dm thin: fix set_pool_mode exposed pool operation races
[linux-2.6-block.git] / drivers / iommu / amd_iommu.c
CommitLineData
b6c02715 1/*
5d0d7156 2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
b6c02715
JR
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
72e1dcc4 20#include <linux/ratelimit.h>
b6c02715 21#include <linux/pci.h>
cb41ed85 22#include <linux/pci-ats.h>
a66022c4 23#include <linux/bitmap.h>
5a0e3ad6 24#include <linux/slab.h>
7f26508b 25#include <linux/debugfs.h>
b6c02715 26#include <linux/scatterlist.h>
51491367 27#include <linux/dma-mapping.h>
b6c02715 28#include <linux/iommu-helper.h>
c156e347 29#include <linux/iommu.h>
815b33fd 30#include <linux/delay.h>
403f81d8 31#include <linux/amd-iommu.h>
72e1dcc4
JR
32#include <linux/notifier.h>
33#include <linux/export.h>
2b324506
JR
34#include <linux/irq.h>
35#include <linux/msi.h>
36#include <asm/irq_remapping.h>
37#include <asm/io_apic.h>
38#include <asm/apic.h>
39#include <asm/hw_irq.h>
17f5b569 40#include <asm/msidef.h>
b6c02715 41#include <asm/proto.h>
46a7fa27 42#include <asm/iommu.h>
1d9b16d1 43#include <asm/gart.h>
27c2127a 44#include <asm/dma.h>
403f81d8
JR
45
46#include "amd_iommu_proto.h"
47#include "amd_iommu_types.h"
6b474b82 48#include "irq_remapping.h"
61e015ac 49#include "pci.h"
b6c02715
JR
50
51#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
52
815b33fd 53#define LOOP_TIMEOUT 100000
136f78a1 54
aa3de9c0
OBC
55/*
56 * This bitmap is used to advertise the page sizes our hardware support
57 * to the IOMMU core, which will then use this information to split
58 * physically contiguous memory regions it is mapping into page sizes
59 * that we support.
60 *
954e3dd8 61 * 512GB Pages are not supported due to a hardware bug
aa3de9c0 62 */
954e3dd8 63#define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
aa3de9c0 64
b6c02715
JR
65static DEFINE_RWLOCK(amd_iommu_devtable_lock);
66
bd60b735
JR
67/* A list of preallocated protection domains */
68static LIST_HEAD(iommu_pd_list);
69static DEFINE_SPINLOCK(iommu_pd_list_lock);
70
8fa5f802
JR
71/* List of all available dev_data structures */
72static LIST_HEAD(dev_data_list);
73static DEFINE_SPINLOCK(dev_data_list_lock);
74
6efed63b
JR
75LIST_HEAD(ioapic_map);
76LIST_HEAD(hpet_map);
77
0feae533
JR
78/*
79 * Domain for untranslated devices - only allocated
80 * if iommu=pt passed on kernel cmd line.
81 */
82static struct protection_domain *pt_domain;
83
26961efe 84static struct iommu_ops amd_iommu_ops;
26961efe 85
72e1dcc4 86static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
52815b75 87int amd_iommu_max_glx_val = -1;
72e1dcc4 88
ac1534a5
JR
89static struct dma_map_ops amd_iommu_dma_ops;
90
431b2a20
JR
91/*
92 * general struct to manage commands send to an IOMMU
93 */
d6449536 94struct iommu_cmd {
b6c02715
JR
95 u32 data[4];
96};
97
05152a04
JR
98struct kmem_cache *amd_iommu_irq_cache;
99
04bfdd84 100static void update_domain(struct protection_domain *domain);
5abcdba4 101static int __init alloc_passthrough_domain(void);
c1eee67b 102
15898bbc
JR
103/****************************************************************************
104 *
105 * Helper functions
106 *
107 ****************************************************************************/
108
f62dda66 109static struct iommu_dev_data *alloc_dev_data(u16 devid)
8fa5f802
JR
110{
111 struct iommu_dev_data *dev_data;
112 unsigned long flags;
113
114 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
115 if (!dev_data)
116 return NULL;
117
f62dda66 118 dev_data->devid = devid;
8fa5f802
JR
119 atomic_set(&dev_data->bind, 0);
120
121 spin_lock_irqsave(&dev_data_list_lock, flags);
122 list_add_tail(&dev_data->dev_data_list, &dev_data_list);
123 spin_unlock_irqrestore(&dev_data_list_lock, flags);
124
125 return dev_data;
126}
127
128static void free_dev_data(struct iommu_dev_data *dev_data)
129{
130 unsigned long flags;
131
132 spin_lock_irqsave(&dev_data_list_lock, flags);
133 list_del(&dev_data->dev_data_list);
134 spin_unlock_irqrestore(&dev_data_list_lock, flags);
135
78bfa9f3
AW
136 if (dev_data->group)
137 iommu_group_put(dev_data->group);
138
8fa5f802
JR
139 kfree(dev_data);
140}
141
3b03bb74
JR
142static struct iommu_dev_data *search_dev_data(u16 devid)
143{
144 struct iommu_dev_data *dev_data;
145 unsigned long flags;
146
147 spin_lock_irqsave(&dev_data_list_lock, flags);
148 list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
149 if (dev_data->devid == devid)
150 goto out_unlock;
151 }
152
153 dev_data = NULL;
154
155out_unlock:
156 spin_unlock_irqrestore(&dev_data_list_lock, flags);
157
158 return dev_data;
159}
160
161static struct iommu_dev_data *find_dev_data(u16 devid)
162{
163 struct iommu_dev_data *dev_data;
164
165 dev_data = search_dev_data(devid);
166
167 if (dev_data == NULL)
168 dev_data = alloc_dev_data(devid);
169
170 return dev_data;
171}
172
15898bbc
JR
173static inline u16 get_device_id(struct device *dev)
174{
175 struct pci_dev *pdev = to_pci_dev(dev);
176
6f2729ba 177 return PCI_DEVID(pdev->bus->number, pdev->devfn);
15898bbc
JR
178}
179
657cbb6b
JR
180static struct iommu_dev_data *get_dev_data(struct device *dev)
181{
182 return dev->archdata.iommu;
183}
184
5abcdba4
JR
185static bool pci_iommuv2_capable(struct pci_dev *pdev)
186{
187 static const int caps[] = {
188 PCI_EXT_CAP_ID_ATS,
46277b75
JR
189 PCI_EXT_CAP_ID_PRI,
190 PCI_EXT_CAP_ID_PASID,
5abcdba4
JR
191 };
192 int i, pos;
193
194 for (i = 0; i < 3; ++i) {
195 pos = pci_find_ext_capability(pdev, caps[i]);
196 if (pos == 0)
197 return false;
198 }
199
200 return true;
201}
202
6a113ddc
JR
203static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
204{
205 struct iommu_dev_data *dev_data;
206
207 dev_data = get_dev_data(&pdev->dev);
208
209 return dev_data->errata & (1 << erratum) ? true : false;
210}
211
71c70984
JR
212/*
213 * In this function the list of preallocated protection domains is traversed to
214 * find the domain for a specific device
215 */
216static struct dma_ops_domain *find_protection_domain(u16 devid)
217{
218 struct dma_ops_domain *entry, *ret = NULL;
219 unsigned long flags;
220 u16 alias = amd_iommu_alias_table[devid];
221
222 if (list_empty(&iommu_pd_list))
223 return NULL;
224
225 spin_lock_irqsave(&iommu_pd_list_lock, flags);
226
227 list_for_each_entry(entry, &iommu_pd_list, list) {
228 if (entry->target_dev == devid ||
229 entry->target_dev == alias) {
230 ret = entry;
231 break;
232 }
233 }
234
235 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
236
237 return ret;
238}
239
98fc5a69
JR
240/*
241 * This function checks if the driver got a valid device from the caller to
242 * avoid dereferencing invalid pointers.
243 */
244static bool check_device(struct device *dev)
245{
246 u16 devid;
247
248 if (!dev || !dev->dma_mask)
249 return false;
250
251 /* No device or no PCI device */
339d3261 252 if (dev->bus != &pci_bus_type)
98fc5a69
JR
253 return false;
254
255 devid = get_device_id(dev);
256
257 /* Out of our scope? */
258 if (devid > amd_iommu_last_bdf)
259 return false;
260
261 if (amd_iommu_rlookup_table[devid] == NULL)
262 return false;
263
264 return true;
265}
266
2bff6a50
AW
267static struct pci_bus *find_hosted_bus(struct pci_bus *bus)
268{
269 while (!bus->self) {
270 if (!pci_is_root_bus(bus))
271 bus = bus->parent;
272 else
273 return ERR_PTR(-ENODEV);
274 }
275
276 return bus;
277}
278
664b6003
AW
279#define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
280
2851db21 281static struct pci_dev *get_isolation_root(struct pci_dev *pdev)
657cbb6b 282{
2851db21 283 struct pci_dev *dma_pdev = pdev;
9dcd6130 284
31fe9435 285 /* Account for quirked devices */
664b6003
AW
286 swap_pci_ref(&dma_pdev, pci_get_dma_source(dma_pdev));
287
31fe9435
AW
288 /*
289 * If it's a multifunction device that does not support our
c14d2690
AW
290 * required ACS flags, add to the same group as lowest numbered
291 * function that also does not suport the required ACS flags.
31fe9435 292 */
664b6003 293 if (dma_pdev->multifunction &&
c14d2690
AW
294 !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS)) {
295 u8 i, slot = PCI_SLOT(dma_pdev->devfn);
296
297 for (i = 0; i < 8; i++) {
298 struct pci_dev *tmp;
299
300 tmp = pci_get_slot(dma_pdev->bus, PCI_DEVFN(slot, i));
301 if (!tmp)
302 continue;
303
304 if (!pci_acs_enabled(tmp, REQ_ACS_FLAGS)) {
305 swap_pci_ref(&dma_pdev, tmp);
306 break;
307 }
308 pci_dev_put(tmp);
309 }
310 }
664b6003 311
31fe9435
AW
312 /*
313 * Devices on the root bus go through the iommu. If that's not us,
314 * find the next upstream device and test ACS up to the root bus.
315 * Finding the next device may require skipping virtual buses.
316 */
664b6003 317 while (!pci_is_root_bus(dma_pdev->bus)) {
2bff6a50
AW
318 struct pci_bus *bus = find_hosted_bus(dma_pdev->bus);
319 if (IS_ERR(bus))
320 break;
31fe9435
AW
321
322 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
664b6003
AW
323 break;
324
31fe9435 325 swap_pci_ref(&dma_pdev, pci_dev_get(bus->self));
664b6003
AW
326 }
327
2851db21
AW
328 return dma_pdev;
329}
330
ce7ac4ab
AW
331static int use_pdev_iommu_group(struct pci_dev *pdev, struct device *dev)
332{
333 struct iommu_group *group = iommu_group_get(&pdev->dev);
334 int ret;
335
336 if (!group) {
337 group = iommu_group_alloc();
338 if (IS_ERR(group))
339 return PTR_ERR(group);
340
341 WARN_ON(&pdev->dev != dev);
342 }
343
344 ret = iommu_group_add_device(group, dev);
345 iommu_group_put(group);
346 return ret;
347}
348
78bfa9f3
AW
349static int use_dev_data_iommu_group(struct iommu_dev_data *dev_data,
350 struct device *dev)
351{
352 if (!dev_data->group) {
353 struct iommu_group *group = iommu_group_alloc();
354 if (IS_ERR(group))
355 return PTR_ERR(group);
356
357 dev_data->group = group;
358 }
359
360 return iommu_group_add_device(dev_data->group, dev);
361}
362
2851db21
AW
363static int init_iommu_group(struct device *dev)
364{
365 struct iommu_dev_data *dev_data;
366 struct iommu_group *group;
78bfa9f3 367 struct pci_dev *dma_pdev;
2851db21
AW
368 int ret;
369
370 group = iommu_group_get(dev);
371 if (group) {
372 iommu_group_put(group);
373 return 0;
374 }
375
376 dev_data = find_dev_data(get_device_id(dev));
377 if (!dev_data)
378 return -ENOMEM;
379
380 if (dev_data->alias_data) {
381 u16 alias;
78bfa9f3
AW
382 struct pci_bus *bus;
383
384 if (dev_data->alias_data->group)
385 goto use_group;
2851db21 386
78bfa9f3
AW
387 /*
388 * If the alias device exists, it's effectively just a first
389 * level quirk for finding the DMA source.
390 */
2851db21
AW
391 alias = amd_iommu_alias_table[dev_data->devid];
392 dma_pdev = pci_get_bus_and_slot(alias >> 8, alias & 0xff);
78bfa9f3
AW
393 if (dma_pdev) {
394 dma_pdev = get_isolation_root(dma_pdev);
395 goto use_pdev;
396 }
2851db21 397
78bfa9f3
AW
398 /*
399 * If the alias is virtual, try to find a parent device
400 * and test whether the IOMMU group is actualy rooted above
401 * the alias. Be careful to also test the parent device if
402 * we think the alias is the root of the group.
403 */
404 bus = pci_find_bus(0, alias >> 8);
405 if (!bus)
406 goto use_group;
407
408 bus = find_hosted_bus(bus);
409 if (IS_ERR(bus) || !bus->self)
410 goto use_group;
411
412 dma_pdev = get_isolation_root(pci_dev_get(bus->self));
413 if (dma_pdev != bus->self || (dma_pdev->multifunction &&
414 !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS)))
415 goto use_pdev;
416
417 pci_dev_put(dma_pdev);
418 goto use_group;
419 }
2851db21 420
78bfa9f3
AW
421 dma_pdev = get_isolation_root(pci_dev_get(to_pci_dev(dev)));
422use_pdev:
ce7ac4ab 423 ret = use_pdev_iommu_group(dma_pdev, dev);
9dcd6130 424 pci_dev_put(dma_pdev);
eb9c9527 425 return ret;
78bfa9f3
AW
426use_group:
427 return use_dev_data_iommu_group(dev_data->alias_data, dev);
eb9c9527
AW
428}
429
430static int iommu_init_device(struct device *dev)
431{
432 struct pci_dev *pdev = to_pci_dev(dev);
433 struct iommu_dev_data *dev_data;
434 u16 alias;
435 int ret;
436
437 if (dev->archdata.iommu)
438 return 0;
439
440 dev_data = find_dev_data(get_device_id(dev));
441 if (!dev_data)
442 return -ENOMEM;
443
444 alias = amd_iommu_alias_table[dev_data->devid];
445 if (alias != dev_data->devid) {
446 struct iommu_dev_data *alias_data;
447
448 alias_data = find_dev_data(alias);
449 if (alias_data == NULL) {
450 pr_err("AMD-Vi: Warning: Unhandled device %s\n",
451 dev_name(dev));
452 free_dev_data(dev_data);
453 return -ENOTSUPP;
454 }
455 dev_data->alias_data = alias_data;
456 }
457
458 ret = init_iommu_group(dev);
e644a013
RK
459 if (ret) {
460 free_dev_data(dev_data);
9dcd6130 461 return ret;
e644a013 462 }
9dcd6130 463
5abcdba4
JR
464 if (pci_iommuv2_capable(pdev)) {
465 struct amd_iommu *iommu;
466
467 iommu = amd_iommu_rlookup_table[dev_data->devid];
468 dev_data->iommu_v2 = iommu->is_iommu_v2;
469 }
470
657cbb6b
JR
471 dev->archdata.iommu = dev_data;
472
657cbb6b
JR
473 return 0;
474}
475
26018874
JR
476static void iommu_ignore_device(struct device *dev)
477{
478 u16 devid, alias;
479
480 devid = get_device_id(dev);
481 alias = amd_iommu_alias_table[devid];
482
483 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
484 memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
485
486 amd_iommu_rlookup_table[devid] = NULL;
487 amd_iommu_rlookup_table[alias] = NULL;
488}
489
657cbb6b
JR
490static void iommu_uninit_device(struct device *dev)
491{
9dcd6130
AW
492 iommu_group_remove_device(dev);
493
8fa5f802
JR
494 /*
495 * Nothing to do here - we keep dev_data around for unplugged devices
496 * and reuse it when the device is re-plugged - not doing so would
497 * introduce a ton of races.
498 */
657cbb6b 499}
b7cc9554
JR
500
501void __init amd_iommu_uninit_devices(void)
502{
8fa5f802 503 struct iommu_dev_data *dev_data, *n;
b7cc9554
JR
504 struct pci_dev *pdev = NULL;
505
506 for_each_pci_dev(pdev) {
507
508 if (!check_device(&pdev->dev))
509 continue;
510
511 iommu_uninit_device(&pdev->dev);
512 }
8fa5f802
JR
513
514 /* Free all of our dev_data structures */
515 list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
516 free_dev_data(dev_data);
b7cc9554
JR
517}
518
519int __init amd_iommu_init_devices(void)
520{
521 struct pci_dev *pdev = NULL;
522 int ret = 0;
523
524 for_each_pci_dev(pdev) {
525
526 if (!check_device(&pdev->dev))
527 continue;
528
529 ret = iommu_init_device(&pdev->dev);
26018874
JR
530 if (ret == -ENOTSUPP)
531 iommu_ignore_device(&pdev->dev);
532 else if (ret)
b7cc9554
JR
533 goto out_free;
534 }
535
536 return 0;
537
538out_free:
539
540 amd_iommu_uninit_devices();
541
542 return ret;
543}
7f26508b
JR
544#ifdef CONFIG_AMD_IOMMU_STATS
545
546/*
547 * Initialization code for statistics collection
548 */
549
da49f6df 550DECLARE_STATS_COUNTER(compl_wait);
0f2a86f2 551DECLARE_STATS_COUNTER(cnt_map_single);
146a6917 552DECLARE_STATS_COUNTER(cnt_unmap_single);
d03f067a 553DECLARE_STATS_COUNTER(cnt_map_sg);
55877a6b 554DECLARE_STATS_COUNTER(cnt_unmap_sg);
c8f0fb36 555DECLARE_STATS_COUNTER(cnt_alloc_coherent);
5d31ee7e 556DECLARE_STATS_COUNTER(cnt_free_coherent);
c1858976 557DECLARE_STATS_COUNTER(cross_page);
f57d98ae 558DECLARE_STATS_COUNTER(domain_flush_single);
18811f55 559DECLARE_STATS_COUNTER(domain_flush_all);
5774f7c5 560DECLARE_STATS_COUNTER(alloced_io_mem);
8ecaf8f1 561DECLARE_STATS_COUNTER(total_map_requests);
399be2f5
JR
562DECLARE_STATS_COUNTER(complete_ppr);
563DECLARE_STATS_COUNTER(invalidate_iotlb);
564DECLARE_STATS_COUNTER(invalidate_iotlb_all);
565DECLARE_STATS_COUNTER(pri_requests);
566
7f26508b 567static struct dentry *stats_dir;
7f26508b
JR
568static struct dentry *de_fflush;
569
570static void amd_iommu_stats_add(struct __iommu_counter *cnt)
571{
572 if (stats_dir == NULL)
573 return;
574
575 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
576 &cnt->value);
577}
578
579static void amd_iommu_stats_init(void)
580{
581 stats_dir = debugfs_create_dir("amd-iommu", NULL);
582 if (stats_dir == NULL)
583 return;
584
7f26508b 585 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
3775d481 586 &amd_iommu_unmap_flush);
da49f6df
JR
587
588 amd_iommu_stats_add(&compl_wait);
0f2a86f2 589 amd_iommu_stats_add(&cnt_map_single);
146a6917 590 amd_iommu_stats_add(&cnt_unmap_single);
d03f067a 591 amd_iommu_stats_add(&cnt_map_sg);
55877a6b 592 amd_iommu_stats_add(&cnt_unmap_sg);
c8f0fb36 593 amd_iommu_stats_add(&cnt_alloc_coherent);
5d31ee7e 594 amd_iommu_stats_add(&cnt_free_coherent);
c1858976 595 amd_iommu_stats_add(&cross_page);
f57d98ae 596 amd_iommu_stats_add(&domain_flush_single);
18811f55 597 amd_iommu_stats_add(&domain_flush_all);
5774f7c5 598 amd_iommu_stats_add(&alloced_io_mem);
8ecaf8f1 599 amd_iommu_stats_add(&total_map_requests);
399be2f5
JR
600 amd_iommu_stats_add(&complete_ppr);
601 amd_iommu_stats_add(&invalidate_iotlb);
602 amd_iommu_stats_add(&invalidate_iotlb_all);
603 amd_iommu_stats_add(&pri_requests);
7f26508b
JR
604}
605
606#endif
607
a80dc3e0
JR
608/****************************************************************************
609 *
610 * Interrupt handling functions
611 *
612 ****************************************************************************/
613
e3e59876
JR
614static void dump_dte_entry(u16 devid)
615{
616 int i;
617
ee6c2868
JR
618 for (i = 0; i < 4; ++i)
619 pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
e3e59876
JR
620 amd_iommu_dev_table[devid].data[i]);
621}
622
945b4ac4
JR
623static void dump_command(unsigned long phys_addr)
624{
625 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
626 int i;
627
628 for (i = 0; i < 4; ++i)
629 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
630}
631
a345b23b 632static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
90008ee4 633{
3d06fca8
JR
634 int type, devid, domid, flags;
635 volatile u32 *event = __evt;
636 int count = 0;
637 u64 address;
638
639retry:
640 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
641 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
642 domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
643 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
644 address = (u64)(((u64)event[3]) << 32) | event[2];
645
646 if (type == 0) {
647 /* Did we hit the erratum? */
648 if (++count == LOOP_TIMEOUT) {
649 pr_err("AMD-Vi: No event written to event log\n");
650 return;
651 }
652 udelay(1);
653 goto retry;
654 }
90008ee4 655
4c6f40d4 656 printk(KERN_ERR "AMD-Vi: Event logged [");
90008ee4
JR
657
658 switch (type) {
659 case EVENT_TYPE_ILL_DEV:
660 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
661 "address=0x%016llx flags=0x%04x]\n",
c5081cd7 662 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4 663 address, flags);
e3e59876 664 dump_dte_entry(devid);
90008ee4
JR
665 break;
666 case EVENT_TYPE_IO_FAULT:
667 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
668 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
c5081cd7 669 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
670 domid, address, flags);
671 break;
672 case EVENT_TYPE_DEV_TAB_ERR:
673 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
674 "address=0x%016llx flags=0x%04x]\n",
c5081cd7 675 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
676 address, flags);
677 break;
678 case EVENT_TYPE_PAGE_TAB_ERR:
679 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
680 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
c5081cd7 681 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
682 domid, address, flags);
683 break;
684 case EVENT_TYPE_ILL_CMD:
685 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
945b4ac4 686 dump_command(address);
90008ee4
JR
687 break;
688 case EVENT_TYPE_CMD_HARD_ERR:
689 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
690 "flags=0x%04x]\n", address, flags);
691 break;
692 case EVENT_TYPE_IOTLB_INV_TO:
693 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
694 "address=0x%016llx]\n",
c5081cd7 695 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
696 address);
697 break;
698 case EVENT_TYPE_INV_DEV_REQ:
699 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
700 "address=0x%016llx flags=0x%04x]\n",
c5081cd7 701 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
702 address, flags);
703 break;
704 default:
705 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
706 }
3d06fca8
JR
707
708 memset(__evt, 0, 4 * sizeof(u32));
90008ee4
JR
709}
710
711static void iommu_poll_events(struct amd_iommu *iommu)
712{
713 u32 head, tail;
90008ee4
JR
714
715 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
716 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
717
718 while (head != tail) {
a345b23b 719 iommu_print_event(iommu, iommu->evt_buf + head);
90008ee4
JR
720 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
721 }
722
723 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
90008ee4
JR
724}
725
eee53537 726static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
72e1dcc4
JR
727{
728 struct amd_iommu_fault fault;
72e1dcc4 729
399be2f5
JR
730 INC_STATS_COUNTER(pri_requests);
731
72e1dcc4
JR
732 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
733 pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
734 return;
735 }
736
737 fault.address = raw[1];
738 fault.pasid = PPR_PASID(raw[0]);
739 fault.device_id = PPR_DEVID(raw[0]);
740 fault.tag = PPR_TAG(raw[0]);
741 fault.flags = PPR_FLAGS(raw[0]);
742
72e1dcc4
JR
743 atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
744}
745
746static void iommu_poll_ppr_log(struct amd_iommu *iommu)
747{
72e1dcc4
JR
748 u32 head, tail;
749
750 if (iommu->ppr_log == NULL)
751 return;
752
72e1dcc4
JR
753 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
754 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
755
756 while (head != tail) {
eee53537
JR
757 volatile u64 *raw;
758 u64 entry[2];
759 int i;
760
761 raw = (u64 *)(iommu->ppr_log + head);
762
763 /*
764 * Hardware bug: Interrupt may arrive before the entry is
765 * written to memory. If this happens we need to wait for the
766 * entry to arrive.
767 */
768 for (i = 0; i < LOOP_TIMEOUT; ++i) {
769 if (PPR_REQ_TYPE(raw[0]) != 0)
770 break;
771 udelay(1);
772 }
72e1dcc4 773
eee53537
JR
774 /* Avoid memcpy function-call overhead */
775 entry[0] = raw[0];
776 entry[1] = raw[1];
72e1dcc4 777
eee53537
JR
778 /*
779 * To detect the hardware bug we need to clear the entry
780 * back to zero.
781 */
782 raw[0] = raw[1] = 0UL;
783
784 /* Update head pointer of hardware ring-buffer */
72e1dcc4
JR
785 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
786 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
eee53537 787
eee53537
JR
788 /* Handle PPR entry */
789 iommu_handle_ppr_entry(iommu, entry);
790
eee53537
JR
791 /* Refresh ring-buffer information */
792 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
72e1dcc4
JR
793 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
794 }
72e1dcc4
JR
795}
796
72fe00f0 797irqreturn_t amd_iommu_int_thread(int irq, void *data)
a80dc3e0 798{
3f398bc7
SS
799 struct amd_iommu *iommu = (struct amd_iommu *) data;
800 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
90008ee4 801
3f398bc7
SS
802 while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
803 /* Enable EVT and PPR interrupts again */
804 writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
805 iommu->mmio_base + MMIO_STATUS_OFFSET);
90008ee4 806
3f398bc7
SS
807 if (status & MMIO_STATUS_EVT_INT_MASK) {
808 pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
809 iommu_poll_events(iommu);
810 }
90008ee4 811
3f398bc7
SS
812 if (status & MMIO_STATUS_PPR_INT_MASK) {
813 pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
814 iommu_poll_ppr_log(iommu);
815 }
90008ee4 816
3f398bc7
SS
817 /*
818 * Hardware bug: ERBT1312
819 * When re-enabling interrupt (by writing 1
820 * to clear the bit), the hardware might also try to set
821 * the interrupt bit in the event status register.
822 * In this scenario, the bit will be set, and disable
823 * subsequent interrupts.
824 *
825 * Workaround: The IOMMU driver should read back the
826 * status register and check if the interrupt bits are cleared.
827 * If not, driver will need to go through the interrupt handler
828 * again and re-clear the bits
829 */
830 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
831 }
90008ee4 832 return IRQ_HANDLED;
a80dc3e0
JR
833}
834
72fe00f0
JR
835irqreturn_t amd_iommu_int_handler(int irq, void *data)
836{
837 return IRQ_WAKE_THREAD;
838}
839
431b2a20
JR
840/****************************************************************************
841 *
842 * IOMMU command queuing functions
843 *
844 ****************************************************************************/
845
ac0ea6e9
JR
846static int wait_on_sem(volatile u64 *sem)
847{
848 int i = 0;
849
850 while (*sem == 0 && i < LOOP_TIMEOUT) {
851 udelay(1);
852 i += 1;
853 }
854
855 if (i == LOOP_TIMEOUT) {
856 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
857 return -EIO;
858 }
859
860 return 0;
861}
862
863static void copy_cmd_to_buffer(struct amd_iommu *iommu,
864 struct iommu_cmd *cmd,
865 u32 tail)
a19ae1ec 866{
a19ae1ec
JR
867 u8 *target;
868
8a7c5ef3 869 target = iommu->cmd_buf + tail;
ac0ea6e9
JR
870 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
871
872 /* Copy command to buffer */
873 memcpy(target, cmd, sizeof(*cmd));
874
875 /* Tell the IOMMU about it */
a19ae1ec 876 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
ac0ea6e9 877}
a19ae1ec 878
815b33fd 879static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
ded46737 880{
815b33fd
JR
881 WARN_ON(address & 0x7ULL);
882
ded46737 883 memset(cmd, 0, sizeof(*cmd));
815b33fd
JR
884 cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
885 cmd->data[1] = upper_32_bits(__pa(address));
886 cmd->data[2] = 1;
ded46737
JR
887 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
888}
889
94fe79e2
JR
890static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
891{
892 memset(cmd, 0, sizeof(*cmd));
893 cmd->data[0] = devid;
894 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
895}
896
11b6402c
JR
897static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
898 size_t size, u16 domid, int pde)
899{
900 u64 pages;
901 int s;
902
903 pages = iommu_num_pages(address, size, PAGE_SIZE);
904 s = 0;
905
906 if (pages > 1) {
907 /*
908 * If we have to flush more than one page, flush all
909 * TLB entries for this domain
910 */
911 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
912 s = 1;
913 }
914
915 address &= PAGE_MASK;
916
917 memset(cmd, 0, sizeof(*cmd));
918 cmd->data[1] |= domid;
919 cmd->data[2] = lower_32_bits(address);
920 cmd->data[3] = upper_32_bits(address);
921 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
922 if (s) /* size bit - we flush more than one 4kb page */
923 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
df805abb 924 if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
11b6402c
JR
925 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
926}
927
cb41ed85
JR
928static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
929 u64 address, size_t size)
930{
931 u64 pages;
932 int s;
933
934 pages = iommu_num_pages(address, size, PAGE_SIZE);
935 s = 0;
936
937 if (pages > 1) {
938 /*
939 * If we have to flush more than one page, flush all
940 * TLB entries for this domain
941 */
942 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
943 s = 1;
944 }
945
946 address &= PAGE_MASK;
947
948 memset(cmd, 0, sizeof(*cmd));
949 cmd->data[0] = devid;
950 cmd->data[0] |= (qdep & 0xff) << 24;
951 cmd->data[1] = devid;
952 cmd->data[2] = lower_32_bits(address);
953 cmd->data[3] = upper_32_bits(address);
954 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
955 if (s)
956 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
957}
958
22e266c7
JR
959static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
960 u64 address, bool size)
961{
962 memset(cmd, 0, sizeof(*cmd));
963
964 address &= ~(0xfffULL);
965
966 cmd->data[0] = pasid & PASID_MASK;
967 cmd->data[1] = domid;
968 cmd->data[2] = lower_32_bits(address);
969 cmd->data[3] = upper_32_bits(address);
970 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
971 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
972 if (size)
973 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
974 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
975}
976
977static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
978 int qdep, u64 address, bool size)
979{
980 memset(cmd, 0, sizeof(*cmd));
981
982 address &= ~(0xfffULL);
983
984 cmd->data[0] = devid;
985 cmd->data[0] |= (pasid & 0xff) << 16;
986 cmd->data[0] |= (qdep & 0xff) << 24;
987 cmd->data[1] = devid;
988 cmd->data[1] |= ((pasid >> 8) & 0xfff) << 16;
989 cmd->data[2] = lower_32_bits(address);
990 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
991 cmd->data[3] = upper_32_bits(address);
992 if (size)
993 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
994 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
995}
996
c99afa25
JR
997static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
998 int status, int tag, bool gn)
999{
1000 memset(cmd, 0, sizeof(*cmd));
1001
1002 cmd->data[0] = devid;
1003 if (gn) {
1004 cmd->data[1] = pasid & PASID_MASK;
1005 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
1006 }
1007 cmd->data[3] = tag & 0x1ff;
1008 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
1009
1010 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
1011}
1012
58fc7f14
JR
1013static void build_inv_all(struct iommu_cmd *cmd)
1014{
1015 memset(cmd, 0, sizeof(*cmd));
1016 CMD_SET_TYPE(cmd, CMD_INV_ALL);
a19ae1ec
JR
1017}
1018
7ef2798d
JR
1019static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1020{
1021 memset(cmd, 0, sizeof(*cmd));
1022 cmd->data[0] = devid;
1023 CMD_SET_TYPE(cmd, CMD_INV_IRT);
1024}
1025
431b2a20 1026/*
431b2a20 1027 * Writes the command to the IOMMUs command buffer and informs the
ac0ea6e9 1028 * hardware about the new command.
431b2a20 1029 */
f1ca1512
JR
1030static int iommu_queue_command_sync(struct amd_iommu *iommu,
1031 struct iommu_cmd *cmd,
1032 bool sync)
a19ae1ec 1033{
ac0ea6e9 1034 u32 left, tail, head, next_tail;
a19ae1ec 1035 unsigned long flags;
a19ae1ec 1036
549c90dc 1037 WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
ac0ea6e9
JR
1038
1039again:
a19ae1ec 1040 spin_lock_irqsave(&iommu->lock, flags);
a19ae1ec 1041
ac0ea6e9
JR
1042 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
1043 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
1044 next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
1045 left = (head - next_tail) % iommu->cmd_buf_size;
a19ae1ec 1046
ac0ea6e9
JR
1047 if (left <= 2) {
1048 struct iommu_cmd sync_cmd;
1049 volatile u64 sem = 0;
1050 int ret;
8d201968 1051
ac0ea6e9
JR
1052 build_completion_wait(&sync_cmd, (u64)&sem);
1053 copy_cmd_to_buffer(iommu, &sync_cmd, tail);
da49f6df 1054
ac0ea6e9
JR
1055 spin_unlock_irqrestore(&iommu->lock, flags);
1056
1057 if ((ret = wait_on_sem(&sem)) != 0)
1058 return ret;
1059
1060 goto again;
8d201968
JR
1061 }
1062
ac0ea6e9
JR
1063 copy_cmd_to_buffer(iommu, cmd, tail);
1064
1065 /* We need to sync now to make sure all commands are processed */
f1ca1512 1066 iommu->need_sync = sync;
ac0ea6e9 1067
a19ae1ec 1068 spin_unlock_irqrestore(&iommu->lock, flags);
8d201968 1069
815b33fd 1070 return 0;
8d201968
JR
1071}
1072
f1ca1512
JR
1073static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1074{
1075 return iommu_queue_command_sync(iommu, cmd, true);
1076}
1077
8d201968
JR
1078/*
1079 * This function queues a completion wait command into the command
1080 * buffer of an IOMMU
1081 */
a19ae1ec 1082static int iommu_completion_wait(struct amd_iommu *iommu)
8d201968
JR
1083{
1084 struct iommu_cmd cmd;
815b33fd 1085 volatile u64 sem = 0;
ac0ea6e9 1086 int ret;
8d201968 1087
09ee17eb 1088 if (!iommu->need_sync)
815b33fd 1089 return 0;
09ee17eb 1090
815b33fd 1091 build_completion_wait(&cmd, (u64)&sem);
a19ae1ec 1092
f1ca1512 1093 ret = iommu_queue_command_sync(iommu, &cmd, false);
a19ae1ec 1094 if (ret)
815b33fd 1095 return ret;
8d201968 1096
ac0ea6e9 1097 return wait_on_sem(&sem);
8d201968
JR
1098}
1099
d8c13085 1100static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
a19ae1ec 1101{
d8c13085 1102 struct iommu_cmd cmd;
a19ae1ec 1103
d8c13085 1104 build_inv_dte(&cmd, devid);
7e4f88da 1105
d8c13085
JR
1106 return iommu_queue_command(iommu, &cmd);
1107}
09ee17eb 1108
7d0c5cc5
JR
1109static void iommu_flush_dte_all(struct amd_iommu *iommu)
1110{
1111 u32 devid;
09ee17eb 1112
7d0c5cc5
JR
1113 for (devid = 0; devid <= 0xffff; ++devid)
1114 iommu_flush_dte(iommu, devid);
a19ae1ec 1115
7d0c5cc5
JR
1116 iommu_completion_wait(iommu);
1117}
84df8175 1118
7d0c5cc5
JR
1119/*
1120 * This function uses heavy locking and may disable irqs for some time. But
1121 * this is no issue because it is only called during resume.
1122 */
1123static void iommu_flush_tlb_all(struct amd_iommu *iommu)
1124{
1125 u32 dom_id;
a19ae1ec 1126
7d0c5cc5
JR
1127 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1128 struct iommu_cmd cmd;
1129 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1130 dom_id, 1);
1131 iommu_queue_command(iommu, &cmd);
1132 }
8eed9833 1133
7d0c5cc5 1134 iommu_completion_wait(iommu);
a19ae1ec
JR
1135}
1136
58fc7f14 1137static void iommu_flush_all(struct amd_iommu *iommu)
0518a3a4 1138{
58fc7f14 1139 struct iommu_cmd cmd;
0518a3a4 1140
58fc7f14 1141 build_inv_all(&cmd);
0518a3a4 1142
58fc7f14
JR
1143 iommu_queue_command(iommu, &cmd);
1144 iommu_completion_wait(iommu);
1145}
1146
7ef2798d
JR
1147static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1148{
1149 struct iommu_cmd cmd;
1150
1151 build_inv_irt(&cmd, devid);
1152
1153 iommu_queue_command(iommu, &cmd);
1154}
1155
1156static void iommu_flush_irt_all(struct amd_iommu *iommu)
1157{
1158 u32 devid;
1159
1160 for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1161 iommu_flush_irt(iommu, devid);
1162
1163 iommu_completion_wait(iommu);
1164}
1165
7d0c5cc5
JR
1166void iommu_flush_all_caches(struct amd_iommu *iommu)
1167{
58fc7f14
JR
1168 if (iommu_feature(iommu, FEATURE_IA)) {
1169 iommu_flush_all(iommu);
1170 } else {
1171 iommu_flush_dte_all(iommu);
7ef2798d 1172 iommu_flush_irt_all(iommu);
58fc7f14 1173 iommu_flush_tlb_all(iommu);
0518a3a4
JR
1174 }
1175}
1176
431b2a20 1177/*
cb41ed85 1178 * Command send function for flushing on-device TLB
431b2a20 1179 */
6c542047
JR
1180static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1181 u64 address, size_t size)
3fa43655
JR
1182{
1183 struct amd_iommu *iommu;
b00d3bcf 1184 struct iommu_cmd cmd;
cb41ed85 1185 int qdep;
3fa43655 1186
ea61cddb
JR
1187 qdep = dev_data->ats.qdep;
1188 iommu = amd_iommu_rlookup_table[dev_data->devid];
3fa43655 1189
ea61cddb 1190 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
b00d3bcf
JR
1191
1192 return iommu_queue_command(iommu, &cmd);
3fa43655
JR
1193}
1194
431b2a20 1195/*
431b2a20 1196 * Command send function for invalidating a device table entry
431b2a20 1197 */
6c542047 1198static int device_flush_dte(struct iommu_dev_data *dev_data)
a19ae1ec 1199{
3fa43655 1200 struct amd_iommu *iommu;
ee2fa743 1201 int ret;
a19ae1ec 1202
6c542047 1203 iommu = amd_iommu_rlookup_table[dev_data->devid];
a19ae1ec 1204
f62dda66 1205 ret = iommu_flush_dte(iommu, dev_data->devid);
cb41ed85
JR
1206 if (ret)
1207 return ret;
1208
ea61cddb 1209 if (dev_data->ats.enabled)
6c542047 1210 ret = device_flush_iotlb(dev_data, 0, ~0UL);
ee2fa743 1211
ee2fa743 1212 return ret;
a19ae1ec
JR
1213}
1214
431b2a20
JR
1215/*
1216 * TLB invalidation function which is called from the mapping functions.
1217 * It invalidates a single PTE if the range to flush is within a single
1218 * page. Otherwise it flushes the whole TLB of the IOMMU.
1219 */
17b124bf
JR
1220static void __domain_flush_pages(struct protection_domain *domain,
1221 u64 address, size_t size, int pde)
a19ae1ec 1222{
cb41ed85 1223 struct iommu_dev_data *dev_data;
11b6402c
JR
1224 struct iommu_cmd cmd;
1225 int ret = 0, i;
a19ae1ec 1226
11b6402c 1227 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
999ba417 1228
6de8ad9b
JR
1229 for (i = 0; i < amd_iommus_present; ++i) {
1230 if (!domain->dev_iommu[i])
1231 continue;
1232
1233 /*
1234 * Devices of this domain are behind this IOMMU
1235 * We need a TLB flush
1236 */
11b6402c 1237 ret |= iommu_queue_command(amd_iommus[i], &cmd);
6de8ad9b
JR
1238 }
1239
cb41ed85 1240 list_for_each_entry(dev_data, &domain->dev_list, list) {
cb41ed85 1241
ea61cddb 1242 if (!dev_data->ats.enabled)
cb41ed85
JR
1243 continue;
1244
6c542047 1245 ret |= device_flush_iotlb(dev_data, address, size);
cb41ed85
JR
1246 }
1247
11b6402c 1248 WARN_ON(ret);
6de8ad9b
JR
1249}
1250
17b124bf
JR
1251static void domain_flush_pages(struct protection_domain *domain,
1252 u64 address, size_t size)
6de8ad9b 1253{
17b124bf 1254 __domain_flush_pages(domain, address, size, 0);
a19ae1ec 1255}
b6c02715 1256
1c655773 1257/* Flush the whole IO/TLB for a given protection domain */
17b124bf 1258static void domain_flush_tlb(struct protection_domain *domain)
1c655773 1259{
17b124bf 1260 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1c655773
JR
1261}
1262
42a49f96 1263/* Flush the whole IO/TLB for a given protection domain - including PDE */
17b124bf 1264static void domain_flush_tlb_pde(struct protection_domain *domain)
42a49f96 1265{
17b124bf 1266 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
42a49f96
CW
1267}
1268
17b124bf 1269static void domain_flush_complete(struct protection_domain *domain)
b00d3bcf 1270{
17b124bf 1271 int i;
18811f55 1272
17b124bf
JR
1273 for (i = 0; i < amd_iommus_present; ++i) {
1274 if (!domain->dev_iommu[i])
1275 continue;
bfd1be18 1276
17b124bf
JR
1277 /*
1278 * Devices of this domain are behind this IOMMU
1279 * We need to wait for completion of all commands.
1280 */
1281 iommu_completion_wait(amd_iommus[i]);
bfd1be18 1282 }
e394d72a
JR
1283}
1284
b00d3bcf 1285
09b42804 1286/*
b00d3bcf 1287 * This function flushes the DTEs for all devices in domain
09b42804 1288 */
17b124bf 1289static void domain_flush_devices(struct protection_domain *domain)
e394d72a 1290{
b00d3bcf 1291 struct iommu_dev_data *dev_data;
b26e81b8 1292
b00d3bcf 1293 list_for_each_entry(dev_data, &domain->dev_list, list)
6c542047 1294 device_flush_dte(dev_data);
a345b23b
JR
1295}
1296
431b2a20
JR
1297/****************************************************************************
1298 *
1299 * The functions below are used the create the page table mappings for
1300 * unity mapped regions.
1301 *
1302 ****************************************************************************/
1303
308973d3
JR
1304/*
1305 * This function is used to add another level to an IO page table. Adding
1306 * another level increases the size of the address space by 9 bits to a size up
1307 * to 64 bits.
1308 */
1309static bool increase_address_space(struct protection_domain *domain,
1310 gfp_t gfp)
1311{
1312 u64 *pte;
1313
1314 if (domain->mode == PAGE_MODE_6_LEVEL)
1315 /* address space already 64 bit large */
1316 return false;
1317
1318 pte = (void *)get_zeroed_page(gfp);
1319 if (!pte)
1320 return false;
1321
1322 *pte = PM_LEVEL_PDE(domain->mode,
1323 virt_to_phys(domain->pt_root));
1324 domain->pt_root = pte;
1325 domain->mode += 1;
1326 domain->updated = true;
1327
1328 return true;
1329}
1330
1331static u64 *alloc_pte(struct protection_domain *domain,
1332 unsigned long address,
cbb9d729 1333 unsigned long page_size,
308973d3
JR
1334 u64 **pte_page,
1335 gfp_t gfp)
1336{
cbb9d729 1337 int level, end_lvl;
308973d3 1338 u64 *pte, *page;
cbb9d729
JR
1339
1340 BUG_ON(!is_power_of_2(page_size));
308973d3
JR
1341
1342 while (address > PM_LEVEL_SIZE(domain->mode))
1343 increase_address_space(domain, gfp);
1344
cbb9d729
JR
1345 level = domain->mode - 1;
1346 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1347 address = PAGE_SIZE_ALIGN(address, page_size);
1348 end_lvl = PAGE_SIZE_LEVEL(page_size);
308973d3
JR
1349
1350 while (level > end_lvl) {
1351 if (!IOMMU_PTE_PRESENT(*pte)) {
1352 page = (u64 *)get_zeroed_page(gfp);
1353 if (!page)
1354 return NULL;
1355 *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
1356 }
1357
cbb9d729
JR
1358 /* No level skipping support yet */
1359 if (PM_PTE_LEVEL(*pte) != level)
1360 return NULL;
1361
308973d3
JR
1362 level -= 1;
1363
1364 pte = IOMMU_PTE_PAGE(*pte);
1365
1366 if (pte_page && level == end_lvl)
1367 *pte_page = pte;
1368
1369 pte = &pte[PM_LEVEL_INDEX(level, address)];
1370 }
1371
1372 return pte;
1373}
1374
1375/*
1376 * This function checks if there is a PTE for a given dma address. If
1377 * there is one, it returns the pointer to it.
1378 */
24cd7723 1379static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
308973d3
JR
1380{
1381 int level;
1382 u64 *pte;
1383
24cd7723
JR
1384 if (address > PM_LEVEL_SIZE(domain->mode))
1385 return NULL;
1386
1387 level = domain->mode - 1;
1388 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
308973d3 1389
24cd7723
JR
1390 while (level > 0) {
1391
1392 /* Not Present */
308973d3
JR
1393 if (!IOMMU_PTE_PRESENT(*pte))
1394 return NULL;
1395
24cd7723
JR
1396 /* Large PTE */
1397 if (PM_PTE_LEVEL(*pte) == 0x07) {
1398 unsigned long pte_mask, __pte;
1399
1400 /*
1401 * If we have a series of large PTEs, make
1402 * sure to return a pointer to the first one.
1403 */
1404 pte_mask = PTE_PAGE_SIZE(*pte);
1405 pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1406 __pte = ((unsigned long)pte) & pte_mask;
1407
1408 return (u64 *)__pte;
1409 }
1410
1411 /* No level skipping support yet */
1412 if (PM_PTE_LEVEL(*pte) != level)
1413 return NULL;
1414
308973d3
JR
1415 level -= 1;
1416
24cd7723 1417 /* Walk to the next level */
308973d3
JR
1418 pte = IOMMU_PTE_PAGE(*pte);
1419 pte = &pte[PM_LEVEL_INDEX(level, address)];
308973d3
JR
1420 }
1421
1422 return pte;
1423}
1424
431b2a20
JR
1425/*
1426 * Generic mapping functions. It maps a physical address into a DMA
1427 * address space. It allocates the page table pages if necessary.
1428 * In the future it can be extended to a generic mapping function
1429 * supporting all features of AMD IOMMU page tables like level skipping
1430 * and full 64 bit address spaces.
1431 */
38e817fe
JR
1432static int iommu_map_page(struct protection_domain *dom,
1433 unsigned long bus_addr,
1434 unsigned long phys_addr,
abdc5eb3 1435 int prot,
cbb9d729 1436 unsigned long page_size)
bd0e5211 1437{
8bda3092 1438 u64 __pte, *pte;
cbb9d729 1439 int i, count;
abdc5eb3 1440
bad1cac2 1441 if (!(prot & IOMMU_PROT_MASK))
bd0e5211
JR
1442 return -EINVAL;
1443
cbb9d729
JR
1444 bus_addr = PAGE_ALIGN(bus_addr);
1445 phys_addr = PAGE_ALIGN(phys_addr);
1446 count = PAGE_SIZE_PTE_COUNT(page_size);
1447 pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1448
1449 for (i = 0; i < count; ++i)
1450 if (IOMMU_PTE_PRESENT(pte[i]))
1451 return -EBUSY;
bd0e5211 1452
cbb9d729
JR
1453 if (page_size > PAGE_SIZE) {
1454 __pte = PAGE_SIZE_PTE(phys_addr, page_size);
1455 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
1456 } else
1457 __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
bd0e5211 1458
bd0e5211
JR
1459 if (prot & IOMMU_PROT_IR)
1460 __pte |= IOMMU_PTE_IR;
1461 if (prot & IOMMU_PROT_IW)
1462 __pte |= IOMMU_PTE_IW;
1463
cbb9d729
JR
1464 for (i = 0; i < count; ++i)
1465 pte[i] = __pte;
bd0e5211 1466
04bfdd84
JR
1467 update_domain(dom);
1468
bd0e5211
JR
1469 return 0;
1470}
1471
24cd7723
JR
1472static unsigned long iommu_unmap_page(struct protection_domain *dom,
1473 unsigned long bus_addr,
1474 unsigned long page_size)
eb74ff6c 1475{
24cd7723
JR
1476 unsigned long long unmap_size, unmapped;
1477 u64 *pte;
1478
1479 BUG_ON(!is_power_of_2(page_size));
1480
1481 unmapped = 0;
eb74ff6c 1482
24cd7723
JR
1483 while (unmapped < page_size) {
1484
1485 pte = fetch_pte(dom, bus_addr);
1486
1487 if (!pte) {
1488 /*
1489 * No PTE for this address
1490 * move forward in 4kb steps
1491 */
1492 unmap_size = PAGE_SIZE;
1493 } else if (PM_PTE_LEVEL(*pte) == 0) {
1494 /* 4kb PTE found for this address */
1495 unmap_size = PAGE_SIZE;
1496 *pte = 0ULL;
1497 } else {
1498 int count, i;
1499
1500 /* Large PTE found which maps this address */
1501 unmap_size = PTE_PAGE_SIZE(*pte);
60d0ca3c
AW
1502
1503 /* Only unmap from the first pte in the page */
1504 if ((unmap_size - 1) & bus_addr)
1505 break;
24cd7723
JR
1506 count = PAGE_SIZE_PTE_COUNT(unmap_size);
1507 for (i = 0; i < count; i++)
1508 pte[i] = 0ULL;
1509 }
1510
1511 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1512 unmapped += unmap_size;
1513 }
1514
60d0ca3c 1515 BUG_ON(unmapped && !is_power_of_2(unmapped));
eb74ff6c 1516
24cd7723 1517 return unmapped;
eb74ff6c 1518}
eb74ff6c 1519
431b2a20
JR
1520/*
1521 * This function checks if a specific unity mapping entry is needed for
1522 * this specific IOMMU.
1523 */
bd0e5211
JR
1524static int iommu_for_unity_map(struct amd_iommu *iommu,
1525 struct unity_map_entry *entry)
1526{
1527 u16 bdf, i;
1528
1529 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
1530 bdf = amd_iommu_alias_table[i];
1531 if (amd_iommu_rlookup_table[bdf] == iommu)
1532 return 1;
1533 }
1534
1535 return 0;
1536}
1537
431b2a20
JR
1538/*
1539 * This function actually applies the mapping to the page table of the
1540 * dma_ops domain.
1541 */
bd0e5211
JR
1542static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
1543 struct unity_map_entry *e)
1544{
1545 u64 addr;
1546 int ret;
1547
1548 for (addr = e->address_start; addr < e->address_end;
1549 addr += PAGE_SIZE) {
abdc5eb3 1550 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
cbb9d729 1551 PAGE_SIZE);
bd0e5211
JR
1552 if (ret)
1553 return ret;
1554 /*
1555 * if unity mapping is in aperture range mark the page
1556 * as allocated in the aperture
1557 */
1558 if (addr < dma_dom->aperture_size)
c3239567 1559 __set_bit(addr >> PAGE_SHIFT,
384de729 1560 dma_dom->aperture[0]->bitmap);
bd0e5211
JR
1561 }
1562
1563 return 0;
1564}
1565
171e7b37
JR
1566/*
1567 * Init the unity mappings for a specific IOMMU in the system
1568 *
1569 * Basically iterates over all unity mapping entries and applies them to
1570 * the default domain DMA of that IOMMU if necessary.
1571 */
1572static int iommu_init_unity_mappings(struct amd_iommu *iommu)
1573{
1574 struct unity_map_entry *entry;
1575 int ret;
1576
1577 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
1578 if (!iommu_for_unity_map(iommu, entry))
1579 continue;
1580 ret = dma_ops_unity_map(iommu->default_dom, entry);
1581 if (ret)
1582 return ret;
1583 }
1584
1585 return 0;
1586}
1587
431b2a20
JR
1588/*
1589 * Inits the unity mappings required for a specific device
1590 */
bd0e5211
JR
1591static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
1592 u16 devid)
1593{
1594 struct unity_map_entry *e;
1595 int ret;
1596
1597 list_for_each_entry(e, &amd_iommu_unity_map, list) {
1598 if (!(devid >= e->devid_start && devid <= e->devid_end))
1599 continue;
1600 ret = dma_ops_unity_map(dma_dom, e);
1601 if (ret)
1602 return ret;
1603 }
1604
1605 return 0;
1606}
1607
431b2a20
JR
1608/****************************************************************************
1609 *
1610 * The next functions belong to the address allocator for the dma_ops
1611 * interface functions. They work like the allocators in the other IOMMU
1612 * drivers. Its basically a bitmap which marks the allocated pages in
1613 * the aperture. Maybe it could be enhanced in the future to a more
1614 * efficient allocator.
1615 *
1616 ****************************************************************************/
d3086444 1617
431b2a20 1618/*
384de729 1619 * The address allocator core functions.
431b2a20
JR
1620 *
1621 * called with domain->lock held
1622 */
384de729 1623
171e7b37
JR
1624/*
1625 * Used to reserve address ranges in the aperture (e.g. for exclusion
1626 * ranges.
1627 */
1628static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1629 unsigned long start_page,
1630 unsigned int pages)
1631{
1632 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1633
1634 if (start_page + pages > last_page)
1635 pages = last_page - start_page;
1636
1637 for (i = start_page; i < start_page + pages; ++i) {
1638 int index = i / APERTURE_RANGE_PAGES;
1639 int page = i % APERTURE_RANGE_PAGES;
1640 __set_bit(page, dom->aperture[index]->bitmap);
1641 }
1642}
1643
9cabe89b
JR
1644/*
1645 * This function is used to add a new aperture range to an existing
1646 * aperture in case of dma_ops domain allocation or address allocation
1647 * failure.
1648 */
576175c2 1649static int alloc_new_range(struct dma_ops_domain *dma_dom,
9cabe89b
JR
1650 bool populate, gfp_t gfp)
1651{
1652 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
576175c2 1653 struct amd_iommu *iommu;
17f5b569 1654 unsigned long i, old_size;
9cabe89b 1655
f5e9705c
JR
1656#ifdef CONFIG_IOMMU_STRESS
1657 populate = false;
1658#endif
1659
9cabe89b
JR
1660 if (index >= APERTURE_MAX_RANGES)
1661 return -ENOMEM;
1662
1663 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
1664 if (!dma_dom->aperture[index])
1665 return -ENOMEM;
1666
1667 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
1668 if (!dma_dom->aperture[index]->bitmap)
1669 goto out_free;
1670
1671 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1672
1673 if (populate) {
1674 unsigned long address = dma_dom->aperture_size;
1675 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1676 u64 *pte, *pte_page;
1677
1678 for (i = 0; i < num_ptes; ++i) {
cbb9d729 1679 pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
9cabe89b
JR
1680 &pte_page, gfp);
1681 if (!pte)
1682 goto out_free;
1683
1684 dma_dom->aperture[index]->pte_pages[i] = pte_page;
1685
1686 address += APERTURE_RANGE_SIZE / 64;
1687 }
1688 }
1689
17f5b569 1690 old_size = dma_dom->aperture_size;
9cabe89b
JR
1691 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1692
17f5b569
JR
1693 /* Reserve address range used for MSI messages */
1694 if (old_size < MSI_ADDR_BASE_LO &&
1695 dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
1696 unsigned long spage;
1697 int pages;
1698
1699 pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
1700 spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
1701
1702 dma_ops_reserve_addresses(dma_dom, spage, pages);
1703 }
1704
b595076a 1705 /* Initialize the exclusion range if necessary */
576175c2
JR
1706 for_each_iommu(iommu) {
1707 if (iommu->exclusion_start &&
1708 iommu->exclusion_start >= dma_dom->aperture[index]->offset
1709 && iommu->exclusion_start < dma_dom->aperture_size) {
1710 unsigned long startpage;
1711 int pages = iommu_num_pages(iommu->exclusion_start,
1712 iommu->exclusion_length,
1713 PAGE_SIZE);
1714 startpage = iommu->exclusion_start >> PAGE_SHIFT;
1715 dma_ops_reserve_addresses(dma_dom, startpage, pages);
1716 }
00cd122a
JR
1717 }
1718
1719 /*
1720 * Check for areas already mapped as present in the new aperture
1721 * range and mark those pages as reserved in the allocator. Such
1722 * mappings may already exist as a result of requested unity
1723 * mappings for devices.
1724 */
1725 for (i = dma_dom->aperture[index]->offset;
1726 i < dma_dom->aperture_size;
1727 i += PAGE_SIZE) {
24cd7723 1728 u64 *pte = fetch_pte(&dma_dom->domain, i);
00cd122a
JR
1729 if (!pte || !IOMMU_PTE_PRESENT(*pte))
1730 continue;
1731
fcd0861d 1732 dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
00cd122a
JR
1733 }
1734
04bfdd84
JR
1735 update_domain(&dma_dom->domain);
1736
9cabe89b
JR
1737 return 0;
1738
1739out_free:
04bfdd84
JR
1740 update_domain(&dma_dom->domain);
1741
9cabe89b
JR
1742 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1743
1744 kfree(dma_dom->aperture[index]);
1745 dma_dom->aperture[index] = NULL;
1746
1747 return -ENOMEM;
1748}
1749
384de729
JR
1750static unsigned long dma_ops_area_alloc(struct device *dev,
1751 struct dma_ops_domain *dom,
1752 unsigned int pages,
1753 unsigned long align_mask,
1754 u64 dma_mask,
1755 unsigned long start)
1756{
803b8cb4 1757 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
384de729
JR
1758 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1759 int i = start >> APERTURE_RANGE_SHIFT;
1760 unsigned long boundary_size;
1761 unsigned long address = -1;
1762 unsigned long limit;
1763
803b8cb4
JR
1764 next_bit >>= PAGE_SHIFT;
1765
384de729
JR
1766 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
1767 PAGE_SIZE) >> PAGE_SHIFT;
1768
1769 for (;i < max_index; ++i) {
1770 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1771
1772 if (dom->aperture[i]->offset >= dma_mask)
1773 break;
1774
1775 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1776 dma_mask >> PAGE_SHIFT);
1777
1778 address = iommu_area_alloc(dom->aperture[i]->bitmap,
1779 limit, next_bit, pages, 0,
1780 boundary_size, align_mask);
1781 if (address != -1) {
1782 address = dom->aperture[i]->offset +
1783 (address << PAGE_SHIFT);
803b8cb4 1784 dom->next_address = address + (pages << PAGE_SHIFT);
384de729
JR
1785 break;
1786 }
1787
1788 next_bit = 0;
1789 }
1790
1791 return address;
1792}
1793
d3086444
JR
1794static unsigned long dma_ops_alloc_addresses(struct device *dev,
1795 struct dma_ops_domain *dom,
6d4f343f 1796 unsigned int pages,
832a90c3
JR
1797 unsigned long align_mask,
1798 u64 dma_mask)
d3086444 1799{
d3086444 1800 unsigned long address;
d3086444 1801
fe16f088
JR
1802#ifdef CONFIG_IOMMU_STRESS
1803 dom->next_address = 0;
1804 dom->need_flush = true;
1805#endif
d3086444 1806
384de729 1807 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
803b8cb4 1808 dma_mask, dom->next_address);
d3086444 1809
1c655773 1810 if (address == -1) {
803b8cb4 1811 dom->next_address = 0;
384de729
JR
1812 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1813 dma_mask, 0);
1c655773
JR
1814 dom->need_flush = true;
1815 }
d3086444 1816
384de729 1817 if (unlikely(address == -1))
8fd524b3 1818 address = DMA_ERROR_CODE;
d3086444
JR
1819
1820 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1821
1822 return address;
1823}
1824
431b2a20
JR
1825/*
1826 * The address free function.
1827 *
1828 * called with domain->lock held
1829 */
d3086444
JR
1830static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1831 unsigned long address,
1832 unsigned int pages)
1833{
384de729
JR
1834 unsigned i = address >> APERTURE_RANGE_SHIFT;
1835 struct aperture_range *range = dom->aperture[i];
80be308d 1836
384de729
JR
1837 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1838
47bccd6b
JR
1839#ifdef CONFIG_IOMMU_STRESS
1840 if (i < 4)
1841 return;
1842#endif
80be308d 1843
803b8cb4 1844 if (address >= dom->next_address)
80be308d 1845 dom->need_flush = true;
384de729
JR
1846
1847 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
803b8cb4 1848
a66022c4 1849 bitmap_clear(range->bitmap, address, pages);
384de729 1850
d3086444
JR
1851}
1852
431b2a20
JR
1853/****************************************************************************
1854 *
1855 * The next functions belong to the domain allocation. A domain is
1856 * allocated for every IOMMU as the default domain. If device isolation
1857 * is enabled, every device get its own domain. The most important thing
1858 * about domains is the page table mapping the DMA address space they
1859 * contain.
1860 *
1861 ****************************************************************************/
1862
aeb26f55
JR
1863/*
1864 * This function adds a protection domain to the global protection domain list
1865 */
1866static void add_domain_to_list(struct protection_domain *domain)
1867{
1868 unsigned long flags;
1869
1870 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1871 list_add(&domain->list, &amd_iommu_pd_list);
1872 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1873}
1874
1875/*
1876 * This function removes a protection domain to the global
1877 * protection domain list
1878 */
1879static void del_domain_from_list(struct protection_domain *domain)
1880{
1881 unsigned long flags;
1882
1883 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1884 list_del(&domain->list);
1885 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1886}
1887
ec487d1a
JR
1888static u16 domain_id_alloc(void)
1889{
1890 unsigned long flags;
1891 int id;
1892
1893 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1894 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1895 BUG_ON(id == 0);
1896 if (id > 0 && id < MAX_DOMAIN_ID)
1897 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1898 else
1899 id = 0;
1900 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1901
1902 return id;
1903}
1904
a2acfb75
JR
1905static void domain_id_free(int id)
1906{
1907 unsigned long flags;
1908
1909 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1910 if (id > 0 && id < MAX_DOMAIN_ID)
1911 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1912 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1913}
a2acfb75 1914
5c34c403
JR
1915#define DEFINE_FREE_PT_FN(LVL, FN) \
1916static void free_pt_##LVL (unsigned long __pt) \
1917{ \
1918 unsigned long p; \
1919 u64 *pt; \
1920 int i; \
1921 \
1922 pt = (u64 *)__pt; \
1923 \
1924 for (i = 0; i < 512; ++i) { \
1925 if (!IOMMU_PTE_PRESENT(pt[i])) \
1926 continue; \
1927 \
1928 p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
1929 FN(p); \
1930 } \
1931 free_page((unsigned long)pt); \
1932}
1933
1934DEFINE_FREE_PT_FN(l2, free_page)
1935DEFINE_FREE_PT_FN(l3, free_pt_l2)
1936DEFINE_FREE_PT_FN(l4, free_pt_l3)
1937DEFINE_FREE_PT_FN(l5, free_pt_l4)
1938DEFINE_FREE_PT_FN(l6, free_pt_l5)
1939
86db2e5d 1940static void free_pagetable(struct protection_domain *domain)
ec487d1a 1941{
5c34c403 1942 unsigned long root = (unsigned long)domain->pt_root;
ec487d1a 1943
5c34c403
JR
1944 switch (domain->mode) {
1945 case PAGE_MODE_NONE:
1946 break;
1947 case PAGE_MODE_1_LEVEL:
1948 free_page(root);
1949 break;
1950 case PAGE_MODE_2_LEVEL:
1951 free_pt_l2(root);
1952 break;
1953 case PAGE_MODE_3_LEVEL:
1954 free_pt_l3(root);
1955 break;
1956 case PAGE_MODE_4_LEVEL:
1957 free_pt_l4(root);
1958 break;
1959 case PAGE_MODE_5_LEVEL:
1960 free_pt_l5(root);
1961 break;
1962 case PAGE_MODE_6_LEVEL:
1963 free_pt_l6(root);
1964 break;
1965 default:
1966 BUG();
ec487d1a 1967 }
ec487d1a
JR
1968}
1969
b16137b1
JR
1970static void free_gcr3_tbl_level1(u64 *tbl)
1971{
1972 u64 *ptr;
1973 int i;
1974
1975 for (i = 0; i < 512; ++i) {
1976 if (!(tbl[i] & GCR3_VALID))
1977 continue;
1978
1979 ptr = __va(tbl[i] & PAGE_MASK);
1980
1981 free_page((unsigned long)ptr);
1982 }
1983}
1984
1985static void free_gcr3_tbl_level2(u64 *tbl)
1986{
1987 u64 *ptr;
1988 int i;
1989
1990 for (i = 0; i < 512; ++i) {
1991 if (!(tbl[i] & GCR3_VALID))
1992 continue;
1993
1994 ptr = __va(tbl[i] & PAGE_MASK);
1995
1996 free_gcr3_tbl_level1(ptr);
1997 }
1998}
1999
52815b75
JR
2000static void free_gcr3_table(struct protection_domain *domain)
2001{
b16137b1
JR
2002 if (domain->glx == 2)
2003 free_gcr3_tbl_level2(domain->gcr3_tbl);
2004 else if (domain->glx == 1)
2005 free_gcr3_tbl_level1(domain->gcr3_tbl);
2006 else if (domain->glx != 0)
2007 BUG();
2008
52815b75
JR
2009 free_page((unsigned long)domain->gcr3_tbl);
2010}
2011
431b2a20
JR
2012/*
2013 * Free a domain, only used if something went wrong in the
2014 * allocation path and we need to free an already allocated page table
2015 */
ec487d1a
JR
2016static void dma_ops_domain_free(struct dma_ops_domain *dom)
2017{
384de729
JR
2018 int i;
2019
ec487d1a
JR
2020 if (!dom)
2021 return;
2022
aeb26f55
JR
2023 del_domain_from_list(&dom->domain);
2024
86db2e5d 2025 free_pagetable(&dom->domain);
ec487d1a 2026
384de729
JR
2027 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
2028 if (!dom->aperture[i])
2029 continue;
2030 free_page((unsigned long)dom->aperture[i]->bitmap);
2031 kfree(dom->aperture[i]);
2032 }
ec487d1a
JR
2033
2034 kfree(dom);
2035}
2036
431b2a20
JR
2037/*
2038 * Allocates a new protection domain usable for the dma_ops functions.
b595076a 2039 * It also initializes the page table and the address allocator data
431b2a20
JR
2040 * structures required for the dma_ops interface
2041 */
87a64d52 2042static struct dma_ops_domain *dma_ops_domain_alloc(void)
ec487d1a
JR
2043{
2044 struct dma_ops_domain *dma_dom;
ec487d1a
JR
2045
2046 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
2047 if (!dma_dom)
2048 return NULL;
2049
2050 spin_lock_init(&dma_dom->domain.lock);
2051
2052 dma_dom->domain.id = domain_id_alloc();
2053 if (dma_dom->domain.id == 0)
2054 goto free_dma_dom;
7c392cbe 2055 INIT_LIST_HEAD(&dma_dom->domain.dev_list);
8f7a017c 2056 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
ec487d1a 2057 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
9fdb19d6 2058 dma_dom->domain.flags = PD_DMA_OPS_MASK;
ec487d1a
JR
2059 dma_dom->domain.priv = dma_dom;
2060 if (!dma_dom->domain.pt_root)
2061 goto free_dma_dom;
ec487d1a 2062
1c655773 2063 dma_dom->need_flush = false;
bd60b735 2064 dma_dom->target_dev = 0xffff;
1c655773 2065
aeb26f55
JR
2066 add_domain_to_list(&dma_dom->domain);
2067
576175c2 2068 if (alloc_new_range(dma_dom, true, GFP_KERNEL))
ec487d1a 2069 goto free_dma_dom;
ec487d1a 2070
431b2a20 2071 /*
ec487d1a
JR
2072 * mark the first page as allocated so we never return 0 as
2073 * a valid dma-address. So we can use 0 as error value
431b2a20 2074 */
384de729 2075 dma_dom->aperture[0]->bitmap[0] = 1;
803b8cb4 2076 dma_dom->next_address = 0;
ec487d1a 2077
ec487d1a
JR
2078
2079 return dma_dom;
2080
2081free_dma_dom:
2082 dma_ops_domain_free(dma_dom);
2083
2084 return NULL;
2085}
2086
5b28df6f
JR
2087/*
2088 * little helper function to check whether a given protection domain is a
2089 * dma_ops domain
2090 */
2091static bool dma_ops_domain(struct protection_domain *domain)
2092{
2093 return domain->flags & PD_DMA_OPS_MASK;
2094}
2095
fd7b5535 2096static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
b20ac0d4 2097{
132bd68f 2098 u64 pte_root = 0;
ee6c2868 2099 u64 flags = 0;
863c74eb 2100
132bd68f
JR
2101 if (domain->mode != PAGE_MODE_NONE)
2102 pte_root = virt_to_phys(domain->pt_root);
2103
38ddf41b
JR
2104 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
2105 << DEV_ENTRY_MODE_SHIFT;
2106 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
b20ac0d4 2107
ee6c2868
JR
2108 flags = amd_iommu_dev_table[devid].data[1];
2109
fd7b5535
JR
2110 if (ats)
2111 flags |= DTE_FLAG_IOTLB;
2112
52815b75
JR
2113 if (domain->flags & PD_IOMMUV2_MASK) {
2114 u64 gcr3 = __pa(domain->gcr3_tbl);
2115 u64 glx = domain->glx;
2116 u64 tmp;
2117
2118 pte_root |= DTE_FLAG_GV;
2119 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
2120
2121 /* First mask out possible old values for GCR3 table */
2122 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
2123 flags &= ~tmp;
2124
2125 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
2126 flags &= ~tmp;
2127
2128 /* Encode GCR3 table into DTE */
2129 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
2130 pte_root |= tmp;
2131
2132 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
2133 flags |= tmp;
2134
2135 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
2136 flags |= tmp;
2137 }
2138
ee6c2868
JR
2139 flags &= ~(0xffffUL);
2140 flags |= domain->id;
2141
2142 amd_iommu_dev_table[devid].data[1] = flags;
2143 amd_iommu_dev_table[devid].data[0] = pte_root;
15898bbc
JR
2144}
2145
2146static void clear_dte_entry(u16 devid)
2147{
15898bbc
JR
2148 /* remove entry from the device table seen by the hardware */
2149 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
2150 amd_iommu_dev_table[devid].data[1] = 0;
15898bbc
JR
2151
2152 amd_iommu_apply_erratum_63(devid);
7f760ddd
JR
2153}
2154
ec9e79ef
JR
2155static void do_attach(struct iommu_dev_data *dev_data,
2156 struct protection_domain *domain)
7f760ddd 2157{
7f760ddd 2158 struct amd_iommu *iommu;
ec9e79ef 2159 bool ats;
fd7b5535 2160
ec9e79ef
JR
2161 iommu = amd_iommu_rlookup_table[dev_data->devid];
2162 ats = dev_data->ats.enabled;
7f760ddd
JR
2163
2164 /* Update data structures */
2165 dev_data->domain = domain;
2166 list_add(&dev_data->list, &domain->dev_list);
f62dda66 2167 set_dte_entry(dev_data->devid, domain, ats);
7f760ddd
JR
2168
2169 /* Do reference counting */
2170 domain->dev_iommu[iommu->index] += 1;
2171 domain->dev_cnt += 1;
2172
2173 /* Flush the DTE entry */
6c542047 2174 device_flush_dte(dev_data);
7f760ddd
JR
2175}
2176
ec9e79ef 2177static void do_detach(struct iommu_dev_data *dev_data)
7f760ddd 2178{
7f760ddd 2179 struct amd_iommu *iommu;
7f760ddd 2180
ec9e79ef 2181 iommu = amd_iommu_rlookup_table[dev_data->devid];
15898bbc
JR
2182
2183 /* decrease reference counters */
7f760ddd
JR
2184 dev_data->domain->dev_iommu[iommu->index] -= 1;
2185 dev_data->domain->dev_cnt -= 1;
2186
2187 /* Update data structures */
2188 dev_data->domain = NULL;
2189 list_del(&dev_data->list);
f62dda66 2190 clear_dte_entry(dev_data->devid);
15898bbc 2191
7f760ddd 2192 /* Flush the DTE entry */
6c542047 2193 device_flush_dte(dev_data);
2b681faf
JR
2194}
2195
2196/*
2197 * If a device is not yet associated with a domain, this function does
2198 * assigns it visible for the hardware
2199 */
ec9e79ef 2200static int __attach_device(struct iommu_dev_data *dev_data,
15898bbc 2201 struct protection_domain *domain)
2b681faf 2202{
84fe6c19 2203 int ret;
657cbb6b 2204
2b681faf
JR
2205 /* lock domain */
2206 spin_lock(&domain->lock);
2207
71f77580
JR
2208 if (dev_data->alias_data != NULL) {
2209 struct iommu_dev_data *alias_data = dev_data->alias_data;
15898bbc 2210
2b02b091
JR
2211 /* Some sanity checks */
2212 ret = -EBUSY;
2213 if (alias_data->domain != NULL &&
2214 alias_data->domain != domain)
2215 goto out_unlock;
eba6ac60 2216
2b02b091
JR
2217 if (dev_data->domain != NULL &&
2218 dev_data->domain != domain)
2219 goto out_unlock;
15898bbc 2220
2b02b091 2221 /* Do real assignment */
7f760ddd 2222 if (alias_data->domain == NULL)
ec9e79ef 2223 do_attach(alias_data, domain);
24100055
JR
2224
2225 atomic_inc(&alias_data->bind);
657cbb6b 2226 }
15898bbc 2227
7f760ddd 2228 if (dev_data->domain == NULL)
ec9e79ef 2229 do_attach(dev_data, domain);
eba6ac60 2230
24100055
JR
2231 atomic_inc(&dev_data->bind);
2232
84fe6c19
JL
2233 ret = 0;
2234
2235out_unlock:
2236
eba6ac60
JR
2237 /* ready */
2238 spin_unlock(&domain->lock);
15898bbc 2239
84fe6c19 2240 return ret;
0feae533 2241}
b20ac0d4 2242
52815b75
JR
2243
2244static void pdev_iommuv2_disable(struct pci_dev *pdev)
2245{
2246 pci_disable_ats(pdev);
2247 pci_disable_pri(pdev);
2248 pci_disable_pasid(pdev);
2249}
2250
6a113ddc
JR
2251/* FIXME: Change generic reset-function to do the same */
2252static int pri_reset_while_enabled(struct pci_dev *pdev)
2253{
2254 u16 control;
2255 int pos;
2256
46277b75 2257 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
6a113ddc
JR
2258 if (!pos)
2259 return -EINVAL;
2260
46277b75
JR
2261 pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2262 control |= PCI_PRI_CTRL_RESET;
2263 pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
6a113ddc
JR
2264
2265 return 0;
2266}
2267
52815b75
JR
2268static int pdev_iommuv2_enable(struct pci_dev *pdev)
2269{
6a113ddc
JR
2270 bool reset_enable;
2271 int reqs, ret;
2272
2273 /* FIXME: Hardcode number of outstanding requests for now */
2274 reqs = 32;
2275 if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2276 reqs = 1;
2277 reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
52815b75
JR
2278
2279 /* Only allow access to user-accessible pages */
2280 ret = pci_enable_pasid(pdev, 0);
2281 if (ret)
2282 goto out_err;
2283
2284 /* First reset the PRI state of the device */
2285 ret = pci_reset_pri(pdev);
2286 if (ret)
2287 goto out_err;
2288
6a113ddc
JR
2289 /* Enable PRI */
2290 ret = pci_enable_pri(pdev, reqs);
52815b75
JR
2291 if (ret)
2292 goto out_err;
2293
6a113ddc
JR
2294 if (reset_enable) {
2295 ret = pri_reset_while_enabled(pdev);
2296 if (ret)
2297 goto out_err;
2298 }
2299
52815b75
JR
2300 ret = pci_enable_ats(pdev, PAGE_SHIFT);
2301 if (ret)
2302 goto out_err;
2303
2304 return 0;
2305
2306out_err:
2307 pci_disable_pri(pdev);
2308 pci_disable_pasid(pdev);
2309
2310 return ret;
2311}
2312
c99afa25 2313/* FIXME: Move this to PCI code */
a3b93121 2314#define PCI_PRI_TLP_OFF (1 << 15)
c99afa25 2315
98f1ad25 2316static bool pci_pri_tlp_required(struct pci_dev *pdev)
c99afa25 2317{
a3b93121 2318 u16 status;
c99afa25
JR
2319 int pos;
2320
46277b75 2321 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
c99afa25
JR
2322 if (!pos)
2323 return false;
2324
a3b93121 2325 pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
c99afa25 2326
a3b93121 2327 return (status & PCI_PRI_TLP_OFF) ? true : false;
c99afa25
JR
2328}
2329
407d733e 2330/*
df805abb 2331 * If a device is not yet associated with a domain, this function
407d733e
JR
2332 * assigns it visible for the hardware
2333 */
15898bbc
JR
2334static int attach_device(struct device *dev,
2335 struct protection_domain *domain)
0feae533 2336{
fd7b5535 2337 struct pci_dev *pdev = to_pci_dev(dev);
ea61cddb 2338 struct iommu_dev_data *dev_data;
eba6ac60 2339 unsigned long flags;
15898bbc 2340 int ret;
eba6ac60 2341
ea61cddb
JR
2342 dev_data = get_dev_data(dev);
2343
52815b75
JR
2344 if (domain->flags & PD_IOMMUV2_MASK) {
2345 if (!dev_data->iommu_v2 || !dev_data->passthrough)
2346 return -EINVAL;
2347
2348 if (pdev_iommuv2_enable(pdev) != 0)
2349 return -EINVAL;
2350
2351 dev_data->ats.enabled = true;
2352 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
c99afa25 2353 dev_data->pri_tlp = pci_pri_tlp_required(pdev);
52815b75
JR
2354 } else if (amd_iommu_iotlb_sup &&
2355 pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
ea61cddb
JR
2356 dev_data->ats.enabled = true;
2357 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2358 }
fd7b5535 2359
eba6ac60 2360 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
ec9e79ef 2361 ret = __attach_device(dev_data, domain);
b20ac0d4
JR
2362 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2363
0feae533
JR
2364 /*
2365 * We might boot into a crash-kernel here. The crashed kernel
2366 * left the caches in the IOMMU dirty. So we have to flush
2367 * here to evict all dirty stuff.
2368 */
17b124bf 2369 domain_flush_tlb_pde(domain);
15898bbc
JR
2370
2371 return ret;
b20ac0d4
JR
2372}
2373
355bf553
JR
2374/*
2375 * Removes a device from a protection domain (unlocked)
2376 */
ec9e79ef 2377static void __detach_device(struct iommu_dev_data *dev_data)
355bf553 2378{
2ca76279 2379 struct protection_domain *domain;
7c392cbe 2380 unsigned long flags;
c4596114 2381
7f760ddd 2382 BUG_ON(!dev_data->domain);
355bf553 2383
2ca76279
JR
2384 domain = dev_data->domain;
2385
2386 spin_lock_irqsave(&domain->lock, flags);
24100055 2387
71f77580
JR
2388 if (dev_data->alias_data != NULL) {
2389 struct iommu_dev_data *alias_data = dev_data->alias_data;
2390
7f760ddd 2391 if (atomic_dec_and_test(&alias_data->bind))
ec9e79ef 2392 do_detach(alias_data);
24100055
JR
2393 }
2394
7f760ddd 2395 if (atomic_dec_and_test(&dev_data->bind))
ec9e79ef 2396 do_detach(dev_data);
7f760ddd 2397
2ca76279 2398 spin_unlock_irqrestore(&domain->lock, flags);
21129f78
JR
2399
2400 /*
2401 * If we run in passthrough mode the device must be assigned to the
d3ad9373
JR
2402 * passthrough domain if it is detached from any other domain.
2403 * Make sure we can deassign from the pt_domain itself.
21129f78 2404 */
5abcdba4 2405 if (dev_data->passthrough &&
d3ad9373 2406 (dev_data->domain == NULL && domain != pt_domain))
ec9e79ef 2407 __attach_device(dev_data, pt_domain);
355bf553
JR
2408}
2409
2410/*
2411 * Removes a device from a protection domain (with devtable_lock held)
2412 */
15898bbc 2413static void detach_device(struct device *dev)
355bf553 2414{
52815b75 2415 struct protection_domain *domain;
ea61cddb 2416 struct iommu_dev_data *dev_data;
355bf553
JR
2417 unsigned long flags;
2418
ec9e79ef 2419 dev_data = get_dev_data(dev);
52815b75 2420 domain = dev_data->domain;
ec9e79ef 2421
355bf553
JR
2422 /* lock device table */
2423 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
ec9e79ef 2424 __detach_device(dev_data);
355bf553 2425 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
fd7b5535 2426
52815b75
JR
2427 if (domain->flags & PD_IOMMUV2_MASK)
2428 pdev_iommuv2_disable(to_pci_dev(dev));
2429 else if (dev_data->ats.enabled)
ea61cddb 2430 pci_disable_ats(to_pci_dev(dev));
52815b75
JR
2431
2432 dev_data->ats.enabled = false;
355bf553 2433}
e275a2a0 2434
15898bbc
JR
2435/*
2436 * Find out the protection domain structure for a given PCI device. This
2437 * will give us the pointer to the page table root for example.
2438 */
2439static struct protection_domain *domain_for_device(struct device *dev)
2440{
71f77580 2441 struct iommu_dev_data *dev_data;
2b02b091 2442 struct protection_domain *dom = NULL;
15898bbc 2443 unsigned long flags;
15898bbc 2444
657cbb6b 2445 dev_data = get_dev_data(dev);
15898bbc 2446
2b02b091
JR
2447 if (dev_data->domain)
2448 return dev_data->domain;
15898bbc 2449
71f77580
JR
2450 if (dev_data->alias_data != NULL) {
2451 struct iommu_dev_data *alias_data = dev_data->alias_data;
2b02b091
JR
2452
2453 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
2454 if (alias_data->domain != NULL) {
2455 __attach_device(dev_data, alias_data->domain);
2456 dom = alias_data->domain;
2457 }
2458 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2459 }
15898bbc
JR
2460
2461 return dom;
2462}
2463
e275a2a0
JR
2464static int device_change_notifier(struct notifier_block *nb,
2465 unsigned long action, void *data)
2466{
e275a2a0 2467 struct dma_ops_domain *dma_domain;
5abcdba4
JR
2468 struct protection_domain *domain;
2469 struct iommu_dev_data *dev_data;
2470 struct device *dev = data;
e275a2a0 2471 struct amd_iommu *iommu;
1ac4cbbc 2472 unsigned long flags;
5abcdba4 2473 u16 devid;
e275a2a0 2474
98fc5a69
JR
2475 if (!check_device(dev))
2476 return 0;
e275a2a0 2477
5abcdba4
JR
2478 devid = get_device_id(dev);
2479 iommu = amd_iommu_rlookup_table[devid];
2480 dev_data = get_dev_data(dev);
e275a2a0
JR
2481
2482 switch (action) {
c1eee67b 2483 case BUS_NOTIFY_UNBOUND_DRIVER:
657cbb6b
JR
2484
2485 domain = domain_for_device(dev);
2486
e275a2a0
JR
2487 if (!domain)
2488 goto out;
5abcdba4 2489 if (dev_data->passthrough)
a1ca331c 2490 break;
15898bbc 2491 detach_device(dev);
1ac4cbbc
JR
2492 break;
2493 case BUS_NOTIFY_ADD_DEVICE:
657cbb6b
JR
2494
2495 iommu_init_device(dev);
2496
2c9195e9
JR
2497 /*
2498 * dev_data is still NULL and
2499 * got initialized in iommu_init_device
2500 */
2501 dev_data = get_dev_data(dev);
2502
2503 if (iommu_pass_through || dev_data->iommu_v2) {
2504 dev_data->passthrough = true;
2505 attach_device(dev, pt_domain);
2506 break;
2507 }
2508
657cbb6b
JR
2509 domain = domain_for_device(dev);
2510
1ac4cbbc
JR
2511 /* allocate a protection domain if a device is added */
2512 dma_domain = find_protection_domain(devid);
c2a2876e
JR
2513 if (!dma_domain) {
2514 dma_domain = dma_ops_domain_alloc();
2515 if (!dma_domain)
2516 goto out;
2517 dma_domain->target_dev = devid;
2518
2519 spin_lock_irqsave(&iommu_pd_list_lock, flags);
2520 list_add_tail(&dma_domain->list, &iommu_pd_list);
2521 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
2522 }
ac1534a5 2523
2c9195e9 2524 dev->archdata.dma_ops = &amd_iommu_dma_ops;
ac1534a5 2525
e275a2a0 2526 break;
657cbb6b
JR
2527 case BUS_NOTIFY_DEL_DEVICE:
2528
2529 iommu_uninit_device(dev);
2530
e275a2a0
JR
2531 default:
2532 goto out;
2533 }
2534
e275a2a0
JR
2535 iommu_completion_wait(iommu);
2536
2537out:
2538 return 0;
2539}
2540
b25ae679 2541static struct notifier_block device_nb = {
e275a2a0
JR
2542 .notifier_call = device_change_notifier,
2543};
355bf553 2544
8638c491
JR
2545void amd_iommu_init_notifier(void)
2546{
2547 bus_register_notifier(&pci_bus_type, &device_nb);
2548}
2549
431b2a20
JR
2550/*****************************************************************************
2551 *
2552 * The next functions belong to the dma_ops mapping/unmapping code.
2553 *
2554 *****************************************************************************/
2555
2556/*
2557 * In the dma_ops path we only have the struct device. This function
2558 * finds the corresponding IOMMU, the protection domain and the
2559 * requestor id for a given device.
2560 * If the device is not yet associated with a domain this is also done
2561 * in this function.
2562 */
94f6d190 2563static struct protection_domain *get_domain(struct device *dev)
b20ac0d4 2564{
94f6d190 2565 struct protection_domain *domain;
b20ac0d4 2566 struct dma_ops_domain *dma_dom;
94f6d190 2567 u16 devid = get_device_id(dev);
b20ac0d4 2568
f99c0f1c 2569 if (!check_device(dev))
94f6d190 2570 return ERR_PTR(-EINVAL);
b20ac0d4 2571
94f6d190
JR
2572 domain = domain_for_device(dev);
2573 if (domain != NULL && !dma_ops_domain(domain))
2574 return ERR_PTR(-EBUSY);
f99c0f1c 2575
94f6d190
JR
2576 if (domain != NULL)
2577 return domain;
b20ac0d4 2578
df805abb 2579 /* Device not bound yet - bind it */
94f6d190 2580 dma_dom = find_protection_domain(devid);
15898bbc 2581 if (!dma_dom)
94f6d190
JR
2582 dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
2583 attach_device(dev, &dma_dom->domain);
15898bbc 2584 DUMP_printk("Using protection domain %d for device %s\n",
94f6d190 2585 dma_dom->domain.id, dev_name(dev));
f91ba190 2586
94f6d190 2587 return &dma_dom->domain;
b20ac0d4
JR
2588}
2589
04bfdd84
JR
2590static void update_device_table(struct protection_domain *domain)
2591{
492667da 2592 struct iommu_dev_data *dev_data;
04bfdd84 2593
ea61cddb
JR
2594 list_for_each_entry(dev_data, &domain->dev_list, list)
2595 set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
04bfdd84
JR
2596}
2597
2598static void update_domain(struct protection_domain *domain)
2599{
2600 if (!domain->updated)
2601 return;
2602
2603 update_device_table(domain);
17b124bf
JR
2604
2605 domain_flush_devices(domain);
2606 domain_flush_tlb_pde(domain);
04bfdd84
JR
2607
2608 domain->updated = false;
2609}
2610
8bda3092
JR
2611/*
2612 * This function fetches the PTE for a given address in the aperture
2613 */
2614static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
2615 unsigned long address)
2616{
384de729 2617 struct aperture_range *aperture;
8bda3092
JR
2618 u64 *pte, *pte_page;
2619
384de729
JR
2620 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2621 if (!aperture)
2622 return NULL;
2623
2624 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
8bda3092 2625 if (!pte) {
cbb9d729 2626 pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
abdc5eb3 2627 GFP_ATOMIC);
384de729
JR
2628 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
2629 } else
8c8c143c 2630 pte += PM_LEVEL_INDEX(0, address);
8bda3092 2631
04bfdd84 2632 update_domain(&dom->domain);
8bda3092
JR
2633
2634 return pte;
2635}
2636
431b2a20
JR
2637/*
2638 * This is the generic map function. It maps one 4kb page at paddr to
2639 * the given address in the DMA address space for the domain.
2640 */
680525e0 2641static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
cb76c322
JR
2642 unsigned long address,
2643 phys_addr_t paddr,
2644 int direction)
2645{
2646 u64 *pte, __pte;
2647
2648 WARN_ON(address > dom->aperture_size);
2649
2650 paddr &= PAGE_MASK;
2651
8bda3092 2652 pte = dma_ops_get_pte(dom, address);
53812c11 2653 if (!pte)
8fd524b3 2654 return DMA_ERROR_CODE;
cb76c322
JR
2655
2656 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
2657
2658 if (direction == DMA_TO_DEVICE)
2659 __pte |= IOMMU_PTE_IR;
2660 else if (direction == DMA_FROM_DEVICE)
2661 __pte |= IOMMU_PTE_IW;
2662 else if (direction == DMA_BIDIRECTIONAL)
2663 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
2664
2665 WARN_ON(*pte);
2666
2667 *pte = __pte;
2668
2669 return (dma_addr_t)address;
2670}
2671
431b2a20
JR
2672/*
2673 * The generic unmapping function for on page in the DMA address space.
2674 */
680525e0 2675static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
cb76c322
JR
2676 unsigned long address)
2677{
384de729 2678 struct aperture_range *aperture;
cb76c322
JR
2679 u64 *pte;
2680
2681 if (address >= dom->aperture_size)
2682 return;
2683
384de729
JR
2684 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2685 if (!aperture)
2686 return;
2687
2688 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2689 if (!pte)
2690 return;
cb76c322 2691
8c8c143c 2692 pte += PM_LEVEL_INDEX(0, address);
cb76c322
JR
2693
2694 WARN_ON(!*pte);
2695
2696 *pte = 0ULL;
2697}
2698
431b2a20
JR
2699/*
2700 * This function contains common code for mapping of a physically
24f81160
JR
2701 * contiguous memory region into DMA address space. It is used by all
2702 * mapping functions provided with this IOMMU driver.
431b2a20
JR
2703 * Must be called with the domain lock held.
2704 */
cb76c322 2705static dma_addr_t __map_single(struct device *dev,
cb76c322
JR
2706 struct dma_ops_domain *dma_dom,
2707 phys_addr_t paddr,
2708 size_t size,
6d4f343f 2709 int dir,
832a90c3
JR
2710 bool align,
2711 u64 dma_mask)
cb76c322
JR
2712{
2713 dma_addr_t offset = paddr & ~PAGE_MASK;
53812c11 2714 dma_addr_t address, start, ret;
cb76c322 2715 unsigned int pages;
6d4f343f 2716 unsigned long align_mask = 0;
cb76c322
JR
2717 int i;
2718
e3c449f5 2719 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
cb76c322
JR
2720 paddr &= PAGE_MASK;
2721
8ecaf8f1
JR
2722 INC_STATS_COUNTER(total_map_requests);
2723
c1858976
JR
2724 if (pages > 1)
2725 INC_STATS_COUNTER(cross_page);
2726
6d4f343f
JR
2727 if (align)
2728 align_mask = (1UL << get_order(size)) - 1;
2729
11b83888 2730retry:
832a90c3
JR
2731 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
2732 dma_mask);
8fd524b3 2733 if (unlikely(address == DMA_ERROR_CODE)) {
11b83888
JR
2734 /*
2735 * setting next_address here will let the address
2736 * allocator only scan the new allocated range in the
2737 * first run. This is a small optimization.
2738 */
2739 dma_dom->next_address = dma_dom->aperture_size;
2740
576175c2 2741 if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
11b83888
JR
2742 goto out;
2743
2744 /*
af901ca1 2745 * aperture was successfully enlarged by 128 MB, try
11b83888
JR
2746 * allocation again
2747 */
2748 goto retry;
2749 }
cb76c322
JR
2750
2751 start = address;
2752 for (i = 0; i < pages; ++i) {
680525e0 2753 ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
8fd524b3 2754 if (ret == DMA_ERROR_CODE)
53812c11
JR
2755 goto out_unmap;
2756
cb76c322
JR
2757 paddr += PAGE_SIZE;
2758 start += PAGE_SIZE;
2759 }
2760 address += offset;
2761
5774f7c5
JR
2762 ADD_STATS_COUNTER(alloced_io_mem, size);
2763
afa9fdc2 2764 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
17b124bf 2765 domain_flush_tlb(&dma_dom->domain);
1c655773 2766 dma_dom->need_flush = false;
318afd41 2767 } else if (unlikely(amd_iommu_np_cache))
17b124bf 2768 domain_flush_pages(&dma_dom->domain, address, size);
270cab24 2769
cb76c322
JR
2770out:
2771 return address;
53812c11
JR
2772
2773out_unmap:
2774
2775 for (--i; i >= 0; --i) {
2776 start -= PAGE_SIZE;
680525e0 2777 dma_ops_domain_unmap(dma_dom, start);
53812c11
JR
2778 }
2779
2780 dma_ops_free_addresses(dma_dom, address, pages);
2781
8fd524b3 2782 return DMA_ERROR_CODE;
cb76c322
JR
2783}
2784
431b2a20
JR
2785/*
2786 * Does the reverse of the __map_single function. Must be called with
2787 * the domain lock held too
2788 */
cd8c82e8 2789static void __unmap_single(struct dma_ops_domain *dma_dom,
cb76c322
JR
2790 dma_addr_t dma_addr,
2791 size_t size,
2792 int dir)
2793{
04e0463e 2794 dma_addr_t flush_addr;
cb76c322
JR
2795 dma_addr_t i, start;
2796 unsigned int pages;
2797
8fd524b3 2798 if ((dma_addr == DMA_ERROR_CODE) ||
b8d9905d 2799 (dma_addr + size > dma_dom->aperture_size))
cb76c322
JR
2800 return;
2801
04e0463e 2802 flush_addr = dma_addr;
e3c449f5 2803 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
cb76c322
JR
2804 dma_addr &= PAGE_MASK;
2805 start = dma_addr;
2806
2807 for (i = 0; i < pages; ++i) {
680525e0 2808 dma_ops_domain_unmap(dma_dom, start);
cb76c322
JR
2809 start += PAGE_SIZE;
2810 }
2811
5774f7c5
JR
2812 SUB_STATS_COUNTER(alloced_io_mem, size);
2813
cb76c322 2814 dma_ops_free_addresses(dma_dom, dma_addr, pages);
270cab24 2815
80be308d 2816 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
17b124bf 2817 domain_flush_pages(&dma_dom->domain, flush_addr, size);
80be308d
JR
2818 dma_dom->need_flush = false;
2819 }
cb76c322
JR
2820}
2821
431b2a20
JR
2822/*
2823 * The exported map_single function for dma_ops.
2824 */
51491367
FT
2825static dma_addr_t map_page(struct device *dev, struct page *page,
2826 unsigned long offset, size_t size,
2827 enum dma_data_direction dir,
2828 struct dma_attrs *attrs)
4da70b9e
JR
2829{
2830 unsigned long flags;
4da70b9e 2831 struct protection_domain *domain;
4da70b9e 2832 dma_addr_t addr;
832a90c3 2833 u64 dma_mask;
51491367 2834 phys_addr_t paddr = page_to_phys(page) + offset;
4da70b9e 2835
0f2a86f2
JR
2836 INC_STATS_COUNTER(cnt_map_single);
2837
94f6d190
JR
2838 domain = get_domain(dev);
2839 if (PTR_ERR(domain) == -EINVAL)
4da70b9e 2840 return (dma_addr_t)paddr;
94f6d190
JR
2841 else if (IS_ERR(domain))
2842 return DMA_ERROR_CODE;
4da70b9e 2843
f99c0f1c
JR
2844 dma_mask = *dev->dma_mask;
2845
4da70b9e 2846 spin_lock_irqsave(&domain->lock, flags);
94f6d190 2847
cd8c82e8 2848 addr = __map_single(dev, domain->priv, paddr, size, dir, false,
832a90c3 2849 dma_mask);
8fd524b3 2850 if (addr == DMA_ERROR_CODE)
4da70b9e
JR
2851 goto out;
2852
17b124bf 2853 domain_flush_complete(domain);
4da70b9e
JR
2854
2855out:
2856 spin_unlock_irqrestore(&domain->lock, flags);
2857
2858 return addr;
2859}
2860
431b2a20
JR
2861/*
2862 * The exported unmap_single function for dma_ops.
2863 */
51491367
FT
2864static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2865 enum dma_data_direction dir, struct dma_attrs *attrs)
4da70b9e
JR
2866{
2867 unsigned long flags;
4da70b9e 2868 struct protection_domain *domain;
4da70b9e 2869
146a6917
JR
2870 INC_STATS_COUNTER(cnt_unmap_single);
2871
94f6d190
JR
2872 domain = get_domain(dev);
2873 if (IS_ERR(domain))
5b28df6f
JR
2874 return;
2875
4da70b9e
JR
2876 spin_lock_irqsave(&domain->lock, flags);
2877
cd8c82e8 2878 __unmap_single(domain->priv, dma_addr, size, dir);
4da70b9e 2879
17b124bf 2880 domain_flush_complete(domain);
4da70b9e
JR
2881
2882 spin_unlock_irqrestore(&domain->lock, flags);
2883}
2884
431b2a20
JR
2885/*
2886 * The exported map_sg function for dma_ops (handles scatter-gather
2887 * lists).
2888 */
65b050ad 2889static int map_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
2890 int nelems, enum dma_data_direction dir,
2891 struct dma_attrs *attrs)
65b050ad
JR
2892{
2893 unsigned long flags;
65b050ad 2894 struct protection_domain *domain;
65b050ad
JR
2895 int i;
2896 struct scatterlist *s;
2897 phys_addr_t paddr;
2898 int mapped_elems = 0;
832a90c3 2899 u64 dma_mask;
65b050ad 2900
d03f067a
JR
2901 INC_STATS_COUNTER(cnt_map_sg);
2902
94f6d190 2903 domain = get_domain(dev);
a0e191b2 2904 if (IS_ERR(domain))
94f6d190 2905 return 0;
dbcc112e 2906
832a90c3 2907 dma_mask = *dev->dma_mask;
65b050ad 2908
65b050ad
JR
2909 spin_lock_irqsave(&domain->lock, flags);
2910
2911 for_each_sg(sglist, s, nelems, i) {
2912 paddr = sg_phys(s);
2913
cd8c82e8 2914 s->dma_address = __map_single(dev, domain->priv,
832a90c3
JR
2915 paddr, s->length, dir, false,
2916 dma_mask);
65b050ad
JR
2917
2918 if (s->dma_address) {
2919 s->dma_length = s->length;
2920 mapped_elems++;
2921 } else
2922 goto unmap;
65b050ad
JR
2923 }
2924
17b124bf 2925 domain_flush_complete(domain);
65b050ad
JR
2926
2927out:
2928 spin_unlock_irqrestore(&domain->lock, flags);
2929
2930 return mapped_elems;
2931unmap:
2932 for_each_sg(sglist, s, mapped_elems, i) {
2933 if (s->dma_address)
cd8c82e8 2934 __unmap_single(domain->priv, s->dma_address,
65b050ad
JR
2935 s->dma_length, dir);
2936 s->dma_address = s->dma_length = 0;
2937 }
2938
2939 mapped_elems = 0;
2940
2941 goto out;
2942}
2943
431b2a20
JR
2944/*
2945 * The exported map_sg function for dma_ops (handles scatter-gather
2946 * lists).
2947 */
65b050ad 2948static void unmap_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
2949 int nelems, enum dma_data_direction dir,
2950 struct dma_attrs *attrs)
65b050ad
JR
2951{
2952 unsigned long flags;
65b050ad
JR
2953 struct protection_domain *domain;
2954 struct scatterlist *s;
65b050ad
JR
2955 int i;
2956
55877a6b
JR
2957 INC_STATS_COUNTER(cnt_unmap_sg);
2958
94f6d190
JR
2959 domain = get_domain(dev);
2960 if (IS_ERR(domain))
5b28df6f
JR
2961 return;
2962
65b050ad
JR
2963 spin_lock_irqsave(&domain->lock, flags);
2964
2965 for_each_sg(sglist, s, nelems, i) {
cd8c82e8 2966 __unmap_single(domain->priv, s->dma_address,
65b050ad 2967 s->dma_length, dir);
65b050ad
JR
2968 s->dma_address = s->dma_length = 0;
2969 }
2970
17b124bf 2971 domain_flush_complete(domain);
65b050ad
JR
2972
2973 spin_unlock_irqrestore(&domain->lock, flags);
2974}
2975
431b2a20
JR
2976/*
2977 * The exported alloc_coherent function for dma_ops.
2978 */
5d8b53cf 2979static void *alloc_coherent(struct device *dev, size_t size,
baa676fc
AP
2980 dma_addr_t *dma_addr, gfp_t flag,
2981 struct dma_attrs *attrs)
5d8b53cf
JR
2982{
2983 unsigned long flags;
2984 void *virt_addr;
5d8b53cf 2985 struct protection_domain *domain;
5d8b53cf 2986 phys_addr_t paddr;
832a90c3 2987 u64 dma_mask = dev->coherent_dma_mask;
5d8b53cf 2988
c8f0fb36
JR
2989 INC_STATS_COUNTER(cnt_alloc_coherent);
2990
94f6d190
JR
2991 domain = get_domain(dev);
2992 if (PTR_ERR(domain) == -EINVAL) {
f99c0f1c
JR
2993 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2994 *dma_addr = __pa(virt_addr);
2995 return virt_addr;
94f6d190
JR
2996 } else if (IS_ERR(domain))
2997 return NULL;
5d8b53cf 2998
f99c0f1c
JR
2999 dma_mask = dev->coherent_dma_mask;
3000 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
3001 flag |= __GFP_ZERO;
5d8b53cf
JR
3002
3003 virt_addr = (void *)__get_free_pages(flag, get_order(size));
3004 if (!virt_addr)
b25ae679 3005 return NULL;
5d8b53cf 3006
5d8b53cf
JR
3007 paddr = virt_to_phys(virt_addr);
3008
832a90c3
JR
3009 if (!dma_mask)
3010 dma_mask = *dev->dma_mask;
3011
5d8b53cf
JR
3012 spin_lock_irqsave(&domain->lock, flags);
3013
cd8c82e8 3014 *dma_addr = __map_single(dev, domain->priv, paddr,
832a90c3 3015 size, DMA_BIDIRECTIONAL, true, dma_mask);
5d8b53cf 3016
8fd524b3 3017 if (*dma_addr == DMA_ERROR_CODE) {
367d04c4 3018 spin_unlock_irqrestore(&domain->lock, flags);
5b28df6f 3019 goto out_free;
367d04c4 3020 }
5d8b53cf 3021
17b124bf 3022 domain_flush_complete(domain);
5d8b53cf 3023
5d8b53cf
JR
3024 spin_unlock_irqrestore(&domain->lock, flags);
3025
3026 return virt_addr;
5b28df6f
JR
3027
3028out_free:
3029
3030 free_pages((unsigned long)virt_addr, get_order(size));
3031
3032 return NULL;
5d8b53cf
JR
3033}
3034
431b2a20
JR
3035/*
3036 * The exported free_coherent function for dma_ops.
431b2a20 3037 */
5d8b53cf 3038static void free_coherent(struct device *dev, size_t size,
baa676fc
AP
3039 void *virt_addr, dma_addr_t dma_addr,
3040 struct dma_attrs *attrs)
5d8b53cf
JR
3041{
3042 unsigned long flags;
5d8b53cf 3043 struct protection_domain *domain;
5d8b53cf 3044
5d31ee7e
JR
3045 INC_STATS_COUNTER(cnt_free_coherent);
3046
94f6d190
JR
3047 domain = get_domain(dev);
3048 if (IS_ERR(domain))
5b28df6f
JR
3049 goto free_mem;
3050
5d8b53cf
JR
3051 spin_lock_irqsave(&domain->lock, flags);
3052
cd8c82e8 3053 __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
5d8b53cf 3054
17b124bf 3055 domain_flush_complete(domain);
5d8b53cf
JR
3056
3057 spin_unlock_irqrestore(&domain->lock, flags);
3058
3059free_mem:
3060 free_pages((unsigned long)virt_addr, get_order(size));
3061}
3062
b39ba6ad
JR
3063/*
3064 * This function is called by the DMA layer to find out if we can handle a
3065 * particular device. It is part of the dma_ops.
3066 */
3067static int amd_iommu_dma_supported(struct device *dev, u64 mask)
3068{
420aef8a 3069 return check_device(dev);
b39ba6ad
JR
3070}
3071
c432f3df 3072/*
431b2a20
JR
3073 * The function for pre-allocating protection domains.
3074 *
c432f3df
JR
3075 * If the driver core informs the DMA layer if a driver grabs a device
3076 * we don't need to preallocate the protection domains anymore.
3077 * For now we have to.
3078 */
943bc7e1 3079static void __init prealloc_protection_domains(void)
c432f3df 3080{
5abcdba4 3081 struct iommu_dev_data *dev_data;
c432f3df 3082 struct dma_ops_domain *dma_dom;
5abcdba4 3083 struct pci_dev *dev = NULL;
98fc5a69 3084 u16 devid;
c432f3df 3085
d18c69d3 3086 for_each_pci_dev(dev) {
98fc5a69
JR
3087
3088 /* Do we handle this device? */
3089 if (!check_device(&dev->dev))
c432f3df 3090 continue;
98fc5a69 3091
5abcdba4
JR
3092 dev_data = get_dev_data(&dev->dev);
3093 if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
3094 /* Make sure passthrough domain is allocated */
3095 alloc_passthrough_domain();
3096 dev_data->passthrough = true;
3097 attach_device(&dev->dev, pt_domain);
df805abb 3098 pr_info("AMD-Vi: Using passthrough domain for device %s\n",
5abcdba4
JR
3099 dev_name(&dev->dev));
3100 }
3101
98fc5a69 3102 /* Is there already any domain for it? */
15898bbc 3103 if (domain_for_device(&dev->dev))
c432f3df 3104 continue;
98fc5a69
JR
3105
3106 devid = get_device_id(&dev->dev);
3107
87a64d52 3108 dma_dom = dma_ops_domain_alloc();
c432f3df
JR
3109 if (!dma_dom)
3110 continue;
3111 init_unity_mappings_for_device(dma_dom, devid);
bd60b735
JR
3112 dma_dom->target_dev = devid;
3113
15898bbc 3114 attach_device(&dev->dev, &dma_dom->domain);
be831297 3115
bd60b735 3116 list_add_tail(&dma_dom->list, &iommu_pd_list);
c432f3df
JR
3117 }
3118}
3119
160c1d8e 3120static struct dma_map_ops amd_iommu_dma_ops = {
baa676fc
AP
3121 .alloc = alloc_coherent,
3122 .free = free_coherent,
51491367
FT
3123 .map_page = map_page,
3124 .unmap_page = unmap_page,
6631ee9d
JR
3125 .map_sg = map_sg,
3126 .unmap_sg = unmap_sg,
b39ba6ad 3127 .dma_supported = amd_iommu_dma_supported,
6631ee9d
JR
3128};
3129
27c2127a
JR
3130static unsigned device_dma_ops_init(void)
3131{
5abcdba4 3132 struct iommu_dev_data *dev_data;
27c2127a
JR
3133 struct pci_dev *pdev = NULL;
3134 unsigned unhandled = 0;
3135
3136 for_each_pci_dev(pdev) {
3137 if (!check_device(&pdev->dev)) {
af1be049
JR
3138
3139 iommu_ignore_device(&pdev->dev);
3140
27c2127a
JR
3141 unhandled += 1;
3142 continue;
3143 }
3144
5abcdba4
JR
3145 dev_data = get_dev_data(&pdev->dev);
3146
3147 if (!dev_data->passthrough)
3148 pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
3149 else
3150 pdev->dev.archdata.dma_ops = &nommu_dma_ops;
27c2127a
JR
3151 }
3152
3153 return unhandled;
3154}
3155
431b2a20
JR
3156/*
3157 * The function which clues the AMD IOMMU driver into dma_ops.
3158 */
f5325094
JR
3159
3160void __init amd_iommu_init_api(void)
3161{
2cc21c42 3162 bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
f5325094
JR
3163}
3164
6631ee9d
JR
3165int __init amd_iommu_init_dma_ops(void)
3166{
3167 struct amd_iommu *iommu;
27c2127a 3168 int ret, unhandled;
6631ee9d 3169
431b2a20
JR
3170 /*
3171 * first allocate a default protection domain for every IOMMU we
3172 * found in the system. Devices not assigned to any other
3173 * protection domain will be assigned to the default one.
3174 */
3bd22172 3175 for_each_iommu(iommu) {
87a64d52 3176 iommu->default_dom = dma_ops_domain_alloc();
6631ee9d
JR
3177 if (iommu->default_dom == NULL)
3178 return -ENOMEM;
e2dc14a2 3179 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
6631ee9d
JR
3180 ret = iommu_init_unity_mappings(iommu);
3181 if (ret)
3182 goto free_domains;
3183 }
3184
431b2a20 3185 /*
8793abeb 3186 * Pre-allocate the protection domains for each device.
431b2a20 3187 */
8793abeb 3188 prealloc_protection_domains();
6631ee9d
JR
3189
3190 iommu_detected = 1;
75f1cdf1 3191 swiotlb = 0;
6631ee9d 3192
431b2a20 3193 /* Make the driver finally visible to the drivers */
27c2127a
JR
3194 unhandled = device_dma_ops_init();
3195 if (unhandled && max_pfn > MAX_DMA32_PFN) {
3196 /* There are unhandled devices - initialize swiotlb for them */
3197 swiotlb = 1;
3198 }
6631ee9d 3199
7f26508b
JR
3200 amd_iommu_stats_init();
3201
62410eeb
JR
3202 if (amd_iommu_unmap_flush)
3203 pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
3204 else
3205 pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
3206
6631ee9d
JR
3207 return 0;
3208
3209free_domains:
3210
3bd22172 3211 for_each_iommu(iommu) {
91457df7 3212 dma_ops_domain_free(iommu->default_dom);
6631ee9d
JR
3213 }
3214
3215 return ret;
3216}
6d98cd80
JR
3217
3218/*****************************************************************************
3219 *
3220 * The following functions belong to the exported interface of AMD IOMMU
3221 *
3222 * This interface allows access to lower level functions of the IOMMU
3223 * like protection domain handling and assignement of devices to domains
3224 * which is not possible with the dma_ops interface.
3225 *
3226 *****************************************************************************/
3227
6d98cd80
JR
3228static void cleanup_domain(struct protection_domain *domain)
3229{
492667da 3230 struct iommu_dev_data *dev_data, *next;
6d98cd80 3231 unsigned long flags;
6d98cd80
JR
3232
3233 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3234
492667da 3235 list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
ec9e79ef 3236 __detach_device(dev_data);
492667da
JR
3237 atomic_set(&dev_data->bind, 0);
3238 }
6d98cd80
JR
3239
3240 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3241}
3242
2650815f
JR
3243static void protection_domain_free(struct protection_domain *domain)
3244{
3245 if (!domain)
3246 return;
3247
aeb26f55
JR
3248 del_domain_from_list(domain);
3249
2650815f
JR
3250 if (domain->id)
3251 domain_id_free(domain->id);
3252
3253 kfree(domain);
3254}
3255
3256static struct protection_domain *protection_domain_alloc(void)
c156e347
JR
3257{
3258 struct protection_domain *domain;
3259
3260 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
3261 if (!domain)
2650815f 3262 return NULL;
c156e347
JR
3263
3264 spin_lock_init(&domain->lock);
5d214fe6 3265 mutex_init(&domain->api_lock);
c156e347
JR
3266 domain->id = domain_id_alloc();
3267 if (!domain->id)
2650815f 3268 goto out_err;
7c392cbe 3269 INIT_LIST_HEAD(&domain->dev_list);
2650815f 3270
aeb26f55
JR
3271 add_domain_to_list(domain);
3272
2650815f
JR
3273 return domain;
3274
3275out_err:
3276 kfree(domain);
3277
3278 return NULL;
3279}
3280
5abcdba4
JR
3281static int __init alloc_passthrough_domain(void)
3282{
3283 if (pt_domain != NULL)
3284 return 0;
3285
3286 /* allocate passthrough domain */
3287 pt_domain = protection_domain_alloc();
3288 if (!pt_domain)
3289 return -ENOMEM;
3290
3291 pt_domain->mode = PAGE_MODE_NONE;
3292
3293 return 0;
3294}
2650815f
JR
3295static int amd_iommu_domain_init(struct iommu_domain *dom)
3296{
3297 struct protection_domain *domain;
3298
3299 domain = protection_domain_alloc();
3300 if (!domain)
c156e347 3301 goto out_free;
2650815f
JR
3302
3303 domain->mode = PAGE_MODE_3_LEVEL;
c156e347
JR
3304 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
3305 if (!domain->pt_root)
3306 goto out_free;
3307
f3572db8
JR
3308 domain->iommu_domain = dom;
3309
c156e347
JR
3310 dom->priv = domain;
3311
0ff64f80
JR
3312 dom->geometry.aperture_start = 0;
3313 dom->geometry.aperture_end = ~0ULL;
3314 dom->geometry.force_aperture = true;
3315
c156e347
JR
3316 return 0;
3317
3318out_free:
2650815f 3319 protection_domain_free(domain);
c156e347
JR
3320
3321 return -ENOMEM;
3322}
3323
98383fc3
JR
3324static void amd_iommu_domain_destroy(struct iommu_domain *dom)
3325{
3326 struct protection_domain *domain = dom->priv;
3327
3328 if (!domain)
3329 return;
3330
3331 if (domain->dev_cnt > 0)
3332 cleanup_domain(domain);
3333
3334 BUG_ON(domain->dev_cnt != 0);
3335
132bd68f
JR
3336 if (domain->mode != PAGE_MODE_NONE)
3337 free_pagetable(domain);
98383fc3 3338
52815b75
JR
3339 if (domain->flags & PD_IOMMUV2_MASK)
3340 free_gcr3_table(domain);
3341
8b408fe4 3342 protection_domain_free(domain);
98383fc3
JR
3343
3344 dom->priv = NULL;
3345}
3346
684f2888
JR
3347static void amd_iommu_detach_device(struct iommu_domain *dom,
3348 struct device *dev)
3349{
657cbb6b 3350 struct iommu_dev_data *dev_data = dev->archdata.iommu;
684f2888 3351 struct amd_iommu *iommu;
684f2888
JR
3352 u16 devid;
3353
98fc5a69 3354 if (!check_device(dev))
684f2888
JR
3355 return;
3356
98fc5a69 3357 devid = get_device_id(dev);
684f2888 3358
657cbb6b 3359 if (dev_data->domain != NULL)
15898bbc 3360 detach_device(dev);
684f2888
JR
3361
3362 iommu = amd_iommu_rlookup_table[devid];
3363 if (!iommu)
3364 return;
3365
684f2888
JR
3366 iommu_completion_wait(iommu);
3367}
3368
01106066
JR
3369static int amd_iommu_attach_device(struct iommu_domain *dom,
3370 struct device *dev)
3371{
3372 struct protection_domain *domain = dom->priv;
657cbb6b 3373 struct iommu_dev_data *dev_data;
01106066 3374 struct amd_iommu *iommu;
15898bbc 3375 int ret;
01106066 3376
98fc5a69 3377 if (!check_device(dev))
01106066
JR
3378 return -EINVAL;
3379
657cbb6b
JR
3380 dev_data = dev->archdata.iommu;
3381
f62dda66 3382 iommu = amd_iommu_rlookup_table[dev_data->devid];
01106066
JR
3383 if (!iommu)
3384 return -EINVAL;
3385
657cbb6b 3386 if (dev_data->domain)
15898bbc 3387 detach_device(dev);
01106066 3388
15898bbc 3389 ret = attach_device(dev, domain);
01106066
JR
3390
3391 iommu_completion_wait(iommu);
3392
15898bbc 3393 return ret;
01106066
JR
3394}
3395
468e2366 3396static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
5009065d 3397 phys_addr_t paddr, size_t page_size, int iommu_prot)
c6229ca6
JR
3398{
3399 struct protection_domain *domain = dom->priv;
c6229ca6
JR
3400 int prot = 0;
3401 int ret;
3402
132bd68f
JR
3403 if (domain->mode == PAGE_MODE_NONE)
3404 return -EINVAL;
3405
c6229ca6
JR
3406 if (iommu_prot & IOMMU_READ)
3407 prot |= IOMMU_PROT_IR;
3408 if (iommu_prot & IOMMU_WRITE)
3409 prot |= IOMMU_PROT_IW;
3410
5d214fe6 3411 mutex_lock(&domain->api_lock);
795e74f7 3412 ret = iommu_map_page(domain, iova, paddr, prot, page_size);
5d214fe6
JR
3413 mutex_unlock(&domain->api_lock);
3414
795e74f7 3415 return ret;
c6229ca6
JR
3416}
3417
5009065d
OBC
3418static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3419 size_t page_size)
eb74ff6c 3420{
eb74ff6c 3421 struct protection_domain *domain = dom->priv;
5009065d 3422 size_t unmap_size;
eb74ff6c 3423
132bd68f
JR
3424 if (domain->mode == PAGE_MODE_NONE)
3425 return -EINVAL;
3426
5d214fe6 3427 mutex_lock(&domain->api_lock);
468e2366 3428 unmap_size = iommu_unmap_page(domain, iova, page_size);
795e74f7 3429 mutex_unlock(&domain->api_lock);
eb74ff6c 3430
17b124bf 3431 domain_flush_tlb_pde(domain);
5d214fe6 3432
5009065d 3433 return unmap_size;
eb74ff6c
JR
3434}
3435
645c4c8d 3436static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
bb5547ac 3437 dma_addr_t iova)
645c4c8d
JR
3438{
3439 struct protection_domain *domain = dom->priv;
f03152bb 3440 unsigned long offset_mask;
645c4c8d 3441 phys_addr_t paddr;
f03152bb 3442 u64 *pte, __pte;
645c4c8d 3443
132bd68f
JR
3444 if (domain->mode == PAGE_MODE_NONE)
3445 return iova;
3446
24cd7723 3447 pte = fetch_pte(domain, iova);
645c4c8d 3448
a6d41a40 3449 if (!pte || !IOMMU_PTE_PRESENT(*pte))
645c4c8d
JR
3450 return 0;
3451
f03152bb
JR
3452 if (PM_PTE_LEVEL(*pte) == 0)
3453 offset_mask = PAGE_SIZE - 1;
3454 else
3455 offset_mask = PTE_PAGE_SIZE(*pte) - 1;
3456
3457 __pte = *pte & PM_ADDR_MASK;
3458 paddr = (__pte & ~offset_mask) | (iova & offset_mask);
645c4c8d
JR
3459
3460 return paddr;
3461}
3462
dbb9fd86
SY
3463static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
3464 unsigned long cap)
3465{
80a506b8
JR
3466 switch (cap) {
3467 case IOMMU_CAP_CACHE_COHERENCY:
3468 return 1;
bdddadcb
JR
3469 case IOMMU_CAP_INTR_REMAP:
3470 return irq_remapping_enabled;
80a506b8
JR
3471 }
3472
dbb9fd86
SY
3473 return 0;
3474}
3475
26961efe
JR
3476static struct iommu_ops amd_iommu_ops = {
3477 .domain_init = amd_iommu_domain_init,
3478 .domain_destroy = amd_iommu_domain_destroy,
3479 .attach_dev = amd_iommu_attach_device,
3480 .detach_dev = amd_iommu_detach_device,
468e2366
JR
3481 .map = amd_iommu_map,
3482 .unmap = amd_iommu_unmap,
26961efe 3483 .iova_to_phys = amd_iommu_iova_to_phys,
dbb9fd86 3484 .domain_has_cap = amd_iommu_domain_has_cap,
aa3de9c0 3485 .pgsize_bitmap = AMD_IOMMU_PGSIZES,
26961efe
JR
3486};
3487
0feae533
JR
3488/*****************************************************************************
3489 *
3490 * The next functions do a basic initialization of IOMMU for pass through
3491 * mode
3492 *
3493 * In passthrough mode the IOMMU is initialized and enabled but not used for
3494 * DMA-API translation.
3495 *
3496 *****************************************************************************/
3497
3498int __init amd_iommu_init_passthrough(void)
3499{
5abcdba4 3500 struct iommu_dev_data *dev_data;
0feae533 3501 struct pci_dev *dev = NULL;
5abcdba4 3502 struct amd_iommu *iommu;
15898bbc 3503 u16 devid;
5abcdba4 3504 int ret;
0feae533 3505
5abcdba4
JR
3506 ret = alloc_passthrough_domain();
3507 if (ret)
3508 return ret;
0feae533 3509
6c54aabd 3510 for_each_pci_dev(dev) {
98fc5a69 3511 if (!check_device(&dev->dev))
0feae533
JR
3512 continue;
3513
5abcdba4
JR
3514 dev_data = get_dev_data(&dev->dev);
3515 dev_data->passthrough = true;
3516
98fc5a69
JR
3517 devid = get_device_id(&dev->dev);
3518
15898bbc 3519 iommu = amd_iommu_rlookup_table[devid];
0feae533
JR
3520 if (!iommu)
3521 continue;
3522
15898bbc 3523 attach_device(&dev->dev, pt_domain);
0feae533
JR
3524 }
3525
2655d7a2
JR
3526 amd_iommu_stats_init();
3527
0feae533
JR
3528 pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
3529
3530 return 0;
3531}
72e1dcc4
JR
3532
3533/* IOMMUv2 specific functions */
3534int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3535{
3536 return atomic_notifier_chain_register(&ppr_notifier, nb);
3537}
3538EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3539
3540int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3541{
3542 return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3543}
3544EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
132bd68f
JR
3545
3546void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3547{
3548 struct protection_domain *domain = dom->priv;
3549 unsigned long flags;
3550
3551 spin_lock_irqsave(&domain->lock, flags);
3552
3553 /* Update data structure */
3554 domain->mode = PAGE_MODE_NONE;
3555 domain->updated = true;
3556
3557 /* Make changes visible to IOMMUs */
3558 update_domain(domain);
3559
3560 /* Page-table is not visible to IOMMU anymore, so free it */
3561 free_pagetable(domain);
3562
3563 spin_unlock_irqrestore(&domain->lock, flags);
3564}
3565EXPORT_SYMBOL(amd_iommu_domain_direct_map);
52815b75
JR
3566
3567int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3568{
3569 struct protection_domain *domain = dom->priv;
3570 unsigned long flags;
3571 int levels, ret;
3572
3573 if (pasids <= 0 || pasids > (PASID_MASK + 1))
3574 return -EINVAL;
3575
3576 /* Number of GCR3 table levels required */
3577 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3578 levels += 1;
3579
3580 if (levels > amd_iommu_max_glx_val)
3581 return -EINVAL;
3582
3583 spin_lock_irqsave(&domain->lock, flags);
3584
3585 /*
3586 * Save us all sanity checks whether devices already in the
3587 * domain support IOMMUv2. Just force that the domain has no
3588 * devices attached when it is switched into IOMMUv2 mode.
3589 */
3590 ret = -EBUSY;
3591 if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3592 goto out;
3593
3594 ret = -ENOMEM;
3595 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3596 if (domain->gcr3_tbl == NULL)
3597 goto out;
3598
3599 domain->glx = levels;
3600 domain->flags |= PD_IOMMUV2_MASK;
3601 domain->updated = true;
3602
3603 update_domain(domain);
3604
3605 ret = 0;
3606
3607out:
3608 spin_unlock_irqrestore(&domain->lock, flags);
3609
3610 return ret;
3611}
3612EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
22e266c7
JR
3613
3614static int __flush_pasid(struct protection_domain *domain, int pasid,
3615 u64 address, bool size)
3616{
3617 struct iommu_dev_data *dev_data;
3618 struct iommu_cmd cmd;
3619 int i, ret;
3620
3621 if (!(domain->flags & PD_IOMMUV2_MASK))
3622 return -EINVAL;
3623
3624 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3625
3626 /*
3627 * IOMMU TLB needs to be flushed before Device TLB to
3628 * prevent device TLB refill from IOMMU TLB
3629 */
3630 for (i = 0; i < amd_iommus_present; ++i) {
3631 if (domain->dev_iommu[i] == 0)
3632 continue;
3633
3634 ret = iommu_queue_command(amd_iommus[i], &cmd);
3635 if (ret != 0)
3636 goto out;
3637 }
3638
3639 /* Wait until IOMMU TLB flushes are complete */
3640 domain_flush_complete(domain);
3641
3642 /* Now flush device TLBs */
3643 list_for_each_entry(dev_data, &domain->dev_list, list) {
3644 struct amd_iommu *iommu;
3645 int qdep;
3646
3647 BUG_ON(!dev_data->ats.enabled);
3648
3649 qdep = dev_data->ats.qdep;
3650 iommu = amd_iommu_rlookup_table[dev_data->devid];
3651
3652 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3653 qdep, address, size);
3654
3655 ret = iommu_queue_command(iommu, &cmd);
3656 if (ret != 0)
3657 goto out;
3658 }
3659
3660 /* Wait until all device TLBs are flushed */
3661 domain_flush_complete(domain);
3662
3663 ret = 0;
3664
3665out:
3666
3667 return ret;
3668}
3669
3670static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3671 u64 address)
3672{
399be2f5
JR
3673 INC_STATS_COUNTER(invalidate_iotlb);
3674
22e266c7
JR
3675 return __flush_pasid(domain, pasid, address, false);
3676}
3677
3678int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3679 u64 address)
3680{
3681 struct protection_domain *domain = dom->priv;
3682 unsigned long flags;
3683 int ret;
3684
3685 spin_lock_irqsave(&domain->lock, flags);
3686 ret = __amd_iommu_flush_page(domain, pasid, address);
3687 spin_unlock_irqrestore(&domain->lock, flags);
3688
3689 return ret;
3690}
3691EXPORT_SYMBOL(amd_iommu_flush_page);
3692
3693static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3694{
399be2f5
JR
3695 INC_STATS_COUNTER(invalidate_iotlb_all);
3696
22e266c7
JR
3697 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3698 true);
3699}
3700
3701int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3702{
3703 struct protection_domain *domain = dom->priv;
3704 unsigned long flags;
3705 int ret;
3706
3707 spin_lock_irqsave(&domain->lock, flags);
3708 ret = __amd_iommu_flush_tlb(domain, pasid);
3709 spin_unlock_irqrestore(&domain->lock, flags);
3710
3711 return ret;
3712}
3713EXPORT_SYMBOL(amd_iommu_flush_tlb);
3714
b16137b1
JR
3715static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3716{
3717 int index;
3718 u64 *pte;
3719
3720 while (true) {
3721
3722 index = (pasid >> (9 * level)) & 0x1ff;
3723 pte = &root[index];
3724
3725 if (level == 0)
3726 break;
3727
3728 if (!(*pte & GCR3_VALID)) {
3729 if (!alloc)
3730 return NULL;
3731
3732 root = (void *)get_zeroed_page(GFP_ATOMIC);
3733 if (root == NULL)
3734 return NULL;
3735
3736 *pte = __pa(root) | GCR3_VALID;
3737 }
3738
3739 root = __va(*pte & PAGE_MASK);
3740
3741 level -= 1;
3742 }
3743
3744 return pte;
3745}
3746
3747static int __set_gcr3(struct protection_domain *domain, int pasid,
3748 unsigned long cr3)
3749{
3750 u64 *pte;
3751
3752 if (domain->mode != PAGE_MODE_NONE)
3753 return -EINVAL;
3754
3755 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3756 if (pte == NULL)
3757 return -ENOMEM;
3758
3759 *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3760
3761 return __amd_iommu_flush_tlb(domain, pasid);
3762}
3763
3764static int __clear_gcr3(struct protection_domain *domain, int pasid)
3765{
3766 u64 *pte;
3767
3768 if (domain->mode != PAGE_MODE_NONE)
3769 return -EINVAL;
3770
3771 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3772 if (pte == NULL)
3773 return 0;
3774
3775 *pte = 0;
3776
3777 return __amd_iommu_flush_tlb(domain, pasid);
3778}
3779
3780int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3781 unsigned long cr3)
3782{
3783 struct protection_domain *domain = dom->priv;
3784 unsigned long flags;
3785 int ret;
3786
3787 spin_lock_irqsave(&domain->lock, flags);
3788 ret = __set_gcr3(domain, pasid, cr3);
3789 spin_unlock_irqrestore(&domain->lock, flags);
3790
3791 return ret;
3792}
3793EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3794
3795int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3796{
3797 struct protection_domain *domain = dom->priv;
3798 unsigned long flags;
3799 int ret;
3800
3801 spin_lock_irqsave(&domain->lock, flags);
3802 ret = __clear_gcr3(domain, pasid);
3803 spin_unlock_irqrestore(&domain->lock, flags);
3804
3805 return ret;
3806}
3807EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
c99afa25
JR
3808
3809int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3810 int status, int tag)
3811{
3812 struct iommu_dev_data *dev_data;
3813 struct amd_iommu *iommu;
3814 struct iommu_cmd cmd;
3815
399be2f5
JR
3816 INC_STATS_COUNTER(complete_ppr);
3817
c99afa25
JR
3818 dev_data = get_dev_data(&pdev->dev);
3819 iommu = amd_iommu_rlookup_table[dev_data->devid];
3820
3821 build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3822 tag, dev_data->pri_tlp);
3823
3824 return iommu_queue_command(iommu, &cmd);
3825}
3826EXPORT_SYMBOL(amd_iommu_complete_ppr);
f3572db8
JR
3827
3828struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3829{
3830 struct protection_domain *domain;
3831
3832 domain = get_domain(&pdev->dev);
3833 if (IS_ERR(domain))
3834 return NULL;
3835
3836 /* Only return IOMMUv2 domains */
3837 if (!(domain->flags & PD_IOMMUV2_MASK))
3838 return NULL;
3839
3840 return domain->iommu_domain;
3841}
3842EXPORT_SYMBOL(amd_iommu_get_v2_domain);
6a113ddc
JR
3843
3844void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3845{
3846 struct iommu_dev_data *dev_data;
3847
3848 if (!amd_iommu_v2_supported())
3849 return;
3850
3851 dev_data = get_dev_data(&pdev->dev);
3852 dev_data->errata |= (1 << erratum);
3853}
3854EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
52efdb89
JR
3855
3856int amd_iommu_device_info(struct pci_dev *pdev,
3857 struct amd_iommu_device_info *info)
3858{
3859 int max_pasids;
3860 int pos;
3861
3862 if (pdev == NULL || info == NULL)
3863 return -EINVAL;
3864
3865 if (!amd_iommu_v2_supported())
3866 return -EINVAL;
3867
3868 memset(info, 0, sizeof(*info));
3869
3870 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3871 if (pos)
3872 info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3873
3874 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3875 if (pos)
3876 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3877
3878 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3879 if (pos) {
3880 int features;
3881
3882 max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3883 max_pasids = min(max_pasids, (1 << 20));
3884
3885 info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3886 info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3887
3888 features = pci_pasid_features(pdev);
3889 if (features & PCI_PASID_CAP_EXEC)
3890 info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3891 if (features & PCI_PASID_CAP_PRIV)
3892 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3893 }
3894
3895 return 0;
3896}
3897EXPORT_SYMBOL(amd_iommu_device_info);
2b324506
JR
3898
3899#ifdef CONFIG_IRQ_REMAP
3900
3901/*****************************************************************************
3902 *
3903 * Interrupt Remapping Implementation
3904 *
3905 *****************************************************************************/
3906
3907union irte {
3908 u32 val;
3909 struct {
3910 u32 valid : 1,
3911 no_fault : 1,
3912 int_type : 3,
3913 rq_eoi : 1,
3914 dm : 1,
3915 rsvd_1 : 1,
3916 destination : 8,
3917 vector : 8,
3918 rsvd_2 : 8;
3919 } fields;
3920};
3921
3922#define DTE_IRQ_PHYS_ADDR_MASK (((1ULL << 45)-1) << 6)
3923#define DTE_IRQ_REMAP_INTCTL (2ULL << 60)
3924#define DTE_IRQ_TABLE_LEN (8ULL << 1)
3925#define DTE_IRQ_REMAP_ENABLE 1ULL
3926
3927static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3928{
3929 u64 dte;
3930
3931 dte = amd_iommu_dev_table[devid].data[2];
3932 dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
3933 dte |= virt_to_phys(table->table);
3934 dte |= DTE_IRQ_REMAP_INTCTL;
3935 dte |= DTE_IRQ_TABLE_LEN;
3936 dte |= DTE_IRQ_REMAP_ENABLE;
3937
3938 amd_iommu_dev_table[devid].data[2] = dte;
3939}
3940
3941#define IRTE_ALLOCATED (~1U)
3942
3943static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
3944{
3945 struct irq_remap_table *table = NULL;
3946 struct amd_iommu *iommu;
3947 unsigned long flags;
3948 u16 alias;
3949
3950 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3951
3952 iommu = amd_iommu_rlookup_table[devid];
3953 if (!iommu)
3954 goto out_unlock;
3955
3956 table = irq_lookup_table[devid];
3957 if (table)
3958 goto out;
3959
3960 alias = amd_iommu_alias_table[devid];
3961 table = irq_lookup_table[alias];
3962 if (table) {
3963 irq_lookup_table[devid] = table;
3964 set_dte_irq_entry(devid, table);
3965 iommu_flush_dte(iommu, devid);
3966 goto out;
3967 }
3968
3969 /* Nothing there yet, allocate new irq remapping table */
3970 table = kzalloc(sizeof(*table), GFP_ATOMIC);
3971 if (!table)
3972 goto out;
3973
197887f0
JR
3974 /* Initialize table spin-lock */
3975 spin_lock_init(&table->lock);
3976
2b324506
JR
3977 if (ioapic)
3978 /* Keep the first 32 indexes free for IOAPIC interrupts */
3979 table->min_index = 32;
3980
3981 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
3982 if (!table->table) {
3983 kfree(table);
821f0f68 3984 table = NULL;
2b324506
JR
3985 goto out;
3986 }
3987
3988 memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));
3989
3990 if (ioapic) {
3991 int i;
3992
3993 for (i = 0; i < 32; ++i)
3994 table->table[i] = IRTE_ALLOCATED;
3995 }
3996
3997 irq_lookup_table[devid] = table;
3998 set_dte_irq_entry(devid, table);
3999 iommu_flush_dte(iommu, devid);
4000 if (devid != alias) {
4001 irq_lookup_table[alias] = table;
4002 set_dte_irq_entry(devid, table);
4003 iommu_flush_dte(iommu, alias);
4004 }
4005
4006out:
4007 iommu_completion_wait(iommu);
4008
4009out_unlock:
4010 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
4011
4012 return table;
4013}
4014
4015static int alloc_irq_index(struct irq_cfg *cfg, u16 devid, int count)
4016{
4017 struct irq_remap_table *table;
4018 unsigned long flags;
4019 int index, c;
4020
4021 table = get_irq_table(devid, false);
4022 if (!table)
4023 return -ENODEV;
4024
4025 spin_lock_irqsave(&table->lock, flags);
4026
4027 /* Scan table for free entries */
4028 for (c = 0, index = table->min_index;
4029 index < MAX_IRQS_PER_TABLE;
4030 ++index) {
4031 if (table->table[index] == 0)
4032 c += 1;
4033 else
4034 c = 0;
4035
4036 if (c == count) {
0dfedd61 4037 struct irq_2_irte *irte_info;
2b324506
JR
4038
4039 for (; c != 0; --c)
4040 table->table[index - c + 1] = IRTE_ALLOCATED;
4041
4042 index -= count - 1;
4043
9b1b0e42 4044 cfg->remapped = 1;
0dfedd61
JR
4045 irte_info = &cfg->irq_2_irte;
4046 irte_info->devid = devid;
4047 irte_info->index = index;
2b324506
JR
4048
4049 goto out;
4050 }
4051 }
4052
4053 index = -ENOSPC;
4054
4055out:
4056 spin_unlock_irqrestore(&table->lock, flags);
4057
4058 return index;
4059}
4060
4061static int get_irte(u16 devid, int index, union irte *irte)
4062{
4063 struct irq_remap_table *table;
4064 unsigned long flags;
4065
4066 table = get_irq_table(devid, false);
4067 if (!table)
4068 return -ENOMEM;
4069
4070 spin_lock_irqsave(&table->lock, flags);
4071 irte->val = table->table[index];
4072 spin_unlock_irqrestore(&table->lock, flags);
4073
4074 return 0;
4075}
4076
4077static int modify_irte(u16 devid, int index, union irte irte)
4078{
4079 struct irq_remap_table *table;
4080 struct amd_iommu *iommu;
4081 unsigned long flags;
4082
4083 iommu = amd_iommu_rlookup_table[devid];
4084 if (iommu == NULL)
4085 return -EINVAL;
4086
4087 table = get_irq_table(devid, false);
4088 if (!table)
4089 return -ENOMEM;
4090
4091 spin_lock_irqsave(&table->lock, flags);
4092 table->table[index] = irte.val;
4093 spin_unlock_irqrestore(&table->lock, flags);
4094
4095 iommu_flush_irt(iommu, devid);
4096 iommu_completion_wait(iommu);
4097
4098 return 0;
4099}
4100
4101static void free_irte(u16 devid, int index)
4102{
4103 struct irq_remap_table *table;
4104 struct amd_iommu *iommu;
4105 unsigned long flags;
4106
4107 iommu = amd_iommu_rlookup_table[devid];
4108 if (iommu == NULL)
4109 return;
4110
4111 table = get_irq_table(devid, false);
4112 if (!table)
4113 return;
4114
4115 spin_lock_irqsave(&table->lock, flags);
4116 table->table[index] = 0;
4117 spin_unlock_irqrestore(&table->lock, flags);
4118
4119 iommu_flush_irt(iommu, devid);
4120 iommu_completion_wait(iommu);
4121}
4122
5527de74
JR
4123static int setup_ioapic_entry(int irq, struct IO_APIC_route_entry *entry,
4124 unsigned int destination, int vector,
4125 struct io_apic_irq_attr *attr)
4126{
4127 struct irq_remap_table *table;
0dfedd61 4128 struct irq_2_irte *irte_info;
5527de74
JR
4129 struct irq_cfg *cfg;
4130 union irte irte;
4131 int ioapic_id;
4132 int index;
4133 int devid;
4134 int ret;
4135
4136 cfg = irq_get_chip_data(irq);
4137 if (!cfg)
4138 return -EINVAL;
4139
0dfedd61 4140 irte_info = &cfg->irq_2_irte;
5527de74
JR
4141 ioapic_id = mpc_ioapic_id(attr->ioapic);
4142 devid = get_ioapic_devid(ioapic_id);
4143
4144 if (devid < 0)
4145 return devid;
4146
4147 table = get_irq_table(devid, true);
4148 if (table == NULL)
4149 return -ENOMEM;
4150
4151 index = attr->ioapic_pin;
4152
4153 /* Setup IRQ remapping info */
9b1b0e42 4154 cfg->remapped = 1;
0dfedd61
JR
4155 irte_info->devid = devid;
4156 irte_info->index = index;
5527de74
JR
4157
4158 /* Setup IRTE for IOMMU */
4159 irte.val = 0;
4160 irte.fields.vector = vector;
4161 irte.fields.int_type = apic->irq_delivery_mode;
4162 irte.fields.destination = destination;
4163 irte.fields.dm = apic->irq_dest_mode;
4164 irte.fields.valid = 1;
4165
4166 ret = modify_irte(devid, index, irte);
4167 if (ret)
4168 return ret;
4169
4170 /* Setup IOAPIC entry */
4171 memset(entry, 0, sizeof(*entry));
4172
4173 entry->vector = index;
4174 entry->mask = 0;
4175 entry->trigger = attr->trigger;
4176 entry->polarity = attr->polarity;
4177
4178 /*
4179 * Mask level triggered irqs.
5527de74
JR
4180 */
4181 if (attr->trigger)
4182 entry->mask = 1;
4183
4184 return 0;
4185}
4186
4187static int set_affinity(struct irq_data *data, const struct cpumask *mask,
4188 bool force)
4189{
0dfedd61 4190 struct irq_2_irte *irte_info;
5527de74
JR
4191 unsigned int dest, irq;
4192 struct irq_cfg *cfg;
4193 union irte irte;
4194 int err;
4195
4196 if (!config_enabled(CONFIG_SMP))
4197 return -1;
4198
4199 cfg = data->chip_data;
4200 irq = data->irq;
0dfedd61 4201 irte_info = &cfg->irq_2_irte;
5527de74
JR
4202
4203 if (!cpumask_intersects(mask, cpu_online_mask))
4204 return -EINVAL;
4205
0dfedd61 4206 if (get_irte(irte_info->devid, irte_info->index, &irte))
5527de74
JR
4207 return -EBUSY;
4208
4209 if (assign_irq_vector(irq, cfg, mask))
4210 return -EBUSY;
4211
4212 err = apic->cpu_mask_to_apicid_and(cfg->domain, mask, &dest);
4213 if (err) {
4214 if (assign_irq_vector(irq, cfg, data->affinity))
4215 pr_err("AMD-Vi: Failed to recover vector for irq %d\n", irq);
4216 return err;
4217 }
4218
4219 irte.fields.vector = cfg->vector;
4220 irte.fields.destination = dest;
4221
0dfedd61 4222 modify_irte(irte_info->devid, irte_info->index, irte);
5527de74
JR
4223
4224 if (cfg->move_in_progress)
4225 send_cleanup_vector(cfg);
4226
4227 cpumask_copy(data->affinity, mask);
4228
4229 return 0;
4230}
4231
4232static int free_irq(int irq)
4233{
0dfedd61 4234 struct irq_2_irte *irte_info;
5527de74
JR
4235 struct irq_cfg *cfg;
4236
4237 cfg = irq_get_chip_data(irq);
4238 if (!cfg)
4239 return -EINVAL;
4240
0dfedd61 4241 irte_info = &cfg->irq_2_irte;
5527de74 4242
0dfedd61 4243 free_irte(irte_info->devid, irte_info->index);
5527de74
JR
4244
4245 return 0;
4246}
4247
0b4d48cb
JR
4248static void compose_msi_msg(struct pci_dev *pdev,
4249 unsigned int irq, unsigned int dest,
4250 struct msi_msg *msg, u8 hpet_id)
4251{
0dfedd61 4252 struct irq_2_irte *irte_info;
0b4d48cb
JR
4253 struct irq_cfg *cfg;
4254 union irte irte;
4255
4256 cfg = irq_get_chip_data(irq);
4257 if (!cfg)
4258 return;
4259
0dfedd61 4260 irte_info = &cfg->irq_2_irte;
0b4d48cb
JR
4261
4262 irte.val = 0;
4263 irte.fields.vector = cfg->vector;
4264 irte.fields.int_type = apic->irq_delivery_mode;
4265 irte.fields.destination = dest;
4266 irte.fields.dm = apic->irq_dest_mode;
4267 irte.fields.valid = 1;
4268
0dfedd61 4269 modify_irte(irte_info->devid, irte_info->index, irte);
0b4d48cb
JR
4270
4271 msg->address_hi = MSI_ADDR_BASE_HI;
4272 msg->address_lo = MSI_ADDR_BASE_LO;
0dfedd61 4273 msg->data = irte_info->index;
0b4d48cb
JR
4274}
4275
4276static int msi_alloc_irq(struct pci_dev *pdev, int irq, int nvec)
4277{
4278 struct irq_cfg *cfg;
4279 int index;
4280 u16 devid;
4281
4282 if (!pdev)
4283 return -EINVAL;
4284
4285 cfg = irq_get_chip_data(irq);
4286 if (!cfg)
4287 return -EINVAL;
4288
4289 devid = get_device_id(&pdev->dev);
4290 index = alloc_irq_index(cfg, devid, nvec);
4291
4292 return index < 0 ? MAX_IRQS_PER_TABLE : index;
4293}
4294
4295static int msi_setup_irq(struct pci_dev *pdev, unsigned int irq,
4296 int index, int offset)
4297{
0dfedd61 4298 struct irq_2_irte *irte_info;
0b4d48cb
JR
4299 struct irq_cfg *cfg;
4300 u16 devid;
4301
4302 if (!pdev)
4303 return -EINVAL;
4304
4305 cfg = irq_get_chip_data(irq);
4306 if (!cfg)
4307 return -EINVAL;
4308
4309 if (index >= MAX_IRQS_PER_TABLE)
4310 return 0;
4311
4312 devid = get_device_id(&pdev->dev);
0dfedd61 4313 irte_info = &cfg->irq_2_irte;
0b4d48cb 4314
9b1b0e42 4315 cfg->remapped = 1;
0dfedd61
JR
4316 irte_info->devid = devid;
4317 irte_info->index = index + offset;
0b4d48cb
JR
4318
4319 return 0;
4320}
4321
d976195c
JR
4322static int setup_hpet_msi(unsigned int irq, unsigned int id)
4323{
0dfedd61 4324 struct irq_2_irte *irte_info;
d976195c
JR
4325 struct irq_cfg *cfg;
4326 int index, devid;
4327
4328 cfg = irq_get_chip_data(irq);
4329 if (!cfg)
4330 return -EINVAL;
4331
0dfedd61 4332 irte_info = &cfg->irq_2_irte;
d976195c
JR
4333 devid = get_hpet_devid(id);
4334 if (devid < 0)
4335 return devid;
4336
4337 index = alloc_irq_index(cfg, devid, 1);
4338 if (index < 0)
4339 return index;
4340
9b1b0e42 4341 cfg->remapped = 1;
0dfedd61
JR
4342 irte_info->devid = devid;
4343 irte_info->index = index;
d976195c
JR
4344
4345 return 0;
4346}
4347
6b474b82
JR
4348struct irq_remap_ops amd_iommu_irq_ops = {
4349 .supported = amd_iommu_supported,
4350 .prepare = amd_iommu_prepare,
4351 .enable = amd_iommu_enable,
4352 .disable = amd_iommu_disable,
4353 .reenable = amd_iommu_reenable,
4354 .enable_faulting = amd_iommu_enable_faulting,
4355 .setup_ioapic_entry = setup_ioapic_entry,
4356 .set_affinity = set_affinity,
4357 .free_irq = free_irq,
4358 .compose_msi_msg = compose_msi_msg,
4359 .msi_alloc_irq = msi_alloc_irq,
4360 .msi_setup_irq = msi_setup_irq,
4361 .setup_hpet_msi = setup_hpet_msi,
4362};
2b324506 4363#endif