_BIT:
2551 smmu->oas = 48;
48ec83bc
WD
2552 }
2553
2554 /* Set the DMA mask for our table walker */
2555 if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
2556 dev_warn(smmu->dev,
2557 "failed to set DMA mask for table walker\n");
2558
f0c453db 2559 smmu->ias = max(smmu->ias, smmu->oas);
48ec83bc
WD
2560
2561 dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
2562 smmu->ias, smmu->oas, smmu->features);
2563 return 0;
2564}
2565
2566static int arm_smmu_device_dt_probe(struct platform_device *pdev)
2567{
2568 int irq, ret;
2569 struct resource *res;
2570 struct arm_smmu_device *smmu;
2571 struct device *dev = &pdev->dev;
dc87a98d
RM
2572 bool bypass = true;
2573 u32 cells;
2574
2575 if (of_property_read_u32(dev->of_node, "#iommu-cells", &cells))
2576 dev_err(dev, "missing #iommu-cells property\n");
2577 else if (cells != 1)
2578 dev_err(dev, "invalid #iommu-cells value (%d)\n", cells);
2579 else
2580 bypass = false;
48ec83bc
WD
2581
2582 smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
2583 if (!smmu) {
2584 dev_err(dev, "failed to allocate arm_smmu_device\n");
2585 return -ENOMEM;
2586 }
2587 smmu->dev = dev;
2588
2589 /* Base address */
2590 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2591 if (resource_size(res) + 1 < SZ_128K) {
2592 dev_err(dev, "MMIO region too small (%pr)\n", res);
2593 return -EINVAL;
2594 }
2595
2596 smmu->base = devm_ioremap_resource(dev, res);
2597 if (IS_ERR(smmu->base))
2598 return PTR_ERR(smmu->base);
2599
2600 /* Interrupt lines */
2601 irq = platform_get_irq_byname(pdev, "eventq");
2602 if (irq > 0)
2603 smmu->evtq.q.irq = irq;
2604
2605 irq = platform_get_irq_byname(pdev, "priq");
2606 if (irq > 0)
2607 smmu->priq.q.irq = irq;
2608
2609 irq = platform_get_irq_byname(pdev, "cmdq-sync");
2610 if (irq > 0)
2611 smmu->cmdq.q.irq = irq;
2612
2613 irq = platform_get_irq_byname(pdev, "gerror");
2614 if (irq > 0)
2615 smmu->gerr_irq = irq;
2616
5e92946c
ZL
2617 parse_driver_options(smmu);
2618
48ec83bc
WD
2619 /* Probe the h/w */
2620 ret = arm_smmu_device_probe(smmu);
2621 if (ret)
2622 return ret;
2623
2624 /* Initialise in-memory data structures */
2625 ret = arm_smmu_init_structures(smmu);
2626 if (ret)
2627 return ret;
2628
166bdbd2
MZ
2629 /* Record our private device structure */
2630 platform_set_drvdata(pdev, smmu);
2631
48ec83bc 2632 /* Reset the device */
8f785154
RM
2633 ret = arm_smmu_device_reset(smmu, bypass);
2634 if (ret)
2635 return ret;
2636
2637 /* And we're up. Go go go! */
778de074
LP
2638 iommu_register_instance(dev->fwnode, &arm_smmu_ops);
2639
08d4ca2a 2640#ifdef CONFIG_PCI
ec615f43
RM
2641 if (pci_bus_type.iommu_ops != &arm_smmu_ops) {
2642 pci_request_acs();
2643 ret = bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2644 if (ret)
2645 return ret;
2646 }
08d4ca2a
RM
2647#endif
2648#ifdef CONFIG_ARM_AMBA
ec615f43
RM
2649 if (amba_bustype.iommu_ops != &arm_smmu_ops) {
2650 ret = bus_set_iommu(&amba_bustype, &arm_smmu_ops);
2651 if (ret)
2652 return ret;
2653 }
08d4ca2a 2654#endif
ec615f43
RM
2655 if (platform_bus_type.iommu_ops != &arm_smmu_ops) {
2656 ret = bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
2657 if (ret)
2658 return ret;
2659 }
2660 return 0;
48ec83bc
WD
2661}
2662
2663static int arm_smmu_device_remove(struct platform_device *pdev)
2664{
941a802d 2665 struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
48ec83bc
WD
2666
2667 arm_smmu_device_disable(smmu);
48ec83bc
WD
2668 return 0;
2669}
2670
2671static struct of_device_id arm_smmu_of_match[] = {
2672 { .compatible = "arm,smmu-v3", },
2673 { },
2674};
2675MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
2676
2677static struct platform_driver arm_smmu_driver = {
2678 .driver = {
2679 .name = "arm-smmu-v3",
2680 .of_match_table = of_match_ptr(arm_smmu_of_match),
2681 },
2682 .probe = arm_smmu_device_dt_probe,
2683 .remove = arm_smmu_device_remove,
2684};
2685
2686static int __init arm_smmu_init(void)
2687{
8f785154
RM
2688 static bool registered;
2689 int ret = 0;
112c898b 2690
8f785154
RM
2691 if (!registered) {
2692 ret = platform_driver_register(&arm_smmu_driver);
2693 registered = !ret;
2694 }
2695 return ret;
48ec83bc
WD
2696}
2697
2698static void __exit arm_smmu_exit(void)
2699{
2700 return platform_driver_unregister(&arm_smmu_driver);
2701}
2702
2703subsys_initcall(arm_smmu_init);
2704module_exit(arm_smmu_exit);
2705
8f785154
RM
2706static int __init arm_smmu_of_init(struct device_node *np)
2707{
2708 int ret = arm_smmu_init();
2709
2710 if (ret)
2711 return ret;
2712
2713 if (!of_platform_device_create(np, NULL, platform_bus_type.dev_root))
2714 return -ENODEV;
2715
2716 return 0;
2717}
2718IOMMU_OF_DECLARE(arm_smmuv3, "arm,smmu-v3", arm_smmu_of_init);
2719
48ec83bc
WD
2720MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
2721MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2722MODULE_LICENSE("GPL v2");