iommu/amd: Implement functions to manage GCR3 table
[linux-2.6-block.git] / drivers / iommu / amd_iommu.c
CommitLineData
b6c02715 1/*
5d0d7156 2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
b6c02715
JR
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
72e1dcc4 20#include <linux/ratelimit.h>
b6c02715 21#include <linux/pci.h>
cb41ed85 22#include <linux/pci-ats.h>
a66022c4 23#include <linux/bitmap.h>
5a0e3ad6 24#include <linux/slab.h>
7f26508b 25#include <linux/debugfs.h>
b6c02715 26#include <linux/scatterlist.h>
51491367 27#include <linux/dma-mapping.h>
b6c02715 28#include <linux/iommu-helper.h>
c156e347 29#include <linux/iommu.h>
815b33fd 30#include <linux/delay.h>
403f81d8 31#include <linux/amd-iommu.h>
72e1dcc4
JR
32#include <linux/notifier.h>
33#include <linux/export.h>
17f5b569 34#include <asm/msidef.h>
b6c02715 35#include <asm/proto.h>
46a7fa27 36#include <asm/iommu.h>
1d9b16d1 37#include <asm/gart.h>
27c2127a 38#include <asm/dma.h>
403f81d8
JR
39
40#include "amd_iommu_proto.h"
41#include "amd_iommu_types.h"
b6c02715
JR
42
43#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
44
815b33fd 45#define LOOP_TIMEOUT 100000
136f78a1 46
b6c02715
JR
47static DEFINE_RWLOCK(amd_iommu_devtable_lock);
48
bd60b735
JR
49/* A list of preallocated protection domains */
50static LIST_HEAD(iommu_pd_list);
51static DEFINE_SPINLOCK(iommu_pd_list_lock);
52
8fa5f802
JR
53/* List of all available dev_data structures */
54static LIST_HEAD(dev_data_list);
55static DEFINE_SPINLOCK(dev_data_list_lock);
56
0feae533
JR
57/*
58 * Domain for untranslated devices - only allocated
59 * if iommu=pt passed on kernel cmd line.
60 */
61static struct protection_domain *pt_domain;
62
26961efe 63static struct iommu_ops amd_iommu_ops;
26961efe 64
72e1dcc4 65static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
52815b75 66int amd_iommu_max_glx_val = -1;
72e1dcc4 67
431b2a20
JR
68/*
69 * general struct to manage commands send to an IOMMU
70 */
d6449536 71struct iommu_cmd {
b6c02715
JR
72 u32 data[4];
73};
74
04bfdd84 75static void update_domain(struct protection_domain *domain);
5abcdba4 76static int __init alloc_passthrough_domain(void);
c1eee67b 77
15898bbc
JR
78/****************************************************************************
79 *
80 * Helper functions
81 *
82 ****************************************************************************/
83
f62dda66 84static struct iommu_dev_data *alloc_dev_data(u16 devid)
8fa5f802
JR
85{
86 struct iommu_dev_data *dev_data;
87 unsigned long flags;
88
89 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
90 if (!dev_data)
91 return NULL;
92
f62dda66 93 dev_data->devid = devid;
8fa5f802
JR
94 atomic_set(&dev_data->bind, 0);
95
96 spin_lock_irqsave(&dev_data_list_lock, flags);
97 list_add_tail(&dev_data->dev_data_list, &dev_data_list);
98 spin_unlock_irqrestore(&dev_data_list_lock, flags);
99
100 return dev_data;
101}
102
103static void free_dev_data(struct iommu_dev_data *dev_data)
104{
105 unsigned long flags;
106
107 spin_lock_irqsave(&dev_data_list_lock, flags);
108 list_del(&dev_data->dev_data_list);
109 spin_unlock_irqrestore(&dev_data_list_lock, flags);
110
111 kfree(dev_data);
112}
113
3b03bb74
JR
114static struct iommu_dev_data *search_dev_data(u16 devid)
115{
116 struct iommu_dev_data *dev_data;
117 unsigned long flags;
118
119 spin_lock_irqsave(&dev_data_list_lock, flags);
120 list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
121 if (dev_data->devid == devid)
122 goto out_unlock;
123 }
124
125 dev_data = NULL;
126
127out_unlock:
128 spin_unlock_irqrestore(&dev_data_list_lock, flags);
129
130 return dev_data;
131}
132
133static struct iommu_dev_data *find_dev_data(u16 devid)
134{
135 struct iommu_dev_data *dev_data;
136
137 dev_data = search_dev_data(devid);
138
139 if (dev_data == NULL)
140 dev_data = alloc_dev_data(devid);
141
142 return dev_data;
143}
144
15898bbc
JR
145static inline u16 get_device_id(struct device *dev)
146{
147 struct pci_dev *pdev = to_pci_dev(dev);
148
149 return calc_devid(pdev->bus->number, pdev->devfn);
150}
151
657cbb6b
JR
152static struct iommu_dev_data *get_dev_data(struct device *dev)
153{
154 return dev->archdata.iommu;
155}
156
5abcdba4
JR
157static bool pci_iommuv2_capable(struct pci_dev *pdev)
158{
159 static const int caps[] = {
160 PCI_EXT_CAP_ID_ATS,
161 PCI_PRI_CAP,
162 PCI_PASID_CAP,
163 };
164 int i, pos;
165
166 for (i = 0; i < 3; ++i) {
167 pos = pci_find_ext_capability(pdev, caps[i]);
168 if (pos == 0)
169 return false;
170 }
171
172 return true;
173}
174
71c70984
JR
175/*
176 * In this function the list of preallocated protection domains is traversed to
177 * find the domain for a specific device
178 */
179static struct dma_ops_domain *find_protection_domain(u16 devid)
180{
181 struct dma_ops_domain *entry, *ret = NULL;
182 unsigned long flags;
183 u16 alias = amd_iommu_alias_table[devid];
184
185 if (list_empty(&iommu_pd_list))
186 return NULL;
187
188 spin_lock_irqsave(&iommu_pd_list_lock, flags);
189
190 list_for_each_entry(entry, &iommu_pd_list, list) {
191 if (entry->target_dev == devid ||
192 entry->target_dev == alias) {
193 ret = entry;
194 break;
195 }
196 }
197
198 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
199
200 return ret;
201}
202
98fc5a69
JR
203/*
204 * This function checks if the driver got a valid device from the caller to
205 * avoid dereferencing invalid pointers.
206 */
207static bool check_device(struct device *dev)
208{
209 u16 devid;
210
211 if (!dev || !dev->dma_mask)
212 return false;
213
214 /* No device or no PCI device */
339d3261 215 if (dev->bus != &pci_bus_type)
98fc5a69
JR
216 return false;
217
218 devid = get_device_id(dev);
219
220 /* Out of our scope? */
221 if (devid > amd_iommu_last_bdf)
222 return false;
223
224 if (amd_iommu_rlookup_table[devid] == NULL)
225 return false;
226
227 return true;
228}
229
657cbb6b
JR
230static int iommu_init_device(struct device *dev)
231{
5abcdba4 232 struct pci_dev *pdev = to_pci_dev(dev);
657cbb6b 233 struct iommu_dev_data *dev_data;
8fa5f802 234 u16 alias;
657cbb6b
JR
235
236 if (dev->archdata.iommu)
237 return 0;
238
3b03bb74 239 dev_data = find_dev_data(get_device_id(dev));
657cbb6b
JR
240 if (!dev_data)
241 return -ENOMEM;
242
f62dda66 243 alias = amd_iommu_alias_table[dev_data->devid];
2b02b091 244 if (alias != dev_data->devid) {
71f77580 245 struct iommu_dev_data *alias_data;
b00d3bcf 246
71f77580
JR
247 alias_data = find_dev_data(alias);
248 if (alias_data == NULL) {
249 pr_err("AMD-Vi: Warning: Unhandled device %s\n",
250 dev_name(dev));
2b02b091
JR
251 free_dev_data(dev_data);
252 return -ENOTSUPP;
253 }
71f77580 254 dev_data->alias_data = alias_data;
26018874 255 }
657cbb6b 256
5abcdba4
JR
257 if (pci_iommuv2_capable(pdev)) {
258 struct amd_iommu *iommu;
259
260 iommu = amd_iommu_rlookup_table[dev_data->devid];
261 dev_data->iommu_v2 = iommu->is_iommu_v2;
262 }
263
657cbb6b
JR
264 dev->archdata.iommu = dev_data;
265
657cbb6b
JR
266 return 0;
267}
268
26018874
JR
269static void iommu_ignore_device(struct device *dev)
270{
271 u16 devid, alias;
272
273 devid = get_device_id(dev);
274 alias = amd_iommu_alias_table[devid];
275
276 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
277 memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
278
279 amd_iommu_rlookup_table[devid] = NULL;
280 amd_iommu_rlookup_table[alias] = NULL;
281}
282
657cbb6b
JR
283static void iommu_uninit_device(struct device *dev)
284{
8fa5f802
JR
285 /*
286 * Nothing to do here - we keep dev_data around for unplugged devices
287 * and reuse it when the device is re-plugged - not doing so would
288 * introduce a ton of races.
289 */
657cbb6b 290}
b7cc9554
JR
291
292void __init amd_iommu_uninit_devices(void)
293{
8fa5f802 294 struct iommu_dev_data *dev_data, *n;
b7cc9554
JR
295 struct pci_dev *pdev = NULL;
296
297 for_each_pci_dev(pdev) {
298
299 if (!check_device(&pdev->dev))
300 continue;
301
302 iommu_uninit_device(&pdev->dev);
303 }
8fa5f802
JR
304
305 /* Free all of our dev_data structures */
306 list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
307 free_dev_data(dev_data);
b7cc9554
JR
308}
309
310int __init amd_iommu_init_devices(void)
311{
312 struct pci_dev *pdev = NULL;
313 int ret = 0;
314
315 for_each_pci_dev(pdev) {
316
317 if (!check_device(&pdev->dev))
318 continue;
319
320 ret = iommu_init_device(&pdev->dev);
26018874
JR
321 if (ret == -ENOTSUPP)
322 iommu_ignore_device(&pdev->dev);
323 else if (ret)
b7cc9554
JR
324 goto out_free;
325 }
326
327 return 0;
328
329out_free:
330
331 amd_iommu_uninit_devices();
332
333 return ret;
334}
7f26508b
JR
335#ifdef CONFIG_AMD_IOMMU_STATS
336
337/*
338 * Initialization code for statistics collection
339 */
340
da49f6df 341DECLARE_STATS_COUNTER(compl_wait);
0f2a86f2 342DECLARE_STATS_COUNTER(cnt_map_single);
146a6917 343DECLARE_STATS_COUNTER(cnt_unmap_single);
d03f067a 344DECLARE_STATS_COUNTER(cnt_map_sg);
55877a6b 345DECLARE_STATS_COUNTER(cnt_unmap_sg);
c8f0fb36 346DECLARE_STATS_COUNTER(cnt_alloc_coherent);
5d31ee7e 347DECLARE_STATS_COUNTER(cnt_free_coherent);
c1858976 348DECLARE_STATS_COUNTER(cross_page);
f57d98ae 349DECLARE_STATS_COUNTER(domain_flush_single);
18811f55 350DECLARE_STATS_COUNTER(domain_flush_all);
5774f7c5 351DECLARE_STATS_COUNTER(alloced_io_mem);
8ecaf8f1 352DECLARE_STATS_COUNTER(total_map_requests);
da49f6df 353
7f26508b 354static struct dentry *stats_dir;
7f26508b
JR
355static struct dentry *de_fflush;
356
357static void amd_iommu_stats_add(struct __iommu_counter *cnt)
358{
359 if (stats_dir == NULL)
360 return;
361
362 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
363 &cnt->value);
364}
365
366static void amd_iommu_stats_init(void)
367{
368 stats_dir = debugfs_create_dir("amd-iommu", NULL);
369 if (stats_dir == NULL)
370 return;
371
7f26508b
JR
372 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
373 (u32 *)&amd_iommu_unmap_flush);
da49f6df
JR
374
375 amd_iommu_stats_add(&compl_wait);
0f2a86f2 376 amd_iommu_stats_add(&cnt_map_single);
146a6917 377 amd_iommu_stats_add(&cnt_unmap_single);
d03f067a 378 amd_iommu_stats_add(&cnt_map_sg);
55877a6b 379 amd_iommu_stats_add(&cnt_unmap_sg);
c8f0fb36 380 amd_iommu_stats_add(&cnt_alloc_coherent);
5d31ee7e 381 amd_iommu_stats_add(&cnt_free_coherent);
c1858976 382 amd_iommu_stats_add(&cross_page);
f57d98ae 383 amd_iommu_stats_add(&domain_flush_single);
18811f55 384 amd_iommu_stats_add(&domain_flush_all);
5774f7c5 385 amd_iommu_stats_add(&alloced_io_mem);
8ecaf8f1 386 amd_iommu_stats_add(&total_map_requests);
7f26508b
JR
387}
388
389#endif
390
a80dc3e0
JR
391/****************************************************************************
392 *
393 * Interrupt handling functions
394 *
395 ****************************************************************************/
396
e3e59876
JR
397static void dump_dte_entry(u16 devid)
398{
399 int i;
400
ee6c2868
JR
401 for (i = 0; i < 4; ++i)
402 pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
e3e59876
JR
403 amd_iommu_dev_table[devid].data[i]);
404}
405
945b4ac4
JR
406static void dump_command(unsigned long phys_addr)
407{
408 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
409 int i;
410
411 for (i = 0; i < 4; ++i)
412 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
413}
414
a345b23b 415static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
90008ee4
JR
416{
417 u32 *event = __evt;
418 int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
419 int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
420 int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
421 int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
422 u64 address = (u64)(((u64)event[3]) << 32) | event[2];
423
4c6f40d4 424 printk(KERN_ERR "AMD-Vi: Event logged [");
90008ee4
JR
425
426 switch (type) {
427 case EVENT_TYPE_ILL_DEV:
428 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
429 "address=0x%016llx flags=0x%04x]\n",
430 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
431 address, flags);
e3e59876 432 dump_dte_entry(devid);
90008ee4
JR
433 break;
434 case EVENT_TYPE_IO_FAULT:
435 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
436 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
437 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
438 domid, address, flags);
439 break;
440 case EVENT_TYPE_DEV_TAB_ERR:
441 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
442 "address=0x%016llx flags=0x%04x]\n",
443 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
444 address, flags);
445 break;
446 case EVENT_TYPE_PAGE_TAB_ERR:
447 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
448 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
449 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
450 domid, address, flags);
451 break;
452 case EVENT_TYPE_ILL_CMD:
453 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
945b4ac4 454 dump_command(address);
90008ee4
JR
455 break;
456 case EVENT_TYPE_CMD_HARD_ERR:
457 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
458 "flags=0x%04x]\n", address, flags);
459 break;
460 case EVENT_TYPE_IOTLB_INV_TO:
461 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
462 "address=0x%016llx]\n",
463 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
464 address);
465 break;
466 case EVENT_TYPE_INV_DEV_REQ:
467 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
468 "address=0x%016llx flags=0x%04x]\n",
469 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
470 address, flags);
471 break;
472 default:
473 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
474 }
475}
476
477static void iommu_poll_events(struct amd_iommu *iommu)
478{
479 u32 head, tail;
480 unsigned long flags;
481
482 spin_lock_irqsave(&iommu->lock, flags);
483
484 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
485 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
486
487 while (head != tail) {
a345b23b 488 iommu_print_event(iommu, iommu->evt_buf + head);
90008ee4
JR
489 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
490 }
491
492 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
493
494 spin_unlock_irqrestore(&iommu->lock, flags);
495}
496
72e1dcc4
JR
497static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u32 head)
498{
499 struct amd_iommu_fault fault;
500 volatile u64 *raw;
501 int i;
502
503 raw = (u64 *)(iommu->ppr_log + head);
504
505 /*
506 * Hardware bug: Interrupt may arrive before the entry is written to
507 * memory. If this happens we need to wait for the entry to arrive.
508 */
509 for (i = 0; i < LOOP_TIMEOUT; ++i) {
510 if (PPR_REQ_TYPE(raw[0]) != 0)
511 break;
512 udelay(1);
513 }
514
515 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
516 pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
517 return;
518 }
519
520 fault.address = raw[1];
521 fault.pasid = PPR_PASID(raw[0]);
522 fault.device_id = PPR_DEVID(raw[0]);
523 fault.tag = PPR_TAG(raw[0]);
524 fault.flags = PPR_FLAGS(raw[0]);
525
526 /*
527 * To detect the hardware bug we need to clear the entry
528 * to back to zero.
529 */
530 raw[0] = raw[1] = 0;
531
532 atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
533}
534
535static void iommu_poll_ppr_log(struct amd_iommu *iommu)
536{
537 unsigned long flags;
538 u32 head, tail;
539
540 if (iommu->ppr_log == NULL)
541 return;
542
543 spin_lock_irqsave(&iommu->lock, flags);
544
545 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
546 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
547
548 while (head != tail) {
549
550 /* Handle PPR entry */
551 iommu_handle_ppr_entry(iommu, head);
552
553 /* Update and refresh ring-buffer state*/
554 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
555 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
556 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
557 }
558
559 /* enable ppr interrupts again */
560 writel(MMIO_STATUS_PPR_INT_MASK, iommu->mmio_base + MMIO_STATUS_OFFSET);
561
562 spin_unlock_irqrestore(&iommu->lock, flags);
563}
564
72fe00f0 565irqreturn_t amd_iommu_int_thread(int irq, void *data)
a80dc3e0 566{
90008ee4
JR
567 struct amd_iommu *iommu;
568
72e1dcc4 569 for_each_iommu(iommu) {
90008ee4 570 iommu_poll_events(iommu);
72e1dcc4
JR
571 iommu_poll_ppr_log(iommu);
572 }
90008ee4
JR
573
574 return IRQ_HANDLED;
a80dc3e0
JR
575}
576
72fe00f0
JR
577irqreturn_t amd_iommu_int_handler(int irq, void *data)
578{
579 return IRQ_WAKE_THREAD;
580}
581
431b2a20
JR
582/****************************************************************************
583 *
584 * IOMMU command queuing functions
585 *
586 ****************************************************************************/
587
ac0ea6e9
JR
588static int wait_on_sem(volatile u64 *sem)
589{
590 int i = 0;
591
592 while (*sem == 0 && i < LOOP_TIMEOUT) {
593 udelay(1);
594 i += 1;
595 }
596
597 if (i == LOOP_TIMEOUT) {
598 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
599 return -EIO;
600 }
601
602 return 0;
603}
604
605static void copy_cmd_to_buffer(struct amd_iommu *iommu,
606 struct iommu_cmd *cmd,
607 u32 tail)
a19ae1ec 608{
a19ae1ec
JR
609 u8 *target;
610
8a7c5ef3 611 target = iommu->cmd_buf + tail;
ac0ea6e9
JR
612 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
613
614 /* Copy command to buffer */
615 memcpy(target, cmd, sizeof(*cmd));
616
617 /* Tell the IOMMU about it */
a19ae1ec 618 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
ac0ea6e9 619}
a19ae1ec 620
815b33fd 621static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
ded46737 622{
815b33fd
JR
623 WARN_ON(address & 0x7ULL);
624
ded46737 625 memset(cmd, 0, sizeof(*cmd));
815b33fd
JR
626 cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
627 cmd->data[1] = upper_32_bits(__pa(address));
628 cmd->data[2] = 1;
ded46737
JR
629 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
630}
631
94fe79e2
JR
632static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
633{
634 memset(cmd, 0, sizeof(*cmd));
635 cmd->data[0] = devid;
636 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
637}
638
11b6402c
JR
639static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
640 size_t size, u16 domid, int pde)
641{
642 u64 pages;
643 int s;
644
645 pages = iommu_num_pages(address, size, PAGE_SIZE);
646 s = 0;
647
648 if (pages > 1) {
649 /*
650 * If we have to flush more than one page, flush all
651 * TLB entries for this domain
652 */
653 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
654 s = 1;
655 }
656
657 address &= PAGE_MASK;
658
659 memset(cmd, 0, sizeof(*cmd));
660 cmd->data[1] |= domid;
661 cmd->data[2] = lower_32_bits(address);
662 cmd->data[3] = upper_32_bits(address);
663 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
664 if (s) /* size bit - we flush more than one 4kb page */
665 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
666 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
667 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
668}
669
cb41ed85
JR
670static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
671 u64 address, size_t size)
672{
673 u64 pages;
674 int s;
675
676 pages = iommu_num_pages(address, size, PAGE_SIZE);
677 s = 0;
678
679 if (pages > 1) {
680 /*
681 * If we have to flush more than one page, flush all
682 * TLB entries for this domain
683 */
684 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
685 s = 1;
686 }
687
688 address &= PAGE_MASK;
689
690 memset(cmd, 0, sizeof(*cmd));
691 cmd->data[0] = devid;
692 cmd->data[0] |= (qdep & 0xff) << 24;
693 cmd->data[1] = devid;
694 cmd->data[2] = lower_32_bits(address);
695 cmd->data[3] = upper_32_bits(address);
696 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
697 if (s)
698 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
699}
700
22e266c7
JR
701static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
702 u64 address, bool size)
703{
704 memset(cmd, 0, sizeof(*cmd));
705
706 address &= ~(0xfffULL);
707
708 cmd->data[0] = pasid & PASID_MASK;
709 cmd->data[1] = domid;
710 cmd->data[2] = lower_32_bits(address);
711 cmd->data[3] = upper_32_bits(address);
712 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
713 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
714 if (size)
715 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
716 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
717}
718
719static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
720 int qdep, u64 address, bool size)
721{
722 memset(cmd, 0, sizeof(*cmd));
723
724 address &= ~(0xfffULL);
725
726 cmd->data[0] = devid;
727 cmd->data[0] |= (pasid & 0xff) << 16;
728 cmd->data[0] |= (qdep & 0xff) << 24;
729 cmd->data[1] = devid;
730 cmd->data[1] |= ((pasid >> 8) & 0xfff) << 16;
731 cmd->data[2] = lower_32_bits(address);
732 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
733 cmd->data[3] = upper_32_bits(address);
734 if (size)
735 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
736 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
737}
738
58fc7f14
JR
739static void build_inv_all(struct iommu_cmd *cmd)
740{
741 memset(cmd, 0, sizeof(*cmd));
742 CMD_SET_TYPE(cmd, CMD_INV_ALL);
a19ae1ec
JR
743}
744
431b2a20 745/*
431b2a20 746 * Writes the command to the IOMMUs command buffer and informs the
ac0ea6e9 747 * hardware about the new command.
431b2a20 748 */
f1ca1512
JR
749static int iommu_queue_command_sync(struct amd_iommu *iommu,
750 struct iommu_cmd *cmd,
751 bool sync)
a19ae1ec 752{
ac0ea6e9 753 u32 left, tail, head, next_tail;
a19ae1ec 754 unsigned long flags;
a19ae1ec 755
549c90dc 756 WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
ac0ea6e9
JR
757
758again:
a19ae1ec 759 spin_lock_irqsave(&iommu->lock, flags);
a19ae1ec 760
ac0ea6e9
JR
761 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
762 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
763 next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
764 left = (head - next_tail) % iommu->cmd_buf_size;
a19ae1ec 765
ac0ea6e9
JR
766 if (left <= 2) {
767 struct iommu_cmd sync_cmd;
768 volatile u64 sem = 0;
769 int ret;
8d201968 770
ac0ea6e9
JR
771 build_completion_wait(&sync_cmd, (u64)&sem);
772 copy_cmd_to_buffer(iommu, &sync_cmd, tail);
da49f6df 773
ac0ea6e9
JR
774 spin_unlock_irqrestore(&iommu->lock, flags);
775
776 if ((ret = wait_on_sem(&sem)) != 0)
777 return ret;
778
779 goto again;
8d201968
JR
780 }
781
ac0ea6e9
JR
782 copy_cmd_to_buffer(iommu, cmd, tail);
783
784 /* We need to sync now to make sure all commands are processed */
f1ca1512 785 iommu->need_sync = sync;
ac0ea6e9 786
a19ae1ec 787 spin_unlock_irqrestore(&iommu->lock, flags);
8d201968 788
815b33fd 789 return 0;
8d201968
JR
790}
791
f1ca1512
JR
792static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
793{
794 return iommu_queue_command_sync(iommu, cmd, true);
795}
796
8d201968
JR
797/*
798 * This function queues a completion wait command into the command
799 * buffer of an IOMMU
800 */
a19ae1ec 801static int iommu_completion_wait(struct amd_iommu *iommu)
8d201968
JR
802{
803 struct iommu_cmd cmd;
815b33fd 804 volatile u64 sem = 0;
ac0ea6e9 805 int ret;
8d201968 806
09ee17eb 807 if (!iommu->need_sync)
815b33fd 808 return 0;
09ee17eb 809
815b33fd 810 build_completion_wait(&cmd, (u64)&sem);
a19ae1ec 811
f1ca1512 812 ret = iommu_queue_command_sync(iommu, &cmd, false);
a19ae1ec 813 if (ret)
815b33fd 814 return ret;
8d201968 815
ac0ea6e9 816 return wait_on_sem(&sem);
8d201968
JR
817}
818
d8c13085 819static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
a19ae1ec 820{
d8c13085 821 struct iommu_cmd cmd;
a19ae1ec 822
d8c13085 823 build_inv_dte(&cmd, devid);
7e4f88da 824
d8c13085
JR
825 return iommu_queue_command(iommu, &cmd);
826}
09ee17eb 827
7d0c5cc5
JR
828static void iommu_flush_dte_all(struct amd_iommu *iommu)
829{
830 u32 devid;
09ee17eb 831
7d0c5cc5
JR
832 for (devid = 0; devid <= 0xffff; ++devid)
833 iommu_flush_dte(iommu, devid);
a19ae1ec 834
7d0c5cc5
JR
835 iommu_completion_wait(iommu);
836}
84df8175 837
7d0c5cc5
JR
838/*
839 * This function uses heavy locking and may disable irqs for some time. But
840 * this is no issue because it is only called during resume.
841 */
842static void iommu_flush_tlb_all(struct amd_iommu *iommu)
843{
844 u32 dom_id;
a19ae1ec 845
7d0c5cc5
JR
846 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
847 struct iommu_cmd cmd;
848 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
849 dom_id, 1);
850 iommu_queue_command(iommu, &cmd);
851 }
8eed9833 852
7d0c5cc5 853 iommu_completion_wait(iommu);
a19ae1ec
JR
854}
855
58fc7f14 856static void iommu_flush_all(struct amd_iommu *iommu)
0518a3a4 857{
58fc7f14 858 struct iommu_cmd cmd;
0518a3a4 859
58fc7f14 860 build_inv_all(&cmd);
0518a3a4 861
58fc7f14
JR
862 iommu_queue_command(iommu, &cmd);
863 iommu_completion_wait(iommu);
864}
865
7d0c5cc5
JR
866void iommu_flush_all_caches(struct amd_iommu *iommu)
867{
58fc7f14
JR
868 if (iommu_feature(iommu, FEATURE_IA)) {
869 iommu_flush_all(iommu);
870 } else {
871 iommu_flush_dte_all(iommu);
872 iommu_flush_tlb_all(iommu);
0518a3a4
JR
873 }
874}
875
431b2a20 876/*
cb41ed85 877 * Command send function for flushing on-device TLB
431b2a20 878 */
6c542047
JR
879static int device_flush_iotlb(struct iommu_dev_data *dev_data,
880 u64 address, size_t size)
3fa43655
JR
881{
882 struct amd_iommu *iommu;
b00d3bcf 883 struct iommu_cmd cmd;
cb41ed85 884 int qdep;
3fa43655 885
ea61cddb
JR
886 qdep = dev_data->ats.qdep;
887 iommu = amd_iommu_rlookup_table[dev_data->devid];
3fa43655 888
ea61cddb 889 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
b00d3bcf
JR
890
891 return iommu_queue_command(iommu, &cmd);
3fa43655
JR
892}
893
431b2a20 894/*
431b2a20 895 * Command send function for invalidating a device table entry
431b2a20 896 */
6c542047 897static int device_flush_dte(struct iommu_dev_data *dev_data)
a19ae1ec 898{
3fa43655 899 struct amd_iommu *iommu;
ee2fa743 900 int ret;
a19ae1ec 901
6c542047 902 iommu = amd_iommu_rlookup_table[dev_data->devid];
a19ae1ec 903
f62dda66 904 ret = iommu_flush_dte(iommu, dev_data->devid);
cb41ed85
JR
905 if (ret)
906 return ret;
907
ea61cddb 908 if (dev_data->ats.enabled)
6c542047 909 ret = device_flush_iotlb(dev_data, 0, ~0UL);
ee2fa743 910
ee2fa743 911 return ret;
a19ae1ec
JR
912}
913
431b2a20
JR
914/*
915 * TLB invalidation function which is called from the mapping functions.
916 * It invalidates a single PTE if the range to flush is within a single
917 * page. Otherwise it flushes the whole TLB of the IOMMU.
918 */
17b124bf
JR
919static void __domain_flush_pages(struct protection_domain *domain,
920 u64 address, size_t size, int pde)
a19ae1ec 921{
cb41ed85 922 struct iommu_dev_data *dev_data;
11b6402c
JR
923 struct iommu_cmd cmd;
924 int ret = 0, i;
a19ae1ec 925
11b6402c 926 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
999ba417 927
6de8ad9b
JR
928 for (i = 0; i < amd_iommus_present; ++i) {
929 if (!domain->dev_iommu[i])
930 continue;
931
932 /*
933 * Devices of this domain are behind this IOMMU
934 * We need a TLB flush
935 */
11b6402c 936 ret |= iommu_queue_command(amd_iommus[i], &cmd);
6de8ad9b
JR
937 }
938
cb41ed85 939 list_for_each_entry(dev_data, &domain->dev_list, list) {
cb41ed85 940
ea61cddb 941 if (!dev_data->ats.enabled)
cb41ed85
JR
942 continue;
943
6c542047 944 ret |= device_flush_iotlb(dev_data, address, size);
cb41ed85
JR
945 }
946
11b6402c 947 WARN_ON(ret);
6de8ad9b
JR
948}
949
17b124bf
JR
950static void domain_flush_pages(struct protection_domain *domain,
951 u64 address, size_t size)
6de8ad9b 952{
17b124bf 953 __domain_flush_pages(domain, address, size, 0);
a19ae1ec 954}
b6c02715 955
1c655773 956/* Flush the whole IO/TLB for a given protection domain */
17b124bf 957static void domain_flush_tlb(struct protection_domain *domain)
1c655773 958{
17b124bf 959 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1c655773
JR
960}
961
42a49f96 962/* Flush the whole IO/TLB for a given protection domain - including PDE */
17b124bf 963static void domain_flush_tlb_pde(struct protection_domain *domain)
42a49f96 964{
17b124bf 965 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
42a49f96
CW
966}
967
17b124bf 968static void domain_flush_complete(struct protection_domain *domain)
b00d3bcf 969{
17b124bf 970 int i;
18811f55 971
17b124bf
JR
972 for (i = 0; i < amd_iommus_present; ++i) {
973 if (!domain->dev_iommu[i])
974 continue;
bfd1be18 975
17b124bf
JR
976 /*
977 * Devices of this domain are behind this IOMMU
978 * We need to wait for completion of all commands.
979 */
980 iommu_completion_wait(amd_iommus[i]);
bfd1be18 981 }
e394d72a
JR
982}
983
b00d3bcf 984
09b42804 985/*
b00d3bcf 986 * This function flushes the DTEs for all devices in domain
09b42804 987 */
17b124bf 988static void domain_flush_devices(struct protection_domain *domain)
e394d72a 989{
b00d3bcf 990 struct iommu_dev_data *dev_data;
b26e81b8 991
b00d3bcf 992 list_for_each_entry(dev_data, &domain->dev_list, list)
6c542047 993 device_flush_dte(dev_data);
a345b23b
JR
994}
995
431b2a20
JR
996/****************************************************************************
997 *
998 * The functions below are used the create the page table mappings for
999 * unity mapped regions.
1000 *
1001 ****************************************************************************/
1002
308973d3
JR
1003/*
1004 * This function is used to add another level to an IO page table. Adding
1005 * another level increases the size of the address space by 9 bits to a size up
1006 * to 64 bits.
1007 */
1008static bool increase_address_space(struct protection_domain *domain,
1009 gfp_t gfp)
1010{
1011 u64 *pte;
1012
1013 if (domain->mode == PAGE_MODE_6_LEVEL)
1014 /* address space already 64 bit large */
1015 return false;
1016
1017 pte = (void *)get_zeroed_page(gfp);
1018 if (!pte)
1019 return false;
1020
1021 *pte = PM_LEVEL_PDE(domain->mode,
1022 virt_to_phys(domain->pt_root));
1023 domain->pt_root = pte;
1024 domain->mode += 1;
1025 domain->updated = true;
1026
1027 return true;
1028}
1029
1030static u64 *alloc_pte(struct protection_domain *domain,
1031 unsigned long address,
cbb9d729 1032 unsigned long page_size,
308973d3
JR
1033 u64 **pte_page,
1034 gfp_t gfp)
1035{
cbb9d729 1036 int level, end_lvl;
308973d3 1037 u64 *pte, *page;
cbb9d729
JR
1038
1039 BUG_ON(!is_power_of_2(page_size));
308973d3
JR
1040
1041 while (address > PM_LEVEL_SIZE(domain->mode))
1042 increase_address_space(domain, gfp);
1043
cbb9d729
JR
1044 level = domain->mode - 1;
1045 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1046 address = PAGE_SIZE_ALIGN(address, page_size);
1047 end_lvl = PAGE_SIZE_LEVEL(page_size);
308973d3
JR
1048
1049 while (level > end_lvl) {
1050 if (!IOMMU_PTE_PRESENT(*pte)) {
1051 page = (u64 *)get_zeroed_page(gfp);
1052 if (!page)
1053 return NULL;
1054 *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
1055 }
1056
cbb9d729
JR
1057 /* No level skipping support yet */
1058 if (PM_PTE_LEVEL(*pte) != level)
1059 return NULL;
1060
308973d3
JR
1061 level -= 1;
1062
1063 pte = IOMMU_PTE_PAGE(*pte);
1064
1065 if (pte_page && level == end_lvl)
1066 *pte_page = pte;
1067
1068 pte = &pte[PM_LEVEL_INDEX(level, address)];
1069 }
1070
1071 return pte;
1072}
1073
1074/*
1075 * This function checks if there is a PTE for a given dma address. If
1076 * there is one, it returns the pointer to it.
1077 */
24cd7723 1078static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
308973d3
JR
1079{
1080 int level;
1081 u64 *pte;
1082
24cd7723
JR
1083 if (address > PM_LEVEL_SIZE(domain->mode))
1084 return NULL;
1085
1086 level = domain->mode - 1;
1087 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
308973d3 1088
24cd7723
JR
1089 while (level > 0) {
1090
1091 /* Not Present */
308973d3
JR
1092 if (!IOMMU_PTE_PRESENT(*pte))
1093 return NULL;
1094
24cd7723
JR
1095 /* Large PTE */
1096 if (PM_PTE_LEVEL(*pte) == 0x07) {
1097 unsigned long pte_mask, __pte;
1098
1099 /*
1100 * If we have a series of large PTEs, make
1101 * sure to return a pointer to the first one.
1102 */
1103 pte_mask = PTE_PAGE_SIZE(*pte);
1104 pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1105 __pte = ((unsigned long)pte) & pte_mask;
1106
1107 return (u64 *)__pte;
1108 }
1109
1110 /* No level skipping support yet */
1111 if (PM_PTE_LEVEL(*pte) != level)
1112 return NULL;
1113
308973d3
JR
1114 level -= 1;
1115
24cd7723 1116 /* Walk to the next level */
308973d3
JR
1117 pte = IOMMU_PTE_PAGE(*pte);
1118 pte = &pte[PM_LEVEL_INDEX(level, address)];
308973d3
JR
1119 }
1120
1121 return pte;
1122}
1123
431b2a20
JR
1124/*
1125 * Generic mapping functions. It maps a physical address into a DMA
1126 * address space. It allocates the page table pages if necessary.
1127 * In the future it can be extended to a generic mapping function
1128 * supporting all features of AMD IOMMU page tables like level skipping
1129 * and full 64 bit address spaces.
1130 */
38e817fe
JR
1131static int iommu_map_page(struct protection_domain *dom,
1132 unsigned long bus_addr,
1133 unsigned long phys_addr,
abdc5eb3 1134 int prot,
cbb9d729 1135 unsigned long page_size)
bd0e5211 1136{
8bda3092 1137 u64 __pte, *pte;
cbb9d729 1138 int i, count;
abdc5eb3 1139
bad1cac2 1140 if (!(prot & IOMMU_PROT_MASK))
bd0e5211
JR
1141 return -EINVAL;
1142
cbb9d729
JR
1143 bus_addr = PAGE_ALIGN(bus_addr);
1144 phys_addr = PAGE_ALIGN(phys_addr);
1145 count = PAGE_SIZE_PTE_COUNT(page_size);
1146 pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1147
1148 for (i = 0; i < count; ++i)
1149 if (IOMMU_PTE_PRESENT(pte[i]))
1150 return -EBUSY;
bd0e5211 1151
cbb9d729
JR
1152 if (page_size > PAGE_SIZE) {
1153 __pte = PAGE_SIZE_PTE(phys_addr, page_size);
1154 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
1155 } else
1156 __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
bd0e5211 1157
bd0e5211
JR
1158 if (prot & IOMMU_PROT_IR)
1159 __pte |= IOMMU_PTE_IR;
1160 if (prot & IOMMU_PROT_IW)
1161 __pte |= IOMMU_PTE_IW;
1162
cbb9d729
JR
1163 for (i = 0; i < count; ++i)
1164 pte[i] = __pte;
bd0e5211 1165
04bfdd84
JR
1166 update_domain(dom);
1167
bd0e5211
JR
1168 return 0;
1169}
1170
24cd7723
JR
1171static unsigned long iommu_unmap_page(struct protection_domain *dom,
1172 unsigned long bus_addr,
1173 unsigned long page_size)
eb74ff6c 1174{
24cd7723
JR
1175 unsigned long long unmap_size, unmapped;
1176 u64 *pte;
1177
1178 BUG_ON(!is_power_of_2(page_size));
1179
1180 unmapped = 0;
eb74ff6c 1181
24cd7723
JR
1182 while (unmapped < page_size) {
1183
1184 pte = fetch_pte(dom, bus_addr);
1185
1186 if (!pte) {
1187 /*
1188 * No PTE for this address
1189 * move forward in 4kb steps
1190 */
1191 unmap_size = PAGE_SIZE;
1192 } else if (PM_PTE_LEVEL(*pte) == 0) {
1193 /* 4kb PTE found for this address */
1194 unmap_size = PAGE_SIZE;
1195 *pte = 0ULL;
1196 } else {
1197 int count, i;
1198
1199 /* Large PTE found which maps this address */
1200 unmap_size = PTE_PAGE_SIZE(*pte);
1201 count = PAGE_SIZE_PTE_COUNT(unmap_size);
1202 for (i = 0; i < count; i++)
1203 pte[i] = 0ULL;
1204 }
1205
1206 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1207 unmapped += unmap_size;
1208 }
1209
1210 BUG_ON(!is_power_of_2(unmapped));
eb74ff6c 1211
24cd7723 1212 return unmapped;
eb74ff6c 1213}
eb74ff6c 1214
431b2a20
JR
1215/*
1216 * This function checks if a specific unity mapping entry is needed for
1217 * this specific IOMMU.
1218 */
bd0e5211
JR
1219static int iommu_for_unity_map(struct amd_iommu *iommu,
1220 struct unity_map_entry *entry)
1221{
1222 u16 bdf, i;
1223
1224 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
1225 bdf = amd_iommu_alias_table[i];
1226 if (amd_iommu_rlookup_table[bdf] == iommu)
1227 return 1;
1228 }
1229
1230 return 0;
1231}
1232
431b2a20
JR
1233/*
1234 * This function actually applies the mapping to the page table of the
1235 * dma_ops domain.
1236 */
bd0e5211
JR
1237static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
1238 struct unity_map_entry *e)
1239{
1240 u64 addr;
1241 int ret;
1242
1243 for (addr = e->address_start; addr < e->address_end;
1244 addr += PAGE_SIZE) {
abdc5eb3 1245 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
cbb9d729 1246 PAGE_SIZE);
bd0e5211
JR
1247 if (ret)
1248 return ret;
1249 /*
1250 * if unity mapping is in aperture range mark the page
1251 * as allocated in the aperture
1252 */
1253 if (addr < dma_dom->aperture_size)
c3239567 1254 __set_bit(addr >> PAGE_SHIFT,
384de729 1255 dma_dom->aperture[0]->bitmap);
bd0e5211
JR
1256 }
1257
1258 return 0;
1259}
1260
171e7b37
JR
1261/*
1262 * Init the unity mappings for a specific IOMMU in the system
1263 *
1264 * Basically iterates over all unity mapping entries and applies them to
1265 * the default domain DMA of that IOMMU if necessary.
1266 */
1267static int iommu_init_unity_mappings(struct amd_iommu *iommu)
1268{
1269 struct unity_map_entry *entry;
1270 int ret;
1271
1272 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
1273 if (!iommu_for_unity_map(iommu, entry))
1274 continue;
1275 ret = dma_ops_unity_map(iommu->default_dom, entry);
1276 if (ret)
1277 return ret;
1278 }
1279
1280 return 0;
1281}
1282
431b2a20
JR
1283/*
1284 * Inits the unity mappings required for a specific device
1285 */
bd0e5211
JR
1286static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
1287 u16 devid)
1288{
1289 struct unity_map_entry *e;
1290 int ret;
1291
1292 list_for_each_entry(e, &amd_iommu_unity_map, list) {
1293 if (!(devid >= e->devid_start && devid <= e->devid_end))
1294 continue;
1295 ret = dma_ops_unity_map(dma_dom, e);
1296 if (ret)
1297 return ret;
1298 }
1299
1300 return 0;
1301}
1302
431b2a20
JR
1303/****************************************************************************
1304 *
1305 * The next functions belong to the address allocator for the dma_ops
1306 * interface functions. They work like the allocators in the other IOMMU
1307 * drivers. Its basically a bitmap which marks the allocated pages in
1308 * the aperture. Maybe it could be enhanced in the future to a more
1309 * efficient allocator.
1310 *
1311 ****************************************************************************/
d3086444 1312
431b2a20 1313/*
384de729 1314 * The address allocator core functions.
431b2a20
JR
1315 *
1316 * called with domain->lock held
1317 */
384de729 1318
171e7b37
JR
1319/*
1320 * Used to reserve address ranges in the aperture (e.g. for exclusion
1321 * ranges.
1322 */
1323static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1324 unsigned long start_page,
1325 unsigned int pages)
1326{
1327 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1328
1329 if (start_page + pages > last_page)
1330 pages = last_page - start_page;
1331
1332 for (i = start_page; i < start_page + pages; ++i) {
1333 int index = i / APERTURE_RANGE_PAGES;
1334 int page = i % APERTURE_RANGE_PAGES;
1335 __set_bit(page, dom->aperture[index]->bitmap);
1336 }
1337}
1338
9cabe89b
JR
1339/*
1340 * This function is used to add a new aperture range to an existing
1341 * aperture in case of dma_ops domain allocation or address allocation
1342 * failure.
1343 */
576175c2 1344static int alloc_new_range(struct dma_ops_domain *dma_dom,
9cabe89b
JR
1345 bool populate, gfp_t gfp)
1346{
1347 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
576175c2 1348 struct amd_iommu *iommu;
17f5b569 1349 unsigned long i, old_size;
9cabe89b 1350
f5e9705c
JR
1351#ifdef CONFIG_IOMMU_STRESS
1352 populate = false;
1353#endif
1354
9cabe89b
JR
1355 if (index >= APERTURE_MAX_RANGES)
1356 return -ENOMEM;
1357
1358 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
1359 if (!dma_dom->aperture[index])
1360 return -ENOMEM;
1361
1362 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
1363 if (!dma_dom->aperture[index]->bitmap)
1364 goto out_free;
1365
1366 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1367
1368 if (populate) {
1369 unsigned long address = dma_dom->aperture_size;
1370 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1371 u64 *pte, *pte_page;
1372
1373 for (i = 0; i < num_ptes; ++i) {
cbb9d729 1374 pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
9cabe89b
JR
1375 &pte_page, gfp);
1376 if (!pte)
1377 goto out_free;
1378
1379 dma_dom->aperture[index]->pte_pages[i] = pte_page;
1380
1381 address += APERTURE_RANGE_SIZE / 64;
1382 }
1383 }
1384
17f5b569 1385 old_size = dma_dom->aperture_size;
9cabe89b
JR
1386 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1387
17f5b569
JR
1388 /* Reserve address range used for MSI messages */
1389 if (old_size < MSI_ADDR_BASE_LO &&
1390 dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
1391 unsigned long spage;
1392 int pages;
1393
1394 pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
1395 spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
1396
1397 dma_ops_reserve_addresses(dma_dom, spage, pages);
1398 }
1399
b595076a 1400 /* Initialize the exclusion range if necessary */
576175c2
JR
1401 for_each_iommu(iommu) {
1402 if (iommu->exclusion_start &&
1403 iommu->exclusion_start >= dma_dom->aperture[index]->offset
1404 && iommu->exclusion_start < dma_dom->aperture_size) {
1405 unsigned long startpage;
1406 int pages = iommu_num_pages(iommu->exclusion_start,
1407 iommu->exclusion_length,
1408 PAGE_SIZE);
1409 startpage = iommu->exclusion_start >> PAGE_SHIFT;
1410 dma_ops_reserve_addresses(dma_dom, startpage, pages);
1411 }
00cd122a
JR
1412 }
1413
1414 /*
1415 * Check for areas already mapped as present in the new aperture
1416 * range and mark those pages as reserved in the allocator. Such
1417 * mappings may already exist as a result of requested unity
1418 * mappings for devices.
1419 */
1420 for (i = dma_dom->aperture[index]->offset;
1421 i < dma_dom->aperture_size;
1422 i += PAGE_SIZE) {
24cd7723 1423 u64 *pte = fetch_pte(&dma_dom->domain, i);
00cd122a
JR
1424 if (!pte || !IOMMU_PTE_PRESENT(*pte))
1425 continue;
1426
fcd0861d 1427 dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
00cd122a
JR
1428 }
1429
04bfdd84
JR
1430 update_domain(&dma_dom->domain);
1431
9cabe89b
JR
1432 return 0;
1433
1434out_free:
04bfdd84
JR
1435 update_domain(&dma_dom->domain);
1436
9cabe89b
JR
1437 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1438
1439 kfree(dma_dom->aperture[index]);
1440 dma_dom->aperture[index] = NULL;
1441
1442 return -ENOMEM;
1443}
1444
384de729
JR
1445static unsigned long dma_ops_area_alloc(struct device *dev,
1446 struct dma_ops_domain *dom,
1447 unsigned int pages,
1448 unsigned long align_mask,
1449 u64 dma_mask,
1450 unsigned long start)
1451{
803b8cb4 1452 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
384de729
JR
1453 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1454 int i = start >> APERTURE_RANGE_SHIFT;
1455 unsigned long boundary_size;
1456 unsigned long address = -1;
1457 unsigned long limit;
1458
803b8cb4
JR
1459 next_bit >>= PAGE_SHIFT;
1460
384de729
JR
1461 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
1462 PAGE_SIZE) >> PAGE_SHIFT;
1463
1464 for (;i < max_index; ++i) {
1465 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1466
1467 if (dom->aperture[i]->offset >= dma_mask)
1468 break;
1469
1470 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1471 dma_mask >> PAGE_SHIFT);
1472
1473 address = iommu_area_alloc(dom->aperture[i]->bitmap,
1474 limit, next_bit, pages, 0,
1475 boundary_size, align_mask);
1476 if (address != -1) {
1477 address = dom->aperture[i]->offset +
1478 (address << PAGE_SHIFT);
803b8cb4 1479 dom->next_address = address + (pages << PAGE_SHIFT);
384de729
JR
1480 break;
1481 }
1482
1483 next_bit = 0;
1484 }
1485
1486 return address;
1487}
1488
d3086444
JR
1489static unsigned long dma_ops_alloc_addresses(struct device *dev,
1490 struct dma_ops_domain *dom,
6d4f343f 1491 unsigned int pages,
832a90c3
JR
1492 unsigned long align_mask,
1493 u64 dma_mask)
d3086444 1494{
d3086444 1495 unsigned long address;
d3086444 1496
fe16f088
JR
1497#ifdef CONFIG_IOMMU_STRESS
1498 dom->next_address = 0;
1499 dom->need_flush = true;
1500#endif
d3086444 1501
384de729 1502 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
803b8cb4 1503 dma_mask, dom->next_address);
d3086444 1504
1c655773 1505 if (address == -1) {
803b8cb4 1506 dom->next_address = 0;
384de729
JR
1507 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1508 dma_mask, 0);
1c655773
JR
1509 dom->need_flush = true;
1510 }
d3086444 1511
384de729 1512 if (unlikely(address == -1))
8fd524b3 1513 address = DMA_ERROR_CODE;
d3086444
JR
1514
1515 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1516
1517 return address;
1518}
1519
431b2a20
JR
1520/*
1521 * The address free function.
1522 *
1523 * called with domain->lock held
1524 */
d3086444
JR
1525static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1526 unsigned long address,
1527 unsigned int pages)
1528{
384de729
JR
1529 unsigned i = address >> APERTURE_RANGE_SHIFT;
1530 struct aperture_range *range = dom->aperture[i];
80be308d 1531
384de729
JR
1532 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1533
47bccd6b
JR
1534#ifdef CONFIG_IOMMU_STRESS
1535 if (i < 4)
1536 return;
1537#endif
80be308d 1538
803b8cb4 1539 if (address >= dom->next_address)
80be308d 1540 dom->need_flush = true;
384de729
JR
1541
1542 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
803b8cb4 1543
a66022c4 1544 bitmap_clear(range->bitmap, address, pages);
384de729 1545
d3086444
JR
1546}
1547
431b2a20
JR
1548/****************************************************************************
1549 *
1550 * The next functions belong to the domain allocation. A domain is
1551 * allocated for every IOMMU as the default domain. If device isolation
1552 * is enabled, every device get its own domain. The most important thing
1553 * about domains is the page table mapping the DMA address space they
1554 * contain.
1555 *
1556 ****************************************************************************/
1557
aeb26f55
JR
1558/*
1559 * This function adds a protection domain to the global protection domain list
1560 */
1561static void add_domain_to_list(struct protection_domain *domain)
1562{
1563 unsigned long flags;
1564
1565 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1566 list_add(&domain->list, &amd_iommu_pd_list);
1567 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1568}
1569
1570/*
1571 * This function removes a protection domain to the global
1572 * protection domain list
1573 */
1574static void del_domain_from_list(struct protection_domain *domain)
1575{
1576 unsigned long flags;
1577
1578 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1579 list_del(&domain->list);
1580 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1581}
1582
ec487d1a
JR
1583static u16 domain_id_alloc(void)
1584{
1585 unsigned long flags;
1586 int id;
1587
1588 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1589 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1590 BUG_ON(id == 0);
1591 if (id > 0 && id < MAX_DOMAIN_ID)
1592 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1593 else
1594 id = 0;
1595 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1596
1597 return id;
1598}
1599
a2acfb75
JR
1600static void domain_id_free(int id)
1601{
1602 unsigned long flags;
1603
1604 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1605 if (id > 0 && id < MAX_DOMAIN_ID)
1606 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1607 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1608}
a2acfb75 1609
86db2e5d 1610static void free_pagetable(struct protection_domain *domain)
ec487d1a
JR
1611{
1612 int i, j;
1613 u64 *p1, *p2, *p3;
1614
86db2e5d 1615 p1 = domain->pt_root;
ec487d1a
JR
1616
1617 if (!p1)
1618 return;
1619
1620 for (i = 0; i < 512; ++i) {
1621 if (!IOMMU_PTE_PRESENT(p1[i]))
1622 continue;
1623
1624 p2 = IOMMU_PTE_PAGE(p1[i]);
3cc3d84b 1625 for (j = 0; j < 512; ++j) {
ec487d1a
JR
1626 if (!IOMMU_PTE_PRESENT(p2[j]))
1627 continue;
1628 p3 = IOMMU_PTE_PAGE(p2[j]);
1629 free_page((unsigned long)p3);
1630 }
1631
1632 free_page((unsigned long)p2);
1633 }
1634
1635 free_page((unsigned long)p1);
86db2e5d
JR
1636
1637 domain->pt_root = NULL;
ec487d1a
JR
1638}
1639
b16137b1
JR
1640static void free_gcr3_tbl_level1(u64 *tbl)
1641{
1642 u64 *ptr;
1643 int i;
1644
1645 for (i = 0; i < 512; ++i) {
1646 if (!(tbl[i] & GCR3_VALID))
1647 continue;
1648
1649 ptr = __va(tbl[i] & PAGE_MASK);
1650
1651 free_page((unsigned long)ptr);
1652 }
1653}
1654
1655static void free_gcr3_tbl_level2(u64 *tbl)
1656{
1657 u64 *ptr;
1658 int i;
1659
1660 for (i = 0; i < 512; ++i) {
1661 if (!(tbl[i] & GCR3_VALID))
1662 continue;
1663
1664 ptr = __va(tbl[i] & PAGE_MASK);
1665
1666 free_gcr3_tbl_level1(ptr);
1667 }
1668}
1669
52815b75
JR
1670static void free_gcr3_table(struct protection_domain *domain)
1671{
b16137b1
JR
1672 if (domain->glx == 2)
1673 free_gcr3_tbl_level2(domain->gcr3_tbl);
1674 else if (domain->glx == 1)
1675 free_gcr3_tbl_level1(domain->gcr3_tbl);
1676 else if (domain->glx != 0)
1677 BUG();
1678
52815b75
JR
1679 free_page((unsigned long)domain->gcr3_tbl);
1680}
1681
431b2a20
JR
1682/*
1683 * Free a domain, only used if something went wrong in the
1684 * allocation path and we need to free an already allocated page table
1685 */
ec487d1a
JR
1686static void dma_ops_domain_free(struct dma_ops_domain *dom)
1687{
384de729
JR
1688 int i;
1689
ec487d1a
JR
1690 if (!dom)
1691 return;
1692
aeb26f55
JR
1693 del_domain_from_list(&dom->domain);
1694
86db2e5d 1695 free_pagetable(&dom->domain);
ec487d1a 1696
384de729
JR
1697 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1698 if (!dom->aperture[i])
1699 continue;
1700 free_page((unsigned long)dom->aperture[i]->bitmap);
1701 kfree(dom->aperture[i]);
1702 }
ec487d1a
JR
1703
1704 kfree(dom);
1705}
1706
431b2a20
JR
1707/*
1708 * Allocates a new protection domain usable for the dma_ops functions.
b595076a 1709 * It also initializes the page table and the address allocator data
431b2a20
JR
1710 * structures required for the dma_ops interface
1711 */
87a64d52 1712static struct dma_ops_domain *dma_ops_domain_alloc(void)
ec487d1a
JR
1713{
1714 struct dma_ops_domain *dma_dom;
ec487d1a
JR
1715
1716 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1717 if (!dma_dom)
1718 return NULL;
1719
1720 spin_lock_init(&dma_dom->domain.lock);
1721
1722 dma_dom->domain.id = domain_id_alloc();
1723 if (dma_dom->domain.id == 0)
1724 goto free_dma_dom;
7c392cbe 1725 INIT_LIST_HEAD(&dma_dom->domain.dev_list);
8f7a017c 1726 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
ec487d1a 1727 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
9fdb19d6 1728 dma_dom->domain.flags = PD_DMA_OPS_MASK;
ec487d1a
JR
1729 dma_dom->domain.priv = dma_dom;
1730 if (!dma_dom->domain.pt_root)
1731 goto free_dma_dom;
ec487d1a 1732
1c655773 1733 dma_dom->need_flush = false;
bd60b735 1734 dma_dom->target_dev = 0xffff;
1c655773 1735
aeb26f55
JR
1736 add_domain_to_list(&dma_dom->domain);
1737
576175c2 1738 if (alloc_new_range(dma_dom, true, GFP_KERNEL))
ec487d1a 1739 goto free_dma_dom;
ec487d1a 1740
431b2a20 1741 /*
ec487d1a
JR
1742 * mark the first page as allocated so we never return 0 as
1743 * a valid dma-address. So we can use 0 as error value
431b2a20 1744 */
384de729 1745 dma_dom->aperture[0]->bitmap[0] = 1;
803b8cb4 1746 dma_dom->next_address = 0;
ec487d1a 1747
ec487d1a
JR
1748
1749 return dma_dom;
1750
1751free_dma_dom:
1752 dma_ops_domain_free(dma_dom);
1753
1754 return NULL;
1755}
1756
5b28df6f
JR
1757/*
1758 * little helper function to check whether a given protection domain is a
1759 * dma_ops domain
1760 */
1761static bool dma_ops_domain(struct protection_domain *domain)
1762{
1763 return domain->flags & PD_DMA_OPS_MASK;
1764}
1765
fd7b5535 1766static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
b20ac0d4 1767{
132bd68f 1768 u64 pte_root = 0;
ee6c2868 1769 u64 flags = 0;
863c74eb 1770
132bd68f
JR
1771 if (domain->mode != PAGE_MODE_NONE)
1772 pte_root = virt_to_phys(domain->pt_root);
1773
38ddf41b
JR
1774 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1775 << DEV_ENTRY_MODE_SHIFT;
1776 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
b20ac0d4 1777
ee6c2868
JR
1778 flags = amd_iommu_dev_table[devid].data[1];
1779
fd7b5535
JR
1780 if (ats)
1781 flags |= DTE_FLAG_IOTLB;
1782
52815b75
JR
1783 if (domain->flags & PD_IOMMUV2_MASK) {
1784 u64 gcr3 = __pa(domain->gcr3_tbl);
1785 u64 glx = domain->glx;
1786 u64 tmp;
1787
1788 pte_root |= DTE_FLAG_GV;
1789 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1790
1791 /* First mask out possible old values for GCR3 table */
1792 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1793 flags &= ~tmp;
1794
1795 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1796 flags &= ~tmp;
1797
1798 /* Encode GCR3 table into DTE */
1799 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1800 pte_root |= tmp;
1801
1802 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1803 flags |= tmp;
1804
1805 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1806 flags |= tmp;
1807 }
1808
ee6c2868
JR
1809 flags &= ~(0xffffUL);
1810 flags |= domain->id;
1811
1812 amd_iommu_dev_table[devid].data[1] = flags;
1813 amd_iommu_dev_table[devid].data[0] = pte_root;
15898bbc
JR
1814}
1815
1816static void clear_dte_entry(u16 devid)
1817{
15898bbc
JR
1818 /* remove entry from the device table seen by the hardware */
1819 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1820 amd_iommu_dev_table[devid].data[1] = 0;
15898bbc
JR
1821
1822 amd_iommu_apply_erratum_63(devid);
7f760ddd
JR
1823}
1824
ec9e79ef
JR
1825static void do_attach(struct iommu_dev_data *dev_data,
1826 struct protection_domain *domain)
7f760ddd 1827{
7f760ddd 1828 struct amd_iommu *iommu;
ec9e79ef 1829 bool ats;
fd7b5535 1830
ec9e79ef
JR
1831 iommu = amd_iommu_rlookup_table[dev_data->devid];
1832 ats = dev_data->ats.enabled;
7f760ddd
JR
1833
1834 /* Update data structures */
1835 dev_data->domain = domain;
1836 list_add(&dev_data->list, &domain->dev_list);
f62dda66 1837 set_dte_entry(dev_data->devid, domain, ats);
7f760ddd
JR
1838
1839 /* Do reference counting */
1840 domain->dev_iommu[iommu->index] += 1;
1841 domain->dev_cnt += 1;
1842
1843 /* Flush the DTE entry */
6c542047 1844 device_flush_dte(dev_data);
7f760ddd
JR
1845}
1846
ec9e79ef 1847static void do_detach(struct iommu_dev_data *dev_data)
7f760ddd 1848{
7f760ddd 1849 struct amd_iommu *iommu;
7f760ddd 1850
ec9e79ef 1851 iommu = amd_iommu_rlookup_table[dev_data->devid];
15898bbc
JR
1852
1853 /* decrease reference counters */
7f760ddd
JR
1854 dev_data->domain->dev_iommu[iommu->index] -= 1;
1855 dev_data->domain->dev_cnt -= 1;
1856
1857 /* Update data structures */
1858 dev_data->domain = NULL;
1859 list_del(&dev_data->list);
f62dda66 1860 clear_dte_entry(dev_data->devid);
15898bbc 1861
7f760ddd 1862 /* Flush the DTE entry */
6c542047 1863 device_flush_dte(dev_data);
2b681faf
JR
1864}
1865
1866/*
1867 * If a device is not yet associated with a domain, this function does
1868 * assigns it visible for the hardware
1869 */
ec9e79ef 1870static int __attach_device(struct iommu_dev_data *dev_data,
15898bbc 1871 struct protection_domain *domain)
2b681faf 1872{
84fe6c19 1873 int ret;
657cbb6b 1874
2b681faf
JR
1875 /* lock domain */
1876 spin_lock(&domain->lock);
1877
71f77580
JR
1878 if (dev_data->alias_data != NULL) {
1879 struct iommu_dev_data *alias_data = dev_data->alias_data;
15898bbc 1880
2b02b091
JR
1881 /* Some sanity checks */
1882 ret = -EBUSY;
1883 if (alias_data->domain != NULL &&
1884 alias_data->domain != domain)
1885 goto out_unlock;
eba6ac60 1886
2b02b091
JR
1887 if (dev_data->domain != NULL &&
1888 dev_data->domain != domain)
1889 goto out_unlock;
15898bbc 1890
2b02b091 1891 /* Do real assignment */
7f760ddd 1892 if (alias_data->domain == NULL)
ec9e79ef 1893 do_attach(alias_data, domain);
24100055
JR
1894
1895 atomic_inc(&alias_data->bind);
657cbb6b 1896 }
15898bbc 1897
7f760ddd 1898 if (dev_data->domain == NULL)
ec9e79ef 1899 do_attach(dev_data, domain);
eba6ac60 1900
24100055
JR
1901 atomic_inc(&dev_data->bind);
1902
84fe6c19
JL
1903 ret = 0;
1904
1905out_unlock:
1906
eba6ac60
JR
1907 /* ready */
1908 spin_unlock(&domain->lock);
15898bbc 1909
84fe6c19 1910 return ret;
0feae533 1911}
b20ac0d4 1912
52815b75
JR
1913
1914static void pdev_iommuv2_disable(struct pci_dev *pdev)
1915{
1916 pci_disable_ats(pdev);
1917 pci_disable_pri(pdev);
1918 pci_disable_pasid(pdev);
1919}
1920
1921static int pdev_iommuv2_enable(struct pci_dev *pdev)
1922{
1923 int ret;
1924
1925 /* Only allow access to user-accessible pages */
1926 ret = pci_enable_pasid(pdev, 0);
1927 if (ret)
1928 goto out_err;
1929
1930 /* First reset the PRI state of the device */
1931 ret = pci_reset_pri(pdev);
1932 if (ret)
1933 goto out_err;
1934
1935 /* FIXME: Hardcode number of outstanding requests for now */
1936 ret = pci_enable_pri(pdev, 32);
1937 if (ret)
1938 goto out_err;
1939
1940 ret = pci_enable_ats(pdev, PAGE_SHIFT);
1941 if (ret)
1942 goto out_err;
1943
1944 return 0;
1945
1946out_err:
1947 pci_disable_pri(pdev);
1948 pci_disable_pasid(pdev);
1949
1950 return ret;
1951}
1952
407d733e
JR
1953/*
1954 * If a device is not yet associated with a domain, this function does
1955 * assigns it visible for the hardware
1956 */
15898bbc
JR
1957static int attach_device(struct device *dev,
1958 struct protection_domain *domain)
0feae533 1959{
fd7b5535 1960 struct pci_dev *pdev = to_pci_dev(dev);
ea61cddb 1961 struct iommu_dev_data *dev_data;
eba6ac60 1962 unsigned long flags;
15898bbc 1963 int ret;
eba6ac60 1964
ea61cddb
JR
1965 dev_data = get_dev_data(dev);
1966
52815b75
JR
1967 if (domain->flags & PD_IOMMUV2_MASK) {
1968 if (!dev_data->iommu_v2 || !dev_data->passthrough)
1969 return -EINVAL;
1970
1971 if (pdev_iommuv2_enable(pdev) != 0)
1972 return -EINVAL;
1973
1974 dev_data->ats.enabled = true;
1975 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
1976 } else if (amd_iommu_iotlb_sup &&
1977 pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
ea61cddb
JR
1978 dev_data->ats.enabled = true;
1979 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
1980 }
fd7b5535 1981
eba6ac60 1982 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
ec9e79ef 1983 ret = __attach_device(dev_data, domain);
b20ac0d4
JR
1984 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1985
0feae533
JR
1986 /*
1987 * We might boot into a crash-kernel here. The crashed kernel
1988 * left the caches in the IOMMU dirty. So we have to flush
1989 * here to evict all dirty stuff.
1990 */
17b124bf 1991 domain_flush_tlb_pde(domain);
15898bbc
JR
1992
1993 return ret;
b20ac0d4
JR
1994}
1995
355bf553
JR
1996/*
1997 * Removes a device from a protection domain (unlocked)
1998 */
ec9e79ef 1999static void __detach_device(struct iommu_dev_data *dev_data)
355bf553 2000{
2ca76279 2001 struct protection_domain *domain;
7c392cbe 2002 unsigned long flags;
c4596114 2003
7f760ddd 2004 BUG_ON(!dev_data->domain);
355bf553 2005
2ca76279
JR
2006 domain = dev_data->domain;
2007
2008 spin_lock_irqsave(&domain->lock, flags);
24100055 2009
71f77580
JR
2010 if (dev_data->alias_data != NULL) {
2011 struct iommu_dev_data *alias_data = dev_data->alias_data;
2012
7f760ddd 2013 if (atomic_dec_and_test(&alias_data->bind))
ec9e79ef 2014 do_detach(alias_data);
24100055
JR
2015 }
2016
7f760ddd 2017 if (atomic_dec_and_test(&dev_data->bind))
ec9e79ef 2018 do_detach(dev_data);
7f760ddd 2019
2ca76279 2020 spin_unlock_irqrestore(&domain->lock, flags);
21129f78
JR
2021
2022 /*
2023 * If we run in passthrough mode the device must be assigned to the
d3ad9373
JR
2024 * passthrough domain if it is detached from any other domain.
2025 * Make sure we can deassign from the pt_domain itself.
21129f78 2026 */
5abcdba4 2027 if (dev_data->passthrough &&
d3ad9373 2028 (dev_data->domain == NULL && domain != pt_domain))
ec9e79ef 2029 __attach_device(dev_data, pt_domain);
355bf553
JR
2030}
2031
2032/*
2033 * Removes a device from a protection domain (with devtable_lock held)
2034 */
15898bbc 2035static void detach_device(struct device *dev)
355bf553 2036{
52815b75 2037 struct protection_domain *domain;
ea61cddb 2038 struct iommu_dev_data *dev_data;
355bf553
JR
2039 unsigned long flags;
2040
ec9e79ef 2041 dev_data = get_dev_data(dev);
52815b75 2042 domain = dev_data->domain;
ec9e79ef 2043
355bf553
JR
2044 /* lock device table */
2045 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
ec9e79ef 2046 __detach_device(dev_data);
355bf553 2047 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
fd7b5535 2048
52815b75
JR
2049 if (domain->flags & PD_IOMMUV2_MASK)
2050 pdev_iommuv2_disable(to_pci_dev(dev));
2051 else if (dev_data->ats.enabled)
ea61cddb 2052 pci_disable_ats(to_pci_dev(dev));
52815b75
JR
2053
2054 dev_data->ats.enabled = false;
355bf553 2055}
e275a2a0 2056
15898bbc
JR
2057/*
2058 * Find out the protection domain structure for a given PCI device. This
2059 * will give us the pointer to the page table root for example.
2060 */
2061static struct protection_domain *domain_for_device(struct device *dev)
2062{
71f77580 2063 struct iommu_dev_data *dev_data;
2b02b091 2064 struct protection_domain *dom = NULL;
15898bbc 2065 unsigned long flags;
15898bbc 2066
657cbb6b 2067 dev_data = get_dev_data(dev);
15898bbc 2068
2b02b091
JR
2069 if (dev_data->domain)
2070 return dev_data->domain;
15898bbc 2071
71f77580
JR
2072 if (dev_data->alias_data != NULL) {
2073 struct iommu_dev_data *alias_data = dev_data->alias_data;
2b02b091
JR
2074
2075 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
2076 if (alias_data->domain != NULL) {
2077 __attach_device(dev_data, alias_data->domain);
2078 dom = alias_data->domain;
2079 }
2080 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2081 }
15898bbc
JR
2082
2083 return dom;
2084}
2085
e275a2a0
JR
2086static int device_change_notifier(struct notifier_block *nb,
2087 unsigned long action, void *data)
2088{
e275a2a0 2089 struct dma_ops_domain *dma_domain;
5abcdba4
JR
2090 struct protection_domain *domain;
2091 struct iommu_dev_data *dev_data;
2092 struct device *dev = data;
e275a2a0 2093 struct amd_iommu *iommu;
1ac4cbbc 2094 unsigned long flags;
5abcdba4 2095 u16 devid;
e275a2a0 2096
98fc5a69
JR
2097 if (!check_device(dev))
2098 return 0;
e275a2a0 2099
5abcdba4
JR
2100 devid = get_device_id(dev);
2101 iommu = amd_iommu_rlookup_table[devid];
2102 dev_data = get_dev_data(dev);
e275a2a0
JR
2103
2104 switch (action) {
c1eee67b 2105 case BUS_NOTIFY_UNBOUND_DRIVER:
657cbb6b
JR
2106
2107 domain = domain_for_device(dev);
2108
e275a2a0
JR
2109 if (!domain)
2110 goto out;
5abcdba4 2111 if (dev_data->passthrough)
a1ca331c 2112 break;
15898bbc 2113 detach_device(dev);
1ac4cbbc
JR
2114 break;
2115 case BUS_NOTIFY_ADD_DEVICE:
657cbb6b
JR
2116
2117 iommu_init_device(dev);
2118
2119 domain = domain_for_device(dev);
2120
1ac4cbbc
JR
2121 /* allocate a protection domain if a device is added */
2122 dma_domain = find_protection_domain(devid);
2123 if (dma_domain)
2124 goto out;
87a64d52 2125 dma_domain = dma_ops_domain_alloc();
1ac4cbbc
JR
2126 if (!dma_domain)
2127 goto out;
2128 dma_domain->target_dev = devid;
2129
2130 spin_lock_irqsave(&iommu_pd_list_lock, flags);
2131 list_add_tail(&dma_domain->list, &iommu_pd_list);
2132 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
2133
e275a2a0 2134 break;
657cbb6b
JR
2135 case BUS_NOTIFY_DEL_DEVICE:
2136
2137 iommu_uninit_device(dev);
2138
e275a2a0
JR
2139 default:
2140 goto out;
2141 }
2142
e275a2a0
JR
2143 iommu_completion_wait(iommu);
2144
2145out:
2146 return 0;
2147}
2148
b25ae679 2149static struct notifier_block device_nb = {
e275a2a0
JR
2150 .notifier_call = device_change_notifier,
2151};
355bf553 2152
8638c491
JR
2153void amd_iommu_init_notifier(void)
2154{
2155 bus_register_notifier(&pci_bus_type, &device_nb);
2156}
2157
431b2a20
JR
2158/*****************************************************************************
2159 *
2160 * The next functions belong to the dma_ops mapping/unmapping code.
2161 *
2162 *****************************************************************************/
2163
2164/*
2165 * In the dma_ops path we only have the struct device. This function
2166 * finds the corresponding IOMMU, the protection domain and the
2167 * requestor id for a given device.
2168 * If the device is not yet associated with a domain this is also done
2169 * in this function.
2170 */
94f6d190 2171static struct protection_domain *get_domain(struct device *dev)
b20ac0d4 2172{
94f6d190 2173 struct protection_domain *domain;
b20ac0d4 2174 struct dma_ops_domain *dma_dom;
94f6d190 2175 u16 devid = get_device_id(dev);
b20ac0d4 2176
f99c0f1c 2177 if (!check_device(dev))
94f6d190 2178 return ERR_PTR(-EINVAL);
b20ac0d4 2179
94f6d190
JR
2180 domain = domain_for_device(dev);
2181 if (domain != NULL && !dma_ops_domain(domain))
2182 return ERR_PTR(-EBUSY);
f99c0f1c 2183
94f6d190
JR
2184 if (domain != NULL)
2185 return domain;
b20ac0d4 2186
15898bbc 2187 /* Device not bount yet - bind it */
94f6d190 2188 dma_dom = find_protection_domain(devid);
15898bbc 2189 if (!dma_dom)
94f6d190
JR
2190 dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
2191 attach_device(dev, &dma_dom->domain);
15898bbc 2192 DUMP_printk("Using protection domain %d for device %s\n",
94f6d190 2193 dma_dom->domain.id, dev_name(dev));
f91ba190 2194
94f6d190 2195 return &dma_dom->domain;
b20ac0d4
JR
2196}
2197
04bfdd84
JR
2198static void update_device_table(struct protection_domain *domain)
2199{
492667da 2200 struct iommu_dev_data *dev_data;
04bfdd84 2201
ea61cddb
JR
2202 list_for_each_entry(dev_data, &domain->dev_list, list)
2203 set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
04bfdd84
JR
2204}
2205
2206static void update_domain(struct protection_domain *domain)
2207{
2208 if (!domain->updated)
2209 return;
2210
2211 update_device_table(domain);
17b124bf
JR
2212
2213 domain_flush_devices(domain);
2214 domain_flush_tlb_pde(domain);
04bfdd84
JR
2215
2216 domain->updated = false;
2217}
2218
8bda3092
JR
2219/*
2220 * This function fetches the PTE for a given address in the aperture
2221 */
2222static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
2223 unsigned long address)
2224{
384de729 2225 struct aperture_range *aperture;
8bda3092
JR
2226 u64 *pte, *pte_page;
2227
384de729
JR
2228 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2229 if (!aperture)
2230 return NULL;
2231
2232 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
8bda3092 2233 if (!pte) {
cbb9d729 2234 pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
abdc5eb3 2235 GFP_ATOMIC);
384de729
JR
2236 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
2237 } else
8c8c143c 2238 pte += PM_LEVEL_INDEX(0, address);
8bda3092 2239
04bfdd84 2240 update_domain(&dom->domain);
8bda3092
JR
2241
2242 return pte;
2243}
2244
431b2a20
JR
2245/*
2246 * This is the generic map function. It maps one 4kb page at paddr to
2247 * the given address in the DMA address space for the domain.
2248 */
680525e0 2249static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
cb76c322
JR
2250 unsigned long address,
2251 phys_addr_t paddr,
2252 int direction)
2253{
2254 u64 *pte, __pte;
2255
2256 WARN_ON(address > dom->aperture_size);
2257
2258 paddr &= PAGE_MASK;
2259
8bda3092 2260 pte = dma_ops_get_pte(dom, address);
53812c11 2261 if (!pte)
8fd524b3 2262 return DMA_ERROR_CODE;
cb76c322
JR
2263
2264 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
2265
2266 if (direction == DMA_TO_DEVICE)
2267 __pte |= IOMMU_PTE_IR;
2268 else if (direction == DMA_FROM_DEVICE)
2269 __pte |= IOMMU_PTE_IW;
2270 else if (direction == DMA_BIDIRECTIONAL)
2271 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
2272
2273 WARN_ON(*pte);
2274
2275 *pte = __pte;
2276
2277 return (dma_addr_t)address;
2278}
2279
431b2a20
JR
2280/*
2281 * The generic unmapping function for on page in the DMA address space.
2282 */
680525e0 2283static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
cb76c322
JR
2284 unsigned long address)
2285{
384de729 2286 struct aperture_range *aperture;
cb76c322
JR
2287 u64 *pte;
2288
2289 if (address >= dom->aperture_size)
2290 return;
2291
384de729
JR
2292 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2293 if (!aperture)
2294 return;
2295
2296 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2297 if (!pte)
2298 return;
cb76c322 2299
8c8c143c 2300 pte += PM_LEVEL_INDEX(0, address);
cb76c322
JR
2301
2302 WARN_ON(!*pte);
2303
2304 *pte = 0ULL;
2305}
2306
431b2a20
JR
2307/*
2308 * This function contains common code for mapping of a physically
24f81160
JR
2309 * contiguous memory region into DMA address space. It is used by all
2310 * mapping functions provided with this IOMMU driver.
431b2a20
JR
2311 * Must be called with the domain lock held.
2312 */
cb76c322 2313static dma_addr_t __map_single(struct device *dev,
cb76c322
JR
2314 struct dma_ops_domain *dma_dom,
2315 phys_addr_t paddr,
2316 size_t size,
6d4f343f 2317 int dir,
832a90c3
JR
2318 bool align,
2319 u64 dma_mask)
cb76c322
JR
2320{
2321 dma_addr_t offset = paddr & ~PAGE_MASK;
53812c11 2322 dma_addr_t address, start, ret;
cb76c322 2323 unsigned int pages;
6d4f343f 2324 unsigned long align_mask = 0;
cb76c322
JR
2325 int i;
2326
e3c449f5 2327 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
cb76c322
JR
2328 paddr &= PAGE_MASK;
2329
8ecaf8f1
JR
2330 INC_STATS_COUNTER(total_map_requests);
2331
c1858976
JR
2332 if (pages > 1)
2333 INC_STATS_COUNTER(cross_page);
2334
6d4f343f
JR
2335 if (align)
2336 align_mask = (1UL << get_order(size)) - 1;
2337
11b83888 2338retry:
832a90c3
JR
2339 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
2340 dma_mask);
8fd524b3 2341 if (unlikely(address == DMA_ERROR_CODE)) {
11b83888
JR
2342 /*
2343 * setting next_address here will let the address
2344 * allocator only scan the new allocated range in the
2345 * first run. This is a small optimization.
2346 */
2347 dma_dom->next_address = dma_dom->aperture_size;
2348
576175c2 2349 if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
11b83888
JR
2350 goto out;
2351
2352 /*
af901ca1 2353 * aperture was successfully enlarged by 128 MB, try
11b83888
JR
2354 * allocation again
2355 */
2356 goto retry;
2357 }
cb76c322
JR
2358
2359 start = address;
2360 for (i = 0; i < pages; ++i) {
680525e0 2361 ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
8fd524b3 2362 if (ret == DMA_ERROR_CODE)
53812c11
JR
2363 goto out_unmap;
2364
cb76c322
JR
2365 paddr += PAGE_SIZE;
2366 start += PAGE_SIZE;
2367 }
2368 address += offset;
2369
5774f7c5
JR
2370 ADD_STATS_COUNTER(alloced_io_mem, size);
2371
afa9fdc2 2372 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
17b124bf 2373 domain_flush_tlb(&dma_dom->domain);
1c655773 2374 dma_dom->need_flush = false;
318afd41 2375 } else if (unlikely(amd_iommu_np_cache))
17b124bf 2376 domain_flush_pages(&dma_dom->domain, address, size);
270cab24 2377
cb76c322
JR
2378out:
2379 return address;
53812c11
JR
2380
2381out_unmap:
2382
2383 for (--i; i >= 0; --i) {
2384 start -= PAGE_SIZE;
680525e0 2385 dma_ops_domain_unmap(dma_dom, start);
53812c11
JR
2386 }
2387
2388 dma_ops_free_addresses(dma_dom, address, pages);
2389
8fd524b3 2390 return DMA_ERROR_CODE;
cb76c322
JR
2391}
2392
431b2a20
JR
2393/*
2394 * Does the reverse of the __map_single function. Must be called with
2395 * the domain lock held too
2396 */
cd8c82e8 2397static void __unmap_single(struct dma_ops_domain *dma_dom,
cb76c322
JR
2398 dma_addr_t dma_addr,
2399 size_t size,
2400 int dir)
2401{
04e0463e 2402 dma_addr_t flush_addr;
cb76c322
JR
2403 dma_addr_t i, start;
2404 unsigned int pages;
2405
8fd524b3 2406 if ((dma_addr == DMA_ERROR_CODE) ||
b8d9905d 2407 (dma_addr + size > dma_dom->aperture_size))
cb76c322
JR
2408 return;
2409
04e0463e 2410 flush_addr = dma_addr;
e3c449f5 2411 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
cb76c322
JR
2412 dma_addr &= PAGE_MASK;
2413 start = dma_addr;
2414
2415 for (i = 0; i < pages; ++i) {
680525e0 2416 dma_ops_domain_unmap(dma_dom, start);
cb76c322
JR
2417 start += PAGE_SIZE;
2418 }
2419
5774f7c5
JR
2420 SUB_STATS_COUNTER(alloced_io_mem, size);
2421
cb76c322 2422 dma_ops_free_addresses(dma_dom, dma_addr, pages);
270cab24 2423
80be308d 2424 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
17b124bf 2425 domain_flush_pages(&dma_dom->domain, flush_addr, size);
80be308d
JR
2426 dma_dom->need_flush = false;
2427 }
cb76c322
JR
2428}
2429
431b2a20
JR
2430/*
2431 * The exported map_single function for dma_ops.
2432 */
51491367
FT
2433static dma_addr_t map_page(struct device *dev, struct page *page,
2434 unsigned long offset, size_t size,
2435 enum dma_data_direction dir,
2436 struct dma_attrs *attrs)
4da70b9e
JR
2437{
2438 unsigned long flags;
4da70b9e 2439 struct protection_domain *domain;
4da70b9e 2440 dma_addr_t addr;
832a90c3 2441 u64 dma_mask;
51491367 2442 phys_addr_t paddr = page_to_phys(page) + offset;
4da70b9e 2443
0f2a86f2
JR
2444 INC_STATS_COUNTER(cnt_map_single);
2445
94f6d190
JR
2446 domain = get_domain(dev);
2447 if (PTR_ERR(domain) == -EINVAL)
4da70b9e 2448 return (dma_addr_t)paddr;
94f6d190
JR
2449 else if (IS_ERR(domain))
2450 return DMA_ERROR_CODE;
4da70b9e 2451
f99c0f1c
JR
2452 dma_mask = *dev->dma_mask;
2453
4da70b9e 2454 spin_lock_irqsave(&domain->lock, flags);
94f6d190 2455
cd8c82e8 2456 addr = __map_single(dev, domain->priv, paddr, size, dir, false,
832a90c3 2457 dma_mask);
8fd524b3 2458 if (addr == DMA_ERROR_CODE)
4da70b9e
JR
2459 goto out;
2460
17b124bf 2461 domain_flush_complete(domain);
4da70b9e
JR
2462
2463out:
2464 spin_unlock_irqrestore(&domain->lock, flags);
2465
2466 return addr;
2467}
2468
431b2a20
JR
2469/*
2470 * The exported unmap_single function for dma_ops.
2471 */
51491367
FT
2472static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2473 enum dma_data_direction dir, struct dma_attrs *attrs)
4da70b9e
JR
2474{
2475 unsigned long flags;
4da70b9e 2476 struct protection_domain *domain;
4da70b9e 2477
146a6917
JR
2478 INC_STATS_COUNTER(cnt_unmap_single);
2479
94f6d190
JR
2480 domain = get_domain(dev);
2481 if (IS_ERR(domain))
5b28df6f
JR
2482 return;
2483
4da70b9e
JR
2484 spin_lock_irqsave(&domain->lock, flags);
2485
cd8c82e8 2486 __unmap_single(domain->priv, dma_addr, size, dir);
4da70b9e 2487
17b124bf 2488 domain_flush_complete(domain);
4da70b9e
JR
2489
2490 spin_unlock_irqrestore(&domain->lock, flags);
2491}
2492
431b2a20
JR
2493/*
2494 * This is a special map_sg function which is used if we should map a
2495 * device which is not handled by an AMD IOMMU in the system.
2496 */
65b050ad
JR
2497static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
2498 int nelems, int dir)
2499{
2500 struct scatterlist *s;
2501 int i;
2502
2503 for_each_sg(sglist, s, nelems, i) {
2504 s->dma_address = (dma_addr_t)sg_phys(s);
2505 s->dma_length = s->length;
2506 }
2507
2508 return nelems;
2509}
2510
431b2a20
JR
2511/*
2512 * The exported map_sg function for dma_ops (handles scatter-gather
2513 * lists).
2514 */
65b050ad 2515static int map_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
2516 int nelems, enum dma_data_direction dir,
2517 struct dma_attrs *attrs)
65b050ad
JR
2518{
2519 unsigned long flags;
65b050ad 2520 struct protection_domain *domain;
65b050ad
JR
2521 int i;
2522 struct scatterlist *s;
2523 phys_addr_t paddr;
2524 int mapped_elems = 0;
832a90c3 2525 u64 dma_mask;
65b050ad 2526
d03f067a
JR
2527 INC_STATS_COUNTER(cnt_map_sg);
2528
94f6d190
JR
2529 domain = get_domain(dev);
2530 if (PTR_ERR(domain) == -EINVAL)
f99c0f1c 2531 return map_sg_no_iommu(dev, sglist, nelems, dir);
94f6d190
JR
2532 else if (IS_ERR(domain))
2533 return 0;
dbcc112e 2534
832a90c3 2535 dma_mask = *dev->dma_mask;
65b050ad 2536
65b050ad
JR
2537 spin_lock_irqsave(&domain->lock, flags);
2538
2539 for_each_sg(sglist, s, nelems, i) {
2540 paddr = sg_phys(s);
2541
cd8c82e8 2542 s->dma_address = __map_single(dev, domain->priv,
832a90c3
JR
2543 paddr, s->length, dir, false,
2544 dma_mask);
65b050ad
JR
2545
2546 if (s->dma_address) {
2547 s->dma_length = s->length;
2548 mapped_elems++;
2549 } else
2550 goto unmap;
65b050ad
JR
2551 }
2552
17b124bf 2553 domain_flush_complete(domain);
65b050ad
JR
2554
2555out:
2556 spin_unlock_irqrestore(&domain->lock, flags);
2557
2558 return mapped_elems;
2559unmap:
2560 for_each_sg(sglist, s, mapped_elems, i) {
2561 if (s->dma_address)
cd8c82e8 2562 __unmap_single(domain->priv, s->dma_address,
65b050ad
JR
2563 s->dma_length, dir);
2564 s->dma_address = s->dma_length = 0;
2565 }
2566
2567 mapped_elems = 0;
2568
2569 goto out;
2570}
2571
431b2a20
JR
2572/*
2573 * The exported map_sg function for dma_ops (handles scatter-gather
2574 * lists).
2575 */
65b050ad 2576static void unmap_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
2577 int nelems, enum dma_data_direction dir,
2578 struct dma_attrs *attrs)
65b050ad
JR
2579{
2580 unsigned long flags;
65b050ad
JR
2581 struct protection_domain *domain;
2582 struct scatterlist *s;
65b050ad
JR
2583 int i;
2584
55877a6b
JR
2585 INC_STATS_COUNTER(cnt_unmap_sg);
2586
94f6d190
JR
2587 domain = get_domain(dev);
2588 if (IS_ERR(domain))
5b28df6f
JR
2589 return;
2590
65b050ad
JR
2591 spin_lock_irqsave(&domain->lock, flags);
2592
2593 for_each_sg(sglist, s, nelems, i) {
cd8c82e8 2594 __unmap_single(domain->priv, s->dma_address,
65b050ad 2595 s->dma_length, dir);
65b050ad
JR
2596 s->dma_address = s->dma_length = 0;
2597 }
2598
17b124bf 2599 domain_flush_complete(domain);
65b050ad
JR
2600
2601 spin_unlock_irqrestore(&domain->lock, flags);
2602}
2603
431b2a20
JR
2604/*
2605 * The exported alloc_coherent function for dma_ops.
2606 */
5d8b53cf
JR
2607static void *alloc_coherent(struct device *dev, size_t size,
2608 dma_addr_t *dma_addr, gfp_t flag)
2609{
2610 unsigned long flags;
2611 void *virt_addr;
5d8b53cf 2612 struct protection_domain *domain;
5d8b53cf 2613 phys_addr_t paddr;
832a90c3 2614 u64 dma_mask = dev->coherent_dma_mask;
5d8b53cf 2615
c8f0fb36
JR
2616 INC_STATS_COUNTER(cnt_alloc_coherent);
2617
94f6d190
JR
2618 domain = get_domain(dev);
2619 if (PTR_ERR(domain) == -EINVAL) {
f99c0f1c
JR
2620 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2621 *dma_addr = __pa(virt_addr);
2622 return virt_addr;
94f6d190
JR
2623 } else if (IS_ERR(domain))
2624 return NULL;
5d8b53cf 2625
f99c0f1c
JR
2626 dma_mask = dev->coherent_dma_mask;
2627 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2628 flag |= __GFP_ZERO;
5d8b53cf
JR
2629
2630 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2631 if (!virt_addr)
b25ae679 2632 return NULL;
5d8b53cf 2633
5d8b53cf
JR
2634 paddr = virt_to_phys(virt_addr);
2635
832a90c3
JR
2636 if (!dma_mask)
2637 dma_mask = *dev->dma_mask;
2638
5d8b53cf
JR
2639 spin_lock_irqsave(&domain->lock, flags);
2640
cd8c82e8 2641 *dma_addr = __map_single(dev, domain->priv, paddr,
832a90c3 2642 size, DMA_BIDIRECTIONAL, true, dma_mask);
5d8b53cf 2643
8fd524b3 2644 if (*dma_addr == DMA_ERROR_CODE) {
367d04c4 2645 spin_unlock_irqrestore(&domain->lock, flags);
5b28df6f 2646 goto out_free;
367d04c4 2647 }
5d8b53cf 2648
17b124bf 2649 domain_flush_complete(domain);
5d8b53cf 2650
5d8b53cf
JR
2651 spin_unlock_irqrestore(&domain->lock, flags);
2652
2653 return virt_addr;
5b28df6f
JR
2654
2655out_free:
2656
2657 free_pages((unsigned long)virt_addr, get_order(size));
2658
2659 return NULL;
5d8b53cf
JR
2660}
2661
431b2a20
JR
2662/*
2663 * The exported free_coherent function for dma_ops.
431b2a20 2664 */
5d8b53cf
JR
2665static void free_coherent(struct device *dev, size_t size,
2666 void *virt_addr, dma_addr_t dma_addr)
2667{
2668 unsigned long flags;
5d8b53cf 2669 struct protection_domain *domain;
5d8b53cf 2670
5d31ee7e
JR
2671 INC_STATS_COUNTER(cnt_free_coherent);
2672
94f6d190
JR
2673 domain = get_domain(dev);
2674 if (IS_ERR(domain))
5b28df6f
JR
2675 goto free_mem;
2676
5d8b53cf
JR
2677 spin_lock_irqsave(&domain->lock, flags);
2678
cd8c82e8 2679 __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
5d8b53cf 2680
17b124bf 2681 domain_flush_complete(domain);
5d8b53cf
JR
2682
2683 spin_unlock_irqrestore(&domain->lock, flags);
2684
2685free_mem:
2686 free_pages((unsigned long)virt_addr, get_order(size));
2687}
2688
b39ba6ad
JR
2689/*
2690 * This function is called by the DMA layer to find out if we can handle a
2691 * particular device. It is part of the dma_ops.
2692 */
2693static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2694{
420aef8a 2695 return check_device(dev);
b39ba6ad
JR
2696}
2697
c432f3df 2698/*
431b2a20
JR
2699 * The function for pre-allocating protection domains.
2700 *
c432f3df
JR
2701 * If the driver core informs the DMA layer if a driver grabs a device
2702 * we don't need to preallocate the protection domains anymore.
2703 * For now we have to.
2704 */
0e93dd88 2705static void prealloc_protection_domains(void)
c432f3df 2706{
5abcdba4 2707 struct iommu_dev_data *dev_data;
c432f3df 2708 struct dma_ops_domain *dma_dom;
5abcdba4 2709 struct pci_dev *dev = NULL;
98fc5a69 2710 u16 devid;
c432f3df 2711
d18c69d3 2712 for_each_pci_dev(dev) {
98fc5a69
JR
2713
2714 /* Do we handle this device? */
2715 if (!check_device(&dev->dev))
c432f3df 2716 continue;
98fc5a69 2717
5abcdba4
JR
2718 dev_data = get_dev_data(&dev->dev);
2719 if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
2720 /* Make sure passthrough domain is allocated */
2721 alloc_passthrough_domain();
2722 dev_data->passthrough = true;
2723 attach_device(&dev->dev, pt_domain);
2724 pr_info("AMD-Vi: Using passthough domain for device %s\n",
2725 dev_name(&dev->dev));
2726 }
2727
98fc5a69 2728 /* Is there already any domain for it? */
15898bbc 2729 if (domain_for_device(&dev->dev))
c432f3df 2730 continue;
98fc5a69
JR
2731
2732 devid = get_device_id(&dev->dev);
2733
87a64d52 2734 dma_dom = dma_ops_domain_alloc();
c432f3df
JR
2735 if (!dma_dom)
2736 continue;
2737 init_unity_mappings_for_device(dma_dom, devid);
bd60b735
JR
2738 dma_dom->target_dev = devid;
2739
15898bbc 2740 attach_device(&dev->dev, &dma_dom->domain);
be831297 2741
bd60b735 2742 list_add_tail(&dma_dom->list, &iommu_pd_list);
c432f3df
JR
2743 }
2744}
2745
160c1d8e 2746static struct dma_map_ops amd_iommu_dma_ops = {
6631ee9d
JR
2747 .alloc_coherent = alloc_coherent,
2748 .free_coherent = free_coherent,
51491367
FT
2749 .map_page = map_page,
2750 .unmap_page = unmap_page,
6631ee9d
JR
2751 .map_sg = map_sg,
2752 .unmap_sg = unmap_sg,
b39ba6ad 2753 .dma_supported = amd_iommu_dma_supported,
6631ee9d
JR
2754};
2755
27c2127a
JR
2756static unsigned device_dma_ops_init(void)
2757{
5abcdba4 2758 struct iommu_dev_data *dev_data;
27c2127a
JR
2759 struct pci_dev *pdev = NULL;
2760 unsigned unhandled = 0;
2761
2762 for_each_pci_dev(pdev) {
2763 if (!check_device(&pdev->dev)) {
2764 unhandled += 1;
2765 continue;
2766 }
2767
5abcdba4
JR
2768 dev_data = get_dev_data(&pdev->dev);
2769
2770 if (!dev_data->passthrough)
2771 pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
2772 else
2773 pdev->dev.archdata.dma_ops = &nommu_dma_ops;
27c2127a
JR
2774 }
2775
2776 return unhandled;
2777}
2778
431b2a20
JR
2779/*
2780 * The function which clues the AMD IOMMU driver into dma_ops.
2781 */
f5325094
JR
2782
2783void __init amd_iommu_init_api(void)
2784{
2cc21c42 2785 bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
f5325094
JR
2786}
2787
6631ee9d
JR
2788int __init amd_iommu_init_dma_ops(void)
2789{
2790 struct amd_iommu *iommu;
27c2127a 2791 int ret, unhandled;
6631ee9d 2792
431b2a20
JR
2793 /*
2794 * first allocate a default protection domain for every IOMMU we
2795 * found in the system. Devices not assigned to any other
2796 * protection domain will be assigned to the default one.
2797 */
3bd22172 2798 for_each_iommu(iommu) {
87a64d52 2799 iommu->default_dom = dma_ops_domain_alloc();
6631ee9d
JR
2800 if (iommu->default_dom == NULL)
2801 return -ENOMEM;
e2dc14a2 2802 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
6631ee9d
JR
2803 ret = iommu_init_unity_mappings(iommu);
2804 if (ret)
2805 goto free_domains;
2806 }
2807
431b2a20 2808 /*
8793abeb 2809 * Pre-allocate the protection domains for each device.
431b2a20 2810 */
8793abeb 2811 prealloc_protection_domains();
6631ee9d
JR
2812
2813 iommu_detected = 1;
75f1cdf1 2814 swiotlb = 0;
6631ee9d 2815
431b2a20 2816 /* Make the driver finally visible to the drivers */
27c2127a
JR
2817 unhandled = device_dma_ops_init();
2818 if (unhandled && max_pfn > MAX_DMA32_PFN) {
2819 /* There are unhandled devices - initialize swiotlb for them */
2820 swiotlb = 1;
2821 }
6631ee9d 2822
7f26508b
JR
2823 amd_iommu_stats_init();
2824
6631ee9d
JR
2825 return 0;
2826
2827free_domains:
2828
3bd22172 2829 for_each_iommu(iommu) {
6631ee9d
JR
2830 if (iommu->default_dom)
2831 dma_ops_domain_free(iommu->default_dom);
2832 }
2833
2834 return ret;
2835}
6d98cd80
JR
2836
2837/*****************************************************************************
2838 *
2839 * The following functions belong to the exported interface of AMD IOMMU
2840 *
2841 * This interface allows access to lower level functions of the IOMMU
2842 * like protection domain handling and assignement of devices to domains
2843 * which is not possible with the dma_ops interface.
2844 *
2845 *****************************************************************************/
2846
6d98cd80
JR
2847static void cleanup_domain(struct protection_domain *domain)
2848{
492667da 2849 struct iommu_dev_data *dev_data, *next;
6d98cd80 2850 unsigned long flags;
6d98cd80
JR
2851
2852 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2853
492667da 2854 list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
ec9e79ef 2855 __detach_device(dev_data);
492667da
JR
2856 atomic_set(&dev_data->bind, 0);
2857 }
6d98cd80
JR
2858
2859 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2860}
2861
2650815f
JR
2862static void protection_domain_free(struct protection_domain *domain)
2863{
2864 if (!domain)
2865 return;
2866
aeb26f55
JR
2867 del_domain_from_list(domain);
2868
2650815f
JR
2869 if (domain->id)
2870 domain_id_free(domain->id);
2871
2872 kfree(domain);
2873}
2874
2875static struct protection_domain *protection_domain_alloc(void)
c156e347
JR
2876{
2877 struct protection_domain *domain;
2878
2879 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2880 if (!domain)
2650815f 2881 return NULL;
c156e347
JR
2882
2883 spin_lock_init(&domain->lock);
5d214fe6 2884 mutex_init(&domain->api_lock);
c156e347
JR
2885 domain->id = domain_id_alloc();
2886 if (!domain->id)
2650815f 2887 goto out_err;
7c392cbe 2888 INIT_LIST_HEAD(&domain->dev_list);
2650815f 2889
aeb26f55
JR
2890 add_domain_to_list(domain);
2891
2650815f
JR
2892 return domain;
2893
2894out_err:
2895 kfree(domain);
2896
2897 return NULL;
2898}
2899
5abcdba4
JR
2900static int __init alloc_passthrough_domain(void)
2901{
2902 if (pt_domain != NULL)
2903 return 0;
2904
2905 /* allocate passthrough domain */
2906 pt_domain = protection_domain_alloc();
2907 if (!pt_domain)
2908 return -ENOMEM;
2909
2910 pt_domain->mode = PAGE_MODE_NONE;
2911
2912 return 0;
2913}
2650815f
JR
2914static int amd_iommu_domain_init(struct iommu_domain *dom)
2915{
2916 struct protection_domain *domain;
2917
2918 domain = protection_domain_alloc();
2919 if (!domain)
c156e347 2920 goto out_free;
2650815f
JR
2921
2922 domain->mode = PAGE_MODE_3_LEVEL;
c156e347
JR
2923 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2924 if (!domain->pt_root)
2925 goto out_free;
2926
2927 dom->priv = domain;
2928
2929 return 0;
2930
2931out_free:
2650815f 2932 protection_domain_free(domain);
c156e347
JR
2933
2934 return -ENOMEM;
2935}
2936
98383fc3
JR
2937static void amd_iommu_domain_destroy(struct iommu_domain *dom)
2938{
2939 struct protection_domain *domain = dom->priv;
2940
2941 if (!domain)
2942 return;
2943
2944 if (domain->dev_cnt > 0)
2945 cleanup_domain(domain);
2946
2947 BUG_ON(domain->dev_cnt != 0);
2948
132bd68f
JR
2949 if (domain->mode != PAGE_MODE_NONE)
2950 free_pagetable(domain);
98383fc3 2951
52815b75
JR
2952 if (domain->flags & PD_IOMMUV2_MASK)
2953 free_gcr3_table(domain);
2954
8b408fe4 2955 protection_domain_free(domain);
98383fc3
JR
2956
2957 dom->priv = NULL;
2958}
2959
684f2888
JR
2960static void amd_iommu_detach_device(struct iommu_domain *dom,
2961 struct device *dev)
2962{
657cbb6b 2963 struct iommu_dev_data *dev_data = dev->archdata.iommu;
684f2888 2964 struct amd_iommu *iommu;
684f2888
JR
2965 u16 devid;
2966
98fc5a69 2967 if (!check_device(dev))
684f2888
JR
2968 return;
2969
98fc5a69 2970 devid = get_device_id(dev);
684f2888 2971
657cbb6b 2972 if (dev_data->domain != NULL)
15898bbc 2973 detach_device(dev);
684f2888
JR
2974
2975 iommu = amd_iommu_rlookup_table[devid];
2976 if (!iommu)
2977 return;
2978
684f2888
JR
2979 iommu_completion_wait(iommu);
2980}
2981
01106066
JR
2982static int amd_iommu_attach_device(struct iommu_domain *dom,
2983 struct device *dev)
2984{
2985 struct protection_domain *domain = dom->priv;
657cbb6b 2986 struct iommu_dev_data *dev_data;
01106066 2987 struct amd_iommu *iommu;
15898bbc 2988 int ret;
01106066 2989
98fc5a69 2990 if (!check_device(dev))
01106066
JR
2991 return -EINVAL;
2992
657cbb6b
JR
2993 dev_data = dev->archdata.iommu;
2994
f62dda66 2995 iommu = amd_iommu_rlookup_table[dev_data->devid];
01106066
JR
2996 if (!iommu)
2997 return -EINVAL;
2998
657cbb6b 2999 if (dev_data->domain)
15898bbc 3000 detach_device(dev);
01106066 3001
15898bbc 3002 ret = attach_device(dev, domain);
01106066
JR
3003
3004 iommu_completion_wait(iommu);
3005
15898bbc 3006 return ret;
01106066
JR
3007}
3008
468e2366
JR
3009static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3010 phys_addr_t paddr, int gfp_order, int iommu_prot)
c6229ca6 3011{
468e2366 3012 unsigned long page_size = 0x1000UL << gfp_order;
c6229ca6 3013 struct protection_domain *domain = dom->priv;
c6229ca6
JR
3014 int prot = 0;
3015 int ret;
3016
132bd68f
JR
3017 if (domain->mode == PAGE_MODE_NONE)
3018 return -EINVAL;
3019
c6229ca6
JR
3020 if (iommu_prot & IOMMU_READ)
3021 prot |= IOMMU_PROT_IR;
3022 if (iommu_prot & IOMMU_WRITE)
3023 prot |= IOMMU_PROT_IW;
3024
5d214fe6 3025 mutex_lock(&domain->api_lock);
795e74f7 3026 ret = iommu_map_page(domain, iova, paddr, prot, page_size);
5d214fe6
JR
3027 mutex_unlock(&domain->api_lock);
3028
795e74f7 3029 return ret;
c6229ca6
JR
3030}
3031
468e2366
JR
3032static int amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3033 int gfp_order)
eb74ff6c 3034{
eb74ff6c 3035 struct protection_domain *domain = dom->priv;
468e2366 3036 unsigned long page_size, unmap_size;
eb74ff6c 3037
132bd68f
JR
3038 if (domain->mode == PAGE_MODE_NONE)
3039 return -EINVAL;
3040
468e2366 3041 page_size = 0x1000UL << gfp_order;
eb74ff6c 3042
5d214fe6 3043 mutex_lock(&domain->api_lock);
468e2366 3044 unmap_size = iommu_unmap_page(domain, iova, page_size);
795e74f7 3045 mutex_unlock(&domain->api_lock);
eb74ff6c 3046
17b124bf 3047 domain_flush_tlb_pde(domain);
5d214fe6 3048
468e2366 3049 return get_order(unmap_size);
eb74ff6c
JR
3050}
3051
645c4c8d
JR
3052static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3053 unsigned long iova)
3054{
3055 struct protection_domain *domain = dom->priv;
f03152bb 3056 unsigned long offset_mask;
645c4c8d 3057 phys_addr_t paddr;
f03152bb 3058 u64 *pte, __pte;
645c4c8d 3059
132bd68f
JR
3060 if (domain->mode == PAGE_MODE_NONE)
3061 return iova;
3062
24cd7723 3063 pte = fetch_pte(domain, iova);
645c4c8d 3064
a6d41a40 3065 if (!pte || !IOMMU_PTE_PRESENT(*pte))
645c4c8d
JR
3066 return 0;
3067
f03152bb
JR
3068 if (PM_PTE_LEVEL(*pte) == 0)
3069 offset_mask = PAGE_SIZE - 1;
3070 else
3071 offset_mask = PTE_PAGE_SIZE(*pte) - 1;
3072
3073 __pte = *pte & PM_ADDR_MASK;
3074 paddr = (__pte & ~offset_mask) | (iova & offset_mask);
645c4c8d
JR
3075
3076 return paddr;
3077}
3078
dbb9fd86
SY
3079static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
3080 unsigned long cap)
3081{
80a506b8
JR
3082 switch (cap) {
3083 case IOMMU_CAP_CACHE_COHERENCY:
3084 return 1;
3085 }
3086
dbb9fd86
SY
3087 return 0;
3088}
3089
26961efe
JR
3090static struct iommu_ops amd_iommu_ops = {
3091 .domain_init = amd_iommu_domain_init,
3092 .domain_destroy = amd_iommu_domain_destroy,
3093 .attach_dev = amd_iommu_attach_device,
3094 .detach_dev = amd_iommu_detach_device,
468e2366
JR
3095 .map = amd_iommu_map,
3096 .unmap = amd_iommu_unmap,
26961efe 3097 .iova_to_phys = amd_iommu_iova_to_phys,
dbb9fd86 3098 .domain_has_cap = amd_iommu_domain_has_cap,
26961efe
JR
3099};
3100
0feae533
JR
3101/*****************************************************************************
3102 *
3103 * The next functions do a basic initialization of IOMMU for pass through
3104 * mode
3105 *
3106 * In passthrough mode the IOMMU is initialized and enabled but not used for
3107 * DMA-API translation.
3108 *
3109 *****************************************************************************/
3110
3111int __init amd_iommu_init_passthrough(void)
3112{
5abcdba4 3113 struct iommu_dev_data *dev_data;
0feae533 3114 struct pci_dev *dev = NULL;
5abcdba4 3115 struct amd_iommu *iommu;
15898bbc 3116 u16 devid;
5abcdba4 3117 int ret;
0feae533 3118
5abcdba4
JR
3119 ret = alloc_passthrough_domain();
3120 if (ret)
3121 return ret;
0feae533 3122
6c54aabd 3123 for_each_pci_dev(dev) {
98fc5a69 3124 if (!check_device(&dev->dev))
0feae533
JR
3125 continue;
3126
5abcdba4
JR
3127 dev_data = get_dev_data(&dev->dev);
3128 dev_data->passthrough = true;
3129
98fc5a69
JR
3130 devid = get_device_id(&dev->dev);
3131
15898bbc 3132 iommu = amd_iommu_rlookup_table[devid];
0feae533
JR
3133 if (!iommu)
3134 continue;
3135
15898bbc 3136 attach_device(&dev->dev, pt_domain);
0feae533
JR
3137 }
3138
3139 pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
3140
3141 return 0;
3142}
72e1dcc4
JR
3143
3144/* IOMMUv2 specific functions */
3145int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3146{
3147 return atomic_notifier_chain_register(&ppr_notifier, nb);
3148}
3149EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3150
3151int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3152{
3153 return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3154}
3155EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
132bd68f
JR
3156
3157void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3158{
3159 struct protection_domain *domain = dom->priv;
3160 unsigned long flags;
3161
3162 spin_lock_irqsave(&domain->lock, flags);
3163
3164 /* Update data structure */
3165 domain->mode = PAGE_MODE_NONE;
3166 domain->updated = true;
3167
3168 /* Make changes visible to IOMMUs */
3169 update_domain(domain);
3170
3171 /* Page-table is not visible to IOMMU anymore, so free it */
3172 free_pagetable(domain);
3173
3174 spin_unlock_irqrestore(&domain->lock, flags);
3175}
3176EXPORT_SYMBOL(amd_iommu_domain_direct_map);
52815b75
JR
3177
3178int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3179{
3180 struct protection_domain *domain = dom->priv;
3181 unsigned long flags;
3182 int levels, ret;
3183
3184 if (pasids <= 0 || pasids > (PASID_MASK + 1))
3185 return -EINVAL;
3186
3187 /* Number of GCR3 table levels required */
3188 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3189 levels += 1;
3190
3191 if (levels > amd_iommu_max_glx_val)
3192 return -EINVAL;
3193
3194 spin_lock_irqsave(&domain->lock, flags);
3195
3196 /*
3197 * Save us all sanity checks whether devices already in the
3198 * domain support IOMMUv2. Just force that the domain has no
3199 * devices attached when it is switched into IOMMUv2 mode.
3200 */
3201 ret = -EBUSY;
3202 if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3203 goto out;
3204
3205 ret = -ENOMEM;
3206 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3207 if (domain->gcr3_tbl == NULL)
3208 goto out;
3209
3210 domain->glx = levels;
3211 domain->flags |= PD_IOMMUV2_MASK;
3212 domain->updated = true;
3213
3214 update_domain(domain);
3215
3216 ret = 0;
3217
3218out:
3219 spin_unlock_irqrestore(&domain->lock, flags);
3220
3221 return ret;
3222}
3223EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
22e266c7
JR
3224
3225static int __flush_pasid(struct protection_domain *domain, int pasid,
3226 u64 address, bool size)
3227{
3228 struct iommu_dev_data *dev_data;
3229 struct iommu_cmd cmd;
3230 int i, ret;
3231
3232 if (!(domain->flags & PD_IOMMUV2_MASK))
3233 return -EINVAL;
3234
3235 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3236
3237 /*
3238 * IOMMU TLB needs to be flushed before Device TLB to
3239 * prevent device TLB refill from IOMMU TLB
3240 */
3241 for (i = 0; i < amd_iommus_present; ++i) {
3242 if (domain->dev_iommu[i] == 0)
3243 continue;
3244
3245 ret = iommu_queue_command(amd_iommus[i], &cmd);
3246 if (ret != 0)
3247 goto out;
3248 }
3249
3250 /* Wait until IOMMU TLB flushes are complete */
3251 domain_flush_complete(domain);
3252
3253 /* Now flush device TLBs */
3254 list_for_each_entry(dev_data, &domain->dev_list, list) {
3255 struct amd_iommu *iommu;
3256 int qdep;
3257
3258 BUG_ON(!dev_data->ats.enabled);
3259
3260 qdep = dev_data->ats.qdep;
3261 iommu = amd_iommu_rlookup_table[dev_data->devid];
3262
3263 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3264 qdep, address, size);
3265
3266 ret = iommu_queue_command(iommu, &cmd);
3267 if (ret != 0)
3268 goto out;
3269 }
3270
3271 /* Wait until all device TLBs are flushed */
3272 domain_flush_complete(domain);
3273
3274 ret = 0;
3275
3276out:
3277
3278 return ret;
3279}
3280
3281static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3282 u64 address)
3283{
3284 return __flush_pasid(domain, pasid, address, false);
3285}
3286
3287int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3288 u64 address)
3289{
3290 struct protection_domain *domain = dom->priv;
3291 unsigned long flags;
3292 int ret;
3293
3294 spin_lock_irqsave(&domain->lock, flags);
3295 ret = __amd_iommu_flush_page(domain, pasid, address);
3296 spin_unlock_irqrestore(&domain->lock, flags);
3297
3298 return ret;
3299}
3300EXPORT_SYMBOL(amd_iommu_flush_page);
3301
3302static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3303{
3304 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3305 true);
3306}
3307
3308int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3309{
3310 struct protection_domain *domain = dom->priv;
3311 unsigned long flags;
3312 int ret;
3313
3314 spin_lock_irqsave(&domain->lock, flags);
3315 ret = __amd_iommu_flush_tlb(domain, pasid);
3316 spin_unlock_irqrestore(&domain->lock, flags);
3317
3318 return ret;
3319}
3320EXPORT_SYMBOL(amd_iommu_flush_tlb);
3321
b16137b1
JR
3322static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3323{
3324 int index;
3325 u64 *pte;
3326
3327 while (true) {
3328
3329 index = (pasid >> (9 * level)) & 0x1ff;
3330 pte = &root[index];
3331
3332 if (level == 0)
3333 break;
3334
3335 if (!(*pte & GCR3_VALID)) {
3336 if (!alloc)
3337 return NULL;
3338
3339 root = (void *)get_zeroed_page(GFP_ATOMIC);
3340 if (root == NULL)
3341 return NULL;
3342
3343 *pte = __pa(root) | GCR3_VALID;
3344 }
3345
3346 root = __va(*pte & PAGE_MASK);
3347
3348 level -= 1;
3349 }
3350
3351 return pte;
3352}
3353
3354static int __set_gcr3(struct protection_domain *domain, int pasid,
3355 unsigned long cr3)
3356{
3357 u64 *pte;
3358
3359 if (domain->mode != PAGE_MODE_NONE)
3360 return -EINVAL;
3361
3362 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3363 if (pte == NULL)
3364 return -ENOMEM;
3365
3366 *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3367
3368 return __amd_iommu_flush_tlb(domain, pasid);
3369}
3370
3371static int __clear_gcr3(struct protection_domain *domain, int pasid)
3372{
3373 u64 *pte;
3374
3375 if (domain->mode != PAGE_MODE_NONE)
3376 return -EINVAL;
3377
3378 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3379 if (pte == NULL)
3380 return 0;
3381
3382 *pte = 0;
3383
3384 return __amd_iommu_flush_tlb(domain, pasid);
3385}
3386
3387int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3388 unsigned long cr3)
3389{
3390 struct protection_domain *domain = dom->priv;
3391 unsigned long flags;
3392 int ret;
3393
3394 spin_lock_irqsave(&domain->lock, flags);
3395 ret = __set_gcr3(domain, pasid, cr3);
3396 spin_unlock_irqrestore(&domain->lock, flags);
3397
3398 return ret;
3399}
3400EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3401
3402int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3403{
3404 struct protection_domain *domain = dom->priv;
3405 unsigned long flags;
3406 int ret;
3407
3408 spin_lock_irqsave(&domain->lock, flags);
3409 ret = __clear_gcr3(domain, pasid);
3410 spin_unlock_irqrestore(&domain->lock, flags);
3411
3412 return ret;
3413}
3414EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);