Merge tag 'usercopy-v4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
[linux-2.6-block.git] / drivers / input / input.c
CommitLineData
1da177e4
LT
1/*
2 * The input core
3 *
4 * Copyright (c) 1999-2002 Vojtech Pavlik
5 */
6
7/*
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published by
10 * the Free Software Foundation.
11 */
12
da0c4901
JP
13#define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
14
1da177e4 15#include <linux/init.h>
ffd0db97 16#include <linux/types.h>
7f8d4cad 17#include <linux/idr.h>
47c78e89 18#include <linux/input/mt.h>
1da177e4 19#include <linux/module.h>
5a0e3ad6 20#include <linux/slab.h>
1da177e4
LT
21#include <linux/random.h>
22#include <linux/major.h>
23#include <linux/proc_fs.h>
a99bbaf5 24#include <linux/sched.h>
969b21cd 25#include <linux/seq_file.h>
1da177e4
LT
26#include <linux/poll.h>
27#include <linux/device.h>
e676c232 28#include <linux/mutex.h>
8006479c 29#include <linux/rcupdate.h>
15e184af 30#include "input-compat.h"
1da177e4
LT
31
32MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
33MODULE_DESCRIPTION("Input core");
34MODULE_LICENSE("GPL");
35
7f8d4cad
DT
36#define INPUT_MAX_CHAR_DEVICES 1024
37#define INPUT_FIRST_DYNAMIC_DEV 256
38static DEFINE_IDA(input_ida);
1da177e4
LT
39
40static LIST_HEAD(input_dev_list);
41static LIST_HEAD(input_handler_list);
42
8006479c
DT
43/*
44 * input_mutex protects access to both input_dev_list and input_handler_list.
45 * This also causes input_[un]register_device and input_[un]register_handler
46 * be mutually exclusive which simplifies locking in drivers implementing
47 * input handlers.
48 */
49static DEFINE_MUTEX(input_mutex);
50
4369c64c
HR
51static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
52
8006479c
DT
53static inline int is_event_supported(unsigned int code,
54 unsigned long *bm, unsigned int max)
1da177e4 55{
8006479c
DT
56 return code <= max && test_bit(code, bm);
57}
1da177e4 58
8006479c
DT
59static int input_defuzz_abs_event(int value, int old_val, int fuzz)
60{
61 if (fuzz) {
62 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
63 return old_val;
1da177e4 64
8006479c
DT
65 if (value > old_val - fuzz && value < old_val + fuzz)
66 return (old_val * 3 + value) / 4;
1da177e4 67
8006479c
DT
68 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
69 return (old_val + value) / 2;
70 }
1da177e4 71
8006479c
DT
72 return value;
73}
1da177e4 74
352ac4bd
HR
75static void input_start_autorepeat(struct input_dev *dev, int code)
76{
77 if (test_bit(EV_REP, dev->evbit) &&
78 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
79 dev->timer.data) {
80 dev->repeat_key = code;
81 mod_timer(&dev->timer,
82 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
83 }
84}
85
86static void input_stop_autorepeat(struct input_dev *dev)
87{
88 del_timer(&dev->timer);
89}
90
8006479c 91/*
ef7995f4
DT
92 * Pass event first through all filters and then, if event has not been
93 * filtered out, through all open handles. This function is called with
82ba56c2 94 * dev->event_lock held and interrupts disabled.
8006479c 95 */
4369c64c
HR
96static unsigned int input_to_handler(struct input_handle *handle,
97 struct input_value *vals, unsigned int count)
8006479c 98{
4369c64c
HR
99 struct input_handler *handler = handle->handler;
100 struct input_value *end = vals;
101 struct input_value *v;
82ba56c2 102
2c50ad34
AG
103 if (handler->filter) {
104 for (v = vals; v != vals + count; v++) {
105 if (handler->filter(handle, v->type, v->code, v->value))
106 continue;
107 if (end != v)
108 *end = *v;
109 end++;
110 }
111 count = end - vals;
4369c64c 112 }
1da177e4 113
4369c64c
HR
114 if (!count)
115 return 0;
ef7995f4 116
4369c64c
HR
117 if (handler->events)
118 handler->events(handle, vals, count);
119 else if (handler->event)
2c50ad34 120 for (v = vals; v != vals + count; v++)
4369c64c 121 handler->event(handle, v->type, v->code, v->value);
ef7995f4 122
4369c64c
HR
123 return count;
124}
ef7995f4 125
4369c64c
HR
126/*
127 * Pass values first through all filters and then, if event has not been
128 * filtered out, through all open handles. This function is called with
129 * dev->event_lock held and interrupts disabled.
130 */
131static void input_pass_values(struct input_dev *dev,
132 struct input_value *vals, unsigned int count)
8006479c 133{
82ba56c2 134 struct input_handle *handle;
4369c64c 135 struct input_value *v;
ef7995f4 136
4369c64c
HR
137 if (!count)
138 return;
82ba56c2
DT
139
140 rcu_read_lock();
1da177e4 141
82ba56c2 142 handle = rcu_dereference(dev->grab);
4369c64c
HR
143 if (handle) {
144 count = input_to_handler(handle, vals, count);
145 } else {
146 list_for_each_entry_rcu(handle, &dev->h_list, d_node)
2c50ad34 147 if (handle->open) {
4369c64c 148 count = input_to_handler(handle, vals, count);
2c50ad34
AG
149 if (!count)
150 break;
151 }
ef7995f4 152 }
ef7995f4 153
82ba56c2 154 rcu_read_unlock();
ef7995f4 155
352ac4bd 156 /* trigger auto repeat for key events */
5ab17145
AG
157 if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
158 for (v = vals; v != vals + count; v++) {
159 if (v->type == EV_KEY && v->value != 2) {
160 if (v->value)
161 input_start_autorepeat(dev, v->code);
162 else
163 input_stop_autorepeat(dev);
164 }
ef7995f4
DT
165 }
166 }
4369c64c 167}
ef7995f4 168
4369c64c
HR
169static void input_pass_event(struct input_dev *dev,
170 unsigned int type, unsigned int code, int value)
171{
172 struct input_value vals[] = { { type, code, value } };
173
174 input_pass_values(dev, vals, ARRAY_SIZE(vals));
8006479c 175}
1da177e4 176
8006479c
DT
177/*
178 * Generate software autorepeat event. Note that we take
179 * dev->event_lock here to avoid racing with input_event
180 * which may cause keys get "stuck".
181 */
182static void input_repeat_key(unsigned long data)
183{
184 struct input_dev *dev = (void *) data;
185 unsigned long flags;
1da177e4 186
8006479c 187 spin_lock_irqsave(&dev->event_lock, flags);
1da177e4 188
8006479c
DT
189 if (test_bit(dev->repeat_key, dev->key) &&
190 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
4369c64c
HR
191 struct input_value vals[] = {
192 { EV_KEY, dev->repeat_key, 2 },
193 input_value_sync
194 };
1da177e4 195
4369c64c 196 input_pass_values(dev, vals, ARRAY_SIZE(vals));
31581066 197
8006479c
DT
198 if (dev->rep[REP_PERIOD])
199 mod_timer(&dev->timer, jiffies +
200 msecs_to_jiffies(dev->rep[REP_PERIOD]));
201 }
31581066 202
8006479c
DT
203 spin_unlock_irqrestore(&dev->event_lock, flags);
204}
31581066 205
8006479c
DT
206#define INPUT_IGNORE_EVENT 0
207#define INPUT_PASS_TO_HANDLERS 1
208#define INPUT_PASS_TO_DEVICE 2
4369c64c
HR
209#define INPUT_SLOT 4
210#define INPUT_FLUSH 8
8006479c 211#define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
1da177e4 212
40d007e7
HR
213static int input_handle_abs_event(struct input_dev *dev,
214 unsigned int code, int *pval)
215{
8d18fba2 216 struct input_mt *mt = dev->mt;
40d007e7
HR
217 bool is_mt_event;
218 int *pold;
219
220 if (code == ABS_MT_SLOT) {
221 /*
222 * "Stage" the event; we'll flush it later, when we
144c0f88 223 * get actual touch data.
40d007e7 224 */
8d18fba2
HR
225 if (mt && *pval >= 0 && *pval < mt->num_slots)
226 mt->slot = *pval;
40d007e7
HR
227
228 return INPUT_IGNORE_EVENT;
229 }
230
b89529a1 231 is_mt_event = input_is_mt_value(code);
40d007e7
HR
232
233 if (!is_mt_event) {
d31b2865 234 pold = &dev->absinfo[code].value;
8d18fba2
HR
235 } else if (mt) {
236 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
40d007e7
HR
237 } else {
238 /*
144c0f88 239 * Bypass filtering for multi-touch events when
40d007e7
HR
240 * not employing slots.
241 */
242 pold = NULL;
243 }
244
245 if (pold) {
246 *pval = input_defuzz_abs_event(*pval, *pold,
d31b2865 247 dev->absinfo[code].fuzz);
40d007e7
HR
248 if (*pold == *pval)
249 return INPUT_IGNORE_EVENT;
250
251 *pold = *pval;
252 }
253
254 /* Flush pending "slot" event */
8d18fba2
HR
255 if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
256 input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
4369c64c 257 return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
40d007e7
HR
258 }
259
260 return INPUT_PASS_TO_HANDLERS;
261}
262
4369c64c 263static int input_get_disposition(struct input_dev *dev,
50c5d36d 264 unsigned int type, unsigned int code, int *pval)
8006479c
DT
265{
266 int disposition = INPUT_IGNORE_EVENT;
50c5d36d 267 int value = *pval;
1da177e4 268
8006479c 269 switch (type) {
1da177e4 270
8006479c
DT
271 case EV_SYN:
272 switch (code) {
273 case SYN_CONFIG:
274 disposition = INPUT_PASS_TO_ALL;
275 break;
1da177e4 276
8006479c 277 case SYN_REPORT:
4369c64c 278 disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
1da177e4 279 break;
5e5ee686 280 case SYN_MT_REPORT:
5e5ee686
HR
281 disposition = INPUT_PASS_TO_HANDLERS;
282 break;
8006479c
DT
283 }
284 break;
1da177e4 285
8006479c 286 case EV_KEY:
0672120a 287 if (is_event_supported(code, dev->keybit, KEY_MAX)) {
1da177e4 288
0672120a
HR
289 /* auto-repeat bypasses state updates */
290 if (value == 2) {
291 disposition = INPUT_PASS_TO_HANDLERS;
292 break;
8006479c 293 }
1da177e4 294
0672120a 295 if (!!test_bit(code, dev->key) != !!value) {
1da177e4 296
8006479c 297 __change_bit(code, dev->key);
0672120a 298 disposition = INPUT_PASS_TO_HANDLERS;
8006479c 299 }
8006479c
DT
300 }
301 break;
1da177e4 302
8006479c
DT
303 case EV_SW:
304 if (is_event_supported(code, dev->swbit, SW_MAX) &&
0672120a 305 !!test_bit(code, dev->sw) != !!value) {
1da177e4 306
8006479c
DT
307 __change_bit(code, dev->sw);
308 disposition = INPUT_PASS_TO_HANDLERS;
309 }
310 break;
1da177e4 311
8006479c 312 case EV_ABS:
40d007e7 313 if (is_event_supported(code, dev->absbit, ABS_MAX))
9ae4345a 314 disposition = input_handle_abs_event(dev, code, &value);
61994a61 315
8006479c 316 break;
1da177e4 317
8006479c
DT
318 case EV_REL:
319 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
320 disposition = INPUT_PASS_TO_HANDLERS;
1da177e4 321
8006479c 322 break;
1e0afb28 323
8006479c
DT
324 case EV_MSC:
325 if (is_event_supported(code, dev->mscbit, MSC_MAX))
326 disposition = INPUT_PASS_TO_ALL;
1da177e4 327
8006479c 328 break;
1da177e4 329
8006479c
DT
330 case EV_LED:
331 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
0672120a 332 !!test_bit(code, dev->led) != !!value) {
1da177e4 333
8006479c
DT
334 __change_bit(code, dev->led);
335 disposition = INPUT_PASS_TO_ALL;
336 }
337 break;
338
339 case EV_SND:
340 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
1da177e4 341
8fdc1948 342 if (!!test_bit(code, dev->snd) != !!value)
8006479c
DT
343 __change_bit(code, dev->snd);
344 disposition = INPUT_PASS_TO_ALL;
345 }
346 break;
8fdc1948 347
8006479c
DT
348 case EV_REP:
349 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
350 dev->rep[code] = value;
351 disposition = INPUT_PASS_TO_ALL;
352 }
353 break;
1da177e4 354
8006479c
DT
355 case EV_FF:
356 if (value >= 0)
357 disposition = INPUT_PASS_TO_ALL;
358 break;
ed2fa4dd
RP
359
360 case EV_PWR:
361 disposition = INPUT_PASS_TO_ALL;
362 break;
8006479c 363 }
1da177e4 364
50c5d36d 365 *pval = value;
4369c64c
HR
366 return disposition;
367}
368
369static void input_handle_event(struct input_dev *dev,
370 unsigned int type, unsigned int code, int value)
371{
b55eb298 372 int disposition = input_get_disposition(dev, type, code, &value);
4369c64c 373
b55eb298
DT
374 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
375 add_input_randomness(type, code, value);
1da177e4 376
8006479c
DT
377 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
378 dev->event(dev, type, code, value);
1da177e4 379
4369c64c
HR
380 if (!dev->vals)
381 return;
382
383 if (disposition & INPUT_PASS_TO_HANDLERS) {
384 struct input_value *v;
385
386 if (disposition & INPUT_SLOT) {
387 v = &dev->vals[dev->num_vals++];
388 v->type = EV_ABS;
389 v->code = ABS_MT_SLOT;
390 v->value = dev->mt->slot;
391 }
392
393 v = &dev->vals[dev->num_vals++];
394 v->type = type;
395 v->code = code;
396 v->value = value;
397 }
398
399 if (disposition & INPUT_FLUSH) {
400 if (dev->num_vals >= 2)
401 input_pass_values(dev, dev->vals, dev->num_vals);
402 dev->num_vals = 0;
403 } else if (dev->num_vals >= dev->max_vals - 2) {
404 dev->vals[dev->num_vals++] = input_value_sync;
405 input_pass_values(dev, dev->vals, dev->num_vals);
406 dev->num_vals = 0;
407 }
408
8006479c 409}
1da177e4 410
8006479c
DT
411/**
412 * input_event() - report new input event
413 * @dev: device that generated the event
414 * @type: type of the event
415 * @code: event code
416 * @value: value of the event
417 *
418 * This function should be used by drivers implementing various input
df2d4637
DT
419 * devices to report input events. See also input_inject_event().
420 *
421 * NOTE: input_event() may be safely used right after input device was
422 * allocated with input_allocate_device(), even before it is registered
423 * with input_register_device(), but the event will not reach any of the
424 * input handlers. Such early invocation of input_event() may be used
425 * to 'seed' initial state of a switch or initial position of absolute
426 * axis, etc.
8006479c 427 */
8006479c
DT
428void input_event(struct input_dev *dev,
429 unsigned int type, unsigned int code, int value)
430{
431 unsigned long flags;
509ca1a9 432
8006479c 433 if (is_event_supported(type, dev->evbit, EV_MAX)) {
509ca1a9 434
8006479c 435 spin_lock_irqsave(&dev->event_lock, flags);
9ae4345a 436 input_handle_event(dev, type, code, value);
8006479c 437 spin_unlock_irqrestore(&dev->event_lock, flags);
1da177e4 438 }
1da177e4 439}
ca56fe07 440EXPORT_SYMBOL(input_event);
1da177e4 441
0e739d28
DT
442/**
443 * input_inject_event() - send input event from input handler
444 * @handle: input handle to send event through
445 * @type: type of the event
446 * @code: event code
447 * @value: value of the event
448 *
8006479c
DT
449 * Similar to input_event() but will ignore event if device is
450 * "grabbed" and handle injecting event is not the one that owns
451 * the device.
0e739d28 452 */
8006479c
DT
453void input_inject_event(struct input_handle *handle,
454 unsigned int type, unsigned int code, int value)
1da177e4 455{
8006479c
DT
456 struct input_dev *dev = handle->dev;
457 struct input_handle *grab;
458 unsigned long flags;
1da177e4 459
8006479c
DT
460 if (is_event_supported(type, dev->evbit, EV_MAX)) {
461 spin_lock_irqsave(&dev->event_lock, flags);
1da177e4 462
82ba56c2 463 rcu_read_lock();
8006479c
DT
464 grab = rcu_dereference(dev->grab);
465 if (!grab || grab == handle)
9ae4345a 466 input_handle_event(dev, type, code, value);
82ba56c2 467 rcu_read_unlock();
1da177e4 468
8006479c
DT
469 spin_unlock_irqrestore(&dev->event_lock, flags);
470 }
1da177e4 471}
8006479c 472EXPORT_SYMBOL(input_inject_event);
1da177e4 473
d31b2865
DM
474/**
475 * input_alloc_absinfo - allocates array of input_absinfo structs
476 * @dev: the input device emitting absolute events
477 *
478 * If the absinfo struct the caller asked for is already allocated, this
479 * functions will not do anything.
480 */
481void input_alloc_absinfo(struct input_dev *dev)
482{
483 if (!dev->absinfo)
484 dev->absinfo = kcalloc(ABS_CNT, sizeof(struct input_absinfo),
485 GFP_KERNEL);
486
487 WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__);
488}
489EXPORT_SYMBOL(input_alloc_absinfo);
490
491void input_set_abs_params(struct input_dev *dev, unsigned int axis,
492 int min, int max, int fuzz, int flat)
493{
494 struct input_absinfo *absinfo;
495
496 input_alloc_absinfo(dev);
497 if (!dev->absinfo)
498 return;
499
500 absinfo = &dev->absinfo[axis];
501 absinfo->minimum = min;
502 absinfo->maximum = max;
503 absinfo->fuzz = fuzz;
504 absinfo->flat = flat;
505
2c9a9cfe
DT
506 __set_bit(EV_ABS, dev->evbit);
507 __set_bit(axis, dev->absbit);
d31b2865
DM
508}
509EXPORT_SYMBOL(input_set_abs_params);
510
511
8006479c
DT
512/**
513 * input_grab_device - grabs device for exclusive use
514 * @handle: input handle that wants to own the device
515 *
516 * When a device is grabbed by an input handle all events generated by
517 * the device are delivered only to this handle. Also events injected
518 * by other input handles are ignored while device is grabbed.
519 */
1da177e4
LT
520int input_grab_device(struct input_handle *handle)
521{
8006479c
DT
522 struct input_dev *dev = handle->dev;
523 int retval;
1da177e4 524
8006479c
DT
525 retval = mutex_lock_interruptible(&dev->mutex);
526 if (retval)
527 return retval;
528
529 if (dev->grab) {
530 retval = -EBUSY;
531 goto out;
532 }
533
534 rcu_assign_pointer(dev->grab, handle);
8006479c
DT
535
536 out:
537 mutex_unlock(&dev->mutex);
538 return retval;
1da177e4 539}
ca56fe07 540EXPORT_SYMBOL(input_grab_device);
1da177e4 541
8006479c 542static void __input_release_device(struct input_handle *handle)
1da177e4 543{
a2b2ed2c 544 struct input_dev *dev = handle->dev;
adc4633c 545 struct input_handle *grabber;
c7e8dc6e 546
adc4633c
DT
547 grabber = rcu_dereference_protected(dev->grab,
548 lockdep_is_held(&dev->mutex));
549 if (grabber == handle) {
8006479c
DT
550 rcu_assign_pointer(dev->grab, NULL);
551 /* Make sure input_pass_event() notices that grab is gone */
82ba56c2 552 synchronize_rcu();
a2b2ed2c
AM
553
554 list_for_each_entry(handle, &dev->h_list, d_node)
8006479c 555 if (handle->open && handle->handler->start)
c7e8dc6e
DT
556 handle->handler->start(handle);
557 }
1da177e4 558}
8006479c
DT
559
560/**
561 * input_release_device - release previously grabbed device
562 * @handle: input handle that owns the device
563 *
564 * Releases previously grabbed device so that other input handles can
565 * start receiving input events. Upon release all handlers attached
566 * to the device have their start() method called so they have a change
567 * to synchronize device state with the rest of the system.
568 */
569void input_release_device(struct input_handle *handle)
570{
571 struct input_dev *dev = handle->dev;
572
573 mutex_lock(&dev->mutex);
574 __input_release_device(handle);
575 mutex_unlock(&dev->mutex);
576}
ca56fe07 577EXPORT_SYMBOL(input_release_device);
1da177e4 578
8006479c
DT
579/**
580 * input_open_device - open input device
581 * @handle: handle through which device is being accessed
582 *
583 * This function should be called by input handlers when they
584 * want to start receive events from given input device.
585 */
1da177e4
LT
586int input_open_device(struct input_handle *handle)
587{
0fbf87ca 588 struct input_dev *dev = handle->dev;
8006479c 589 int retval;
0fbf87ca 590
8006479c
DT
591 retval = mutex_lock_interruptible(&dev->mutex);
592 if (retval)
593 return retval;
594
595 if (dev->going_away) {
596 retval = -ENODEV;
597 goto out;
598 }
0fbf87ca 599
1da177e4 600 handle->open++;
0fbf87ca
DT
601
602 if (!dev->users++ && dev->open)
8006479c
DT
603 retval = dev->open(dev);
604
605 if (retval) {
606 dev->users--;
607 if (!--handle->open) {
608 /*
609 * Make sure we are not delivering any more events
610 * through this handle
611 */
82ba56c2 612 synchronize_rcu();
8006479c
DT
613 }
614 }
0fbf87ca 615
8006479c 616 out:
e676c232 617 mutex_unlock(&dev->mutex);
8006479c 618 return retval;
1da177e4 619}
ca56fe07 620EXPORT_SYMBOL(input_open_device);
1da177e4 621
8006479c 622int input_flush_device(struct input_handle *handle, struct file *file)
1da177e4 623{
8006479c
DT
624 struct input_dev *dev = handle->dev;
625 int retval;
1da177e4 626
8006479c
DT
627 retval = mutex_lock_interruptible(&dev->mutex);
628 if (retval)
629 return retval;
630
631 if (dev->flush)
632 retval = dev->flush(dev, file);
633
634 mutex_unlock(&dev->mutex);
635 return retval;
1da177e4 636}
ca56fe07 637EXPORT_SYMBOL(input_flush_device);
1da177e4 638
8006479c
DT
639/**
640 * input_close_device - close input device
641 * @handle: handle through which device is being accessed
642 *
643 * This function should be called by input handlers when they
644 * want to stop receive events from given input device.
645 */
1da177e4
LT
646void input_close_device(struct input_handle *handle)
647{
0fbf87ca
DT
648 struct input_dev *dev = handle->dev;
649
e676c232 650 mutex_lock(&dev->mutex);
0fbf87ca 651
8006479c
DT
652 __input_release_device(handle);
653
0fbf87ca
DT
654 if (!--dev->users && dev->close)
655 dev->close(dev);
8006479c
DT
656
657 if (!--handle->open) {
658 /*
82ba56c2 659 * synchronize_rcu() makes sure that input_pass_event()
8006479c
DT
660 * completed and that no more input events are delivered
661 * through this handle
662 */
82ba56c2 663 synchronize_rcu();
8006479c 664 }
0fbf87ca 665
e676c232 666 mutex_unlock(&dev->mutex);
1da177e4 667}
ca56fe07 668EXPORT_SYMBOL(input_close_device);
1da177e4 669
866d7d7b
ON
670/*
671 * Simulate keyup events for all keys that are marked as pressed.
672 * The function must be called with dev->event_lock held.
673 */
674static void input_dev_release_keys(struct input_dev *dev)
675{
00159f19 676 bool need_sync = false;
866d7d7b
ON
677 int code;
678
679 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
00159f19 680 for_each_set_bit(code, dev->key, KEY_CNT) {
3e2b03da 681 input_pass_event(dev, EV_KEY, code, 0);
00159f19
DT
682 need_sync = true;
683 }
684
685 if (need_sync)
686 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
687
3e2b03da 688 memset(dev->key, 0, sizeof(dev->key));
866d7d7b
ON
689 }
690}
691
8006479c
DT
692/*
693 * Prepare device for unregistering
694 */
695static void input_disconnect_device(struct input_dev *dev)
696{
697 struct input_handle *handle;
8006479c
DT
698
699 /*
700 * Mark device as going away. Note that we take dev->mutex here
701 * not to protect access to dev->going_away but rather to ensure
702 * that there are no threads in the middle of input_open_device()
703 */
704 mutex_lock(&dev->mutex);
ffd0db97 705 dev->going_away = true;
8006479c
DT
706 mutex_unlock(&dev->mutex);
707
708 spin_lock_irq(&dev->event_lock);
709
710 /*
711 * Simulate keyup events for all pressed keys so that handlers
712 * are not left with "stuck" keys. The driver may continue
713 * generate events even after we done here but they will not
714 * reach any handlers.
715 */
866d7d7b 716 input_dev_release_keys(dev);
8006479c
DT
717
718 list_for_each_entry(handle, &dev->h_list, d_node)
719 handle->open = 0;
720
721 spin_unlock_irq(&dev->event_lock);
722}
723
8613e4c2
MCC
724/**
725 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
726 * @ke: keymap entry containing scancode to be converted.
727 * @scancode: pointer to the location where converted scancode should
728 * be stored.
729 *
730 * This function is used to convert scancode stored in &struct keymap_entry
731 * into scalar form understood by legacy keymap handling methods. These
732 * methods expect scancodes to be represented as 'unsigned int'.
733 */
734int input_scancode_to_scalar(const struct input_keymap_entry *ke,
735 unsigned int *scancode)
736{
737 switch (ke->len) {
738 case 1:
739 *scancode = *((u8 *)ke->scancode);
740 break;
741
742 case 2:
743 *scancode = *((u16 *)ke->scancode);
744 break;
745
746 case 4:
747 *scancode = *((u32 *)ke->scancode);
748 break;
749
750 default:
751 return -EINVAL;
752 }
753
754 return 0;
755}
756EXPORT_SYMBOL(input_scancode_to_scalar);
757
758/*
759 * Those routines handle the default case where no [gs]etkeycode() is
760 * defined. In this case, an array indexed by the scancode is used.
761 */
762
763static unsigned int input_fetch_keycode(struct input_dev *dev,
764 unsigned int index)
c8e4c772
MR
765{
766 switch (dev->keycodesize) {
8613e4c2
MCC
767 case 1:
768 return ((u8 *)dev->keycode)[index];
c8e4c772 769
8613e4c2
MCC
770 case 2:
771 return ((u16 *)dev->keycode)[index];
c8e4c772 772
8613e4c2
MCC
773 default:
774 return ((u32 *)dev->keycode)[index];
c8e4c772
MR
775 }
776}
777
778static int input_default_getkeycode(struct input_dev *dev,
8613e4c2 779 struct input_keymap_entry *ke)
c8e4c772 780{
8613e4c2
MCC
781 unsigned int index;
782 int error;
783
c8e4c772
MR
784 if (!dev->keycodesize)
785 return -EINVAL;
786
8613e4c2
MCC
787 if (ke->flags & INPUT_KEYMAP_BY_INDEX)
788 index = ke->index;
789 else {
790 error = input_scancode_to_scalar(ke, &index);
791 if (error)
792 return error;
793 }
794
795 if (index >= dev->keycodemax)
c8e4c772
MR
796 return -EINVAL;
797
8613e4c2
MCC
798 ke->keycode = input_fetch_keycode(dev, index);
799 ke->index = index;
800 ke->len = sizeof(index);
801 memcpy(ke->scancode, &index, sizeof(index));
c8e4c772
MR
802
803 return 0;
804}
805
806static int input_default_setkeycode(struct input_dev *dev,
8613e4c2
MCC
807 const struct input_keymap_entry *ke,
808 unsigned int *old_keycode)
c8e4c772 809{
8613e4c2
MCC
810 unsigned int index;
811 int error;
c8e4c772
MR
812 int i;
813
8613e4c2 814 if (!dev->keycodesize)
c8e4c772
MR
815 return -EINVAL;
816
8613e4c2
MCC
817 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
818 index = ke->index;
819 } else {
820 error = input_scancode_to_scalar(ke, &index);
821 if (error)
822 return error;
823 }
824
825 if (index >= dev->keycodemax)
c8e4c772
MR
826 return -EINVAL;
827
de391d12 828 if (dev->keycodesize < sizeof(ke->keycode) &&
8613e4c2 829 (ke->keycode >> (dev->keycodesize * 8)))
c8e4c772
MR
830 return -EINVAL;
831
832 switch (dev->keycodesize) {
833 case 1: {
834 u8 *k = (u8 *)dev->keycode;
8613e4c2
MCC
835 *old_keycode = k[index];
836 k[index] = ke->keycode;
c8e4c772
MR
837 break;
838 }
839 case 2: {
840 u16 *k = (u16 *)dev->keycode;
8613e4c2
MCC
841 *old_keycode = k[index];
842 k[index] = ke->keycode;
c8e4c772
MR
843 break;
844 }
845 default: {
846 u32 *k = (u32 *)dev->keycode;
8613e4c2
MCC
847 *old_keycode = k[index];
848 k[index] = ke->keycode;
c8e4c772
MR
849 break;
850 }
851 }
852
8613e4c2
MCC
853 __clear_bit(*old_keycode, dev->keybit);
854 __set_bit(ke->keycode, dev->keybit);
c8e4c772
MR
855
856 for (i = 0; i < dev->keycodemax; i++) {
8613e4c2
MCC
857 if (input_fetch_keycode(dev, i) == *old_keycode) {
858 __set_bit(*old_keycode, dev->keybit);
c8e4c772
MR
859 break; /* Setting the bit twice is useless, so break */
860 }
861 }
862
863 return 0;
864}
865
f4f37c8e
DT
866/**
867 * input_get_keycode - retrieve keycode currently mapped to a given scancode
868 * @dev: input device which keymap is being queried
8613e4c2 869 * @ke: keymap entry
f4f37c8e
DT
870 *
871 * This function should be called by anyone interested in retrieving current
8613e4c2 872 * keymap. Presently evdev handlers use it.
f4f37c8e 873 */
8613e4c2 874int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
f4f37c8e 875{
2e2e3b96
DT
876 unsigned long flags;
877 int retval;
878
879 spin_lock_irqsave(&dev->event_lock, flags);
aebd636b 880 retval = dev->getkeycode(dev, ke);
8613e4c2 881 spin_unlock_irqrestore(&dev->event_lock, flags);
aebd636b 882
2e2e3b96 883 return retval;
f4f37c8e
DT
884}
885EXPORT_SYMBOL(input_get_keycode);
886
887/**
8613e4c2 888 * input_set_keycode - attribute a keycode to a given scancode
f4f37c8e 889 * @dev: input device which keymap is being updated
8613e4c2 890 * @ke: new keymap entry
f4f37c8e
DT
891 *
892 * This function should be called by anyone needing to update current
893 * keymap. Presently keyboard and evdev handlers use it.
894 */
58b93995 895int input_set_keycode(struct input_dev *dev,
8613e4c2 896 const struct input_keymap_entry *ke)
f4f37c8e
DT
897{
898 unsigned long flags;
fd6cf3dd 899 unsigned int old_keycode;
f4f37c8e
DT
900 int retval;
901
8613e4c2 902 if (ke->keycode > KEY_MAX)
f4f37c8e
DT
903 return -EINVAL;
904
905 spin_lock_irqsave(&dev->event_lock, flags);
906
aebd636b 907 retval = dev->setkeycode(dev, ke, &old_keycode);
f4f37c8e
DT
908 if (retval)
909 goto out;
910
4f93df40
DT
911 /* Make sure KEY_RESERVED did not get enabled. */
912 __clear_bit(KEY_RESERVED, dev->keybit);
913
f4f37c8e
DT
914 /*
915 * Simulate keyup event if keycode is not present
916 * in the keymap anymore
917 */
918 if (test_bit(EV_KEY, dev->evbit) &&
919 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
920 __test_and_clear_bit(old_keycode, dev->key)) {
4369c64c
HR
921 struct input_value vals[] = {
922 { EV_KEY, old_keycode, 0 },
923 input_value_sync
924 };
f4f37c8e 925
4369c64c 926 input_pass_values(dev, vals, ARRAY_SIZE(vals));
f4f37c8e
DT
927 }
928
929 out:
930 spin_unlock_irqrestore(&dev->event_lock, flags);
931
932 return retval;
933}
934EXPORT_SYMBOL(input_set_keycode);
c8e4c772 935
0b7024ac 936static const struct input_device_id *input_match_device(struct input_handler *handler,
66e66118 937 struct input_dev *dev)
1da177e4 938{
0b7024ac 939 const struct input_device_id *id;
1da177e4 940
0b7024ac 941 for (id = handler->id_table; id->flags || id->driver_info; id++) {
1da177e4
LT
942
943 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
ddc5d341 944 if (id->bustype != dev->id.bustype)
1da177e4
LT
945 continue;
946
947 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
ddc5d341 948 if (id->vendor != dev->id.vendor)
1da177e4
LT
949 continue;
950
951 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
ddc5d341 952 if (id->product != dev->id.product)
1da177e4
LT
953 continue;
954
955 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
ddc5d341 956 if (id->version != dev->id.version)
1da177e4
LT
957 continue;
958
c0bb1f97
DT
959 if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX))
960 continue;
961
962 if (!bitmap_subset(id->keybit, dev->keybit, KEY_MAX))
963 continue;
964
965 if (!bitmap_subset(id->relbit, dev->relbit, REL_MAX))
966 continue;
967
968 if (!bitmap_subset(id->absbit, dev->absbit, ABS_MAX))
969 continue;
970
971 if (!bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX))
972 continue;
973
974 if (!bitmap_subset(id->ledbit, dev->ledbit, LED_MAX))
975 continue;
976
977 if (!bitmap_subset(id->sndbit, dev->sndbit, SND_MAX))
978 continue;
979
980 if (!bitmap_subset(id->ffbit, dev->ffbit, FF_MAX))
981 continue;
982
983 if (!bitmap_subset(id->swbit, dev->swbit, SW_MAX))
984 continue;
1da177e4 985
0b7024ac
DT
986 if (!handler->match || handler->match(handler, dev))
987 return id;
1da177e4
LT
988 }
989
990 return NULL;
991}
992
5b2a0826
DT
993static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
994{
995 const struct input_device_id *id;
996 int error;
997
0b7024ac 998 id = input_match_device(handler, dev);
5b2a0826
DT
999 if (!id)
1000 return -ENODEV;
1001
1002 error = handler->connect(handler, dev, id);
1003 if (error && error != -ENODEV)
da0c4901
JP
1004 pr_err("failed to attach handler %s to device %s, error: %d\n",
1005 handler->name, kobject_name(&dev->dev.kobj), error);
5b2a0826
DT
1006
1007 return error;
1008}
1009
15e184af
DT
1010#ifdef CONFIG_COMPAT
1011
1012static int input_bits_to_string(char *buf, int buf_size,
1013 unsigned long bits, bool skip_empty)
1014{
1015 int len = 0;
1016
b8b4ead1 1017 if (in_compat_syscall()) {
15e184af
DT
1018 u32 dword = bits >> 32;
1019 if (dword || !skip_empty)
1020 len += snprintf(buf, buf_size, "%x ", dword);
1021
1022 dword = bits & 0xffffffffUL;
1023 if (dword || !skip_empty || len)
1024 len += snprintf(buf + len, max(buf_size - len, 0),
1025 "%x", dword);
1026 } else {
1027 if (bits || !skip_empty)
1028 len += snprintf(buf, buf_size, "%lx", bits);
1029 }
1030
1031 return len;
1032}
1033
1034#else /* !CONFIG_COMPAT */
1035
1036static int input_bits_to_string(char *buf, int buf_size,
1037 unsigned long bits, bool skip_empty)
1038{
1039 return bits || !skip_empty ?
1040 snprintf(buf, buf_size, "%lx", bits) : 0;
1041}
1042
1043#endif
5b2a0826 1044
f96b434d
DT
1045#ifdef CONFIG_PROC_FS
1046
1047static struct proc_dir_entry *proc_bus_input_dir;
1048static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1049static int input_devices_state;
1050
1051static inline void input_wakeup_procfs_readers(void)
1052{
1053 input_devices_state++;
1054 wake_up(&input_devices_poll_wait);
1055}
1056
969b21cd 1057static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
f96b434d 1058{
f96b434d 1059 poll_wait(file, &input_devices_poll_wait, wait);
fa886612
DT
1060 if (file->f_version != input_devices_state) {
1061 file->f_version = input_devices_state;
f96b434d 1062 return POLLIN | POLLRDNORM;
fa886612 1063 }
1e0afb28 1064
f96b434d
DT
1065 return 0;
1066}
1067
1572ca2a
DT
1068union input_seq_state {
1069 struct {
1070 unsigned short pos;
1071 bool mutex_acquired;
1072 };
1073 void *p;
1074};
1075
969b21cd
DT
1076static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1077{
1572ca2a
DT
1078 union input_seq_state *state = (union input_seq_state *)&seq->private;
1079 int error;
1080
1081 /* We need to fit into seq->private pointer */
1082 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1083
1084 error = mutex_lock_interruptible(&input_mutex);
1085 if (error) {
1086 state->mutex_acquired = false;
1087 return ERR_PTR(error);
1088 }
1089
1090 state->mutex_acquired = true;
f96b434d 1091
ad5d972c 1092 return seq_list_start(&input_dev_list, *pos);
969b21cd 1093}
051b2fea 1094
969b21cd
DT
1095static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1096{
ad5d972c 1097 return seq_list_next(v, &input_dev_list, pos);
969b21cd 1098}
f96b434d 1099
1572ca2a 1100static void input_seq_stop(struct seq_file *seq, void *v)
969b21cd 1101{
1572ca2a
DT
1102 union input_seq_state *state = (union input_seq_state *)&seq->private;
1103
1104 if (state->mutex_acquired)
1105 mutex_unlock(&input_mutex);
969b21cd 1106}
f96b434d 1107
969b21cd
DT
1108static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1109 unsigned long *bitmap, int max)
1110{
1111 int i;
15e184af
DT
1112 bool skip_empty = true;
1113 char buf[18];
f96b434d 1114
969b21cd 1115 seq_printf(seq, "B: %s=", name);
15e184af
DT
1116
1117 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1118 if (input_bits_to_string(buf, sizeof(buf),
1119 bitmap[i], skip_empty)) {
1120 skip_empty = false;
1121 seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1122 }
1123 }
1124
1125 /*
1126 * If no output was produced print a single 0.
1127 */
1128 if (skip_empty)
1129 seq_puts(seq, "0");
1130
969b21cd
DT
1131 seq_putc(seq, '\n');
1132}
f96b434d 1133
969b21cd
DT
1134static int input_devices_seq_show(struct seq_file *seq, void *v)
1135{
1136 struct input_dev *dev = container_of(v, struct input_dev, node);
9657d75c 1137 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
969b21cd
DT
1138 struct input_handle *handle;
1139
1140 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1141 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1142
1143 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1144 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1145 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
15e03ae8 1146 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
969b21cd
DT
1147 seq_printf(seq, "H: Handlers=");
1148
1149 list_for_each_entry(handle, &dev->h_list, d_node)
1150 seq_printf(seq, "%s ", handle->name);
1151 seq_putc(seq, '\n');
1152
85b77200
HR
1153 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1154
969b21cd
DT
1155 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1156 if (test_bit(EV_KEY, dev->evbit))
1157 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1158 if (test_bit(EV_REL, dev->evbit))
1159 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1160 if (test_bit(EV_ABS, dev->evbit))
1161 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1162 if (test_bit(EV_MSC, dev->evbit))
1163 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1164 if (test_bit(EV_LED, dev->evbit))
1165 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1166 if (test_bit(EV_SND, dev->evbit))
1167 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1168 if (test_bit(EV_FF, dev->evbit))
1169 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1170 if (test_bit(EV_SW, dev->evbit))
1171 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1172
1173 seq_putc(seq, '\n');
1174
1175 kfree(path);
1176 return 0;
f96b434d
DT
1177}
1178
cec69c37 1179static const struct seq_operations input_devices_seq_ops = {
969b21cd
DT
1180 .start = input_devices_seq_start,
1181 .next = input_devices_seq_next,
1572ca2a 1182 .stop = input_seq_stop,
969b21cd
DT
1183 .show = input_devices_seq_show,
1184};
1185
1186static int input_proc_devices_open(struct inode *inode, struct file *file)
f96b434d 1187{
969b21cd
DT
1188 return seq_open(file, &input_devices_seq_ops);
1189}
1190
2b8693c0 1191static const struct file_operations input_devices_fileops = {
969b21cd
DT
1192 .owner = THIS_MODULE,
1193 .open = input_proc_devices_open,
1194 .poll = input_proc_devices_poll,
1195 .read = seq_read,
1196 .llseek = seq_lseek,
1197 .release = seq_release,
1198};
1199
1200static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1201{
1572ca2a
DT
1202 union input_seq_state *state = (union input_seq_state *)&seq->private;
1203 int error;
1204
1205 /* We need to fit into seq->private pointer */
1206 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1207
1208 error = mutex_lock_interruptible(&input_mutex);
1209 if (error) {
1210 state->mutex_acquired = false;
1211 return ERR_PTR(error);
1212 }
1213
1214 state->mutex_acquired = true;
1215 state->pos = *pos;
8006479c 1216
ad5d972c 1217 return seq_list_start(&input_handler_list, *pos);
969b21cd 1218}
f96b434d 1219
969b21cd
DT
1220static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1221{
1572ca2a 1222 union input_seq_state *state = (union input_seq_state *)&seq->private;
f96b434d 1223
1572ca2a
DT
1224 state->pos = *pos + 1;
1225 return seq_list_next(v, &input_handler_list, pos);
969b21cd
DT
1226}
1227
1228static int input_handlers_seq_show(struct seq_file *seq, void *v)
1229{
1230 struct input_handler *handler = container_of(v, struct input_handler, node);
1572ca2a 1231 union input_seq_state *state = (union input_seq_state *)&seq->private;
969b21cd 1232
1572ca2a 1233 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
ef7995f4
DT
1234 if (handler->filter)
1235 seq_puts(seq, " (filter)");
7f8d4cad 1236 if (handler->legacy_minors)
969b21cd
DT
1237 seq_printf(seq, " Minor=%d", handler->minor);
1238 seq_putc(seq, '\n');
1239
1240 return 0;
1241}
1572ca2a 1242
cec69c37 1243static const struct seq_operations input_handlers_seq_ops = {
969b21cd
DT
1244 .start = input_handlers_seq_start,
1245 .next = input_handlers_seq_next,
1572ca2a 1246 .stop = input_seq_stop,
969b21cd
DT
1247 .show = input_handlers_seq_show,
1248};
1249
1250static int input_proc_handlers_open(struct inode *inode, struct file *file)
1251{
1252 return seq_open(file, &input_handlers_seq_ops);
1253}
1254
2b8693c0 1255static const struct file_operations input_handlers_fileops = {
969b21cd
DT
1256 .owner = THIS_MODULE,
1257 .open = input_proc_handlers_open,
1258 .read = seq_read,
1259 .llseek = seq_lseek,
1260 .release = seq_release,
1261};
f96b434d
DT
1262
1263static int __init input_proc_init(void)
1264{
1265 struct proc_dir_entry *entry;
1266
9c37066d 1267 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
f96b434d
DT
1268 if (!proc_bus_input_dir)
1269 return -ENOMEM;
1270
c7705f34
DL
1271 entry = proc_create("devices", 0, proc_bus_input_dir,
1272 &input_devices_fileops);
f96b434d
DT
1273 if (!entry)
1274 goto fail1;
1275
c7705f34
DL
1276 entry = proc_create("handlers", 0, proc_bus_input_dir,
1277 &input_handlers_fileops);
f96b434d
DT
1278 if (!entry)
1279 goto fail2;
1280
f96b434d
DT
1281 return 0;
1282
1283 fail2: remove_proc_entry("devices", proc_bus_input_dir);
9c37066d 1284 fail1: remove_proc_entry("bus/input", NULL);
f96b434d
DT
1285 return -ENOMEM;
1286}
1287
beffbdc2 1288static void input_proc_exit(void)
f96b434d
DT
1289{
1290 remove_proc_entry("devices", proc_bus_input_dir);
1291 remove_proc_entry("handlers", proc_bus_input_dir);
9c37066d 1292 remove_proc_entry("bus/input", NULL);
f96b434d
DT
1293}
1294
1295#else /* !CONFIG_PROC_FS */
1296static inline void input_wakeup_procfs_readers(void) { }
1297static inline int input_proc_init(void) { return 0; }
1298static inline void input_proc_exit(void) { }
1299#endif
1300
9657d75c
DT
1301#define INPUT_DEV_STRING_ATTR_SHOW(name) \
1302static ssize_t input_dev_show_##name(struct device *dev, \
1303 struct device_attribute *attr, \
1304 char *buf) \
1305{ \
1306 struct input_dev *input_dev = to_input_dev(dev); \
1307 \
1308 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1309 input_dev->name ? input_dev->name : ""); \
1310} \
1311static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
5c1e9a6a
DT
1312
1313INPUT_DEV_STRING_ATTR_SHOW(name);
1314INPUT_DEV_STRING_ATTR_SHOW(phys);
1315INPUT_DEV_STRING_ATTR_SHOW(uniq);
1316
ac648a6a
DT
1317static int input_print_modalias_bits(char *buf, int size,
1318 char name, unsigned long *bm,
1319 unsigned int min_bit, unsigned int max_bit)
1d8f430c 1320{
ac648a6a 1321 int len = 0, i;
1d8f430c 1322
ac648a6a
DT
1323 len += snprintf(buf, max(size, 0), "%c", name);
1324 for (i = min_bit; i < max_bit; i++)
7b19ada2 1325 if (bm[BIT_WORD(i)] & BIT_MASK(i))
ac648a6a 1326 len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1d8f430c
RR
1327 return len;
1328}
1329
2db66876
DT
1330static int input_print_modalias(char *buf, int size, struct input_dev *id,
1331 int add_cr)
1d8f430c 1332{
bd37e5a9 1333 int len;
1d8f430c 1334
ac648a6a
DT
1335 len = snprintf(buf, max(size, 0),
1336 "input:b%04Xv%04Xp%04Xe%04X-",
1337 id->id.bustype, id->id.vendor,
1338 id->id.product, id->id.version);
1339
1340 len += input_print_modalias_bits(buf + len, size - len,
1341 'e', id->evbit, 0, EV_MAX);
1342 len += input_print_modalias_bits(buf + len, size - len,
1343 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1344 len += input_print_modalias_bits(buf + len, size - len,
1345 'r', id->relbit, 0, REL_MAX);
1346 len += input_print_modalias_bits(buf + len, size - len,
1347 'a', id->absbit, 0, ABS_MAX);
1348 len += input_print_modalias_bits(buf + len, size - len,
1349 'm', id->mscbit, 0, MSC_MAX);
1350 len += input_print_modalias_bits(buf + len, size - len,
1351 'l', id->ledbit, 0, LED_MAX);
1352 len += input_print_modalias_bits(buf + len, size - len,
1353 's', id->sndbit, 0, SND_MAX);
1354 len += input_print_modalias_bits(buf + len, size - len,
1355 'f', id->ffbit, 0, FF_MAX);
1356 len += input_print_modalias_bits(buf + len, size - len,
1357 'w', id->swbit, 0, SW_MAX);
2db66876
DT
1358
1359 if (add_cr)
ac648a6a 1360 len += snprintf(buf + len, max(size - len, 0), "\n");
2db66876 1361
bd37e5a9
KS
1362 return len;
1363}
1364
9657d75c
DT
1365static ssize_t input_dev_show_modalias(struct device *dev,
1366 struct device_attribute *attr,
1367 char *buf)
bd37e5a9
KS
1368{
1369 struct input_dev *id = to_input_dev(dev);
1370 ssize_t len;
1371
2db66876
DT
1372 len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1373
8a3cf456 1374 return min_t(int, len, PAGE_SIZE);
1d8f430c 1375}
9657d75c 1376static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1d8f430c 1377
85b77200
HR
1378static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1379 int max, int add_cr);
1380
1381static ssize_t input_dev_show_properties(struct device *dev,
1382 struct device_attribute *attr,
1383 char *buf)
1384{
1385 struct input_dev *input_dev = to_input_dev(dev);
1386 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1387 INPUT_PROP_MAX, true);
1388 return min_t(int, len, PAGE_SIZE);
1389}
1390static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1391
629b77a4 1392static struct attribute *input_dev_attrs[] = {
9657d75c
DT
1393 &dev_attr_name.attr,
1394 &dev_attr_phys.attr,
1395 &dev_attr_uniq.attr,
1396 &dev_attr_modalias.attr,
85b77200 1397 &dev_attr_properties.attr,
629b77a4
GKH
1398 NULL
1399};
1400
bd0ef235 1401static struct attribute_group input_dev_attr_group = {
629b77a4 1402 .attrs = input_dev_attrs,
5c1e9a6a
DT
1403};
1404
9657d75c
DT
1405#define INPUT_DEV_ID_ATTR(name) \
1406static ssize_t input_dev_show_id_##name(struct device *dev, \
1407 struct device_attribute *attr, \
1408 char *buf) \
1409{ \
1410 struct input_dev *input_dev = to_input_dev(dev); \
1411 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1412} \
1413static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
5c1e9a6a
DT
1414
1415INPUT_DEV_ID_ATTR(bustype);
1416INPUT_DEV_ID_ATTR(vendor);
1417INPUT_DEV_ID_ATTR(product);
1418INPUT_DEV_ID_ATTR(version);
1419
1420static struct attribute *input_dev_id_attrs[] = {
9657d75c
DT
1421 &dev_attr_bustype.attr,
1422 &dev_attr_vendor.attr,
1423 &dev_attr_product.attr,
1424 &dev_attr_version.attr,
5c1e9a6a
DT
1425 NULL
1426};
1427
1428static struct attribute_group input_dev_id_attr_group = {
1429 .name = "id",
1430 .attrs = input_dev_id_attrs,
1431};
1432
969b21cd
DT
1433static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1434 int max, int add_cr)
1435{
1436 int i;
1437 int len = 0;
15e184af
DT
1438 bool skip_empty = true;
1439
1440 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1441 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1442 bitmap[i], skip_empty);
1443 if (len) {
1444 skip_empty = false;
1445 if (i > 0)
1446 len += snprintf(buf + len, max(buf_size - len, 0), " ");
1447 }
1448 }
969b21cd 1449
15e184af
DT
1450 /*
1451 * If no output was produced print a single 0.
1452 */
1453 if (len == 0)
1454 len = snprintf(buf, buf_size, "%d", 0);
969b21cd
DT
1455
1456 if (add_cr)
1457 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1458
1459 return len;
1460}
1461
9657d75c
DT
1462#define INPUT_DEV_CAP_ATTR(ev, bm) \
1463static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1464 struct device_attribute *attr, \
1465 char *buf) \
1466{ \
1467 struct input_dev *input_dev = to_input_dev(dev); \
1468 int len = input_print_bitmap(buf, PAGE_SIZE, \
15e184af
DT
1469 input_dev->bm##bit, ev##_MAX, \
1470 true); \
9657d75c
DT
1471 return min_t(int, len, PAGE_SIZE); \
1472} \
1473static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
5c1e9a6a
DT
1474
1475INPUT_DEV_CAP_ATTR(EV, ev);
1476INPUT_DEV_CAP_ATTR(KEY, key);
1477INPUT_DEV_CAP_ATTR(REL, rel);
1478INPUT_DEV_CAP_ATTR(ABS, abs);
1479INPUT_DEV_CAP_ATTR(MSC, msc);
1480INPUT_DEV_CAP_ATTR(LED, led);
1481INPUT_DEV_CAP_ATTR(SND, snd);
1482INPUT_DEV_CAP_ATTR(FF, ff);
1483INPUT_DEV_CAP_ATTR(SW, sw);
1484
1485static struct attribute *input_dev_caps_attrs[] = {
9657d75c
DT
1486 &dev_attr_ev.attr,
1487 &dev_attr_key.attr,
1488 &dev_attr_rel.attr,
1489 &dev_attr_abs.attr,
1490 &dev_attr_msc.attr,
1491 &dev_attr_led.attr,
1492 &dev_attr_snd.attr,
1493 &dev_attr_ff.attr,
1494 &dev_attr_sw.attr,
5c1e9a6a
DT
1495 NULL
1496};
1497
1498static struct attribute_group input_dev_caps_attr_group = {
1499 .name = "capabilities",
1500 .attrs = input_dev_caps_attrs,
1501};
1502
a4dbd674 1503static const struct attribute_group *input_dev_attr_groups[] = {
cb9def4d
DT
1504 &input_dev_attr_group,
1505 &input_dev_id_attr_group,
1506 &input_dev_caps_attr_group,
1507 NULL
1508};
1509
9657d75c 1510static void input_dev_release(struct device *device)
d19fbe8a 1511{
9657d75c 1512 struct input_dev *dev = to_input_dev(device);
d19fbe8a 1513
509ca1a9 1514 input_ff_destroy(dev);
40d007e7 1515 input_mt_destroy_slots(dev);
d31b2865 1516 kfree(dev->absinfo);
4369c64c 1517 kfree(dev->vals);
d19fbe8a 1518 kfree(dev);
509ca1a9 1519
d19fbe8a
DT
1520 module_put(THIS_MODULE);
1521}
1522
a7fadbe1 1523/*
312c004d 1524 * Input uevent interface - loading event handlers based on
a7fadbe1
DT
1525 * device bitfields.
1526 */
7eff2e7a 1527static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
ac648a6a 1528 const char *name, unsigned long *bitmap, int max)
a7fadbe1 1529{
7eff2e7a 1530 int len;
a7fadbe1 1531
fcd3027a 1532 if (add_uevent_var(env, "%s", name))
a7fadbe1
DT
1533 return -ENOMEM;
1534
7eff2e7a
KS
1535 len = input_print_bitmap(&env->buf[env->buflen - 1],
1536 sizeof(env->buf) - env->buflen,
15e184af 1537 bitmap, max, false);
7eff2e7a 1538 if (len >= (sizeof(env->buf) - env->buflen))
a7fadbe1
DT
1539 return -ENOMEM;
1540
7eff2e7a 1541 env->buflen += len;
a7fadbe1
DT
1542 return 0;
1543}
1544
7eff2e7a 1545static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
ac648a6a
DT
1546 struct input_dev *dev)
1547{
7eff2e7a 1548 int len;
ac648a6a 1549
7eff2e7a 1550 if (add_uevent_var(env, "MODALIAS="))
ac648a6a
DT
1551 return -ENOMEM;
1552
7eff2e7a
KS
1553 len = input_print_modalias(&env->buf[env->buflen - 1],
1554 sizeof(env->buf) - env->buflen,
1555 dev, 0);
1556 if (len >= (sizeof(env->buf) - env->buflen))
ac648a6a
DT
1557 return -ENOMEM;
1558
7eff2e7a 1559 env->buflen += len;
ac648a6a
DT
1560 return 0;
1561}
1562
a7fadbe1
DT
1563#define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1564 do { \
7eff2e7a 1565 int err = add_uevent_var(env, fmt, val); \
a7fadbe1
DT
1566 if (err) \
1567 return err; \
1568 } while (0)
1569
1570#define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1571 do { \
7eff2e7a 1572 int err = input_add_uevent_bm_var(env, name, bm, max); \
a7fadbe1
DT
1573 if (err) \
1574 return err; \
1575 } while (0)
1576
ac648a6a
DT
1577#define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1578 do { \
7eff2e7a 1579 int err = input_add_uevent_modalias_var(env, dev); \
ac648a6a
DT
1580 if (err) \
1581 return err; \
1582 } while (0)
1583
7eff2e7a 1584static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
a7fadbe1 1585{
9657d75c 1586 struct input_dev *dev = to_input_dev(device);
a7fadbe1
DT
1587
1588 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1589 dev->id.bustype, dev->id.vendor,
1590 dev->id.product, dev->id.version);
1591 if (dev->name)
1592 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1593 if (dev->phys)
1594 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
08de1f04 1595 if (dev->uniq)
a7fadbe1
DT
1596 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1597
85b77200
HR
1598 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1599
a7fadbe1
DT
1600 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1601 if (test_bit(EV_KEY, dev->evbit))
1602 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1603 if (test_bit(EV_REL, dev->evbit))
1604 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1605 if (test_bit(EV_ABS, dev->evbit))
1606 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1607 if (test_bit(EV_MSC, dev->evbit))
1608 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1609 if (test_bit(EV_LED, dev->evbit))
1610 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1611 if (test_bit(EV_SND, dev->evbit))
1612 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1613 if (test_bit(EV_FF, dev->evbit))
1614 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1615 if (test_bit(EV_SW, dev->evbit))
1616 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1617
ac648a6a 1618 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
a7fadbe1
DT
1619
1620 return 0;
1621}
1622
3cc96351
DT
1623#define INPUT_DO_TOGGLE(dev, type, bits, on) \
1624 do { \
1625 int i; \
1626 bool active; \
1627 \
1628 if (!test_bit(EV_##type, dev->evbit)) \
1629 break; \
1630 \
3e2b03da 1631 for_each_set_bit(i, dev->bits##bit, type##_CNT) { \
3cc96351
DT
1632 active = test_bit(i, dev->bits); \
1633 if (!active && !on) \
1634 continue; \
1635 \
1636 dev->event(dev, EV_##type, i, on ? active : 0); \
1637 } \
ffd0db97
DT
1638 } while (0)
1639
b50b5216 1640static void input_dev_toggle(struct input_dev *dev, bool activate)
ffd0db97
DT
1641{
1642 if (!dev->event)
1643 return;
1644
1645 INPUT_DO_TOGGLE(dev, LED, led, activate);
1646 INPUT_DO_TOGGLE(dev, SND, snd, activate);
1647
1648 if (activate && test_bit(EV_REP, dev->evbit)) {
1649 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1650 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1651 }
1652}
1653
b50b5216
DT
1654/**
1655 * input_reset_device() - reset/restore the state of input device
1656 * @dev: input device whose state needs to be reset
1657 *
1658 * This function tries to reset the state of an opened input device and
1659 * bring internal state and state if the hardware in sync with each other.
1660 * We mark all keys as released, restore LED state, repeat rate, etc.
1661 */
1662void input_reset_device(struct input_dev *dev)
1663{
768d9aa5 1664 unsigned long flags;
b50b5216 1665
768d9aa5
AM
1666 mutex_lock(&dev->mutex);
1667 spin_lock_irqsave(&dev->event_lock, flags);
b50b5216 1668
768d9aa5
AM
1669 input_dev_toggle(dev, true);
1670 input_dev_release_keys(dev);
b50b5216 1671
768d9aa5 1672 spin_unlock_irqrestore(&dev->event_lock, flags);
b50b5216
DT
1673 mutex_unlock(&dev->mutex);
1674}
1675EXPORT_SYMBOL(input_reset_device);
1676
768d9aa5 1677#ifdef CONFIG_PM_SLEEP
ffd0db97
DT
1678static int input_dev_suspend(struct device *dev)
1679{
1680 struct input_dev *input_dev = to_input_dev(dev);
1681
768d9aa5 1682 spin_lock_irq(&input_dev->event_lock);
b50b5216 1683
768d9aa5
AM
1684 /*
1685 * Keys that are pressed now are unlikely to be
1686 * still pressed when we resume.
1687 */
1688 input_dev_release_keys(input_dev);
b50b5216 1689
768d9aa5
AM
1690 /* Turn off LEDs and sounds, if any are active. */
1691 input_dev_toggle(input_dev, false);
1692
1693 spin_unlock_irq(&input_dev->event_lock);
ffd0db97
DT
1694
1695 return 0;
1696}
1697
1698static int input_dev_resume(struct device *dev)
1699{
1700 struct input_dev *input_dev = to_input_dev(dev);
1701
768d9aa5
AM
1702 spin_lock_irq(&input_dev->event_lock);
1703
1704 /* Restore state of LEDs and sounds, if any were active. */
1705 input_dev_toggle(input_dev, true);
1706
1707 spin_unlock_irq(&input_dev->event_lock);
1708
1709 return 0;
1710}
1711
1712static int input_dev_freeze(struct device *dev)
1713{
1714 struct input_dev *input_dev = to_input_dev(dev);
1715
1716 spin_lock_irq(&input_dev->event_lock);
1717
1718 /*
1719 * Keys that are pressed now are unlikely to be
1720 * still pressed when we resume.
1721 */
1722 input_dev_release_keys(input_dev);
1723
1724 spin_unlock_irq(&input_dev->event_lock);
1725
1726 return 0;
1727}
1728
1729static int input_dev_poweroff(struct device *dev)
1730{
1731 struct input_dev *input_dev = to_input_dev(dev);
1732
1733 spin_lock_irq(&input_dev->event_lock);
1734
1735 /* Turn off LEDs and sounds, if any are active. */
1736 input_dev_toggle(input_dev, false);
1737
1738 spin_unlock_irq(&input_dev->event_lock);
ffd0db97
DT
1739
1740 return 0;
1741}
1742
1743static const struct dev_pm_ops input_dev_pm_ops = {
1744 .suspend = input_dev_suspend,
1745 .resume = input_dev_resume,
768d9aa5
AM
1746 .freeze = input_dev_freeze,
1747 .poweroff = input_dev_poweroff,
ffd0db97
DT
1748 .restore = input_dev_resume,
1749};
1750#endif /* CONFIG_PM */
1751
9657d75c
DT
1752static struct device_type input_dev_type = {
1753 .groups = input_dev_attr_groups,
1754 .release = input_dev_release,
1755 .uevent = input_dev_uevent,
768d9aa5 1756#ifdef CONFIG_PM_SLEEP
ffd0db97
DT
1757 .pm = &input_dev_pm_ops,
1758#endif
9657d75c
DT
1759};
1760
2c9ede55 1761static char *input_devnode(struct device *dev, umode_t *mode)
aa5ed63e
KS
1762{
1763 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1764}
1765
ea9f240b 1766struct class input_class = {
9657d75c 1767 .name = "input",
e454cea2 1768 .devnode = input_devnode,
d19fbe8a 1769};
ca56fe07 1770EXPORT_SYMBOL_GPL(input_class);
d19fbe8a 1771
1447190e
DT
1772/**
1773 * input_allocate_device - allocate memory for new input device
1774 *
2be975c6 1775 * Returns prepared struct input_dev or %NULL.
1447190e
DT
1776 *
1777 * NOTE: Use input_free_device() to free devices that have not been
1778 * registered; input_unregister_device() should be used for already
1779 * registered devices.
1780 */
d19fbe8a
DT
1781struct input_dev *input_allocate_device(void)
1782{
9c7d66fa 1783 static atomic_t input_no = ATOMIC_INIT(-1);
d19fbe8a
DT
1784 struct input_dev *dev;
1785
1786 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1787 if (dev) {
9657d75c
DT
1788 dev->dev.type = &input_dev_type;
1789 dev->dev.class = &input_class;
1790 device_initialize(&dev->dev);
f60d2b11 1791 mutex_init(&dev->mutex);
8006479c 1792 spin_lock_init(&dev->event_lock);
a60a71b0 1793 init_timer(&dev->timer);
d19fbe8a
DT
1794 INIT_LIST_HEAD(&dev->h_list);
1795 INIT_LIST_HEAD(&dev->node);
655816e4 1796
bf1d50fa 1797 dev_set_name(&dev->dev, "input%lu",
9c7d66fa 1798 (unsigned long)atomic_inc_return(&input_no));
a60a71b0 1799
655816e4 1800 __module_get(THIS_MODULE);
d19fbe8a
DT
1801 }
1802
1803 return dev;
1804}
ca56fe07 1805EXPORT_SYMBOL(input_allocate_device);
d19fbe8a 1806
2be975c6
DT
1807struct input_devres {
1808 struct input_dev *input;
1809};
1810
1811static int devm_input_device_match(struct device *dev, void *res, void *data)
1812{
1813 struct input_devres *devres = res;
1814
1815 return devres->input == data;
1816}
1817
1818static void devm_input_device_release(struct device *dev, void *res)
1819{
1820 struct input_devres *devres = res;
1821 struct input_dev *input = devres->input;
1822
1823 dev_dbg(dev, "%s: dropping reference to %s\n",
1824 __func__, dev_name(&input->dev));
1825 input_put_device(input);
1826}
1827
1828/**
1829 * devm_input_allocate_device - allocate managed input device
1830 * @dev: device owning the input device being created
1831 *
1832 * Returns prepared struct input_dev or %NULL.
1833 *
1834 * Managed input devices do not need to be explicitly unregistered or
1835 * freed as it will be done automatically when owner device unbinds from
1836 * its driver (or binding fails). Once managed input device is allocated,
1837 * it is ready to be set up and registered in the same fashion as regular
1838 * input device. There are no special devm_input_device_[un]register()
b666263b
DT
1839 * variants, regular ones work with both managed and unmanaged devices,
1840 * should you need them. In most cases however, managed input device need
1841 * not be explicitly unregistered or freed.
2be975c6
DT
1842 *
1843 * NOTE: the owner device is set up as parent of input device and users
1844 * should not override it.
1845 */
2be975c6
DT
1846struct input_dev *devm_input_allocate_device(struct device *dev)
1847{
1848 struct input_dev *input;
1849 struct input_devres *devres;
1850
1851 devres = devres_alloc(devm_input_device_release,
1852 sizeof(struct input_devres), GFP_KERNEL);
1853 if (!devres)
1854 return NULL;
1855
1856 input = input_allocate_device();
1857 if (!input) {
1858 devres_free(devres);
1859 return NULL;
1860 }
1861
1862 input->dev.parent = dev;
1863 input->devres_managed = true;
1864
1865 devres->input = input;
1866 devres_add(dev, devres);
1867
1868 return input;
1869}
1870EXPORT_SYMBOL(devm_input_allocate_device);
1871
1447190e
DT
1872/**
1873 * input_free_device - free memory occupied by input_dev structure
1874 * @dev: input device to free
1875 *
1876 * This function should only be used if input_register_device()
1877 * was not called yet or if it failed. Once device was registered
1878 * use input_unregister_device() and memory will be freed once last
8006479c 1879 * reference to the device is dropped.
1447190e
DT
1880 *
1881 * Device should be allocated by input_allocate_device().
1882 *
1883 * NOTE: If there are references to the input device then memory
1884 * will not be freed until last reference is dropped.
1885 */
f60d2b11
DT
1886void input_free_device(struct input_dev *dev)
1887{
2be975c6
DT
1888 if (dev) {
1889 if (dev->devres_managed)
1890 WARN_ON(devres_destroy(dev->dev.parent,
1891 devm_input_device_release,
1892 devm_input_device_match,
1893 dev));
f60d2b11 1894 input_put_device(dev);
2be975c6 1895 }
f60d2b11 1896}
ca56fe07 1897EXPORT_SYMBOL(input_free_device);
f60d2b11 1898
534565f2
DT
1899/**
1900 * input_set_capability - mark device as capable of a certain event
1901 * @dev: device that is capable of emitting or accepting event
1902 * @type: type of the event (EV_KEY, EV_REL, etc...)
1903 * @code: event code
1904 *
1905 * In addition to setting up corresponding bit in appropriate capability
1906 * bitmap the function also adjusts dev->evbit.
1907 */
1908void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1909{
1910 switch (type) {
1911 case EV_KEY:
1912 __set_bit(code, dev->keybit);
1913 break;
1914
1915 case EV_REL:
1916 __set_bit(code, dev->relbit);
1917 break;
1918
1919 case EV_ABS:
28a2a2e1
DT
1920 input_alloc_absinfo(dev);
1921 if (!dev->absinfo)
1922 return;
1923
534565f2
DT
1924 __set_bit(code, dev->absbit);
1925 break;
1926
1927 case EV_MSC:
1928 __set_bit(code, dev->mscbit);
1929 break;
1930
1931 case EV_SW:
1932 __set_bit(code, dev->swbit);
1933 break;
1934
1935 case EV_LED:
1936 __set_bit(code, dev->ledbit);
1937 break;
1938
1939 case EV_SND:
1940 __set_bit(code, dev->sndbit);
1941 break;
1942
1943 case EV_FF:
1944 __set_bit(code, dev->ffbit);
1945 break;
1946
22d1c398
DB
1947 case EV_PWR:
1948 /* do nothing */
1949 break;
1950
534565f2 1951 default:
da0c4901
JP
1952 pr_err("input_set_capability: unknown type %u (code %u)\n",
1953 type, code);
534565f2
DT
1954 dump_stack();
1955 return;
1956 }
1957
1958 __set_bit(type, dev->evbit);
1959}
1960EXPORT_SYMBOL(input_set_capability);
1961
80b4895a
JB
1962static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
1963{
1964 int mt_slots;
1965 int i;
1966 unsigned int events;
1967
8d18fba2
HR
1968 if (dev->mt) {
1969 mt_slots = dev->mt->num_slots;
80b4895a
JB
1970 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
1971 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
1972 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
8c127f07 1973 mt_slots = clamp(mt_slots, 2, 32);
80b4895a
JB
1974 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
1975 mt_slots = 2;
1976 } else {
1977 mt_slots = 0;
1978 }
1979
1980 events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
1981
3e2b03da
AG
1982 if (test_bit(EV_ABS, dev->evbit))
1983 for_each_set_bit(i, dev->absbit, ABS_CNT)
1984 events += input_is_mt_axis(i) ? mt_slots : 1;
80b4895a 1985
3e2b03da
AG
1986 if (test_bit(EV_REL, dev->evbit))
1987 events += bitmap_weight(dev->relbit, REL_CNT);
80b4895a 1988
7c75bf99
HR
1989 /* Make room for KEY and MSC events */
1990 events += 7;
1991
80b4895a
JB
1992 return events;
1993}
1994
92a3a587
DT
1995#define INPUT_CLEANSE_BITMASK(dev, type, bits) \
1996 do { \
1997 if (!test_bit(EV_##type, dev->evbit)) \
1998 memset(dev->bits##bit, 0, \
1999 sizeof(dev->bits##bit)); \
2000 } while (0)
2001
2002static void input_cleanse_bitmasks(struct input_dev *dev)
2003{
2004 INPUT_CLEANSE_BITMASK(dev, KEY, key);
2005 INPUT_CLEANSE_BITMASK(dev, REL, rel);
2006 INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2007 INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2008 INPUT_CLEANSE_BITMASK(dev, LED, led);
2009 INPUT_CLEANSE_BITMASK(dev, SND, snd);
2010 INPUT_CLEANSE_BITMASK(dev, FF, ff);
2011 INPUT_CLEANSE_BITMASK(dev, SW, sw);
2012}
2013
2be975c6
DT
2014static void __input_unregister_device(struct input_dev *dev)
2015{
2016 struct input_handle *handle, *next;
2017
2018 input_disconnect_device(dev);
2019
2020 mutex_lock(&input_mutex);
2021
2022 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2023 handle->handler->disconnect(handle);
2024 WARN_ON(!list_empty(&dev->h_list));
2025
2026 del_timer_sync(&dev->timer);
2027 list_del_init(&dev->node);
2028
2029 input_wakeup_procfs_readers();
2030
2031 mutex_unlock(&input_mutex);
2032
2033 device_del(&dev->dev);
2034}
2035
2036static void devm_input_device_unregister(struct device *dev, void *res)
2037{
2038 struct input_devres *devres = res;
2039 struct input_dev *input = devres->input;
2040
2041 dev_dbg(dev, "%s: unregistering device %s\n",
2042 __func__, dev_name(&input->dev));
2043 __input_unregister_device(input);
2044}
2045
027c71bb
PG
2046/**
2047 * input_enable_softrepeat - enable software autorepeat
2048 * @dev: input device
2049 * @delay: repeat delay
2050 * @period: repeat period
2051 *
2052 * Enable software autorepeat on the input device.
2053 */
2054void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2055{
2056 dev->timer.data = (unsigned long) dev;
2057 dev->timer.function = input_repeat_key;
2058 dev->rep[REP_DELAY] = delay;
2059 dev->rep[REP_PERIOD] = period;
2060}
2061EXPORT_SYMBOL(input_enable_softrepeat);
2062
8006479c
DT
2063/**
2064 * input_register_device - register device with input core
2065 * @dev: device to be registered
2066 *
2067 * This function registers device with input core. The device must be
2068 * allocated with input_allocate_device() and all it's capabilities
2069 * set up before registering.
2070 * If function fails the device must be freed with input_free_device().
2071 * Once device has been successfully registered it can be unregistered
2072 * with input_unregister_device(); input_free_device() should not be
2073 * called in this case.
b666263b
DT
2074 *
2075 * Note that this function is also used to register managed input devices
2076 * (ones allocated with devm_input_allocate_device()). Such managed input
2077 * devices need not be explicitly unregistered or freed, their tear down
2078 * is controlled by the devres infrastructure. It is also worth noting
2079 * that tear down of managed input devices is internally a 2-step process:
2080 * registered managed input device is first unregistered, but stays in
2081 * memory and can still handle input_event() calls (although events will
2082 * not be delivered anywhere). The freeing of managed input device will
2083 * happen later, when devres stack is unwound to the point where device
2084 * allocation was made.
8006479c 2085 */
5f945489 2086int input_register_device(struct input_dev *dev)
1da177e4 2087{
2be975c6 2088 struct input_devres *devres = NULL;
1da177e4 2089 struct input_handler *handler;
7c75bf99 2090 unsigned int packet_size;
bd0ef235
DT
2091 const char *path;
2092 int error;
1da177e4 2093
2be975c6
DT
2094 if (dev->devres_managed) {
2095 devres = devres_alloc(devm_input_device_unregister,
2096 sizeof(struct input_devres), GFP_KERNEL);
2097 if (!devres)
2098 return -ENOMEM;
2099
2100 devres->input = dev;
2101 }
2102
4f93df40 2103 /* Every input device generates EV_SYN/SYN_REPORT events. */
8006479c 2104 __set_bit(EV_SYN, dev->evbit);
0fbf87ca 2105
4f93df40
DT
2106 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
2107 __clear_bit(KEY_RESERVED, dev->keybit);
2108
92a3a587
DT
2109 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2110 input_cleanse_bitmasks(dev);
2111
7c75bf99
HR
2112 packet_size = input_estimate_events_per_packet(dev);
2113 if (dev->hint_events_per_packet < packet_size)
2114 dev->hint_events_per_packet = packet_size;
80b4895a 2115
95079b8a 2116 dev->max_vals = dev->hint_events_per_packet + 2;
4369c64c 2117 dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2be975c6
DT
2118 if (!dev->vals) {
2119 error = -ENOMEM;
2120 goto err_devres_free;
2121 }
80b4895a 2122
1da177e4
LT
2123 /*
2124 * If delay and period are pre-set by the driver, then autorepeating
2125 * is handled by the driver itself and we don't do it in input.c.
2126 */
027c71bb
PG
2127 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2128 input_enable_softrepeat(dev, 250, 33);
1da177e4 2129
aebd636b
DT
2130 if (!dev->getkeycode)
2131 dev->getkeycode = input_default_getkeycode;
c8e4c772 2132
aebd636b
DT
2133 if (!dev->setkeycode)
2134 dev->setkeycode = input_default_setkeycode;
c8e4c772 2135
9657d75c 2136 error = device_add(&dev->dev);
bd0ef235 2137 if (error)
2be975c6 2138 goto err_free_vals;
bd0ef235 2139
9657d75c 2140 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
da0c4901
JP
2141 pr_info("%s as %s\n",
2142 dev->name ? dev->name : "Unspecified device",
2143 path ? path : "N/A");
bd0ef235 2144 kfree(path);
10204020 2145
8006479c 2146 error = mutex_lock_interruptible(&input_mutex);
2be975c6
DT
2147 if (error)
2148 goto err_device_del;
8006479c
DT
2149
2150 list_add_tail(&dev->node, &input_dev_list);
2151
1da177e4 2152 list_for_each_entry(handler, &input_handler_list, node)
5b2a0826 2153 input_attach_handler(dev, handler);
1da177e4 2154
f96b434d 2155 input_wakeup_procfs_readers();
5f945489 2156
8006479c
DT
2157 mutex_unlock(&input_mutex);
2158
2be975c6
DT
2159 if (dev->devres_managed) {
2160 dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2161 __func__, dev_name(&dev->dev));
2162 devres_add(dev->dev.parent, devres);
2163 }
5f945489 2164 return 0;
2be975c6
DT
2165
2166err_device_del:
2167 device_del(&dev->dev);
2168err_free_vals:
2169 kfree(dev->vals);
2170 dev->vals = NULL;
2171err_devres_free:
2172 devres_free(devres);
2173 return error;
1da177e4 2174}
ca56fe07 2175EXPORT_SYMBOL(input_register_device);
1da177e4 2176
8006479c
DT
2177/**
2178 * input_unregister_device - unregister previously registered device
2179 * @dev: device to be unregistered
2180 *
2181 * This function unregisters an input device. Once device is unregistered
2182 * the caller should not try to access it as it may get freed at any moment.
2183 */
1da177e4
LT
2184void input_unregister_device(struct input_dev *dev)
2185{
2be975c6
DT
2186 if (dev->devres_managed) {
2187 WARN_ON(devres_destroy(dev->dev.parent,
2188 devm_input_device_unregister,
2189 devm_input_device_match,
2190 dev));
2191 __input_unregister_device(dev);
2192 /*
2193 * We do not do input_put_device() here because it will be done
2194 * when 2nd devres fires up.
2195 */
2196 } else {
2197 __input_unregister_device(dev);
2198 input_put_device(dev);
2199 }
1da177e4 2200}
ca56fe07 2201EXPORT_SYMBOL(input_unregister_device);
1da177e4 2202
8006479c
DT
2203/**
2204 * input_register_handler - register a new input handler
2205 * @handler: handler to be registered
2206 *
2207 * This function registers a new input handler (interface) for input
2208 * devices in the system and attaches it to all input devices that
2209 * are compatible with the handler.
2210 */
4263cf0f 2211int input_register_handler(struct input_handler *handler)
1da177e4
LT
2212{
2213 struct input_dev *dev;
7f8d4cad 2214 int error;
8006479c 2215
7f8d4cad
DT
2216 error = mutex_lock_interruptible(&input_mutex);
2217 if (error)
2218 return error;
1da177e4 2219
1da177e4
LT
2220 INIT_LIST_HEAD(&handler->h_list);
2221
1da177e4
LT
2222 list_add_tail(&handler->node, &input_handler_list);
2223
2224 list_for_each_entry(dev, &input_dev_list, node)
5b2a0826 2225 input_attach_handler(dev, handler);
1da177e4 2226
f96b434d 2227 input_wakeup_procfs_readers();
8006479c 2228
8006479c 2229 mutex_unlock(&input_mutex);
7f8d4cad 2230 return 0;
1da177e4 2231}
ca56fe07 2232EXPORT_SYMBOL(input_register_handler);
1da177e4 2233
8006479c
DT
2234/**
2235 * input_unregister_handler - unregisters an input handler
2236 * @handler: handler to be unregistered
2237 *
2238 * This function disconnects a handler from its input devices and
2239 * removes it from lists of known handlers.
2240 */
1da177e4
LT
2241void input_unregister_handler(struct input_handler *handler)
2242{
5b2a0826 2243 struct input_handle *handle, *next;
1da177e4 2244
8006479c
DT
2245 mutex_lock(&input_mutex);
2246
5b2a0826 2247 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
1da177e4 2248 handler->disconnect(handle);
5b2a0826 2249 WARN_ON(!list_empty(&handler->h_list));
1da177e4
LT
2250
2251 list_del_init(&handler->node);
2252
f96b434d 2253 input_wakeup_procfs_readers();
8006479c
DT
2254
2255 mutex_unlock(&input_mutex);
1da177e4 2256}
ca56fe07 2257EXPORT_SYMBOL(input_unregister_handler);
1da177e4 2258
66d2a595
DT
2259/**
2260 * input_handler_for_each_handle - handle iterator
2261 * @handler: input handler to iterate
2262 * @data: data for the callback
2263 * @fn: function to be called for each handle
2264 *
2265 * Iterate over @bus's list of devices, and call @fn for each, passing
2266 * it @data and stop when @fn returns a non-zero value. The function is
ec8beff9 2267 * using RCU to traverse the list and therefore may be using in atomic
66d2a595
DT
2268 * contexts. The @fn callback is invoked from RCU critical section and
2269 * thus must not sleep.
2270 */
2271int input_handler_for_each_handle(struct input_handler *handler, void *data,
2272 int (*fn)(struct input_handle *, void *))
2273{
2274 struct input_handle *handle;
2275 int retval = 0;
2276
2277 rcu_read_lock();
2278
2279 list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2280 retval = fn(handle, data);
2281 if (retval)
2282 break;
2283 }
2284
2285 rcu_read_unlock();
2286
2287 return retval;
2288}
2289EXPORT_SYMBOL(input_handler_for_each_handle);
2290
8006479c
DT
2291/**
2292 * input_register_handle - register a new input handle
2293 * @handle: handle to register
2294 *
2295 * This function puts a new input handle onto device's
2296 * and handler's lists so that events can flow through
2297 * it once it is opened using input_open_device().
2298 *
2299 * This function is supposed to be called from handler's
2300 * connect() method.
2301 */
5b2a0826
DT
2302int input_register_handle(struct input_handle *handle)
2303{
2304 struct input_handler *handler = handle->handler;
8006479c
DT
2305 struct input_dev *dev = handle->dev;
2306 int error;
2307
2308 /*
2309 * We take dev->mutex here to prevent race with
2310 * input_release_device().
2311 */
2312 error = mutex_lock_interruptible(&dev->mutex);
2313 if (error)
2314 return error;
ef7995f4
DT
2315
2316 /*
2317 * Filters go to the head of the list, normal handlers
2318 * to the tail.
2319 */
2320 if (handler->filter)
2321 list_add_rcu(&handle->d_node, &dev->h_list);
2322 else
2323 list_add_tail_rcu(&handle->d_node, &dev->h_list);
2324
8006479c 2325 mutex_unlock(&dev->mutex);
5b2a0826 2326
8006479c
DT
2327 /*
2328 * Since we are supposed to be called from ->connect()
2329 * which is mutually exclusive with ->disconnect()
2330 * we can't be racing with input_unregister_handle()
2331 * and so separate lock is not needed here.
2332 */
66d2a595 2333 list_add_tail_rcu(&handle->h_node, &handler->h_list);
5b2a0826
DT
2334
2335 if (handler->start)
2336 handler->start(handle);
2337
2338 return 0;
2339}
2340EXPORT_SYMBOL(input_register_handle);
2341
8006479c
DT
2342/**
2343 * input_unregister_handle - unregister an input handle
2344 * @handle: handle to unregister
2345 *
2346 * This function removes input handle from device's
2347 * and handler's lists.
2348 *
2349 * This function is supposed to be called from handler's
2350 * disconnect() method.
2351 */
5b2a0826
DT
2352void input_unregister_handle(struct input_handle *handle)
2353{
8006479c
DT
2354 struct input_dev *dev = handle->dev;
2355
66d2a595 2356 list_del_rcu(&handle->h_node);
8006479c
DT
2357
2358 /*
2359 * Take dev->mutex to prevent race with input_release_device().
2360 */
2361 mutex_lock(&dev->mutex);
2362 list_del_rcu(&handle->d_node);
2363 mutex_unlock(&dev->mutex);
66d2a595 2364
82ba56c2 2365 synchronize_rcu();
5b2a0826
DT
2366}
2367EXPORT_SYMBOL(input_unregister_handle);
2368
7f8d4cad
DT
2369/**
2370 * input_get_new_minor - allocates a new input minor number
2371 * @legacy_base: beginning or the legacy range to be searched
2372 * @legacy_num: size of legacy range
2373 * @allow_dynamic: whether we can also take ID from the dynamic range
2374 *
2375 * This function allocates a new device minor for from input major namespace.
2376 * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2377 * parameters and whether ID can be allocated from dynamic range if there are
2378 * no free IDs in legacy range.
2379 */
2380int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2381 bool allow_dynamic)
1da177e4 2382{
1da177e4 2383 /*
7f8d4cad
DT
2384 * This function should be called from input handler's ->connect()
2385 * methods, which are serialized with input_mutex, so no additional
2386 * locking is needed here.
1da177e4 2387 */
7f8d4cad
DT
2388 if (legacy_base >= 0) {
2389 int minor = ida_simple_get(&input_ida,
2390 legacy_base,
2391 legacy_base + legacy_num,
2392 GFP_KERNEL);
2393 if (minor >= 0 || !allow_dynamic)
2394 return minor;
1da177e4 2395 }
2f2177c8 2396
7f8d4cad
DT
2397 return ida_simple_get(&input_ida,
2398 INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2399 GFP_KERNEL);
1da177e4 2400}
7f8d4cad 2401EXPORT_SYMBOL(input_get_new_minor);
1da177e4 2402
7f8d4cad
DT
2403/**
2404 * input_free_minor - release previously allocated minor
2405 * @minor: minor to be released
2406 *
2407 * This function releases previously allocated input minor so that it can be
2408 * reused later.
2409 */
2410void input_free_minor(unsigned int minor)
2411{
2412 ida_simple_remove(&input_ida, minor);
2413}
2414EXPORT_SYMBOL(input_free_minor);
1da177e4 2415
f96b434d 2416static int __init input_init(void)
1da177e4 2417{
f96b434d 2418 int err;
1da177e4 2419
ea9f240b 2420 err = class_register(&input_class);
d19fbe8a 2421 if (err) {
da0c4901 2422 pr_err("unable to register input_dev class\n");
d19fbe8a
DT
2423 return err;
2424 }
2425
f96b434d
DT
2426 err = input_proc_init();
2427 if (err)
b0fdfebb 2428 goto fail1;
1da177e4 2429
7f8d4cad
DT
2430 err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2431 INPUT_MAX_CHAR_DEVICES, "input");
f96b434d 2432 if (err) {
da0c4901 2433 pr_err("unable to register char major %d", INPUT_MAJOR);
b0fdfebb 2434 goto fail2;
1da177e4 2435 }
e334016f 2436
1da177e4 2437 return 0;
1da177e4 2438
b0fdfebb 2439 fail2: input_proc_exit();
ea9f240b 2440 fail1: class_unregister(&input_class);
f96b434d 2441 return err;
1da177e4
LT
2442}
2443
2444static void __exit input_exit(void)
2445{
f96b434d 2446 input_proc_exit();
7f8d4cad
DT
2447 unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2448 INPUT_MAX_CHAR_DEVICES);
ea9f240b 2449 class_unregister(&input_class);
1da177e4
LT
2450}
2451
2452subsys_initcall(input_init);
2453module_exit(input_exit);