Merge tag 'iio-fixes-for-5.1a' of git://git.kernel.org/pub/scm/linux/kernel/git/jic23...
[linux-2.6-block.git] / drivers / infiniband / hw / hfi1 / sdma.c
CommitLineData
77241056 1/*
f9458bc2 2 * Copyright(c) 2015 - 2018 Intel Corporation.
77241056
MM
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
77241056
MM
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
77241056
MM
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47
48#include <linux/spinlock.h>
49#include <linux/seqlock.h>
50#include <linux/netdevice.h>
51#include <linux/moduleparam.h>
52#include <linux/bitops.h>
53#include <linux/timer.h>
54#include <linux/vmalloc.h>
f4d26d81 55#include <linux/highmem.h>
77241056
MM
56
57#include "hfi.h"
58#include "common.h"
59#include "qp.h"
60#include "sdma.h"
61#include "iowait.h"
62#include "trace.h"
63
64/* must be a power of 2 >= 64 <= 32768 */
028d7254 65#define SDMA_DESCQ_CNT 2048
ee947859 66#define SDMA_DESC_INTR 64
77241056
MM
67#define INVALID_TAIL 0xffff
68
69static uint sdma_descq_cnt = SDMA_DESCQ_CNT;
70module_param(sdma_descq_cnt, uint, S_IRUGO);
71MODULE_PARM_DESC(sdma_descq_cnt, "Number of SDMA descq entries");
72
73static uint sdma_idle_cnt = 250;
74module_param(sdma_idle_cnt, uint, S_IRUGO);
75MODULE_PARM_DESC(sdma_idle_cnt, "sdma interrupt idle delay (ns,default 250)");
76
77uint mod_num_sdma;
78module_param_named(num_sdma, mod_num_sdma, uint, S_IRUGO);
79MODULE_PARM_DESC(num_sdma, "Set max number SDMA engines to use");
80
ee947859
MH
81static uint sdma_desct_intr = SDMA_DESC_INTR;
82module_param_named(desct_intr, sdma_desct_intr, uint, S_IRUGO | S_IWUSR);
83MODULE_PARM_DESC(desct_intr, "Number of SDMA descriptor before interrupt");
84
77241056
MM
85#define SDMA_WAIT_BATCH_SIZE 20
86/* max wait time for a SDMA engine to indicate it has halted */
87#define SDMA_ERR_HALT_TIMEOUT 10 /* ms */
88/* all SDMA engine errors that cause a halt */
89
90#define SD(name) SEND_DMA_##name
91#define ALL_SDMA_ENG_HALT_ERRS \
92 (SD(ENG_ERR_STATUS_SDMA_WRONG_DW_ERR_SMASK) \
93 | SD(ENG_ERR_STATUS_SDMA_GEN_MISMATCH_ERR_SMASK) \
94 | SD(ENG_ERR_STATUS_SDMA_TOO_LONG_ERR_SMASK) \
95 | SD(ENG_ERR_STATUS_SDMA_TAIL_OUT_OF_BOUNDS_ERR_SMASK) \
96 | SD(ENG_ERR_STATUS_SDMA_FIRST_DESC_ERR_SMASK) \
97 | SD(ENG_ERR_STATUS_SDMA_MEM_READ_ERR_SMASK) \
98 | SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK) \
99 | SD(ENG_ERR_STATUS_SDMA_LENGTH_MISMATCH_ERR_SMASK) \
100 | SD(ENG_ERR_STATUS_SDMA_PACKET_DESC_OVERFLOW_ERR_SMASK) \
101 | SD(ENG_ERR_STATUS_SDMA_HEADER_SELECT_ERR_SMASK) \
102 | SD(ENG_ERR_STATUS_SDMA_HEADER_ADDRESS_ERR_SMASK) \
103 | SD(ENG_ERR_STATUS_SDMA_HEADER_LENGTH_ERR_SMASK) \
104 | SD(ENG_ERR_STATUS_SDMA_TIMEOUT_ERR_SMASK) \
105 | SD(ENG_ERR_STATUS_SDMA_DESC_TABLE_UNC_ERR_SMASK) \
106 | SD(ENG_ERR_STATUS_SDMA_ASSEMBLY_UNC_ERR_SMASK) \
107 | SD(ENG_ERR_STATUS_SDMA_PACKET_TRACKING_UNC_ERR_SMASK) \
108 | SD(ENG_ERR_STATUS_SDMA_HEADER_STORAGE_UNC_ERR_SMASK) \
109 | SD(ENG_ERR_STATUS_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SMASK))
110
111/* sdma_sendctrl operations */
349ac71f 112#define SDMA_SENDCTRL_OP_ENABLE BIT(0)
113#define SDMA_SENDCTRL_OP_INTENABLE BIT(1)
114#define SDMA_SENDCTRL_OP_HALT BIT(2)
115#define SDMA_SENDCTRL_OP_CLEANUP BIT(3)
77241056
MM
116
117/* handle long defines */
118#define SDMA_EGRESS_PACKET_OCCUPANCY_SMASK \
119SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SMASK
120#define SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT \
121SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT
122
123static const char * const sdma_state_names[] = {
124 [sdma_state_s00_hw_down] = "s00_HwDown",
125 [sdma_state_s10_hw_start_up_halt_wait] = "s10_HwStartUpHaltWait",
126 [sdma_state_s15_hw_start_up_clean_wait] = "s15_HwStartUpCleanWait",
127 [sdma_state_s20_idle] = "s20_Idle",
128 [sdma_state_s30_sw_clean_up_wait] = "s30_SwCleanUpWait",
129 [sdma_state_s40_hw_clean_up_wait] = "s40_HwCleanUpWait",
130 [sdma_state_s50_hw_halt_wait] = "s50_HwHaltWait",
131 [sdma_state_s60_idle_halt_wait] = "s60_IdleHaltWait",
132 [sdma_state_s80_hw_freeze] = "s80_HwFreeze",
133 [sdma_state_s82_freeze_sw_clean] = "s82_FreezeSwClean",
134 [sdma_state_s99_running] = "s99_Running",
135};
136
eac71936 137#ifdef CONFIG_SDMA_VERBOSITY
77241056
MM
138static const char * const sdma_event_names[] = {
139 [sdma_event_e00_go_hw_down] = "e00_GoHwDown",
140 [sdma_event_e10_go_hw_start] = "e10_GoHwStart",
141 [sdma_event_e15_hw_halt_done] = "e15_HwHaltDone",
142 [sdma_event_e25_hw_clean_up_done] = "e25_HwCleanUpDone",
143 [sdma_event_e30_go_running] = "e30_GoRunning",
144 [sdma_event_e40_sw_cleaned] = "e40_SwCleaned",
145 [sdma_event_e50_hw_cleaned] = "e50_HwCleaned",
146 [sdma_event_e60_hw_halted] = "e60_HwHalted",
147 [sdma_event_e70_go_idle] = "e70_GoIdle",
148 [sdma_event_e80_hw_freeze] = "e80_HwFreeze",
149 [sdma_event_e81_hw_frozen] = "e81_HwFrozen",
150 [sdma_event_e82_hw_unfreeze] = "e82_HwUnfreeze",
151 [sdma_event_e85_link_down] = "e85_LinkDown",
152 [sdma_event_e90_sw_halted] = "e90_SwHalted",
153};
eac71936 154#endif
77241056
MM
155
156static const struct sdma_set_state_action sdma_action_table[] = {
157 [sdma_state_s00_hw_down] = {
158 .go_s99_running_tofalse = 1,
159 .op_enable = 0,
160 .op_intenable = 0,
161 .op_halt = 0,
162 .op_cleanup = 0,
163 },
164 [sdma_state_s10_hw_start_up_halt_wait] = {
165 .op_enable = 0,
166 .op_intenable = 0,
167 .op_halt = 1,
168 .op_cleanup = 0,
169 },
170 [sdma_state_s15_hw_start_up_clean_wait] = {
171 .op_enable = 0,
172 .op_intenable = 1,
173 .op_halt = 0,
174 .op_cleanup = 1,
175 },
176 [sdma_state_s20_idle] = {
177 .op_enable = 0,
178 .op_intenable = 1,
179 .op_halt = 0,
180 .op_cleanup = 0,
181 },
182 [sdma_state_s30_sw_clean_up_wait] = {
183 .op_enable = 0,
184 .op_intenable = 0,
185 .op_halt = 0,
186 .op_cleanup = 0,
187 },
188 [sdma_state_s40_hw_clean_up_wait] = {
189 .op_enable = 0,
190 .op_intenable = 0,
191 .op_halt = 0,
192 .op_cleanup = 1,
193 },
194 [sdma_state_s50_hw_halt_wait] = {
195 .op_enable = 0,
196 .op_intenable = 0,
197 .op_halt = 0,
198 .op_cleanup = 0,
199 },
200 [sdma_state_s60_idle_halt_wait] = {
201 .go_s99_running_tofalse = 1,
202 .op_enable = 0,
203 .op_intenable = 0,
204 .op_halt = 1,
205 .op_cleanup = 0,
206 },
207 [sdma_state_s80_hw_freeze] = {
208 .op_enable = 0,
209 .op_intenable = 0,
210 .op_halt = 0,
211 .op_cleanup = 0,
212 },
213 [sdma_state_s82_freeze_sw_clean] = {
214 .op_enable = 0,
215 .op_intenable = 0,
216 .op_halt = 0,
217 .op_cleanup = 0,
218 },
219 [sdma_state_s99_running] = {
220 .op_enable = 1,
221 .op_intenable = 1,
222 .op_halt = 0,
223 .op_cleanup = 0,
224 .go_s99_running_totrue = 1,
225 },
226};
227
228#define SDMA_TAIL_UPDATE_THRESH 0x1F
229
230/* declare all statics here rather than keep sorting */
231static void sdma_complete(struct kref *);
232static void sdma_finalput(struct sdma_state *);
233static void sdma_get(struct sdma_state *);
234static void sdma_hw_clean_up_task(unsigned long);
235static void sdma_put(struct sdma_state *);
236static void sdma_set_state(struct sdma_engine *, enum sdma_states);
237static void sdma_start_hw_clean_up(struct sdma_engine *);
77241056
MM
238static void sdma_sw_clean_up_task(unsigned long);
239static void sdma_sendctrl(struct sdma_engine *, unsigned);
240static void init_sdma_regs(struct sdma_engine *, u32, uint);
241static void sdma_process_event(
242 struct sdma_engine *sde,
243 enum sdma_events event);
244static void __sdma_process_event(
245 struct sdma_engine *sde,
246 enum sdma_events event);
247static void dump_sdma_state(struct sdma_engine *sde);
248static void sdma_make_progress(struct sdma_engine *sde, u64 status);
bcad2913 249static void sdma_desc_avail(struct sdma_engine *sde, uint avail);
77241056
MM
250static void sdma_flush_descq(struct sdma_engine *sde);
251
252/**
253 * sdma_state_name() - return state string from enum
254 * @state: state
255 */
256static const char *sdma_state_name(enum sdma_states state)
257{
258 return sdma_state_names[state];
259}
260
261static void sdma_get(struct sdma_state *ss)
262{
263 kref_get(&ss->kref);
264}
265
266static void sdma_complete(struct kref *kref)
267{
268 struct sdma_state *ss =
269 container_of(kref, struct sdma_state, kref);
270
271 complete(&ss->comp);
272}
273
274static void sdma_put(struct sdma_state *ss)
275{
276 kref_put(&ss->kref, sdma_complete);
277}
278
279static void sdma_finalput(struct sdma_state *ss)
280{
281 sdma_put(ss);
282 wait_for_completion(&ss->comp);
283}
284
285static inline void write_sde_csr(
286 struct sdma_engine *sde,
287 u32 offset0,
288 u64 value)
289{
290 write_kctxt_csr(sde->dd, sde->this_idx, offset0, value);
291}
292
293static inline u64 read_sde_csr(
294 struct sdma_engine *sde,
295 u32 offset0)
296{
297 return read_kctxt_csr(sde->dd, sde->this_idx, offset0);
298}
299
300/*
301 * sdma_wait_for_packet_egress() - wait for the VL FIFO occupancy for
302 * sdma engine 'sde' to drop to 0.
303 */
304static void sdma_wait_for_packet_egress(struct sdma_engine *sde,
305 int pause)
306{
307 u64 off = 8 * sde->this_idx;
308 struct hfi1_devdata *dd = sde->dd;
309 int lcnt = 0;
25d97dd5
VM
310 u64 reg_prev;
311 u64 reg = 0;
77241056
MM
312
313 while (1) {
25d97dd5
VM
314 reg_prev = reg;
315 reg = read_csr(dd, off + SEND_EGRESS_SEND_DMA_STATUS);
77241056
MM
316
317 reg &= SDMA_EGRESS_PACKET_OCCUPANCY_SMASK;
318 reg >>= SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT;
319 if (reg == 0)
320 break;
25d97dd5
VM
321 /* counter is reest if accupancy count changes */
322 if (reg != reg_prev)
323 lcnt = 0;
324 if (lcnt++ > 500) {
325 /* timed out - bounce the link */
326 dd_dev_err(dd, "%s: engine %u timeout waiting for packets to egress, remaining count %u, bouncing link\n",
17fb4f29 327 __func__, sde->this_idx, (u32)reg);
71d47008 328 queue_work(dd->pport->link_wq,
17fb4f29 329 &dd->pport->link_bounce_work);
77241056
MM
330 break;
331 }
332 udelay(1);
333 }
334}
335
336/*
337 * sdma_wait() - wait for packet egress to complete for all SDMA engines,
338 * and pause for credit return.
339 */
340void sdma_wait(struct hfi1_devdata *dd)
341{
342 int i;
343
344 for (i = 0; i < dd->num_sdma; i++) {
345 struct sdma_engine *sde = &dd->per_sdma[i];
346
347 sdma_wait_for_packet_egress(sde, 0);
348 }
349}
350
351static inline void sdma_set_desc_cnt(struct sdma_engine *sde, unsigned cnt)
352{
353 u64 reg;
354
355 if (!(sde->dd->flags & HFI1_HAS_SDMA_TIMEOUT))
356 return;
357 reg = cnt;
358 reg &= SD(DESC_CNT_CNT_MASK);
359 reg <<= SD(DESC_CNT_CNT_SHIFT);
360 write_sde_csr(sde, SD(DESC_CNT), reg);
361}
362
a545f530
MM
363static inline void complete_tx(struct sdma_engine *sde,
364 struct sdma_txreq *tx,
365 int res)
366{
367 /* protect against complete modifying */
368 struct iowait *wait = tx->wait;
369 callback_t complete = tx->complete;
370
371#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
6b5c5213
MM
372 trace_hfi1_sdma_out_sn(sde, tx->sn);
373 if (WARN_ON_ONCE(sde->head_sn != tx->sn))
a545f530 374 dd_dev_err(sde->dd, "expected %llu got %llu\n",
6b5c5213 375 sde->head_sn, tx->sn);
a545f530
MM
376 sde->head_sn++;
377#endif
63df8e09 378 __sdma_txclean(sde->dd, tx);
a545f530
MM
379 if (complete)
380 (*complete)(tx, res);
5da0fc9d 381 if (iowait_sdma_dec(wait))
a545f530
MM
382 iowait_drain_wakeup(wait);
383}
384
77241056
MM
385/*
386 * Complete all the sdma requests with a SDMA_TXREQ_S_ABORTED status
387 *
388 * Depending on timing there can be txreqs in two places:
389 * - in the descq ring
390 * - in the flush list
391 *
392 * To avoid ordering issues the descq ring needs to be flushed
393 * first followed by the flush list.
394 *
395 * This routine is called from two places
396 * - From a work queue item
397 * - Directly from the state machine just before setting the
398 * state to running
399 *
400 * Must be called with head_lock held
401 *
402 */
403static void sdma_flush(struct sdma_engine *sde)
404{
405 struct sdma_txreq *txp, *txp_next;
406 LIST_HEAD(flushlist);
b77d713a 407 unsigned long flags;
77241056
MM
408
409 /* flush from head to tail */
410 sdma_flush_descq(sde);
b77d713a 411 spin_lock_irqsave(&sde->flushlist_lock, flags);
77241056
MM
412 /* copy flush list */
413 list_for_each_entry_safe(txp, txp_next, &sde->flushlist, list) {
414 list_del_init(&txp->list);
415 list_add_tail(&txp->list, &flushlist);
416 }
b77d713a 417 spin_unlock_irqrestore(&sde->flushlist_lock, flags);
77241056 418 /* flush from flush list */
a545f530
MM
419 list_for_each_entry_safe(txp, txp_next, &flushlist, list)
420 complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
77241056
MM
421}
422
423/*
424 * Fields a work request for flushing the descq ring
425 * and the flush list
426 *
427 * If the engine has been brought to running during
428 * the scheduling delay, the flush is ignored, assuming
429 * that the process of bringing the engine to running
430 * would have done this flush prior to going to running.
431 *
432 */
433static void sdma_field_flush(struct work_struct *work)
434{
435 unsigned long flags;
436 struct sdma_engine *sde =
437 container_of(work, struct sdma_engine, flush_worker);
438
439 write_seqlock_irqsave(&sde->head_lock, flags);
440 if (!__sdma_running(sde))
441 sdma_flush(sde);
442 write_sequnlock_irqrestore(&sde->head_lock, flags);
443}
444
445static void sdma_err_halt_wait(struct work_struct *work)
446{
447 struct sdma_engine *sde = container_of(work, struct sdma_engine,
448 err_halt_worker);
449 u64 statuscsr;
450 unsigned long timeout;
451
452 timeout = jiffies + msecs_to_jiffies(SDMA_ERR_HALT_TIMEOUT);
453 while (1) {
454 statuscsr = read_sde_csr(sde, SD(STATUS));
455 statuscsr &= SD(STATUS_ENG_HALTED_SMASK);
456 if (statuscsr)
457 break;
458 if (time_after(jiffies, timeout)) {
459 dd_dev_err(sde->dd,
17fb4f29
JJ
460 "SDMA engine %d - timeout waiting for engine to halt\n",
461 sde->this_idx);
77241056
MM
462 /*
463 * Continue anyway. This could happen if there was
464 * an uncorrectable error in the wrong spot.
465 */
466 break;
467 }
468 usleep_range(80, 120);
469 }
470
471 sdma_process_event(sde, sdma_event_e15_hw_halt_done);
472}
473
77241056
MM
474static void sdma_err_progress_check_schedule(struct sdma_engine *sde)
475{
476 if (!is_bx(sde->dd) && HFI1_CAP_IS_KSET(SDMA_AHG)) {
77241056
MM
477 unsigned index;
478 struct hfi1_devdata *dd = sde->dd;
479
480 for (index = 0; index < dd->num_sdma; index++) {
481 struct sdma_engine *curr_sdma = &dd->per_sdma[index];
482
483 if (curr_sdma != sde)
484 curr_sdma->progress_check_head =
485 curr_sdma->descq_head;
486 }
487 dd_dev_err(sde->dd,
488 "SDMA engine %d - check scheduled\n",
489 sde->this_idx);
490 mod_timer(&sde->err_progress_check_timer, jiffies + 10);
491 }
492}
493
8064135e 494static void sdma_err_progress_check(struct timer_list *t)
77241056
MM
495{
496 unsigned index;
8064135e 497 struct sdma_engine *sde = from_timer(sde, t, err_progress_check_timer);
77241056
MM
498
499 dd_dev_err(sde->dd, "SDE progress check event\n");
500 for (index = 0; index < sde->dd->num_sdma; index++) {
501 struct sdma_engine *curr_sde = &sde->dd->per_sdma[index];
502 unsigned long flags;
503
504 /* check progress on each engine except the current one */
505 if (curr_sde == sde)
506 continue;
507 /*
508 * We must lock interrupts when acquiring sde->lock,
509 * to avoid a deadlock if interrupt triggers and spins on
510 * the same lock on same CPU
511 */
512 spin_lock_irqsave(&curr_sde->tail_lock, flags);
513 write_seqlock(&curr_sde->head_lock);
514
515 /* skip non-running queues */
516 if (curr_sde->state.current_state != sdma_state_s99_running) {
517 write_sequnlock(&curr_sde->head_lock);
518 spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
519 continue;
520 }
521
522 if ((curr_sde->descq_head != curr_sde->descq_tail) &&
523 (curr_sde->descq_head ==
524 curr_sde->progress_check_head))
525 __sdma_process_event(curr_sde,
526 sdma_event_e90_sw_halted);
527 write_sequnlock(&curr_sde->head_lock);
528 spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
529 }
530 schedule_work(&sde->err_halt_worker);
531}
532
533static void sdma_hw_clean_up_task(unsigned long opaque)
534{
50e5dcbe 535 struct sdma_engine *sde = (struct sdma_engine *)opaque;
77241056
MM
536 u64 statuscsr;
537
538 while (1) {
539#ifdef CONFIG_SDMA_VERBOSITY
540 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
541 sde->this_idx, slashstrip(__FILE__), __LINE__,
542 __func__);
543#endif
544 statuscsr = read_sde_csr(sde, SD(STATUS));
545 statuscsr &= SD(STATUS_ENG_CLEANED_UP_SMASK);
546 if (statuscsr)
547 break;
548 udelay(10);
549 }
550
551 sdma_process_event(sde, sdma_event_e25_hw_clean_up_done);
552}
553
554static inline struct sdma_txreq *get_txhead(struct sdma_engine *sde)
555{
77241056
MM
556 return sde->tx_ring[sde->tx_head & sde->sdma_mask];
557}
558
559/*
560 * flush ring for recovery
561 */
562static void sdma_flush_descq(struct sdma_engine *sde)
563{
564 u16 head, tail;
565 int progress = 0;
566 struct sdma_txreq *txp = get_txhead(sde);
567
568 /* The reason for some of the complexity of this code is that
569 * not all descriptors have corresponding txps. So, we have to
570 * be able to skip over descs until we wander into the range of
571 * the next txp on the list.
572 */
573 head = sde->descq_head & sde->sdma_mask;
574 tail = sde->descq_tail & sde->sdma_mask;
575 while (head != tail) {
576 /* advance head, wrap if needed */
577 head = ++sde->descq_head & sde->sdma_mask;
578 /* if now past this txp's descs, do the callback */
579 if (txp && txp->next_descq_idx == head) {
77241056
MM
580 /* remove from list */
581 sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
a545f530 582 complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
77241056 583 trace_hfi1_sdma_progress(sde, head, tail, txp);
77241056
MM
584 txp = get_txhead(sde);
585 }
586 progress++;
587 }
588 if (progress)
589 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
590}
591
592static void sdma_sw_clean_up_task(unsigned long opaque)
593{
50e5dcbe 594 struct sdma_engine *sde = (struct sdma_engine *)opaque;
77241056
MM
595 unsigned long flags;
596
597 spin_lock_irqsave(&sde->tail_lock, flags);
598 write_seqlock(&sde->head_lock);
599
600 /*
601 * At this point, the following should always be true:
602 * - We are halted, so no more descriptors are getting retired.
603 * - We are not running, so no one is submitting new work.
604 * - Only we can send the e40_sw_cleaned, so we can't start
605 * running again until we say so. So, the active list and
606 * descq are ours to play with.
607 */
608
77241056
MM
609 /*
610 * In the error clean up sequence, software clean must be called
611 * before the hardware clean so we can use the hardware head in
612 * the progress routine. A hardware clean or SPC unfreeze will
613 * reset the hardware head.
614 *
615 * Process all retired requests. The progress routine will use the
616 * latest physical hardware head - we are not running so speed does
617 * not matter.
618 */
619 sdma_make_progress(sde, 0);
620
621 sdma_flush(sde);
622
623 /*
624 * Reset our notion of head and tail.
625 * Note that the HW registers have been reset via an earlier
626 * clean up.
627 */
628 sde->descq_tail = 0;
629 sde->descq_head = 0;
630 sde->desc_avail = sdma_descq_freecnt(sde);
631 *sde->head_dma = 0;
632
633 __sdma_process_event(sde, sdma_event_e40_sw_cleaned);
634
635 write_sequnlock(&sde->head_lock);
636 spin_unlock_irqrestore(&sde->tail_lock, flags);
637}
638
639static void sdma_sw_tear_down(struct sdma_engine *sde)
640{
641 struct sdma_state *ss = &sde->state;
642
643 /* Releasing this reference means the state machine has stopped. */
644 sdma_put(ss);
645
646 /* stop waiting for all unfreeze events to complete */
647 atomic_set(&sde->dd->sdma_unfreeze_count, -1);
648 wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
649}
650
651static void sdma_start_hw_clean_up(struct sdma_engine *sde)
652{
653 tasklet_hi_schedule(&sde->sdma_hw_clean_up_task);
654}
655
77241056 656static void sdma_set_state(struct sdma_engine *sde,
17fb4f29 657 enum sdma_states next_state)
77241056
MM
658{
659 struct sdma_state *ss = &sde->state;
660 const struct sdma_set_state_action *action = sdma_action_table;
661 unsigned op = 0;
662
663 trace_hfi1_sdma_state(
664 sde,
665 sdma_state_names[ss->current_state],
666 sdma_state_names[next_state]);
667
668 /* debugging bookkeeping */
669 ss->previous_state = ss->current_state;
670 ss->previous_op = ss->current_op;
671 ss->current_state = next_state;
672
d0d236ea
JJ
673 if (ss->previous_state != sdma_state_s99_running &&
674 next_state == sdma_state_s99_running)
77241056
MM
675 sdma_flush(sde);
676
677 if (action[next_state].op_enable)
678 op |= SDMA_SENDCTRL_OP_ENABLE;
679
680 if (action[next_state].op_intenable)
681 op |= SDMA_SENDCTRL_OP_INTENABLE;
682
683 if (action[next_state].op_halt)
684 op |= SDMA_SENDCTRL_OP_HALT;
685
686 if (action[next_state].op_cleanup)
687 op |= SDMA_SENDCTRL_OP_CLEANUP;
688
689 if (action[next_state].go_s99_running_tofalse)
690 ss->go_s99_running = 0;
691
692 if (action[next_state].go_s99_running_totrue)
693 ss->go_s99_running = 1;
694
695 ss->current_op = op;
696 sdma_sendctrl(sde, ss->current_op);
697}
698
699/**
700 * sdma_get_descq_cnt() - called when device probed
701 *
702 * Return a validated descq count.
703 *
704 * This is currently only used in the verbs initialization to build the tx
705 * list.
706 *
707 * This will probably be deleted in favor of a more scalable approach to
708 * alloc tx's.
709 *
710 */
711u16 sdma_get_descq_cnt(void)
712{
713 u16 count = sdma_descq_cnt;
714
715 if (!count)
716 return SDMA_DESCQ_CNT;
717 /* count must be a power of 2 greater than 64 and less than
718 * 32768. Otherwise return default.
719 */
720 if (!is_power_of_2(count))
721 return SDMA_DESCQ_CNT;
aeef010a 722 if (count < 64 || count > 32768)
77241056
MM
723 return SDMA_DESCQ_CNT;
724 return count;
725}
b91cc573 726
0cb2aa69
TS
727/**
728 * sdma_engine_get_vl() - return vl for a given sdma engine
729 * @sde: sdma engine
730 *
731 * This function returns the vl mapped to a given engine, or an error if
732 * the mapping can't be found. The mapping fields are protected by RCU.
733 */
734int sdma_engine_get_vl(struct sdma_engine *sde)
735{
736 struct hfi1_devdata *dd = sde->dd;
737 struct sdma_vl_map *m;
738 u8 vl;
739
740 if (sde->this_idx >= TXE_NUM_SDMA_ENGINES)
741 return -EINVAL;
742
743 rcu_read_lock();
744 m = rcu_dereference(dd->sdma_map);
745 if (unlikely(!m)) {
746 rcu_read_unlock();
747 return -EINVAL;
748 }
749 vl = m->engine_to_vl[sde->this_idx];
750 rcu_read_unlock();
751
752 return vl;
753}
754
77241056
MM
755/**
756 * sdma_select_engine_vl() - select sdma engine
757 * @dd: devdata
758 * @selector: a spreading factor
759 * @vl: this vl
760 *
761 *
762 * This function returns an engine based on the selector and a vl. The
763 * mapping fields are protected by RCU.
764 */
765struct sdma_engine *sdma_select_engine_vl(
766 struct hfi1_devdata *dd,
767 u32 selector,
768 u8 vl)
769{
770 struct sdma_vl_map *m;
771 struct sdma_map_elem *e;
772 struct sdma_engine *rval;
773
4be81991
IW
774 /* NOTE This should only happen if SC->VL changed after the initial
775 * checks on the QP/AH
776 * Default will return engine 0 below
777 */
778 if (vl >= num_vls) {
779 rval = NULL;
780 goto done;
781 }
77241056
MM
782
783 rcu_read_lock();
784 m = rcu_dereference(dd->sdma_map);
785 if (unlikely(!m)) {
786 rcu_read_unlock();
0a226edd 787 return &dd->per_sdma[0];
77241056
MM
788 }
789 e = m->map[vl & m->mask];
790 rval = e->sde[selector & e->mask];
791 rcu_read_unlock();
792
4be81991 793done:
0a226edd 794 rval = !rval ? &dd->per_sdma[0] : rval;
77241056
MM
795 trace_hfi1_sdma_engine_select(dd, selector, vl, rval->this_idx);
796 return rval;
797}
798
799/**
800 * sdma_select_engine_sc() - select sdma engine
801 * @dd: devdata
802 * @selector: a spreading factor
803 * @sc5: the 5 bit sc
804 *
805 *
806 * This function returns an engine based on the selector and an sc.
807 */
808struct sdma_engine *sdma_select_engine_sc(
809 struct hfi1_devdata *dd,
810 u32 selector,
811 u8 sc5)
812{
813 u8 vl = sc_to_vlt(dd, sc5);
814
815 return sdma_select_engine_vl(dd, selector, vl);
816}
817
0cb2aa69
TS
818struct sdma_rht_map_elem {
819 u32 mask;
820 u8 ctr;
821 struct sdma_engine *sde[0];
822};
823
824struct sdma_rht_node {
825 unsigned long cpu_id;
826 struct sdma_rht_map_elem *map[HFI1_MAX_VLS_SUPPORTED];
827 struct rhash_head node;
828};
829
830#define NR_CPUS_HINT 192
831
832static const struct rhashtable_params sdma_rht_params = {
833 .nelem_hint = NR_CPUS_HINT,
834 .head_offset = offsetof(struct sdma_rht_node, node),
835 .key_offset = offsetof(struct sdma_rht_node, cpu_id),
836 .key_len = FIELD_SIZEOF(struct sdma_rht_node, cpu_id),
837 .max_size = NR_CPUS,
838 .min_size = 8,
839 .automatic_shrinking = true,
840};
841
842/*
843 * sdma_select_user_engine() - select sdma engine based on user setup
844 * @dd: devdata
845 * @selector: a spreading factor
846 * @vl: this vl
847 *
848 * This function returns an sdma engine for a user sdma request.
849 * User defined sdma engine affinity setting is honored when applicable,
850 * otherwise system default sdma engine mapping is used. To ensure correct
851 * ordering, the mapping from <selector, vl> to sde must remain unchanged.
852 */
853struct sdma_engine *sdma_select_user_engine(struct hfi1_devdata *dd,
854 u32 selector, u8 vl)
855{
856 struct sdma_rht_node *rht_node;
857 struct sdma_engine *sde = NULL;
0c98d344 858 const struct cpumask *current_mask = &current->cpus_allowed;
0cb2aa69
TS
859 unsigned long cpu_id;
860
861 /*
862 * To ensure that always the same sdma engine(s) will be
863 * selected make sure the process is pinned to this CPU only.
864 */
865 if (cpumask_weight(current_mask) != 1)
866 goto out;
867
868 cpu_id = smp_processor_id();
869 rcu_read_lock();
5a52a7ac 870 rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu_id,
0cb2aa69
TS
871 sdma_rht_params);
872
873 if (rht_node && rht_node->map[vl]) {
874 struct sdma_rht_map_elem *map = rht_node->map[vl];
875
876 sde = map->sde[selector & map->mask];
877 }
878 rcu_read_unlock();
879
880 if (sde)
881 return sde;
882
883out:
884 return sdma_select_engine_vl(dd, selector, vl);
885}
886
887static void sdma_populate_sde_map(struct sdma_rht_map_elem *map)
888{
889 int i;
890
891 for (i = 0; i < roundup_pow_of_two(map->ctr ? : 1) - map->ctr; i++)
892 map->sde[map->ctr + i] = map->sde[i];
893}
894
895static void sdma_cleanup_sde_map(struct sdma_rht_map_elem *map,
896 struct sdma_engine *sde)
897{
898 unsigned int i, pow;
899
900 /* only need to check the first ctr entries for a match */
901 for (i = 0; i < map->ctr; i++) {
902 if (map->sde[i] == sde) {
903 memmove(&map->sde[i], &map->sde[i + 1],
904 (map->ctr - i - 1) * sizeof(map->sde[0]));
905 map->ctr--;
906 pow = roundup_pow_of_two(map->ctr ? : 1);
907 map->mask = pow - 1;
908 sdma_populate_sde_map(map);
909 break;
910 }
911 }
912}
913
914/*
915 * Prevents concurrent reads and writes of the sdma engine cpu_mask
916 */
917static DEFINE_MUTEX(process_to_sde_mutex);
918
919ssize_t sdma_set_cpu_to_sde_map(struct sdma_engine *sde, const char *buf,
920 size_t count)
921{
922 struct hfi1_devdata *dd = sde->dd;
923 cpumask_var_t mask, new_mask;
924 unsigned long cpu;
925 int ret, vl, sz;
f9458bc2 926 struct sdma_rht_node *rht_node;
0cb2aa69
TS
927
928 vl = sdma_engine_get_vl(sde);
f9458bc2 929 if (unlikely(vl < 0 || vl >= ARRAY_SIZE(rht_node->map)))
0cb2aa69
TS
930 return -EINVAL;
931
932 ret = zalloc_cpumask_var(&mask, GFP_KERNEL);
933 if (!ret)
934 return -ENOMEM;
935
936 ret = zalloc_cpumask_var(&new_mask, GFP_KERNEL);
937 if (!ret) {
938 free_cpumask_var(mask);
939 return -ENOMEM;
940 }
941 ret = cpulist_parse(buf, mask);
942 if (ret)
943 goto out_free;
944
945 if (!cpumask_subset(mask, cpu_online_mask)) {
946 dd_dev_warn(sde->dd, "Invalid CPU mask\n");
947 ret = -EINVAL;
948 goto out_free;
949 }
950
951 sz = sizeof(struct sdma_rht_map_elem) +
952 (TXE_NUM_SDMA_ENGINES * sizeof(struct sdma_engine *));
953
954 mutex_lock(&process_to_sde_mutex);
955
956 for_each_cpu(cpu, mask) {
0cb2aa69
TS
957 /* Check if we have this already mapped */
958 if (cpumask_test_cpu(cpu, &sde->cpu_mask)) {
959 cpumask_set_cpu(cpu, new_mask);
960 continue;
961 }
962
5a52a7ac 963 rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
0cb2aa69
TS
964 sdma_rht_params);
965 if (!rht_node) {
966 rht_node = kzalloc(sizeof(*rht_node), GFP_KERNEL);
967 if (!rht_node) {
968 ret = -ENOMEM;
969 goto out;
970 }
971
972 rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
973 if (!rht_node->map[vl]) {
974 kfree(rht_node);
975 ret = -ENOMEM;
976 goto out;
977 }
978 rht_node->cpu_id = cpu;
979 rht_node->map[vl]->mask = 0;
980 rht_node->map[vl]->ctr = 1;
981 rht_node->map[vl]->sde[0] = sde;
982
5a52a7ac 983 ret = rhashtable_insert_fast(dd->sdma_rht,
0cb2aa69
TS
984 &rht_node->node,
985 sdma_rht_params);
986 if (ret) {
987 kfree(rht_node->map[vl]);
988 kfree(rht_node);
989 dd_dev_err(sde->dd, "Failed to set process to sde affinity for cpu %lu\n",
990 cpu);
991 goto out;
992 }
993
994 } else {
995 int ctr, pow;
996
997 /* Add new user mappings */
998 if (!rht_node->map[vl])
999 rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
1000
1001 if (!rht_node->map[vl]) {
1002 ret = -ENOMEM;
1003 goto out;
1004 }
1005
1006 rht_node->map[vl]->ctr++;
1007 ctr = rht_node->map[vl]->ctr;
1008 rht_node->map[vl]->sde[ctr - 1] = sde;
1009 pow = roundup_pow_of_two(ctr);
1010 rht_node->map[vl]->mask = pow - 1;
1011
1012 /* Populate the sde map table */
1013 sdma_populate_sde_map(rht_node->map[vl]);
1014 }
1015 cpumask_set_cpu(cpu, new_mask);
1016 }
1017
1018 /* Clean up old mappings */
1019 for_each_cpu(cpu, cpu_online_mask) {
1020 struct sdma_rht_node *rht_node;
1021
1022 /* Don't cleanup sdes that are set in the new mask */
1023 if (cpumask_test_cpu(cpu, mask))
1024 continue;
1025
5a52a7ac 1026 rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
0cb2aa69
TS
1027 sdma_rht_params);
1028 if (rht_node) {
1029 bool empty = true;
1030 int i;
1031
1032 /* Remove mappings for old sde */
1033 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1034 if (rht_node->map[i])
1035 sdma_cleanup_sde_map(rht_node->map[i],
1036 sde);
1037
1038 /* Free empty hash table entries */
1039 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1040 if (!rht_node->map[i])
1041 continue;
1042
1043 if (rht_node->map[i]->ctr) {
1044 empty = false;
1045 break;
1046 }
1047 }
1048
1049 if (empty) {
5a52a7ac 1050 ret = rhashtable_remove_fast(dd->sdma_rht,
0cb2aa69
TS
1051 &rht_node->node,
1052 sdma_rht_params);
1053 WARN_ON(ret);
1054
1055 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1056 kfree(rht_node->map[i]);
1057
1058 kfree(rht_node);
1059 }
1060 }
1061 }
1062
1063 cpumask_copy(&sde->cpu_mask, new_mask);
1064out:
1065 mutex_unlock(&process_to_sde_mutex);
1066out_free:
1067 free_cpumask_var(mask);
1068 free_cpumask_var(new_mask);
1069 return ret ? : strnlen(buf, PAGE_SIZE);
1070}
1071
1072ssize_t sdma_get_cpu_to_sde_map(struct sdma_engine *sde, char *buf)
1073{
1074 mutex_lock(&process_to_sde_mutex);
1075 if (cpumask_empty(&sde->cpu_mask))
1076 snprintf(buf, PAGE_SIZE, "%s\n", "empty");
1077 else
1078 cpumap_print_to_pagebuf(true, buf, &sde->cpu_mask);
1079 mutex_unlock(&process_to_sde_mutex);
1080 return strnlen(buf, PAGE_SIZE);
1081}
1082
1083static void sdma_rht_free(void *ptr, void *arg)
1084{
1085 struct sdma_rht_node *rht_node = ptr;
1086 int i;
1087
1088 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1089 kfree(rht_node->map[i]);
1090
1091 kfree(rht_node);
1092}
1093
af3674d6
TS
1094/**
1095 * sdma_seqfile_dump_cpu_list() - debugfs dump the cpu to sdma mappings
1096 * @s: seq file
1097 * @dd: hfi1_devdata
1098 * @cpuid: cpu id
1099 *
1100 * This routine dumps the process to sde mappings per cpu
1101 */
1102void sdma_seqfile_dump_cpu_list(struct seq_file *s,
1103 struct hfi1_devdata *dd,
1104 unsigned long cpuid)
1105{
1106 struct sdma_rht_node *rht_node;
1107 int i, j;
1108
5a52a7ac 1109 rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpuid,
af3674d6
TS
1110 sdma_rht_params);
1111 if (!rht_node)
1112 return;
1113
1114 seq_printf(s, "cpu%3lu: ", cpuid);
1115 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1116 if (!rht_node->map[i] || !rht_node->map[i]->ctr)
1117 continue;
1118
1119 seq_printf(s, " vl%d: [", i);
1120
1121 for (j = 0; j < rht_node->map[i]->ctr; j++) {
1122 if (!rht_node->map[i]->sde[j])
1123 continue;
1124
1125 if (j > 0)
1126 seq_puts(s, ",");
1127
1128 seq_printf(s, " sdma%2d",
1129 rht_node->map[i]->sde[j]->this_idx);
1130 }
1131 seq_puts(s, " ]");
1132 }
1133
1134 seq_puts(s, "\n");
1135}
1136
77241056
MM
1137/*
1138 * Free the indicated map struct
1139 */
1140static void sdma_map_free(struct sdma_vl_map *m)
1141{
1142 int i;
1143
1144 for (i = 0; m && i < m->actual_vls; i++)
1145 kfree(m->map[i]);
1146 kfree(m);
1147}
1148
1149/*
1150 * Handle RCU callback
1151 */
1152static void sdma_map_rcu_callback(struct rcu_head *list)
1153{
1154 struct sdma_vl_map *m = container_of(list, struct sdma_vl_map, list);
1155
1156 sdma_map_free(m);
1157}
1158
1159/**
1160 * sdma_map_init - called when # vls change
1161 * @dd: hfi1_devdata
1162 * @port: port number
1163 * @num_vls: number of vls
1164 * @vl_engines: per vl engine mapping (optional)
1165 *
1166 * This routine changes the mapping based on the number of vls.
1167 *
1168 * vl_engines is used to specify a non-uniform vl/engine loading. NULL
1169 * implies auto computing the loading and giving each VLs a uniform
1170 * distribution of engines per VL.
1171 *
1172 * The auto algorithm computes the sde_per_vl and the number of extra
1173 * engines. Any extra engines are added from the last VL on down.
1174 *
1175 * rcu locking is used here to control access to the mapping fields.
1176 *
1177 * If either the num_vls or num_sdma are non-power of 2, the array sizes
1178 * in the struct sdma_vl_map and the struct sdma_map_elem are rounded
1179 * up to the next highest power of 2 and the first entry is reused
1180 * in a round robin fashion.
1181 *
1182 * If an error occurs the map change is not done and the mapping is
1183 * not changed.
1184 *
1185 */
1186int sdma_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_engines)
1187{
1188 int i, j;
1189 int extra, sde_per_vl;
1190 int engine = 0;
1191 u8 lvl_engines[OPA_MAX_VLS];
1192 struct sdma_vl_map *oldmap, *newmap;
1193
1194 if (!(dd->flags & HFI1_HAS_SEND_DMA))
1195 return 0;
1196
1197 if (!vl_engines) {
1198 /* truncate divide */
1199 sde_per_vl = dd->num_sdma / num_vls;
1200 /* extras */
1201 extra = dd->num_sdma % num_vls;
1202 vl_engines = lvl_engines;
1203 /* add extras from last vl down */
1204 for (i = num_vls - 1; i >= 0; i--, extra--)
1205 vl_engines[i] = sde_per_vl + (extra > 0 ? 1 : 0);
1206 }
1207 /* build new map */
1208 newmap = kzalloc(
1209 sizeof(struct sdma_vl_map) +
1210 roundup_pow_of_two(num_vls) *
1211 sizeof(struct sdma_map_elem *),
1212 GFP_KERNEL);
1213 if (!newmap)
1214 goto bail;
1215 newmap->actual_vls = num_vls;
1216 newmap->vls = roundup_pow_of_two(num_vls);
1217 newmap->mask = (1 << ilog2(newmap->vls)) - 1;
69a00b8e
MM
1218 /* initialize back-map */
1219 for (i = 0; i < TXE_NUM_SDMA_ENGINES; i++)
1220 newmap->engine_to_vl[i] = -1;
77241056
MM
1221 for (i = 0; i < newmap->vls; i++) {
1222 /* save for wrap around */
1223 int first_engine = engine;
1224
1225 if (i < newmap->actual_vls) {
1226 int sz = roundup_pow_of_two(vl_engines[i]);
1227
1228 /* only allocate once */
1229 newmap->map[i] = kzalloc(
1230 sizeof(struct sdma_map_elem) +
1231 sz * sizeof(struct sdma_engine *),
1232 GFP_KERNEL);
1233 if (!newmap->map[i])
1234 goto bail;
1235 newmap->map[i]->mask = (1 << ilog2(sz)) - 1;
1236 /* assign engines */
1237 for (j = 0; j < sz; j++) {
1238 newmap->map[i]->sde[j] =
1239 &dd->per_sdma[engine];
1240 if (++engine >= first_engine + vl_engines[i])
1241 /* wrap back to first engine */
1242 engine = first_engine;
1243 }
69a00b8e
MM
1244 /* assign back-map */
1245 for (j = 0; j < vl_engines[i]; j++)
1246 newmap->engine_to_vl[first_engine + j] = i;
77241056
MM
1247 } else {
1248 /* just re-use entry without allocating */
1249 newmap->map[i] = newmap->map[i % num_vls];
1250 }
1251 engine = first_engine + vl_engines[i];
1252 }
1253 /* newmap in hand, save old map */
1254 spin_lock_irq(&dd->sde_map_lock);
1255 oldmap = rcu_dereference_protected(dd->sdma_map,
17fb4f29 1256 lockdep_is_held(&dd->sde_map_lock));
77241056
MM
1257
1258 /* publish newmap */
1259 rcu_assign_pointer(dd->sdma_map, newmap);
1260
1261 spin_unlock_irq(&dd->sde_map_lock);
1262 /* success, free any old map after grace period */
1263 if (oldmap)
1264 call_rcu(&oldmap->list, sdma_map_rcu_callback);
1265 return 0;
1266bail:
1267 /* free any partial allocation */
1268 sdma_map_free(newmap);
1269 return -ENOMEM;
1270}
1271
473291b3
AE
1272/**
1273 * sdma_clean() Clean up allocated memory
1274 * @dd: struct hfi1_devdata
1275 * @num_engines: num sdma engines
77241056 1276 *
473291b3
AE
1277 * This routine can be called regardless of the success of
1278 * sdma_init()
77241056 1279 */
473291b3 1280void sdma_clean(struct hfi1_devdata *dd, size_t num_engines)
77241056
MM
1281{
1282 size_t i;
1283 struct sdma_engine *sde;
1284
1285 if (dd->sdma_pad_dma) {
1286 dma_free_coherent(&dd->pcidev->dev, 4,
1287 (void *)dd->sdma_pad_dma,
1288 dd->sdma_pad_phys);
1289 dd->sdma_pad_dma = NULL;
1290 dd->sdma_pad_phys = 0;
1291 }
1292 if (dd->sdma_heads_dma) {
1293 dma_free_coherent(&dd->pcidev->dev, dd->sdma_heads_size,
1294 (void *)dd->sdma_heads_dma,
1295 dd->sdma_heads_phys);
1296 dd->sdma_heads_dma = NULL;
1297 dd->sdma_heads_phys = 0;
1298 }
1299 for (i = 0; dd->per_sdma && i < num_engines; ++i) {
1300 sde = &dd->per_sdma[i];
1301
1302 sde->head_dma = NULL;
1303 sde->head_phys = 0;
1304
1305 if (sde->descq) {
1306 dma_free_coherent(
1307 &dd->pcidev->dev,
1308 sde->descq_cnt * sizeof(u64[2]),
1309 sde->descq,
1310 sde->descq_phys
1311 );
1312 sde->descq = NULL;
1313 sde->descq_phys = 0;
1314 }
60f57ec2 1315 kvfree(sde->tx_ring);
77241056
MM
1316 sde->tx_ring = NULL;
1317 }
1318 spin_lock_irq(&dd->sde_map_lock);
79d0c088 1319 sdma_map_free(rcu_access_pointer(dd->sdma_map));
77241056
MM
1320 RCU_INIT_POINTER(dd->sdma_map, NULL);
1321 spin_unlock_irq(&dd->sde_map_lock);
1322 synchronize_rcu();
1323 kfree(dd->per_sdma);
1324 dd->per_sdma = NULL;
5a52a7ac
SS
1325
1326 if (dd->sdma_rht) {
1327 rhashtable_free_and_destroy(dd->sdma_rht, sdma_rht_free, NULL);
1328 kfree(dd->sdma_rht);
1329 dd->sdma_rht = NULL;
1330 }
77241056
MM
1331}
1332
1333/**
1334 * sdma_init() - called when device probed
1335 * @dd: hfi1_devdata
1336 * @port: port number (currently only zero)
1337 *
90dba23e
IW
1338 * Initializes each sde and its csrs.
1339 * Interrupts are not required to be enabled.
77241056
MM
1340 *
1341 * Returns:
1342 * 0 - success, -errno on failure
1343 */
1344int sdma_init(struct hfi1_devdata *dd, u8 port)
1345{
1346 unsigned this_idx;
1347 struct sdma_engine *sde;
5a52a7ac 1348 struct rhashtable *tmp_sdma_rht;
77241056
MM
1349 u16 descq_cnt;
1350 void *curr_head;
1351 struct hfi1_pportdata *ppd = dd->pport + port;
1352 u32 per_sdma_credits;
1353 uint idle_cnt = sdma_idle_cnt;
06e81e3e 1354 size_t num_engines = chip_sdma_engines(dd);
5a52a7ac 1355 int ret = -ENOMEM;
77241056
MM
1356
1357 if (!HFI1_CAP_IS_KSET(SDMA)) {
1358 HFI1_CAP_CLEAR(SDMA_AHG);
1359 return 0;
1360 }
1361 if (mod_num_sdma &&
17fb4f29 1362 /* can't exceed chip support */
06e81e3e 1363 mod_num_sdma <= chip_sdma_engines(dd) &&
17fb4f29
JJ
1364 /* count must be >= vls */
1365 mod_num_sdma >= num_vls)
77241056
MM
1366 num_engines = mod_num_sdma;
1367
1368 dd_dev_info(dd, "SDMA mod_num_sdma: %u\n", mod_num_sdma);
06e81e3e 1369 dd_dev_info(dd, "SDMA chip_sdma_engines: %u\n", chip_sdma_engines(dd));
77241056 1370 dd_dev_info(dd, "SDMA chip_sdma_mem_size: %u\n",
06e81e3e 1371 chip_sdma_mem_size(dd));
77241056
MM
1372
1373 per_sdma_credits =
06e81e3e 1374 chip_sdma_mem_size(dd) / (num_engines * SDMA_BLOCK_SIZE);
77241056
MM
1375
1376 /* set up freeze waitqueue */
1377 init_waitqueue_head(&dd->sdma_unfreeze_wq);
1378 atomic_set(&dd->sdma_unfreeze_count, 0);
1379
1380 descq_cnt = sdma_get_descq_cnt();
1381 dd_dev_info(dd, "SDMA engines %zu descq_cnt %u\n",
17fb4f29 1382 num_engines, descq_cnt);
77241056
MM
1383
1384 /* alloc memory for array of send engines */
953a9ceb
KA
1385 dd->per_sdma = kcalloc_node(num_engines, sizeof(*dd->per_sdma),
1386 GFP_KERNEL, dd->node);
77241056 1387 if (!dd->per_sdma)
5a52a7ac 1388 return ret;
77241056
MM
1389
1390 idle_cnt = ns_to_cclock(dd, idle_cnt);
aadd7020
IW
1391 if (idle_cnt)
1392 dd->default_desc1 =
1393 SDMA_DESC1_HEAD_TO_HOST_FLAG;
1394 else
1395 dd->default_desc1 =
1396 SDMA_DESC1_INT_REQ_FLAG;
1397
ee947859
MH
1398 if (!sdma_desct_intr)
1399 sdma_desct_intr = SDMA_DESC_INTR;
1400
77241056
MM
1401 /* Allocate memory for SendDMA descriptor FIFOs */
1402 for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1403 sde = &dd->per_sdma[this_idx];
1404 sde->dd = dd;
1405 sde->ppd = ppd;
1406 sde->this_idx = this_idx;
1407 sde->descq_cnt = descq_cnt;
1408 sde->desc_avail = sdma_descq_freecnt(sde);
1409 sde->sdma_shift = ilog2(descq_cnt);
1410 sde->sdma_mask = (1 << sde->sdma_shift) - 1;
a699c6c2
VM
1411
1412 /* Create a mask specifically for each interrupt source */
1413 sde->int_mask = (u64)1 << (0 * TXE_NUM_SDMA_ENGINES +
1414 this_idx);
1415 sde->progress_mask = (u64)1 << (1 * TXE_NUM_SDMA_ENGINES +
1416 this_idx);
1417 sde->idle_mask = (u64)1 << (2 * TXE_NUM_SDMA_ENGINES +
1418 this_idx);
1419 /* Create a combined mask to cover all 3 interrupt sources */
1420 sde->imask = sde->int_mask | sde->progress_mask |
1421 sde->idle_mask;
1422
77241056
MM
1423 spin_lock_init(&sde->tail_lock);
1424 seqlock_init(&sde->head_lock);
1425 spin_lock_init(&sde->senddmactrl_lock);
1426 spin_lock_init(&sde->flushlist_lock);
9aefcabe 1427 seqlock_init(&sde->waitlock);
77241056
MM
1428 /* insure there is always a zero bit */
1429 sde->ahg_bits = 0xfffffffe00000000ULL;
1430
1431 sdma_set_state(sde, sdma_state_s00_hw_down);
1432
1433 /* set up reference counting */
1434 kref_init(&sde->state.kref);
1435 init_completion(&sde->state.comp);
1436
1437 INIT_LIST_HEAD(&sde->flushlist);
1438 INIT_LIST_HEAD(&sde->dmawait);
1439
1440 sde->tail_csr =
1441 get_kctxt_csr_addr(dd, this_idx, SD(TAIL));
1442
77241056 1443 tasklet_init(&sde->sdma_hw_clean_up_task, sdma_hw_clean_up_task,
17fb4f29 1444 (unsigned long)sde);
77241056
MM
1445
1446 tasklet_init(&sde->sdma_sw_clean_up_task, sdma_sw_clean_up_task,
17fb4f29 1447 (unsigned long)sde);
77241056
MM
1448 INIT_WORK(&sde->err_halt_worker, sdma_err_halt_wait);
1449 INIT_WORK(&sde->flush_worker, sdma_field_flush);
1450
1451 sde->progress_check_head = 0;
1452
8064135e
KC
1453 timer_setup(&sde->err_progress_check_timer,
1454 sdma_err_progress_check, 0);
77241056 1455
750afb08
LC
1456 sde->descq = dma_alloc_coherent(&dd->pcidev->dev,
1457 descq_cnt * sizeof(u64[2]),
1458 &sde->descq_phys, GFP_KERNEL);
77241056
MM
1459 if (!sde->descq)
1460 goto bail;
1461 sde->tx_ring =
84ca176b
KC
1462 kvzalloc_node(array_size(descq_cnt,
1463 sizeof(struct sdma_txreq *)),
31acd18b 1464 GFP_KERNEL, dd->node);
77241056
MM
1465 if (!sde->tx_ring)
1466 goto bail;
1467 }
1468
1469 dd->sdma_heads_size = L1_CACHE_BYTES * num_engines;
1470 /* Allocate memory for DMA of head registers to memory */
750afb08
LC
1471 dd->sdma_heads_dma = dma_alloc_coherent(&dd->pcidev->dev,
1472 dd->sdma_heads_size,
1473 &dd->sdma_heads_phys,
1474 GFP_KERNEL);
77241056
MM
1475 if (!dd->sdma_heads_dma) {
1476 dd_dev_err(dd, "failed to allocate SendDMA head memory\n");
1477 goto bail;
1478 }
1479
1480 /* Allocate memory for pad */
750afb08
LC
1481 dd->sdma_pad_dma = dma_alloc_coherent(&dd->pcidev->dev, sizeof(u32),
1482 &dd->sdma_pad_phys, GFP_KERNEL);
77241056
MM
1483 if (!dd->sdma_pad_dma) {
1484 dd_dev_err(dd, "failed to allocate SendDMA pad memory\n");
1485 goto bail;
1486 }
1487
1488 /* assign each engine to different cacheline and init registers */
1489 curr_head = (void *)dd->sdma_heads_dma;
1490 for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1491 unsigned long phys_offset;
1492
1493 sde = &dd->per_sdma[this_idx];
1494
1495 sde->head_dma = curr_head;
1496 curr_head += L1_CACHE_BYTES;
1497 phys_offset = (unsigned long)sde->head_dma -
1498 (unsigned long)dd->sdma_heads_dma;
1499 sde->head_phys = dd->sdma_heads_phys + phys_offset;
1500 init_sdma_regs(sde, per_sdma_credits, idle_cnt);
1501 }
1502 dd->flags |= HFI1_HAS_SEND_DMA;
1503 dd->flags |= idle_cnt ? HFI1_HAS_SDMA_TIMEOUT : 0;
1504 dd->num_sdma = num_engines;
5a52a7ac
SS
1505 ret = sdma_map_init(dd, port, ppd->vls_operational, NULL);
1506 if (ret < 0)
77241056 1507 goto bail;
0cb2aa69 1508
5a52a7ac
SS
1509 tmp_sdma_rht = kzalloc(sizeof(*tmp_sdma_rht), GFP_KERNEL);
1510 if (!tmp_sdma_rht) {
1511 ret = -ENOMEM;
0cb2aa69 1512 goto bail;
5a52a7ac
SS
1513 }
1514
1515 ret = rhashtable_init(tmp_sdma_rht, &sdma_rht_params);
1516 if (ret < 0)
1517 goto bail;
1518 dd->sdma_rht = tmp_sdma_rht;
0cb2aa69 1519
77241056
MM
1520 dd_dev_info(dd, "SDMA num_sdma: %u\n", dd->num_sdma);
1521 return 0;
1522
1523bail:
1524 sdma_clean(dd, num_engines);
5a52a7ac 1525 return ret;
77241056
MM
1526}
1527
1528/**
1529 * sdma_all_running() - called when the link goes up
1530 * @dd: hfi1_devdata
1531 *
1532 * This routine moves all engines to the running state.
1533 */
1534void sdma_all_running(struct hfi1_devdata *dd)
1535{
1536 struct sdma_engine *sde;
1537 unsigned int i;
1538
1539 /* move all engines to running */
1540 for (i = 0; i < dd->num_sdma; ++i) {
1541 sde = &dd->per_sdma[i];
1542 sdma_process_event(sde, sdma_event_e30_go_running);
1543 }
1544}
1545
1546/**
1547 * sdma_all_idle() - called when the link goes down
1548 * @dd: hfi1_devdata
1549 *
1550 * This routine moves all engines to the idle state.
1551 */
1552void sdma_all_idle(struct hfi1_devdata *dd)
1553{
1554 struct sdma_engine *sde;
1555 unsigned int i;
1556
1557 /* idle all engines */
1558 for (i = 0; i < dd->num_sdma; ++i) {
1559 sde = &dd->per_sdma[i];
1560 sdma_process_event(sde, sdma_event_e70_go_idle);
1561 }
1562}
1563
1564/**
1565 * sdma_start() - called to kick off state processing for all engines
1566 * @dd: hfi1_devdata
1567 *
1568 * This routine is for kicking off the state processing for all required
1569 * sdma engines. Interrupts need to be working at this point.
1570 *
1571 */
1572void sdma_start(struct hfi1_devdata *dd)
1573{
1574 unsigned i;
1575 struct sdma_engine *sde;
1576
1577 /* kick off the engines state processing */
1578 for (i = 0; i < dd->num_sdma; ++i) {
1579 sde = &dd->per_sdma[i];
1580 sdma_process_event(sde, sdma_event_e10_go_hw_start);
1581 }
1582}
1583
1584/**
1585 * sdma_exit() - used when module is removed
1586 * @dd: hfi1_devdata
1587 */
1588void sdma_exit(struct hfi1_devdata *dd)
1589{
1590 unsigned this_idx;
1591 struct sdma_engine *sde;
1592
1593 for (this_idx = 0; dd->per_sdma && this_idx < dd->num_sdma;
1594 ++this_idx) {
77241056
MM
1595 sde = &dd->per_sdma[this_idx];
1596 if (!list_empty(&sde->dmawait))
1597 dd_dev_err(dd, "sde %u: dmawait list not empty!\n",
17fb4f29 1598 sde->this_idx);
77241056
MM
1599 sdma_process_event(sde, sdma_event_e00_go_hw_down);
1600
1601 del_timer_sync(&sde->err_progress_check_timer);
1602
1603 /*
1604 * This waits for the state machine to exit so it is not
1605 * necessary to kill the sdma_sw_clean_up_task to make sure
1606 * it is not running.
1607 */
1608 sdma_finalput(&sde->state);
1609 }
77241056
MM
1610}
1611
1612/*
1613 * unmap the indicated descriptor
1614 */
1615static inline void sdma_unmap_desc(
1616 struct hfi1_devdata *dd,
1617 struct sdma_desc *descp)
1618{
1619 switch (sdma_mapping_type(descp)) {
1620 case SDMA_MAP_SINGLE:
1621 dma_unmap_single(
1622 &dd->pcidev->dev,
1623 sdma_mapping_addr(descp),
1624 sdma_mapping_len(descp),
1625 DMA_TO_DEVICE);
1626 break;
1627 case SDMA_MAP_PAGE:
1628 dma_unmap_page(
1629 &dd->pcidev->dev,
1630 sdma_mapping_addr(descp),
1631 sdma_mapping_len(descp),
1632 DMA_TO_DEVICE);
1633 break;
1634 }
1635}
1636
1637/*
1638 * return the mode as indicated by the first
1639 * descriptor in the tx.
1640 */
1641static inline u8 ahg_mode(struct sdma_txreq *tx)
1642{
1643 return (tx->descp[0].qw[1] & SDMA_DESC1_HEADER_MODE_SMASK)
1644 >> SDMA_DESC1_HEADER_MODE_SHIFT;
1645}
1646
1647/**
63df8e09 1648 * __sdma_txclean() - clean tx of mappings, descp *kmalloc's
77241056
MM
1649 * @dd: hfi1_devdata for unmapping
1650 * @tx: tx request to clean
1651 *
1652 * This is used in the progress routine to clean the tx or
1653 * by the ULP to toss an in-process tx build.
1654 *
1655 * The code can be called multiple times without issue.
1656 *
1657 */
63df8e09 1658void __sdma_txclean(
77241056
MM
1659 struct hfi1_devdata *dd,
1660 struct sdma_txreq *tx)
1661{
1662 u16 i;
1663
1664 if (tx->num_desc) {
1665 u8 skip = 0, mode = ahg_mode(tx);
1666
1667 /* unmap first */
1668 sdma_unmap_desc(dd, &tx->descp[0]);
1669 /* determine number of AHG descriptors to skip */
1670 if (mode > SDMA_AHG_APPLY_UPDATE1)
1671 skip = mode >> 1;
1672 for (i = 1 + skip; i < tx->num_desc; i++)
1673 sdma_unmap_desc(dd, &tx->descp[i]);
1674 tx->num_desc = 0;
1675 }
1676 kfree(tx->coalesce_buf);
1677 tx->coalesce_buf = NULL;
1678 /* kmalloc'ed descp */
1679 if (unlikely(tx->desc_limit > ARRAY_SIZE(tx->descs))) {
1680 tx->desc_limit = ARRAY_SIZE(tx->descs);
1681 kfree(tx->descp);
1682 }
1683}
1684
1685static inline u16 sdma_gethead(struct sdma_engine *sde)
1686{
1687 struct hfi1_devdata *dd = sde->dd;
1688 int use_dmahead;
1689 u16 hwhead;
1690
1691#ifdef CONFIG_SDMA_VERBOSITY
1692 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1693 sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1694#endif
1695
1696retry:
1697 use_dmahead = HFI1_CAP_IS_KSET(USE_SDMA_HEAD) && __sdma_running(sde) &&
1698 (dd->flags & HFI1_HAS_SDMA_TIMEOUT);
1699 hwhead = use_dmahead ?
50e5dcbe
JJ
1700 (u16)le64_to_cpu(*sde->head_dma) :
1701 (u16)read_sde_csr(sde, SD(HEAD));
77241056
MM
1702
1703 if (unlikely(HFI1_CAP_IS_KSET(SDMA_HEAD_CHECK))) {
1704 u16 cnt;
1705 u16 swtail;
1706 u16 swhead;
1707 int sane;
1708
1709 swhead = sde->descq_head & sde->sdma_mask;
1710 /* this code is really bad for cache line trading */
6aa7de05 1711 swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
77241056
MM
1712 cnt = sde->descq_cnt;
1713
1714 if (swhead < swtail)
1715 /* not wrapped */
1716 sane = (hwhead >= swhead) & (hwhead <= swtail);
1717 else if (swhead > swtail)
1718 /* wrapped around */
1719 sane = ((hwhead >= swhead) && (hwhead < cnt)) ||
1720 (hwhead <= swtail);
1721 else
1722 /* empty */
1723 sane = (hwhead == swhead);
1724
1725 if (unlikely(!sane)) {
1726 dd_dev_err(dd, "SDMA(%u) bad head (%s) hwhd=%hu swhd=%hu swtl=%hu cnt=%hu\n",
17fb4f29
JJ
1727 sde->this_idx,
1728 use_dmahead ? "dma" : "kreg",
1729 hwhead, swhead, swtail, cnt);
77241056
MM
1730 if (use_dmahead) {
1731 /* try one more time, using csr */
1732 use_dmahead = 0;
1733 goto retry;
1734 }
1735 /* proceed as if no progress */
1736 hwhead = swhead;
1737 }
1738 }
1739 return hwhead;
1740}
1741
1742/*
1743 * This is called when there are send DMA descriptors that might be
1744 * available.
1745 *
1746 * This is called with head_lock held.
1747 */
bcad2913 1748static void sdma_desc_avail(struct sdma_engine *sde, uint avail)
77241056 1749{
34025fb0 1750 struct iowait *wait, *nw, *twait;
77241056 1751 struct iowait *waits[SDMA_WAIT_BATCH_SIZE];
34025fb0 1752 uint i, n = 0, seq, tidx = 0;
77241056
MM
1753
1754#ifdef CONFIG_SDMA_VERBOSITY
1755 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
1756 slashstrip(__FILE__), __LINE__, __func__);
1757 dd_dev_err(sde->dd, "avail: %u\n", avail);
1758#endif
1759
1760 do {
9aefcabe 1761 seq = read_seqbegin(&sde->waitlock);
77241056
MM
1762 if (!list_empty(&sde->dmawait)) {
1763 /* at least one item */
9aefcabe 1764 write_seqlock(&sde->waitlock);
77241056
MM
1765 /* Harvest waiters wanting DMA descriptors */
1766 list_for_each_entry_safe(
1767 wait,
1768 nw,
1769 &sde->dmawait,
1770 list) {
5da0fc9d 1771 u32 num_desc;
77241056
MM
1772
1773 if (!wait->wakeup)
1774 continue;
1775 if (n == ARRAY_SIZE(waits))
1776 break;
34025fb0 1777 iowait_init_priority(wait);
5da0fc9d 1778 num_desc = iowait_get_all_desc(wait);
77241056
MM
1779 if (num_desc > avail)
1780 break;
1781 avail -= num_desc;
34025fb0
KW
1782 /* Find the top-priority wait memeber */
1783 if (n) {
1784 twait = waits[tidx];
1785 tidx =
1786 iowait_priority_update_top(wait,
1787 twait,
1788 n,
1789 tidx);
1790 }
77241056
MM
1791 list_del_init(&wait->list);
1792 waits[n++] = wait;
1793 }
9aefcabe 1794 write_sequnlock(&sde->waitlock);
77241056
MM
1795 break;
1796 }
9aefcabe 1797 } while (read_seqretry(&sde->waitlock, seq));
77241056 1798
34025fb0 1799 /* Schedule the top-priority entry first */
bcad2913 1800 if (n)
34025fb0 1801 waits[tidx]->wakeup(waits[tidx], SDMA_AVAIL_REASON);
bcad2913 1802
77241056 1803 for (i = 0; i < n; i++)
34025fb0 1804 if (i != tidx)
bcad2913 1805 waits[i]->wakeup(waits[i], SDMA_AVAIL_REASON);
77241056
MM
1806}
1807
1808/* head_lock must be held */
1809static void sdma_make_progress(struct sdma_engine *sde, u64 status)
1810{
1811 struct sdma_txreq *txp = NULL;
1812 int progress = 0;
a545f530 1813 u16 hwhead, swhead;
77241056
MM
1814 int idle_check_done = 0;
1815
1816 hwhead = sdma_gethead(sde);
1817
1818 /* The reason for some of the complexity of this code is that
1819 * not all descriptors have corresponding txps. So, we have to
1820 * be able to skip over descs until we wander into the range of
1821 * the next txp on the list.
1822 */
1823
1824retry:
1825 txp = get_txhead(sde);
1826 swhead = sde->descq_head & sde->sdma_mask;
1827 trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1828 while (swhead != hwhead) {
1829 /* advance head, wrap if needed */
1830 swhead = ++sde->descq_head & sde->sdma_mask;
1831
1832 /* if now past this txp's descs, do the callback */
1833 if (txp && txp->next_descq_idx == swhead) {
77241056
MM
1834 /* remove from list */
1835 sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
a545f530 1836 complete_tx(sde, txp, SDMA_TXREQ_S_OK);
77241056
MM
1837 /* see if there is another txp */
1838 txp = get_txhead(sde);
1839 }
1840 trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1841 progress++;
1842 }
1843
1844 /*
1845 * The SDMA idle interrupt is not guaranteed to be ordered with respect
1846 * to updates to the the dma_head location in host memory. The head
1847 * value read might not be fully up to date. If there are pending
1848 * descriptors and the SDMA idle interrupt fired then read from the
1849 * CSR SDMA head instead to get the latest value from the hardware.
1850 * The hardware SDMA head should be read at most once in this invocation
1851 * of sdma_make_progress(..) which is ensured by idle_check_done flag
1852 */
1853 if ((status & sde->idle_mask) && !idle_check_done) {
a545f530
MM
1854 u16 swtail;
1855
6aa7de05 1856 swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
77241056
MM
1857 if (swtail != hwhead) {
1858 hwhead = (u16)read_sde_csr(sde, SD(HEAD));
1859 idle_check_done = 1;
1860 goto retry;
1861 }
1862 }
1863
1864 sde->last_status = status;
1865 if (progress)
1866 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
1867}
1868
1869/*
1870 * sdma_engine_interrupt() - interrupt handler for engine
1871 * @sde: sdma engine
1872 * @status: sdma interrupt reason
1873 *
1874 * Status is a mask of the 3 possible interrupts for this engine. It will
1875 * contain bits _only_ for this SDMA engine. It will contain at least one
1876 * bit, it may contain more.
1877 */
1878void sdma_engine_interrupt(struct sdma_engine *sde, u64 status)
1879{
1880 trace_hfi1_sdma_engine_interrupt(sde, status);
1881 write_seqlock(&sde->head_lock);
ee947859 1882 sdma_set_desc_cnt(sde, sdma_desct_intr);
a699c6c2
VM
1883 if (status & sde->idle_mask)
1884 sde->idle_int_cnt++;
1885 else if (status & sde->progress_mask)
1886 sde->progress_int_cnt++;
1887 else if (status & sde->int_mask)
1888 sde->sdma_int_cnt++;
77241056
MM
1889 sdma_make_progress(sde, status);
1890 write_sequnlock(&sde->head_lock);
1891}
1892
1893/**
1894 * sdma_engine_error() - error handler for engine
1895 * @sde: sdma engine
1896 * @status: sdma interrupt reason
1897 */
1898void sdma_engine_error(struct sdma_engine *sde, u64 status)
1899{
1900 unsigned long flags;
1901
1902#ifdef CONFIG_SDMA_VERBOSITY
1903 dd_dev_err(sde->dd, "CONFIG SDMA(%u) error status 0x%llx state %s\n",
1904 sde->this_idx,
1905 (unsigned long long)status,
1906 sdma_state_names[sde->state.current_state]);
1907#endif
1908 spin_lock_irqsave(&sde->tail_lock, flags);
1909 write_seqlock(&sde->head_lock);
1910 if (status & ALL_SDMA_ENG_HALT_ERRS)
1911 __sdma_process_event(sde, sdma_event_e60_hw_halted);
1912 if (status & ~SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK)) {
1913 dd_dev_err(sde->dd,
17fb4f29
JJ
1914 "SDMA (%u) engine error: 0x%llx state %s\n",
1915 sde->this_idx,
1916 (unsigned long long)status,
1917 sdma_state_names[sde->state.current_state]);
77241056
MM
1918 dump_sdma_state(sde);
1919 }
1920 write_sequnlock(&sde->head_lock);
1921 spin_unlock_irqrestore(&sde->tail_lock, flags);
1922}
1923
1924static void sdma_sendctrl(struct sdma_engine *sde, unsigned op)
1925{
1926 u64 set_senddmactrl = 0;
1927 u64 clr_senddmactrl = 0;
1928 unsigned long flags;
1929
1930#ifdef CONFIG_SDMA_VERBOSITY
1931 dd_dev_err(sde->dd, "CONFIG SDMA(%u) senddmactrl E=%d I=%d H=%d C=%d\n",
1932 sde->this_idx,
1933 (op & SDMA_SENDCTRL_OP_ENABLE) ? 1 : 0,
1934 (op & SDMA_SENDCTRL_OP_INTENABLE) ? 1 : 0,
1935 (op & SDMA_SENDCTRL_OP_HALT) ? 1 : 0,
1936 (op & SDMA_SENDCTRL_OP_CLEANUP) ? 1 : 0);
1937#endif
1938
1939 if (op & SDMA_SENDCTRL_OP_ENABLE)
1940 set_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1941 else
1942 clr_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1943
1944 if (op & SDMA_SENDCTRL_OP_INTENABLE)
1945 set_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1946 else
1947 clr_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1948
1949 if (op & SDMA_SENDCTRL_OP_HALT)
1950 set_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1951 else
1952 clr_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1953
1954 spin_lock_irqsave(&sde->senddmactrl_lock, flags);
1955
1956 sde->p_senddmactrl |= set_senddmactrl;
1957 sde->p_senddmactrl &= ~clr_senddmactrl;
1958
1959 if (op & SDMA_SENDCTRL_OP_CLEANUP)
1960 write_sde_csr(sde, SD(CTRL),
17fb4f29
JJ
1961 sde->p_senddmactrl |
1962 SD(CTRL_SDMA_CLEANUP_SMASK));
77241056
MM
1963 else
1964 write_sde_csr(sde, SD(CTRL), sde->p_senddmactrl);
1965
1966 spin_unlock_irqrestore(&sde->senddmactrl_lock, flags);
1967
1968#ifdef CONFIG_SDMA_VERBOSITY
1969 sdma_dumpstate(sde);
1970#endif
1971}
1972
1973static void sdma_setlengen(struct sdma_engine *sde)
1974{
1975#ifdef CONFIG_SDMA_VERBOSITY
1976 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1977 sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1978#endif
1979
1980 /*
1981 * Set SendDmaLenGen and clear-then-set the MSB of the generation
1982 * count to enable generation checking and load the internal
1983 * generation counter.
1984 */
1985 write_sde_csr(sde, SD(LEN_GEN),
17fb4f29 1986 (sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT));
77241056 1987 write_sde_csr(sde, SD(LEN_GEN),
17fb4f29
JJ
1988 ((sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT)) |
1989 (4ULL << SD(LEN_GEN_GENERATION_SHIFT)));
77241056
MM
1990}
1991
1992static inline void sdma_update_tail(struct sdma_engine *sde, u16 tail)
1993{
1994 /* Commit writes to memory and advance the tail on the chip */
1995 smp_wmb(); /* see get_txhead() */
1996 writeq(tail, sde->tail_csr);
1997}
1998
1999/*
2000 * This is called when changing to state s10_hw_start_up_halt_wait as
2001 * a result of send buffer errors or send DMA descriptor errors.
2002 */
2003static void sdma_hw_start_up(struct sdma_engine *sde)
2004{
2005 u64 reg;
2006
2007#ifdef CONFIG_SDMA_VERBOSITY
2008 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
2009 sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
2010#endif
2011
2012 sdma_setlengen(sde);
2013 sdma_update_tail(sde, 0); /* Set SendDmaTail */
2014 *sde->head_dma = 0;
2015
2016 reg = SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_MASK) <<
2017 SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SHIFT);
2018 write_sde_csr(sde, SD(ENG_ERR_CLEAR), reg);
2019}
2020
77241056
MM
2021/*
2022 * set_sdma_integrity
2023 *
2024 * Set the SEND_DMA_CHECK_ENABLE register for send DMA engine 'sde'.
2025 */
2026static void set_sdma_integrity(struct sdma_engine *sde)
2027{
2028 struct hfi1_devdata *dd = sde->dd;
77241056 2029
d9ac4555
JP
2030 write_sde_csr(sde, SD(CHECK_ENABLE),
2031 hfi1_pkt_base_sdma_integrity(dd));
77241056
MM
2032}
2033
77241056
MM
2034static void init_sdma_regs(
2035 struct sdma_engine *sde,
2036 u32 credits,
2037 uint idle_cnt)
2038{
2039 u8 opval, opmask;
2040#ifdef CONFIG_SDMA_VERBOSITY
2041 struct hfi1_devdata *dd = sde->dd;
2042
2043 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n",
2044 sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
2045#endif
2046
2047 write_sde_csr(sde, SD(BASE_ADDR), sde->descq_phys);
2048 sdma_setlengen(sde);
2049 sdma_update_tail(sde, 0); /* Set SendDmaTail */
2050 write_sde_csr(sde, SD(RELOAD_CNT), idle_cnt);
2051 write_sde_csr(sde, SD(DESC_CNT), 0);
2052 write_sde_csr(sde, SD(HEAD_ADDR), sde->head_phys);
2053 write_sde_csr(sde, SD(MEMORY),
17fb4f29
JJ
2054 ((u64)credits << SD(MEMORY_SDMA_MEMORY_CNT_SHIFT)) |
2055 ((u64)(credits * sde->this_idx) <<
2056 SD(MEMORY_SDMA_MEMORY_INDEX_SHIFT)));
77241056
MM
2057 write_sde_csr(sde, SD(ENG_ERR_MASK), ~0ull);
2058 set_sdma_integrity(sde);
2059 opmask = OPCODE_CHECK_MASK_DISABLED;
2060 opval = OPCODE_CHECK_VAL_DISABLED;
2061 write_sde_csr(sde, SD(CHECK_OPCODE),
17fb4f29
JJ
2062 (opmask << SEND_CTXT_CHECK_OPCODE_MASK_SHIFT) |
2063 (opval << SEND_CTXT_CHECK_OPCODE_VALUE_SHIFT));
77241056
MM
2064}
2065
2066#ifdef CONFIG_SDMA_VERBOSITY
2067
2068#define sdma_dumpstate_helper0(reg) do { \
2069 csr = read_csr(sde->dd, reg); \
2070 dd_dev_err(sde->dd, "%36s 0x%016llx\n", #reg, csr); \
2071 } while (0)
2072
2073#define sdma_dumpstate_helper(reg) do { \
2074 csr = read_sde_csr(sde, reg); \
2075 dd_dev_err(sde->dd, "%36s[%02u] 0x%016llx\n", \
2076 #reg, sde->this_idx, csr); \
2077 } while (0)
2078
2079#define sdma_dumpstate_helper2(reg) do { \
2080 csr = read_csr(sde->dd, reg + (8 * i)); \
2081 dd_dev_err(sde->dd, "%33s_%02u 0x%016llx\n", \
2082 #reg, i, csr); \
2083 } while (0)
2084
2085void sdma_dumpstate(struct sdma_engine *sde)
2086{
2087 u64 csr;
2088 unsigned i;
2089
2090 sdma_dumpstate_helper(SD(CTRL));
2091 sdma_dumpstate_helper(SD(STATUS));
2092 sdma_dumpstate_helper0(SD(ERR_STATUS));
2093 sdma_dumpstate_helper0(SD(ERR_MASK));
2094 sdma_dumpstate_helper(SD(ENG_ERR_STATUS));
2095 sdma_dumpstate_helper(SD(ENG_ERR_MASK));
2096
2097 for (i = 0; i < CCE_NUM_INT_CSRS; ++i) {
6fd8edab 2098 sdma_dumpstate_helper2(CCE_INT_STATUS);
77241056
MM
2099 sdma_dumpstate_helper2(CCE_INT_MASK);
2100 sdma_dumpstate_helper2(CCE_INT_BLOCKED);
2101 }
2102
2103 sdma_dumpstate_helper(SD(TAIL));
2104 sdma_dumpstate_helper(SD(HEAD));
2105 sdma_dumpstate_helper(SD(PRIORITY_THLD));
6fd8edab 2106 sdma_dumpstate_helper(SD(IDLE_CNT));
77241056
MM
2107 sdma_dumpstate_helper(SD(RELOAD_CNT));
2108 sdma_dumpstate_helper(SD(DESC_CNT));
2109 sdma_dumpstate_helper(SD(DESC_FETCHED_CNT));
2110 sdma_dumpstate_helper(SD(MEMORY));
2111 sdma_dumpstate_helper0(SD(ENGINES));
2112 sdma_dumpstate_helper0(SD(MEM_SIZE));
2113 /* sdma_dumpstate_helper(SEND_EGRESS_SEND_DMA_STATUS); */
2114 sdma_dumpstate_helper(SD(BASE_ADDR));
2115 sdma_dumpstate_helper(SD(LEN_GEN));
2116 sdma_dumpstate_helper(SD(HEAD_ADDR));
2117 sdma_dumpstate_helper(SD(CHECK_ENABLE));
2118 sdma_dumpstate_helper(SD(CHECK_VL));
2119 sdma_dumpstate_helper(SD(CHECK_JOB_KEY));
2120 sdma_dumpstate_helper(SD(CHECK_PARTITION_KEY));
2121 sdma_dumpstate_helper(SD(CHECK_SLID));
2122 sdma_dumpstate_helper(SD(CHECK_OPCODE));
2123}
2124#endif
2125
2126static void dump_sdma_state(struct sdma_engine *sde)
2127{
77241056
MM
2128 struct hw_sdma_desc *descqp;
2129 u64 desc[2];
2130 u64 addr;
2131 u8 gen;
2132 u16 len;
2133 u16 head, tail, cnt;
2134
2135 head = sde->descq_head & sde->sdma_mask;
2136 tail = sde->descq_tail & sde->sdma_mask;
2137 cnt = sdma_descq_freecnt(sde);
77241056
MM
2138
2139 dd_dev_err(sde->dd,
17fb4f29
JJ
2140 "SDMA (%u) descq_head: %u descq_tail: %u freecnt: %u FLE %d\n",
2141 sde->this_idx, head, tail, cnt,
2142 !list_empty(&sde->flushlist));
77241056
MM
2143
2144 /* print info for each entry in the descriptor queue */
2145 while (head != tail) {
2146 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2147
2148 descqp = &sde->descq[head];
2149 desc[0] = le64_to_cpu(descqp->qw[0]);
2150 desc[1] = le64_to_cpu(descqp->qw[1]);
2151 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2152 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2153 'H' : '-';
2154 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2155 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2156 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2157 & SDMA_DESC0_PHY_ADDR_MASK;
2158 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2159 & SDMA_DESC1_GENERATION_MASK;
2160 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2161 & SDMA_DESC0_BYTE_COUNT_MASK;
2162 dd_dev_err(sde->dd,
17fb4f29
JJ
2163 "SDMA sdmadesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2164 head, flags, addr, gen, len);
77241056 2165 dd_dev_err(sde->dd,
17fb4f29
JJ
2166 "\tdesc0:0x%016llx desc1 0x%016llx\n",
2167 desc[0], desc[1]);
77241056
MM
2168 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2169 dd_dev_err(sde->dd,
17fb4f29
JJ
2170 "\taidx: %u amode: %u alen: %u\n",
2171 (u8)((desc[1] &
2172 SDMA_DESC1_HEADER_INDEX_SMASK) >>
2173 SDMA_DESC1_HEADER_INDEX_SHIFT),
2174 (u8)((desc[1] &
2175 SDMA_DESC1_HEADER_MODE_SMASK) >>
2176 SDMA_DESC1_HEADER_MODE_SHIFT),
2177 (u8)((desc[1] &
2178 SDMA_DESC1_HEADER_DWS_SMASK) >>
2179 SDMA_DESC1_HEADER_DWS_SHIFT));
77241056
MM
2180 head++;
2181 head &= sde->sdma_mask;
2182 }
2183}
2184
2185#define SDE_FMT \
0a226edd 2186 "SDE %u CPU %d STE %s C 0x%llx S 0x%016llx E 0x%llx T(HW) 0x%llx T(SW) 0x%x H(HW) 0x%llx H(SW) 0x%x H(D) 0x%llx DM 0x%llx GL 0x%llx R 0x%llx LIS 0x%llx AHGI 0x%llx TXT %u TXH %u DT %u DH %u FLNE %d DQF %u SLC 0x%llx\n"
77241056
MM
2187/**
2188 * sdma_seqfile_dump_sde() - debugfs dump of sde
2189 * @s: seq file
2190 * @sde: send dma engine to dump
2191 *
2192 * This routine dumps the sde to the indicated seq file.
2193 */
2194void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *sde)
2195{
2196 u16 head, tail;
2197 struct hw_sdma_desc *descqp;
2198 u64 desc[2];
2199 u64 addr;
2200 u8 gen;
2201 u16 len;
2202
2203 head = sde->descq_head & sde->sdma_mask;
6aa7de05 2204 tail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
77241056 2205 seq_printf(s, SDE_FMT, sde->this_idx,
17fb4f29
JJ
2206 sde->cpu,
2207 sdma_state_name(sde->state.current_state),
2208 (unsigned long long)read_sde_csr(sde, SD(CTRL)),
2209 (unsigned long long)read_sde_csr(sde, SD(STATUS)),
2210 (unsigned long long)read_sde_csr(sde, SD(ENG_ERR_STATUS)),
2211 (unsigned long long)read_sde_csr(sde, SD(TAIL)), tail,
2212 (unsigned long long)read_sde_csr(sde, SD(HEAD)), head,
2213 (unsigned long long)le64_to_cpu(*sde->head_dma),
2214 (unsigned long long)read_sde_csr(sde, SD(MEMORY)),
2215 (unsigned long long)read_sde_csr(sde, SD(LEN_GEN)),
2216 (unsigned long long)read_sde_csr(sde, SD(RELOAD_CNT)),
2217 (unsigned long long)sde->last_status,
2218 (unsigned long long)sde->ahg_bits,
2219 sde->tx_tail,
2220 sde->tx_head,
2221 sde->descq_tail,
2222 sde->descq_head,
77241056 2223 !list_empty(&sde->flushlist),
17fb4f29
JJ
2224 sde->descq_full_count,
2225 (unsigned long long)read_sde_csr(sde, SEND_DMA_CHECK_SLID));
77241056
MM
2226
2227 /* print info for each entry in the descriptor queue */
2228 while (head != tail) {
2229 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2230
2231 descqp = &sde->descq[head];
2232 desc[0] = le64_to_cpu(descqp->qw[0]);
2233 desc[1] = le64_to_cpu(descqp->qw[1]);
2234 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2235 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2236 'H' : '-';
2237 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2238 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2239 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2240 & SDMA_DESC0_PHY_ADDR_MASK;
2241 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2242 & SDMA_DESC1_GENERATION_MASK;
2243 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2244 & SDMA_DESC0_BYTE_COUNT_MASK;
2245 seq_printf(s,
17fb4f29
JJ
2246 "\tdesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2247 head, flags, addr, gen, len);
77241056
MM
2248 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2249 seq_printf(s, "\t\tahgidx: %u ahgmode: %u\n",
17fb4f29
JJ
2250 (u8)((desc[1] &
2251 SDMA_DESC1_HEADER_INDEX_SMASK) >>
2252 SDMA_DESC1_HEADER_INDEX_SHIFT),
2253 (u8)((desc[1] &
2254 SDMA_DESC1_HEADER_MODE_SMASK) >>
2255 SDMA_DESC1_HEADER_MODE_SHIFT));
77241056
MM
2256 head = (head + 1) & sde->sdma_mask;
2257 }
2258}
2259
2260/*
2261 * add the generation number into
2262 * the qw1 and return
2263 */
2264static inline u64 add_gen(struct sdma_engine *sde, u64 qw1)
2265{
2266 u8 generation = (sde->descq_tail >> sde->sdma_shift) & 3;
2267
2268 qw1 &= ~SDMA_DESC1_GENERATION_SMASK;
2269 qw1 |= ((u64)generation & SDMA_DESC1_GENERATION_MASK)
2270 << SDMA_DESC1_GENERATION_SHIFT;
2271 return qw1;
2272}
2273
2274/*
2275 * This routine submits the indicated tx
2276 *
2277 * Space has already been guaranteed and
2278 * tail side of ring is locked.
2279 *
2280 * The hardware tail update is done
2281 * in the caller and that is facilitated
2282 * by returning the new tail.
2283 *
2284 * There is special case logic for ahg
2285 * to not add the generation number for
2286 * up to 2 descriptors that follow the
2287 * first descriptor.
2288 *
2289 */
2290static inline u16 submit_tx(struct sdma_engine *sde, struct sdma_txreq *tx)
2291{
2292 int i;
2293 u16 tail;
2294 struct sdma_desc *descp = tx->descp;
2295 u8 skip = 0, mode = ahg_mode(tx);
2296
2297 tail = sde->descq_tail & sde->sdma_mask;
2298 sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2299 sde->descq[tail].qw[1] = cpu_to_le64(add_gen(sde, descp->qw[1]));
2300 trace_hfi1_sdma_descriptor(sde, descp->qw[0], descp->qw[1],
2301 tail, &sde->descq[tail]);
2302 tail = ++sde->descq_tail & sde->sdma_mask;
2303 descp++;
2304 if (mode > SDMA_AHG_APPLY_UPDATE1)
2305 skip = mode >> 1;
2306 for (i = 1; i < tx->num_desc; i++, descp++) {
2307 u64 qw1;
2308
2309 sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2310 if (skip) {
2311 /* edits don't have generation */
2312 qw1 = descp->qw[1];
2313 skip--;
2314 } else {
2315 /* replace generation with real one for non-edits */
2316 qw1 = add_gen(sde, descp->qw[1]);
2317 }
2318 sde->descq[tail].qw[1] = cpu_to_le64(qw1);
2319 trace_hfi1_sdma_descriptor(sde, descp->qw[0], qw1,
2320 tail, &sde->descq[tail]);
2321 tail = ++sde->descq_tail & sde->sdma_mask;
2322 }
2323 tx->next_descq_idx = tail;
2324#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2325 tx->sn = sde->tail_sn++;
2326 trace_hfi1_sdma_in_sn(sde, tx->sn);
2327 WARN_ON_ONCE(sde->tx_ring[sde->tx_tail & sde->sdma_mask]);
2328#endif
2329 sde->tx_ring[sde->tx_tail++ & sde->sdma_mask] = tx;
2330 sde->desc_avail -= tx->num_desc;
2331 return tail;
2332}
2333
2334/*
2335 * Check for progress
2336 */
2337static int sdma_check_progress(
2338 struct sdma_engine *sde,
5da0fc9d 2339 struct iowait_work *wait,
bcad2913
KW
2340 struct sdma_txreq *tx,
2341 bool pkts_sent)
77241056
MM
2342{
2343 int ret;
2344
2345 sde->desc_avail = sdma_descq_freecnt(sde);
2346 if (tx->num_desc <= sde->desc_avail)
2347 return -EAGAIN;
2348 /* pulse the head_lock */
5da0fc9d 2349 if (wait && iowait_ioww_to_iow(wait)->sleep) {
77241056
MM
2350 unsigned seq;
2351
2352 seq = raw_seqcount_begin(
2353 (const seqcount_t *)&sde->head_lock.seqcount);
5da0fc9d 2354 ret = wait->iow->sleep(sde, wait, tx, seq, pkts_sent);
77241056
MM
2355 if (ret == -EAGAIN)
2356 sde->desc_avail = sdma_descq_freecnt(sde);
e490974e 2357 } else {
77241056 2358 ret = -EBUSY;
e490974e 2359 }
77241056
MM
2360 return ret;
2361}
2362
2363/**
2364 * sdma_send_txreq() - submit a tx req to ring
2365 * @sde: sdma engine to use
5da0fc9d 2366 * @wait: SE wait structure to use when full (may be NULL)
77241056 2367 * @tx: sdma_txreq to submit
bcad2913 2368 * @pkts_sent: has any packet been sent yet?
77241056
MM
2369 *
2370 * The call submits the tx into the ring. If a iowait structure is non-NULL
2371 * the packet will be queued to the list in wait.
2372 *
2373 * Return:
2374 * 0 - Success, -EINVAL - sdma_txreq incomplete, -EBUSY - no space in
2375 * ring (wait == NULL)
2376 * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2377 */
2378int sdma_send_txreq(struct sdma_engine *sde,
5da0fc9d 2379 struct iowait_work *wait,
bcad2913
KW
2380 struct sdma_txreq *tx,
2381 bool pkts_sent)
77241056
MM
2382{
2383 int ret = 0;
2384 u16 tail;
2385 unsigned long flags;
2386
2387 /* user should have supplied entire packet */
2388 if (unlikely(tx->tlen))
2389 return -EINVAL;
5da0fc9d 2390 tx->wait = iowait_ioww_to_iow(wait);
77241056
MM
2391 spin_lock_irqsave(&sde->tail_lock, flags);
2392retry:
2393 if (unlikely(!__sdma_running(sde)))
2394 goto unlock_noconn;
2395 if (unlikely(tx->num_desc > sde->desc_avail))
2396 goto nodesc;
2397 tail = submit_tx(sde, tx);
2398 if (wait)
5da0fc9d 2399 iowait_sdma_inc(iowait_ioww_to_iow(wait));
77241056
MM
2400 sdma_update_tail(sde, tail);
2401unlock:
2402 spin_unlock_irqrestore(&sde->tail_lock, flags);
2403 return ret;
2404unlock_noconn:
2405 if (wait)
5da0fc9d 2406 iowait_sdma_inc(iowait_ioww_to_iow(wait));
77241056
MM
2407 tx->next_descq_idx = 0;
2408#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2409 tx->sn = sde->tail_sn++;
2410 trace_hfi1_sdma_in_sn(sde, tx->sn);
2411#endif
f4f30031 2412 spin_lock(&sde->flushlist_lock);
77241056 2413 list_add_tail(&tx->list, &sde->flushlist);
f4f30031 2414 spin_unlock(&sde->flushlist_lock);
5da0fc9d 2415 iowait_inc_wait_count(wait, tx->num_desc);
77241056
MM
2416 schedule_work(&sde->flush_worker);
2417 ret = -ECOMM;
2418 goto unlock;
2419nodesc:
bcad2913 2420 ret = sdma_check_progress(sde, wait, tx, pkts_sent);
77241056
MM
2421 if (ret == -EAGAIN) {
2422 ret = 0;
2423 goto retry;
2424 }
2425 sde->descq_full_count++;
2426 goto unlock;
2427}
2428
2429/**
2430 * sdma_send_txlist() - submit a list of tx req to ring
2431 * @sde: sdma engine to use
5da0fc9d 2432 * @wait: SE wait structure to use when full (may be NULL)
77241056 2433 * @tx_list: list of sdma_txreqs to submit
3ca633f1 2434 * @count: pointer to a u16 which, after return will contain the total number of
0b115ef1
HC
2435 * sdma_txreqs removed from the tx_list. This will include sdma_txreqs
2436 * whose SDMA descriptors are submitted to the ring and the sdma_txreqs
2437 * which are added to SDMA engine flush list if the SDMA engine state is
2438 * not running.
77241056
MM
2439 *
2440 * The call submits the list into the ring.
2441 *
2442 * If the iowait structure is non-NULL and not equal to the iowait list
2443 * the unprocessed part of the list will be appended to the list in wait.
2444 *
2445 * In all cases, the tx_list will be updated so the head of the tx_list is
2446 * the list of descriptors that have yet to be transmitted.
2447 *
2448 * The intent of this call is to provide a more efficient
2449 * way of submitting multiple packets to SDMA while holding the tail
2450 * side locking.
2451 *
2452 * Return:
0b115ef1 2453 * 0 - Success,
c7cbf2fa 2454 * -EINVAL - sdma_txreq incomplete, -EBUSY - no space in ring (wait == NULL)
77241056
MM
2455 * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2456 */
5da0fc9d 2457int sdma_send_txlist(struct sdma_engine *sde, struct iowait_work *wait,
3ca633f1 2458 struct list_head *tx_list, u16 *count_out)
77241056
MM
2459{
2460 struct sdma_txreq *tx, *tx_next;
2461 int ret = 0;
2462 unsigned long flags;
2463 u16 tail = INVALID_TAIL;
0b115ef1 2464 u32 submit_count = 0, flush_count = 0, total_count;
77241056
MM
2465
2466 spin_lock_irqsave(&sde->tail_lock, flags);
2467retry:
2468 list_for_each_entry_safe(tx, tx_next, tx_list, list) {
5da0fc9d 2469 tx->wait = iowait_ioww_to_iow(wait);
77241056
MM
2470 if (unlikely(!__sdma_running(sde)))
2471 goto unlock_noconn;
2472 if (unlikely(tx->num_desc > sde->desc_avail))
2473 goto nodesc;
2474 if (unlikely(tx->tlen)) {
2475 ret = -EINVAL;
2476 goto update_tail;
2477 }
2478 list_del_init(&tx->list);
2479 tail = submit_tx(sde, tx);
0b115ef1 2480 submit_count++;
77241056 2481 if (tail != INVALID_TAIL &&
0b115ef1 2482 (submit_count & SDMA_TAIL_UPDATE_THRESH) == 0) {
77241056
MM
2483 sdma_update_tail(sde, tail);
2484 tail = INVALID_TAIL;
2485 }
2486 }
2487update_tail:
0b115ef1 2488 total_count = submit_count + flush_count;
bcad2913 2489 if (wait) {
5da0fc9d
DD
2490 iowait_sdma_add(iowait_ioww_to_iow(wait), total_count);
2491 iowait_starve_clear(submit_count > 0,
2492 iowait_ioww_to_iow(wait));
bcad2913 2493 }
77241056
MM
2494 if (tail != INVALID_TAIL)
2495 sdma_update_tail(sde, tail);
2496 spin_unlock_irqrestore(&sde->tail_lock, flags);
0b115ef1
HC
2497 *count_out = total_count;
2498 return ret;
77241056
MM
2499unlock_noconn:
2500 spin_lock(&sde->flushlist_lock);
2501 list_for_each_entry_safe(tx, tx_next, tx_list, list) {
5da0fc9d 2502 tx->wait = iowait_ioww_to_iow(wait);
77241056 2503 list_del_init(&tx->list);
77241056
MM
2504 tx->next_descq_idx = 0;
2505#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2506 tx->sn = sde->tail_sn++;
2507 trace_hfi1_sdma_in_sn(sde, tx->sn);
2508#endif
2509 list_add_tail(&tx->list, &sde->flushlist);
0b115ef1 2510 flush_count++;
5da0fc9d 2511 iowait_inc_wait_count(wait, tx->num_desc);
77241056
MM
2512 }
2513 spin_unlock(&sde->flushlist_lock);
2514 schedule_work(&sde->flush_worker);
2515 ret = -ECOMM;
2516 goto update_tail;
2517nodesc:
bcad2913 2518 ret = sdma_check_progress(sde, wait, tx, submit_count > 0);
77241056
MM
2519 if (ret == -EAGAIN) {
2520 ret = 0;
2521 goto retry;
2522 }
2523 sde->descq_full_count++;
2524 goto update_tail;
2525}
2526
17fb4f29 2527static void sdma_process_event(struct sdma_engine *sde, enum sdma_events event)
77241056
MM
2528{
2529 unsigned long flags;
2530
2531 spin_lock_irqsave(&sde->tail_lock, flags);
2532 write_seqlock(&sde->head_lock);
2533
2534 __sdma_process_event(sde, event);
2535
2536 if (sde->state.current_state == sdma_state_s99_running)
2537 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
2538
2539 write_sequnlock(&sde->head_lock);
2540 spin_unlock_irqrestore(&sde->tail_lock, flags);
2541}
2542
2543static void __sdma_process_event(struct sdma_engine *sde,
17fb4f29 2544 enum sdma_events event)
77241056
MM
2545{
2546 struct sdma_state *ss = &sde->state;
2547 int need_progress = 0;
2548
2549 /* CONFIG SDMA temporary */
2550#ifdef CONFIG_SDMA_VERBOSITY
2551 dd_dev_err(sde->dd, "CONFIG SDMA(%u) [%s] %s\n", sde->this_idx,
2552 sdma_state_names[ss->current_state],
2553 sdma_event_names[event]);
2554#endif
2555
2556 switch (ss->current_state) {
2557 case sdma_state_s00_hw_down:
2558 switch (event) {
2559 case sdma_event_e00_go_hw_down:
2560 break;
2561 case sdma_event_e30_go_running:
2562 /*
2563 * If down, but running requested (usually result
2564 * of link up, then we need to start up.
2565 * This can happen when hw down is requested while
2566 * bringing the link up with traffic active on
4d114fdd
JJ
2567 * 7220, e.g.
2568 */
77241056 2569 ss->go_s99_running = 1;
6ffeb21f 2570 /* fall through -- and start dma engine */
77241056
MM
2571 case sdma_event_e10_go_hw_start:
2572 /* This reference means the state machine is started */
2573 sdma_get(&sde->state);
2574 sdma_set_state(sde,
17fb4f29 2575 sdma_state_s10_hw_start_up_halt_wait);
77241056
MM
2576 break;
2577 case sdma_event_e15_hw_halt_done:
2578 break;
2579 case sdma_event_e25_hw_clean_up_done:
2580 break;
2581 case sdma_event_e40_sw_cleaned:
2582 sdma_sw_tear_down(sde);
2583 break;
2584 case sdma_event_e50_hw_cleaned:
2585 break;
2586 case sdma_event_e60_hw_halted:
2587 break;
2588 case sdma_event_e70_go_idle:
2589 break;
2590 case sdma_event_e80_hw_freeze:
2591 break;
2592 case sdma_event_e81_hw_frozen:
2593 break;
2594 case sdma_event_e82_hw_unfreeze:
2595 break;
2596 case sdma_event_e85_link_down:
2597 break;
2598 case sdma_event_e90_sw_halted:
2599 break;
2600 }
2601 break;
2602
2603 case sdma_state_s10_hw_start_up_halt_wait:
2604 switch (event) {
2605 case sdma_event_e00_go_hw_down:
2606 sdma_set_state(sde, sdma_state_s00_hw_down);
2607 sdma_sw_tear_down(sde);
2608 break;
2609 case sdma_event_e10_go_hw_start:
2610 break;
2611 case sdma_event_e15_hw_halt_done:
2612 sdma_set_state(sde,
17fb4f29 2613 sdma_state_s15_hw_start_up_clean_wait);
77241056
MM
2614 sdma_start_hw_clean_up(sde);
2615 break;
2616 case sdma_event_e25_hw_clean_up_done:
2617 break;
2618 case sdma_event_e30_go_running:
2619 ss->go_s99_running = 1;
2620 break;
2621 case sdma_event_e40_sw_cleaned:
2622 break;
2623 case sdma_event_e50_hw_cleaned:
2624 break;
2625 case sdma_event_e60_hw_halted:
8edf7502 2626 schedule_work(&sde->err_halt_worker);
77241056
MM
2627 break;
2628 case sdma_event_e70_go_idle:
2629 ss->go_s99_running = 0;
2630 break;
2631 case sdma_event_e80_hw_freeze:
2632 break;
2633 case sdma_event_e81_hw_frozen:
2634 break;
2635 case sdma_event_e82_hw_unfreeze:
2636 break;
2637 case sdma_event_e85_link_down:
2638 break;
2639 case sdma_event_e90_sw_halted:
2640 break;
2641 }
2642 break;
2643
2644 case sdma_state_s15_hw_start_up_clean_wait:
2645 switch (event) {
2646 case sdma_event_e00_go_hw_down:
2647 sdma_set_state(sde, sdma_state_s00_hw_down);
2648 sdma_sw_tear_down(sde);
2649 break;
2650 case sdma_event_e10_go_hw_start:
2651 break;
2652 case sdma_event_e15_hw_halt_done:
2653 break;
2654 case sdma_event_e25_hw_clean_up_done:
2655 sdma_hw_start_up(sde);
2656 sdma_set_state(sde, ss->go_s99_running ?
2657 sdma_state_s99_running :
2658 sdma_state_s20_idle);
2659 break;
2660 case sdma_event_e30_go_running:
2661 ss->go_s99_running = 1;
2662 break;
2663 case sdma_event_e40_sw_cleaned:
2664 break;
2665 case sdma_event_e50_hw_cleaned:
2666 break;
2667 case sdma_event_e60_hw_halted:
2668 break;
2669 case sdma_event_e70_go_idle:
2670 ss->go_s99_running = 0;
2671 break;
2672 case sdma_event_e80_hw_freeze:
2673 break;
2674 case sdma_event_e81_hw_frozen:
2675 break;
2676 case sdma_event_e82_hw_unfreeze:
2677 break;
2678 case sdma_event_e85_link_down:
2679 break;
2680 case sdma_event_e90_sw_halted:
2681 break;
2682 }
2683 break;
2684
2685 case sdma_state_s20_idle:
2686 switch (event) {
2687 case sdma_event_e00_go_hw_down:
2688 sdma_set_state(sde, sdma_state_s00_hw_down);
2689 sdma_sw_tear_down(sde);
2690 break;
2691 case sdma_event_e10_go_hw_start:
2692 break;
2693 case sdma_event_e15_hw_halt_done:
2694 break;
2695 case sdma_event_e25_hw_clean_up_done:
2696 break;
2697 case sdma_event_e30_go_running:
2698 sdma_set_state(sde, sdma_state_s99_running);
2699 ss->go_s99_running = 1;
2700 break;
2701 case sdma_event_e40_sw_cleaned:
2702 break;
2703 case sdma_event_e50_hw_cleaned:
2704 break;
2705 case sdma_event_e60_hw_halted:
2706 sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
8edf7502 2707 schedule_work(&sde->err_halt_worker);
77241056
MM
2708 break;
2709 case sdma_event_e70_go_idle:
2710 break;
2711 case sdma_event_e85_link_down:
2712 /* fall through */
2713 case sdma_event_e80_hw_freeze:
2714 sdma_set_state(sde, sdma_state_s80_hw_freeze);
2715 atomic_dec(&sde->dd->sdma_unfreeze_count);
2716 wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2717 break;
2718 case sdma_event_e81_hw_frozen:
2719 break;
2720 case sdma_event_e82_hw_unfreeze:
2721 break;
2722 case sdma_event_e90_sw_halted:
2723 break;
2724 }
2725 break;
2726
2727 case sdma_state_s30_sw_clean_up_wait:
2728 switch (event) {
2729 case sdma_event_e00_go_hw_down:
2730 sdma_set_state(sde, sdma_state_s00_hw_down);
2731 break;
2732 case sdma_event_e10_go_hw_start:
2733 break;
2734 case sdma_event_e15_hw_halt_done:
2735 break;
2736 case sdma_event_e25_hw_clean_up_done:
2737 break;
2738 case sdma_event_e30_go_running:
2739 ss->go_s99_running = 1;
2740 break;
2741 case sdma_event_e40_sw_cleaned:
2742 sdma_set_state(sde, sdma_state_s40_hw_clean_up_wait);
2743 sdma_start_hw_clean_up(sde);
2744 break;
2745 case sdma_event_e50_hw_cleaned:
2746 break;
2747 case sdma_event_e60_hw_halted:
2748 break;
2749 case sdma_event_e70_go_idle:
2750 ss->go_s99_running = 0;
2751 break;
2752 case sdma_event_e80_hw_freeze:
2753 break;
2754 case sdma_event_e81_hw_frozen:
2755 break;
2756 case sdma_event_e82_hw_unfreeze:
2757 break;
2758 case sdma_event_e85_link_down:
2759 ss->go_s99_running = 0;
2760 break;
2761 case sdma_event_e90_sw_halted:
2762 break;
2763 }
2764 break;
2765
2766 case sdma_state_s40_hw_clean_up_wait:
2767 switch (event) {
2768 case sdma_event_e00_go_hw_down:
2769 sdma_set_state(sde, sdma_state_s00_hw_down);
8edf7502 2770 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
77241056
MM
2771 break;
2772 case sdma_event_e10_go_hw_start:
2773 break;
2774 case sdma_event_e15_hw_halt_done:
2775 break;
2776 case sdma_event_e25_hw_clean_up_done:
2777 sdma_hw_start_up(sde);
2778 sdma_set_state(sde, ss->go_s99_running ?
2779 sdma_state_s99_running :
2780 sdma_state_s20_idle);
2781 break;
2782 case sdma_event_e30_go_running:
2783 ss->go_s99_running = 1;
2784 break;
2785 case sdma_event_e40_sw_cleaned:
2786 break;
2787 case sdma_event_e50_hw_cleaned:
2788 break;
2789 case sdma_event_e60_hw_halted:
2790 break;
2791 case sdma_event_e70_go_idle:
2792 ss->go_s99_running = 0;
2793 break;
2794 case sdma_event_e80_hw_freeze:
2795 break;
2796 case sdma_event_e81_hw_frozen:
2797 break;
2798 case sdma_event_e82_hw_unfreeze:
2799 break;
2800 case sdma_event_e85_link_down:
2801 ss->go_s99_running = 0;
2802 break;
2803 case sdma_event_e90_sw_halted:
2804 break;
2805 }
2806 break;
2807
2808 case sdma_state_s50_hw_halt_wait:
2809 switch (event) {
2810 case sdma_event_e00_go_hw_down:
2811 sdma_set_state(sde, sdma_state_s00_hw_down);
8edf7502 2812 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
77241056
MM
2813 break;
2814 case sdma_event_e10_go_hw_start:
2815 break;
2816 case sdma_event_e15_hw_halt_done:
2817 sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
8edf7502 2818 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
77241056
MM
2819 break;
2820 case sdma_event_e25_hw_clean_up_done:
2821 break;
2822 case sdma_event_e30_go_running:
2823 ss->go_s99_running = 1;
2824 break;
2825 case sdma_event_e40_sw_cleaned:
2826 break;
2827 case sdma_event_e50_hw_cleaned:
2828 break;
2829 case sdma_event_e60_hw_halted:
8edf7502 2830 schedule_work(&sde->err_halt_worker);
77241056
MM
2831 break;
2832 case sdma_event_e70_go_idle:
2833 ss->go_s99_running = 0;
2834 break;
2835 case sdma_event_e80_hw_freeze:
2836 break;
2837 case sdma_event_e81_hw_frozen:
2838 break;
2839 case sdma_event_e82_hw_unfreeze:
2840 break;
2841 case sdma_event_e85_link_down:
2842 ss->go_s99_running = 0;
2843 break;
2844 case sdma_event_e90_sw_halted:
2845 break;
2846 }
2847 break;
2848
2849 case sdma_state_s60_idle_halt_wait:
2850 switch (event) {
2851 case sdma_event_e00_go_hw_down:
2852 sdma_set_state(sde, sdma_state_s00_hw_down);
8edf7502 2853 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
77241056
MM
2854 break;
2855 case sdma_event_e10_go_hw_start:
2856 break;
2857 case sdma_event_e15_hw_halt_done:
2858 sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
8edf7502 2859 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
77241056
MM
2860 break;
2861 case sdma_event_e25_hw_clean_up_done:
2862 break;
2863 case sdma_event_e30_go_running:
2864 ss->go_s99_running = 1;
2865 break;
2866 case sdma_event_e40_sw_cleaned:
2867 break;
2868 case sdma_event_e50_hw_cleaned:
2869 break;
2870 case sdma_event_e60_hw_halted:
8edf7502 2871 schedule_work(&sde->err_halt_worker);
77241056
MM
2872 break;
2873 case sdma_event_e70_go_idle:
2874 ss->go_s99_running = 0;
2875 break;
2876 case sdma_event_e80_hw_freeze:
2877 break;
2878 case sdma_event_e81_hw_frozen:
2879 break;
2880 case sdma_event_e82_hw_unfreeze:
2881 break;
2882 case sdma_event_e85_link_down:
2883 break;
2884 case sdma_event_e90_sw_halted:
2885 break;
2886 }
2887 break;
2888
2889 case sdma_state_s80_hw_freeze:
2890 switch (event) {
2891 case sdma_event_e00_go_hw_down:
2892 sdma_set_state(sde, sdma_state_s00_hw_down);
8edf7502 2893 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
77241056
MM
2894 break;
2895 case sdma_event_e10_go_hw_start:
2896 break;
2897 case sdma_event_e15_hw_halt_done:
2898 break;
2899 case sdma_event_e25_hw_clean_up_done:
2900 break;
2901 case sdma_event_e30_go_running:
2902 ss->go_s99_running = 1;
2903 break;
2904 case sdma_event_e40_sw_cleaned:
2905 break;
2906 case sdma_event_e50_hw_cleaned:
2907 break;
2908 case sdma_event_e60_hw_halted:
2909 break;
2910 case sdma_event_e70_go_idle:
2911 ss->go_s99_running = 0;
2912 break;
2913 case sdma_event_e80_hw_freeze:
2914 break;
2915 case sdma_event_e81_hw_frozen:
2916 sdma_set_state(sde, sdma_state_s82_freeze_sw_clean);
8edf7502 2917 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
77241056
MM
2918 break;
2919 case sdma_event_e82_hw_unfreeze:
2920 break;
2921 case sdma_event_e85_link_down:
2922 break;
2923 case sdma_event_e90_sw_halted:
2924 break;
2925 }
2926 break;
2927
2928 case sdma_state_s82_freeze_sw_clean:
2929 switch (event) {
2930 case sdma_event_e00_go_hw_down:
2931 sdma_set_state(sde, sdma_state_s00_hw_down);
8edf7502 2932 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
77241056
MM
2933 break;
2934 case sdma_event_e10_go_hw_start:
2935 break;
2936 case sdma_event_e15_hw_halt_done:
2937 break;
2938 case sdma_event_e25_hw_clean_up_done:
2939 break;
2940 case sdma_event_e30_go_running:
2941 ss->go_s99_running = 1;
2942 break;
2943 case sdma_event_e40_sw_cleaned:
2944 /* notify caller this engine is done cleaning */
2945 atomic_dec(&sde->dd->sdma_unfreeze_count);
2946 wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2947 break;
2948 case sdma_event_e50_hw_cleaned:
2949 break;
2950 case sdma_event_e60_hw_halted:
2951 break;
2952 case sdma_event_e70_go_idle:
2953 ss->go_s99_running = 0;
2954 break;
2955 case sdma_event_e80_hw_freeze:
2956 break;
2957 case sdma_event_e81_hw_frozen:
2958 break;
2959 case sdma_event_e82_hw_unfreeze:
2960 sdma_hw_start_up(sde);
2961 sdma_set_state(sde, ss->go_s99_running ?
2962 sdma_state_s99_running :
2963 sdma_state_s20_idle);
2964 break;
2965 case sdma_event_e85_link_down:
2966 break;
2967 case sdma_event_e90_sw_halted:
2968 break;
2969 }
2970 break;
2971
2972 case sdma_state_s99_running:
2973 switch (event) {
2974 case sdma_event_e00_go_hw_down:
2975 sdma_set_state(sde, sdma_state_s00_hw_down);
8edf7502 2976 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
77241056
MM
2977 break;
2978 case sdma_event_e10_go_hw_start:
2979 break;
2980 case sdma_event_e15_hw_halt_done:
2981 break;
2982 case sdma_event_e25_hw_clean_up_done:
2983 break;
2984 case sdma_event_e30_go_running:
2985 break;
2986 case sdma_event_e40_sw_cleaned:
2987 break;
2988 case sdma_event_e50_hw_cleaned:
2989 break;
2990 case sdma_event_e60_hw_halted:
2991 need_progress = 1;
2992 sdma_err_progress_check_schedule(sde);
6ffeb21f 2993 /* fall through */
77241056
MM
2994 case sdma_event_e90_sw_halted:
2995 /*
2996 * SW initiated halt does not perform engines
2997 * progress check
2998 */
2999 sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
8edf7502 3000 schedule_work(&sde->err_halt_worker);
77241056
MM
3001 break;
3002 case sdma_event_e70_go_idle:
3003 sdma_set_state(sde, sdma_state_s60_idle_halt_wait);
3004 break;
3005 case sdma_event_e85_link_down:
3006 ss->go_s99_running = 0;
3007 /* fall through */
3008 case sdma_event_e80_hw_freeze:
3009 sdma_set_state(sde, sdma_state_s80_hw_freeze);
3010 atomic_dec(&sde->dd->sdma_unfreeze_count);
3011 wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
3012 break;
3013 case sdma_event_e81_hw_frozen:
3014 break;
3015 case sdma_event_e82_hw_unfreeze:
3016 break;
3017 }
3018 break;
3019 }
3020
3021 ss->last_event = event;
3022 if (need_progress)
3023 sdma_make_progress(sde, 0);
3024}
3025
3026/*
3027 * _extend_sdma_tx_descs() - helper to extend txreq
3028 *
3029 * This is called once the initial nominal allocation
3030 * of descriptors in the sdma_txreq is exhausted.
3031 *
3032 * The code will bump the allocation up to the max
f4d26d81
NV
3033 * of MAX_DESC (64) descriptors. There doesn't seem
3034 * much point in an interim step. The last descriptor
3035 * is reserved for coalesce buffer in order to support
3036 * cases where input packet has >MAX_DESC iovecs.
77241056
MM
3037 *
3038 */
f4d26d81 3039static int _extend_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
77241056
MM
3040{
3041 int i;
3042
f4d26d81
NV
3043 /* Handle last descriptor */
3044 if (unlikely((tx->num_desc == (MAX_DESC - 1)))) {
3045 /* if tlen is 0, it is for padding, release last descriptor */
3046 if (!tx->tlen) {
3047 tx->desc_limit = MAX_DESC;
3048 } else if (!tx->coalesce_buf) {
3049 /* allocate coalesce buffer with space for padding */
3050 tx->coalesce_buf = kmalloc(tx->tlen + sizeof(u32),
3051 GFP_ATOMIC);
3052 if (!tx->coalesce_buf)
a5a9e8cc 3053 goto enomem;
f4d26d81
NV
3054 tx->coalesce_idx = 0;
3055 }
3056 return 0;
3057 }
3058
3059 if (unlikely(tx->num_desc == MAX_DESC))
a5a9e8cc 3060 goto enomem;
f4d26d81 3061
77241056
MM
3062 tx->descp = kmalloc_array(
3063 MAX_DESC,
3064 sizeof(struct sdma_desc),
3065 GFP_ATOMIC);
3066 if (!tx->descp)
a5a9e8cc 3067 goto enomem;
f4d26d81
NV
3068
3069 /* reserve last descriptor for coalescing */
3070 tx->desc_limit = MAX_DESC - 1;
77241056
MM
3071 /* copy ones already built */
3072 for (i = 0; i < tx->num_desc; i++)
3073 tx->descp[i] = tx->descs[i];
3074 return 0;
a5a9e8cc 3075enomem:
63df8e09 3076 __sdma_txclean(dd, tx);
a5a9e8cc 3077 return -ENOMEM;
77241056
MM
3078}
3079
f4d26d81
NV
3080/*
3081 * ext_coal_sdma_tx_descs() - extend or coalesce sdma tx descriptors
3082 *
3083 * This is called once the initial nominal allocation of descriptors
3084 * in the sdma_txreq is exhausted.
3085 *
3086 * This function calls _extend_sdma_tx_descs to extend or allocate
3087 * coalesce buffer. If there is a allocated coalesce buffer, it will
3088 * copy the input packet data into the coalesce buffer. It also adds
16733b88 3089 * coalesce buffer descriptor once when whole packet is received.
f4d26d81
NV
3090 *
3091 * Return:
3092 * <0 - error
3093 * 0 - coalescing, don't populate descriptor
3094 * 1 - continue with populating descriptor
3095 */
3096int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx,
3097 int type, void *kvaddr, struct page *page,
3098 unsigned long offset, u16 len)
3099{
3100 int pad_len, rval;
3101 dma_addr_t addr;
3102
3103 rval = _extend_sdma_tx_descs(dd, tx);
3104 if (rval) {
63df8e09 3105 __sdma_txclean(dd, tx);
f4d26d81
NV
3106 return rval;
3107 }
3108
3109 /* If coalesce buffer is allocated, copy data into it */
3110 if (tx->coalesce_buf) {
3111 if (type == SDMA_MAP_NONE) {
63df8e09 3112 __sdma_txclean(dd, tx);
f4d26d81
NV
3113 return -EINVAL;
3114 }
3115
3116 if (type == SDMA_MAP_PAGE) {
3117 kvaddr = kmap(page);
3118 kvaddr += offset;
3119 } else if (WARN_ON(!kvaddr)) {
63df8e09 3120 __sdma_txclean(dd, tx);
f4d26d81
NV
3121 return -EINVAL;
3122 }
3123
3124 memcpy(tx->coalesce_buf + tx->coalesce_idx, kvaddr, len);
3125 tx->coalesce_idx += len;
3126 if (type == SDMA_MAP_PAGE)
3127 kunmap(page);
3128
3129 /* If there is more data, return */
3130 if (tx->tlen - tx->coalesce_idx)
3131 return 0;
3132
3133 /* Whole packet is received; add any padding */
3134 pad_len = tx->packet_len & (sizeof(u32) - 1);
3135 if (pad_len) {
3136 pad_len = sizeof(u32) - pad_len;
3137 memset(tx->coalesce_buf + tx->coalesce_idx, 0, pad_len);
3138 /* padding is taken care of for coalescing case */
3139 tx->packet_len += pad_len;
3140 tx->tlen += pad_len;
3141 }
3142
3143 /* dma map the coalesce buffer */
3144 addr = dma_map_single(&dd->pcidev->dev,
3145 tx->coalesce_buf,
3146 tx->tlen,
3147 DMA_TO_DEVICE);
3148
3149 if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
63df8e09 3150 __sdma_txclean(dd, tx);
f4d26d81
NV
3151 return -ENOSPC;
3152 }
3153
3154 /* Add descriptor for coalesce buffer */
3155 tx->desc_limit = MAX_DESC;
3156 return _sdma_txadd_daddr(dd, SDMA_MAP_SINGLE, tx,
3157 addr, tx->tlen);
3158 }
3159
3160 return 1;
3161}
3162
77241056
MM
3163/* Update sdes when the lmc changes */
3164void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid)
3165{
3166 struct sdma_engine *sde;
3167 int i;
3168 u64 sreg;
3169
3170 sreg = ((mask & SD(CHECK_SLID_MASK_MASK)) <<
3171 SD(CHECK_SLID_MASK_SHIFT)) |
3172 (((lid & mask) & SD(CHECK_SLID_VALUE_MASK)) <<
3173 SD(CHECK_SLID_VALUE_SHIFT));
3174
3175 for (i = 0; i < dd->num_sdma; i++) {
3176 hfi1_cdbg(LINKVERB, "SendDmaEngine[%d].SLID_CHECK = 0x%x",
3177 i, (u32)sreg);
3178 sde = &dd->per_sdma[i];
3179 write_sde_csr(sde, SD(CHECK_SLID), sreg);
3180 }
3181}
3182
3183/* tx not dword sized - pad */
3184int _pad_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
3185{
3186 int rval = 0;
3187
f4d26d81 3188 tx->num_desc++;
77241056
MM
3189 if ((unlikely(tx->num_desc == tx->desc_limit))) {
3190 rval = _extend_sdma_tx_descs(dd, tx);
f4d26d81 3191 if (rval) {
63df8e09 3192 __sdma_txclean(dd, tx);
77241056 3193 return rval;
f4d26d81 3194 }
77241056 3195 }
f4d26d81 3196 /* finish the one just added */
77241056
MM
3197 make_tx_sdma_desc(
3198 tx,
3199 SDMA_MAP_NONE,
3200 dd->sdma_pad_phys,
3201 sizeof(u32) - (tx->packet_len & (sizeof(u32) - 1)));
3202 _sdma_close_tx(dd, tx);
3203 return rval;
3204}
3205
3206/*
3207 * Add ahg to the sdma_txreq
3208 *
3209 * The logic will consume up to 3
3210 * descriptors at the beginning of
3211 * sdma_txreq.
3212 */
3213void _sdma_txreq_ahgadd(
3214 struct sdma_txreq *tx,
3215 u8 num_ahg,
3216 u8 ahg_entry,
3217 u32 *ahg,
3218 u8 ahg_hlen)
3219{
3220 u32 i, shift = 0, desc = 0;
3221 u8 mode;
3222
3223 WARN_ON_ONCE(num_ahg > 9 || (ahg_hlen & 3) || ahg_hlen == 4);
3224 /* compute mode */
3225 if (num_ahg == 1)
3226 mode = SDMA_AHG_APPLY_UPDATE1;
3227 else if (num_ahg <= 5)
3228 mode = SDMA_AHG_APPLY_UPDATE2;
3229 else
3230 mode = SDMA_AHG_APPLY_UPDATE3;
3231 tx->num_desc++;
3232 /* initialize to consumed descriptors to zero */
3233 switch (mode) {
3234 case SDMA_AHG_APPLY_UPDATE3:
3235 tx->num_desc++;
3236 tx->descs[2].qw[0] = 0;
3237 tx->descs[2].qw[1] = 0;
3238 /* FALLTHROUGH */
3239 case SDMA_AHG_APPLY_UPDATE2:
3240 tx->num_desc++;
3241 tx->descs[1].qw[0] = 0;
3242 tx->descs[1].qw[1] = 0;
3243 break;
3244 }
3245 ahg_hlen >>= 2;
3246 tx->descs[0].qw[1] |=
3247 (((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK)
3248 << SDMA_DESC1_HEADER_INDEX_SHIFT) |
3249 (((u64)ahg_hlen & SDMA_DESC1_HEADER_DWS_MASK)
3250 << SDMA_DESC1_HEADER_DWS_SHIFT) |
3251 (((u64)mode & SDMA_DESC1_HEADER_MODE_MASK)
3252 << SDMA_DESC1_HEADER_MODE_SHIFT) |
3253 (((u64)ahg[0] & SDMA_DESC1_HEADER_UPDATE1_MASK)
3254 << SDMA_DESC1_HEADER_UPDATE1_SHIFT);
3255 for (i = 0; i < (num_ahg - 1); i++) {
3256 if (!shift && !(i & 2))
3257 desc++;
3258 tx->descs[desc].qw[!!(i & 2)] |=
3259 (((u64)ahg[i + 1])
3260 << shift);
3261 shift = (shift + 32) & 63;
3262 }
3263}
3264
3265/**
3266 * sdma_ahg_alloc - allocate an AHG entry
3267 * @sde: engine to allocate from
3268 *
3269 * Return:
3270 * 0-31 when successful, -EOPNOTSUPP if AHG is not enabled,
3271 * -ENOSPC if an entry is not available
3272 */
3273int sdma_ahg_alloc(struct sdma_engine *sde)
3274{
3275 int nr;
3276 int oldbit;
3277
3278 if (!sde) {
3279 trace_hfi1_ahg_allocate(sde, -EINVAL);
3280 return -EINVAL;
3281 }
3282 while (1) {
6aa7de05 3283 nr = ffz(READ_ONCE(sde->ahg_bits));
77241056
MM
3284 if (nr > 31) {
3285 trace_hfi1_ahg_allocate(sde, -ENOSPC);
3286 return -ENOSPC;
3287 }
3288 oldbit = test_and_set_bit(nr, &sde->ahg_bits);
3289 if (!oldbit)
3290 break;
3291 cpu_relax();
3292 }
3293 trace_hfi1_ahg_allocate(sde, nr);
3294 return nr;
3295}
3296
3297/**
3298 * sdma_ahg_free - free an AHG entry
3299 * @sde: engine to return AHG entry
3300 * @ahg_index: index to free
3301 *
3302 * This routine frees the indicate AHG entry.
3303 */
3304void sdma_ahg_free(struct sdma_engine *sde, int ahg_index)
3305{
3306 if (!sde)
3307 return;
3308 trace_hfi1_ahg_deallocate(sde, ahg_index);
3309 if (ahg_index < 0 || ahg_index > 31)
3310 return;
3311 clear_bit(ahg_index, &sde->ahg_bits);
3312}
3313
3314/*
3315 * SPC freeze handling for SDMA engines. Called when the driver knows
3316 * the SPC is going into a freeze but before the freeze is fully
3317 * settled. Generally an error interrupt.
3318 *
3319 * This event will pull the engine out of running so no more entries can be
3320 * added to the engine's queue.
3321 */
3322void sdma_freeze_notify(struct hfi1_devdata *dd, int link_down)
3323{
3324 int i;
3325 enum sdma_events event = link_down ? sdma_event_e85_link_down :
3326 sdma_event_e80_hw_freeze;
3327
3328 /* set up the wait but do not wait here */
3329 atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3330
3331 /* tell all engines to stop running and wait */
3332 for (i = 0; i < dd->num_sdma; i++)
3333 sdma_process_event(&dd->per_sdma[i], event);
3334
3335 /* sdma_freeze() will wait for all engines to have stopped */
3336}
3337
3338/*
3339 * SPC freeze handling for SDMA engines. Called when the driver knows
3340 * the SPC is fully frozen.
3341 */
3342void sdma_freeze(struct hfi1_devdata *dd)
3343{
3344 int i;
3345 int ret;
3346
3347 /*
3348 * Make sure all engines have moved out of the running state before
3349 * continuing.
3350 */
3351 ret = wait_event_interruptible(dd->sdma_unfreeze_wq,
17fb4f29
JJ
3352 atomic_read(&dd->sdma_unfreeze_count) <=
3353 0);
77241056
MM
3354 /* interrupted or count is negative, then unloading - just exit */
3355 if (ret || atomic_read(&dd->sdma_unfreeze_count) < 0)
3356 return;
3357
3358 /* set up the count for the next wait */
3359 atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3360
3361 /* tell all engines that the SPC is frozen, they can start cleaning */
3362 for (i = 0; i < dd->num_sdma; i++)
3363 sdma_process_event(&dd->per_sdma[i], sdma_event_e81_hw_frozen);
3364
3365 /*
3366 * Wait for everyone to finish software clean before exiting. The
3367 * software clean will read engine CSRs, so must be completed before
3368 * the next step, which will clear the engine CSRs.
3369 */
50e5dcbe 3370 (void)wait_event_interruptible(dd->sdma_unfreeze_wq,
77241056
MM
3371 atomic_read(&dd->sdma_unfreeze_count) <= 0);
3372 /* no need to check results - done no matter what */
3373}
3374
3375/*
3376 * SPC freeze handling for the SDMA engines. Called after the SPC is unfrozen.
3377 *
3378 * The SPC freeze acts like a SDMA halt and a hardware clean combined. All
3379 * that is left is a software clean. We could do it after the SPC is fully
3380 * frozen, but then we'd have to add another state to wait for the unfreeze.
3381 * Instead, just defer the software clean until the unfreeze step.
3382 */
3383void sdma_unfreeze(struct hfi1_devdata *dd)
3384{
3385 int i;
3386
3387 /* tell all engines start freeze clean up */
3388 for (i = 0; i < dd->num_sdma; i++)
3389 sdma_process_event(&dd->per_sdma[i],
17fb4f29 3390 sdma_event_e82_hw_unfreeze);
77241056
MM
3391}
3392
3393/**
3394 * _sdma_engine_progress_schedule() - schedule progress on engine
3395 * @sde: sdma_engine to schedule progress
3396 *
3397 */
3398void _sdma_engine_progress_schedule(
3399 struct sdma_engine *sde)
3400{
3401 trace_hfi1_sdma_engine_progress(sde, sde->progress_mask);
3402 /* assume we have selected a good cpu */
3403 write_csr(sde->dd,
17fb4f29
JJ
3404 CCE_INT_FORCE + (8 * (IS_SDMA_START / 64)),
3405 sde->progress_mask);
77241056 3406}