Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[linux-2.6-block.git] / drivers / infiniband / ulp / srpt / ib_srpt.c
CommitLineData
a42d985b
BVA
1/*
2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved.
3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 *
33 */
34
35#include <linux/module.h>
36#include <linux/init.h>
37#include <linux/slab.h>
38#include <linux/err.h>
39#include <linux/ctype.h>
40#include <linux/kthread.h>
41#include <linux/string.h>
42#include <linux/delay.h>
43#include <linux/atomic.h>
44#include <scsi/scsi_tcq.h>
45#include <target/configfs_macros.h>
46#include <target/target_core_base.h>
47#include <target/target_core_fabric_configfs.h>
48#include <target/target_core_fabric.h>
49#include <target/target_core_configfs.h>
50#include "ib_srpt.h"
51
52/* Name of this kernel module. */
53#define DRV_NAME "ib_srpt"
54#define DRV_VERSION "2.0.0"
55#define DRV_RELDATE "2011-02-14"
56
57#define SRPT_ID_STRING "Linux SRP target"
58
59#undef pr_fmt
60#define pr_fmt(fmt) DRV_NAME " " fmt
61
62MODULE_AUTHOR("Vu Pham and Bart Van Assche");
63MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target "
64 "v" DRV_VERSION " (" DRV_RELDATE ")");
65MODULE_LICENSE("Dual BSD/GPL");
66
67/*
68 * Global Variables
69 */
70
71static u64 srpt_service_guid;
486d8b9f
RD
72static DEFINE_SPINLOCK(srpt_dev_lock); /* Protects srpt_dev_list. */
73static LIST_HEAD(srpt_dev_list); /* List of srpt_device structures. */
a42d985b
BVA
74
75static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
76module_param(srp_max_req_size, int, 0444);
77MODULE_PARM_DESC(srp_max_req_size,
78 "Maximum size of SRP request messages in bytes.");
79
80static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
81module_param(srpt_srq_size, int, 0444);
82MODULE_PARM_DESC(srpt_srq_size,
83 "Shared receive queue (SRQ) size.");
84
85static int srpt_get_u64_x(char *buffer, struct kernel_param *kp)
86{
87 return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg);
88}
89module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
90 0444);
91MODULE_PARM_DESC(srpt_service_guid,
92 "Using this value for ioc_guid, id_ext, and cm_listen_id"
93 " instead of using the node_guid of the first HCA.");
94
95static struct ib_client srpt_client;
96static struct target_fabric_configfs *srpt_target;
97static void srpt_release_channel(struct srpt_rdma_ch *ch);
98static int srpt_queue_status(struct se_cmd *cmd);
99
100/**
101 * opposite_dma_dir() - Swap DMA_TO_DEVICE and DMA_FROM_DEVICE.
102 */
103static inline
104enum dma_data_direction opposite_dma_dir(enum dma_data_direction dir)
105{
106 switch (dir) {
107 case DMA_TO_DEVICE: return DMA_FROM_DEVICE;
108 case DMA_FROM_DEVICE: return DMA_TO_DEVICE;
109 default: return dir;
110 }
111}
112
113/**
114 * srpt_sdev_name() - Return the name associated with the HCA.
115 *
116 * Examples are ib0, ib1, ...
117 */
118static inline const char *srpt_sdev_name(struct srpt_device *sdev)
119{
120 return sdev->device->name;
121}
122
123static enum rdma_ch_state srpt_get_ch_state(struct srpt_rdma_ch *ch)
124{
125 unsigned long flags;
126 enum rdma_ch_state state;
127
128 spin_lock_irqsave(&ch->spinlock, flags);
129 state = ch->state;
130 spin_unlock_irqrestore(&ch->spinlock, flags);
131 return state;
132}
133
134static enum rdma_ch_state
135srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new_state)
136{
137 unsigned long flags;
138 enum rdma_ch_state prev;
139
140 spin_lock_irqsave(&ch->spinlock, flags);
141 prev = ch->state;
142 ch->state = new_state;
143 spin_unlock_irqrestore(&ch->spinlock, flags);
144 return prev;
145}
146
147/**
148 * srpt_test_and_set_ch_state() - Test and set the channel state.
149 *
150 * Returns true if and only if the channel state has been set to the new state.
151 */
152static bool
153srpt_test_and_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state old,
154 enum rdma_ch_state new)
155{
156 unsigned long flags;
157 enum rdma_ch_state prev;
158
159 spin_lock_irqsave(&ch->spinlock, flags);
160 prev = ch->state;
161 if (prev == old)
162 ch->state = new;
163 spin_unlock_irqrestore(&ch->spinlock, flags);
164 return prev == old;
165}
166
167/**
168 * srpt_event_handler() - Asynchronous IB event callback function.
169 *
170 * Callback function called by the InfiniBand core when an asynchronous IB
171 * event occurs. This callback may occur in interrupt context. See also
172 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
173 * Architecture Specification.
174 */
175static void srpt_event_handler(struct ib_event_handler *handler,
176 struct ib_event *event)
177{
178 struct srpt_device *sdev;
179 struct srpt_port *sport;
180
181 sdev = ib_get_client_data(event->device, &srpt_client);
182 if (!sdev || sdev->device != event->device)
183 return;
184
185 pr_debug("ASYNC event= %d on device= %s\n", event->event,
186 srpt_sdev_name(sdev));
187
188 switch (event->event) {
189 case IB_EVENT_PORT_ERR:
190 if (event->element.port_num <= sdev->device->phys_port_cnt) {
191 sport = &sdev->port[event->element.port_num - 1];
192 sport->lid = 0;
193 sport->sm_lid = 0;
194 }
195 break;
196 case IB_EVENT_PORT_ACTIVE:
197 case IB_EVENT_LID_CHANGE:
198 case IB_EVENT_PKEY_CHANGE:
199 case IB_EVENT_SM_CHANGE:
200 case IB_EVENT_CLIENT_REREGISTER:
201 /* Refresh port data asynchronously. */
202 if (event->element.port_num <= sdev->device->phys_port_cnt) {
203 sport = &sdev->port[event->element.port_num - 1];
204 if (!sport->lid && !sport->sm_lid)
205 schedule_work(&sport->work);
206 }
207 break;
208 default:
209 printk(KERN_ERR "received unrecognized IB event %d\n",
210 event->event);
211 break;
212 }
213}
214
215/**
216 * srpt_srq_event() - SRQ event callback function.
217 */
218static void srpt_srq_event(struct ib_event *event, void *ctx)
219{
220 printk(KERN_INFO "SRQ event %d\n", event->event);
221}
222
223/**
224 * srpt_qp_event() - QP event callback function.
225 */
226static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
227{
228 pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n",
229 event->event, ch->cm_id, ch->sess_name, srpt_get_ch_state(ch));
230
231 switch (event->event) {
232 case IB_EVENT_COMM_EST:
233 ib_cm_notify(ch->cm_id, event->event);
234 break;
235 case IB_EVENT_QP_LAST_WQE_REACHED:
236 if (srpt_test_and_set_ch_state(ch, CH_DRAINING,
237 CH_RELEASING))
238 srpt_release_channel(ch);
239 else
240 pr_debug("%s: state %d - ignored LAST_WQE.\n",
241 ch->sess_name, srpt_get_ch_state(ch));
242 break;
243 default:
244 printk(KERN_ERR "received unrecognized IB QP event %d\n",
245 event->event);
246 break;
247 }
248}
249
250/**
251 * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure.
252 *
253 * @slot: one-based slot number.
254 * @value: four-bit value.
255 *
256 * Copies the lowest four bits of value in element slot of the array of four
257 * bit elements called c_list (controller list). The index slot is one-based.
258 */
259static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
260{
261 u16 id;
262 u8 tmp;
263
264 id = (slot - 1) / 2;
265 if (slot & 0x1) {
266 tmp = c_list[id] & 0xf;
267 c_list[id] = (value << 4) | tmp;
268 } else {
269 tmp = c_list[id] & 0xf0;
270 c_list[id] = (value & 0xf) | tmp;
271 }
272}
273
274/**
275 * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram.
276 *
277 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
278 * Specification.
279 */
280static void srpt_get_class_port_info(struct ib_dm_mad *mad)
281{
282 struct ib_class_port_info *cif;
283
284 cif = (struct ib_class_port_info *)mad->data;
285 memset(cif, 0, sizeof *cif);
286 cif->base_version = 1;
287 cif->class_version = 1;
288 cif->resp_time_value = 20;
289
290 mad->mad_hdr.status = 0;
291}
292
293/**
294 * srpt_get_iou() - Write IOUnitInfo to a management datagram.
295 *
296 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
297 * Specification. See also section B.7, table B.6 in the SRP r16a document.
298 */
299static void srpt_get_iou(struct ib_dm_mad *mad)
300{
301 struct ib_dm_iou_info *ioui;
302 u8 slot;
303 int i;
304
305 ioui = (struct ib_dm_iou_info *)mad->data;
306 ioui->change_id = __constant_cpu_to_be16(1);
307 ioui->max_controllers = 16;
308
309 /* set present for slot 1 and empty for the rest */
310 srpt_set_ioc(ioui->controller_list, 1, 1);
311 for (i = 1, slot = 2; i < 16; i++, slot++)
312 srpt_set_ioc(ioui->controller_list, slot, 0);
313
314 mad->mad_hdr.status = 0;
315}
316
317/**
318 * srpt_get_ioc() - Write IOControllerprofile to a management datagram.
319 *
320 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
321 * Architecture Specification. See also section B.7, table B.7 in the SRP
322 * r16a document.
323 */
324static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
325 struct ib_dm_mad *mad)
326{
327 struct srpt_device *sdev = sport->sdev;
328 struct ib_dm_ioc_profile *iocp;
329
330 iocp = (struct ib_dm_ioc_profile *)mad->data;
331
332 if (!slot || slot > 16) {
333 mad->mad_hdr.status
334 = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
335 return;
336 }
337
338 if (slot > 2) {
339 mad->mad_hdr.status
340 = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC);
341 return;
342 }
343
344 memset(iocp, 0, sizeof *iocp);
345 strcpy(iocp->id_string, SRPT_ID_STRING);
346 iocp->guid = cpu_to_be64(srpt_service_guid);
347 iocp->vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
348 iocp->device_id = cpu_to_be32(sdev->dev_attr.vendor_part_id);
349 iocp->device_version = cpu_to_be16(sdev->dev_attr.hw_ver);
350 iocp->subsys_vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
351 iocp->subsys_device_id = 0x0;
352 iocp->io_class = __constant_cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
353 iocp->io_subclass = __constant_cpu_to_be16(SRP_IO_SUBCLASS);
354 iocp->protocol = __constant_cpu_to_be16(SRP_PROTOCOL);
355 iocp->protocol_version = __constant_cpu_to_be16(SRP_PROTOCOL_VERSION);
356 iocp->send_queue_depth = cpu_to_be16(sdev->srq_size);
357 iocp->rdma_read_depth = 4;
358 iocp->send_size = cpu_to_be32(srp_max_req_size);
359 iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
360 1U << 24));
361 iocp->num_svc_entries = 1;
362 iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
363 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;
364
365 mad->mad_hdr.status = 0;
366}
367
368/**
369 * srpt_get_svc_entries() - Write ServiceEntries to a management datagram.
370 *
371 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
372 * Specification. See also section B.7, table B.8 in the SRP r16a document.
373 */
374static void srpt_get_svc_entries(u64 ioc_guid,
375 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
376{
377 struct ib_dm_svc_entries *svc_entries;
378
379 WARN_ON(!ioc_guid);
380
381 if (!slot || slot > 16) {
382 mad->mad_hdr.status
383 = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
384 return;
385 }
386
387 if (slot > 2 || lo > hi || hi > 1) {
388 mad->mad_hdr.status
389 = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC);
390 return;
391 }
392
393 svc_entries = (struct ib_dm_svc_entries *)mad->data;
394 memset(svc_entries, 0, sizeof *svc_entries);
395 svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
396 snprintf(svc_entries->service_entries[0].name,
397 sizeof(svc_entries->service_entries[0].name),
398 "%s%016llx",
399 SRP_SERVICE_NAME_PREFIX,
400 ioc_guid);
401
402 mad->mad_hdr.status = 0;
403}
404
405/**
406 * srpt_mgmt_method_get() - Process a received management datagram.
407 * @sp: source port through which the MAD has been received.
408 * @rq_mad: received MAD.
409 * @rsp_mad: response MAD.
410 */
411static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
412 struct ib_dm_mad *rsp_mad)
413{
414 u16 attr_id;
415 u32 slot;
416 u8 hi, lo;
417
418 attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
419 switch (attr_id) {
420 case DM_ATTR_CLASS_PORT_INFO:
421 srpt_get_class_port_info(rsp_mad);
422 break;
423 case DM_ATTR_IOU_INFO:
424 srpt_get_iou(rsp_mad);
425 break;
426 case DM_ATTR_IOC_PROFILE:
427 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
428 srpt_get_ioc(sp, slot, rsp_mad);
429 break;
430 case DM_ATTR_SVC_ENTRIES:
431 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
432 hi = (u8) ((slot >> 8) & 0xff);
433 lo = (u8) (slot & 0xff);
434 slot = (u16) ((slot >> 16) & 0xffff);
435 srpt_get_svc_entries(srpt_service_guid,
436 slot, hi, lo, rsp_mad);
437 break;
438 default:
439 rsp_mad->mad_hdr.status =
440 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
441 break;
442 }
443}
444
445/**
446 * srpt_mad_send_handler() - Post MAD-send callback function.
447 */
448static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
449 struct ib_mad_send_wc *mad_wc)
450{
451 ib_destroy_ah(mad_wc->send_buf->ah);
452 ib_free_send_mad(mad_wc->send_buf);
453}
454
455/**
456 * srpt_mad_recv_handler() - MAD reception callback function.
457 */
458static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
459 struct ib_mad_recv_wc *mad_wc)
460{
461 struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
462 struct ib_ah *ah;
463 struct ib_mad_send_buf *rsp;
464 struct ib_dm_mad *dm_mad;
465
466 if (!mad_wc || !mad_wc->recv_buf.mad)
467 return;
468
469 ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
470 mad_wc->recv_buf.grh, mad_agent->port_num);
471 if (IS_ERR(ah))
472 goto err;
473
474 BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);
475
476 rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
477 mad_wc->wc->pkey_index, 0,
478 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
479 GFP_KERNEL);
480 if (IS_ERR(rsp))
481 goto err_rsp;
482
483 rsp->ah = ah;
484
485 dm_mad = rsp->mad;
486 memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof *dm_mad);
487 dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
488 dm_mad->mad_hdr.status = 0;
489
490 switch (mad_wc->recv_buf.mad->mad_hdr.method) {
491 case IB_MGMT_METHOD_GET:
492 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
493 break;
494 case IB_MGMT_METHOD_SET:
495 dm_mad->mad_hdr.status =
496 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
497 break;
498 default:
499 dm_mad->mad_hdr.status =
500 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
501 break;
502 }
503
504 if (!ib_post_send_mad(rsp, NULL)) {
505 ib_free_recv_mad(mad_wc);
506 /* will destroy_ah & free_send_mad in send completion */
507 return;
508 }
509
510 ib_free_send_mad(rsp);
511
512err_rsp:
513 ib_destroy_ah(ah);
514err:
515 ib_free_recv_mad(mad_wc);
516}
517
518/**
519 * srpt_refresh_port() - Configure a HCA port.
520 *
521 * Enable InfiniBand management datagram processing, update the cached sm_lid,
522 * lid and gid values, and register a callback function for processing MADs
523 * on the specified port.
524 *
525 * Note: It is safe to call this function more than once for the same port.
526 */
527static int srpt_refresh_port(struct srpt_port *sport)
528{
529 struct ib_mad_reg_req reg_req;
530 struct ib_port_modify port_modify;
531 struct ib_port_attr port_attr;
532 int ret;
533
534 memset(&port_modify, 0, sizeof port_modify);
535 port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
536 port_modify.clr_port_cap_mask = 0;
537
538 ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
539 if (ret)
540 goto err_mod_port;
541
542 ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
543 if (ret)
544 goto err_query_port;
545
546 sport->sm_lid = port_attr.sm_lid;
547 sport->lid = port_attr.lid;
548
549 ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid);
550 if (ret)
551 goto err_query_port;
552
553 if (!sport->mad_agent) {
554 memset(&reg_req, 0, sizeof reg_req);
555 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
556 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
557 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
558 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);
559
560 sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
561 sport->port,
562 IB_QPT_GSI,
563 &reg_req, 0,
564 srpt_mad_send_handler,
565 srpt_mad_recv_handler,
566 sport);
567 if (IS_ERR(sport->mad_agent)) {
568 ret = PTR_ERR(sport->mad_agent);
569 sport->mad_agent = NULL;
570 goto err_query_port;
571 }
572 }
573
574 return 0;
575
576err_query_port:
577
578 port_modify.set_port_cap_mask = 0;
579 port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
580 ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
581
582err_mod_port:
583
584 return ret;
585}
586
587/**
588 * srpt_unregister_mad_agent() - Unregister MAD callback functions.
589 *
590 * Note: It is safe to call this function more than once for the same device.
591 */
592static void srpt_unregister_mad_agent(struct srpt_device *sdev)
593{
594 struct ib_port_modify port_modify = {
595 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
596 };
597 struct srpt_port *sport;
598 int i;
599
600 for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
601 sport = &sdev->port[i - 1];
602 WARN_ON(sport->port != i);
603 if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0)
604 printk(KERN_ERR "disabling MAD processing failed.\n");
605 if (sport->mad_agent) {
606 ib_unregister_mad_agent(sport->mad_agent);
607 sport->mad_agent = NULL;
608 }
609 }
610}
611
612/**
613 * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure.
614 */
615static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
616 int ioctx_size, int dma_size,
617 enum dma_data_direction dir)
618{
619 struct srpt_ioctx *ioctx;
620
621 ioctx = kmalloc(ioctx_size, GFP_KERNEL);
622 if (!ioctx)
623 goto err;
624
625 ioctx->buf = kmalloc(dma_size, GFP_KERNEL);
626 if (!ioctx->buf)
627 goto err_free_ioctx;
628
629 ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir);
630 if (ib_dma_mapping_error(sdev->device, ioctx->dma))
631 goto err_free_buf;
632
633 return ioctx;
634
635err_free_buf:
636 kfree(ioctx->buf);
637err_free_ioctx:
638 kfree(ioctx);
639err:
640 return NULL;
641}
642
643/**
644 * srpt_free_ioctx() - Free an SRPT I/O context structure.
645 */
646static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
647 int dma_size, enum dma_data_direction dir)
648{
649 if (!ioctx)
650 return;
651
652 ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir);
653 kfree(ioctx->buf);
654 kfree(ioctx);
655}
656
657/**
658 * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures.
659 * @sdev: Device to allocate the I/O context ring for.
660 * @ring_size: Number of elements in the I/O context ring.
661 * @ioctx_size: I/O context size.
662 * @dma_size: DMA buffer size.
663 * @dir: DMA data direction.
664 */
665static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
666 int ring_size, int ioctx_size,
667 int dma_size, enum dma_data_direction dir)
668{
669 struct srpt_ioctx **ring;
670 int i;
671
672 WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx)
673 && ioctx_size != sizeof(struct srpt_send_ioctx));
674
675 ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL);
676 if (!ring)
677 goto out;
678 for (i = 0; i < ring_size; ++i) {
679 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir);
680 if (!ring[i])
681 goto err;
682 ring[i]->index = i;
683 }
684 goto out;
685
686err:
687 while (--i >= 0)
688 srpt_free_ioctx(sdev, ring[i], dma_size, dir);
689 kfree(ring);
715252d4 690 ring = NULL;
a42d985b
BVA
691out:
692 return ring;
693}
694
695/**
696 * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures.
697 */
698static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
699 struct srpt_device *sdev, int ring_size,
700 int dma_size, enum dma_data_direction dir)
701{
702 int i;
703
704 for (i = 0; i < ring_size; ++i)
705 srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir);
706 kfree(ioctx_ring);
707}
708
709/**
710 * srpt_get_cmd_state() - Get the state of a SCSI command.
711 */
712static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx)
713{
714 enum srpt_command_state state;
715 unsigned long flags;
716
717 BUG_ON(!ioctx);
718
719 spin_lock_irqsave(&ioctx->spinlock, flags);
720 state = ioctx->state;
721 spin_unlock_irqrestore(&ioctx->spinlock, flags);
722 return state;
723}
724
725/**
726 * srpt_set_cmd_state() - Set the state of a SCSI command.
727 *
728 * Does not modify the state of aborted commands. Returns the previous command
729 * state.
730 */
731static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
732 enum srpt_command_state new)
733{
734 enum srpt_command_state previous;
735 unsigned long flags;
736
737 BUG_ON(!ioctx);
738
739 spin_lock_irqsave(&ioctx->spinlock, flags);
740 previous = ioctx->state;
741 if (previous != SRPT_STATE_DONE)
742 ioctx->state = new;
743 spin_unlock_irqrestore(&ioctx->spinlock, flags);
744
745 return previous;
746}
747
748/**
749 * srpt_test_and_set_cmd_state() - Test and set the state of a command.
750 *
751 * Returns true if and only if the previous command state was equal to 'old'.
752 */
753static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
754 enum srpt_command_state old,
755 enum srpt_command_state new)
756{
757 enum srpt_command_state previous;
758 unsigned long flags;
759
760 WARN_ON(!ioctx);
761 WARN_ON(old == SRPT_STATE_DONE);
762 WARN_ON(new == SRPT_STATE_NEW);
763
764 spin_lock_irqsave(&ioctx->spinlock, flags);
765 previous = ioctx->state;
766 if (previous == old)
767 ioctx->state = new;
768 spin_unlock_irqrestore(&ioctx->spinlock, flags);
769 return previous == old;
770}
771
772/**
773 * srpt_post_recv() - Post an IB receive request.
774 */
775static int srpt_post_recv(struct srpt_device *sdev,
776 struct srpt_recv_ioctx *ioctx)
777{
778 struct ib_sge list;
779 struct ib_recv_wr wr, *bad_wr;
780
781 BUG_ON(!sdev);
782 wr.wr_id = encode_wr_id(SRPT_RECV, ioctx->ioctx.index);
783
784 list.addr = ioctx->ioctx.dma;
785 list.length = srp_max_req_size;
786 list.lkey = sdev->mr->lkey;
787
788 wr.next = NULL;
789 wr.sg_list = &list;
790 wr.num_sge = 1;
791
792 return ib_post_srq_recv(sdev->srq, &wr, &bad_wr);
793}
794
795/**
796 * srpt_post_send() - Post an IB send request.
797 *
798 * Returns zero upon success and a non-zero value upon failure.
799 */
800static int srpt_post_send(struct srpt_rdma_ch *ch,
801 struct srpt_send_ioctx *ioctx, int len)
802{
803 struct ib_sge list;
804 struct ib_send_wr wr, *bad_wr;
805 struct srpt_device *sdev = ch->sport->sdev;
806 int ret;
807
808 atomic_inc(&ch->req_lim);
809
810 ret = -ENOMEM;
811 if (unlikely(atomic_dec_return(&ch->sq_wr_avail) < 0)) {
812 printk(KERN_WARNING "IB send queue full (needed 1)\n");
813 goto out;
814 }
815
816 ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, len,
817 DMA_TO_DEVICE);
818
819 list.addr = ioctx->ioctx.dma;
820 list.length = len;
821 list.lkey = sdev->mr->lkey;
822
823 wr.next = NULL;
824 wr.wr_id = encode_wr_id(SRPT_SEND, ioctx->ioctx.index);
825 wr.sg_list = &list;
826 wr.num_sge = 1;
827 wr.opcode = IB_WR_SEND;
828 wr.send_flags = IB_SEND_SIGNALED;
829
830 ret = ib_post_send(ch->qp, &wr, &bad_wr);
831
832out:
833 if (ret < 0) {
834 atomic_inc(&ch->sq_wr_avail);
835 atomic_dec(&ch->req_lim);
836 }
837 return ret;
838}
839
840/**
841 * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request.
842 * @ioctx: Pointer to the I/O context associated with the request.
843 * @srp_cmd: Pointer to the SRP_CMD request data.
844 * @dir: Pointer to the variable to which the transfer direction will be
845 * written.
846 * @data_len: Pointer to the variable to which the total data length of all
847 * descriptors in the SRP_CMD request will be written.
848 *
849 * This function initializes ioctx->nrbuf and ioctx->r_bufs.
850 *
851 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
852 * -ENOMEM when memory allocation fails and zero upon success.
853 */
854static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx,
855 struct srp_cmd *srp_cmd,
856 enum dma_data_direction *dir, u64 *data_len)
857{
858 struct srp_indirect_buf *idb;
859 struct srp_direct_buf *db;
860 unsigned add_cdb_offset;
861 int ret;
862
863 /*
864 * The pointer computations below will only be compiled correctly
865 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
866 * whether srp_cmd::add_data has been declared as a byte pointer.
867 */
868 BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0)
869 && !__same_type(srp_cmd->add_data[0], (u8)0));
870
871 BUG_ON(!dir);
872 BUG_ON(!data_len);
873
874 ret = 0;
875 *data_len = 0;
876
877 /*
878 * The lower four bits of the buffer format field contain the DATA-IN
879 * buffer descriptor format, and the highest four bits contain the
880 * DATA-OUT buffer descriptor format.
881 */
882 *dir = DMA_NONE;
883 if (srp_cmd->buf_fmt & 0xf)
884 /* DATA-IN: transfer data from target to initiator (read). */
885 *dir = DMA_FROM_DEVICE;
886 else if (srp_cmd->buf_fmt >> 4)
887 /* DATA-OUT: transfer data from initiator to target (write). */
888 *dir = DMA_TO_DEVICE;
889
890 /*
891 * According to the SRP spec, the lower two bits of the 'ADDITIONAL
892 * CDB LENGTH' field are reserved and the size in bytes of this field
893 * is four times the value specified in bits 3..7. Hence the "& ~3".
894 */
895 add_cdb_offset = srp_cmd->add_cdb_len & ~3;
896 if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
897 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
898 ioctx->n_rbuf = 1;
899 ioctx->rbufs = &ioctx->single_rbuf;
900
901 db = (struct srp_direct_buf *)(srp_cmd->add_data
902 + add_cdb_offset);
903 memcpy(ioctx->rbufs, db, sizeof *db);
904 *data_len = be32_to_cpu(db->len);
905 } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
906 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
907 idb = (struct srp_indirect_buf *)(srp_cmd->add_data
908 + add_cdb_offset);
909
910 ioctx->n_rbuf = be32_to_cpu(idb->table_desc.len) / sizeof *db;
911
912 if (ioctx->n_rbuf >
913 (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
914 printk(KERN_ERR "received unsupported SRP_CMD request"
915 " type (%u out + %u in != %u / %zu)\n",
916 srp_cmd->data_out_desc_cnt,
917 srp_cmd->data_in_desc_cnt,
918 be32_to_cpu(idb->table_desc.len),
919 sizeof(*db));
920 ioctx->n_rbuf = 0;
921 ret = -EINVAL;
922 goto out;
923 }
924
925 if (ioctx->n_rbuf == 1)
926 ioctx->rbufs = &ioctx->single_rbuf;
927 else {
928 ioctx->rbufs =
929 kmalloc(ioctx->n_rbuf * sizeof *db, GFP_ATOMIC);
930 if (!ioctx->rbufs) {
931 ioctx->n_rbuf = 0;
932 ret = -ENOMEM;
933 goto out;
934 }
935 }
936
937 db = idb->desc_list;
938 memcpy(ioctx->rbufs, db, ioctx->n_rbuf * sizeof *db);
939 *data_len = be32_to_cpu(idb->len);
940 }
941out:
942 return ret;
943}
944
945/**
946 * srpt_init_ch_qp() - Initialize queue pair attributes.
947 *
948 * Initialized the attributes of queue pair 'qp' by allowing local write,
949 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
950 */
951static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
952{
953 struct ib_qp_attr *attr;
954 int ret;
955
956 attr = kzalloc(sizeof *attr, GFP_KERNEL);
957 if (!attr)
958 return -ENOMEM;
959
960 attr->qp_state = IB_QPS_INIT;
961 attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ |
962 IB_ACCESS_REMOTE_WRITE;
963 attr->port_num = ch->sport->port;
964 attr->pkey_index = 0;
965
966 ret = ib_modify_qp(qp, attr,
967 IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
968 IB_QP_PKEY_INDEX);
969
970 kfree(attr);
971 return ret;
972}
973
974/**
975 * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR).
976 * @ch: channel of the queue pair.
977 * @qp: queue pair to change the state of.
978 *
979 * Returns zero upon success and a negative value upon failure.
980 *
981 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
982 * If this structure ever becomes larger, it might be necessary to allocate
983 * it dynamically instead of on the stack.
984 */
985static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
986{
987 struct ib_qp_attr qp_attr;
988 int attr_mask;
989 int ret;
990
991 qp_attr.qp_state = IB_QPS_RTR;
992 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
993 if (ret)
994 goto out;
995
996 qp_attr.max_dest_rd_atomic = 4;
997
998 ret = ib_modify_qp(qp, &qp_attr, attr_mask);
999
1000out:
1001 return ret;
1002}
1003
1004/**
1005 * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS).
1006 * @ch: channel of the queue pair.
1007 * @qp: queue pair to change the state of.
1008 *
1009 * Returns zero upon success and a negative value upon failure.
1010 *
1011 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1012 * If this structure ever becomes larger, it might be necessary to allocate
1013 * it dynamically instead of on the stack.
1014 */
1015static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1016{
1017 struct ib_qp_attr qp_attr;
1018 int attr_mask;
1019 int ret;
1020
1021 qp_attr.qp_state = IB_QPS_RTS;
1022 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
1023 if (ret)
1024 goto out;
1025
1026 qp_attr.max_rd_atomic = 4;
1027
1028 ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1029
1030out:
1031 return ret;
1032}
1033
1034/**
1035 * srpt_ch_qp_err() - Set the channel queue pair state to 'error'.
1036 */
1037static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
1038{
1039 struct ib_qp_attr qp_attr;
1040
1041 qp_attr.qp_state = IB_QPS_ERR;
1042 return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
1043}
1044
1045/**
1046 * srpt_unmap_sg_to_ib_sge() - Unmap an IB SGE list.
1047 */
1048static void srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1049 struct srpt_send_ioctx *ioctx)
1050{
1051 struct scatterlist *sg;
1052 enum dma_data_direction dir;
1053
1054 BUG_ON(!ch);
1055 BUG_ON(!ioctx);
1056 BUG_ON(ioctx->n_rdma && !ioctx->rdma_ius);
1057
1058 while (ioctx->n_rdma)
1059 kfree(ioctx->rdma_ius[--ioctx->n_rdma].sge);
1060
1061 kfree(ioctx->rdma_ius);
1062 ioctx->rdma_ius = NULL;
1063
1064 if (ioctx->mapped_sg_count) {
1065 sg = ioctx->sg;
1066 WARN_ON(!sg);
1067 dir = ioctx->cmd.data_direction;
1068 BUG_ON(dir == DMA_NONE);
1069 ib_dma_unmap_sg(ch->sport->sdev->device, sg, ioctx->sg_cnt,
1070 opposite_dma_dir(dir));
1071 ioctx->mapped_sg_count = 0;
1072 }
1073}
1074
1075/**
1076 * srpt_map_sg_to_ib_sge() - Map an SG list to an IB SGE list.
1077 */
1078static int srpt_map_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1079 struct srpt_send_ioctx *ioctx)
1080{
1081 struct se_cmd *cmd;
1082 struct scatterlist *sg, *sg_orig;
1083 int sg_cnt;
1084 enum dma_data_direction dir;
1085 struct rdma_iu *riu;
1086 struct srp_direct_buf *db;
1087 dma_addr_t dma_addr;
1088 struct ib_sge *sge;
1089 u64 raddr;
1090 u32 rsize;
1091 u32 tsize;
1092 u32 dma_len;
1093 int count, nrdma;
1094 int i, j, k;
1095
1096 BUG_ON(!ch);
1097 BUG_ON(!ioctx);
1098 cmd = &ioctx->cmd;
1099 dir = cmd->data_direction;
1100 BUG_ON(dir == DMA_NONE);
1101
6f9e7f01
RD
1102 ioctx->sg = sg = sg_orig = cmd->t_data_sg;
1103 ioctx->sg_cnt = sg_cnt = cmd->t_data_nents;
a42d985b
BVA
1104
1105 count = ib_dma_map_sg(ch->sport->sdev->device, sg, sg_cnt,
1106 opposite_dma_dir(dir));
1107 if (unlikely(!count))
1108 return -EAGAIN;
1109
1110 ioctx->mapped_sg_count = count;
1111
1112 if (ioctx->rdma_ius && ioctx->n_rdma_ius)
1113 nrdma = ioctx->n_rdma_ius;
1114 else {
1115 nrdma = (count + SRPT_DEF_SG_PER_WQE - 1) / SRPT_DEF_SG_PER_WQE
1116 + ioctx->n_rbuf;
1117
1118 ioctx->rdma_ius = kzalloc(nrdma * sizeof *riu, GFP_KERNEL);
1119 if (!ioctx->rdma_ius)
1120 goto free_mem;
1121
1122 ioctx->n_rdma_ius = nrdma;
1123 }
1124
1125 db = ioctx->rbufs;
1126 tsize = cmd->data_length;
1127 dma_len = sg_dma_len(&sg[0]);
1128 riu = ioctx->rdma_ius;
1129
1130 /*
1131 * For each remote desc - calculate the #ib_sge.
1132 * If #ib_sge < SRPT_DEF_SG_PER_WQE per rdma operation then
1133 * each remote desc rdma_iu is required a rdma wr;
1134 * else
1135 * we need to allocate extra rdma_iu to carry extra #ib_sge in
1136 * another rdma wr
1137 */
1138 for (i = 0, j = 0;
1139 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1140 rsize = be32_to_cpu(db->len);
1141 raddr = be64_to_cpu(db->va);
1142 riu->raddr = raddr;
1143 riu->rkey = be32_to_cpu(db->key);
1144 riu->sge_cnt = 0;
1145
1146 /* calculate how many sge required for this remote_buf */
1147 while (rsize > 0 && tsize > 0) {
1148
1149 if (rsize >= dma_len) {
1150 tsize -= dma_len;
1151 rsize -= dma_len;
1152 raddr += dma_len;
1153
1154 if (tsize > 0) {
1155 ++j;
1156 if (j < count) {
1157 sg = sg_next(sg);
1158 dma_len = sg_dma_len(sg);
1159 }
1160 }
1161 } else {
1162 tsize -= rsize;
1163 dma_len -= rsize;
1164 rsize = 0;
1165 }
1166
1167 ++riu->sge_cnt;
1168
1169 if (rsize > 0 && riu->sge_cnt == SRPT_DEF_SG_PER_WQE) {
1170 ++ioctx->n_rdma;
1171 riu->sge =
1172 kmalloc(riu->sge_cnt * sizeof *riu->sge,
1173 GFP_KERNEL);
1174 if (!riu->sge)
1175 goto free_mem;
1176
1177 ++riu;
1178 riu->sge_cnt = 0;
1179 riu->raddr = raddr;
1180 riu->rkey = be32_to_cpu(db->key);
1181 }
1182 }
1183
1184 ++ioctx->n_rdma;
1185 riu->sge = kmalloc(riu->sge_cnt * sizeof *riu->sge,
1186 GFP_KERNEL);
1187 if (!riu->sge)
1188 goto free_mem;
1189 }
1190
1191 db = ioctx->rbufs;
1192 tsize = cmd->data_length;
1193 riu = ioctx->rdma_ius;
1194 sg = sg_orig;
1195 dma_len = sg_dma_len(&sg[0]);
1196 dma_addr = sg_dma_address(&sg[0]);
1197
1198 /* this second loop is really mapped sg_addres to rdma_iu->ib_sge */
1199 for (i = 0, j = 0;
1200 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1201 rsize = be32_to_cpu(db->len);
1202 sge = riu->sge;
1203 k = 0;
1204
1205 while (rsize > 0 && tsize > 0) {
1206 sge->addr = dma_addr;
1207 sge->lkey = ch->sport->sdev->mr->lkey;
1208
1209 if (rsize >= dma_len) {
1210 sge->length =
1211 (tsize < dma_len) ? tsize : dma_len;
1212 tsize -= dma_len;
1213 rsize -= dma_len;
1214
1215 if (tsize > 0) {
1216 ++j;
1217 if (j < count) {
1218 sg = sg_next(sg);
1219 dma_len = sg_dma_len(sg);
1220 dma_addr = sg_dma_address(sg);
1221 }
1222 }
1223 } else {
1224 sge->length = (tsize < rsize) ? tsize : rsize;
1225 tsize -= rsize;
1226 dma_len -= rsize;
1227 dma_addr += rsize;
1228 rsize = 0;
1229 }
1230
1231 ++k;
1232 if (k == riu->sge_cnt && rsize > 0 && tsize > 0) {
1233 ++riu;
1234 sge = riu->sge;
1235 k = 0;
1236 } else if (rsize > 0 && tsize > 0)
1237 ++sge;
1238 }
1239 }
1240
1241 return 0;
1242
1243free_mem:
1244 srpt_unmap_sg_to_ib_sge(ch, ioctx);
1245
1246 return -ENOMEM;
1247}
1248
1249/**
1250 * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator.
1251 */
1252static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
1253{
1254 struct srpt_send_ioctx *ioctx;
1255 unsigned long flags;
1256
1257 BUG_ON(!ch);
1258
1259 ioctx = NULL;
1260 spin_lock_irqsave(&ch->spinlock, flags);
1261 if (!list_empty(&ch->free_list)) {
1262 ioctx = list_first_entry(&ch->free_list,
1263 struct srpt_send_ioctx, free_list);
1264 list_del(&ioctx->free_list);
1265 }
1266 spin_unlock_irqrestore(&ch->spinlock, flags);
1267
1268 if (!ioctx)
1269 return ioctx;
1270
1271 BUG_ON(ioctx->ch != ch);
a42d985b
BVA
1272 spin_lock_init(&ioctx->spinlock);
1273 ioctx->state = SRPT_STATE_NEW;
1274 ioctx->n_rbuf = 0;
1275 ioctx->rbufs = NULL;
1276 ioctx->n_rdma = 0;
1277 ioctx->n_rdma_ius = 0;
1278 ioctx->rdma_ius = NULL;
1279 ioctx->mapped_sg_count = 0;
1280 init_completion(&ioctx->tx_done);
1281 ioctx->queue_status_only = false;
1282 /*
1283 * transport_init_se_cmd() does not initialize all fields, so do it
1284 * here.
1285 */
1286 memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
1287 memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1288
1289 return ioctx;
1290}
1291
a42d985b
BVA
1292/**
1293 * srpt_abort_cmd() - Abort a SCSI command.
1294 * @ioctx: I/O context associated with the SCSI command.
1295 * @context: Preferred execution context.
1296 */
1297static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
1298{
1299 enum srpt_command_state state;
1300 unsigned long flags;
1301
1302 BUG_ON(!ioctx);
1303
1304 /*
1305 * If the command is in a state where the target core is waiting for
1306 * the ib_srpt driver, change the state to the next state. Changing
1307 * the state of the command from SRPT_STATE_NEED_DATA to
1308 * SRPT_STATE_DATA_IN ensures that srpt_xmit_response() will call this
1309 * function a second time.
1310 */
1311
1312 spin_lock_irqsave(&ioctx->spinlock, flags);
1313 state = ioctx->state;
1314 switch (state) {
1315 case SRPT_STATE_NEED_DATA:
1316 ioctx->state = SRPT_STATE_DATA_IN;
1317 break;
1318 case SRPT_STATE_DATA_IN:
1319 case SRPT_STATE_CMD_RSP_SENT:
1320 case SRPT_STATE_MGMT_RSP_SENT:
1321 ioctx->state = SRPT_STATE_DONE;
1322 break;
1323 default:
1324 break;
1325 }
1326 spin_unlock_irqrestore(&ioctx->spinlock, flags);
1327
9474b043
NB
1328 if (state == SRPT_STATE_DONE) {
1329 struct srpt_rdma_ch *ch = ioctx->ch;
1330
1331 BUG_ON(ch->sess == NULL);
1332
1333 target_put_sess_cmd(ch->sess, &ioctx->cmd);
a42d985b 1334 goto out;
9474b043 1335 }
a42d985b
BVA
1336
1337 pr_debug("Aborting cmd with state %d and tag %lld\n", state,
1338 ioctx->tag);
1339
1340 switch (state) {
1341 case SRPT_STATE_NEW:
1342 case SRPT_STATE_DATA_IN:
1343 case SRPT_STATE_MGMT:
1344 /*
1345 * Do nothing - defer abort processing until
1346 * srpt_queue_response() is invoked.
1347 */
1348 WARN_ON(!transport_check_aborted_status(&ioctx->cmd, false));
1349 break;
1350 case SRPT_STATE_NEED_DATA:
1351 /* DMA_TO_DEVICE (write) - RDMA read error. */
e672a47f
CH
1352
1353 /* XXX(hch): this is a horrible layering violation.. */
7d680f3b
CH
1354 spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags);
1355 ioctx->cmd.transport_state |= CMD_T_LUN_STOP;
e672a47f 1356 ioctx->cmd.transport_state &= ~CMD_T_ACTIVE;
7d680f3b 1357 spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags);
e672a47f
CH
1358
1359 complete(&ioctx->cmd.transport_lun_stop_comp);
a42d985b
BVA
1360 break;
1361 case SRPT_STATE_CMD_RSP_SENT:
1362 /*
1363 * SRP_RSP sending failed or the SRP_RSP send completion has
1364 * not been received in time.
1365 */
1366 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
7d680f3b
CH
1367 spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags);
1368 ioctx->cmd.transport_state |= CMD_T_LUN_STOP;
1369 spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags);
9474b043 1370 target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd);
a42d985b
BVA
1371 break;
1372 case SRPT_STATE_MGMT_RSP_SENT:
1373 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
9474b043 1374 target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd);
a42d985b
BVA
1375 break;
1376 default:
532ec6f1 1377 WARN(1, "Unexpected command state (%d)", state);
a42d985b
BVA
1378 break;
1379 }
1380
1381out:
1382 return state;
1383}
1384
1385/**
1386 * srpt_handle_send_err_comp() - Process an IB_WC_SEND error completion.
1387 */
1388static void srpt_handle_send_err_comp(struct srpt_rdma_ch *ch, u64 wr_id)
1389{
1390 struct srpt_send_ioctx *ioctx;
1391 enum srpt_command_state state;
1392 struct se_cmd *cmd;
1393 u32 index;
1394
1395 atomic_inc(&ch->sq_wr_avail);
1396
1397 index = idx_from_wr_id(wr_id);
1398 ioctx = ch->ioctx_ring[index];
1399 state = srpt_get_cmd_state(ioctx);
1400 cmd = &ioctx->cmd;
1401
1402 WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1403 && state != SRPT_STATE_MGMT_RSP_SENT
1404 && state != SRPT_STATE_NEED_DATA
1405 && state != SRPT_STATE_DONE);
1406
1407 /* If SRP_RSP sending failed, undo the ch->req_lim change. */
1408 if (state == SRPT_STATE_CMD_RSP_SENT
1409 || state == SRPT_STATE_MGMT_RSP_SENT)
1410 atomic_dec(&ch->req_lim);
1411
1412 srpt_abort_cmd(ioctx);
1413}
1414
1415/**
1416 * srpt_handle_send_comp() - Process an IB send completion notification.
1417 */
1418static void srpt_handle_send_comp(struct srpt_rdma_ch *ch,
1419 struct srpt_send_ioctx *ioctx)
1420{
1421 enum srpt_command_state state;
1422
1423 atomic_inc(&ch->sq_wr_avail);
1424
1425 state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1426
1427 if (WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1428 && state != SRPT_STATE_MGMT_RSP_SENT
1429 && state != SRPT_STATE_DONE))
1430 pr_debug("state = %d\n", state);
1431
9474b043
NB
1432 if (state != SRPT_STATE_DONE) {
1433 srpt_unmap_sg_to_ib_sge(ch, ioctx);
1434 transport_generic_free_cmd(&ioctx->cmd, 0);
1435 } else {
a42d985b
BVA
1436 printk(KERN_ERR "IB completion has been received too late for"
1437 " wr_id = %u.\n", ioctx->ioctx.index);
9474b043 1438 }
a42d985b
BVA
1439}
1440
1441/**
1442 * srpt_handle_rdma_comp() - Process an IB RDMA completion notification.
1443 *
e672a47f
CH
1444 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
1445 * the data that has been transferred via IB RDMA had to be postponed until the
142ad5db 1446 * check_stop_free() callback. None of this is necessary anymore and needs to
e672a47f 1447 * be cleaned up.
a42d985b
BVA
1448 */
1449static void srpt_handle_rdma_comp(struct srpt_rdma_ch *ch,
1450 struct srpt_send_ioctx *ioctx,
1451 enum srpt_opcode opcode)
1452{
1453 WARN_ON(ioctx->n_rdma <= 0);
1454 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1455
1456 if (opcode == SRPT_RDMA_READ_LAST) {
1457 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
1458 SRPT_STATE_DATA_IN))
e672a47f 1459 target_execute_cmd(&ioctx->cmd);
a42d985b
BVA
1460 else
1461 printk(KERN_ERR "%s[%d]: wrong state = %d\n", __func__,
1462 __LINE__, srpt_get_cmd_state(ioctx));
1463 } else if (opcode == SRPT_RDMA_ABORT) {
1464 ioctx->rdma_aborted = true;
1465 } else {
1466 WARN(true, "unexpected opcode %d\n", opcode);
1467 }
1468}
1469
1470/**
1471 * srpt_handle_rdma_err_comp() - Process an IB RDMA error completion.
1472 */
1473static void srpt_handle_rdma_err_comp(struct srpt_rdma_ch *ch,
1474 struct srpt_send_ioctx *ioctx,
1475 enum srpt_opcode opcode)
1476{
1477 struct se_cmd *cmd;
1478 enum srpt_command_state state;
7d680f3b 1479 unsigned long flags;
a42d985b
BVA
1480
1481 cmd = &ioctx->cmd;
1482 state = srpt_get_cmd_state(ioctx);
1483 switch (opcode) {
1484 case SRPT_RDMA_READ_LAST:
1485 if (ioctx->n_rdma <= 0) {
1486 printk(KERN_ERR "Received invalid RDMA read"
1487 " error completion with idx %d\n",
1488 ioctx->ioctx.index);
1489 break;
1490 }
1491 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1492 if (state == SRPT_STATE_NEED_DATA)
1493 srpt_abort_cmd(ioctx);
1494 else
1495 printk(KERN_ERR "%s[%d]: wrong state = %d\n",
1496 __func__, __LINE__, state);
1497 break;
1498 case SRPT_RDMA_WRITE_LAST:
7d680f3b
CH
1499 spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags);
1500 ioctx->cmd.transport_state |= CMD_T_LUN_STOP;
1501 spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags);
a42d985b
BVA
1502 break;
1503 default:
1504 printk(KERN_ERR "%s[%d]: opcode = %u\n", __func__,
1505 __LINE__, opcode);
1506 break;
1507 }
1508}
1509
1510/**
1511 * srpt_build_cmd_rsp() - Build an SRP_RSP response.
1512 * @ch: RDMA channel through which the request has been received.
1513 * @ioctx: I/O context associated with the SRP_CMD request. The response will
1514 * be built in the buffer ioctx->buf points at and hence this function will
1515 * overwrite the request data.
1516 * @tag: tag of the request for which this response is being generated.
1517 * @status: value for the STATUS field of the SRP_RSP information unit.
1518 *
1519 * Returns the size in bytes of the SRP_RSP response.
1520 *
1521 * An SRP_RSP response contains a SCSI status or service response. See also
1522 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1523 * response. See also SPC-2 for more information about sense data.
1524 */
1525static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
1526 struct srpt_send_ioctx *ioctx, u64 tag,
1527 int status)
1528{
1529 struct srp_rsp *srp_rsp;
1530 const u8 *sense_data;
1531 int sense_data_len, max_sense_len;
1532
1533 /*
1534 * The lowest bit of all SAM-3 status codes is zero (see also
1535 * paragraph 5.3 in SAM-3).
1536 */
1537 WARN_ON(status & 1);
1538
1539 srp_rsp = ioctx->ioctx.buf;
1540 BUG_ON(!srp_rsp);
1541
1542 sense_data = ioctx->sense_data;
1543 sense_data_len = ioctx->cmd.scsi_sense_length;
1544 WARN_ON(sense_data_len > sizeof(ioctx->sense_data));
1545
1546 memset(srp_rsp, 0, sizeof *srp_rsp);
1547 srp_rsp->opcode = SRP_RSP;
1548 srp_rsp->req_lim_delta =
1549 __constant_cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1550 srp_rsp->tag = tag;
1551 srp_rsp->status = status;
1552
1553 if (sense_data_len) {
1554 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
1555 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
1556 if (sense_data_len > max_sense_len) {
1557 printk(KERN_WARNING "truncated sense data from %d to %d"
1558 " bytes\n", sense_data_len, max_sense_len);
1559 sense_data_len = max_sense_len;
1560 }
1561
1562 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
1563 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
1564 memcpy(srp_rsp + 1, sense_data, sense_data_len);
1565 }
1566
1567 return sizeof(*srp_rsp) + sense_data_len;
1568}
1569
1570/**
1571 * srpt_build_tskmgmt_rsp() - Build a task management response.
1572 * @ch: RDMA channel through which the request has been received.
1573 * @ioctx: I/O context in which the SRP_RSP response will be built.
1574 * @rsp_code: RSP_CODE that will be stored in the response.
1575 * @tag: Tag of the request for which this response is being generated.
1576 *
1577 * Returns the size in bytes of the SRP_RSP response.
1578 *
1579 * An SRP_RSP response contains a SCSI status or service response. See also
1580 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1581 * response.
1582 */
1583static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
1584 struct srpt_send_ioctx *ioctx,
1585 u8 rsp_code, u64 tag)
1586{
1587 struct srp_rsp *srp_rsp;
1588 int resp_data_len;
1589 int resp_len;
1590
c807f643 1591 resp_data_len = 4;
a42d985b
BVA
1592 resp_len = sizeof(*srp_rsp) + resp_data_len;
1593
1594 srp_rsp = ioctx->ioctx.buf;
1595 BUG_ON(!srp_rsp);
1596 memset(srp_rsp, 0, sizeof *srp_rsp);
1597
1598 srp_rsp->opcode = SRP_RSP;
1599 srp_rsp->req_lim_delta = __constant_cpu_to_be32(1
1600 + atomic_xchg(&ch->req_lim_delta, 0));
1601 srp_rsp->tag = tag;
1602
c807f643
JW
1603 srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
1604 srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
1605 srp_rsp->data[3] = rsp_code;
a42d985b
BVA
1606
1607 return resp_len;
1608}
1609
1610#define NO_SUCH_LUN ((uint64_t)-1LL)
1611
1612/*
1613 * SCSI LUN addressing method. See also SAM-2 and the section about
1614 * eight byte LUNs.
1615 */
1616enum scsi_lun_addr_method {
1617 SCSI_LUN_ADDR_METHOD_PERIPHERAL = 0,
1618 SCSI_LUN_ADDR_METHOD_FLAT = 1,
1619 SCSI_LUN_ADDR_METHOD_LUN = 2,
1620 SCSI_LUN_ADDR_METHOD_EXTENDED_LUN = 3,
1621};
1622
1623/*
1624 * srpt_unpack_lun() - Convert from network LUN to linear LUN.
1625 *
1626 * Convert an 2-byte, 4-byte, 6-byte or 8-byte LUN structure in network byte
1627 * order (big endian) to a linear LUN. Supports three LUN addressing methods:
1628 * peripheral, flat and logical unit. See also SAM-2, section 4.9.4 (page 40).
1629 */
1630static uint64_t srpt_unpack_lun(const uint8_t *lun, int len)
1631{
1632 uint64_t res = NO_SUCH_LUN;
1633 int addressing_method;
1634
1635 if (unlikely(len < 2)) {
1636 printk(KERN_ERR "Illegal LUN length %d, expected 2 bytes or "
1637 "more", len);
1638 goto out;
1639 }
1640
1641 switch (len) {
1642 case 8:
1643 if ((*((__be64 *)lun) &
1644 __constant_cpu_to_be64(0x0000FFFFFFFFFFFFLL)) != 0)
1645 goto out_err;
1646 break;
1647 case 4:
1648 if (*((__be16 *)&lun[2]) != 0)
1649 goto out_err;
1650 break;
1651 case 6:
1652 if (*((__be32 *)&lun[2]) != 0)
1653 goto out_err;
1654 break;
1655 case 2:
1656 break;
1657 default:
1658 goto out_err;
1659 }
1660
1661 addressing_method = (*lun) >> 6; /* highest two bits of byte 0 */
1662 switch (addressing_method) {
1663 case SCSI_LUN_ADDR_METHOD_PERIPHERAL:
1664 case SCSI_LUN_ADDR_METHOD_FLAT:
1665 case SCSI_LUN_ADDR_METHOD_LUN:
1666 res = *(lun + 1) | (((*lun) & 0x3f) << 8);
1667 break;
1668
1669 case SCSI_LUN_ADDR_METHOD_EXTENDED_LUN:
1670 default:
1671 printk(KERN_ERR "Unimplemented LUN addressing method %u",
1672 addressing_method);
1673 break;
1674 }
1675
1676out:
1677 return res;
1678
1679out_err:
1680 printk(KERN_ERR "Support for multi-level LUNs has not yet been"
1681 " implemented");
1682 goto out;
1683}
1684
1685static int srpt_check_stop_free(struct se_cmd *cmd)
1686{
9474b043
NB
1687 struct srpt_send_ioctx *ioctx = container_of(cmd,
1688 struct srpt_send_ioctx, cmd);
a42d985b 1689
9474b043 1690 return target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd);
a42d985b
BVA
1691}
1692
1693/**
1694 * srpt_handle_cmd() - Process SRP_CMD.
1695 */
1696static int srpt_handle_cmd(struct srpt_rdma_ch *ch,
1697 struct srpt_recv_ioctx *recv_ioctx,
1698 struct srpt_send_ioctx *send_ioctx)
1699{
1700 struct se_cmd *cmd;
1701 struct srp_cmd *srp_cmd;
1702 uint64_t unpacked_lun;
1703 u64 data_len;
1704 enum dma_data_direction dir;
de103c93 1705 sense_reason_t ret;
9474b043 1706 int rc;
a42d985b
BVA
1707
1708 BUG_ON(!send_ioctx);
1709
1710 srp_cmd = recv_ioctx->ioctx.buf;
a42d985b
BVA
1711 cmd = &send_ioctx->cmd;
1712 send_ioctx->tag = srp_cmd->tag;
1713
1714 switch (srp_cmd->task_attr) {
1715 case SRP_CMD_SIMPLE_Q:
1716 cmd->sam_task_attr = MSG_SIMPLE_TAG;
1717 break;
1718 case SRP_CMD_ORDERED_Q:
1719 default:
1720 cmd->sam_task_attr = MSG_ORDERED_TAG;
1721 break;
1722 case SRP_CMD_HEAD_OF_Q:
1723 cmd->sam_task_attr = MSG_HEAD_TAG;
1724 break;
1725 case SRP_CMD_ACA:
1726 cmd->sam_task_attr = MSG_ACA_TAG;
1727 break;
1728 }
1729
de103c93 1730 if (srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &data_len)) {
a42d985b
BVA
1731 printk(KERN_ERR "0x%llx: parsing SRP descriptor table failed.\n",
1732 srp_cmd->tag);
de103c93 1733 ret = TCM_INVALID_CDB_FIELD;
a42d985b
BVA
1734 goto send_sense;
1735 }
1736
a42d985b
BVA
1737 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_cmd->lun,
1738 sizeof(srp_cmd->lun));
9474b043
NB
1739 rc = target_submit_cmd(cmd, ch->sess, srp_cmd->cdb,
1740 &send_ioctx->sense_data[0], unpacked_lun, data_len,
1741 MSG_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF);
1742 if (rc != 0) {
1743 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
a42d985b 1744 goto send_sense;
187e70a5 1745 }
a42d985b
BVA
1746 return 0;
1747
1748send_sense:
de103c93 1749 transport_send_check_condition_and_sense(cmd, ret, 0);
a42d985b
BVA
1750 return -1;
1751}
1752
1753/**
1754 * srpt_rx_mgmt_fn_tag() - Process a task management function by tag.
1755 * @ch: RDMA channel of the task management request.
1756 * @fn: Task management function to perform.
1757 * @req_tag: Tag of the SRP task management request.
1758 * @mgmt_ioctx: I/O context of the task management request.
1759 *
1760 * Returns zero if the target core will process the task management
1761 * request asynchronously.
1762 *
1763 * Note: It is assumed that the initiator serializes tag-based task management
1764 * requests.
1765 */
1766static int srpt_rx_mgmt_fn_tag(struct srpt_send_ioctx *ioctx, u64 tag)
1767{
1768 struct srpt_device *sdev;
1769 struct srpt_rdma_ch *ch;
1770 struct srpt_send_ioctx *target;
1771 int ret, i;
1772
1773 ret = -EINVAL;
1774 ch = ioctx->ch;
1775 BUG_ON(!ch);
1776 BUG_ON(!ch->sport);
1777 sdev = ch->sport->sdev;
1778 BUG_ON(!sdev);
1779 spin_lock_irq(&sdev->spinlock);
1780 for (i = 0; i < ch->rq_size; ++i) {
1781 target = ch->ioctx_ring[i];
1782 if (target->cmd.se_lun == ioctx->cmd.se_lun &&
1783 target->tag == tag &&
1784 srpt_get_cmd_state(target) != SRPT_STATE_DONE) {
1785 ret = 0;
1786 /* now let the target core abort &target->cmd; */
1787 break;
1788 }
1789 }
1790 spin_unlock_irq(&sdev->spinlock);
1791 return ret;
1792}
1793
1794static int srp_tmr_to_tcm(int fn)
1795{
1796 switch (fn) {
1797 case SRP_TSK_ABORT_TASK:
1798 return TMR_ABORT_TASK;
1799 case SRP_TSK_ABORT_TASK_SET:
1800 return TMR_ABORT_TASK_SET;
1801 case SRP_TSK_CLEAR_TASK_SET:
1802 return TMR_CLEAR_TASK_SET;
1803 case SRP_TSK_LUN_RESET:
1804 return TMR_LUN_RESET;
1805 case SRP_TSK_CLEAR_ACA:
1806 return TMR_CLEAR_ACA;
1807 default:
1808 return -1;
1809 }
1810}
1811
1812/**
1813 * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit.
1814 *
1815 * Returns 0 if and only if the request will be processed by the target core.
1816 *
1817 * For more information about SRP_TSK_MGMT information units, see also section
1818 * 6.7 in the SRP r16a document.
1819 */
1820static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
1821 struct srpt_recv_ioctx *recv_ioctx,
1822 struct srpt_send_ioctx *send_ioctx)
1823{
1824 struct srp_tsk_mgmt *srp_tsk;
1825 struct se_cmd *cmd;
3e4f5748 1826 struct se_session *sess = ch->sess;
a42d985b 1827 uint64_t unpacked_lun;
3e4f5748 1828 uint32_t tag = 0;
a42d985b 1829 int tcm_tmr;
3e4f5748 1830 int rc;
a42d985b
BVA
1831
1832 BUG_ON(!send_ioctx);
1833
1834 srp_tsk = recv_ioctx->ioctx.buf;
1835 cmd = &send_ioctx->cmd;
1836
1837 pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld"
1838 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func,
1839 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess);
1840
1841 srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1842 send_ioctx->tag = srp_tsk->tag;
1843 tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
1844 if (tcm_tmr < 0) {
a42d985b
BVA
1845 send_ioctx->cmd.se_tmr_req->response =
1846 TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
de103c93 1847 goto fail;
a42d985b 1848 }
a42d985b
BVA
1849 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_tsk->lun,
1850 sizeof(srp_tsk->lun));
3e4f5748
NB
1851
1852 if (srp_tsk->tsk_mgmt_func == SRP_TSK_ABORT_TASK) {
1853 rc = srpt_rx_mgmt_fn_tag(send_ioctx, srp_tsk->task_tag);
1854 if (rc < 0) {
1855 send_ioctx->cmd.se_tmr_req->response =
1856 TMR_TASK_DOES_NOT_EXIST;
1857 goto fail;
1858 }
1859 tag = srp_tsk->task_tag;
1860 }
1861 rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL, unpacked_lun,
1862 srp_tsk, tcm_tmr, GFP_KERNEL, tag,
1863 TARGET_SCF_ACK_KREF);
1864 if (rc != 0) {
1865 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
de103c93 1866 goto fail;
a42d985b 1867 }
de103c93
CH
1868 return;
1869fail:
de103c93 1870 transport_send_check_condition_and_sense(cmd, 0, 0); // XXX:
a42d985b
BVA
1871}
1872
1873/**
1874 * srpt_handle_new_iu() - Process a newly received information unit.
1875 * @ch: RDMA channel through which the information unit has been received.
1876 * @ioctx: SRPT I/O context associated with the information unit.
1877 */
1878static void srpt_handle_new_iu(struct srpt_rdma_ch *ch,
1879 struct srpt_recv_ioctx *recv_ioctx,
1880 struct srpt_send_ioctx *send_ioctx)
1881{
1882 struct srp_cmd *srp_cmd;
1883 enum rdma_ch_state ch_state;
1884
1885 BUG_ON(!ch);
1886 BUG_ON(!recv_ioctx);
1887
1888 ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
1889 recv_ioctx->ioctx.dma, srp_max_req_size,
1890 DMA_FROM_DEVICE);
1891
1892 ch_state = srpt_get_ch_state(ch);
1893 if (unlikely(ch_state == CH_CONNECTING)) {
1894 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1895 goto out;
1896 }
1897
1898 if (unlikely(ch_state != CH_LIVE))
1899 goto out;
1900
1901 srp_cmd = recv_ioctx->ioctx.buf;
1902 if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) {
1903 if (!send_ioctx)
1904 send_ioctx = srpt_get_send_ioctx(ch);
1905 if (unlikely(!send_ioctx)) {
1906 list_add_tail(&recv_ioctx->wait_list,
1907 &ch->cmd_wait_list);
1908 goto out;
1909 }
1910 }
1911
a42d985b
BVA
1912 switch (srp_cmd->opcode) {
1913 case SRP_CMD:
1914 srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
1915 break;
1916 case SRP_TSK_MGMT:
1917 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
1918 break;
1919 case SRP_I_LOGOUT:
1920 printk(KERN_ERR "Not yet implemented: SRP_I_LOGOUT\n");
1921 break;
1922 case SRP_CRED_RSP:
1923 pr_debug("received SRP_CRED_RSP\n");
1924 break;
1925 case SRP_AER_RSP:
1926 pr_debug("received SRP_AER_RSP\n");
1927 break;
1928 case SRP_RSP:
1929 printk(KERN_ERR "Received SRP_RSP\n");
1930 break;
1931 default:
1932 printk(KERN_ERR "received IU with unknown opcode 0x%x\n",
1933 srp_cmd->opcode);
1934 break;
1935 }
1936
1937 srpt_post_recv(ch->sport->sdev, recv_ioctx);
1938out:
1939 return;
1940}
1941
1942static void srpt_process_rcv_completion(struct ib_cq *cq,
1943 struct srpt_rdma_ch *ch,
1944 struct ib_wc *wc)
1945{
1946 struct srpt_device *sdev = ch->sport->sdev;
1947 struct srpt_recv_ioctx *ioctx;
1948 u32 index;
1949
1950 index = idx_from_wr_id(wc->wr_id);
1951 if (wc->status == IB_WC_SUCCESS) {
1952 int req_lim;
1953
1954 req_lim = atomic_dec_return(&ch->req_lim);
1955 if (unlikely(req_lim < 0))
1956 printk(KERN_ERR "req_lim = %d < 0\n", req_lim);
1957 ioctx = sdev->ioctx_ring[index];
1958 srpt_handle_new_iu(ch, ioctx, NULL);
1959 } else {
1960 printk(KERN_INFO "receiving failed for idx %u with status %d\n",
1961 index, wc->status);
1962 }
1963}
1964
1965/**
1966 * srpt_process_send_completion() - Process an IB send completion.
1967 *
1968 * Note: Although this has not yet been observed during tests, at least in
1969 * theory it is possible that the srpt_get_send_ioctx() call invoked by
1970 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
1971 * value in each response is set to one, and it is possible that this response
1972 * makes the initiator send a new request before the send completion for that
1973 * response has been processed. This could e.g. happen if the call to
1974 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
1975 * if IB retransmission causes generation of the send completion to be
1976 * delayed. Incoming information units for which srpt_get_send_ioctx() fails
1977 * are queued on cmd_wait_list. The code below processes these delayed
1978 * requests one at a time.
1979 */
1980static void srpt_process_send_completion(struct ib_cq *cq,
1981 struct srpt_rdma_ch *ch,
1982 struct ib_wc *wc)
1983{
1984 struct srpt_send_ioctx *send_ioctx;
1985 uint32_t index;
1986 enum srpt_opcode opcode;
1987
1988 index = idx_from_wr_id(wc->wr_id);
1989 opcode = opcode_from_wr_id(wc->wr_id);
1990 send_ioctx = ch->ioctx_ring[index];
1991 if (wc->status == IB_WC_SUCCESS) {
1992 if (opcode == SRPT_SEND)
1993 srpt_handle_send_comp(ch, send_ioctx);
1994 else {
1995 WARN_ON(opcode != SRPT_RDMA_ABORT &&
1996 wc->opcode != IB_WC_RDMA_READ);
1997 srpt_handle_rdma_comp(ch, send_ioctx, opcode);
1998 }
1999 } else {
2000 if (opcode == SRPT_SEND) {
2001 printk(KERN_INFO "sending response for idx %u failed"
2002 " with status %d\n", index, wc->status);
2003 srpt_handle_send_err_comp(ch, wc->wr_id);
2004 } else if (opcode != SRPT_RDMA_MID) {
2005 printk(KERN_INFO "RDMA t %d for idx %u failed with"
2006 " status %d", opcode, index, wc->status);
2007 srpt_handle_rdma_err_comp(ch, send_ioctx, opcode);
2008 }
2009 }
2010
2011 while (unlikely(opcode == SRPT_SEND
2012 && !list_empty(&ch->cmd_wait_list)
2013 && srpt_get_ch_state(ch) == CH_LIVE
2014 && (send_ioctx = srpt_get_send_ioctx(ch)) != NULL)) {
2015 struct srpt_recv_ioctx *recv_ioctx;
2016
2017 recv_ioctx = list_first_entry(&ch->cmd_wait_list,
2018 struct srpt_recv_ioctx,
2019 wait_list);
2020 list_del(&recv_ioctx->wait_list);
2021 srpt_handle_new_iu(ch, recv_ioctx, send_ioctx);
2022 }
2023}
2024
2025static void srpt_process_completion(struct ib_cq *cq, struct srpt_rdma_ch *ch)
2026{
2027 struct ib_wc *const wc = ch->wc;
2028 int i, n;
2029
2030 WARN_ON(cq != ch->cq);
2031
2032 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
2033 while ((n = ib_poll_cq(cq, ARRAY_SIZE(ch->wc), wc)) > 0) {
2034 for (i = 0; i < n; i++) {
2035 if (opcode_from_wr_id(wc[i].wr_id) == SRPT_RECV)
2036 srpt_process_rcv_completion(cq, ch, &wc[i]);
2037 else
2038 srpt_process_send_completion(cq, ch, &wc[i]);
2039 }
2040 }
2041}
2042
2043/**
2044 * srpt_completion() - IB completion queue callback function.
2045 *
2046 * Notes:
2047 * - It is guaranteed that a completion handler will never be invoked
2048 * concurrently on two different CPUs for the same completion queue. See also
2049 * Documentation/infiniband/core_locking.txt and the implementation of
2050 * handle_edge_irq() in kernel/irq/chip.c.
2051 * - When threaded IRQs are enabled, completion handlers are invoked in thread
2052 * context instead of interrupt context.
2053 */
2054static void srpt_completion(struct ib_cq *cq, void *ctx)
2055{
2056 struct srpt_rdma_ch *ch = ctx;
2057
2058 wake_up_interruptible(&ch->wait_queue);
2059}
2060
2061static int srpt_compl_thread(void *arg)
2062{
2063 struct srpt_rdma_ch *ch;
2064
2065 /* Hibernation / freezing of the SRPT kernel thread is not supported. */
2066 current->flags |= PF_NOFREEZE;
2067
2068 ch = arg;
2069 BUG_ON(!ch);
2070 printk(KERN_INFO "Session %s: kernel thread %s (PID %d) started\n",
2071 ch->sess_name, ch->thread->comm, current->pid);
2072 while (!kthread_should_stop()) {
2073 wait_event_interruptible(ch->wait_queue,
2074 (srpt_process_completion(ch->cq, ch),
2075 kthread_should_stop()));
2076 }
2077 printk(KERN_INFO "Session %s: kernel thread %s (PID %d) stopped\n",
2078 ch->sess_name, ch->thread->comm, current->pid);
2079 return 0;
2080}
2081
2082/**
2083 * srpt_create_ch_ib() - Create receive and send completion queues.
2084 */
2085static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
2086{
2087 struct ib_qp_init_attr *qp_init;
2088 struct srpt_port *sport = ch->sport;
2089 struct srpt_device *sdev = sport->sdev;
2090 u32 srp_sq_size = sport->port_attrib.srp_sq_size;
2091 int ret;
2092
2093 WARN_ON(ch->rq_size < 1);
2094
2095 ret = -ENOMEM;
2096 qp_init = kzalloc(sizeof *qp_init, GFP_KERNEL);
2097 if (!qp_init)
2098 goto out;
2099
2100 ch->cq = ib_create_cq(sdev->device, srpt_completion, NULL, ch,
2101 ch->rq_size + srp_sq_size, 0);
2102 if (IS_ERR(ch->cq)) {
2103 ret = PTR_ERR(ch->cq);
2104 printk(KERN_ERR "failed to create CQ cqe= %d ret= %d\n",
2105 ch->rq_size + srp_sq_size, ret);
2106 goto out;
2107 }
2108
2109 qp_init->qp_context = (void *)ch;
2110 qp_init->event_handler
2111 = (void(*)(struct ib_event *, void*))srpt_qp_event;
2112 qp_init->send_cq = ch->cq;
2113 qp_init->recv_cq = ch->cq;
2114 qp_init->srq = sdev->srq;
2115 qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
2116 qp_init->qp_type = IB_QPT_RC;
2117 qp_init->cap.max_send_wr = srp_sq_size;
2118 qp_init->cap.max_send_sge = SRPT_DEF_SG_PER_WQE;
2119
2120 ch->qp = ib_create_qp(sdev->pd, qp_init);
2121 if (IS_ERR(ch->qp)) {
2122 ret = PTR_ERR(ch->qp);
2123 printk(KERN_ERR "failed to create_qp ret= %d\n", ret);
2124 goto err_destroy_cq;
2125 }
2126
2127 atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);
2128
2129 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
2130 __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
2131 qp_init->cap.max_send_wr, ch->cm_id);
2132
2133 ret = srpt_init_ch_qp(ch, ch->qp);
2134 if (ret)
2135 goto err_destroy_qp;
2136
2137 init_waitqueue_head(&ch->wait_queue);
2138
2139 pr_debug("creating thread for session %s\n", ch->sess_name);
2140
2141 ch->thread = kthread_run(srpt_compl_thread, ch, "ib_srpt_compl");
2142 if (IS_ERR(ch->thread)) {
2143 printk(KERN_ERR "failed to create kernel thread %ld\n",
2144 PTR_ERR(ch->thread));
2145 ch->thread = NULL;
2146 goto err_destroy_qp;
2147 }
2148
2149out:
2150 kfree(qp_init);
2151 return ret;
2152
2153err_destroy_qp:
2154 ib_destroy_qp(ch->qp);
2155err_destroy_cq:
2156 ib_destroy_cq(ch->cq);
2157 goto out;
2158}
2159
2160static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
2161{
2162 if (ch->thread)
2163 kthread_stop(ch->thread);
2164
2165 ib_destroy_qp(ch->qp);
2166 ib_destroy_cq(ch->cq);
2167}
2168
2169/**
2170 * __srpt_close_ch() - Close an RDMA channel by setting the QP error state.
2171 *
2172 * Reset the QP and make sure all resources associated with the channel will
2173 * be deallocated at an appropriate time.
2174 *
2175 * Note: The caller must hold ch->sport->sdev->spinlock.
2176 */
2177static void __srpt_close_ch(struct srpt_rdma_ch *ch)
2178{
2179 struct srpt_device *sdev;
2180 enum rdma_ch_state prev_state;
2181 unsigned long flags;
2182
2183 sdev = ch->sport->sdev;
2184
2185 spin_lock_irqsave(&ch->spinlock, flags);
2186 prev_state = ch->state;
2187 switch (prev_state) {
2188 case CH_CONNECTING:
2189 case CH_LIVE:
2190 ch->state = CH_DISCONNECTING;
2191 break;
2192 default:
2193 break;
2194 }
2195 spin_unlock_irqrestore(&ch->spinlock, flags);
2196
2197 switch (prev_state) {
2198 case CH_CONNECTING:
2199 ib_send_cm_rej(ch->cm_id, IB_CM_REJ_NO_RESOURCES, NULL, 0,
2200 NULL, 0);
2201 /* fall through */
2202 case CH_LIVE:
2203 if (ib_send_cm_dreq(ch->cm_id, NULL, 0) < 0)
2204 printk(KERN_ERR "sending CM DREQ failed.\n");
2205 break;
2206 case CH_DISCONNECTING:
2207 break;
2208 case CH_DRAINING:
2209 case CH_RELEASING:
2210 break;
2211 }
2212}
2213
2214/**
2215 * srpt_close_ch() - Close an RDMA channel.
2216 */
2217static void srpt_close_ch(struct srpt_rdma_ch *ch)
2218{
2219 struct srpt_device *sdev;
2220
2221 sdev = ch->sport->sdev;
2222 spin_lock_irq(&sdev->spinlock);
2223 __srpt_close_ch(ch);
2224 spin_unlock_irq(&sdev->spinlock);
2225}
2226
1d19f780
NB
2227/**
2228 * srpt_shutdown_session() - Whether or not a session may be shut down.
2229 */
2230static int srpt_shutdown_session(struct se_session *se_sess)
2231{
2232 struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr;
2233 unsigned long flags;
2234
2235 spin_lock_irqsave(&ch->spinlock, flags);
2236 if (ch->in_shutdown) {
2237 spin_unlock_irqrestore(&ch->spinlock, flags);
2238 return true;
2239 }
2240
2241 ch->in_shutdown = true;
2242 target_sess_cmd_list_set_waiting(se_sess);
2243 spin_unlock_irqrestore(&ch->spinlock, flags);
2244
2245 return true;
2246}
2247
a42d985b
BVA
2248/**
2249 * srpt_drain_channel() - Drain a channel by resetting the IB queue pair.
2250 * @cm_id: Pointer to the CM ID of the channel to be drained.
2251 *
2252 * Note: Must be called from inside srpt_cm_handler to avoid a race between
2253 * accessing sdev->spinlock and the call to kfree(sdev) in srpt_remove_one()
2254 * (the caller of srpt_cm_handler holds the cm_id spinlock; srpt_remove_one()
2255 * waits until all target sessions for the associated IB device have been
2256 * unregistered and target session registration involves a call to
2257 * ib_destroy_cm_id(), which locks the cm_id spinlock and hence waits until
2258 * this function has finished).
2259 */
2260static void srpt_drain_channel(struct ib_cm_id *cm_id)
2261{
2262 struct srpt_device *sdev;
2263 struct srpt_rdma_ch *ch;
2264 int ret;
2265 bool do_reset = false;
2266
2267 WARN_ON_ONCE(irqs_disabled());
2268
2269 sdev = cm_id->context;
2270 BUG_ON(!sdev);
2271 spin_lock_irq(&sdev->spinlock);
2272 list_for_each_entry(ch, &sdev->rch_list, list) {
2273 if (ch->cm_id == cm_id) {
2274 do_reset = srpt_test_and_set_ch_state(ch,
2275 CH_CONNECTING, CH_DRAINING) ||
2276 srpt_test_and_set_ch_state(ch,
2277 CH_LIVE, CH_DRAINING) ||
2278 srpt_test_and_set_ch_state(ch,
2279 CH_DISCONNECTING, CH_DRAINING);
2280 break;
2281 }
2282 }
2283 spin_unlock_irq(&sdev->spinlock);
2284
2285 if (do_reset) {
1d19f780
NB
2286 if (ch->sess)
2287 srpt_shutdown_session(ch->sess);
2288
a42d985b
BVA
2289 ret = srpt_ch_qp_err(ch);
2290 if (ret < 0)
2291 printk(KERN_ERR "Setting queue pair in error state"
2292 " failed: %d\n", ret);
2293 }
2294}
2295
2296/**
2297 * srpt_find_channel() - Look up an RDMA channel.
2298 * @cm_id: Pointer to the CM ID of the channel to be looked up.
2299 *
2300 * Return NULL if no matching RDMA channel has been found.
2301 */
2302static struct srpt_rdma_ch *srpt_find_channel(struct srpt_device *sdev,
2303 struct ib_cm_id *cm_id)
2304{
2305 struct srpt_rdma_ch *ch;
2306 bool found;
2307
2308 WARN_ON_ONCE(irqs_disabled());
2309 BUG_ON(!sdev);
2310
2311 found = false;
2312 spin_lock_irq(&sdev->spinlock);
2313 list_for_each_entry(ch, &sdev->rch_list, list) {
2314 if (ch->cm_id == cm_id) {
2315 found = true;
2316 break;
2317 }
2318 }
2319 spin_unlock_irq(&sdev->spinlock);
2320
2321 return found ? ch : NULL;
2322}
2323
2324/**
2325 * srpt_release_channel() - Release channel resources.
2326 *
2327 * Schedules the actual release because:
2328 * - Calling the ib_destroy_cm_id() call from inside an IB CM callback would
2329 * trigger a deadlock.
2330 * - It is not safe to call TCM transport_* functions from interrupt context.
2331 */
2332static void srpt_release_channel(struct srpt_rdma_ch *ch)
2333{
2334 schedule_work(&ch->release_work);
2335}
2336
2337static void srpt_release_channel_work(struct work_struct *w)
2338{
2339 struct srpt_rdma_ch *ch;
2340 struct srpt_device *sdev;
9474b043 2341 struct se_session *se_sess;
a42d985b
BVA
2342
2343 ch = container_of(w, struct srpt_rdma_ch, release_work);
2344 pr_debug("ch = %p; ch->sess = %p; release_done = %p\n", ch, ch->sess,
2345 ch->release_done);
2346
2347 sdev = ch->sport->sdev;
2348 BUG_ON(!sdev);
2349
9474b043
NB
2350 se_sess = ch->sess;
2351 BUG_ON(!se_sess);
2352
be646c2d 2353 target_wait_for_sess_cmds(se_sess);
9474b043
NB
2354
2355 transport_deregister_session_configfs(se_sess);
2356 transport_deregister_session(se_sess);
a42d985b
BVA
2357 ch->sess = NULL;
2358
0b41d6ca
NB
2359 ib_destroy_cm_id(ch->cm_id);
2360
a42d985b
BVA
2361 srpt_destroy_ch_ib(ch);
2362
2363 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2364 ch->sport->sdev, ch->rq_size,
2365 ch->rsp_size, DMA_TO_DEVICE);
2366
2367 spin_lock_irq(&sdev->spinlock);
2368 list_del(&ch->list);
2369 spin_unlock_irq(&sdev->spinlock);
2370
a42d985b
BVA
2371 if (ch->release_done)
2372 complete(ch->release_done);
2373
2374 wake_up(&sdev->ch_releaseQ);
2375
2376 kfree(ch);
2377}
2378
2379static struct srpt_node_acl *__srpt_lookup_acl(struct srpt_port *sport,
2380 u8 i_port_id[16])
2381{
2382 struct srpt_node_acl *nacl;
2383
2384 list_for_each_entry(nacl, &sport->port_acl_list, list)
2385 if (memcmp(nacl->i_port_id, i_port_id,
2386 sizeof(nacl->i_port_id)) == 0)
2387 return nacl;
2388
2389 return NULL;
2390}
2391
2392static struct srpt_node_acl *srpt_lookup_acl(struct srpt_port *sport,
2393 u8 i_port_id[16])
2394{
2395 struct srpt_node_acl *nacl;
2396
2397 spin_lock_irq(&sport->port_acl_lock);
2398 nacl = __srpt_lookup_acl(sport, i_port_id);
2399 spin_unlock_irq(&sport->port_acl_lock);
2400
2401 return nacl;
2402}
2403
2404/**
2405 * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED.
2406 *
2407 * Ownership of the cm_id is transferred to the target session if this
2408 * functions returns zero. Otherwise the caller remains the owner of cm_id.
2409 */
2410static int srpt_cm_req_recv(struct ib_cm_id *cm_id,
2411 struct ib_cm_req_event_param *param,
2412 void *private_data)
2413{
2414 struct srpt_device *sdev = cm_id->context;
2415 struct srpt_port *sport = &sdev->port[param->port - 1];
2416 struct srp_login_req *req;
2417 struct srp_login_rsp *rsp;
2418 struct srp_login_rej *rej;
2419 struct ib_cm_rep_param *rep_param;
2420 struct srpt_rdma_ch *ch, *tmp_ch;
2421 struct srpt_node_acl *nacl;
2422 u32 it_iu_len;
2423 int i;
2424 int ret = 0;
2425
2426 WARN_ON_ONCE(irqs_disabled());
2427
2428 if (WARN_ON(!sdev || !private_data))
2429 return -EINVAL;
2430
2431 req = (struct srp_login_req *)private_data;
2432
2433 it_iu_len = be32_to_cpu(req->req_it_iu_len);
2434
2435 printk(KERN_INFO "Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx,"
2436 " t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d"
2437 " (guid=0x%llx:0x%llx)\n",
2438 be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]),
2439 be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]),
2440 be64_to_cpu(*(__be64 *)&req->target_port_id[0]),
2441 be64_to_cpu(*(__be64 *)&req->target_port_id[8]),
2442 it_iu_len,
2443 param->port,
2444 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]),
2445 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8]));
2446
2447 rsp = kzalloc(sizeof *rsp, GFP_KERNEL);
2448 rej = kzalloc(sizeof *rej, GFP_KERNEL);
2449 rep_param = kzalloc(sizeof *rep_param, GFP_KERNEL);
2450
2451 if (!rsp || !rej || !rep_param) {
2452 ret = -ENOMEM;
2453 goto out;
2454 }
2455
2456 if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
2457 rej->reason = __constant_cpu_to_be32(
2458 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
2459 ret = -EINVAL;
2460 printk(KERN_ERR "rejected SRP_LOGIN_REQ because its"
2461 " length (%d bytes) is out of range (%d .. %d)\n",
2462 it_iu_len, 64, srp_max_req_size);
2463 goto reject;
2464 }
2465
2466 if (!sport->enabled) {
2467 rej->reason = __constant_cpu_to_be32(
2468 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2469 ret = -EINVAL;
2470 printk(KERN_ERR "rejected SRP_LOGIN_REQ because the target port"
2471 " has not yet been enabled\n");
2472 goto reject;
2473 }
2474
2475 if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
2476 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN;
2477
2478 spin_lock_irq(&sdev->spinlock);
2479
2480 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) {
2481 if (!memcmp(ch->i_port_id, req->initiator_port_id, 16)
2482 && !memcmp(ch->t_port_id, req->target_port_id, 16)
2483 && param->port == ch->sport->port
2484 && param->listen_id == ch->sport->sdev->cm_id
2485 && ch->cm_id) {
2486 enum rdma_ch_state ch_state;
2487
2488 ch_state = srpt_get_ch_state(ch);
2489 if (ch_state != CH_CONNECTING
2490 && ch_state != CH_LIVE)
2491 continue;
2492
2493 /* found an existing channel */
2494 pr_debug("Found existing channel %s"
2495 " cm_id= %p state= %d\n",
2496 ch->sess_name, ch->cm_id, ch_state);
2497
2498 __srpt_close_ch(ch);
2499
2500 rsp->rsp_flags =
2501 SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
2502 }
2503 }
2504
2505 spin_unlock_irq(&sdev->spinlock);
2506
2507 } else
2508 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;
2509
2510 if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
2511 || *(__be64 *)(req->target_port_id + 8) !=
2512 cpu_to_be64(srpt_service_guid)) {
2513 rej->reason = __constant_cpu_to_be32(
2514 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
2515 ret = -ENOMEM;
2516 printk(KERN_ERR "rejected SRP_LOGIN_REQ because it"
2517 " has an invalid target port identifier.\n");
2518 goto reject;
2519 }
2520
2521 ch = kzalloc(sizeof *ch, GFP_KERNEL);
2522 if (!ch) {
2523 rej->reason = __constant_cpu_to_be32(
2524 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2525 printk(KERN_ERR "rejected SRP_LOGIN_REQ because no memory.\n");
2526 ret = -ENOMEM;
2527 goto reject;
2528 }
2529
2530 INIT_WORK(&ch->release_work, srpt_release_channel_work);
2531 memcpy(ch->i_port_id, req->initiator_port_id, 16);
2532 memcpy(ch->t_port_id, req->target_port_id, 16);
2533 ch->sport = &sdev->port[param->port - 1];
2534 ch->cm_id = cm_id;
2535 /*
2536 * Avoid QUEUE_FULL conditions by limiting the number of buffers used
2537 * for the SRP protocol to the command queue size.
2538 */
2539 ch->rq_size = SRPT_RQ_SIZE;
2540 spin_lock_init(&ch->spinlock);
2541 ch->state = CH_CONNECTING;
2542 INIT_LIST_HEAD(&ch->cmd_wait_list);
2543 ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
2544
2545 ch->ioctx_ring = (struct srpt_send_ioctx **)
2546 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2547 sizeof(*ch->ioctx_ring[0]),
2548 ch->rsp_size, DMA_TO_DEVICE);
2549 if (!ch->ioctx_ring)
2550 goto free_ch;
2551
2552 INIT_LIST_HEAD(&ch->free_list);
2553 for (i = 0; i < ch->rq_size; i++) {
2554 ch->ioctx_ring[i]->ch = ch;
2555 list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list);
2556 }
2557
2558 ret = srpt_create_ch_ib(ch);
2559 if (ret) {
2560 rej->reason = __constant_cpu_to_be32(
2561 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2562 printk(KERN_ERR "rejected SRP_LOGIN_REQ because creating"
2563 " a new RDMA channel failed.\n");
2564 goto free_ring;
2565 }
2566
2567 ret = srpt_ch_qp_rtr(ch, ch->qp);
2568 if (ret) {
2569 rej->reason = __constant_cpu_to_be32(
2570 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2571 printk(KERN_ERR "rejected SRP_LOGIN_REQ because enabling"
2572 " RTR failed (error code = %d)\n", ret);
2573 goto destroy_ib;
2574 }
2575 /*
2576 * Use the initator port identifier as the session name.
2577 */
2578 snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx",
2579 be64_to_cpu(*(__be64 *)ch->i_port_id),
2580 be64_to_cpu(*(__be64 *)(ch->i_port_id + 8)));
2581
2582 pr_debug("registering session %s\n", ch->sess_name);
2583
2584 nacl = srpt_lookup_acl(sport, ch->i_port_id);
2585 if (!nacl) {
2586 printk(KERN_INFO "Rejected login because no ACL has been"
2587 " configured yet for initiator %s.\n", ch->sess_name);
2588 rej->reason = __constant_cpu_to_be32(
2589 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
2590 goto destroy_ib;
2591 }
2592
2593 ch->sess = transport_init_session();
3af33637 2594 if (IS_ERR(ch->sess)) {
a42d985b
BVA
2595 rej->reason = __constant_cpu_to_be32(
2596 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2597 pr_debug("Failed to create session\n");
2598 goto deregister_session;
2599 }
2600 ch->sess->se_node_acl = &nacl->nacl;
2601 transport_register_session(&sport->port_tpg_1, &nacl->nacl, ch->sess, ch);
2602
2603 pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess,
2604 ch->sess_name, ch->cm_id);
2605
2606 /* create srp_login_response */
2607 rsp->opcode = SRP_LOGIN_RSP;
2608 rsp->tag = req->tag;
2609 rsp->max_it_iu_len = req->req_it_iu_len;
2610 rsp->max_ti_iu_len = req->req_it_iu_len;
2611 ch->max_ti_iu_len = it_iu_len;
2612 rsp->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2613 | SRP_BUF_FORMAT_INDIRECT);
2614 rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
2615 atomic_set(&ch->req_lim, ch->rq_size);
2616 atomic_set(&ch->req_lim_delta, 0);
2617
2618 /* create cm reply */
2619 rep_param->qp_num = ch->qp->qp_num;
2620 rep_param->private_data = (void *)rsp;
2621 rep_param->private_data_len = sizeof *rsp;
2622 rep_param->rnr_retry_count = 7;
2623 rep_param->flow_control = 1;
2624 rep_param->failover_accepted = 0;
2625 rep_param->srq = 1;
2626 rep_param->responder_resources = 4;
2627 rep_param->initiator_depth = 4;
2628
2629 ret = ib_send_cm_rep(cm_id, rep_param);
2630 if (ret) {
2631 printk(KERN_ERR "sending SRP_LOGIN_REQ response failed"
2632 " (error code = %d)\n", ret);
2633 goto release_channel;
2634 }
2635
2636 spin_lock_irq(&sdev->spinlock);
2637 list_add_tail(&ch->list, &sdev->rch_list);
2638 spin_unlock_irq(&sdev->spinlock);
2639
2640 goto out;
2641
2642release_channel:
2643 srpt_set_ch_state(ch, CH_RELEASING);
2644 transport_deregister_session_configfs(ch->sess);
2645
2646deregister_session:
2647 transport_deregister_session(ch->sess);
2648 ch->sess = NULL;
2649
2650destroy_ib:
2651 srpt_destroy_ch_ib(ch);
2652
2653free_ring:
2654 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2655 ch->sport->sdev, ch->rq_size,
2656 ch->rsp_size, DMA_TO_DEVICE);
2657free_ch:
2658 kfree(ch);
2659
2660reject:
2661 rej->opcode = SRP_LOGIN_REJ;
2662 rej->tag = req->tag;
2663 rej->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2664 | SRP_BUF_FORMAT_INDIRECT);
2665
2666 ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2667 (void *)rej, sizeof *rej);
2668
2669out:
2670 kfree(rep_param);
2671 kfree(rsp);
2672 kfree(rej);
2673
2674 return ret;
2675}
2676
2677static void srpt_cm_rej_recv(struct ib_cm_id *cm_id)
2678{
2679 printk(KERN_INFO "Received IB REJ for cm_id %p.\n", cm_id);
2680 srpt_drain_channel(cm_id);
2681}
2682
2683/**
2684 * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event.
2685 *
2686 * An IB_CM_RTU_RECEIVED message indicates that the connection is established
2687 * and that the recipient may begin transmitting (RTU = ready to use).
2688 */
2689static void srpt_cm_rtu_recv(struct ib_cm_id *cm_id)
2690{
2691 struct srpt_rdma_ch *ch;
2692 int ret;
2693
2694 ch = srpt_find_channel(cm_id->context, cm_id);
2695 BUG_ON(!ch);
2696
2697 if (srpt_test_and_set_ch_state(ch, CH_CONNECTING, CH_LIVE)) {
2698 struct srpt_recv_ioctx *ioctx, *ioctx_tmp;
2699
2700 ret = srpt_ch_qp_rts(ch, ch->qp);
2701
2702 list_for_each_entry_safe(ioctx, ioctx_tmp, &ch->cmd_wait_list,
2703 wait_list) {
2704 list_del(&ioctx->wait_list);
2705 srpt_handle_new_iu(ch, ioctx, NULL);
2706 }
2707 if (ret)
2708 srpt_close_ch(ch);
2709 }
2710}
2711
2712static void srpt_cm_timewait_exit(struct ib_cm_id *cm_id)
2713{
2714 printk(KERN_INFO "Received IB TimeWait exit for cm_id %p.\n", cm_id);
2715 srpt_drain_channel(cm_id);
2716}
2717
2718static void srpt_cm_rep_error(struct ib_cm_id *cm_id)
2719{
2720 printk(KERN_INFO "Received IB REP error for cm_id %p.\n", cm_id);
2721 srpt_drain_channel(cm_id);
2722}
2723
2724/**
2725 * srpt_cm_dreq_recv() - Process reception of a DREQ message.
2726 */
2727static void srpt_cm_dreq_recv(struct ib_cm_id *cm_id)
2728{
2729 struct srpt_rdma_ch *ch;
2730 unsigned long flags;
2731 bool send_drep = false;
2732
2733 ch = srpt_find_channel(cm_id->context, cm_id);
2734 BUG_ON(!ch);
2735
2736 pr_debug("cm_id= %p ch->state= %d\n", cm_id, srpt_get_ch_state(ch));
2737
2738 spin_lock_irqsave(&ch->spinlock, flags);
2739 switch (ch->state) {
2740 case CH_CONNECTING:
2741 case CH_LIVE:
2742 send_drep = true;
2743 ch->state = CH_DISCONNECTING;
2744 break;
2745 case CH_DISCONNECTING:
2746 case CH_DRAINING:
2747 case CH_RELEASING:
2748 WARN(true, "unexpected channel state %d\n", ch->state);
2749 break;
2750 }
2751 spin_unlock_irqrestore(&ch->spinlock, flags);
2752
2753 if (send_drep) {
2754 if (ib_send_cm_drep(ch->cm_id, NULL, 0) < 0)
2755 printk(KERN_ERR "Sending IB DREP failed.\n");
2756 printk(KERN_INFO "Received DREQ and sent DREP for session %s.\n",
2757 ch->sess_name);
2758 }
2759}
2760
2761/**
2762 * srpt_cm_drep_recv() - Process reception of a DREP message.
2763 */
2764static void srpt_cm_drep_recv(struct ib_cm_id *cm_id)
2765{
2766 printk(KERN_INFO "Received InfiniBand DREP message for cm_id %p.\n",
2767 cm_id);
2768 srpt_drain_channel(cm_id);
2769}
2770
2771/**
2772 * srpt_cm_handler() - IB connection manager callback function.
2773 *
2774 * A non-zero return value will cause the caller destroy the CM ID.
2775 *
2776 * Note: srpt_cm_handler() must only return a non-zero value when transferring
2777 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
2778 * a non-zero value in any other case will trigger a race with the
2779 * ib_destroy_cm_id() call in srpt_release_channel().
2780 */
2781static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
2782{
2783 int ret;
2784
2785 ret = 0;
2786 switch (event->event) {
2787 case IB_CM_REQ_RECEIVED:
2788 ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd,
2789 event->private_data);
2790 break;
2791 case IB_CM_REJ_RECEIVED:
2792 srpt_cm_rej_recv(cm_id);
2793 break;
2794 case IB_CM_RTU_RECEIVED:
2795 case IB_CM_USER_ESTABLISHED:
2796 srpt_cm_rtu_recv(cm_id);
2797 break;
2798 case IB_CM_DREQ_RECEIVED:
2799 srpt_cm_dreq_recv(cm_id);
2800 break;
2801 case IB_CM_DREP_RECEIVED:
2802 srpt_cm_drep_recv(cm_id);
2803 break;
2804 case IB_CM_TIMEWAIT_EXIT:
2805 srpt_cm_timewait_exit(cm_id);
2806 break;
2807 case IB_CM_REP_ERROR:
2808 srpt_cm_rep_error(cm_id);
2809 break;
2810 case IB_CM_DREQ_ERROR:
2811 printk(KERN_INFO "Received IB DREQ ERROR event.\n");
2812 break;
2813 case IB_CM_MRA_RECEIVED:
2814 printk(KERN_INFO "Received IB MRA event\n");
2815 break;
2816 default:
2817 printk(KERN_ERR "received unrecognized IB CM event %d\n",
2818 event->event);
2819 break;
2820 }
2821
2822 return ret;
2823}
2824
2825/**
2826 * srpt_perform_rdmas() - Perform IB RDMA.
2827 *
2828 * Returns zero upon success or a negative number upon failure.
2829 */
2830static int srpt_perform_rdmas(struct srpt_rdma_ch *ch,
2831 struct srpt_send_ioctx *ioctx)
2832{
2833 struct ib_send_wr wr;
2834 struct ib_send_wr *bad_wr;
2835 struct rdma_iu *riu;
2836 int i;
2837 int ret;
2838 int sq_wr_avail;
2839 enum dma_data_direction dir;
2840 const int n_rdma = ioctx->n_rdma;
2841
2842 dir = ioctx->cmd.data_direction;
2843 if (dir == DMA_TO_DEVICE) {
2844 /* write */
2845 ret = -ENOMEM;
2846 sq_wr_avail = atomic_sub_return(n_rdma, &ch->sq_wr_avail);
2847 if (sq_wr_avail < 0) {
2848 printk(KERN_WARNING "IB send queue full (needed %d)\n",
2849 n_rdma);
2850 goto out;
2851 }
2852 }
2853
2854 ioctx->rdma_aborted = false;
2855 ret = 0;
2856 riu = ioctx->rdma_ius;
2857 memset(&wr, 0, sizeof wr);
2858
2859 for (i = 0; i < n_rdma; ++i, ++riu) {
2860 if (dir == DMA_FROM_DEVICE) {
2861 wr.opcode = IB_WR_RDMA_WRITE;
2862 wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2863 SRPT_RDMA_WRITE_LAST :
2864 SRPT_RDMA_MID,
2865 ioctx->ioctx.index);
2866 } else {
2867 wr.opcode = IB_WR_RDMA_READ;
2868 wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2869 SRPT_RDMA_READ_LAST :
2870 SRPT_RDMA_MID,
2871 ioctx->ioctx.index);
2872 }
2873 wr.next = NULL;
2874 wr.wr.rdma.remote_addr = riu->raddr;
2875 wr.wr.rdma.rkey = riu->rkey;
2876 wr.num_sge = riu->sge_cnt;
2877 wr.sg_list = riu->sge;
2878
2879 /* only get completion event for the last rdma write */
2880 if (i == (n_rdma - 1) && dir == DMA_TO_DEVICE)
2881 wr.send_flags = IB_SEND_SIGNALED;
2882
2883 ret = ib_post_send(ch->qp, &wr, &bad_wr);
2884 if (ret)
2885 break;
2886 }
2887
2888 if (ret)
2889 printk(KERN_ERR "%s[%d]: ib_post_send() returned %d for %d/%d",
2890 __func__, __LINE__, ret, i, n_rdma);
2891 if (ret && i > 0) {
2892 wr.num_sge = 0;
2893 wr.wr_id = encode_wr_id(SRPT_RDMA_ABORT, ioctx->ioctx.index);
2894 wr.send_flags = IB_SEND_SIGNALED;
2895 while (ch->state == CH_LIVE &&
2896 ib_post_send(ch->qp, &wr, &bad_wr) != 0) {
2897 printk(KERN_INFO "Trying to abort failed RDMA transfer [%d]",
2898 ioctx->ioctx.index);
2899 msleep(1000);
2900 }
2901 while (ch->state != CH_RELEASING && !ioctx->rdma_aborted) {
2902 printk(KERN_INFO "Waiting until RDMA abort finished [%d]",
2903 ioctx->ioctx.index);
2904 msleep(1000);
2905 }
2906 }
2907out:
2908 if (unlikely(dir == DMA_TO_DEVICE && ret < 0))
2909 atomic_add(n_rdma, &ch->sq_wr_avail);
2910 return ret;
2911}
2912
2913/**
2914 * srpt_xfer_data() - Start data transfer from initiator to target.
2915 */
2916static int srpt_xfer_data(struct srpt_rdma_ch *ch,
2917 struct srpt_send_ioctx *ioctx)
2918{
2919 int ret;
2920
2921 ret = srpt_map_sg_to_ib_sge(ch, ioctx);
2922 if (ret) {
2923 printk(KERN_ERR "%s[%d] ret=%d\n", __func__, __LINE__, ret);
2924 goto out;
2925 }
2926
2927 ret = srpt_perform_rdmas(ch, ioctx);
2928 if (ret) {
2929 if (ret == -EAGAIN || ret == -ENOMEM)
2930 printk(KERN_INFO "%s[%d] queue full -- ret=%d\n",
2931 __func__, __LINE__, ret);
2932 else
2933 printk(KERN_ERR "%s[%d] fatal error -- ret=%d\n",
2934 __func__, __LINE__, ret);
2935 goto out_unmap;
2936 }
2937
2938out:
2939 return ret;
2940out_unmap:
2941 srpt_unmap_sg_to_ib_sge(ch, ioctx);
2942 goto out;
2943}
2944
2945static int srpt_write_pending_status(struct se_cmd *se_cmd)
2946{
2947 struct srpt_send_ioctx *ioctx;
2948
2949 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2950 return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA;
2951}
2952
2953/*
2954 * srpt_write_pending() - Start data transfer from initiator to target (write).
2955 */
2956static int srpt_write_pending(struct se_cmd *se_cmd)
2957{
2958 struct srpt_rdma_ch *ch;
2959 struct srpt_send_ioctx *ioctx;
2960 enum srpt_command_state new_state;
2961 enum rdma_ch_state ch_state;
2962 int ret;
2963
2964 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2965
2966 new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
2967 WARN_ON(new_state == SRPT_STATE_DONE);
2968
2969 ch = ioctx->ch;
2970 BUG_ON(!ch);
2971
2972 ch_state = srpt_get_ch_state(ch);
2973 switch (ch_state) {
2974 case CH_CONNECTING:
2975 WARN(true, "unexpected channel state %d\n", ch_state);
2976 ret = -EINVAL;
2977 goto out;
2978 case CH_LIVE:
2979 break;
2980 case CH_DISCONNECTING:
2981 case CH_DRAINING:
2982 case CH_RELEASING:
2983 pr_debug("cmd with tag %lld: channel disconnecting\n",
2984 ioctx->tag);
2985 srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN);
2986 ret = -EINVAL;
2987 goto out;
2988 }
2989 ret = srpt_xfer_data(ch, ioctx);
2990
2991out:
2992 return ret;
2993}
2994
2995static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
2996{
2997 switch (tcm_mgmt_status) {
2998 case TMR_FUNCTION_COMPLETE:
2999 return SRP_TSK_MGMT_SUCCESS;
3000 case TMR_FUNCTION_REJECTED:
3001 return SRP_TSK_MGMT_FUNC_NOT_SUPP;
3002 }
3003 return SRP_TSK_MGMT_FAILED;
3004}
3005
3006/**
3007 * srpt_queue_response() - Transmits the response to a SCSI command.
3008 *
3009 * Callback function called by the TCM core. Must not block since it can be
3010 * invoked on the context of the IB completion handler.
3011 */
b79fafac 3012static void srpt_queue_response(struct se_cmd *cmd)
a42d985b
BVA
3013{
3014 struct srpt_rdma_ch *ch;
3015 struct srpt_send_ioctx *ioctx;
3016 enum srpt_command_state state;
3017 unsigned long flags;
3018 int ret;
3019 enum dma_data_direction dir;
3020 int resp_len;
3021 u8 srp_tm_status;
3022
a42d985b
BVA
3023 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
3024 ch = ioctx->ch;
3025 BUG_ON(!ch);
3026
3027 spin_lock_irqsave(&ioctx->spinlock, flags);
3028 state = ioctx->state;
3029 switch (state) {
3030 case SRPT_STATE_NEW:
3031 case SRPT_STATE_DATA_IN:
3032 ioctx->state = SRPT_STATE_CMD_RSP_SENT;
3033 break;
3034 case SRPT_STATE_MGMT:
3035 ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
3036 break;
3037 default:
3038 WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
3039 ch, ioctx->ioctx.index, ioctx->state);
3040 break;
3041 }
3042 spin_unlock_irqrestore(&ioctx->spinlock, flags);
3043
3044 if (unlikely(transport_check_aborted_status(&ioctx->cmd, false)
3045 || WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) {
3046 atomic_inc(&ch->req_lim_delta);
3047 srpt_abort_cmd(ioctx);
b79fafac 3048 return;
a42d985b
BVA
3049 }
3050
3051 dir = ioctx->cmd.data_direction;
3052
3053 /* For read commands, transfer the data to the initiator. */
3054 if (dir == DMA_FROM_DEVICE && ioctx->cmd.data_length &&
3055 !ioctx->queue_status_only) {
3056 ret = srpt_xfer_data(ch, ioctx);
3057 if (ret) {
3058 printk(KERN_ERR "xfer_data failed for tag %llu\n",
3059 ioctx->tag);
b79fafac 3060 return;
a42d985b
BVA
3061 }
3062 }
3063
3064 if (state != SRPT_STATE_MGMT)
3065 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->tag,
3066 cmd->scsi_status);
3067 else {
3068 srp_tm_status
3069 = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
3070 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
3071 ioctx->tag);
3072 }
3073 ret = srpt_post_send(ch, ioctx, resp_len);
3074 if (ret) {
3075 printk(KERN_ERR "sending cmd response failed for tag %llu\n",
3076 ioctx->tag);
3077 srpt_unmap_sg_to_ib_sge(ch, ioctx);
3078 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
9474b043 3079 target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd);
a42d985b 3080 }
b79fafac 3081}
a42d985b 3082
b79fafac
JE
3083static int srpt_queue_data_in(struct se_cmd *cmd)
3084{
3085 srpt_queue_response(cmd);
3086 return 0;
3087}
3088
3089static void srpt_queue_tm_rsp(struct se_cmd *cmd)
3090{
3091 srpt_queue_response(cmd);
a42d985b
BVA
3092}
3093
3094static int srpt_queue_status(struct se_cmd *cmd)
3095{
3096 struct srpt_send_ioctx *ioctx;
3097
3098 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
3099 BUG_ON(ioctx->sense_data != cmd->sense_buffer);
3100 if (cmd->se_cmd_flags &
3101 (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
3102 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
3103 ioctx->queue_status_only = true;
b79fafac
JE
3104 srpt_queue_response(cmd);
3105 return 0;
a42d985b
BVA
3106}
3107
3108static void srpt_refresh_port_work(struct work_struct *work)
3109{
3110 struct srpt_port *sport = container_of(work, struct srpt_port, work);
3111
3112 srpt_refresh_port(sport);
3113}
3114
3115static int srpt_ch_list_empty(struct srpt_device *sdev)
3116{
3117 int res;
3118
3119 spin_lock_irq(&sdev->spinlock);
3120 res = list_empty(&sdev->rch_list);
3121 spin_unlock_irq(&sdev->spinlock);
3122
3123 return res;
3124}
3125
3126/**
3127 * srpt_release_sdev() - Free the channel resources associated with a target.
3128 */
3129static int srpt_release_sdev(struct srpt_device *sdev)
3130{
3131 struct srpt_rdma_ch *ch, *tmp_ch;
3132 int res;
3133
3134 WARN_ON_ONCE(irqs_disabled());
3135
3136 BUG_ON(!sdev);
3137
3138 spin_lock_irq(&sdev->spinlock);
3139 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list)
3140 __srpt_close_ch(ch);
3141 spin_unlock_irq(&sdev->spinlock);
3142
3143 res = wait_event_interruptible(sdev->ch_releaseQ,
3144 srpt_ch_list_empty(sdev));
3145 if (res)
3146 printk(KERN_ERR "%s: interrupted.\n", __func__);
3147
3148 return 0;
3149}
3150
3151static struct srpt_port *__srpt_lookup_port(const char *name)
3152{
3153 struct ib_device *dev;
3154 struct srpt_device *sdev;
3155 struct srpt_port *sport;
3156 int i;
3157
3158 list_for_each_entry(sdev, &srpt_dev_list, list) {
3159 dev = sdev->device;
3160 if (!dev)
3161 continue;
3162
3163 for (i = 0; i < dev->phys_port_cnt; i++) {
3164 sport = &sdev->port[i];
3165
3166 if (!strcmp(sport->port_guid, name))
3167 return sport;
3168 }
3169 }
3170
3171 return NULL;
3172}
3173
3174static struct srpt_port *srpt_lookup_port(const char *name)
3175{
3176 struct srpt_port *sport;
3177
3178 spin_lock(&srpt_dev_lock);
3179 sport = __srpt_lookup_port(name);
3180 spin_unlock(&srpt_dev_lock);
3181
3182 return sport;
3183}
3184
3185/**
3186 * srpt_add_one() - Infiniband device addition callback function.
3187 */
3188static void srpt_add_one(struct ib_device *device)
3189{
3190 struct srpt_device *sdev;
3191 struct srpt_port *sport;
3192 struct ib_srq_init_attr srq_attr;
3193 int i;
3194
3195 pr_debug("device = %p, device->dma_ops = %p\n", device,
3196 device->dma_ops);
3197
3198 sdev = kzalloc(sizeof *sdev, GFP_KERNEL);
3199 if (!sdev)
3200 goto err;
3201
3202 sdev->device = device;
3203 INIT_LIST_HEAD(&sdev->rch_list);
3204 init_waitqueue_head(&sdev->ch_releaseQ);
3205 spin_lock_init(&sdev->spinlock);
3206
3207 if (ib_query_device(device, &sdev->dev_attr))
3208 goto free_dev;
3209
3210 sdev->pd = ib_alloc_pd(device);
3211 if (IS_ERR(sdev->pd))
3212 goto free_dev;
3213
3214 sdev->mr = ib_get_dma_mr(sdev->pd, IB_ACCESS_LOCAL_WRITE);
3215 if (IS_ERR(sdev->mr))
3216 goto err_pd;
3217
3218 sdev->srq_size = min(srpt_srq_size, sdev->dev_attr.max_srq_wr);
3219
3220 srq_attr.event_handler = srpt_srq_event;
3221 srq_attr.srq_context = (void *)sdev;
3222 srq_attr.attr.max_wr = sdev->srq_size;
3223 srq_attr.attr.max_sge = 1;
3224 srq_attr.attr.srq_limit = 0;
6f360336 3225 srq_attr.srq_type = IB_SRQT_BASIC;
a42d985b
BVA
3226
3227 sdev->srq = ib_create_srq(sdev->pd, &srq_attr);
3228 if (IS_ERR(sdev->srq))
3229 goto err_mr;
3230
3231 pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n",
3232 __func__, sdev->srq_size, sdev->dev_attr.max_srq_wr,
3233 device->name);
3234
3235 if (!srpt_service_guid)
3236 srpt_service_guid = be64_to_cpu(device->node_guid);
3237
3238 sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
3239 if (IS_ERR(sdev->cm_id))
3240 goto err_srq;
3241
3242 /* print out target login information */
3243 pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,"
3244 "pkey=ffff,service_id=%016llx\n", srpt_service_guid,
3245 srpt_service_guid, srpt_service_guid);
3246
3247 /*
3248 * We do not have a consistent service_id (ie. also id_ext of target_id)
3249 * to identify this target. We currently use the guid of the first HCA
3250 * in the system as service_id; therefore, the target_id will change
3251 * if this HCA is gone bad and replaced by different HCA
3252 */
3253 if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0, NULL))
3254 goto err_cm;
3255
3256 INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
3257 srpt_event_handler);
3258 if (ib_register_event_handler(&sdev->event_handler))
3259 goto err_cm;
3260
3261 sdev->ioctx_ring = (struct srpt_recv_ioctx **)
3262 srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
3263 sizeof(*sdev->ioctx_ring[0]),
3264 srp_max_req_size, DMA_FROM_DEVICE);
3265 if (!sdev->ioctx_ring)
3266 goto err_event;
3267
3268 for (i = 0; i < sdev->srq_size; ++i)
3269 srpt_post_recv(sdev, sdev->ioctx_ring[i]);
3270
f225066b 3271 WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port));
a42d985b
BVA
3272
3273 for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
3274 sport = &sdev->port[i - 1];
3275 sport->sdev = sdev;
3276 sport->port = i;
3277 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
3278 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
3279 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
3280 INIT_WORK(&sport->work, srpt_refresh_port_work);
3281 INIT_LIST_HEAD(&sport->port_acl_list);
3282 spin_lock_init(&sport->port_acl_lock);
3283
3284 if (srpt_refresh_port(sport)) {
3285 printk(KERN_ERR "MAD registration failed for %s-%d.\n",
3286 srpt_sdev_name(sdev), i);
3287 goto err_ring;
3288 }
3289 snprintf(sport->port_guid, sizeof(sport->port_guid),
3290 "0x%016llx%016llx",
3291 be64_to_cpu(sport->gid.global.subnet_prefix),
3292 be64_to_cpu(sport->gid.global.interface_id));
3293 }
3294
3295 spin_lock(&srpt_dev_lock);
3296 list_add_tail(&sdev->list, &srpt_dev_list);
3297 spin_unlock(&srpt_dev_lock);
3298
3299out:
3300 ib_set_client_data(device, &srpt_client, sdev);
3301 pr_debug("added %s.\n", device->name);
3302 return;
3303
3304err_ring:
3305 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3306 sdev->srq_size, srp_max_req_size,
3307 DMA_FROM_DEVICE);
3308err_event:
3309 ib_unregister_event_handler(&sdev->event_handler);
3310err_cm:
3311 ib_destroy_cm_id(sdev->cm_id);
3312err_srq:
3313 ib_destroy_srq(sdev->srq);
3314err_mr:
3315 ib_dereg_mr(sdev->mr);
3316err_pd:
3317 ib_dealloc_pd(sdev->pd);
3318free_dev:
3319 kfree(sdev);
3320err:
3321 sdev = NULL;
3322 printk(KERN_INFO "%s(%s) failed.\n", __func__, device->name);
3323 goto out;
3324}
3325
3326/**
3327 * srpt_remove_one() - InfiniBand device removal callback function.
3328 */
3329static void srpt_remove_one(struct ib_device *device)
3330{
3331 struct srpt_device *sdev;
3332 int i;
3333
3334 sdev = ib_get_client_data(device, &srpt_client);
3335 if (!sdev) {
3336 printk(KERN_INFO "%s(%s): nothing to do.\n", __func__,
3337 device->name);
3338 return;
3339 }
3340
3341 srpt_unregister_mad_agent(sdev);
3342
3343 ib_unregister_event_handler(&sdev->event_handler);
3344
3345 /* Cancel any work queued by the just unregistered IB event handler. */
3346 for (i = 0; i < sdev->device->phys_port_cnt; i++)
3347 cancel_work_sync(&sdev->port[i].work);
3348
3349 ib_destroy_cm_id(sdev->cm_id);
3350
3351 /*
3352 * Unregistering a target must happen after destroying sdev->cm_id
3353 * such that no new SRP_LOGIN_REQ information units can arrive while
3354 * destroying the target.
3355 */
3356 spin_lock(&srpt_dev_lock);
3357 list_del(&sdev->list);
3358 spin_unlock(&srpt_dev_lock);
3359 srpt_release_sdev(sdev);
3360
3361 ib_destroy_srq(sdev->srq);
3362 ib_dereg_mr(sdev->mr);
3363 ib_dealloc_pd(sdev->pd);
3364
3365 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3366 sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE);
3367 sdev->ioctx_ring = NULL;
3368 kfree(sdev);
3369}
3370
3371static struct ib_client srpt_client = {
3372 .name = DRV_NAME,
3373 .add = srpt_add_one,
3374 .remove = srpt_remove_one
3375};
3376
3377static int srpt_check_true(struct se_portal_group *se_tpg)
3378{
3379 return 1;
3380}
3381
3382static int srpt_check_false(struct se_portal_group *se_tpg)
3383{
3384 return 0;
3385}
3386
3387static char *srpt_get_fabric_name(void)
3388{
3389 return "srpt";
3390}
3391
3392static u8 srpt_get_fabric_proto_ident(struct se_portal_group *se_tpg)
3393{
3394 return SCSI_TRANSPORTID_PROTOCOLID_SRP;
3395}
3396
3397static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
3398{
3399 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
3400
3401 return sport->port_guid;
3402}
3403
3404static u16 srpt_get_tag(struct se_portal_group *tpg)
3405{
3406 return 1;
3407}
3408
3409static u32 srpt_get_default_depth(struct se_portal_group *se_tpg)
3410{
3411 return 1;
3412}
3413
3414static u32 srpt_get_pr_transport_id(struct se_portal_group *se_tpg,
3415 struct se_node_acl *se_nacl,
3416 struct t10_pr_registration *pr_reg,
3417 int *format_code, unsigned char *buf)
3418{
3419 struct srpt_node_acl *nacl;
3420 struct spc_rdma_transport_id *tr_id;
3421
3422 nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3423 tr_id = (void *)buf;
3424 tr_id->protocol_identifier = SCSI_TRANSPORTID_PROTOCOLID_SRP;
3425 memcpy(tr_id->i_port_id, nacl->i_port_id, sizeof(tr_id->i_port_id));
3426 return sizeof(*tr_id);
3427}
3428
3429static u32 srpt_get_pr_transport_id_len(struct se_portal_group *se_tpg,
3430 struct se_node_acl *se_nacl,
3431 struct t10_pr_registration *pr_reg,
3432 int *format_code)
3433{
3434 *format_code = 0;
3435 return sizeof(struct spc_rdma_transport_id);
3436}
3437
3438static char *srpt_parse_pr_out_transport_id(struct se_portal_group *se_tpg,
3439 const char *buf, u32 *out_tid_len,
3440 char **port_nexus_ptr)
3441{
3442 struct spc_rdma_transport_id *tr_id;
3443
3444 *port_nexus_ptr = NULL;
3445 *out_tid_len = sizeof(struct spc_rdma_transport_id);
3446 tr_id = (void *)buf;
3447 return (char *)tr_id->i_port_id;
3448}
3449
3450static struct se_node_acl *srpt_alloc_fabric_acl(struct se_portal_group *se_tpg)
3451{
3452 struct srpt_node_acl *nacl;
3453
3454 nacl = kzalloc(sizeof(struct srpt_node_acl), GFP_KERNEL);
3455 if (!nacl) {
7367d99b 3456 printk(KERN_ERR "Unable to allocate struct srpt_node_acl\n");
a42d985b
BVA
3457 return NULL;
3458 }
3459
3460 return &nacl->nacl;
3461}
3462
3463static void srpt_release_fabric_acl(struct se_portal_group *se_tpg,
3464 struct se_node_acl *se_nacl)
3465{
3466 struct srpt_node_acl *nacl;
3467
3468 nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3469 kfree(nacl);
3470}
3471
3472static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
3473{
3474 return 1;
3475}
3476
3477static void srpt_release_cmd(struct se_cmd *se_cmd)
3478{
9474b043
NB
3479 struct srpt_send_ioctx *ioctx = container_of(se_cmd,
3480 struct srpt_send_ioctx, cmd);
3481 struct srpt_rdma_ch *ch = ioctx->ch;
3482 unsigned long flags;
3483
3484 WARN_ON(ioctx->state != SRPT_STATE_DONE);
3485 WARN_ON(ioctx->mapped_sg_count != 0);
3486
3487 if (ioctx->n_rbuf > 1) {
3488 kfree(ioctx->rbufs);
3489 ioctx->rbufs = NULL;
3490 ioctx->n_rbuf = 0;
3491 }
3492
3493 spin_lock_irqsave(&ch->spinlock, flags);
3494 list_add(&ioctx->free_list, &ch->free_list);
3495 spin_unlock_irqrestore(&ch->spinlock, flags);
a42d985b
BVA
3496}
3497
a42d985b
BVA
3498/**
3499 * srpt_close_session() - Forcibly close a session.
3500 *
3501 * Callback function invoked by the TCM core to clean up sessions associated
3502 * with a node ACL when the user invokes
3503 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3504 */
3505static void srpt_close_session(struct se_session *se_sess)
3506{
3507 DECLARE_COMPLETION_ONSTACK(release_done);
3508 struct srpt_rdma_ch *ch;
3509 struct srpt_device *sdev;
3510 int res;
3511
3512 ch = se_sess->fabric_sess_ptr;
3513 WARN_ON(ch->sess != se_sess);
3514
3515 pr_debug("ch %p state %d\n", ch, srpt_get_ch_state(ch));
3516
3517 sdev = ch->sport->sdev;
3518 spin_lock_irq(&sdev->spinlock);
3519 BUG_ON(ch->release_done);
3520 ch->release_done = &release_done;
3521 __srpt_close_ch(ch);
3522 spin_unlock_irq(&sdev->spinlock);
3523
3524 res = wait_for_completion_timeout(&release_done, 60 * HZ);
3525 WARN_ON(res <= 0);
3526}
3527
a42d985b
BVA
3528/**
3529 * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB).
3530 *
3531 * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
3532 * This object represents an arbitrary integer used to uniquely identify a
3533 * particular attached remote initiator port to a particular SCSI target port
3534 * within a particular SCSI target device within a particular SCSI instance.
3535 */
3536static u32 srpt_sess_get_index(struct se_session *se_sess)
3537{
3538 return 0;
3539}
3540
3541static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
3542{
3543}
3544
3545static u32 srpt_get_task_tag(struct se_cmd *se_cmd)
3546{
3547 struct srpt_send_ioctx *ioctx;
3548
3549 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3550 return ioctx->tag;
3551}
3552
3553/* Note: only used from inside debug printk's by the TCM core. */
3554static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
3555{
3556 struct srpt_send_ioctx *ioctx;
3557
3558 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3559 return srpt_get_cmd_state(ioctx);
3560}
3561
a42d985b
BVA
3562/**
3563 * srpt_parse_i_port_id() - Parse an initiator port ID.
3564 * @name: ASCII representation of a 128-bit initiator port ID.
3565 * @i_port_id: Binary 128-bit port ID.
3566 */
3567static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
3568{
3569 const char *p;
3570 unsigned len, count, leading_zero_bytes;
3571 int ret, rc;
3572
3573 p = name;
3574 if (strnicmp(p, "0x", 2) == 0)
3575 p += 2;
3576 ret = -EINVAL;
3577 len = strlen(p);
3578 if (len % 2)
3579 goto out;
3580 count = min(len / 2, 16U);
3581 leading_zero_bytes = 16 - count;
3582 memset(i_port_id, 0, leading_zero_bytes);
3583 rc = hex2bin(i_port_id + leading_zero_bytes, p, count);
3584 if (rc < 0)
3585 pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc);
3586 ret = 0;
3587out:
3588 return ret;
3589}
3590
3591/*
3592 * configfs callback function invoked for
3593 * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3594 */
3595static struct se_node_acl *srpt_make_nodeacl(struct se_portal_group *tpg,
3596 struct config_group *group,
3597 const char *name)
3598{
3599 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
3600 struct se_node_acl *se_nacl, *se_nacl_new;
3601 struct srpt_node_acl *nacl;
3602 int ret = 0;
3603 u32 nexus_depth = 1;
3604 u8 i_port_id[16];
3605
3606 if (srpt_parse_i_port_id(i_port_id, name) < 0) {
3607 printk(KERN_ERR "invalid initiator port ID %s\n", name);
3608 ret = -EINVAL;
3609 goto err;
3610 }
3611
3612 se_nacl_new = srpt_alloc_fabric_acl(tpg);
3613 if (!se_nacl_new) {
3614 ret = -ENOMEM;
3615 goto err;
3616 }
3617 /*
3618 * nacl_new may be released by core_tpg_add_initiator_node_acl()
3619 * when converting a node ACL from demo mode to explict
3620 */
3621 se_nacl = core_tpg_add_initiator_node_acl(tpg, se_nacl_new, name,
3622 nexus_depth);
3623 if (IS_ERR(se_nacl)) {
3624 ret = PTR_ERR(se_nacl);
3625 goto err;
3626 }
3627 /* Locate our struct srpt_node_acl and set sdev and i_port_id. */
3628 nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3629 memcpy(&nacl->i_port_id[0], &i_port_id[0], 16);
3630 nacl->sport = sport;
3631
3632 spin_lock_irq(&sport->port_acl_lock);
3633 list_add_tail(&nacl->list, &sport->port_acl_list);
3634 spin_unlock_irq(&sport->port_acl_lock);
3635
3636 return se_nacl;
3637err:
3638 return ERR_PTR(ret);
3639}
3640
3641/*
3642 * configfs callback function invoked for
3643 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3644 */
3645static void srpt_drop_nodeacl(struct se_node_acl *se_nacl)
3646{
3647 struct srpt_node_acl *nacl;
3648 struct srpt_device *sdev;
3649 struct srpt_port *sport;
3650
3651 nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3652 sport = nacl->sport;
3653 sdev = sport->sdev;
3654 spin_lock_irq(&sport->port_acl_lock);
3655 list_del(&nacl->list);
3656 spin_unlock_irq(&sport->port_acl_lock);
3657 core_tpg_del_initiator_node_acl(&sport->port_tpg_1, se_nacl, 1);
3658 srpt_release_fabric_acl(NULL, se_nacl);
3659}
3660
3661static ssize_t srpt_tpg_attrib_show_srp_max_rdma_size(
3662 struct se_portal_group *se_tpg,
3663 char *page)
3664{
3665 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3666
3667 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
3668}
3669
3670static ssize_t srpt_tpg_attrib_store_srp_max_rdma_size(
3671 struct se_portal_group *se_tpg,
3672 const char *page,
3673 size_t count)
3674{
3675 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3676 unsigned long val;
3677 int ret;
3678
3679 ret = strict_strtoul(page, 0, &val);
3680 if (ret < 0) {
3681 pr_err("strict_strtoul() failed with ret: %d\n", ret);
3682 return -EINVAL;
3683 }
3684 if (val > MAX_SRPT_RDMA_SIZE) {
3685 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
3686 MAX_SRPT_RDMA_SIZE);
3687 return -EINVAL;
3688 }
3689 if (val < DEFAULT_MAX_RDMA_SIZE) {
3690 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
3691 val, DEFAULT_MAX_RDMA_SIZE);
3692 return -EINVAL;
3693 }
3694 sport->port_attrib.srp_max_rdma_size = val;
3695
3696 return count;
3697}
3698
3699TF_TPG_ATTRIB_ATTR(srpt, srp_max_rdma_size, S_IRUGO | S_IWUSR);
3700
3701static ssize_t srpt_tpg_attrib_show_srp_max_rsp_size(
3702 struct se_portal_group *se_tpg,
3703 char *page)
3704{
3705 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3706
3707 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
3708}
3709
3710static ssize_t srpt_tpg_attrib_store_srp_max_rsp_size(
3711 struct se_portal_group *se_tpg,
3712 const char *page,
3713 size_t count)
3714{
3715 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3716 unsigned long val;
3717 int ret;
3718
3719 ret = strict_strtoul(page, 0, &val);
3720 if (ret < 0) {
3721 pr_err("strict_strtoul() failed with ret: %d\n", ret);
3722 return -EINVAL;
3723 }
3724 if (val > MAX_SRPT_RSP_SIZE) {
3725 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
3726 MAX_SRPT_RSP_SIZE);
3727 return -EINVAL;
3728 }
3729 if (val < MIN_MAX_RSP_SIZE) {
3730 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
3731 MIN_MAX_RSP_SIZE);
3732 return -EINVAL;
3733 }
3734 sport->port_attrib.srp_max_rsp_size = val;
3735
3736 return count;
3737}
3738
3739TF_TPG_ATTRIB_ATTR(srpt, srp_max_rsp_size, S_IRUGO | S_IWUSR);
3740
3741static ssize_t srpt_tpg_attrib_show_srp_sq_size(
3742 struct se_portal_group *se_tpg,
3743 char *page)
3744{
3745 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3746
3747 return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size);
3748}
3749
3750static ssize_t srpt_tpg_attrib_store_srp_sq_size(
3751 struct se_portal_group *se_tpg,
3752 const char *page,
3753 size_t count)
3754{
3755 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3756 unsigned long val;
3757 int ret;
3758
3759 ret = strict_strtoul(page, 0, &val);
3760 if (ret < 0) {
3761 pr_err("strict_strtoul() failed with ret: %d\n", ret);
3762 return -EINVAL;
3763 }
3764 if (val > MAX_SRPT_SRQ_SIZE) {
3765 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
3766 MAX_SRPT_SRQ_SIZE);
3767 return -EINVAL;
3768 }
3769 if (val < MIN_SRPT_SRQ_SIZE) {
3770 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
3771 MIN_SRPT_SRQ_SIZE);
3772 return -EINVAL;
3773 }
3774 sport->port_attrib.srp_sq_size = val;
3775
3776 return count;
3777}
3778
3779TF_TPG_ATTRIB_ATTR(srpt, srp_sq_size, S_IRUGO | S_IWUSR);
3780
3781static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
3782 &srpt_tpg_attrib_srp_max_rdma_size.attr,
3783 &srpt_tpg_attrib_srp_max_rsp_size.attr,
3784 &srpt_tpg_attrib_srp_sq_size.attr,
3785 NULL,
3786};
3787
3788static ssize_t srpt_tpg_show_enable(
3789 struct se_portal_group *se_tpg,
3790 char *page)
3791{
3792 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3793
3794 return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0);
3795}
3796
3797static ssize_t srpt_tpg_store_enable(
3798 struct se_portal_group *se_tpg,
3799 const char *page,
3800 size_t count)
3801{
3802 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3803 unsigned long tmp;
3804 int ret;
3805
3806 ret = strict_strtoul(page, 0, &tmp);
3807 if (ret < 0) {
3808 printk(KERN_ERR "Unable to extract srpt_tpg_store_enable\n");
3809 return -EINVAL;
3810 }
3811
3812 if ((tmp != 0) && (tmp != 1)) {
3813 printk(KERN_ERR "Illegal value for srpt_tpg_store_enable: %lu\n", tmp);
3814 return -EINVAL;
3815 }
3816 if (tmp == 1)
3817 sport->enabled = true;
3818 else
3819 sport->enabled = false;
3820
3821 return count;
3822}
3823
3824TF_TPG_BASE_ATTR(srpt, enable, S_IRUGO | S_IWUSR);
3825
3826static struct configfs_attribute *srpt_tpg_attrs[] = {
3827 &srpt_tpg_enable.attr,
3828 NULL,
3829};
3830
3831/**
3832 * configfs callback invoked for
3833 * mkdir /sys/kernel/config/target/$driver/$port/$tpg
3834 */
3835static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
3836 struct config_group *group,
3837 const char *name)
3838{
3839 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3840 int res;
3841
3842 /* Initialize sport->port_wwn and sport->port_tpg_1 */
3843 res = core_tpg_register(&srpt_target->tf_ops, &sport->port_wwn,
3844 &sport->port_tpg_1, sport, TRANSPORT_TPG_TYPE_NORMAL);
3845 if (res)
3846 return ERR_PTR(res);
3847
3848 return &sport->port_tpg_1;
3849}
3850
3851/**
3852 * configfs callback invoked for
3853 * rmdir /sys/kernel/config/target/$driver/$port/$tpg
3854 */
3855static void srpt_drop_tpg(struct se_portal_group *tpg)
3856{
3857 struct srpt_port *sport = container_of(tpg,
3858 struct srpt_port, port_tpg_1);
3859
3860 sport->enabled = false;
3861 core_tpg_deregister(&sport->port_tpg_1);
3862}
3863
3864/**
3865 * configfs callback invoked for
3866 * mkdir /sys/kernel/config/target/$driver/$port
3867 */
3868static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
3869 struct config_group *group,
3870 const char *name)
3871{
3872 struct srpt_port *sport;
3873 int ret;
3874
3875 sport = srpt_lookup_port(name);
3876 pr_debug("make_tport(%s)\n", name);
3877 ret = -EINVAL;
3878 if (!sport)
3879 goto err;
3880
3881 return &sport->port_wwn;
3882
3883err:
3884 return ERR_PTR(ret);
3885}
3886
3887/**
3888 * configfs callback invoked for
3889 * rmdir /sys/kernel/config/target/$driver/$port
3890 */
3891static void srpt_drop_tport(struct se_wwn *wwn)
3892{
3893 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3894
3895 pr_debug("drop_tport(%s\n", config_item_name(&sport->port_wwn.wwn_group.cg_item));
3896}
3897
3898static ssize_t srpt_wwn_show_attr_version(struct target_fabric_configfs *tf,
3899 char *buf)
3900{
3901 return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION);
3902}
3903
3904TF_WWN_ATTR_RO(srpt, version);
3905
3906static struct configfs_attribute *srpt_wwn_attrs[] = {
3907 &srpt_wwn_version.attr,
3908 NULL,
3909};
3910
3911static struct target_core_fabric_ops srpt_template = {
3912 .get_fabric_name = srpt_get_fabric_name,
3913 .get_fabric_proto_ident = srpt_get_fabric_proto_ident,
3914 .tpg_get_wwn = srpt_get_fabric_wwn,
3915 .tpg_get_tag = srpt_get_tag,
3916 .tpg_get_default_depth = srpt_get_default_depth,
3917 .tpg_get_pr_transport_id = srpt_get_pr_transport_id,
3918 .tpg_get_pr_transport_id_len = srpt_get_pr_transport_id_len,
3919 .tpg_parse_pr_out_transport_id = srpt_parse_pr_out_transport_id,
3920 .tpg_check_demo_mode = srpt_check_false,
3921 .tpg_check_demo_mode_cache = srpt_check_true,
3922 .tpg_check_demo_mode_write_protect = srpt_check_true,
3923 .tpg_check_prod_mode_write_protect = srpt_check_false,
3924 .tpg_alloc_fabric_acl = srpt_alloc_fabric_acl,
3925 .tpg_release_fabric_acl = srpt_release_fabric_acl,
3926 .tpg_get_inst_index = srpt_tpg_get_inst_index,
3927 .release_cmd = srpt_release_cmd,
3928 .check_stop_free = srpt_check_stop_free,
3929 .shutdown_session = srpt_shutdown_session,
3930 .close_session = srpt_close_session,
a42d985b
BVA
3931 .sess_get_index = srpt_sess_get_index,
3932 .sess_get_initiator_sid = NULL,
3933 .write_pending = srpt_write_pending,
3934 .write_pending_status = srpt_write_pending_status,
3935 .set_default_node_attributes = srpt_set_default_node_attrs,
3936 .get_task_tag = srpt_get_task_tag,
3937 .get_cmd_state = srpt_get_tcm_cmd_state,
b79fafac 3938 .queue_data_in = srpt_queue_data_in,
a42d985b 3939 .queue_status = srpt_queue_status,
b79fafac 3940 .queue_tm_rsp = srpt_queue_tm_rsp,
a42d985b
BVA
3941 /*
3942 * Setup function pointers for generic logic in
3943 * target_core_fabric_configfs.c
3944 */
3945 .fabric_make_wwn = srpt_make_tport,
3946 .fabric_drop_wwn = srpt_drop_tport,
3947 .fabric_make_tpg = srpt_make_tpg,
3948 .fabric_drop_tpg = srpt_drop_tpg,
3949 .fabric_post_link = NULL,
3950 .fabric_pre_unlink = NULL,
3951 .fabric_make_np = NULL,
3952 .fabric_drop_np = NULL,
3953 .fabric_make_nodeacl = srpt_make_nodeacl,
3954 .fabric_drop_nodeacl = srpt_drop_nodeacl,
3955};
3956
3957/**
3958 * srpt_init_module() - Kernel module initialization.
3959 *
3960 * Note: Since ib_register_client() registers callback functions, and since at
3961 * least one of these callback functions (srpt_add_one()) calls target core
3962 * functions, this driver must be registered with the target core before
3963 * ib_register_client() is called.
3964 */
3965static int __init srpt_init_module(void)
3966{
3967 int ret;
3968
3969 ret = -EINVAL;
3970 if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3971 printk(KERN_ERR "invalid value %d for kernel module parameter"
3972 " srp_max_req_size -- must be at least %d.\n",
3973 srp_max_req_size, MIN_MAX_REQ_SIZE);
3974 goto out;
3975 }
3976
3977 if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
3978 || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
3979 printk(KERN_ERR "invalid value %d for kernel module parameter"
3980 " srpt_srq_size -- must be in the range [%d..%d].\n",
3981 srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
3982 goto out;
3983 }
3984
a42d985b 3985 srpt_target = target_fabric_configfs_init(THIS_MODULE, "srpt");
3af33637 3986 if (IS_ERR(srpt_target)) {
a42d985b 3987 printk(KERN_ERR "couldn't register\n");
3af33637 3988 ret = PTR_ERR(srpt_target);
a42d985b
BVA
3989 goto out;
3990 }
3991
3992 srpt_target->tf_ops = srpt_template;
3993
a42d985b
BVA
3994 /*
3995 * Set up default attribute lists.
3996 */
3997 srpt_target->tf_cit_tmpl.tfc_wwn_cit.ct_attrs = srpt_wwn_attrs;
3998 srpt_target->tf_cit_tmpl.tfc_tpg_base_cit.ct_attrs = srpt_tpg_attrs;
3999 srpt_target->tf_cit_tmpl.tfc_tpg_attrib_cit.ct_attrs = srpt_tpg_attrib_attrs;
4000 srpt_target->tf_cit_tmpl.tfc_tpg_param_cit.ct_attrs = NULL;
4001 srpt_target->tf_cit_tmpl.tfc_tpg_np_base_cit.ct_attrs = NULL;
4002 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_base_cit.ct_attrs = NULL;
4003 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_attrib_cit.ct_attrs = NULL;
4004 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_auth_cit.ct_attrs = NULL;
4005 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_param_cit.ct_attrs = NULL;
4006
4007 ret = target_fabric_configfs_register(srpt_target);
4008 if (ret < 0) {
4009 printk(KERN_ERR "couldn't register\n");
4010 goto out_free_target;
4011 }
4012
4013 ret = ib_register_client(&srpt_client);
4014 if (ret) {
4015 printk(KERN_ERR "couldn't register IB client\n");
4016 goto out_unregister_target;
4017 }
4018
4019 return 0;
4020
4021out_unregister_target:
4022 target_fabric_configfs_deregister(srpt_target);
4023 srpt_target = NULL;
4024out_free_target:
4025 if (srpt_target)
4026 target_fabric_configfs_free(srpt_target);
4027out:
4028 return ret;
4029}
4030
4031static void __exit srpt_cleanup_module(void)
4032{
4033 ib_unregister_client(&srpt_client);
4034 target_fabric_configfs_deregister(srpt_target);
4035 srpt_target = NULL;
4036}
4037
4038module_init(srpt_init_module);
4039module_exit(srpt_cleanup_module);