iommu/amd: Preallocate dma_ops apertures based on dma_mask
[linux-2.6-block.git] / drivers / iommu / amd_iommu.c
CommitLineData
b6c02715 1/*
5d0d7156 2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
63ce3ae8 3 * Author: Joerg Roedel <jroedel@suse.de>
b6c02715
JR
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
72e1dcc4 20#include <linux/ratelimit.h>
b6c02715 21#include <linux/pci.h>
cb41ed85 22#include <linux/pci-ats.h>
a66022c4 23#include <linux/bitmap.h>
5a0e3ad6 24#include <linux/slab.h>
7f26508b 25#include <linux/debugfs.h>
b6c02715 26#include <linux/scatterlist.h>
51491367 27#include <linux/dma-mapping.h>
b6c02715 28#include <linux/iommu-helper.h>
c156e347 29#include <linux/iommu.h>
815b33fd 30#include <linux/delay.h>
403f81d8 31#include <linux/amd-iommu.h>
72e1dcc4
JR
32#include <linux/notifier.h>
33#include <linux/export.h>
2b324506
JR
34#include <linux/irq.h>
35#include <linux/msi.h>
3b839a57 36#include <linux/dma-contiguous.h>
7c71d306 37#include <linux/irqdomain.h>
5f6bed50 38#include <linux/percpu.h>
2b324506
JR
39#include <asm/irq_remapping.h>
40#include <asm/io_apic.h>
41#include <asm/apic.h>
42#include <asm/hw_irq.h>
17f5b569 43#include <asm/msidef.h>
b6c02715 44#include <asm/proto.h>
46a7fa27 45#include <asm/iommu.h>
1d9b16d1 46#include <asm/gart.h>
27c2127a 47#include <asm/dma.h>
403f81d8
JR
48
49#include "amd_iommu_proto.h"
50#include "amd_iommu_types.h"
6b474b82 51#include "irq_remapping.h"
b6c02715
JR
52
53#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
54
815b33fd 55#define LOOP_TIMEOUT 100000
136f78a1 56
aa3de9c0
OBC
57/*
58 * This bitmap is used to advertise the page sizes our hardware support
59 * to the IOMMU core, which will then use this information to split
60 * physically contiguous memory regions it is mapping into page sizes
61 * that we support.
62 *
954e3dd8 63 * 512GB Pages are not supported due to a hardware bug
aa3de9c0 64 */
954e3dd8 65#define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
aa3de9c0 66
b6c02715
JR
67static DEFINE_RWLOCK(amd_iommu_devtable_lock);
68
8fa5f802
JR
69/* List of all available dev_data structures */
70static LIST_HEAD(dev_data_list);
71static DEFINE_SPINLOCK(dev_data_list_lock);
72
6efed63b
JR
73LIST_HEAD(ioapic_map);
74LIST_HEAD(hpet_map);
75
0feae533
JR
76/*
77 * Domain for untranslated devices - only allocated
78 * if iommu=pt passed on kernel cmd line.
79 */
b22f6434 80static const struct iommu_ops amd_iommu_ops;
26961efe 81
72e1dcc4 82static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
52815b75 83int amd_iommu_max_glx_val = -1;
72e1dcc4 84
ac1534a5
JR
85static struct dma_map_ops amd_iommu_dma_ops;
86
50917e26
JR
87/*
88 * This struct contains device specific data for the IOMMU
89 */
90struct iommu_dev_data {
91 struct list_head list; /* For domain->dev_list */
92 struct list_head dev_data_list; /* For global dev_data_list */
50917e26 93 struct protection_domain *domain; /* Domain the device is bound to */
50917e26
JR
94 u16 devid; /* PCI Device ID */
95 bool iommu_v2; /* Device can make use of IOMMUv2 */
1e6a7b04 96 bool passthrough; /* Device is identity mapped */
50917e26
JR
97 struct {
98 bool enabled;
99 int qdep;
100 } ats; /* ATS state */
101 bool pri_tlp; /* PASID TLB required for
102 PPR completions */
103 u32 errata; /* Bitmap for errata to apply */
104};
105
431b2a20
JR
106/*
107 * general struct to manage commands send to an IOMMU
108 */
d6449536 109struct iommu_cmd {
b6c02715
JR
110 u32 data[4];
111};
112
05152a04
JR
113struct kmem_cache *amd_iommu_irq_cache;
114
04bfdd84 115static void update_domain(struct protection_domain *domain);
7a5a566e 116static int protection_domain_init(struct protection_domain *domain);
c1eee67b 117
007b74ba
JR
118/*
119 * For dynamic growth the aperture size is split into ranges of 128MB of
120 * DMA address space each. This struct represents one such range.
121 */
122struct aperture_range {
123
08c5fb93
JR
124 spinlock_t bitmap_lock;
125
007b74ba
JR
126 /* address allocation bitmap */
127 unsigned long *bitmap;
ae62d49c 128 unsigned long offset;
60e6a7cb 129 unsigned long next_bit;
007b74ba
JR
130
131 /*
132 * Array of PTE pages for the aperture. In this array we save all the
133 * leaf pages of the domain page table used for the aperture. This way
134 * we don't need to walk the page table to find a specific PTE. We can
135 * just calculate its address in constant time.
136 */
137 u64 *pte_pages[64];
007b74ba
JR
138};
139
140/*
141 * Data container for a dma_ops specific protection domain
142 */
143struct dma_ops_domain {
144 /* generic protection domain information */
145 struct protection_domain domain;
146
147 /* size of the aperture for the mappings */
148 unsigned long aperture_size;
149
ebaecb42 150 /* aperture index we start searching for free addresses */
5f6bed50 151 u32 __percpu *next_index;
007b74ba
JR
152
153 /* address space relevant data */
154 struct aperture_range *aperture[APERTURE_MAX_RANGES];
007b74ba
JR
155};
156
15898bbc
JR
157/****************************************************************************
158 *
159 * Helper functions
160 *
161 ****************************************************************************/
162
3f4b87b9
JR
163static struct protection_domain *to_pdomain(struct iommu_domain *dom)
164{
165 return container_of(dom, struct protection_domain, domain);
166}
167
f62dda66 168static struct iommu_dev_data *alloc_dev_data(u16 devid)
8fa5f802
JR
169{
170 struct iommu_dev_data *dev_data;
171 unsigned long flags;
172
173 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
174 if (!dev_data)
175 return NULL;
176
f62dda66 177 dev_data->devid = devid;
8fa5f802
JR
178
179 spin_lock_irqsave(&dev_data_list_lock, flags);
180 list_add_tail(&dev_data->dev_data_list, &dev_data_list);
181 spin_unlock_irqrestore(&dev_data_list_lock, flags);
182
183 return dev_data;
184}
185
3b03bb74
JR
186static struct iommu_dev_data *search_dev_data(u16 devid)
187{
188 struct iommu_dev_data *dev_data;
189 unsigned long flags;
190
191 spin_lock_irqsave(&dev_data_list_lock, flags);
192 list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
193 if (dev_data->devid == devid)
194 goto out_unlock;
195 }
196
197 dev_data = NULL;
198
199out_unlock:
200 spin_unlock_irqrestore(&dev_data_list_lock, flags);
201
202 return dev_data;
203}
204
205static struct iommu_dev_data *find_dev_data(u16 devid)
206{
207 struct iommu_dev_data *dev_data;
208
209 dev_data = search_dev_data(devid);
210
211 if (dev_data == NULL)
212 dev_data = alloc_dev_data(devid);
213
214 return dev_data;
215}
216
15898bbc
JR
217static inline u16 get_device_id(struct device *dev)
218{
219 struct pci_dev *pdev = to_pci_dev(dev);
220
6f2729ba 221 return PCI_DEVID(pdev->bus->number, pdev->devfn);
15898bbc
JR
222}
223
657cbb6b
JR
224static struct iommu_dev_data *get_dev_data(struct device *dev)
225{
226 return dev->archdata.iommu;
227}
228
5abcdba4
JR
229static bool pci_iommuv2_capable(struct pci_dev *pdev)
230{
231 static const int caps[] = {
232 PCI_EXT_CAP_ID_ATS,
46277b75
JR
233 PCI_EXT_CAP_ID_PRI,
234 PCI_EXT_CAP_ID_PASID,
5abcdba4
JR
235 };
236 int i, pos;
237
238 for (i = 0; i < 3; ++i) {
239 pos = pci_find_ext_capability(pdev, caps[i]);
240 if (pos == 0)
241 return false;
242 }
243
244 return true;
245}
246
6a113ddc
JR
247static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
248{
249 struct iommu_dev_data *dev_data;
250
251 dev_data = get_dev_data(&pdev->dev);
252
253 return dev_data->errata & (1 << erratum) ? true : false;
254}
255
71c70984 256/*
0bb6e243
JR
257 * This function actually applies the mapping to the page table of the
258 * dma_ops domain.
71c70984 259 */
0bb6e243
JR
260static void alloc_unity_mapping(struct dma_ops_domain *dma_dom,
261 struct unity_map_entry *e)
71c70984 262{
0bb6e243 263 u64 addr;
71c70984 264
0bb6e243
JR
265 for (addr = e->address_start; addr < e->address_end;
266 addr += PAGE_SIZE) {
267 if (addr < dma_dom->aperture_size)
268 __set_bit(addr >> PAGE_SHIFT,
269 dma_dom->aperture[0]->bitmap);
71c70984 270 }
0bb6e243 271}
71c70984 272
0bb6e243
JR
273/*
274 * Inits the unity mappings required for a specific device
275 */
276static void init_unity_mappings_for_device(struct device *dev,
277 struct dma_ops_domain *dma_dom)
278{
279 struct unity_map_entry *e;
280 u16 devid;
71c70984 281
0bb6e243 282 devid = get_device_id(dev);
71c70984 283
0bb6e243
JR
284 list_for_each_entry(e, &amd_iommu_unity_map, list) {
285 if (!(devid >= e->devid_start && devid <= e->devid_end))
286 continue;
287 alloc_unity_mapping(dma_dom, e);
288 }
71c70984
JR
289}
290
98fc5a69
JR
291/*
292 * This function checks if the driver got a valid device from the caller to
293 * avoid dereferencing invalid pointers.
294 */
295static bool check_device(struct device *dev)
296{
297 u16 devid;
298
299 if (!dev || !dev->dma_mask)
300 return false;
301
b82a2272
YW
302 /* No PCI device */
303 if (!dev_is_pci(dev))
98fc5a69
JR
304 return false;
305
306 devid = get_device_id(dev);
307
308 /* Out of our scope? */
309 if (devid > amd_iommu_last_bdf)
310 return false;
311
312 if (amd_iommu_rlookup_table[devid] == NULL)
313 return false;
314
315 return true;
316}
317
25b11ce2 318static void init_iommu_group(struct device *dev)
2851db21 319{
0bb6e243
JR
320 struct dma_ops_domain *dma_domain;
321 struct iommu_domain *domain;
2851db21 322 struct iommu_group *group;
2851db21 323
65d5352f 324 group = iommu_group_get_for_dev(dev);
0bb6e243
JR
325 if (IS_ERR(group))
326 return;
327
328 domain = iommu_group_default_domain(group);
329 if (!domain)
330 goto out;
331
332 dma_domain = to_pdomain(domain)->priv;
333
334 init_unity_mappings_for_device(dev, dma_domain);
335out:
336 iommu_group_put(group);
eb9c9527
AW
337}
338
339static int iommu_init_device(struct device *dev)
340{
341 struct pci_dev *pdev = to_pci_dev(dev);
342 struct iommu_dev_data *dev_data;
eb9c9527
AW
343
344 if (dev->archdata.iommu)
345 return 0;
346
347 dev_data = find_dev_data(get_device_id(dev));
348 if (!dev_data)
349 return -ENOMEM;
350
5abcdba4
JR
351 if (pci_iommuv2_capable(pdev)) {
352 struct amd_iommu *iommu;
353
354 iommu = amd_iommu_rlookup_table[dev_data->devid];
355 dev_data->iommu_v2 = iommu->is_iommu_v2;
356 }
357
657cbb6b
JR
358 dev->archdata.iommu = dev_data;
359
066f2e98
AW
360 iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
361 dev);
362
657cbb6b
JR
363 return 0;
364}
365
26018874
JR
366static void iommu_ignore_device(struct device *dev)
367{
368 u16 devid, alias;
369
370 devid = get_device_id(dev);
371 alias = amd_iommu_alias_table[devid];
372
373 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
374 memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
375
376 amd_iommu_rlookup_table[devid] = NULL;
377 amd_iommu_rlookup_table[alias] = NULL;
378}
379
657cbb6b
JR
380static void iommu_uninit_device(struct device *dev)
381{
c1931090
AW
382 struct iommu_dev_data *dev_data = search_dev_data(get_device_id(dev));
383
384 if (!dev_data)
385 return;
386
066f2e98
AW
387 iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
388 dev);
389
9dcd6130
AW
390 iommu_group_remove_device(dev);
391
aafd8ba0
JR
392 /* Remove dma-ops */
393 dev->archdata.dma_ops = NULL;
394
8fa5f802 395 /*
c1931090
AW
396 * We keep dev_data around for unplugged devices and reuse it when the
397 * device is re-plugged - not doing so would introduce a ton of races.
8fa5f802 398 */
657cbb6b 399}
b7cc9554 400
7f26508b
JR
401#ifdef CONFIG_AMD_IOMMU_STATS
402
403/*
404 * Initialization code for statistics collection
405 */
406
da49f6df 407DECLARE_STATS_COUNTER(compl_wait);
0f2a86f2 408DECLARE_STATS_COUNTER(cnt_map_single);
146a6917 409DECLARE_STATS_COUNTER(cnt_unmap_single);
d03f067a 410DECLARE_STATS_COUNTER(cnt_map_sg);
55877a6b 411DECLARE_STATS_COUNTER(cnt_unmap_sg);
c8f0fb36 412DECLARE_STATS_COUNTER(cnt_alloc_coherent);
5d31ee7e 413DECLARE_STATS_COUNTER(cnt_free_coherent);
c1858976 414DECLARE_STATS_COUNTER(cross_page);
f57d98ae 415DECLARE_STATS_COUNTER(domain_flush_single);
18811f55 416DECLARE_STATS_COUNTER(domain_flush_all);
5774f7c5 417DECLARE_STATS_COUNTER(alloced_io_mem);
8ecaf8f1 418DECLARE_STATS_COUNTER(total_map_requests);
399be2f5
JR
419DECLARE_STATS_COUNTER(complete_ppr);
420DECLARE_STATS_COUNTER(invalidate_iotlb);
421DECLARE_STATS_COUNTER(invalidate_iotlb_all);
422DECLARE_STATS_COUNTER(pri_requests);
423
7f26508b 424static struct dentry *stats_dir;
7f26508b
JR
425static struct dentry *de_fflush;
426
427static void amd_iommu_stats_add(struct __iommu_counter *cnt)
428{
429 if (stats_dir == NULL)
430 return;
431
432 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
433 &cnt->value);
434}
435
436static void amd_iommu_stats_init(void)
437{
438 stats_dir = debugfs_create_dir("amd-iommu", NULL);
439 if (stats_dir == NULL)
440 return;
441
7f26508b 442 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
3775d481 443 &amd_iommu_unmap_flush);
da49f6df
JR
444
445 amd_iommu_stats_add(&compl_wait);
0f2a86f2 446 amd_iommu_stats_add(&cnt_map_single);
146a6917 447 amd_iommu_stats_add(&cnt_unmap_single);
d03f067a 448 amd_iommu_stats_add(&cnt_map_sg);
55877a6b 449 amd_iommu_stats_add(&cnt_unmap_sg);
c8f0fb36 450 amd_iommu_stats_add(&cnt_alloc_coherent);
5d31ee7e 451 amd_iommu_stats_add(&cnt_free_coherent);
c1858976 452 amd_iommu_stats_add(&cross_page);
f57d98ae 453 amd_iommu_stats_add(&domain_flush_single);
18811f55 454 amd_iommu_stats_add(&domain_flush_all);
5774f7c5 455 amd_iommu_stats_add(&alloced_io_mem);
8ecaf8f1 456 amd_iommu_stats_add(&total_map_requests);
399be2f5
JR
457 amd_iommu_stats_add(&complete_ppr);
458 amd_iommu_stats_add(&invalidate_iotlb);
459 amd_iommu_stats_add(&invalidate_iotlb_all);
460 amd_iommu_stats_add(&pri_requests);
7f26508b
JR
461}
462
463#endif
464
a80dc3e0
JR
465/****************************************************************************
466 *
467 * Interrupt handling functions
468 *
469 ****************************************************************************/
470
e3e59876
JR
471static void dump_dte_entry(u16 devid)
472{
473 int i;
474
ee6c2868
JR
475 for (i = 0; i < 4; ++i)
476 pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
e3e59876
JR
477 amd_iommu_dev_table[devid].data[i]);
478}
479
945b4ac4
JR
480static void dump_command(unsigned long phys_addr)
481{
482 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
483 int i;
484
485 for (i = 0; i < 4; ++i)
486 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
487}
488
a345b23b 489static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
90008ee4 490{
3d06fca8
JR
491 int type, devid, domid, flags;
492 volatile u32 *event = __evt;
493 int count = 0;
494 u64 address;
495
496retry:
497 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
498 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
499 domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
500 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
501 address = (u64)(((u64)event[3]) << 32) | event[2];
502
503 if (type == 0) {
504 /* Did we hit the erratum? */
505 if (++count == LOOP_TIMEOUT) {
506 pr_err("AMD-Vi: No event written to event log\n");
507 return;
508 }
509 udelay(1);
510 goto retry;
511 }
90008ee4 512
4c6f40d4 513 printk(KERN_ERR "AMD-Vi: Event logged [");
90008ee4
JR
514
515 switch (type) {
516 case EVENT_TYPE_ILL_DEV:
517 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
518 "address=0x%016llx flags=0x%04x]\n",
c5081cd7 519 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4 520 address, flags);
e3e59876 521 dump_dte_entry(devid);
90008ee4
JR
522 break;
523 case EVENT_TYPE_IO_FAULT:
524 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
525 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
c5081cd7 526 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
527 domid, address, flags);
528 break;
529 case EVENT_TYPE_DEV_TAB_ERR:
530 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
531 "address=0x%016llx flags=0x%04x]\n",
c5081cd7 532 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
533 address, flags);
534 break;
535 case EVENT_TYPE_PAGE_TAB_ERR:
536 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
537 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
c5081cd7 538 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
539 domid, address, flags);
540 break;
541 case EVENT_TYPE_ILL_CMD:
542 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
945b4ac4 543 dump_command(address);
90008ee4
JR
544 break;
545 case EVENT_TYPE_CMD_HARD_ERR:
546 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
547 "flags=0x%04x]\n", address, flags);
548 break;
549 case EVENT_TYPE_IOTLB_INV_TO:
550 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
551 "address=0x%016llx]\n",
c5081cd7 552 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
553 address);
554 break;
555 case EVENT_TYPE_INV_DEV_REQ:
556 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
557 "address=0x%016llx flags=0x%04x]\n",
c5081cd7 558 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
559 address, flags);
560 break;
561 default:
562 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
563 }
3d06fca8
JR
564
565 memset(__evt, 0, 4 * sizeof(u32));
90008ee4
JR
566}
567
568static void iommu_poll_events(struct amd_iommu *iommu)
569{
570 u32 head, tail;
90008ee4
JR
571
572 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
573 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
574
575 while (head != tail) {
a345b23b 576 iommu_print_event(iommu, iommu->evt_buf + head);
deba4bce 577 head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
90008ee4
JR
578 }
579
580 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
90008ee4
JR
581}
582
eee53537 583static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
72e1dcc4
JR
584{
585 struct amd_iommu_fault fault;
72e1dcc4 586
399be2f5
JR
587 INC_STATS_COUNTER(pri_requests);
588
72e1dcc4
JR
589 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
590 pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
591 return;
592 }
593
594 fault.address = raw[1];
595 fault.pasid = PPR_PASID(raw[0]);
596 fault.device_id = PPR_DEVID(raw[0]);
597 fault.tag = PPR_TAG(raw[0]);
598 fault.flags = PPR_FLAGS(raw[0]);
599
72e1dcc4
JR
600 atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
601}
602
603static void iommu_poll_ppr_log(struct amd_iommu *iommu)
604{
72e1dcc4
JR
605 u32 head, tail;
606
607 if (iommu->ppr_log == NULL)
608 return;
609
72e1dcc4
JR
610 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
611 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
612
613 while (head != tail) {
eee53537
JR
614 volatile u64 *raw;
615 u64 entry[2];
616 int i;
617
618 raw = (u64 *)(iommu->ppr_log + head);
619
620 /*
621 * Hardware bug: Interrupt may arrive before the entry is
622 * written to memory. If this happens we need to wait for the
623 * entry to arrive.
624 */
625 for (i = 0; i < LOOP_TIMEOUT; ++i) {
626 if (PPR_REQ_TYPE(raw[0]) != 0)
627 break;
628 udelay(1);
629 }
72e1dcc4 630
eee53537
JR
631 /* Avoid memcpy function-call overhead */
632 entry[0] = raw[0];
633 entry[1] = raw[1];
72e1dcc4 634
eee53537
JR
635 /*
636 * To detect the hardware bug we need to clear the entry
637 * back to zero.
638 */
639 raw[0] = raw[1] = 0UL;
640
641 /* Update head pointer of hardware ring-buffer */
72e1dcc4
JR
642 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
643 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
eee53537 644
eee53537
JR
645 /* Handle PPR entry */
646 iommu_handle_ppr_entry(iommu, entry);
647
eee53537
JR
648 /* Refresh ring-buffer information */
649 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
72e1dcc4
JR
650 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
651 }
72e1dcc4
JR
652}
653
72fe00f0 654irqreturn_t amd_iommu_int_thread(int irq, void *data)
a80dc3e0 655{
3f398bc7
SS
656 struct amd_iommu *iommu = (struct amd_iommu *) data;
657 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
90008ee4 658
3f398bc7
SS
659 while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
660 /* Enable EVT and PPR interrupts again */
661 writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
662 iommu->mmio_base + MMIO_STATUS_OFFSET);
90008ee4 663
3f398bc7
SS
664 if (status & MMIO_STATUS_EVT_INT_MASK) {
665 pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
666 iommu_poll_events(iommu);
667 }
90008ee4 668
3f398bc7
SS
669 if (status & MMIO_STATUS_PPR_INT_MASK) {
670 pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
671 iommu_poll_ppr_log(iommu);
672 }
90008ee4 673
3f398bc7
SS
674 /*
675 * Hardware bug: ERBT1312
676 * When re-enabling interrupt (by writing 1
677 * to clear the bit), the hardware might also try to set
678 * the interrupt bit in the event status register.
679 * In this scenario, the bit will be set, and disable
680 * subsequent interrupts.
681 *
682 * Workaround: The IOMMU driver should read back the
683 * status register and check if the interrupt bits are cleared.
684 * If not, driver will need to go through the interrupt handler
685 * again and re-clear the bits
686 */
687 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
688 }
90008ee4 689 return IRQ_HANDLED;
a80dc3e0
JR
690}
691
72fe00f0
JR
692irqreturn_t amd_iommu_int_handler(int irq, void *data)
693{
694 return IRQ_WAKE_THREAD;
695}
696
431b2a20
JR
697/****************************************************************************
698 *
699 * IOMMU command queuing functions
700 *
701 ****************************************************************************/
702
ac0ea6e9
JR
703static int wait_on_sem(volatile u64 *sem)
704{
705 int i = 0;
706
707 while (*sem == 0 && i < LOOP_TIMEOUT) {
708 udelay(1);
709 i += 1;
710 }
711
712 if (i == LOOP_TIMEOUT) {
713 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
714 return -EIO;
715 }
716
717 return 0;
718}
719
720static void copy_cmd_to_buffer(struct amd_iommu *iommu,
721 struct iommu_cmd *cmd,
722 u32 tail)
a19ae1ec 723{
a19ae1ec
JR
724 u8 *target;
725
8a7c5ef3 726 target = iommu->cmd_buf + tail;
deba4bce 727 tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
ac0ea6e9
JR
728
729 /* Copy command to buffer */
730 memcpy(target, cmd, sizeof(*cmd));
731
732 /* Tell the IOMMU about it */
a19ae1ec 733 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
ac0ea6e9 734}
a19ae1ec 735
815b33fd 736static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
ded46737 737{
815b33fd
JR
738 WARN_ON(address & 0x7ULL);
739
ded46737 740 memset(cmd, 0, sizeof(*cmd));
815b33fd
JR
741 cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
742 cmd->data[1] = upper_32_bits(__pa(address));
743 cmd->data[2] = 1;
ded46737
JR
744 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
745}
746
94fe79e2
JR
747static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
748{
749 memset(cmd, 0, sizeof(*cmd));
750 cmd->data[0] = devid;
751 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
752}
753
11b6402c
JR
754static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
755 size_t size, u16 domid, int pde)
756{
757 u64 pages;
ae0cbbb1 758 bool s;
11b6402c
JR
759
760 pages = iommu_num_pages(address, size, PAGE_SIZE);
ae0cbbb1 761 s = false;
11b6402c
JR
762
763 if (pages > 1) {
764 /*
765 * If we have to flush more than one page, flush all
766 * TLB entries for this domain
767 */
768 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
ae0cbbb1 769 s = true;
11b6402c
JR
770 }
771
772 address &= PAGE_MASK;
773
774 memset(cmd, 0, sizeof(*cmd));
775 cmd->data[1] |= domid;
776 cmd->data[2] = lower_32_bits(address);
777 cmd->data[3] = upper_32_bits(address);
778 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
779 if (s) /* size bit - we flush more than one 4kb page */
780 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
df805abb 781 if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
11b6402c
JR
782 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
783}
784
cb41ed85
JR
785static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
786 u64 address, size_t size)
787{
788 u64 pages;
ae0cbbb1 789 bool s;
cb41ed85
JR
790
791 pages = iommu_num_pages(address, size, PAGE_SIZE);
ae0cbbb1 792 s = false;
cb41ed85
JR
793
794 if (pages > 1) {
795 /*
796 * If we have to flush more than one page, flush all
797 * TLB entries for this domain
798 */
799 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
ae0cbbb1 800 s = true;
cb41ed85
JR
801 }
802
803 address &= PAGE_MASK;
804
805 memset(cmd, 0, sizeof(*cmd));
806 cmd->data[0] = devid;
807 cmd->data[0] |= (qdep & 0xff) << 24;
808 cmd->data[1] = devid;
809 cmd->data[2] = lower_32_bits(address);
810 cmd->data[3] = upper_32_bits(address);
811 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
812 if (s)
813 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
814}
815
22e266c7
JR
816static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
817 u64 address, bool size)
818{
819 memset(cmd, 0, sizeof(*cmd));
820
821 address &= ~(0xfffULL);
822
a919a018 823 cmd->data[0] = pasid;
22e266c7
JR
824 cmd->data[1] = domid;
825 cmd->data[2] = lower_32_bits(address);
826 cmd->data[3] = upper_32_bits(address);
827 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
828 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
829 if (size)
830 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
831 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
832}
833
834static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
835 int qdep, u64 address, bool size)
836{
837 memset(cmd, 0, sizeof(*cmd));
838
839 address &= ~(0xfffULL);
840
841 cmd->data[0] = devid;
e8d2d82d 842 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
22e266c7
JR
843 cmd->data[0] |= (qdep & 0xff) << 24;
844 cmd->data[1] = devid;
e8d2d82d 845 cmd->data[1] |= (pasid & 0xff) << 16;
22e266c7
JR
846 cmd->data[2] = lower_32_bits(address);
847 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
848 cmd->data[3] = upper_32_bits(address);
849 if (size)
850 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
851 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
852}
853
c99afa25
JR
854static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
855 int status, int tag, bool gn)
856{
857 memset(cmd, 0, sizeof(*cmd));
858
859 cmd->data[0] = devid;
860 if (gn) {
a919a018 861 cmd->data[1] = pasid;
c99afa25
JR
862 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
863 }
864 cmd->data[3] = tag & 0x1ff;
865 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
866
867 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
868}
869
58fc7f14
JR
870static void build_inv_all(struct iommu_cmd *cmd)
871{
872 memset(cmd, 0, sizeof(*cmd));
873 CMD_SET_TYPE(cmd, CMD_INV_ALL);
a19ae1ec
JR
874}
875
7ef2798d
JR
876static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
877{
878 memset(cmd, 0, sizeof(*cmd));
879 cmd->data[0] = devid;
880 CMD_SET_TYPE(cmd, CMD_INV_IRT);
881}
882
431b2a20 883/*
431b2a20 884 * Writes the command to the IOMMUs command buffer and informs the
ac0ea6e9 885 * hardware about the new command.
431b2a20 886 */
f1ca1512
JR
887static int iommu_queue_command_sync(struct amd_iommu *iommu,
888 struct iommu_cmd *cmd,
889 bool sync)
a19ae1ec 890{
ac0ea6e9 891 u32 left, tail, head, next_tail;
a19ae1ec 892 unsigned long flags;
a19ae1ec 893
ac0ea6e9 894again:
a19ae1ec 895 spin_lock_irqsave(&iommu->lock, flags);
a19ae1ec 896
ac0ea6e9
JR
897 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
898 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
deba4bce
JR
899 next_tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
900 left = (head - next_tail) % CMD_BUFFER_SIZE;
a19ae1ec 901
ac0ea6e9
JR
902 if (left <= 2) {
903 struct iommu_cmd sync_cmd;
904 volatile u64 sem = 0;
905 int ret;
8d201968 906
ac0ea6e9
JR
907 build_completion_wait(&sync_cmd, (u64)&sem);
908 copy_cmd_to_buffer(iommu, &sync_cmd, tail);
da49f6df 909
ac0ea6e9
JR
910 spin_unlock_irqrestore(&iommu->lock, flags);
911
912 if ((ret = wait_on_sem(&sem)) != 0)
913 return ret;
914
915 goto again;
8d201968
JR
916 }
917
ac0ea6e9
JR
918 copy_cmd_to_buffer(iommu, cmd, tail);
919
920 /* We need to sync now to make sure all commands are processed */
f1ca1512 921 iommu->need_sync = sync;
ac0ea6e9 922
a19ae1ec 923 spin_unlock_irqrestore(&iommu->lock, flags);
8d201968 924
815b33fd 925 return 0;
8d201968
JR
926}
927
f1ca1512
JR
928static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
929{
930 return iommu_queue_command_sync(iommu, cmd, true);
931}
932
8d201968
JR
933/*
934 * This function queues a completion wait command into the command
935 * buffer of an IOMMU
936 */
a19ae1ec 937static int iommu_completion_wait(struct amd_iommu *iommu)
8d201968
JR
938{
939 struct iommu_cmd cmd;
815b33fd 940 volatile u64 sem = 0;
ac0ea6e9 941 int ret;
8d201968 942
09ee17eb 943 if (!iommu->need_sync)
815b33fd 944 return 0;
09ee17eb 945
815b33fd 946 build_completion_wait(&cmd, (u64)&sem);
a19ae1ec 947
f1ca1512 948 ret = iommu_queue_command_sync(iommu, &cmd, false);
a19ae1ec 949 if (ret)
815b33fd 950 return ret;
8d201968 951
ac0ea6e9 952 return wait_on_sem(&sem);
8d201968
JR
953}
954
d8c13085 955static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
a19ae1ec 956{
d8c13085 957 struct iommu_cmd cmd;
a19ae1ec 958
d8c13085 959 build_inv_dte(&cmd, devid);
7e4f88da 960
d8c13085
JR
961 return iommu_queue_command(iommu, &cmd);
962}
09ee17eb 963
7d0c5cc5
JR
964static void iommu_flush_dte_all(struct amd_iommu *iommu)
965{
966 u32 devid;
09ee17eb 967
7d0c5cc5
JR
968 for (devid = 0; devid <= 0xffff; ++devid)
969 iommu_flush_dte(iommu, devid);
a19ae1ec 970
7d0c5cc5
JR
971 iommu_completion_wait(iommu);
972}
84df8175 973
7d0c5cc5
JR
974/*
975 * This function uses heavy locking and may disable irqs for some time. But
976 * this is no issue because it is only called during resume.
977 */
978static void iommu_flush_tlb_all(struct amd_iommu *iommu)
979{
980 u32 dom_id;
a19ae1ec 981
7d0c5cc5
JR
982 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
983 struct iommu_cmd cmd;
984 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
985 dom_id, 1);
986 iommu_queue_command(iommu, &cmd);
987 }
8eed9833 988
7d0c5cc5 989 iommu_completion_wait(iommu);
a19ae1ec
JR
990}
991
58fc7f14 992static void iommu_flush_all(struct amd_iommu *iommu)
0518a3a4 993{
58fc7f14 994 struct iommu_cmd cmd;
0518a3a4 995
58fc7f14 996 build_inv_all(&cmd);
0518a3a4 997
58fc7f14
JR
998 iommu_queue_command(iommu, &cmd);
999 iommu_completion_wait(iommu);
1000}
1001
7ef2798d
JR
1002static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1003{
1004 struct iommu_cmd cmd;
1005
1006 build_inv_irt(&cmd, devid);
1007
1008 iommu_queue_command(iommu, &cmd);
1009}
1010
1011static void iommu_flush_irt_all(struct amd_iommu *iommu)
1012{
1013 u32 devid;
1014
1015 for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1016 iommu_flush_irt(iommu, devid);
1017
1018 iommu_completion_wait(iommu);
1019}
1020
7d0c5cc5
JR
1021void iommu_flush_all_caches(struct amd_iommu *iommu)
1022{
58fc7f14
JR
1023 if (iommu_feature(iommu, FEATURE_IA)) {
1024 iommu_flush_all(iommu);
1025 } else {
1026 iommu_flush_dte_all(iommu);
7ef2798d 1027 iommu_flush_irt_all(iommu);
58fc7f14 1028 iommu_flush_tlb_all(iommu);
0518a3a4
JR
1029 }
1030}
1031
431b2a20 1032/*
cb41ed85 1033 * Command send function for flushing on-device TLB
431b2a20 1034 */
6c542047
JR
1035static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1036 u64 address, size_t size)
3fa43655
JR
1037{
1038 struct amd_iommu *iommu;
b00d3bcf 1039 struct iommu_cmd cmd;
cb41ed85 1040 int qdep;
3fa43655 1041
ea61cddb
JR
1042 qdep = dev_data->ats.qdep;
1043 iommu = amd_iommu_rlookup_table[dev_data->devid];
3fa43655 1044
ea61cddb 1045 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
b00d3bcf
JR
1046
1047 return iommu_queue_command(iommu, &cmd);
3fa43655
JR
1048}
1049
431b2a20 1050/*
431b2a20 1051 * Command send function for invalidating a device table entry
431b2a20 1052 */
6c542047 1053static int device_flush_dte(struct iommu_dev_data *dev_data)
a19ae1ec 1054{
3fa43655 1055 struct amd_iommu *iommu;
e25bfb56 1056 u16 alias;
ee2fa743 1057 int ret;
a19ae1ec 1058
6c542047 1059 iommu = amd_iommu_rlookup_table[dev_data->devid];
e25bfb56 1060 alias = amd_iommu_alias_table[dev_data->devid];
a19ae1ec 1061
f62dda66 1062 ret = iommu_flush_dte(iommu, dev_data->devid);
e25bfb56
JR
1063 if (!ret && alias != dev_data->devid)
1064 ret = iommu_flush_dte(iommu, alias);
cb41ed85
JR
1065 if (ret)
1066 return ret;
1067
ea61cddb 1068 if (dev_data->ats.enabled)
6c542047 1069 ret = device_flush_iotlb(dev_data, 0, ~0UL);
ee2fa743 1070
ee2fa743 1071 return ret;
a19ae1ec
JR
1072}
1073
431b2a20
JR
1074/*
1075 * TLB invalidation function which is called from the mapping functions.
1076 * It invalidates a single PTE if the range to flush is within a single
1077 * page. Otherwise it flushes the whole TLB of the IOMMU.
1078 */
17b124bf
JR
1079static void __domain_flush_pages(struct protection_domain *domain,
1080 u64 address, size_t size, int pde)
a19ae1ec 1081{
cb41ed85 1082 struct iommu_dev_data *dev_data;
11b6402c
JR
1083 struct iommu_cmd cmd;
1084 int ret = 0, i;
a19ae1ec 1085
11b6402c 1086 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
999ba417 1087
6de8ad9b
JR
1088 for (i = 0; i < amd_iommus_present; ++i) {
1089 if (!domain->dev_iommu[i])
1090 continue;
1091
1092 /*
1093 * Devices of this domain are behind this IOMMU
1094 * We need a TLB flush
1095 */
11b6402c 1096 ret |= iommu_queue_command(amd_iommus[i], &cmd);
6de8ad9b
JR
1097 }
1098
cb41ed85 1099 list_for_each_entry(dev_data, &domain->dev_list, list) {
cb41ed85 1100
ea61cddb 1101 if (!dev_data->ats.enabled)
cb41ed85
JR
1102 continue;
1103
6c542047 1104 ret |= device_flush_iotlb(dev_data, address, size);
cb41ed85
JR
1105 }
1106
11b6402c 1107 WARN_ON(ret);
6de8ad9b
JR
1108}
1109
17b124bf
JR
1110static void domain_flush_pages(struct protection_domain *domain,
1111 u64 address, size_t size)
6de8ad9b 1112{
17b124bf 1113 __domain_flush_pages(domain, address, size, 0);
a19ae1ec 1114}
b6c02715 1115
1c655773 1116/* Flush the whole IO/TLB for a given protection domain */
17b124bf 1117static void domain_flush_tlb(struct protection_domain *domain)
1c655773 1118{
17b124bf 1119 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1c655773
JR
1120}
1121
42a49f96 1122/* Flush the whole IO/TLB for a given protection domain - including PDE */
17b124bf 1123static void domain_flush_tlb_pde(struct protection_domain *domain)
42a49f96 1124{
17b124bf 1125 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
42a49f96
CW
1126}
1127
17b124bf 1128static void domain_flush_complete(struct protection_domain *domain)
b00d3bcf 1129{
17b124bf 1130 int i;
18811f55 1131
17b124bf
JR
1132 for (i = 0; i < amd_iommus_present; ++i) {
1133 if (!domain->dev_iommu[i])
1134 continue;
bfd1be18 1135
17b124bf
JR
1136 /*
1137 * Devices of this domain are behind this IOMMU
1138 * We need to wait for completion of all commands.
1139 */
1140 iommu_completion_wait(amd_iommus[i]);
bfd1be18 1141 }
e394d72a
JR
1142}
1143
b00d3bcf 1144
09b42804 1145/*
b00d3bcf 1146 * This function flushes the DTEs for all devices in domain
09b42804 1147 */
17b124bf 1148static void domain_flush_devices(struct protection_domain *domain)
e394d72a 1149{
b00d3bcf 1150 struct iommu_dev_data *dev_data;
b26e81b8 1151
b00d3bcf 1152 list_for_each_entry(dev_data, &domain->dev_list, list)
6c542047 1153 device_flush_dte(dev_data);
a345b23b
JR
1154}
1155
431b2a20
JR
1156/****************************************************************************
1157 *
1158 * The functions below are used the create the page table mappings for
1159 * unity mapped regions.
1160 *
1161 ****************************************************************************/
1162
308973d3
JR
1163/*
1164 * This function is used to add another level to an IO page table. Adding
1165 * another level increases the size of the address space by 9 bits to a size up
1166 * to 64 bits.
1167 */
1168static bool increase_address_space(struct protection_domain *domain,
1169 gfp_t gfp)
1170{
1171 u64 *pte;
1172
1173 if (domain->mode == PAGE_MODE_6_LEVEL)
1174 /* address space already 64 bit large */
1175 return false;
1176
1177 pte = (void *)get_zeroed_page(gfp);
1178 if (!pte)
1179 return false;
1180
1181 *pte = PM_LEVEL_PDE(domain->mode,
1182 virt_to_phys(domain->pt_root));
1183 domain->pt_root = pte;
1184 domain->mode += 1;
1185 domain->updated = true;
1186
1187 return true;
1188}
1189
1190static u64 *alloc_pte(struct protection_domain *domain,
1191 unsigned long address,
cbb9d729 1192 unsigned long page_size,
308973d3
JR
1193 u64 **pte_page,
1194 gfp_t gfp)
1195{
cbb9d729 1196 int level, end_lvl;
308973d3 1197 u64 *pte, *page;
cbb9d729
JR
1198
1199 BUG_ON(!is_power_of_2(page_size));
308973d3
JR
1200
1201 while (address > PM_LEVEL_SIZE(domain->mode))
1202 increase_address_space(domain, gfp);
1203
cbb9d729
JR
1204 level = domain->mode - 1;
1205 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1206 address = PAGE_SIZE_ALIGN(address, page_size);
1207 end_lvl = PAGE_SIZE_LEVEL(page_size);
308973d3
JR
1208
1209 while (level > end_lvl) {
7bfa5bd2
JR
1210 u64 __pte, __npte;
1211
1212 __pte = *pte;
1213
1214 if (!IOMMU_PTE_PRESENT(__pte)) {
308973d3
JR
1215 page = (u64 *)get_zeroed_page(gfp);
1216 if (!page)
1217 return NULL;
7bfa5bd2
JR
1218
1219 __npte = PM_LEVEL_PDE(level, virt_to_phys(page));
1220
1221 if (cmpxchg64(pte, __pte, __npte)) {
1222 free_page((unsigned long)page);
1223 continue;
1224 }
308973d3
JR
1225 }
1226
cbb9d729
JR
1227 /* No level skipping support yet */
1228 if (PM_PTE_LEVEL(*pte) != level)
1229 return NULL;
1230
308973d3
JR
1231 level -= 1;
1232
1233 pte = IOMMU_PTE_PAGE(*pte);
1234
1235 if (pte_page && level == end_lvl)
1236 *pte_page = pte;
1237
1238 pte = &pte[PM_LEVEL_INDEX(level, address)];
1239 }
1240
1241 return pte;
1242}
1243
1244/*
1245 * This function checks if there is a PTE for a given dma address. If
1246 * there is one, it returns the pointer to it.
1247 */
3039ca1b
JR
1248static u64 *fetch_pte(struct protection_domain *domain,
1249 unsigned long address,
1250 unsigned long *page_size)
308973d3
JR
1251{
1252 int level;
1253 u64 *pte;
1254
24cd7723
JR
1255 if (address > PM_LEVEL_SIZE(domain->mode))
1256 return NULL;
1257
3039ca1b
JR
1258 level = domain->mode - 1;
1259 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1260 *page_size = PTE_LEVEL_PAGE_SIZE(level);
308973d3 1261
24cd7723
JR
1262 while (level > 0) {
1263
1264 /* Not Present */
308973d3
JR
1265 if (!IOMMU_PTE_PRESENT(*pte))
1266 return NULL;
1267
24cd7723 1268 /* Large PTE */
3039ca1b
JR
1269 if (PM_PTE_LEVEL(*pte) == 7 ||
1270 PM_PTE_LEVEL(*pte) == 0)
1271 break;
24cd7723
JR
1272
1273 /* No level skipping support yet */
1274 if (PM_PTE_LEVEL(*pte) != level)
1275 return NULL;
1276
308973d3
JR
1277 level -= 1;
1278
24cd7723 1279 /* Walk to the next level */
3039ca1b
JR
1280 pte = IOMMU_PTE_PAGE(*pte);
1281 pte = &pte[PM_LEVEL_INDEX(level, address)];
1282 *page_size = PTE_LEVEL_PAGE_SIZE(level);
1283 }
1284
1285 if (PM_PTE_LEVEL(*pte) == 0x07) {
1286 unsigned long pte_mask;
1287
1288 /*
1289 * If we have a series of large PTEs, make
1290 * sure to return a pointer to the first one.
1291 */
1292 *page_size = pte_mask = PTE_PAGE_SIZE(*pte);
1293 pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1294 pte = (u64 *)(((unsigned long)pte) & pte_mask);
308973d3
JR
1295 }
1296
1297 return pte;
1298}
1299
431b2a20
JR
1300/*
1301 * Generic mapping functions. It maps a physical address into a DMA
1302 * address space. It allocates the page table pages if necessary.
1303 * In the future it can be extended to a generic mapping function
1304 * supporting all features of AMD IOMMU page tables like level skipping
1305 * and full 64 bit address spaces.
1306 */
38e817fe
JR
1307static int iommu_map_page(struct protection_domain *dom,
1308 unsigned long bus_addr,
1309 unsigned long phys_addr,
abdc5eb3 1310 int prot,
cbb9d729 1311 unsigned long page_size)
bd0e5211 1312{
8bda3092 1313 u64 __pte, *pte;
cbb9d729 1314 int i, count;
abdc5eb3 1315
d4b03664
JR
1316 BUG_ON(!IS_ALIGNED(bus_addr, page_size));
1317 BUG_ON(!IS_ALIGNED(phys_addr, page_size));
1318
bad1cac2 1319 if (!(prot & IOMMU_PROT_MASK))
bd0e5211
JR
1320 return -EINVAL;
1321
d4b03664
JR
1322 count = PAGE_SIZE_PTE_COUNT(page_size);
1323 pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
cbb9d729 1324
63eaa75e
ML
1325 if (!pte)
1326 return -ENOMEM;
1327
cbb9d729
JR
1328 for (i = 0; i < count; ++i)
1329 if (IOMMU_PTE_PRESENT(pte[i]))
1330 return -EBUSY;
bd0e5211 1331
d4b03664 1332 if (count > 1) {
cbb9d729
JR
1333 __pte = PAGE_SIZE_PTE(phys_addr, page_size);
1334 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
1335 } else
1336 __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
bd0e5211 1337
bd0e5211
JR
1338 if (prot & IOMMU_PROT_IR)
1339 __pte |= IOMMU_PTE_IR;
1340 if (prot & IOMMU_PROT_IW)
1341 __pte |= IOMMU_PTE_IW;
1342
cbb9d729
JR
1343 for (i = 0; i < count; ++i)
1344 pte[i] = __pte;
bd0e5211 1345
04bfdd84
JR
1346 update_domain(dom);
1347
bd0e5211
JR
1348 return 0;
1349}
1350
24cd7723
JR
1351static unsigned long iommu_unmap_page(struct protection_domain *dom,
1352 unsigned long bus_addr,
1353 unsigned long page_size)
eb74ff6c 1354{
71b390e9
JR
1355 unsigned long long unmapped;
1356 unsigned long unmap_size;
24cd7723
JR
1357 u64 *pte;
1358
1359 BUG_ON(!is_power_of_2(page_size));
1360
1361 unmapped = 0;
eb74ff6c 1362
24cd7723
JR
1363 while (unmapped < page_size) {
1364
71b390e9
JR
1365 pte = fetch_pte(dom, bus_addr, &unmap_size);
1366
1367 if (pte) {
1368 int i, count;
1369
1370 count = PAGE_SIZE_PTE_COUNT(unmap_size);
24cd7723
JR
1371 for (i = 0; i < count; i++)
1372 pte[i] = 0ULL;
1373 }
1374
1375 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1376 unmapped += unmap_size;
1377 }
1378
60d0ca3c 1379 BUG_ON(unmapped && !is_power_of_2(unmapped));
eb74ff6c 1380
24cd7723 1381 return unmapped;
eb74ff6c 1382}
eb74ff6c 1383
431b2a20
JR
1384/****************************************************************************
1385 *
1386 * The next functions belong to the address allocator for the dma_ops
1387 * interface functions. They work like the allocators in the other IOMMU
1388 * drivers. Its basically a bitmap which marks the allocated pages in
1389 * the aperture. Maybe it could be enhanced in the future to a more
1390 * efficient allocator.
1391 *
1392 ****************************************************************************/
d3086444 1393
431b2a20 1394/*
384de729 1395 * The address allocator core functions.
431b2a20
JR
1396 *
1397 * called with domain->lock held
1398 */
384de729 1399
171e7b37
JR
1400/*
1401 * Used to reserve address ranges in the aperture (e.g. for exclusion
1402 * ranges.
1403 */
1404static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1405 unsigned long start_page,
1406 unsigned int pages)
1407{
1408 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1409
1410 if (start_page + pages > last_page)
1411 pages = last_page - start_page;
1412
1413 for (i = start_page; i < start_page + pages; ++i) {
1414 int index = i / APERTURE_RANGE_PAGES;
1415 int page = i % APERTURE_RANGE_PAGES;
1416 __set_bit(page, dom->aperture[index]->bitmap);
1417 }
1418}
1419
9cabe89b
JR
1420/*
1421 * This function is used to add a new aperture range to an existing
1422 * aperture in case of dma_ops domain allocation or address allocation
1423 * failure.
1424 */
576175c2 1425static int alloc_new_range(struct dma_ops_domain *dma_dom,
9cabe89b
JR
1426 bool populate, gfp_t gfp)
1427{
1428 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
5d7c94c3 1429 unsigned long i, old_size, pte_pgsize;
a73c1566
JR
1430 struct aperture_range *range;
1431 struct amd_iommu *iommu;
1432 unsigned long flags;
9cabe89b 1433
f5e9705c
JR
1434#ifdef CONFIG_IOMMU_STRESS
1435 populate = false;
1436#endif
1437
9cabe89b
JR
1438 if (index >= APERTURE_MAX_RANGES)
1439 return -ENOMEM;
1440
a73c1566
JR
1441 range = kzalloc(sizeof(struct aperture_range), gfp);
1442 if (!range)
9cabe89b
JR
1443 return -ENOMEM;
1444
a73c1566
JR
1445 range->bitmap = (void *)get_zeroed_page(gfp);
1446 if (!range->bitmap)
9cabe89b
JR
1447 goto out_free;
1448
a73c1566 1449 range->offset = dma_dom->aperture_size;
9cabe89b 1450
a73c1566 1451 spin_lock_init(&range->bitmap_lock);
08c5fb93 1452
9cabe89b
JR
1453 if (populate) {
1454 unsigned long address = dma_dom->aperture_size;
1455 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1456 u64 *pte, *pte_page;
1457
1458 for (i = 0; i < num_ptes; ++i) {
cbb9d729 1459 pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
9cabe89b
JR
1460 &pte_page, gfp);
1461 if (!pte)
1462 goto out_free;
1463
a73c1566 1464 range->pte_pages[i] = pte_page;
9cabe89b
JR
1465
1466 address += APERTURE_RANGE_SIZE / 64;
1467 }
1468 }
1469
92d420ec
JR
1470 spin_lock_irqsave(&dma_dom->domain.lock, flags);
1471
a73c1566 1472 /* First take the bitmap_lock and then publish the range */
92d420ec 1473 spin_lock(&range->bitmap_lock);
a73c1566
JR
1474
1475 old_size = dma_dom->aperture_size;
1476 dma_dom->aperture[index] = range;
1477 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
9cabe89b 1478
17f5b569
JR
1479 /* Reserve address range used for MSI messages */
1480 if (old_size < MSI_ADDR_BASE_LO &&
1481 dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
1482 unsigned long spage;
1483 int pages;
1484
1485 pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
1486 spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
1487
1488 dma_ops_reserve_addresses(dma_dom, spage, pages);
1489 }
1490
b595076a 1491 /* Initialize the exclusion range if necessary */
576175c2
JR
1492 for_each_iommu(iommu) {
1493 if (iommu->exclusion_start &&
1494 iommu->exclusion_start >= dma_dom->aperture[index]->offset
1495 && iommu->exclusion_start < dma_dom->aperture_size) {
1496 unsigned long startpage;
1497 int pages = iommu_num_pages(iommu->exclusion_start,
1498 iommu->exclusion_length,
1499 PAGE_SIZE);
1500 startpage = iommu->exclusion_start >> PAGE_SHIFT;
1501 dma_ops_reserve_addresses(dma_dom, startpage, pages);
1502 }
00cd122a
JR
1503 }
1504
1505 /*
1506 * Check for areas already mapped as present in the new aperture
1507 * range and mark those pages as reserved in the allocator. Such
1508 * mappings may already exist as a result of requested unity
1509 * mappings for devices.
1510 */
1511 for (i = dma_dom->aperture[index]->offset;
1512 i < dma_dom->aperture_size;
5d7c94c3 1513 i += pte_pgsize) {
3039ca1b 1514 u64 *pte = fetch_pte(&dma_dom->domain, i, &pte_pgsize);
00cd122a
JR
1515 if (!pte || !IOMMU_PTE_PRESENT(*pte))
1516 continue;
1517
5d7c94c3
JR
1518 dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT,
1519 pte_pgsize >> 12);
00cd122a
JR
1520 }
1521
04bfdd84
JR
1522 update_domain(&dma_dom->domain);
1523
92d420ec
JR
1524 spin_unlock(&range->bitmap_lock);
1525
1526 spin_unlock_irqrestore(&dma_dom->domain.lock, flags);
a73c1566 1527
9cabe89b
JR
1528 return 0;
1529
1530out_free:
04bfdd84
JR
1531 update_domain(&dma_dom->domain);
1532
a73c1566 1533 free_page((unsigned long)range->bitmap);
9cabe89b 1534
a73c1566 1535 kfree(range);
9cabe89b
JR
1536
1537 return -ENOMEM;
1538}
1539
ccb50e03
JR
1540static dma_addr_t dma_ops_aperture_alloc(struct dma_ops_domain *dom,
1541 struct aperture_range *range,
a0f51447 1542 unsigned long pages,
a0f51447
JR
1543 unsigned long dma_mask,
1544 unsigned long boundary_size,
7b5e25b8
JR
1545 unsigned long align_mask,
1546 bool trylock)
a0f51447
JR
1547{
1548 unsigned long offset, limit, flags;
1549 dma_addr_t address;
ccb50e03 1550 bool flush = false;
a0f51447
JR
1551
1552 offset = range->offset >> PAGE_SHIFT;
1553 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1554 dma_mask >> PAGE_SHIFT);
1555
7b5e25b8
JR
1556 if (trylock) {
1557 if (!spin_trylock_irqsave(&range->bitmap_lock, flags))
1558 return -1;
1559 } else {
1560 spin_lock_irqsave(&range->bitmap_lock, flags);
1561 }
1562
60e6a7cb
JR
1563 address = iommu_area_alloc(range->bitmap, limit, range->next_bit,
1564 pages, offset, boundary_size, align_mask);
ccb50e03 1565 if (address == -1) {
60e6a7cb
JR
1566 /* Nothing found, retry one time */
1567 address = iommu_area_alloc(range->bitmap, limit,
1568 0, pages, offset, boundary_size,
1569 align_mask);
ccb50e03
JR
1570 flush = true;
1571 }
60e6a7cb
JR
1572
1573 if (address != -1)
1574 range->next_bit = address + pages;
1575
a0f51447
JR
1576 spin_unlock_irqrestore(&range->bitmap_lock, flags);
1577
ccb50e03
JR
1578 if (flush) {
1579 domain_flush_tlb(&dom->domain);
1580 domain_flush_complete(&dom->domain);
1581 }
1582
a0f51447
JR
1583 return address;
1584}
1585
384de729
JR
1586static unsigned long dma_ops_area_alloc(struct device *dev,
1587 struct dma_ops_domain *dom,
1588 unsigned int pages,
1589 unsigned long align_mask,
05ab49e0 1590 u64 dma_mask)
384de729 1591{
ab7032bb 1592 unsigned long boundary_size, mask;
384de729 1593 unsigned long address = -1;
7b5e25b8 1594 bool first = true;
5f6bed50
JR
1595 u32 start, i;
1596
1597 preempt_disable();
384de729 1598
e6aabee0
JR
1599 mask = dma_get_seg_boundary(dev);
1600
7b5e25b8 1601again:
5f6bed50
JR
1602 start = this_cpu_read(*dom->next_index);
1603
1604 /* Sanity check - is it really necessary? */
1605 if (unlikely(start > APERTURE_MAX_RANGES)) {
1606 start = 0;
1607 this_cpu_write(*dom->next_index, 0);
1608 }
1609
e6aabee0
JR
1610 boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
1611 1UL << (BITS_PER_LONG - PAGE_SHIFT);
384de729 1612
2a87442c
JR
1613 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1614 struct aperture_range *range;
5f6bed50
JR
1615 int index;
1616
1617 index = (start + i) % APERTURE_MAX_RANGES;
ccb50e03 1618
5f6bed50 1619 range = dom->aperture[index];
2a87442c
JR
1620
1621 if (!range || range->offset >= dma_mask)
1622 continue;
384de729 1623
2a87442c 1624 address = dma_ops_aperture_alloc(dom, range, pages,
60e6a7cb 1625 dma_mask, boundary_size,
7b5e25b8 1626 align_mask, first);
384de729 1627 if (address != -1) {
2a87442c 1628 address = range->offset + (address << PAGE_SHIFT);
5f6bed50 1629 this_cpu_write(*dom->next_index, index);
384de729
JR
1630 break;
1631 }
384de729
JR
1632 }
1633
7b5e25b8
JR
1634 if (address == -1 && first) {
1635 first = false;
1636 goto again;
1637 }
1638
5f6bed50
JR
1639 preempt_enable();
1640
384de729
JR
1641 return address;
1642}
1643
d3086444
JR
1644static unsigned long dma_ops_alloc_addresses(struct device *dev,
1645 struct dma_ops_domain *dom,
6d4f343f 1646 unsigned int pages,
832a90c3
JR
1647 unsigned long align_mask,
1648 u64 dma_mask)
d3086444 1649{
266a3bd2 1650 unsigned long address = -1;
d3086444 1651
266a3bd2
JR
1652 while (address == -1) {
1653 address = dma_ops_area_alloc(dev, dom, pages,
1654 align_mask, dma_mask);
1655
7bfa5bd2 1656 if (address == -1 && alloc_new_range(dom, false, GFP_ATOMIC))
266a3bd2
JR
1657 break;
1658 }
d3086444 1659
384de729 1660 if (unlikely(address == -1))
8fd524b3 1661 address = DMA_ERROR_CODE;
d3086444
JR
1662
1663 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1664
1665 return address;
1666}
1667
431b2a20
JR
1668/*
1669 * The address free function.
1670 *
1671 * called with domain->lock held
1672 */
d3086444
JR
1673static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1674 unsigned long address,
1675 unsigned int pages)
1676{
384de729
JR
1677 unsigned i = address >> APERTURE_RANGE_SHIFT;
1678 struct aperture_range *range = dom->aperture[i];
08c5fb93 1679 unsigned long flags;
80be308d 1680
384de729
JR
1681 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1682
47bccd6b
JR
1683#ifdef CONFIG_IOMMU_STRESS
1684 if (i < 4)
1685 return;
1686#endif
80be308d 1687
4eeca8c5 1688 if (amd_iommu_unmap_flush) {
d41ab098
JR
1689 domain_flush_tlb(&dom->domain);
1690 domain_flush_complete(&dom->domain);
1691 }
384de729
JR
1692
1693 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
803b8cb4 1694
08c5fb93 1695 spin_lock_irqsave(&range->bitmap_lock, flags);
4eeca8c5
JR
1696 if (address + pages > range->next_bit)
1697 range->next_bit = address + pages;
a66022c4 1698 bitmap_clear(range->bitmap, address, pages);
08c5fb93 1699 spin_unlock_irqrestore(&range->bitmap_lock, flags);
384de729 1700
d3086444
JR
1701}
1702
431b2a20
JR
1703/****************************************************************************
1704 *
1705 * The next functions belong to the domain allocation. A domain is
1706 * allocated for every IOMMU as the default domain. If device isolation
1707 * is enabled, every device get its own domain. The most important thing
1708 * about domains is the page table mapping the DMA address space they
1709 * contain.
1710 *
1711 ****************************************************************************/
1712
aeb26f55
JR
1713/*
1714 * This function adds a protection domain to the global protection domain list
1715 */
1716static void add_domain_to_list(struct protection_domain *domain)
1717{
1718 unsigned long flags;
1719
1720 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1721 list_add(&domain->list, &amd_iommu_pd_list);
1722 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1723}
1724
1725/*
1726 * This function removes a protection domain to the global
1727 * protection domain list
1728 */
1729static void del_domain_from_list(struct protection_domain *domain)
1730{
1731 unsigned long flags;
1732
1733 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1734 list_del(&domain->list);
1735 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1736}
1737
ec487d1a
JR
1738static u16 domain_id_alloc(void)
1739{
1740 unsigned long flags;
1741 int id;
1742
1743 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1744 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1745 BUG_ON(id == 0);
1746 if (id > 0 && id < MAX_DOMAIN_ID)
1747 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1748 else
1749 id = 0;
1750 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1751
1752 return id;
1753}
1754
a2acfb75
JR
1755static void domain_id_free(int id)
1756{
1757 unsigned long flags;
1758
1759 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1760 if (id > 0 && id < MAX_DOMAIN_ID)
1761 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1762 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1763}
a2acfb75 1764
5c34c403
JR
1765#define DEFINE_FREE_PT_FN(LVL, FN) \
1766static void free_pt_##LVL (unsigned long __pt) \
1767{ \
1768 unsigned long p; \
1769 u64 *pt; \
1770 int i; \
1771 \
1772 pt = (u64 *)__pt; \
1773 \
1774 for (i = 0; i < 512; ++i) { \
0b3fff54 1775 /* PTE present? */ \
5c34c403
JR
1776 if (!IOMMU_PTE_PRESENT(pt[i])) \
1777 continue; \
1778 \
0b3fff54
JR
1779 /* Large PTE? */ \
1780 if (PM_PTE_LEVEL(pt[i]) == 0 || \
1781 PM_PTE_LEVEL(pt[i]) == 7) \
1782 continue; \
1783 \
5c34c403
JR
1784 p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
1785 FN(p); \
1786 } \
1787 free_page((unsigned long)pt); \
1788}
1789
1790DEFINE_FREE_PT_FN(l2, free_page)
1791DEFINE_FREE_PT_FN(l3, free_pt_l2)
1792DEFINE_FREE_PT_FN(l4, free_pt_l3)
1793DEFINE_FREE_PT_FN(l5, free_pt_l4)
1794DEFINE_FREE_PT_FN(l6, free_pt_l5)
1795
86db2e5d 1796static void free_pagetable(struct protection_domain *domain)
ec487d1a 1797{
5c34c403 1798 unsigned long root = (unsigned long)domain->pt_root;
ec487d1a 1799
5c34c403
JR
1800 switch (domain->mode) {
1801 case PAGE_MODE_NONE:
1802 break;
1803 case PAGE_MODE_1_LEVEL:
1804 free_page(root);
1805 break;
1806 case PAGE_MODE_2_LEVEL:
1807 free_pt_l2(root);
1808 break;
1809 case PAGE_MODE_3_LEVEL:
1810 free_pt_l3(root);
1811 break;
1812 case PAGE_MODE_4_LEVEL:
1813 free_pt_l4(root);
1814 break;
1815 case PAGE_MODE_5_LEVEL:
1816 free_pt_l5(root);
1817 break;
1818 case PAGE_MODE_6_LEVEL:
1819 free_pt_l6(root);
1820 break;
1821 default:
1822 BUG();
ec487d1a 1823 }
ec487d1a
JR
1824}
1825
b16137b1
JR
1826static void free_gcr3_tbl_level1(u64 *tbl)
1827{
1828 u64 *ptr;
1829 int i;
1830
1831 for (i = 0; i < 512; ++i) {
1832 if (!(tbl[i] & GCR3_VALID))
1833 continue;
1834
1835 ptr = __va(tbl[i] & PAGE_MASK);
1836
1837 free_page((unsigned long)ptr);
1838 }
1839}
1840
1841static void free_gcr3_tbl_level2(u64 *tbl)
1842{
1843 u64 *ptr;
1844 int i;
1845
1846 for (i = 0; i < 512; ++i) {
1847 if (!(tbl[i] & GCR3_VALID))
1848 continue;
1849
1850 ptr = __va(tbl[i] & PAGE_MASK);
1851
1852 free_gcr3_tbl_level1(ptr);
1853 }
1854}
1855
52815b75
JR
1856static void free_gcr3_table(struct protection_domain *domain)
1857{
b16137b1
JR
1858 if (domain->glx == 2)
1859 free_gcr3_tbl_level2(domain->gcr3_tbl);
1860 else if (domain->glx == 1)
1861 free_gcr3_tbl_level1(domain->gcr3_tbl);
23d3a98c
JR
1862 else
1863 BUG_ON(domain->glx != 0);
b16137b1 1864
52815b75
JR
1865 free_page((unsigned long)domain->gcr3_tbl);
1866}
1867
431b2a20
JR
1868/*
1869 * Free a domain, only used if something went wrong in the
1870 * allocation path and we need to free an already allocated page table
1871 */
ec487d1a
JR
1872static void dma_ops_domain_free(struct dma_ops_domain *dom)
1873{
384de729
JR
1874 int i;
1875
ec487d1a
JR
1876 if (!dom)
1877 return;
1878
5f6bed50
JR
1879 free_percpu(dom->next_index);
1880
aeb26f55
JR
1881 del_domain_from_list(&dom->domain);
1882
86db2e5d 1883 free_pagetable(&dom->domain);
ec487d1a 1884
384de729
JR
1885 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1886 if (!dom->aperture[i])
1887 continue;
1888 free_page((unsigned long)dom->aperture[i]->bitmap);
1889 kfree(dom->aperture[i]);
1890 }
ec487d1a
JR
1891
1892 kfree(dom);
1893}
1894
a639a8ee
JR
1895static int dma_ops_domain_alloc_apertures(struct dma_ops_domain *dma_dom,
1896 int max_apertures)
1897{
1898 int ret, i, apertures;
1899
1900 apertures = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1901 ret = 0;
1902
1903 for (i = apertures; i < max_apertures; ++i) {
1904 ret = alloc_new_range(dma_dom, false, GFP_KERNEL);
1905 if (ret)
1906 break;
1907 }
1908
1909 return ret;
1910}
1911
431b2a20
JR
1912/*
1913 * Allocates a new protection domain usable for the dma_ops functions.
b595076a 1914 * It also initializes the page table and the address allocator data
431b2a20
JR
1915 * structures required for the dma_ops interface
1916 */
87a64d52 1917static struct dma_ops_domain *dma_ops_domain_alloc(void)
ec487d1a
JR
1918{
1919 struct dma_ops_domain *dma_dom;
5f6bed50 1920 int cpu;
ec487d1a
JR
1921
1922 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1923 if (!dma_dom)
1924 return NULL;
1925
7a5a566e 1926 if (protection_domain_init(&dma_dom->domain))
ec487d1a 1927 goto free_dma_dom;
7a5a566e 1928
5f6bed50
JR
1929 dma_dom->next_index = alloc_percpu(u32);
1930 if (!dma_dom->next_index)
1931 goto free_dma_dom;
1932
8f7a017c 1933 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
ec487d1a 1934 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
9fdb19d6 1935 dma_dom->domain.flags = PD_DMA_OPS_MASK;
ec487d1a
JR
1936 dma_dom->domain.priv = dma_dom;
1937 if (!dma_dom->domain.pt_root)
1938 goto free_dma_dom;
ec487d1a 1939
aeb26f55
JR
1940 add_domain_to_list(&dma_dom->domain);
1941
576175c2 1942 if (alloc_new_range(dma_dom, true, GFP_KERNEL))
ec487d1a 1943 goto free_dma_dom;
ec487d1a 1944
431b2a20 1945 /*
ec487d1a
JR
1946 * mark the first page as allocated so we never return 0 as
1947 * a valid dma-address. So we can use 0 as error value
431b2a20 1948 */
384de729 1949 dma_dom->aperture[0]->bitmap[0] = 1;
ec487d1a 1950
5f6bed50
JR
1951 for_each_possible_cpu(cpu)
1952 *per_cpu_ptr(dma_dom->next_index, cpu) = 0;
ec487d1a
JR
1953
1954 return dma_dom;
1955
1956free_dma_dom:
1957 dma_ops_domain_free(dma_dom);
1958
1959 return NULL;
1960}
1961
5b28df6f
JR
1962/*
1963 * little helper function to check whether a given protection domain is a
1964 * dma_ops domain
1965 */
1966static bool dma_ops_domain(struct protection_domain *domain)
1967{
1968 return domain->flags & PD_DMA_OPS_MASK;
1969}
1970
fd7b5535 1971static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
b20ac0d4 1972{
132bd68f 1973 u64 pte_root = 0;
ee6c2868 1974 u64 flags = 0;
863c74eb 1975
132bd68f
JR
1976 if (domain->mode != PAGE_MODE_NONE)
1977 pte_root = virt_to_phys(domain->pt_root);
1978
38ddf41b
JR
1979 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1980 << DEV_ENTRY_MODE_SHIFT;
1981 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
b20ac0d4 1982
ee6c2868
JR
1983 flags = amd_iommu_dev_table[devid].data[1];
1984
fd7b5535
JR
1985 if (ats)
1986 flags |= DTE_FLAG_IOTLB;
1987
52815b75
JR
1988 if (domain->flags & PD_IOMMUV2_MASK) {
1989 u64 gcr3 = __pa(domain->gcr3_tbl);
1990 u64 glx = domain->glx;
1991 u64 tmp;
1992
1993 pte_root |= DTE_FLAG_GV;
1994 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1995
1996 /* First mask out possible old values for GCR3 table */
1997 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1998 flags &= ~tmp;
1999
2000 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
2001 flags &= ~tmp;
2002
2003 /* Encode GCR3 table into DTE */
2004 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
2005 pte_root |= tmp;
2006
2007 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
2008 flags |= tmp;
2009
2010 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
2011 flags |= tmp;
2012 }
2013
ee6c2868
JR
2014 flags &= ~(0xffffUL);
2015 flags |= domain->id;
2016
2017 amd_iommu_dev_table[devid].data[1] = flags;
2018 amd_iommu_dev_table[devid].data[0] = pte_root;
15898bbc
JR
2019}
2020
2021static void clear_dte_entry(u16 devid)
2022{
15898bbc 2023 /* remove entry from the device table seen by the hardware */
cbf3ccd0
JR
2024 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
2025 amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
15898bbc
JR
2026
2027 amd_iommu_apply_erratum_63(devid);
7f760ddd
JR
2028}
2029
ec9e79ef
JR
2030static void do_attach(struct iommu_dev_data *dev_data,
2031 struct protection_domain *domain)
7f760ddd 2032{
7f760ddd 2033 struct amd_iommu *iommu;
e25bfb56 2034 u16 alias;
ec9e79ef 2035 bool ats;
fd7b5535 2036
ec9e79ef 2037 iommu = amd_iommu_rlookup_table[dev_data->devid];
e25bfb56 2038 alias = amd_iommu_alias_table[dev_data->devid];
ec9e79ef 2039 ats = dev_data->ats.enabled;
7f760ddd
JR
2040
2041 /* Update data structures */
2042 dev_data->domain = domain;
2043 list_add(&dev_data->list, &domain->dev_list);
7f760ddd
JR
2044
2045 /* Do reference counting */
2046 domain->dev_iommu[iommu->index] += 1;
2047 domain->dev_cnt += 1;
2048
e25bfb56
JR
2049 /* Update device table */
2050 set_dte_entry(dev_data->devid, domain, ats);
2051 if (alias != dev_data->devid)
2052 set_dte_entry(dev_data->devid, domain, ats);
2053
6c542047 2054 device_flush_dte(dev_data);
7f760ddd
JR
2055}
2056
ec9e79ef 2057static void do_detach(struct iommu_dev_data *dev_data)
7f760ddd 2058{
7f760ddd 2059 struct amd_iommu *iommu;
e25bfb56 2060 u16 alias;
7f760ddd 2061
5adad991
JR
2062 /*
2063 * First check if the device is still attached. It might already
2064 * be detached from its domain because the generic
2065 * iommu_detach_group code detached it and we try again here in
2066 * our alias handling.
2067 */
2068 if (!dev_data->domain)
2069 return;
2070
ec9e79ef 2071 iommu = amd_iommu_rlookup_table[dev_data->devid];
e25bfb56 2072 alias = amd_iommu_alias_table[dev_data->devid];
15898bbc
JR
2073
2074 /* decrease reference counters */
7f760ddd
JR
2075 dev_data->domain->dev_iommu[iommu->index] -= 1;
2076 dev_data->domain->dev_cnt -= 1;
2077
2078 /* Update data structures */
2079 dev_data->domain = NULL;
2080 list_del(&dev_data->list);
f62dda66 2081 clear_dte_entry(dev_data->devid);
e25bfb56
JR
2082 if (alias != dev_data->devid)
2083 clear_dte_entry(alias);
15898bbc 2084
7f760ddd 2085 /* Flush the DTE entry */
6c542047 2086 device_flush_dte(dev_data);
2b681faf
JR
2087}
2088
2089/*
2090 * If a device is not yet associated with a domain, this function does
2091 * assigns it visible for the hardware
2092 */
ec9e79ef 2093static int __attach_device(struct iommu_dev_data *dev_data,
15898bbc 2094 struct protection_domain *domain)
2b681faf 2095{
84fe6c19 2096 int ret;
657cbb6b 2097
272e4f99
JR
2098 /*
2099 * Must be called with IRQs disabled. Warn here to detect early
2100 * when its not.
2101 */
2102 WARN_ON(!irqs_disabled());
2103
2b681faf
JR
2104 /* lock domain */
2105 spin_lock(&domain->lock);
2106
397111ab 2107 ret = -EBUSY;
150952f9 2108 if (dev_data->domain != NULL)
397111ab 2109 goto out_unlock;
15898bbc 2110
397111ab 2111 /* Attach alias group root */
150952f9 2112 do_attach(dev_data, domain);
24100055 2113
84fe6c19
JL
2114 ret = 0;
2115
2116out_unlock:
2117
eba6ac60
JR
2118 /* ready */
2119 spin_unlock(&domain->lock);
15898bbc 2120
84fe6c19 2121 return ret;
0feae533 2122}
b20ac0d4 2123
52815b75
JR
2124
2125static void pdev_iommuv2_disable(struct pci_dev *pdev)
2126{
2127 pci_disable_ats(pdev);
2128 pci_disable_pri(pdev);
2129 pci_disable_pasid(pdev);
2130}
2131
6a113ddc
JR
2132/* FIXME: Change generic reset-function to do the same */
2133static int pri_reset_while_enabled(struct pci_dev *pdev)
2134{
2135 u16 control;
2136 int pos;
2137
46277b75 2138 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
6a113ddc
JR
2139 if (!pos)
2140 return -EINVAL;
2141
46277b75
JR
2142 pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2143 control |= PCI_PRI_CTRL_RESET;
2144 pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
6a113ddc
JR
2145
2146 return 0;
2147}
2148
52815b75
JR
2149static int pdev_iommuv2_enable(struct pci_dev *pdev)
2150{
6a113ddc
JR
2151 bool reset_enable;
2152 int reqs, ret;
2153
2154 /* FIXME: Hardcode number of outstanding requests for now */
2155 reqs = 32;
2156 if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2157 reqs = 1;
2158 reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
52815b75
JR
2159
2160 /* Only allow access to user-accessible pages */
2161 ret = pci_enable_pasid(pdev, 0);
2162 if (ret)
2163 goto out_err;
2164
2165 /* First reset the PRI state of the device */
2166 ret = pci_reset_pri(pdev);
2167 if (ret)
2168 goto out_err;
2169
6a113ddc
JR
2170 /* Enable PRI */
2171 ret = pci_enable_pri(pdev, reqs);
52815b75
JR
2172 if (ret)
2173 goto out_err;
2174
6a113ddc
JR
2175 if (reset_enable) {
2176 ret = pri_reset_while_enabled(pdev);
2177 if (ret)
2178 goto out_err;
2179 }
2180
52815b75
JR
2181 ret = pci_enable_ats(pdev, PAGE_SHIFT);
2182 if (ret)
2183 goto out_err;
2184
2185 return 0;
2186
2187out_err:
2188 pci_disable_pri(pdev);
2189 pci_disable_pasid(pdev);
2190
2191 return ret;
2192}
2193
c99afa25 2194/* FIXME: Move this to PCI code */
a3b93121 2195#define PCI_PRI_TLP_OFF (1 << 15)
c99afa25 2196
98f1ad25 2197static bool pci_pri_tlp_required(struct pci_dev *pdev)
c99afa25 2198{
a3b93121 2199 u16 status;
c99afa25
JR
2200 int pos;
2201
46277b75 2202 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
c99afa25
JR
2203 if (!pos)
2204 return false;
2205
a3b93121 2206 pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
c99afa25 2207
a3b93121 2208 return (status & PCI_PRI_TLP_OFF) ? true : false;
c99afa25
JR
2209}
2210
407d733e 2211/*
df805abb 2212 * If a device is not yet associated with a domain, this function
407d733e
JR
2213 * assigns it visible for the hardware
2214 */
15898bbc
JR
2215static int attach_device(struct device *dev,
2216 struct protection_domain *domain)
0feae533 2217{
fd7b5535 2218 struct pci_dev *pdev = to_pci_dev(dev);
ea61cddb 2219 struct iommu_dev_data *dev_data;
eba6ac60 2220 unsigned long flags;
15898bbc 2221 int ret;
eba6ac60 2222
ea61cddb
JR
2223 dev_data = get_dev_data(dev);
2224
52815b75 2225 if (domain->flags & PD_IOMMUV2_MASK) {
02ca2021 2226 if (!dev_data->passthrough)
52815b75
JR
2227 return -EINVAL;
2228
02ca2021
JR
2229 if (dev_data->iommu_v2) {
2230 if (pdev_iommuv2_enable(pdev) != 0)
2231 return -EINVAL;
52815b75 2232
02ca2021
JR
2233 dev_data->ats.enabled = true;
2234 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2235 dev_data->pri_tlp = pci_pri_tlp_required(pdev);
2236 }
52815b75
JR
2237 } else if (amd_iommu_iotlb_sup &&
2238 pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
ea61cddb
JR
2239 dev_data->ats.enabled = true;
2240 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2241 }
fd7b5535 2242
eba6ac60 2243 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
ec9e79ef 2244 ret = __attach_device(dev_data, domain);
b20ac0d4
JR
2245 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2246
0feae533
JR
2247 /*
2248 * We might boot into a crash-kernel here. The crashed kernel
2249 * left the caches in the IOMMU dirty. So we have to flush
2250 * here to evict all dirty stuff.
2251 */
17b124bf 2252 domain_flush_tlb_pde(domain);
15898bbc
JR
2253
2254 return ret;
b20ac0d4
JR
2255}
2256
355bf553
JR
2257/*
2258 * Removes a device from a protection domain (unlocked)
2259 */
ec9e79ef 2260static void __detach_device(struct iommu_dev_data *dev_data)
355bf553 2261{
2ca76279 2262 struct protection_domain *domain;
c4596114 2263
272e4f99
JR
2264 /*
2265 * Must be called with IRQs disabled. Warn here to detect early
2266 * when its not.
2267 */
2268 WARN_ON(!irqs_disabled());
2ca76279 2269
f34c73f5
JR
2270 if (WARN_ON(!dev_data->domain))
2271 return;
24100055 2272
2ca76279 2273 domain = dev_data->domain;
71f77580 2274
f1dd0a8b 2275 spin_lock(&domain->lock);
24100055 2276
150952f9 2277 do_detach(dev_data);
7f760ddd 2278
f1dd0a8b 2279 spin_unlock(&domain->lock);
355bf553
JR
2280}
2281
2282/*
2283 * Removes a device from a protection domain (with devtable_lock held)
2284 */
15898bbc 2285static void detach_device(struct device *dev)
355bf553 2286{
52815b75 2287 struct protection_domain *domain;
ea61cddb 2288 struct iommu_dev_data *dev_data;
355bf553
JR
2289 unsigned long flags;
2290
ec9e79ef 2291 dev_data = get_dev_data(dev);
52815b75 2292 domain = dev_data->domain;
ec9e79ef 2293
355bf553
JR
2294 /* lock device table */
2295 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
ec9e79ef 2296 __detach_device(dev_data);
355bf553 2297 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
fd7b5535 2298
02ca2021 2299 if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
52815b75
JR
2300 pdev_iommuv2_disable(to_pci_dev(dev));
2301 else if (dev_data->ats.enabled)
ea61cddb 2302 pci_disable_ats(to_pci_dev(dev));
52815b75
JR
2303
2304 dev_data->ats.enabled = false;
355bf553 2305}
e275a2a0 2306
aafd8ba0 2307static int amd_iommu_add_device(struct device *dev)
e275a2a0 2308{
5abcdba4 2309 struct iommu_dev_data *dev_data;
07ee8694 2310 struct iommu_domain *domain;
e275a2a0 2311 struct amd_iommu *iommu;
5abcdba4 2312 u16 devid;
aafd8ba0 2313 int ret;
e275a2a0 2314
aafd8ba0 2315 if (!check_device(dev) || get_dev_data(dev))
98fc5a69 2316 return 0;
e275a2a0 2317
aafd8ba0
JR
2318 devid = get_device_id(dev);
2319 iommu = amd_iommu_rlookup_table[devid];
657cbb6b 2320
aafd8ba0 2321 ret = iommu_init_device(dev);
4d58b8a6
JR
2322 if (ret) {
2323 if (ret != -ENOTSUPP)
2324 pr_err("Failed to initialize device %s - trying to proceed anyway\n",
2325 dev_name(dev));
657cbb6b 2326
aafd8ba0 2327 iommu_ignore_device(dev);
343e9cac 2328 dev->archdata.dma_ops = &nommu_dma_ops;
aafd8ba0
JR
2329 goto out;
2330 }
2331 init_iommu_group(dev);
2c9195e9 2332
07ee8694 2333 dev_data = get_dev_data(dev);
2c9195e9 2334
4d58b8a6 2335 BUG_ON(!dev_data);
657cbb6b 2336
1e6a7b04 2337 if (iommu_pass_through || dev_data->iommu_v2)
07ee8694 2338 iommu_request_dm_for_dev(dev);
ac1534a5 2339
07ee8694
JR
2340 /* Domains are initialized for this device - have a look what we ended up with */
2341 domain = iommu_get_domain_for_dev(dev);
32302324 2342 if (domain->type == IOMMU_DOMAIN_IDENTITY)
07ee8694 2343 dev_data->passthrough = true;
32302324 2344 else
2c9195e9 2345 dev->archdata.dma_ops = &amd_iommu_dma_ops;
e275a2a0 2346
aafd8ba0 2347out:
e275a2a0
JR
2348 iommu_completion_wait(iommu);
2349
e275a2a0
JR
2350 return 0;
2351}
2352
aafd8ba0 2353static void amd_iommu_remove_device(struct device *dev)
8638c491 2354{
aafd8ba0
JR
2355 struct amd_iommu *iommu;
2356 u16 devid;
2357
2358 if (!check_device(dev))
2359 return;
2360
2361 devid = get_device_id(dev);
2362 iommu = amd_iommu_rlookup_table[devid];
2363
2364 iommu_uninit_device(dev);
2365 iommu_completion_wait(iommu);
8638c491
JR
2366}
2367
431b2a20
JR
2368/*****************************************************************************
2369 *
2370 * The next functions belong to the dma_ops mapping/unmapping code.
2371 *
2372 *****************************************************************************/
2373
2374/*
2375 * In the dma_ops path we only have the struct device. This function
2376 * finds the corresponding IOMMU, the protection domain and the
2377 * requestor id for a given device.
2378 * If the device is not yet associated with a domain this is also done
2379 * in this function.
2380 */
94f6d190 2381static struct protection_domain *get_domain(struct device *dev)
b20ac0d4 2382{
94f6d190 2383 struct protection_domain *domain;
063071df 2384 struct iommu_domain *io_domain;
b20ac0d4 2385
f99c0f1c 2386 if (!check_device(dev))
94f6d190 2387 return ERR_PTR(-EINVAL);
b20ac0d4 2388
063071df 2389 io_domain = iommu_get_domain_for_dev(dev);
0bb6e243
JR
2390 if (!io_domain)
2391 return NULL;
b20ac0d4 2392
0bb6e243
JR
2393 domain = to_pdomain(io_domain);
2394 if (!dma_ops_domain(domain))
94f6d190 2395 return ERR_PTR(-EBUSY);
f91ba190 2396
0bb6e243 2397 return domain;
b20ac0d4
JR
2398}
2399
04bfdd84
JR
2400static void update_device_table(struct protection_domain *domain)
2401{
492667da 2402 struct iommu_dev_data *dev_data;
04bfdd84 2403
ea61cddb
JR
2404 list_for_each_entry(dev_data, &domain->dev_list, list)
2405 set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
04bfdd84
JR
2406}
2407
2408static void update_domain(struct protection_domain *domain)
2409{
2410 if (!domain->updated)
2411 return;
2412
2413 update_device_table(domain);
17b124bf
JR
2414
2415 domain_flush_devices(domain);
2416 domain_flush_tlb_pde(domain);
04bfdd84
JR
2417
2418 domain->updated = false;
2419}
2420
8bda3092
JR
2421/*
2422 * This function fetches the PTE for a given address in the aperture
2423 */
2424static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
2425 unsigned long address)
2426{
384de729 2427 struct aperture_range *aperture;
8bda3092
JR
2428 u64 *pte, *pte_page;
2429
384de729
JR
2430 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2431 if (!aperture)
2432 return NULL;
2433
2434 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
8bda3092 2435 if (!pte) {
cbb9d729 2436 pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
abdc5eb3 2437 GFP_ATOMIC);
384de729
JR
2438 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
2439 } else
8c8c143c 2440 pte += PM_LEVEL_INDEX(0, address);
8bda3092 2441
04bfdd84 2442 update_domain(&dom->domain);
8bda3092
JR
2443
2444 return pte;
2445}
2446
431b2a20
JR
2447/*
2448 * This is the generic map function. It maps one 4kb page at paddr to
2449 * the given address in the DMA address space for the domain.
2450 */
680525e0 2451static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
cb76c322
JR
2452 unsigned long address,
2453 phys_addr_t paddr,
2454 int direction)
2455{
2456 u64 *pte, __pte;
2457
2458 WARN_ON(address > dom->aperture_size);
2459
2460 paddr &= PAGE_MASK;
2461
8bda3092 2462 pte = dma_ops_get_pte(dom, address);
53812c11 2463 if (!pte)
8fd524b3 2464 return DMA_ERROR_CODE;
cb76c322
JR
2465
2466 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
2467
2468 if (direction == DMA_TO_DEVICE)
2469 __pte |= IOMMU_PTE_IR;
2470 else if (direction == DMA_FROM_DEVICE)
2471 __pte |= IOMMU_PTE_IW;
2472 else if (direction == DMA_BIDIRECTIONAL)
2473 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
2474
a7fb668f 2475 WARN_ON_ONCE(*pte);
cb76c322
JR
2476
2477 *pte = __pte;
2478
2479 return (dma_addr_t)address;
2480}
2481
431b2a20
JR
2482/*
2483 * The generic unmapping function for on page in the DMA address space.
2484 */
680525e0 2485static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
cb76c322
JR
2486 unsigned long address)
2487{
384de729 2488 struct aperture_range *aperture;
cb76c322
JR
2489 u64 *pte;
2490
2491 if (address >= dom->aperture_size)
2492 return;
2493
384de729
JR
2494 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2495 if (!aperture)
2496 return;
2497
2498 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2499 if (!pte)
2500 return;
cb76c322 2501
8c8c143c 2502 pte += PM_LEVEL_INDEX(0, address);
cb76c322 2503
a7fb668f 2504 WARN_ON_ONCE(!*pte);
cb76c322
JR
2505
2506 *pte = 0ULL;
2507}
2508
431b2a20
JR
2509/*
2510 * This function contains common code for mapping of a physically
24f81160
JR
2511 * contiguous memory region into DMA address space. It is used by all
2512 * mapping functions provided with this IOMMU driver.
431b2a20
JR
2513 * Must be called with the domain lock held.
2514 */
cb76c322 2515static dma_addr_t __map_single(struct device *dev,
cb76c322
JR
2516 struct dma_ops_domain *dma_dom,
2517 phys_addr_t paddr,
2518 size_t size,
6d4f343f 2519 int dir,
832a90c3
JR
2520 bool align,
2521 u64 dma_mask)
cb76c322
JR
2522{
2523 dma_addr_t offset = paddr & ~PAGE_MASK;
53812c11 2524 dma_addr_t address, start, ret;
cb76c322 2525 unsigned int pages;
6d4f343f 2526 unsigned long align_mask = 0;
cb76c322
JR
2527 int i;
2528
e3c449f5 2529 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
cb76c322
JR
2530 paddr &= PAGE_MASK;
2531
8ecaf8f1
JR
2532 INC_STATS_COUNTER(total_map_requests);
2533
c1858976
JR
2534 if (pages > 1)
2535 INC_STATS_COUNTER(cross_page);
2536
6d4f343f
JR
2537 if (align)
2538 align_mask = (1UL << get_order(size)) - 1;
2539
832a90c3
JR
2540 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
2541 dma_mask);
ebaecb42 2542
266a3bd2
JR
2543 if (address == DMA_ERROR_CODE)
2544 goto out;
cb76c322
JR
2545
2546 start = address;
2547 for (i = 0; i < pages; ++i) {
680525e0 2548 ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
8fd524b3 2549 if (ret == DMA_ERROR_CODE)
53812c11
JR
2550 goto out_unmap;
2551
cb76c322
JR
2552 paddr += PAGE_SIZE;
2553 start += PAGE_SIZE;
2554 }
2555 address += offset;
2556
5774f7c5
JR
2557 ADD_STATS_COUNTER(alloced_io_mem, size);
2558
ab7032bb 2559 if (unlikely(amd_iommu_np_cache)) {
17b124bf 2560 domain_flush_pages(&dma_dom->domain, address, size);
ab7032bb
JR
2561 domain_flush_complete(&dma_dom->domain);
2562 }
270cab24 2563
cb76c322
JR
2564out:
2565 return address;
53812c11
JR
2566
2567out_unmap:
2568
2569 for (--i; i >= 0; --i) {
2570 start -= PAGE_SIZE;
680525e0 2571 dma_ops_domain_unmap(dma_dom, start);
53812c11
JR
2572 }
2573
2574 dma_ops_free_addresses(dma_dom, address, pages);
2575
8fd524b3 2576 return DMA_ERROR_CODE;
cb76c322
JR
2577}
2578
431b2a20
JR
2579/*
2580 * Does the reverse of the __map_single function. Must be called with
2581 * the domain lock held too
2582 */
cd8c82e8 2583static void __unmap_single(struct dma_ops_domain *dma_dom,
cb76c322
JR
2584 dma_addr_t dma_addr,
2585 size_t size,
2586 int dir)
2587{
04e0463e 2588 dma_addr_t flush_addr;
cb76c322
JR
2589 dma_addr_t i, start;
2590 unsigned int pages;
2591
8fd524b3 2592 if ((dma_addr == DMA_ERROR_CODE) ||
b8d9905d 2593 (dma_addr + size > dma_dom->aperture_size))
cb76c322
JR
2594 return;
2595
04e0463e 2596 flush_addr = dma_addr;
e3c449f5 2597 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
cb76c322
JR
2598 dma_addr &= PAGE_MASK;
2599 start = dma_addr;
2600
2601 for (i = 0; i < pages; ++i) {
680525e0 2602 dma_ops_domain_unmap(dma_dom, start);
cb76c322
JR
2603 start += PAGE_SIZE;
2604 }
2605
84b3a0bc
JR
2606 SUB_STATS_COUNTER(alloced_io_mem, size);
2607
2608 dma_ops_free_addresses(dma_dom, dma_addr, pages);
cb76c322
JR
2609}
2610
431b2a20
JR
2611/*
2612 * The exported map_single function for dma_ops.
2613 */
51491367
FT
2614static dma_addr_t map_page(struct device *dev, struct page *page,
2615 unsigned long offset, size_t size,
2616 enum dma_data_direction dir,
2617 struct dma_attrs *attrs)
4da70b9e 2618{
92d420ec 2619 phys_addr_t paddr = page_to_phys(page) + offset;
4da70b9e 2620 struct protection_domain *domain;
832a90c3 2621 u64 dma_mask;
4da70b9e 2622
0f2a86f2
JR
2623 INC_STATS_COUNTER(cnt_map_single);
2624
94f6d190
JR
2625 domain = get_domain(dev);
2626 if (PTR_ERR(domain) == -EINVAL)
4da70b9e 2627 return (dma_addr_t)paddr;
94f6d190
JR
2628 else if (IS_ERR(domain))
2629 return DMA_ERROR_CODE;
4da70b9e 2630
f99c0f1c
JR
2631 dma_mask = *dev->dma_mask;
2632
92d420ec 2633 return __map_single(dev, domain->priv, paddr, size, dir, false,
832a90c3 2634 dma_mask);
4da70b9e
JR
2635}
2636
431b2a20
JR
2637/*
2638 * The exported unmap_single function for dma_ops.
2639 */
51491367
FT
2640static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2641 enum dma_data_direction dir, struct dma_attrs *attrs)
4da70b9e 2642{
4da70b9e 2643 struct protection_domain *domain;
4da70b9e 2644
146a6917
JR
2645 INC_STATS_COUNTER(cnt_unmap_single);
2646
94f6d190
JR
2647 domain = get_domain(dev);
2648 if (IS_ERR(domain))
5b28df6f
JR
2649 return;
2650
cd8c82e8 2651 __unmap_single(domain->priv, dma_addr, size, dir);
4da70b9e
JR
2652}
2653
431b2a20
JR
2654/*
2655 * The exported map_sg function for dma_ops (handles scatter-gather
2656 * lists).
2657 */
65b050ad 2658static int map_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
2659 int nelems, enum dma_data_direction dir,
2660 struct dma_attrs *attrs)
65b050ad 2661{
65b050ad 2662 struct protection_domain *domain;
65b050ad
JR
2663 int i;
2664 struct scatterlist *s;
2665 phys_addr_t paddr;
2666 int mapped_elems = 0;
832a90c3 2667 u64 dma_mask;
65b050ad 2668
d03f067a
JR
2669 INC_STATS_COUNTER(cnt_map_sg);
2670
94f6d190 2671 domain = get_domain(dev);
a0e191b2 2672 if (IS_ERR(domain))
94f6d190 2673 return 0;
dbcc112e 2674
832a90c3 2675 dma_mask = *dev->dma_mask;
65b050ad 2676
65b050ad
JR
2677 for_each_sg(sglist, s, nelems, i) {
2678 paddr = sg_phys(s);
2679
cd8c82e8 2680 s->dma_address = __map_single(dev, domain->priv,
832a90c3
JR
2681 paddr, s->length, dir, false,
2682 dma_mask);
65b050ad
JR
2683
2684 if (s->dma_address) {
2685 s->dma_length = s->length;
2686 mapped_elems++;
2687 } else
2688 goto unmap;
65b050ad
JR
2689 }
2690
65b050ad 2691 return mapped_elems;
92d420ec 2692
65b050ad
JR
2693unmap:
2694 for_each_sg(sglist, s, mapped_elems, i) {
2695 if (s->dma_address)
cd8c82e8 2696 __unmap_single(domain->priv, s->dma_address,
65b050ad
JR
2697 s->dma_length, dir);
2698 s->dma_address = s->dma_length = 0;
2699 }
2700
92d420ec 2701 return 0;
65b050ad
JR
2702}
2703
431b2a20
JR
2704/*
2705 * The exported map_sg function for dma_ops (handles scatter-gather
2706 * lists).
2707 */
65b050ad 2708static void unmap_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
2709 int nelems, enum dma_data_direction dir,
2710 struct dma_attrs *attrs)
65b050ad 2711{
65b050ad
JR
2712 struct protection_domain *domain;
2713 struct scatterlist *s;
65b050ad
JR
2714 int i;
2715
55877a6b
JR
2716 INC_STATS_COUNTER(cnt_unmap_sg);
2717
94f6d190
JR
2718 domain = get_domain(dev);
2719 if (IS_ERR(domain))
5b28df6f
JR
2720 return;
2721
65b050ad 2722 for_each_sg(sglist, s, nelems, i) {
cd8c82e8 2723 __unmap_single(domain->priv, s->dma_address,
65b050ad 2724 s->dma_length, dir);
65b050ad
JR
2725 s->dma_address = s->dma_length = 0;
2726 }
65b050ad
JR
2727}
2728
431b2a20
JR
2729/*
2730 * The exported alloc_coherent function for dma_ops.
2731 */
5d8b53cf 2732static void *alloc_coherent(struct device *dev, size_t size,
baa676fc
AP
2733 dma_addr_t *dma_addr, gfp_t flag,
2734 struct dma_attrs *attrs)
5d8b53cf 2735{
832a90c3 2736 u64 dma_mask = dev->coherent_dma_mask;
3b839a57 2737 struct protection_domain *domain;
3b839a57 2738 struct page *page;
5d8b53cf 2739
c8f0fb36
JR
2740 INC_STATS_COUNTER(cnt_alloc_coherent);
2741
94f6d190
JR
2742 domain = get_domain(dev);
2743 if (PTR_ERR(domain) == -EINVAL) {
3b839a57
JR
2744 page = alloc_pages(flag, get_order(size));
2745 *dma_addr = page_to_phys(page);
2746 return page_address(page);
94f6d190
JR
2747 } else if (IS_ERR(domain))
2748 return NULL;
5d8b53cf 2749
3b839a57 2750 size = PAGE_ALIGN(size);
f99c0f1c
JR
2751 dma_mask = dev->coherent_dma_mask;
2752 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2d0ec7a1 2753 flag |= __GFP_ZERO;
5d8b53cf 2754
3b839a57
JR
2755 page = alloc_pages(flag | __GFP_NOWARN, get_order(size));
2756 if (!page) {
d0164adc 2757 if (!gfpflags_allow_blocking(flag))
3b839a57 2758 return NULL;
5d8b53cf 2759
3b839a57
JR
2760 page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2761 get_order(size));
2762 if (!page)
2763 return NULL;
2764 }
5d8b53cf 2765
832a90c3
JR
2766 if (!dma_mask)
2767 dma_mask = *dev->dma_mask;
2768
3b839a57 2769 *dma_addr = __map_single(dev, domain->priv, page_to_phys(page),
832a90c3 2770 size, DMA_BIDIRECTIONAL, true, dma_mask);
5d8b53cf 2771
92d420ec 2772 if (*dma_addr == DMA_ERROR_CODE)
5b28df6f 2773 goto out_free;
5d8b53cf 2774
3b839a57 2775 return page_address(page);
5b28df6f
JR
2776
2777out_free:
2778
3b839a57
JR
2779 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2780 __free_pages(page, get_order(size));
5b28df6f
JR
2781
2782 return NULL;
5d8b53cf
JR
2783}
2784
431b2a20
JR
2785/*
2786 * The exported free_coherent function for dma_ops.
431b2a20 2787 */
5d8b53cf 2788static void free_coherent(struct device *dev, size_t size,
baa676fc
AP
2789 void *virt_addr, dma_addr_t dma_addr,
2790 struct dma_attrs *attrs)
5d8b53cf 2791{
5d8b53cf 2792 struct protection_domain *domain;
3b839a57 2793 struct page *page;
5d8b53cf 2794
5d31ee7e
JR
2795 INC_STATS_COUNTER(cnt_free_coherent);
2796
3b839a57
JR
2797 page = virt_to_page(virt_addr);
2798 size = PAGE_ALIGN(size);
2799
94f6d190
JR
2800 domain = get_domain(dev);
2801 if (IS_ERR(domain))
5b28df6f
JR
2802 goto free_mem;
2803
cd8c82e8 2804 __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
5d8b53cf 2805
5d8b53cf 2806free_mem:
3b839a57
JR
2807 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2808 __free_pages(page, get_order(size));
5d8b53cf
JR
2809}
2810
b39ba6ad
JR
2811/*
2812 * This function is called by the DMA layer to find out if we can handle a
2813 * particular device. It is part of the dma_ops.
2814 */
2815static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2816{
420aef8a 2817 return check_device(dev);
b39ba6ad
JR
2818}
2819
a639a8ee
JR
2820static int set_dma_mask(struct device *dev, u64 mask)
2821{
2822 struct protection_domain *domain;
2823 int max_apertures = 1;
2824
2825 domain = get_domain(dev);
2826 if (IS_ERR(domain))
2827 return PTR_ERR(domain);
2828
2829 if (mask == DMA_BIT_MASK(64))
2830 max_apertures = 8;
2831 else if (mask > DMA_BIT_MASK(32))
2832 max_apertures = 4;
2833
2834 /*
2835 * To prevent lock contention it doesn't make sense to allocate more
2836 * apertures than online cpus
2837 */
2838 if (max_apertures > num_online_cpus())
2839 max_apertures = num_online_cpus();
2840
2841 if (dma_ops_domain_alloc_apertures(domain->priv, max_apertures))
2842 dev_err(dev, "Can't allocate %d iommu apertures\n",
2843 max_apertures);
2844
2845 return 0;
2846}
2847
160c1d8e 2848static struct dma_map_ops amd_iommu_dma_ops = {
a639a8ee
JR
2849 .alloc = alloc_coherent,
2850 .free = free_coherent,
2851 .map_page = map_page,
2852 .unmap_page = unmap_page,
2853 .map_sg = map_sg,
2854 .unmap_sg = unmap_sg,
2855 .dma_supported = amd_iommu_dma_supported,
2856 .set_dma_mask = set_dma_mask,
6631ee9d
JR
2857};
2858
3a18404c 2859int __init amd_iommu_init_api(void)
27c2127a 2860{
3a18404c 2861 return bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
f5325094
JR
2862}
2863
6631ee9d
JR
2864int __init amd_iommu_init_dma_ops(void)
2865{
32302324 2866 swiotlb = iommu_pass_through ? 1 : 0;
6631ee9d 2867 iommu_detected = 1;
6631ee9d 2868
52717828
JR
2869 /*
2870 * In case we don't initialize SWIOTLB (actually the common case
2871 * when AMD IOMMU is enabled), make sure there are global
2872 * dma_ops set as a fall-back for devices not handled by this
2873 * driver (for example non-PCI devices).
2874 */
2875 if (!swiotlb)
2876 dma_ops = &nommu_dma_ops;
2877
7f26508b
JR
2878 amd_iommu_stats_init();
2879
62410eeb
JR
2880 if (amd_iommu_unmap_flush)
2881 pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
2882 else
2883 pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
2884
6631ee9d 2885 return 0;
6631ee9d 2886}
6d98cd80
JR
2887
2888/*****************************************************************************
2889 *
2890 * The following functions belong to the exported interface of AMD IOMMU
2891 *
2892 * This interface allows access to lower level functions of the IOMMU
2893 * like protection domain handling and assignement of devices to domains
2894 * which is not possible with the dma_ops interface.
2895 *
2896 *****************************************************************************/
2897
6d98cd80
JR
2898static void cleanup_domain(struct protection_domain *domain)
2899{
9b29d3c6 2900 struct iommu_dev_data *entry;
6d98cd80 2901 unsigned long flags;
6d98cd80
JR
2902
2903 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2904
9b29d3c6
JR
2905 while (!list_empty(&domain->dev_list)) {
2906 entry = list_first_entry(&domain->dev_list,
2907 struct iommu_dev_data, list);
2908 __detach_device(entry);
492667da 2909 }
6d98cd80
JR
2910
2911 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2912}
2913
2650815f
JR
2914static void protection_domain_free(struct protection_domain *domain)
2915{
2916 if (!domain)
2917 return;
2918
aeb26f55
JR
2919 del_domain_from_list(domain);
2920
2650815f
JR
2921 if (domain->id)
2922 domain_id_free(domain->id);
2923
2924 kfree(domain);
2925}
2926
7a5a566e
JR
2927static int protection_domain_init(struct protection_domain *domain)
2928{
2929 spin_lock_init(&domain->lock);
2930 mutex_init(&domain->api_lock);
2931 domain->id = domain_id_alloc();
2932 if (!domain->id)
2933 return -ENOMEM;
2934 INIT_LIST_HEAD(&domain->dev_list);
2935
2936 return 0;
2937}
2938
2650815f 2939static struct protection_domain *protection_domain_alloc(void)
c156e347
JR
2940{
2941 struct protection_domain *domain;
2942
2943 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2944 if (!domain)
2650815f 2945 return NULL;
c156e347 2946
7a5a566e 2947 if (protection_domain_init(domain))
2650815f
JR
2948 goto out_err;
2949
aeb26f55
JR
2950 add_domain_to_list(domain);
2951
2650815f
JR
2952 return domain;
2953
2954out_err:
2955 kfree(domain);
2956
2957 return NULL;
2958}
2959
3f4b87b9 2960static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2650815f 2961{
3f4b87b9 2962 struct protection_domain *pdomain;
0bb6e243 2963 struct dma_ops_domain *dma_domain;
2650815f 2964
0bb6e243
JR
2965 switch (type) {
2966 case IOMMU_DOMAIN_UNMANAGED:
2967 pdomain = protection_domain_alloc();
2968 if (!pdomain)
2969 return NULL;
c156e347 2970
0bb6e243
JR
2971 pdomain->mode = PAGE_MODE_3_LEVEL;
2972 pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2973 if (!pdomain->pt_root) {
2974 protection_domain_free(pdomain);
2975 return NULL;
2976 }
c156e347 2977
0bb6e243
JR
2978 pdomain->domain.geometry.aperture_start = 0;
2979 pdomain->domain.geometry.aperture_end = ~0ULL;
2980 pdomain->domain.geometry.force_aperture = true;
0ff64f80 2981
0bb6e243
JR
2982 break;
2983 case IOMMU_DOMAIN_DMA:
2984 dma_domain = dma_ops_domain_alloc();
2985 if (!dma_domain) {
2986 pr_err("AMD-Vi: Failed to allocate\n");
2987 return NULL;
2988 }
2989 pdomain = &dma_domain->domain;
2990 break;
07f643a3
JR
2991 case IOMMU_DOMAIN_IDENTITY:
2992 pdomain = protection_domain_alloc();
2993 if (!pdomain)
2994 return NULL;
c156e347 2995
07f643a3
JR
2996 pdomain->mode = PAGE_MODE_NONE;
2997 break;
0bb6e243
JR
2998 default:
2999 return NULL;
3000 }
c156e347 3001
3f4b87b9 3002 return &pdomain->domain;
c156e347
JR
3003}
3004
3f4b87b9 3005static void amd_iommu_domain_free(struct iommu_domain *dom)
98383fc3 3006{
3f4b87b9 3007 struct protection_domain *domain;
98383fc3 3008
3f4b87b9 3009 if (!dom)
98383fc3
JR
3010 return;
3011
3f4b87b9
JR
3012 domain = to_pdomain(dom);
3013
98383fc3
JR
3014 if (domain->dev_cnt > 0)
3015 cleanup_domain(domain);
3016
3017 BUG_ON(domain->dev_cnt != 0);
3018
132bd68f
JR
3019 if (domain->mode != PAGE_MODE_NONE)
3020 free_pagetable(domain);
98383fc3 3021
52815b75
JR
3022 if (domain->flags & PD_IOMMUV2_MASK)
3023 free_gcr3_table(domain);
3024
8b408fe4 3025 protection_domain_free(domain);
98383fc3
JR
3026}
3027
684f2888
JR
3028static void amd_iommu_detach_device(struct iommu_domain *dom,
3029 struct device *dev)
3030{
657cbb6b 3031 struct iommu_dev_data *dev_data = dev->archdata.iommu;
684f2888 3032 struct amd_iommu *iommu;
684f2888
JR
3033 u16 devid;
3034
98fc5a69 3035 if (!check_device(dev))
684f2888
JR
3036 return;
3037
98fc5a69 3038 devid = get_device_id(dev);
684f2888 3039
657cbb6b 3040 if (dev_data->domain != NULL)
15898bbc 3041 detach_device(dev);
684f2888
JR
3042
3043 iommu = amd_iommu_rlookup_table[devid];
3044 if (!iommu)
3045 return;
3046
684f2888
JR
3047 iommu_completion_wait(iommu);
3048}
3049
01106066
JR
3050static int amd_iommu_attach_device(struct iommu_domain *dom,
3051 struct device *dev)
3052{
3f4b87b9 3053 struct protection_domain *domain = to_pdomain(dom);
657cbb6b 3054 struct iommu_dev_data *dev_data;
01106066 3055 struct amd_iommu *iommu;
15898bbc 3056 int ret;
01106066 3057
98fc5a69 3058 if (!check_device(dev))
01106066
JR
3059 return -EINVAL;
3060
657cbb6b
JR
3061 dev_data = dev->archdata.iommu;
3062
f62dda66 3063 iommu = amd_iommu_rlookup_table[dev_data->devid];
01106066
JR
3064 if (!iommu)
3065 return -EINVAL;
3066
657cbb6b 3067 if (dev_data->domain)
15898bbc 3068 detach_device(dev);
01106066 3069
15898bbc 3070 ret = attach_device(dev, domain);
01106066
JR
3071
3072 iommu_completion_wait(iommu);
3073
15898bbc 3074 return ret;
01106066
JR
3075}
3076
468e2366 3077static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
5009065d 3078 phys_addr_t paddr, size_t page_size, int iommu_prot)
c6229ca6 3079{
3f4b87b9 3080 struct protection_domain *domain = to_pdomain(dom);
c6229ca6
JR
3081 int prot = 0;
3082 int ret;
3083
132bd68f
JR
3084 if (domain->mode == PAGE_MODE_NONE)
3085 return -EINVAL;
3086
c6229ca6
JR
3087 if (iommu_prot & IOMMU_READ)
3088 prot |= IOMMU_PROT_IR;
3089 if (iommu_prot & IOMMU_WRITE)
3090 prot |= IOMMU_PROT_IW;
3091
5d214fe6 3092 mutex_lock(&domain->api_lock);
795e74f7 3093 ret = iommu_map_page(domain, iova, paddr, prot, page_size);
5d214fe6
JR
3094 mutex_unlock(&domain->api_lock);
3095
795e74f7 3096 return ret;
c6229ca6
JR
3097}
3098
5009065d
OBC
3099static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3100 size_t page_size)
eb74ff6c 3101{
3f4b87b9 3102 struct protection_domain *domain = to_pdomain(dom);
5009065d 3103 size_t unmap_size;
eb74ff6c 3104
132bd68f
JR
3105 if (domain->mode == PAGE_MODE_NONE)
3106 return -EINVAL;
3107
5d214fe6 3108 mutex_lock(&domain->api_lock);
468e2366 3109 unmap_size = iommu_unmap_page(domain, iova, page_size);
795e74f7 3110 mutex_unlock(&domain->api_lock);
eb74ff6c 3111
17b124bf 3112 domain_flush_tlb_pde(domain);
5d214fe6 3113
5009065d 3114 return unmap_size;
eb74ff6c
JR
3115}
3116
645c4c8d 3117static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
bb5547ac 3118 dma_addr_t iova)
645c4c8d 3119{
3f4b87b9 3120 struct protection_domain *domain = to_pdomain(dom);
3039ca1b 3121 unsigned long offset_mask, pte_pgsize;
f03152bb 3122 u64 *pte, __pte;
645c4c8d 3123
132bd68f
JR
3124 if (domain->mode == PAGE_MODE_NONE)
3125 return iova;
3126
3039ca1b 3127 pte = fetch_pte(domain, iova, &pte_pgsize);
645c4c8d 3128
a6d41a40 3129 if (!pte || !IOMMU_PTE_PRESENT(*pte))
645c4c8d
JR
3130 return 0;
3131
b24b1b63
JR
3132 offset_mask = pte_pgsize - 1;
3133 __pte = *pte & PM_ADDR_MASK;
645c4c8d 3134
b24b1b63 3135 return (__pte & ~offset_mask) | (iova & offset_mask);
645c4c8d
JR
3136}
3137
ab636481 3138static bool amd_iommu_capable(enum iommu_cap cap)
dbb9fd86 3139{
80a506b8
JR
3140 switch (cap) {
3141 case IOMMU_CAP_CACHE_COHERENCY:
ab636481 3142 return true;
bdddadcb 3143 case IOMMU_CAP_INTR_REMAP:
ab636481 3144 return (irq_remapping_enabled == 1);
cfdeec22
WD
3145 case IOMMU_CAP_NOEXEC:
3146 return false;
80a506b8
JR
3147 }
3148
ab636481 3149 return false;
dbb9fd86
SY
3150}
3151
35cf248f
JR
3152static void amd_iommu_get_dm_regions(struct device *dev,
3153 struct list_head *head)
3154{
3155 struct unity_map_entry *entry;
3156 u16 devid;
3157
3158 devid = get_device_id(dev);
3159
3160 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3161 struct iommu_dm_region *region;
3162
3163 if (devid < entry->devid_start || devid > entry->devid_end)
3164 continue;
3165
3166 region = kzalloc(sizeof(*region), GFP_KERNEL);
3167 if (!region) {
3168 pr_err("Out of memory allocating dm-regions for %s\n",
3169 dev_name(dev));
3170 return;
3171 }
3172
3173 region->start = entry->address_start;
3174 region->length = entry->address_end - entry->address_start;
3175 if (entry->prot & IOMMU_PROT_IR)
3176 region->prot |= IOMMU_READ;
3177 if (entry->prot & IOMMU_PROT_IW)
3178 region->prot |= IOMMU_WRITE;
3179
3180 list_add_tail(&region->list, head);
3181 }
3182}
3183
3184static void amd_iommu_put_dm_regions(struct device *dev,
3185 struct list_head *head)
3186{
3187 struct iommu_dm_region *entry, *next;
3188
3189 list_for_each_entry_safe(entry, next, head, list)
3190 kfree(entry);
3191}
3192
b22f6434 3193static const struct iommu_ops amd_iommu_ops = {
ab636481 3194 .capable = amd_iommu_capable,
3f4b87b9
JR
3195 .domain_alloc = amd_iommu_domain_alloc,
3196 .domain_free = amd_iommu_domain_free,
26961efe
JR
3197 .attach_dev = amd_iommu_attach_device,
3198 .detach_dev = amd_iommu_detach_device,
468e2366
JR
3199 .map = amd_iommu_map,
3200 .unmap = amd_iommu_unmap,
315786eb 3201 .map_sg = default_iommu_map_sg,
26961efe 3202 .iova_to_phys = amd_iommu_iova_to_phys,
aafd8ba0
JR
3203 .add_device = amd_iommu_add_device,
3204 .remove_device = amd_iommu_remove_device,
a960fadb 3205 .device_group = pci_device_group,
35cf248f
JR
3206 .get_dm_regions = amd_iommu_get_dm_regions,
3207 .put_dm_regions = amd_iommu_put_dm_regions,
aa3de9c0 3208 .pgsize_bitmap = AMD_IOMMU_PGSIZES,
26961efe
JR
3209};
3210
0feae533
JR
3211/*****************************************************************************
3212 *
3213 * The next functions do a basic initialization of IOMMU for pass through
3214 * mode
3215 *
3216 * In passthrough mode the IOMMU is initialized and enabled but not used for
3217 * DMA-API translation.
3218 *
3219 *****************************************************************************/
3220
72e1dcc4
JR
3221/* IOMMUv2 specific functions */
3222int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3223{
3224 return atomic_notifier_chain_register(&ppr_notifier, nb);
3225}
3226EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3227
3228int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3229{
3230 return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3231}
3232EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
132bd68f
JR
3233
3234void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3235{
3f4b87b9 3236 struct protection_domain *domain = to_pdomain(dom);
132bd68f
JR
3237 unsigned long flags;
3238
3239 spin_lock_irqsave(&domain->lock, flags);
3240
3241 /* Update data structure */
3242 domain->mode = PAGE_MODE_NONE;
3243 domain->updated = true;
3244
3245 /* Make changes visible to IOMMUs */
3246 update_domain(domain);
3247
3248 /* Page-table is not visible to IOMMU anymore, so free it */
3249 free_pagetable(domain);
3250
3251 spin_unlock_irqrestore(&domain->lock, flags);
3252}
3253EXPORT_SYMBOL(amd_iommu_domain_direct_map);
52815b75
JR
3254
3255int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3256{
3f4b87b9 3257 struct protection_domain *domain = to_pdomain(dom);
52815b75
JR
3258 unsigned long flags;
3259 int levels, ret;
3260
3261 if (pasids <= 0 || pasids > (PASID_MASK + 1))
3262 return -EINVAL;
3263
3264 /* Number of GCR3 table levels required */
3265 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3266 levels += 1;
3267
3268 if (levels > amd_iommu_max_glx_val)
3269 return -EINVAL;
3270
3271 spin_lock_irqsave(&domain->lock, flags);
3272
3273 /*
3274 * Save us all sanity checks whether devices already in the
3275 * domain support IOMMUv2. Just force that the domain has no
3276 * devices attached when it is switched into IOMMUv2 mode.
3277 */
3278 ret = -EBUSY;
3279 if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3280 goto out;
3281
3282 ret = -ENOMEM;
3283 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3284 if (domain->gcr3_tbl == NULL)
3285 goto out;
3286
3287 domain->glx = levels;
3288 domain->flags |= PD_IOMMUV2_MASK;
3289 domain->updated = true;
3290
3291 update_domain(domain);
3292
3293 ret = 0;
3294
3295out:
3296 spin_unlock_irqrestore(&domain->lock, flags);
3297
3298 return ret;
3299}
3300EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
22e266c7
JR
3301
3302static int __flush_pasid(struct protection_domain *domain, int pasid,
3303 u64 address, bool size)
3304{
3305 struct iommu_dev_data *dev_data;
3306 struct iommu_cmd cmd;
3307 int i, ret;
3308
3309 if (!(domain->flags & PD_IOMMUV2_MASK))
3310 return -EINVAL;
3311
3312 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3313
3314 /*
3315 * IOMMU TLB needs to be flushed before Device TLB to
3316 * prevent device TLB refill from IOMMU TLB
3317 */
3318 for (i = 0; i < amd_iommus_present; ++i) {
3319 if (domain->dev_iommu[i] == 0)
3320 continue;
3321
3322 ret = iommu_queue_command(amd_iommus[i], &cmd);
3323 if (ret != 0)
3324 goto out;
3325 }
3326
3327 /* Wait until IOMMU TLB flushes are complete */
3328 domain_flush_complete(domain);
3329
3330 /* Now flush device TLBs */
3331 list_for_each_entry(dev_data, &domain->dev_list, list) {
3332 struct amd_iommu *iommu;
3333 int qdep;
3334
1c1cc454
JR
3335 /*
3336 There might be non-IOMMUv2 capable devices in an IOMMUv2
3337 * domain.
3338 */
3339 if (!dev_data->ats.enabled)
3340 continue;
22e266c7
JR
3341
3342 qdep = dev_data->ats.qdep;
3343 iommu = amd_iommu_rlookup_table[dev_data->devid];
3344
3345 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3346 qdep, address, size);
3347
3348 ret = iommu_queue_command(iommu, &cmd);
3349 if (ret != 0)
3350 goto out;
3351 }
3352
3353 /* Wait until all device TLBs are flushed */
3354 domain_flush_complete(domain);
3355
3356 ret = 0;
3357
3358out:
3359
3360 return ret;
3361}
3362
3363static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3364 u64 address)
3365{
399be2f5
JR
3366 INC_STATS_COUNTER(invalidate_iotlb);
3367
22e266c7
JR
3368 return __flush_pasid(domain, pasid, address, false);
3369}
3370
3371int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3372 u64 address)
3373{
3f4b87b9 3374 struct protection_domain *domain = to_pdomain(dom);
22e266c7
JR
3375 unsigned long flags;
3376 int ret;
3377
3378 spin_lock_irqsave(&domain->lock, flags);
3379 ret = __amd_iommu_flush_page(domain, pasid, address);
3380 spin_unlock_irqrestore(&domain->lock, flags);
3381
3382 return ret;
3383}
3384EXPORT_SYMBOL(amd_iommu_flush_page);
3385
3386static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3387{
399be2f5
JR
3388 INC_STATS_COUNTER(invalidate_iotlb_all);
3389
22e266c7
JR
3390 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3391 true);
3392}
3393
3394int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3395{
3f4b87b9 3396 struct protection_domain *domain = to_pdomain(dom);
22e266c7
JR
3397 unsigned long flags;
3398 int ret;
3399
3400 spin_lock_irqsave(&domain->lock, flags);
3401 ret = __amd_iommu_flush_tlb(domain, pasid);
3402 spin_unlock_irqrestore(&domain->lock, flags);
3403
3404 return ret;
3405}
3406EXPORT_SYMBOL(amd_iommu_flush_tlb);
3407
b16137b1
JR
3408static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3409{
3410 int index;
3411 u64 *pte;
3412
3413 while (true) {
3414
3415 index = (pasid >> (9 * level)) & 0x1ff;
3416 pte = &root[index];
3417
3418 if (level == 0)
3419 break;
3420
3421 if (!(*pte & GCR3_VALID)) {
3422 if (!alloc)
3423 return NULL;
3424
3425 root = (void *)get_zeroed_page(GFP_ATOMIC);
3426 if (root == NULL)
3427 return NULL;
3428
3429 *pte = __pa(root) | GCR3_VALID;
3430 }
3431
3432 root = __va(*pte & PAGE_MASK);
3433
3434 level -= 1;
3435 }
3436
3437 return pte;
3438}
3439
3440static int __set_gcr3(struct protection_domain *domain, int pasid,
3441 unsigned long cr3)
3442{
3443 u64 *pte;
3444
3445 if (domain->mode != PAGE_MODE_NONE)
3446 return -EINVAL;
3447
3448 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3449 if (pte == NULL)
3450 return -ENOMEM;
3451
3452 *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3453
3454 return __amd_iommu_flush_tlb(domain, pasid);
3455}
3456
3457static int __clear_gcr3(struct protection_domain *domain, int pasid)
3458{
3459 u64 *pte;
3460
3461 if (domain->mode != PAGE_MODE_NONE)
3462 return -EINVAL;
3463
3464 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3465 if (pte == NULL)
3466 return 0;
3467
3468 *pte = 0;
3469
3470 return __amd_iommu_flush_tlb(domain, pasid);
3471}
3472
3473int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3474 unsigned long cr3)
3475{
3f4b87b9 3476 struct protection_domain *domain = to_pdomain(dom);
b16137b1
JR
3477 unsigned long flags;
3478 int ret;
3479
3480 spin_lock_irqsave(&domain->lock, flags);
3481 ret = __set_gcr3(domain, pasid, cr3);
3482 spin_unlock_irqrestore(&domain->lock, flags);
3483
3484 return ret;
3485}
3486EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3487
3488int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3489{
3f4b87b9 3490 struct protection_domain *domain = to_pdomain(dom);
b16137b1
JR
3491 unsigned long flags;
3492 int ret;
3493
3494 spin_lock_irqsave(&domain->lock, flags);
3495 ret = __clear_gcr3(domain, pasid);
3496 spin_unlock_irqrestore(&domain->lock, flags);
3497
3498 return ret;
3499}
3500EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
c99afa25
JR
3501
3502int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3503 int status, int tag)
3504{
3505 struct iommu_dev_data *dev_data;
3506 struct amd_iommu *iommu;
3507 struct iommu_cmd cmd;
3508
399be2f5
JR
3509 INC_STATS_COUNTER(complete_ppr);
3510
c99afa25
JR
3511 dev_data = get_dev_data(&pdev->dev);
3512 iommu = amd_iommu_rlookup_table[dev_data->devid];
3513
3514 build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3515 tag, dev_data->pri_tlp);
3516
3517 return iommu_queue_command(iommu, &cmd);
3518}
3519EXPORT_SYMBOL(amd_iommu_complete_ppr);
f3572db8
JR
3520
3521struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3522{
3f4b87b9 3523 struct protection_domain *pdomain;
f3572db8 3524
3f4b87b9
JR
3525 pdomain = get_domain(&pdev->dev);
3526 if (IS_ERR(pdomain))
f3572db8
JR
3527 return NULL;
3528
3529 /* Only return IOMMUv2 domains */
3f4b87b9 3530 if (!(pdomain->flags & PD_IOMMUV2_MASK))
f3572db8
JR
3531 return NULL;
3532
3f4b87b9 3533 return &pdomain->domain;
f3572db8
JR
3534}
3535EXPORT_SYMBOL(amd_iommu_get_v2_domain);
6a113ddc
JR
3536
3537void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3538{
3539 struct iommu_dev_data *dev_data;
3540
3541 if (!amd_iommu_v2_supported())
3542 return;
3543
3544 dev_data = get_dev_data(&pdev->dev);
3545 dev_data->errata |= (1 << erratum);
3546}
3547EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
52efdb89
JR
3548
3549int amd_iommu_device_info(struct pci_dev *pdev,
3550 struct amd_iommu_device_info *info)
3551{
3552 int max_pasids;
3553 int pos;
3554
3555 if (pdev == NULL || info == NULL)
3556 return -EINVAL;
3557
3558 if (!amd_iommu_v2_supported())
3559 return -EINVAL;
3560
3561 memset(info, 0, sizeof(*info));
3562
3563 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3564 if (pos)
3565 info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3566
3567 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3568 if (pos)
3569 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3570
3571 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3572 if (pos) {
3573 int features;
3574
3575 max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3576 max_pasids = min(max_pasids, (1 << 20));
3577
3578 info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3579 info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3580
3581 features = pci_pasid_features(pdev);
3582 if (features & PCI_PASID_CAP_EXEC)
3583 info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3584 if (features & PCI_PASID_CAP_PRIV)
3585 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3586 }
3587
3588 return 0;
3589}
3590EXPORT_SYMBOL(amd_iommu_device_info);
2b324506
JR
3591
3592#ifdef CONFIG_IRQ_REMAP
3593
3594/*****************************************************************************
3595 *
3596 * Interrupt Remapping Implementation
3597 *
3598 *****************************************************************************/
3599
3600union irte {
3601 u32 val;
3602 struct {
3603 u32 valid : 1,
3604 no_fault : 1,
3605 int_type : 3,
3606 rq_eoi : 1,
3607 dm : 1,
3608 rsvd_1 : 1,
3609 destination : 8,
3610 vector : 8,
3611 rsvd_2 : 8;
3612 } fields;
3613};
3614
9c724966
JL
3615struct irq_2_irte {
3616 u16 devid; /* Device ID for IRTE table */
3617 u16 index; /* Index into IRTE table*/
3618};
3619
7c71d306
JL
3620struct amd_ir_data {
3621 struct irq_2_irte irq_2_irte;
3622 union irte irte_entry;
3623 union {
3624 struct msi_msg msi_entry;
3625 };
3626};
3627
3628static struct irq_chip amd_ir_chip;
3629
2b324506
JR
3630#define DTE_IRQ_PHYS_ADDR_MASK (((1ULL << 45)-1) << 6)
3631#define DTE_IRQ_REMAP_INTCTL (2ULL << 60)
3632#define DTE_IRQ_TABLE_LEN (8ULL << 1)
3633#define DTE_IRQ_REMAP_ENABLE 1ULL
3634
3635static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3636{
3637 u64 dte;
3638
3639 dte = amd_iommu_dev_table[devid].data[2];
3640 dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
3641 dte |= virt_to_phys(table->table);
3642 dte |= DTE_IRQ_REMAP_INTCTL;
3643 dte |= DTE_IRQ_TABLE_LEN;
3644 dte |= DTE_IRQ_REMAP_ENABLE;
3645
3646 amd_iommu_dev_table[devid].data[2] = dte;
3647}
3648
3649#define IRTE_ALLOCATED (~1U)
3650
3651static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
3652{
3653 struct irq_remap_table *table = NULL;
3654 struct amd_iommu *iommu;
3655 unsigned long flags;
3656 u16 alias;
3657
3658 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3659
3660 iommu = amd_iommu_rlookup_table[devid];
3661 if (!iommu)
3662 goto out_unlock;
3663
3664 table = irq_lookup_table[devid];
3665 if (table)
3666 goto out;
3667
3668 alias = amd_iommu_alias_table[devid];
3669 table = irq_lookup_table[alias];
3670 if (table) {
3671 irq_lookup_table[devid] = table;
3672 set_dte_irq_entry(devid, table);
3673 iommu_flush_dte(iommu, devid);
3674 goto out;
3675 }
3676
3677 /* Nothing there yet, allocate new irq remapping table */
3678 table = kzalloc(sizeof(*table), GFP_ATOMIC);
3679 if (!table)
3680 goto out;
3681
197887f0
JR
3682 /* Initialize table spin-lock */
3683 spin_lock_init(&table->lock);
3684
2b324506
JR
3685 if (ioapic)
3686 /* Keep the first 32 indexes free for IOAPIC interrupts */
3687 table->min_index = 32;
3688
3689 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
3690 if (!table->table) {
3691 kfree(table);
821f0f68 3692 table = NULL;
2b324506
JR
3693 goto out;
3694 }
3695
3696 memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));
3697
3698 if (ioapic) {
3699 int i;
3700
3701 for (i = 0; i < 32; ++i)
3702 table->table[i] = IRTE_ALLOCATED;
3703 }
3704
3705 irq_lookup_table[devid] = table;
3706 set_dte_irq_entry(devid, table);
3707 iommu_flush_dte(iommu, devid);
3708 if (devid != alias) {
3709 irq_lookup_table[alias] = table;
e028a9e6 3710 set_dte_irq_entry(alias, table);
2b324506
JR
3711 iommu_flush_dte(iommu, alias);
3712 }
3713
3714out:
3715 iommu_completion_wait(iommu);
3716
3717out_unlock:
3718 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3719
3720 return table;
3721}
3722
3c3d4f90 3723static int alloc_irq_index(u16 devid, int count)
2b324506
JR
3724{
3725 struct irq_remap_table *table;
3726 unsigned long flags;
3727 int index, c;
3728
3729 table = get_irq_table(devid, false);
3730 if (!table)
3731 return -ENODEV;
3732
3733 spin_lock_irqsave(&table->lock, flags);
3734
3735 /* Scan table for free entries */
3736 for (c = 0, index = table->min_index;
3737 index < MAX_IRQS_PER_TABLE;
3738 ++index) {
3739 if (table->table[index] == 0)
3740 c += 1;
3741 else
3742 c = 0;
3743
3744 if (c == count) {
2b324506
JR
3745 for (; c != 0; --c)
3746 table->table[index - c + 1] = IRTE_ALLOCATED;
3747
3748 index -= count - 1;
2b324506
JR
3749 goto out;
3750 }
3751 }
3752
3753 index = -ENOSPC;
3754
3755out:
3756 spin_unlock_irqrestore(&table->lock, flags);
3757
3758 return index;
3759}
3760
2b324506
JR
3761static int modify_irte(u16 devid, int index, union irte irte)
3762{
3763 struct irq_remap_table *table;
3764 struct amd_iommu *iommu;
3765 unsigned long flags;
3766
3767 iommu = amd_iommu_rlookup_table[devid];
3768 if (iommu == NULL)
3769 return -EINVAL;
3770
3771 table = get_irq_table(devid, false);
3772 if (!table)
3773 return -ENOMEM;
3774
3775 spin_lock_irqsave(&table->lock, flags);
3776 table->table[index] = irte.val;
3777 spin_unlock_irqrestore(&table->lock, flags);
3778
3779 iommu_flush_irt(iommu, devid);
3780 iommu_completion_wait(iommu);
3781
3782 return 0;
3783}
3784
3785static void free_irte(u16 devid, int index)
3786{
3787 struct irq_remap_table *table;
3788 struct amd_iommu *iommu;
3789 unsigned long flags;
3790
3791 iommu = amd_iommu_rlookup_table[devid];
3792 if (iommu == NULL)
3793 return;
3794
3795 table = get_irq_table(devid, false);
3796 if (!table)
3797 return;
3798
3799 spin_lock_irqsave(&table->lock, flags);
3800 table->table[index] = 0;
3801 spin_unlock_irqrestore(&table->lock, flags);
3802
3803 iommu_flush_irt(iommu, devid);
3804 iommu_completion_wait(iommu);
3805}
3806
7c71d306 3807static int get_devid(struct irq_alloc_info *info)
5527de74 3808{
7c71d306 3809 int devid = -1;
5527de74 3810
7c71d306
JL
3811 switch (info->type) {
3812 case X86_IRQ_ALLOC_TYPE_IOAPIC:
3813 devid = get_ioapic_devid(info->ioapic_id);
3814 break;
3815 case X86_IRQ_ALLOC_TYPE_HPET:
3816 devid = get_hpet_devid(info->hpet_id);
3817 break;
3818 case X86_IRQ_ALLOC_TYPE_MSI:
3819 case X86_IRQ_ALLOC_TYPE_MSIX:
3820 devid = get_device_id(&info->msi_dev->dev);
3821 break;
3822 default:
3823 BUG_ON(1);
3824 break;
3825 }
5527de74 3826
7c71d306
JL
3827 return devid;
3828}
5527de74 3829
7c71d306
JL
3830static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
3831{
3832 struct amd_iommu *iommu;
3833 int devid;
5527de74 3834
7c71d306
JL
3835 if (!info)
3836 return NULL;
5527de74 3837
7c71d306
JL
3838 devid = get_devid(info);
3839 if (devid >= 0) {
3840 iommu = amd_iommu_rlookup_table[devid];
3841 if (iommu)
3842 return iommu->ir_domain;
3843 }
5527de74 3844
7c71d306 3845 return NULL;
5527de74
JR
3846}
3847
7c71d306 3848static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
5527de74 3849{
7c71d306
JL
3850 struct amd_iommu *iommu;
3851 int devid;
5527de74 3852
7c71d306
JL
3853 if (!info)
3854 return NULL;
5527de74 3855
7c71d306
JL
3856 switch (info->type) {
3857 case X86_IRQ_ALLOC_TYPE_MSI:
3858 case X86_IRQ_ALLOC_TYPE_MSIX:
3859 devid = get_device_id(&info->msi_dev->dev);
3860 if (devid >= 0) {
3861 iommu = amd_iommu_rlookup_table[devid];
3862 if (iommu)
3863 return iommu->msi_domain;
3864 }
3865 break;
3866 default:
3867 break;
3868 }
5527de74 3869
7c71d306
JL
3870 return NULL;
3871}
5527de74 3872
6b474b82 3873struct irq_remap_ops amd_iommu_irq_ops = {
6b474b82
JR
3874 .prepare = amd_iommu_prepare,
3875 .enable = amd_iommu_enable,
3876 .disable = amd_iommu_disable,
3877 .reenable = amd_iommu_reenable,
3878 .enable_faulting = amd_iommu_enable_faulting,
7c71d306
JL
3879 .get_ir_irq_domain = get_ir_irq_domain,
3880 .get_irq_domain = get_irq_domain,
3881};
5527de74 3882
7c71d306
JL
3883static void irq_remapping_prepare_irte(struct amd_ir_data *data,
3884 struct irq_cfg *irq_cfg,
3885 struct irq_alloc_info *info,
3886 int devid, int index, int sub_handle)
3887{
3888 struct irq_2_irte *irte_info = &data->irq_2_irte;
3889 struct msi_msg *msg = &data->msi_entry;
3890 union irte *irte = &data->irte_entry;
3891 struct IO_APIC_route_entry *entry;
5527de74 3892
7c71d306
JL
3893 data->irq_2_irte.devid = devid;
3894 data->irq_2_irte.index = index + sub_handle;
5527de74 3895
7c71d306
JL
3896 /* Setup IRTE for IOMMU */
3897 irte->val = 0;
3898 irte->fields.vector = irq_cfg->vector;
3899 irte->fields.int_type = apic->irq_delivery_mode;
3900 irte->fields.destination = irq_cfg->dest_apicid;
3901 irte->fields.dm = apic->irq_dest_mode;
3902 irte->fields.valid = 1;
3903
3904 switch (info->type) {
3905 case X86_IRQ_ALLOC_TYPE_IOAPIC:
3906 /* Setup IOAPIC entry */
3907 entry = info->ioapic_entry;
3908 info->ioapic_entry = NULL;
3909 memset(entry, 0, sizeof(*entry));
3910 entry->vector = index;
3911 entry->mask = 0;
3912 entry->trigger = info->ioapic_trigger;
3913 entry->polarity = info->ioapic_polarity;
3914 /* Mask level triggered irqs. */
3915 if (info->ioapic_trigger)
3916 entry->mask = 1;
3917 break;
5527de74 3918
7c71d306
JL
3919 case X86_IRQ_ALLOC_TYPE_HPET:
3920 case X86_IRQ_ALLOC_TYPE_MSI:
3921 case X86_IRQ_ALLOC_TYPE_MSIX:
3922 msg->address_hi = MSI_ADDR_BASE_HI;
3923 msg->address_lo = MSI_ADDR_BASE_LO;
3924 msg->data = irte_info->index;
3925 break;
5527de74 3926
7c71d306
JL
3927 default:
3928 BUG_ON(1);
3929 break;
3930 }
5527de74
JR
3931}
3932
7c71d306
JL
3933static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
3934 unsigned int nr_irqs, void *arg)
5527de74 3935{
7c71d306
JL
3936 struct irq_alloc_info *info = arg;
3937 struct irq_data *irq_data;
3938 struct amd_ir_data *data;
5527de74 3939 struct irq_cfg *cfg;
7c71d306
JL
3940 int i, ret, devid;
3941 int index = -1;
5527de74 3942
7c71d306
JL
3943 if (!info)
3944 return -EINVAL;
3945 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
3946 info->type != X86_IRQ_ALLOC_TYPE_MSIX)
5527de74
JR
3947 return -EINVAL;
3948
7c71d306
JL
3949 /*
3950 * With IRQ remapping enabled, don't need contiguous CPU vectors
3951 * to support multiple MSI interrupts.
3952 */
3953 if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
3954 info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
5527de74 3955
7c71d306
JL
3956 devid = get_devid(info);
3957 if (devid < 0)
3958 return -EINVAL;
5527de74 3959
7c71d306
JL
3960 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
3961 if (ret < 0)
3962 return ret;
0b4d48cb 3963
7c71d306
JL
3964 if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
3965 if (get_irq_table(devid, true))
3966 index = info->ioapic_pin;
3967 else
3968 ret = -ENOMEM;
3969 } else {
3c3d4f90 3970 index = alloc_irq_index(devid, nr_irqs);
7c71d306
JL
3971 }
3972 if (index < 0) {
3973 pr_warn("Failed to allocate IRTE\n");
7c71d306
JL
3974 goto out_free_parent;
3975 }
0b4d48cb 3976
7c71d306
JL
3977 for (i = 0; i < nr_irqs; i++) {
3978 irq_data = irq_domain_get_irq_data(domain, virq + i);
3979 cfg = irqd_cfg(irq_data);
3980 if (!irq_data || !cfg) {
3981 ret = -EINVAL;
3982 goto out_free_data;
3983 }
0b4d48cb 3984
a130e69f
JR
3985 ret = -ENOMEM;
3986 data = kzalloc(sizeof(*data), GFP_KERNEL);
3987 if (!data)
3988 goto out_free_data;
3989
7c71d306
JL
3990 irq_data->hwirq = (devid << 16) + i;
3991 irq_data->chip_data = data;
3992 irq_data->chip = &amd_ir_chip;
3993 irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
3994 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
3995 }
a130e69f 3996
7c71d306 3997 return 0;
0b4d48cb 3998
7c71d306
JL
3999out_free_data:
4000 for (i--; i >= 0; i--) {
4001 irq_data = irq_domain_get_irq_data(domain, virq + i);
4002 if (irq_data)
4003 kfree(irq_data->chip_data);
4004 }
4005 for (i = 0; i < nr_irqs; i++)
4006 free_irte(devid, index + i);
4007out_free_parent:
4008 irq_domain_free_irqs_common(domain, virq, nr_irqs);
4009 return ret;
0b4d48cb
JR
4010}
4011
7c71d306
JL
4012static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
4013 unsigned int nr_irqs)
0b4d48cb 4014{
7c71d306
JL
4015 struct irq_2_irte *irte_info;
4016 struct irq_data *irq_data;
4017 struct amd_ir_data *data;
4018 int i;
0b4d48cb 4019
7c71d306
JL
4020 for (i = 0; i < nr_irqs; i++) {
4021 irq_data = irq_domain_get_irq_data(domain, virq + i);
4022 if (irq_data && irq_data->chip_data) {
4023 data = irq_data->chip_data;
4024 irte_info = &data->irq_2_irte;
4025 free_irte(irte_info->devid, irte_info->index);
4026 kfree(data);
4027 }
4028 }
4029 irq_domain_free_irqs_common(domain, virq, nr_irqs);
4030}
0b4d48cb 4031
7c71d306
JL
4032static void irq_remapping_activate(struct irq_domain *domain,
4033 struct irq_data *irq_data)
4034{
4035 struct amd_ir_data *data = irq_data->chip_data;
4036 struct irq_2_irte *irte_info = &data->irq_2_irte;
0b4d48cb 4037
7c71d306 4038 modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
0b4d48cb
JR
4039}
4040
7c71d306
JL
4041static void irq_remapping_deactivate(struct irq_domain *domain,
4042 struct irq_data *irq_data)
0b4d48cb 4043{
7c71d306
JL
4044 struct amd_ir_data *data = irq_data->chip_data;
4045 struct irq_2_irte *irte_info = &data->irq_2_irte;
4046 union irte entry;
0b4d48cb 4047
7c71d306
JL
4048 entry.val = 0;
4049 modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
4050}
0b4d48cb 4051
7c71d306
JL
4052static struct irq_domain_ops amd_ir_domain_ops = {
4053 .alloc = irq_remapping_alloc,
4054 .free = irq_remapping_free,
4055 .activate = irq_remapping_activate,
4056 .deactivate = irq_remapping_deactivate,
6b474b82 4057};
0b4d48cb 4058
7c71d306
JL
4059static int amd_ir_set_affinity(struct irq_data *data,
4060 const struct cpumask *mask, bool force)
4061{
4062 struct amd_ir_data *ir_data = data->chip_data;
4063 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4064 struct irq_cfg *cfg = irqd_cfg(data);
4065 struct irq_data *parent = data->parent_data;
4066 int ret;
0b4d48cb 4067
7c71d306
JL
4068 ret = parent->chip->irq_set_affinity(parent, mask, force);
4069 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
4070 return ret;
0b4d48cb 4071
7c71d306
JL
4072 /*
4073 * Atomically updates the IRTE with the new destination, vector
4074 * and flushes the interrupt entry cache.
4075 */
4076 ir_data->irte_entry.fields.vector = cfg->vector;
4077 ir_data->irte_entry.fields.destination = cfg->dest_apicid;
4078 modify_irte(irte_info->devid, irte_info->index, ir_data->irte_entry);
0b4d48cb 4079
7c71d306
JL
4080 /*
4081 * After this point, all the interrupts will start arriving
4082 * at the new destination. So, time to cleanup the previous
4083 * vector allocation.
4084 */
c6c2002b 4085 send_cleanup_vector(cfg);
7c71d306
JL
4086
4087 return IRQ_SET_MASK_OK_DONE;
0b4d48cb
JR
4088}
4089
7c71d306 4090static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
d976195c 4091{
7c71d306 4092 struct amd_ir_data *ir_data = irq_data->chip_data;
d976195c 4093
7c71d306
JL
4094 *msg = ir_data->msi_entry;
4095}
d976195c 4096
7c71d306
JL
4097static struct irq_chip amd_ir_chip = {
4098 .irq_ack = ir_ack_apic_edge,
4099 .irq_set_affinity = amd_ir_set_affinity,
4100 .irq_compose_msi_msg = ir_compose_msi_msg,
4101};
d976195c 4102
7c71d306
JL
4103int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
4104{
4105 iommu->ir_domain = irq_domain_add_tree(NULL, &amd_ir_domain_ops, iommu);
4106 if (!iommu->ir_domain)
4107 return -ENOMEM;
d976195c 4108
7c71d306
JL
4109 iommu->ir_domain->parent = arch_get_ir_parent_domain();
4110 iommu->msi_domain = arch_create_msi_irq_domain(iommu->ir_domain);
d976195c
JR
4111
4112 return 0;
4113}
2b324506 4114#endif