ide: remove atapi_feature_t
[linux-2.6-block.git] / drivers / ide / ide-tape.c
CommitLineData
1da177e4
LT
1/*
2 * linux/drivers/ide/ide-tape.c Version 1.19 Nov, 2003
3 *
4 * Copyright (C) 1995 - 1999 Gadi Oxman <gadio@netvision.net.il>
5 *
6 * $Header$
7 *
8 * This driver was constructed as a student project in the software laboratory
9 * of the faculty of electrical engineering in the Technion - Israel's
10 * Institute Of Technology, with the guide of Avner Lottem and Dr. Ilana David.
11 *
12 * It is hereby placed under the terms of the GNU general public license.
13 * (See linux/COPYING).
14 */
15
16/*
17 * IDE ATAPI streaming tape driver.
18 *
19 * This driver is a part of the Linux ide driver and works in co-operation
20 * with linux/drivers/block/ide.c.
21 *
22 * The driver, in co-operation with ide.c, basically traverses the
23 * request-list for the block device interface. The character device
24 * interface, on the other hand, creates new requests, adds them
25 * to the request-list of the block device, and waits for their completion.
26 *
27 * Pipelined operation mode is now supported on both reads and writes.
28 *
29 * The block device major and minor numbers are determined from the
30 * tape's relative position in the ide interfaces, as explained in ide.c.
31 *
32 * The character device interface consists of the following devices:
33 *
34 * ht0 major 37, minor 0 first IDE tape, rewind on close.
35 * ht1 major 37, minor 1 second IDE tape, rewind on close.
36 * ...
37 * nht0 major 37, minor 128 first IDE tape, no rewind on close.
38 * nht1 major 37, minor 129 second IDE tape, no rewind on close.
39 * ...
40 *
41 * Run linux/scripts/MAKEDEV.ide to create the above entries.
42 *
43 * The general magnetic tape commands compatible interface, as defined by
44 * include/linux/mtio.h, is accessible through the character device.
45 *
46 * General ide driver configuration options, such as the interrupt-unmask
47 * flag, can be configured by issuing an ioctl to the block device interface,
48 * as any other ide device.
49 *
50 * Our own ide-tape ioctl's can be issued to either the block device or
51 * the character device interface.
52 *
53 * Maximal throughput with minimal bus load will usually be achieved in the
54 * following scenario:
55 *
56 * 1. ide-tape is operating in the pipelined operation mode.
57 * 2. No buffering is performed by the user backup program.
58 *
59 * Testing was done with a 2 GB CONNER CTMA 4000 IDE ATAPI Streaming Tape Drive.
60 *
61 * Ver 0.1 Nov 1 95 Pre-working code :-)
62 * Ver 0.2 Nov 23 95 A short backup (few megabytes) and restore procedure
63 * was successful ! (Using tar cvf ... on the block
64 * device interface).
65 * A longer backup resulted in major swapping, bad
66 * overall Linux performance and eventually failed as
67 * we received non serial read-ahead requests from the
68 * buffer cache.
69 * Ver 0.3 Nov 28 95 Long backups are now possible, thanks to the
70 * character device interface. Linux's responsiveness
71 * and performance doesn't seem to be much affected
72 * from the background backup procedure.
73 * Some general mtio.h magnetic tape operations are
74 * now supported by our character device. As a result,
75 * popular tape utilities are starting to work with
76 * ide tapes :-)
77 * The following configurations were tested:
78 * 1. An IDE ATAPI TAPE shares the same interface
79 * and irq with an IDE ATAPI CDROM.
80 * 2. An IDE ATAPI TAPE shares the same interface
81 * and irq with a normal IDE disk.
82 * Both configurations seemed to work just fine !
83 * However, to be on the safe side, it is meanwhile
84 * recommended to give the IDE TAPE its own interface
85 * and irq.
86 * The one thing which needs to be done here is to
87 * add a "request postpone" feature to ide.c,
88 * so that we won't have to wait for the tape to finish
89 * performing a long media access (DSC) request (such
90 * as a rewind) before we can access the other device
91 * on the same interface. This effect doesn't disturb
92 * normal operation most of the time because read/write
93 * requests are relatively fast, and once we are
94 * performing one tape r/w request, a lot of requests
95 * from the other device can be queued and ide.c will
96 * service all of them after this single tape request.
97 * Ver 1.0 Dec 11 95 Integrated into Linux 1.3.46 development tree.
98 * On each read / write request, we now ask the drive
99 * if we can transfer a constant number of bytes
100 * (a parameter of the drive) only to its buffers,
101 * without causing actual media access. If we can't,
102 * we just wait until we can by polling the DSC bit.
103 * This ensures that while we are not transferring
104 * more bytes than the constant referred to above, the
105 * interrupt latency will not become too high and
106 * we won't cause an interrupt timeout, as happened
107 * occasionally in the previous version.
108 * While polling for DSC, the current request is
109 * postponed and ide.c is free to handle requests from
110 * the other device. This is handled transparently to
111 * ide.c. The hwgroup locking method which was used
112 * in the previous version was removed.
113 * Use of new general features which are provided by
114 * ide.c for use with atapi devices.
115 * (Programming done by Mark Lord)
116 * Few potential bug fixes (Again, suggested by Mark)
117 * Single character device data transfers are now
118 * not limited in size, as they were before.
119 * We are asking the tape about its recommended
120 * transfer unit and send a larger data transfer
121 * as several transfers of the above size.
122 * For best results, use an integral number of this
123 * basic unit (which is shown during driver
124 * initialization). I will soon add an ioctl to get
125 * this important parameter.
126 * Our data transfer buffer is allocated on startup,
127 * rather than before each data transfer. This should
128 * ensure that we will indeed have a data buffer.
129 * Ver 1.1 Dec 14 95 Fixed random problems which occurred when the tape
130 * shared an interface with another device.
131 * (poll_for_dsc was a complete mess).
132 * Removed some old (non-active) code which had
133 * to do with supporting buffer cache originated
134 * requests.
135 * The block device interface can now be opened, so
136 * that general ide driver features like the unmask
137 * interrupts flag can be selected with an ioctl.
138 * This is the only use of the block device interface.
139 * New fast pipelined operation mode (currently only on
140 * writes). When using the pipelined mode, the
141 * throughput can potentially reach the maximum
142 * tape supported throughput, regardless of the
143 * user backup program. On my tape drive, it sometimes
144 * boosted performance by a factor of 2. Pipelined
145 * mode is enabled by default, but since it has a few
146 * downfalls as well, you may want to disable it.
147 * A short explanation of the pipelined operation mode
148 * is available below.
149 * Ver 1.2 Jan 1 96 Eliminated pipelined mode race condition.
150 * Added pipeline read mode. As a result, restores
151 * are now as fast as backups.
152 * Optimized shared interface behavior. The new behavior
153 * typically results in better IDE bus efficiency and
154 * higher tape throughput.
155 * Pre-calculation of the expected read/write request
156 * service time, based on the tape's parameters. In
157 * the pipelined operation mode, this allows us to
158 * adjust our polling frequency to a much lower value,
159 * and thus to dramatically reduce our load on Linux,
160 * without any decrease in performance.
161 * Implemented additional mtio.h operations.
162 * The recommended user block size is returned by
163 * the MTIOCGET ioctl.
164 * Additional minor changes.
165 * Ver 1.3 Feb 9 96 Fixed pipelined read mode bug which prevented the
166 * use of some block sizes during a restore procedure.
167 * The character device interface will now present a
168 * continuous view of the media - any mix of block sizes
169 * during a backup/restore procedure is supported. The
170 * driver will buffer the requests internally and
171 * convert them to the tape's recommended transfer
172 * unit, making performance almost independent of the
173 * chosen user block size.
174 * Some improvements in error recovery.
175 * By cooperating with ide-dma.c, bus mastering DMA can
176 * now sometimes be used with IDE tape drives as well.
177 * Bus mastering DMA has the potential to dramatically
178 * reduce the CPU's overhead when accessing the device,
179 * and can be enabled by using hdparm -d1 on the tape's
180 * block device interface. For more info, read the
181 * comments in ide-dma.c.
182 * Ver 1.4 Mar 13 96 Fixed serialize support.
183 * Ver 1.5 Apr 12 96 Fixed shared interface operation, broken in 1.3.85.
184 * Fixed pipelined read mode inefficiency.
185 * Fixed nasty null dereferencing bug.
186 * Ver 1.6 Aug 16 96 Fixed FPU usage in the driver.
187 * Fixed end of media bug.
188 * Ver 1.7 Sep 10 96 Minor changes for the CONNER CTT8000-A model.
189 * Ver 1.8 Sep 26 96 Attempt to find a better balance between good
190 * interactive response and high system throughput.
191 * Ver 1.9 Nov 5 96 Automatically cross encountered filemarks rather
192 * than requiring an explicit FSF command.
193 * Abort pending requests at end of media.
194 * MTTELL was sometimes returning incorrect results.
195 * Return the real block size in the MTIOCGET ioctl.
196 * Some error recovery bug fixes.
197 * Ver 1.10 Nov 5 96 Major reorganization.
198 * Reduced CPU overhead a bit by eliminating internal
199 * bounce buffers.
200 * Added module support.
201 * Added multiple tape drives support.
202 * Added partition support.
203 * Rewrote DSC handling.
204 * Some portability fixes.
205 * Removed ide-tape.h.
206 * Additional minor changes.
207 * Ver 1.11 Dec 2 96 Bug fix in previous DSC timeout handling.
208 * Use ide_stall_queue() for DSC overlap.
209 * Use the maximum speed rather than the current speed
210 * to compute the request service time.
211 * Ver 1.12 Dec 7 97 Fix random memory overwriting and/or last block data
212 * corruption, which could occur if the total number
213 * of bytes written to the tape was not an integral
214 * number of tape blocks.
215 * Add support for INTERRUPT DRQ devices.
216 * Ver 1.13 Jan 2 98 Add "speed == 0" work-around for HP COLORADO 5GB
217 * Ver 1.14 Dec 30 98 Partial fixes for the Sony/AIWA tape drives.
218 * Replace cli()/sti() with hwgroup spinlocks.
219 * Ver 1.15 Mar 25 99 Fix SMP race condition by replacing hwgroup
220 * spinlock with private per-tape spinlock.
221 * Ver 1.16 Sep 1 99 Add OnStream tape support.
222 * Abort read pipeline on EOD.
223 * Wait for the tape to become ready in case it returns
224 * "in the process of becoming ready" on open().
225 * Fix zero padding of the last written block in
226 * case the tape block size is larger than PAGE_SIZE.
227 * Decrease the default disconnection time to tn.
228 * Ver 1.16e Oct 3 99 Minor fixes.
229 * Ver 1.16e1 Oct 13 99 Patches by Arnold Niessen,
230 * niessen@iae.nl / arnold.niessen@philips.com
231 * GO-1) Undefined code in idetape_read_position
232 * according to Gadi's email
233 * AJN-1) Minor fix asc == 11 should be asc == 0x11
234 * in idetape_issue_packet_command (did effect
235 * debugging output only)
236 * AJN-2) Added more debugging output, and
237 * added ide-tape: where missing. I would also
238 * like to add tape->name where possible
239 * AJN-3) Added different debug_level's
240 * via /proc/ide/hdc/settings
241 * "debug_level" determines amount of debugging output;
242 * can be changed using /proc/ide/hdx/settings
243 * 0 : almost no debugging output
244 * 1 : 0+output errors only
245 * 2 : 1+output all sensekey/asc
246 * 3 : 2+follow all chrdev related procedures
247 * 4 : 3+follow all procedures
248 * 5 : 4+include pc_stack rq_stack info
249 * 6 : 5+USE_COUNT updates
250 * AJN-4) Fixed timeout for retension in idetape_queue_pc_tail
251 * from 5 to 10 minutes
252 * AJN-5) Changed maximum number of blocks to skip when
253 * reading tapes with multiple consecutive write
254 * errors from 100 to 1000 in idetape_get_logical_blk
255 * Proposed changes to code:
256 * 1) output "logical_blk_num" via /proc
257 * 2) output "current_operation" via /proc
258 * 3) Either solve or document the fact that `mt rewind' is
259 * required after reading from /dev/nhtx to be
260 * able to rmmod the idetape module;
261 * Also, sometimes an application finishes but the
262 * device remains `busy' for some time. Same cause ?
263 * Proposed changes to release-notes:
264 * 4) write a simple `quickstart' section in the
265 * release notes; I volunteer if you don't want to
266 * 5) include a pointer to video4linux in the doc
267 * to stimulate video applications
268 * 6) release notes lines 331 and 362: explain what happens
269 * if the application data rate is higher than 1100 KB/s;
270 * similar approach to lower-than-500 kB/s ?
271 * 7) 6.6 Comparison; wouldn't it be better to allow different
272 * strategies for read and write ?
273 * Wouldn't it be better to control the tape buffer
274 * contents instead of the bandwidth ?
275 * 8) line 536: replace will by would (if I understand
276 * this section correctly, a hypothetical and unwanted situation
277 * is being described)
278 * Ver 1.16f Dec 15 99 Change place of the secondary OnStream header frames.
279 * Ver 1.17 Nov 2000 / Jan 2001 Marcel Mol, marcel@mesa.nl
280 * - Add idetape_onstream_mode_sense_tape_parameter_page
281 * function to get tape capacity in frames: tape->capacity.
282 * - Add support for DI-50 drives( or any DI- drive).
283 * - 'workaround' for read error/blank block around block 3000.
284 * - Implement Early warning for end of media for Onstream.
285 * - Cosmetic code changes for readability.
286 * - Idetape_position_tape should not use SKIP bit during
287 * Onstream read recovery.
288 * - Add capacity, logical_blk_num and first/last_frame_position
289 * to /proc/ide/hd?/settings.
290 * - Module use count was gone in the Linux 2.4 driver.
291 * Ver 1.17a Apr 2001 Willem Riede osst@riede.org
292 * - Get drive's actual block size from mode sense block descriptor
293 * - Limit size of pipeline
294 * Ver 1.17b Oct 2002 Alan Stern <stern@rowland.harvard.edu>
295 * Changed IDETAPE_MIN_PIPELINE_STAGES to 1 and actually used
296 * it in the code!
297 * Actually removed aborted stages in idetape_abort_pipeline
298 * instead of just changing the command code.
299 * Made the transfer byte count for Request Sense equal to the
300 * actual length of the data transfer.
301 * Changed handling of partial data transfers: they do not
302 * cause DMA errors.
303 * Moved initiation of DMA transfers to the correct place.
304 * Removed reference to unallocated memory.
305 * Made __idetape_discard_read_pipeline return the number of
306 * sectors skipped, not the number of stages.
307 * Replaced errant kfree() calls with __idetape_kfree_stage().
308 * Fixed off-by-one error in testing the pipeline length.
309 * Fixed handling of filemarks in the read pipeline.
310 * Small code optimization for MTBSF and MTBSFM ioctls.
311 * Don't try to unlock the door during device close if is
312 * already unlocked!
313 * Cosmetic fixes to miscellaneous debugging output messages.
314 * Set the minimum /proc/ide/hd?/settings values for "pipeline",
315 * "pipeline_min", and "pipeline_max" to 1.
316 *
317 * Here are some words from the first releases of hd.c, which are quoted
318 * in ide.c and apply here as well:
319 *
320 * | Special care is recommended. Have Fun!
321 *
322 */
323
324/*
325 * An overview of the pipelined operation mode.
326 *
327 * In the pipelined write mode, we will usually just add requests to our
328 * pipeline and return immediately, before we even start to service them. The
329 * user program will then have enough time to prepare the next request while
330 * we are still busy servicing previous requests. In the pipelined read mode,
331 * the situation is similar - we add read-ahead requests into the pipeline,
332 * before the user even requested them.
333 *
334 * The pipeline can be viewed as a "safety net" which will be activated when
335 * the system load is high and prevents the user backup program from keeping up
336 * with the current tape speed. At this point, the pipeline will get
337 * shorter and shorter but the tape will still be streaming at the same speed.
338 * Assuming we have enough pipeline stages, the system load will hopefully
339 * decrease before the pipeline is completely empty, and the backup program
340 * will be able to "catch up" and refill the pipeline again.
341 *
342 * When using the pipelined mode, it would be best to disable any type of
343 * buffering done by the user program, as ide-tape already provides all the
344 * benefits in the kernel, where it can be done in a more efficient way.
345 * As we will usually not block the user program on a request, the most
346 * efficient user code will then be a simple read-write-read-... cycle.
347 * Any additional logic will usually just slow down the backup process.
348 *
349 * Using the pipelined mode, I get a constant over 400 KBps throughput,
350 * which seems to be the maximum throughput supported by my tape.
351 *
352 * However, there are some downfalls:
353 *
354 * 1. We use memory (for data buffers) in proportional to the number
355 * of pipeline stages (each stage is about 26 KB with my tape).
356 * 2. In the pipelined write mode, we cheat and postpone error codes
357 * to the user task. In read mode, the actual tape position
358 * will be a bit further than the last requested block.
359 *
360 * Concerning (1):
361 *
362 * 1. We allocate stages dynamically only when we need them. When
363 * we don't need them, we don't consume additional memory. In
364 * case we can't allocate stages, we just manage without them
365 * (at the expense of decreased throughput) so when Linux is
366 * tight in memory, we will not pose additional difficulties.
367 *
368 * 2. The maximum number of stages (which is, in fact, the maximum
369 * amount of memory) which we allocate is limited by the compile
370 * time parameter IDETAPE_MAX_PIPELINE_STAGES.
371 *
372 * 3. The maximum number of stages is a controlled parameter - We
373 * don't start from the user defined maximum number of stages
374 * but from the lower IDETAPE_MIN_PIPELINE_STAGES (again, we
375 * will not even allocate this amount of stages if the user
376 * program can't handle the speed). We then implement a feedback
377 * loop which checks if the pipeline is empty, and if it is, we
378 * increase the maximum number of stages as necessary until we
379 * reach the optimum value which just manages to keep the tape
380 * busy with minimum allocated memory or until we reach
381 * IDETAPE_MAX_PIPELINE_STAGES.
382 *
383 * Concerning (2):
384 *
385 * In pipelined write mode, ide-tape can not return accurate error codes
386 * to the user program since we usually just add the request to the
387 * pipeline without waiting for it to be serviced. In case an error
388 * occurs, I will report it on the next user request.
389 *
390 * In the pipelined read mode, subsequent read requests or forward
391 * filemark spacing will perform correctly, as we preserve all blocks
392 * and filemarks which we encountered during our excess read-ahead.
393 *
394 * For accurate tape positioning and error reporting, disabling
395 * pipelined mode might be the best option.
396 *
397 * You can enable/disable/tune the pipelined operation mode by adjusting
398 * the compile time parameters below.
399 */
400
401/*
402 * Possible improvements.
403 *
404 * 1. Support for the ATAPI overlap protocol.
405 *
406 * In order to maximize bus throughput, we currently use the DSC
407 * overlap method which enables ide.c to service requests from the
408 * other device while the tape is busy executing a command. The
409 * DSC overlap method involves polling the tape's status register
410 * for the DSC bit, and servicing the other device while the tape
411 * isn't ready.
412 *
413 * In the current QIC development standard (December 1995),
414 * it is recommended that new tape drives will *in addition*
415 * implement the ATAPI overlap protocol, which is used for the
416 * same purpose - efficient use of the IDE bus, but is interrupt
417 * driven and thus has much less CPU overhead.
418 *
419 * ATAPI overlap is likely to be supported in most new ATAPI
420 * devices, including new ATAPI cdroms, and thus provides us
421 * a method by which we can achieve higher throughput when
422 * sharing a (fast) ATA-2 disk with any (slow) new ATAPI device.
423 */
424
425#define IDETAPE_VERSION "1.19"
426
1da177e4
LT
427#include <linux/module.h>
428#include <linux/types.h>
429#include <linux/string.h>
430#include <linux/kernel.h>
431#include <linux/delay.h>
432#include <linux/timer.h>
433#include <linux/mm.h>
434#include <linux/interrupt.h>
9bae1ff3 435#include <linux/jiffies.h>
1da177e4 436#include <linux/major.h>
1da177e4
LT
437#include <linux/errno.h>
438#include <linux/genhd.h>
439#include <linux/slab.h>
440#include <linux/pci.h>
441#include <linux/ide.h>
442#include <linux/smp_lock.h>
443#include <linux/completion.h>
444#include <linux/bitops.h>
cf8b8975 445#include <linux/mutex.h>
1da177e4
LT
446
447#include <asm/byteorder.h>
448#include <asm/irq.h>
449#include <asm/uaccess.h>
450#include <asm/io.h>
451#include <asm/unaligned.h>
452
453/*
454 * partition
455 */
456typedef struct os_partition_s {
457 __u8 partition_num;
458 __u8 par_desc_ver;
459 __u16 wrt_pass_cntr;
460 __u32 first_frame_addr;
461 __u32 last_frame_addr;
462 __u32 eod_frame_addr;
463} os_partition_t;
464
465/*
466 * DAT entry
467 */
468typedef struct os_dat_entry_s {
469 __u32 blk_sz;
470 __u16 blk_cnt;
471 __u8 flags;
472 __u8 reserved;
473} os_dat_entry_t;
474
475/*
476 * DAT
477 */
478#define OS_DAT_FLAGS_DATA (0xc)
479#define OS_DAT_FLAGS_MARK (0x1)
480
481typedef struct os_dat_s {
482 __u8 dat_sz;
483 __u8 reserved1;
484 __u8 entry_cnt;
485 __u8 reserved3;
486 os_dat_entry_t dat_list[16];
487} os_dat_t;
488
489#include <linux/mtio.h>
490
491/**************************** Tunable parameters *****************************/
492
493
494/*
495 * Pipelined mode parameters.
496 *
497 * We try to use the minimum number of stages which is enough to
498 * keep the tape constantly streaming. To accomplish that, we implement
499 * a feedback loop around the maximum number of stages:
500 *
501 * We start from MIN maximum stages (we will not even use MIN stages
502 * if we don't need them), increment it by RATE*(MAX-MIN)
503 * whenever we sense that the pipeline is empty, until we reach
504 * the optimum value or until we reach MAX.
505 *
506 * Setting the following parameter to 0 is illegal: the pipelined mode
507 * cannot be disabled (calculate_speeds() divides by tape->max_stages.)
508 */
509#define IDETAPE_MIN_PIPELINE_STAGES 1
510#define IDETAPE_MAX_PIPELINE_STAGES 400
511#define IDETAPE_INCREASE_STAGES_RATE 20
512
513/*
514 * The following are used to debug the driver:
515 *
516 * Setting IDETAPE_DEBUG_INFO to 1 will report device capabilities.
517 * Setting IDETAPE_DEBUG_LOG to 1 will log driver flow control.
518 * Setting IDETAPE_DEBUG_BUGS to 1 will enable self-sanity checks in
519 * some places.
520 *
521 * Setting them to 0 will restore normal operation mode:
522 *
523 * 1. Disable logging normal successful operations.
524 * 2. Disable self-sanity checks.
525 * 3. Errors will still be logged, of course.
526 *
527 * All the #if DEBUG code will be removed some day, when the driver
528 * is verified to be stable enough. This will make it much more
529 * esthetic.
530 */
531#define IDETAPE_DEBUG_INFO 0
532#define IDETAPE_DEBUG_LOG 0
533#define IDETAPE_DEBUG_BUGS 1
534
535/*
536 * After each failed packet command we issue a request sense command
537 * and retry the packet command IDETAPE_MAX_PC_RETRIES times.
538 *
539 * Setting IDETAPE_MAX_PC_RETRIES to 0 will disable retries.
540 */
541#define IDETAPE_MAX_PC_RETRIES 3
542
543/*
544 * With each packet command, we allocate a buffer of
545 * IDETAPE_PC_BUFFER_SIZE bytes. This is used for several packet
546 * commands (Not for READ/WRITE commands).
547 */
548#define IDETAPE_PC_BUFFER_SIZE 256
549
550/*
551 * In various places in the driver, we need to allocate storage
552 * for packet commands and requests, which will remain valid while
553 * we leave the driver to wait for an interrupt or a timeout event.
554 */
555#define IDETAPE_PC_STACK (10 + IDETAPE_MAX_PC_RETRIES)
556
557/*
558 * Some drives (for example, Seagate STT3401A Travan) require a very long
559 * timeout, because they don't return an interrupt or clear their busy bit
560 * until after the command completes (even retension commands).
561 */
562#define IDETAPE_WAIT_CMD (900*HZ)
563
564/*
565 * The following parameter is used to select the point in the internal
566 * tape fifo in which we will start to refill the buffer. Decreasing
567 * the following parameter will improve the system's latency and
3a4fa0a2 568 * interactive response, while using a high value might improve system
1da177e4
LT
569 * throughput.
570 */
571#define IDETAPE_FIFO_THRESHOLD 2
572
573/*
574 * DSC polling parameters.
575 *
576 * Polling for DSC (a single bit in the status register) is a very
577 * important function in ide-tape. There are two cases in which we
578 * poll for DSC:
579 *
580 * 1. Before a read/write packet command, to ensure that we
581 * can transfer data from/to the tape's data buffers, without
582 * causing an actual media access. In case the tape is not
583 * ready yet, we take out our request from the device
584 * request queue, so that ide.c will service requests from
585 * the other device on the same interface meanwhile.
586 *
587 * 2. After the successful initialization of a "media access
588 * packet command", which is a command which can take a long
589 * time to complete (it can be several seconds or even an hour).
590 *
591 * Again, we postpone our request in the middle to free the bus
592 * for the other device. The polling frequency here should be
593 * lower than the read/write frequency since those media access
594 * commands are slow. We start from a "fast" frequency -
595 * IDETAPE_DSC_MA_FAST (one second), and if we don't receive DSC
596 * after IDETAPE_DSC_MA_THRESHOLD (5 minutes), we switch it to a
597 * lower frequency - IDETAPE_DSC_MA_SLOW (1 minute).
598 *
599 * We also set a timeout for the timer, in case something goes wrong.
600 * The timeout should be longer then the maximum execution time of a
601 * tape operation.
602 */
603
604/*
605 * DSC timings.
606 */
607#define IDETAPE_DSC_RW_MIN 5*HZ/100 /* 50 msec */
608#define IDETAPE_DSC_RW_MAX 40*HZ/100 /* 400 msec */
609#define IDETAPE_DSC_RW_TIMEOUT 2*60*HZ /* 2 minutes */
610#define IDETAPE_DSC_MA_FAST 2*HZ /* 2 seconds */
611#define IDETAPE_DSC_MA_THRESHOLD 5*60*HZ /* 5 minutes */
612#define IDETAPE_DSC_MA_SLOW 30*HZ /* 30 seconds */
613#define IDETAPE_DSC_MA_TIMEOUT 2*60*60*HZ /* 2 hours */
614
615/*************************** End of tunable parameters ***********************/
616
1da177e4
LT
617/*
618 * Read/Write error simulation
619 */
620#define SIMULATE_ERRORS 0
621
622/*
623 * For general magnetic tape device compatibility.
624 */
625typedef enum {
626 idetape_direction_none,
627 idetape_direction_read,
628 idetape_direction_write
629} idetape_chrdev_direction_t;
630
631struct idetape_bh {
ab057968 632 u32 b_size;
1da177e4
LT
633 atomic_t b_count;
634 struct idetape_bh *b_reqnext;
635 char *b_data;
636};
637
638/*
639 * Our view of a packet command.
640 */
641typedef struct idetape_packet_command_s {
642 u8 c[12]; /* Actual packet bytes */
643 int retries; /* On each retry, we increment retries */
644 int error; /* Error code */
645 int request_transfer; /* Bytes to transfer */
646 int actually_transferred; /* Bytes actually transferred */
647 int buffer_size; /* Size of our data buffer */
648 struct idetape_bh *bh;
649 char *b_data;
650 int b_count;
651 u8 *buffer; /* Data buffer */
652 u8 *current_position; /* Pointer into the above buffer */
653 ide_startstop_t (*callback) (ide_drive_t *); /* Called when this packet command is completed */
654 u8 pc_buffer[IDETAPE_PC_BUFFER_SIZE]; /* Temporary buffer */
655 unsigned long flags; /* Status/Action bit flags: long for set_bit */
656} idetape_pc_t;
657
658/*
659 * Packet command flag bits.
660 */
661/* Set when an error is considered normal - We won't retry */
662#define PC_ABORT 0
663/* 1 When polling for DSC on a media access command */
664#define PC_WAIT_FOR_DSC 1
665/* 1 when we prefer to use DMA if possible */
666#define PC_DMA_RECOMMENDED 2
667/* 1 while DMA in progress */
668#define PC_DMA_IN_PROGRESS 3
669/* 1 when encountered problem during DMA */
670#define PC_DMA_ERROR 4
671/* Data direction */
672#define PC_WRITING 5
673
674/*
675 * Capabilities and Mechanical Status Page
676 */
677typedef struct {
678 unsigned page_code :6; /* Page code - Should be 0x2a */
679 __u8 reserved0_6 :1;
680 __u8 ps :1; /* parameters saveable */
681 __u8 page_length; /* Page Length - Should be 0x12 */
682 __u8 reserved2, reserved3;
683 unsigned ro :1; /* Read Only Mode */
684 unsigned reserved4_1234 :4;
685 unsigned sprev :1; /* Supports SPACE in the reverse direction */
686 unsigned reserved4_67 :2;
687 unsigned reserved5_012 :3;
688 unsigned efmt :1; /* Supports ERASE command initiated formatting */
689 unsigned reserved5_4 :1;
690 unsigned qfa :1; /* Supports the QFA two partition formats */
691 unsigned reserved5_67 :2;
692 unsigned lock :1; /* Supports locking the volume */
693 unsigned locked :1; /* The volume is locked */
694 unsigned prevent :1; /* The device defaults in the prevent state after power up */
695 unsigned eject :1; /* The device can eject the volume */
696 __u8 disconnect :1; /* The device can break request > ctl */
697 __u8 reserved6_5 :1;
698 unsigned ecc :1; /* Supports error correction */
699 unsigned cmprs :1; /* Supports data compression */
700 unsigned reserved7_0 :1;
701 unsigned blk512 :1; /* Supports 512 bytes block size */
702 unsigned blk1024 :1; /* Supports 1024 bytes block size */
703 unsigned reserved7_3_6 :4;
704 unsigned blk32768 :1; /* slowb - the device restricts the byte count for PIO */
705 /* transfers for slow buffer memory ??? */
706 /* Also 32768 block size in some cases */
707 __u16 max_speed; /* Maximum speed supported in KBps */
708 __u8 reserved10, reserved11;
709 __u16 ctl; /* Continuous Transfer Limit in blocks */
710 __u16 speed; /* Current Speed, in KBps */
711 __u16 buffer_size; /* Buffer Size, in 512 bytes */
712 __u8 reserved18, reserved19;
713} idetape_capabilities_page_t;
714
715/*
716 * Block Size Page
717 */
718typedef struct {
719 unsigned page_code :6; /* Page code - Should be 0x30 */
720 unsigned reserved1_6 :1;
721 unsigned ps :1;
722 __u8 page_length; /* Page Length - Should be 2 */
723 __u8 reserved2;
724 unsigned play32 :1;
725 unsigned play32_5 :1;
726 unsigned reserved2_23 :2;
727 unsigned record32 :1;
728 unsigned record32_5 :1;
729 unsigned reserved2_6 :1;
730 unsigned one :1;
731} idetape_block_size_page_t;
732
733/*
734 * A pipeline stage.
735 */
736typedef struct idetape_stage_s {
737 struct request rq; /* The corresponding request */
738 struct idetape_bh *bh; /* The data buffers */
739 struct idetape_stage_s *next; /* Pointer to the next stage */
740} idetape_stage_t;
741
742/*
743 * REQUEST SENSE packet command result - Data Format.
744 */
745typedef struct {
746 unsigned error_code :7; /* Current of deferred errors */
747 unsigned valid :1; /* The information field conforms to QIC-157C */
748 __u8 reserved1 :8; /* Segment Number - Reserved */
749 unsigned sense_key :4; /* Sense Key */
750 unsigned reserved2_4 :1; /* Reserved */
751 unsigned ili :1; /* Incorrect Length Indicator */
752 unsigned eom :1; /* End Of Medium */
753 unsigned filemark :1; /* Filemark */
754 __u32 information __attribute__ ((packed));
755 __u8 asl; /* Additional sense length (n-7) */
756 __u32 command_specific; /* Additional command specific information */
757 __u8 asc; /* Additional Sense Code */
758 __u8 ascq; /* Additional Sense Code Qualifier */
759 __u8 replaceable_unit_code; /* Field Replaceable Unit Code */
760 unsigned sk_specific1 :7; /* Sense Key Specific */
761 unsigned sksv :1; /* Sense Key Specific information is valid */
762 __u8 sk_specific2; /* Sense Key Specific */
763 __u8 sk_specific3; /* Sense Key Specific */
764 __u8 pad[2]; /* Padding to 20 bytes */
765} idetape_request_sense_result_t;
766
767
768/*
769 * Most of our global data which we need to save even as we leave the
770 * driver due to an interrupt or a timer event is stored in a variable
771 * of type idetape_tape_t, defined below.
772 */
773typedef struct ide_tape_obj {
774 ide_drive_t *drive;
775 ide_driver_t *driver;
776 struct gendisk *disk;
777 struct kref kref;
778
779 /*
780 * Since a typical character device operation requires more
781 * than one packet command, we provide here enough memory
782 * for the maximum of interconnected packet commands.
783 * The packet commands are stored in the circular array pc_stack.
784 * pc_stack_index points to the last used entry, and warps around
785 * to the start when we get to the last array entry.
786 *
787 * pc points to the current processed packet command.
788 *
789 * failed_pc points to the last failed packet command, or contains
790 * NULL if we do not need to retry any packet command. This is
791 * required since an additional packet command is needed before the
792 * retry, to get detailed information on what went wrong.
793 */
794 /* Current packet command */
795 idetape_pc_t *pc;
796 /* Last failed packet command */
797 idetape_pc_t *failed_pc;
798 /* Packet command stack */
799 idetape_pc_t pc_stack[IDETAPE_PC_STACK];
800 /* Next free packet command storage space */
801 int pc_stack_index;
802 struct request rq_stack[IDETAPE_PC_STACK];
803 /* We implement a circular array */
804 int rq_stack_index;
805
806 /*
807 * DSC polling variables.
808 *
809 * While polling for DSC we use postponed_rq to postpone the
810 * current request so that ide.c will be able to service
811 * pending requests on the other device. Note that at most
812 * we will have only one DSC (usually data transfer) request
813 * in the device request queue. Additional requests can be
814 * queued in our internal pipeline, but they will be visible
815 * to ide.c only one at a time.
816 */
817 struct request *postponed_rq;
818 /* The time in which we started polling for DSC */
819 unsigned long dsc_polling_start;
820 /* Timer used to poll for dsc */
821 struct timer_list dsc_timer;
822 /* Read/Write dsc polling frequency */
823 unsigned long best_dsc_rw_frequency;
824 /* The current polling frequency */
825 unsigned long dsc_polling_frequency;
826 /* Maximum waiting time */
827 unsigned long dsc_timeout;
828
829 /*
830 * Read position information
831 */
832 u8 partition;
833 /* Current block */
834 unsigned int first_frame_position;
835 unsigned int last_frame_position;
836 unsigned int blocks_in_buffer;
837
838 /*
839 * Last error information
840 */
841 u8 sense_key, asc, ascq;
842
843 /*
844 * Character device operation
845 */
846 unsigned int minor;
847 /* device name */
848 char name[4];
849 /* Current character device data transfer direction */
850 idetape_chrdev_direction_t chrdev_direction;
851
852 /*
853 * Device information
854 */
855 /* Usually 512 or 1024 bytes */
856 unsigned short tape_block_size;
857 int user_bs_factor;
858 /* Copy of the tape's Capabilities and Mechanical Page */
859 idetape_capabilities_page_t capabilities;
860
861 /*
862 * Active data transfer request parameters.
863 *
864 * At most, there is only one ide-tape originated data transfer
865 * request in the device request queue. This allows ide.c to
866 * easily service requests from the other device when we
867 * postpone our active request. In the pipelined operation
868 * mode, we use our internal pipeline structure to hold
869 * more data requests.
870 *
871 * The data buffer size is chosen based on the tape's
872 * recommendation.
873 */
874 /* Pointer to the request which is waiting in the device request queue */
875 struct request *active_data_request;
876 /* Data buffer size (chosen based on the tape's recommendation */
877 int stage_size;
878 idetape_stage_t *merge_stage;
879 int merge_stage_size;
880 struct idetape_bh *bh;
881 char *b_data;
882 int b_count;
883
884 /*
885 * Pipeline parameters.
886 *
887 * To accomplish non-pipelined mode, we simply set the following
888 * variables to zero (or NULL, where appropriate).
889 */
890 /* Number of currently used stages */
891 int nr_stages;
892 /* Number of pending stages */
893 int nr_pending_stages;
894 /* We will not allocate more than this number of stages */
895 int max_stages, min_pipeline, max_pipeline;
896 /* The first stage which will be removed from the pipeline */
897 idetape_stage_t *first_stage;
898 /* The currently active stage */
899 idetape_stage_t *active_stage;
900 /* Will be serviced after the currently active request */
901 idetape_stage_t *next_stage;
902 /* New requests will be added to the pipeline here */
903 idetape_stage_t *last_stage;
904 /* Optional free stage which we can use */
905 idetape_stage_t *cache_stage;
906 int pages_per_stage;
907 /* Wasted space in each stage */
908 int excess_bh_size;
909
910 /* Status/Action flags: long for set_bit */
911 unsigned long flags;
912 /* protects the ide-tape queue */
913 spinlock_t spinlock;
914
915 /*
916 * Measures average tape speed
917 */
918 unsigned long avg_time;
919 int avg_size;
920 int avg_speed;
921
922 /* last sense information */
923 idetape_request_sense_result_t sense;
924
925 char vendor_id[10];
926 char product_id[18];
927 char firmware_revision[6];
928 int firmware_revision_num;
929
930 /* the door is currently locked */
931 int door_locked;
932 /* the tape hardware is write protected */
933 char drv_write_prot;
934 /* the tape is write protected (hardware or opened as read-only) */
935 char write_prot;
936
937 /*
938 * Limit the number of times a request can
939 * be postponed, to avoid an infinite postpone
940 * deadlock.
941 */
942 /* request postpone count limit */
943 int postpone_cnt;
944
945 /*
946 * Measures number of frames:
947 *
948 * 1. written/read to/from the driver pipeline (pipeline_head).
949 * 2. written/read to/from the tape buffers (idetape_bh).
950 * 3. written/read by the tape to/from the media (tape_head).
951 */
952 int pipeline_head;
953 int buffer_head;
954 int tape_head;
955 int last_tape_head;
956
957 /*
958 * Speed control at the tape buffers input/output
959 */
960 unsigned long insert_time;
961 int insert_size;
962 int insert_speed;
963 int max_insert_speed;
964 int measure_insert_time;
965
966 /*
967 * Measure tape still time, in milliseconds
968 */
969 unsigned long tape_still_time_begin;
970 int tape_still_time;
971
972 /*
973 * Speed regulation negative feedback loop
974 */
975 int speed_control;
976 int pipeline_head_speed;
977 int controlled_pipeline_head_speed;
978 int uncontrolled_pipeline_head_speed;
979 int controlled_last_pipeline_head;
980 int uncontrolled_last_pipeline_head;
981 unsigned long uncontrolled_pipeline_head_time;
982 unsigned long controlled_pipeline_head_time;
983 int controlled_previous_pipeline_head;
984 int uncontrolled_previous_pipeline_head;
985 unsigned long controlled_previous_head_time;
986 unsigned long uncontrolled_previous_head_time;
987 int restart_speed_control_req;
988
989 /*
990 * Debug_level determines amount of debugging output;
991 * can be changed using /proc/ide/hdx/settings
992 * 0 : almost no debugging output
993 * 1 : 0+output errors only
994 * 2 : 1+output all sensekey/asc
995 * 3 : 2+follow all chrdev related procedures
996 * 4 : 3+follow all procedures
997 * 5 : 4+include pc_stack rq_stack info
998 * 6 : 5+USE_COUNT updates
999 */
1000 int debug_level;
1001} idetape_tape_t;
1002
cf8b8975 1003static DEFINE_MUTEX(idetape_ref_mutex);
1da177e4 1004
d5dee80a
WD
1005static struct class *idetape_sysfs_class;
1006
1da177e4
LT
1007#define to_ide_tape(obj) container_of(obj, struct ide_tape_obj, kref)
1008
1009#define ide_tape_g(disk) \
1010 container_of((disk)->private_data, struct ide_tape_obj, driver)
1011
1012static struct ide_tape_obj *ide_tape_get(struct gendisk *disk)
1013{
1014 struct ide_tape_obj *tape = NULL;
1015
cf8b8975 1016 mutex_lock(&idetape_ref_mutex);
1da177e4
LT
1017 tape = ide_tape_g(disk);
1018 if (tape)
1019 kref_get(&tape->kref);
cf8b8975 1020 mutex_unlock(&idetape_ref_mutex);
1da177e4
LT
1021 return tape;
1022}
1023
1024static void ide_tape_release(struct kref *);
1025
1026static void ide_tape_put(struct ide_tape_obj *tape)
1027{
cf8b8975 1028 mutex_lock(&idetape_ref_mutex);
1da177e4 1029 kref_put(&tape->kref, ide_tape_release);
cf8b8975 1030 mutex_unlock(&idetape_ref_mutex);
1da177e4
LT
1031}
1032
1033/*
1034 * Tape door status
1035 */
1036#define DOOR_UNLOCKED 0
1037#define DOOR_LOCKED 1
1038#define DOOR_EXPLICITLY_LOCKED 2
1039
1040/*
1041 * Tape flag bits values.
1042 */
1043#define IDETAPE_IGNORE_DSC 0
1044#define IDETAPE_ADDRESS_VALID 1 /* 0 When the tape position is unknown */
1045#define IDETAPE_BUSY 2 /* Device already opened */
1046#define IDETAPE_PIPELINE_ERROR 3 /* Error detected in a pipeline stage */
1047#define IDETAPE_DETECT_BS 4 /* Attempt to auto-detect the current user block size */
1048#define IDETAPE_FILEMARK 5 /* Currently on a filemark */
1049#define IDETAPE_DRQ_INTERRUPT 6 /* DRQ interrupt device */
1050#define IDETAPE_READ_ERROR 7
1051#define IDETAPE_PIPELINE_ACTIVE 8 /* pipeline active */
1052/* 0 = no tape is loaded, so we don't rewind after ejecting */
1053#define IDETAPE_MEDIUM_PRESENT 9
1054
1055/*
1056 * Supported ATAPI tape drives packet commands
1057 */
1058#define IDETAPE_TEST_UNIT_READY_CMD 0x00
1059#define IDETAPE_REWIND_CMD 0x01
1060#define IDETAPE_REQUEST_SENSE_CMD 0x03
1061#define IDETAPE_READ_CMD 0x08
1062#define IDETAPE_WRITE_CMD 0x0a
1063#define IDETAPE_WRITE_FILEMARK_CMD 0x10
1064#define IDETAPE_SPACE_CMD 0x11
1065#define IDETAPE_INQUIRY_CMD 0x12
1066#define IDETAPE_ERASE_CMD 0x19
1067#define IDETAPE_MODE_SENSE_CMD 0x1a
1068#define IDETAPE_MODE_SELECT_CMD 0x15
1069#define IDETAPE_LOAD_UNLOAD_CMD 0x1b
1070#define IDETAPE_PREVENT_CMD 0x1e
1071#define IDETAPE_LOCATE_CMD 0x2b
1072#define IDETAPE_READ_POSITION_CMD 0x34
1073#define IDETAPE_READ_BUFFER_CMD 0x3c
1074#define IDETAPE_SET_SPEED_CMD 0xbb
1075
1076/*
1077 * Some defines for the READ BUFFER command
1078 */
1079#define IDETAPE_RETRIEVE_FAULTY_BLOCK 6
1080
1081/*
1082 * Some defines for the SPACE command
1083 */
1084#define IDETAPE_SPACE_OVER_FILEMARK 1
1085#define IDETAPE_SPACE_TO_EOD 3
1086
1087/*
1088 * Some defines for the LOAD UNLOAD command
1089 */
1090#define IDETAPE_LU_LOAD_MASK 1
1091#define IDETAPE_LU_RETENSION_MASK 2
1092#define IDETAPE_LU_EOT_MASK 4
1093
1094/*
1095 * Special requests for our block device strategy routine.
1096 *
1097 * In order to service a character device command, we add special
1098 * requests to the tail of our block device request queue and wait
1099 * for their completion.
1100 */
1101
1102enum {
1103 REQ_IDETAPE_PC1 = (1 << 0), /* packet command (first stage) */
1104 REQ_IDETAPE_PC2 = (1 << 1), /* packet command (second stage) */
1105 REQ_IDETAPE_READ = (1 << 2),
1106 REQ_IDETAPE_WRITE = (1 << 3),
1107 REQ_IDETAPE_READ_BUFFER = (1 << 4),
1108};
1109
1110/*
1111 * Error codes which are returned in rq->errors to the higher part
1112 * of the driver.
1113 */
1114#define IDETAPE_ERROR_GENERAL 101
1115#define IDETAPE_ERROR_FILEMARK 102
1116#define IDETAPE_ERROR_EOD 103
1117
1118/*
1119 * The following is used to format the general configuration word of
1120 * the ATAPI IDENTIFY DEVICE command.
1121 */
1122struct idetape_id_gcw {
1123 unsigned packet_size :2; /* Packet Size */
1124 unsigned reserved234 :3; /* Reserved */
1125 unsigned drq_type :2; /* Command packet DRQ type */
1126 unsigned removable :1; /* Removable media */
1127 unsigned device_type :5; /* Device type */
1128 unsigned reserved13 :1; /* Reserved */
1129 unsigned protocol :2; /* Protocol type */
1130};
1131
1132/*
1133 * INQUIRY packet command - Data Format (From Table 6-8 of QIC-157C)
1134 */
1135typedef struct {
1136 unsigned device_type :5; /* Peripheral Device Type */
1137 unsigned reserved0_765 :3; /* Peripheral Qualifier - Reserved */
1138 unsigned reserved1_6t0 :7; /* Reserved */
1139 unsigned rmb :1; /* Removable Medium Bit */
1140 unsigned ansi_version :3; /* ANSI Version */
1141 unsigned ecma_version :3; /* ECMA Version */
1142 unsigned iso_version :2; /* ISO Version */
1143 unsigned response_format :4; /* Response Data Format */
1144 unsigned reserved3_45 :2; /* Reserved */
1145 unsigned reserved3_6 :1; /* TrmIOP - Reserved */
1146 unsigned reserved3_7 :1; /* AENC - Reserved */
1147 __u8 additional_length; /* Additional Length (total_length-4) */
1148 __u8 rsv5, rsv6, rsv7; /* Reserved */
1149 __u8 vendor_id[8]; /* Vendor Identification */
1150 __u8 product_id[16]; /* Product Identification */
1151 __u8 revision_level[4]; /* Revision Level */
1152 __u8 vendor_specific[20]; /* Vendor Specific - Optional */
1153 __u8 reserved56t95[40]; /* Reserved - Optional */
1154 /* Additional information may be returned */
1155} idetape_inquiry_result_t;
1156
1157/*
1158 * READ POSITION packet command - Data Format (From Table 6-57)
1159 */
1160typedef struct {
1161 unsigned reserved0_10 :2; /* Reserved */
1162 unsigned bpu :1; /* Block Position Unknown */
1163 unsigned reserved0_543 :3; /* Reserved */
1164 unsigned eop :1; /* End Of Partition */
1165 unsigned bop :1; /* Beginning Of Partition */
1166 u8 partition; /* Partition Number */
1167 u8 reserved2, reserved3; /* Reserved */
1168 u32 first_block; /* First Block Location */
1169 u32 last_block; /* Last Block Location (Optional) */
1170 u8 reserved12; /* Reserved */
1171 u8 blocks_in_buffer[3]; /* Blocks In Buffer - (Optional) */
1172 u32 bytes_in_buffer; /* Bytes In Buffer (Optional) */
1173} idetape_read_position_result_t;
1174
1175/*
1176 * Follows structures which are related to the SELECT SENSE / MODE SENSE
1177 * packet commands. Those packet commands are still not supported
1178 * by ide-tape.
1179 */
1180#define IDETAPE_BLOCK_DESCRIPTOR 0
1181#define IDETAPE_CAPABILITIES_PAGE 0x2a
1182#define IDETAPE_PARAMTR_PAGE 0x2b /* Onstream DI-x0 only */
1183#define IDETAPE_BLOCK_SIZE_PAGE 0x30
1184#define IDETAPE_BUFFER_FILLING_PAGE 0x33
1185
1186/*
1187 * Mode Parameter Header for the MODE SENSE packet command
1188 */
1189typedef struct {
1190 __u8 mode_data_length; /* Length of the following data transfer */
1191 __u8 medium_type; /* Medium Type */
1192 __u8 dsp; /* Device Specific Parameter */
1193 __u8 bdl; /* Block Descriptor Length */
1194#if 0
1195 /* data transfer page */
1196 __u8 page_code :6;
1197 __u8 reserved0_6 :1;
1198 __u8 ps :1; /* parameters saveable */
1199 __u8 page_length; /* page Length == 0x02 */
1200 __u8 reserved2;
1201 __u8 read32k :1; /* 32k blk size (data only) */
1202 __u8 read32k5 :1; /* 32.5k blk size (data&AUX) */
1203 __u8 reserved3_23 :2;
1204 __u8 write32k :1; /* 32k blk size (data only) */
1205 __u8 write32k5 :1; /* 32.5k blk size (data&AUX) */
1206 __u8 reserved3_6 :1;
1207 __u8 streaming :1; /* streaming mode enable */
1208#endif
1209} idetape_mode_parameter_header_t;
1210
1211/*
1212 * Mode Parameter Block Descriptor the MODE SENSE packet command
1213 *
1214 * Support for block descriptors is optional.
1215 */
1216typedef struct {
1217 __u8 density_code; /* Medium density code */
1218 __u8 blocks[3]; /* Number of blocks */
1219 __u8 reserved4; /* Reserved */
1220 __u8 length[3]; /* Block Length */
1221} idetape_parameter_block_descriptor_t;
1222
1223/*
1224 * The Data Compression Page, as returned by the MODE SENSE packet command.
1225 */
1226typedef struct {
1227 unsigned page_code :6; /* Page Code - Should be 0xf */
1228 unsigned reserved0 :1; /* Reserved */
1229 unsigned ps :1;
1230 __u8 page_length; /* Page Length - Should be 14 */
1231 unsigned reserved2 :6; /* Reserved */
1232 unsigned dcc :1; /* Data Compression Capable */
1233 unsigned dce :1; /* Data Compression Enable */
1234 unsigned reserved3 :5; /* Reserved */
1235 unsigned red :2; /* Report Exception on Decompression */
1236 unsigned dde :1; /* Data Decompression Enable */
1237 __u32 ca; /* Compression Algorithm */
1238 __u32 da; /* Decompression Algorithm */
1239 __u8 reserved[4]; /* Reserved */
1240} idetape_data_compression_page_t;
1241
1242/*
1243 * The Medium Partition Page, as returned by the MODE SENSE packet command.
1244 */
1245typedef struct {
1246 unsigned page_code :6; /* Page Code - Should be 0x11 */
1247 unsigned reserved1_6 :1; /* Reserved */
1248 unsigned ps :1;
1249 __u8 page_length; /* Page Length - Should be 6 */
1250 __u8 map; /* Maximum Additional Partitions - Should be 0 */
1251 __u8 apd; /* Additional Partitions Defined - Should be 0 */
1252 unsigned reserved4_012 :3; /* Reserved */
1253 unsigned psum :2; /* Should be 0 */
1254 unsigned idp :1; /* Should be 0 */
1255 unsigned sdp :1; /* Should be 0 */
1256 unsigned fdp :1; /* Fixed Data Partitions */
1257 __u8 mfr; /* Medium Format Recognition */
1258 __u8 reserved[2]; /* Reserved */
1259} idetape_medium_partition_page_t;
1260
1261/*
1262 * Run time configurable parameters.
1263 */
1264typedef struct {
1265 int dsc_rw_frequency;
1266 int dsc_media_access_frequency;
1267 int nr_stages;
1268} idetape_config_t;
1269
1270/*
1271 * The variables below are used for the character device interface.
1272 * Additional state variables are defined in our ide_drive_t structure.
1273 */
1274static struct ide_tape_obj * idetape_devs[MAX_HWIFS * MAX_DRIVES];
1275
1276#define ide_tape_f(file) ((file)->private_data)
1277
1278static struct ide_tape_obj *ide_tape_chrdev_get(unsigned int i)
1279{
1280 struct ide_tape_obj *tape = NULL;
1281
cf8b8975 1282 mutex_lock(&idetape_ref_mutex);
1da177e4
LT
1283 tape = idetape_devs[i];
1284 if (tape)
1285 kref_get(&tape->kref);
cf8b8975 1286 mutex_unlock(&idetape_ref_mutex);
1da177e4
LT
1287 return tape;
1288}
1289
1290/*
1291 * Function declarations
1292 *
1293 */
1294static int idetape_chrdev_release (struct inode *inode, struct file *filp);
1295static void idetape_write_release (ide_drive_t *drive, unsigned int minor);
1296
1297/*
1298 * Too bad. The drive wants to send us data which we are not ready to accept.
1299 * Just throw it away.
1300 */
1301static void idetape_discard_data (ide_drive_t *drive, unsigned int bcount)
1302{
1303 while (bcount--)
1304 (void) HWIF(drive)->INB(IDE_DATA_REG);
1305}
1306
1307static void idetape_input_buffers (ide_drive_t *drive, idetape_pc_t *pc, unsigned int bcount)
1308{
1309 struct idetape_bh *bh = pc->bh;
1310 int count;
1311
1312 while (bcount) {
1313#if IDETAPE_DEBUG_BUGS
1314 if (bh == NULL) {
1315 printk(KERN_ERR "ide-tape: bh == NULL in "
1316 "idetape_input_buffers\n");
1317 idetape_discard_data(drive, bcount);
1318 return;
1319 }
1320#endif /* IDETAPE_DEBUG_BUGS */
1321 count = min((unsigned int)(bh->b_size - atomic_read(&bh->b_count)), bcount);
1322 HWIF(drive)->atapi_input_bytes(drive, bh->b_data + atomic_read(&bh->b_count), count);
1323 bcount -= count;
1324 atomic_add(count, &bh->b_count);
1325 if (atomic_read(&bh->b_count) == bh->b_size) {
1326 bh = bh->b_reqnext;
1327 if (bh)
1328 atomic_set(&bh->b_count, 0);
1329 }
1330 }
1331 pc->bh = bh;
1332}
1333
1334static void idetape_output_buffers (ide_drive_t *drive, idetape_pc_t *pc, unsigned int bcount)
1335{
1336 struct idetape_bh *bh = pc->bh;
1337 int count;
1338
1339 while (bcount) {
1340#if IDETAPE_DEBUG_BUGS
1341 if (bh == NULL) {
1342 printk(KERN_ERR "ide-tape: bh == NULL in "
1343 "idetape_output_buffers\n");
1344 return;
1345 }
1346#endif /* IDETAPE_DEBUG_BUGS */
1347 count = min((unsigned int)pc->b_count, (unsigned int)bcount);
1348 HWIF(drive)->atapi_output_bytes(drive, pc->b_data, count);
1349 bcount -= count;
1350 pc->b_data += count;
1351 pc->b_count -= count;
1352 if (!pc->b_count) {
1353 pc->bh = bh = bh->b_reqnext;
1354 if (bh) {
1355 pc->b_data = bh->b_data;
1356 pc->b_count = atomic_read(&bh->b_count);
1357 }
1358 }
1359 }
1360}
1361
1362static void idetape_update_buffers (idetape_pc_t *pc)
1363{
1364 struct idetape_bh *bh = pc->bh;
1365 int count;
1366 unsigned int bcount = pc->actually_transferred;
1367
1368 if (test_bit(PC_WRITING, &pc->flags))
1369 return;
1370 while (bcount) {
1371#if IDETAPE_DEBUG_BUGS
1372 if (bh == NULL) {
1373 printk(KERN_ERR "ide-tape: bh == NULL in "
1374 "idetape_update_buffers\n");
1375 return;
1376 }
1377#endif /* IDETAPE_DEBUG_BUGS */
1378 count = min((unsigned int)bh->b_size, (unsigned int)bcount);
1379 atomic_set(&bh->b_count, count);
1380 if (atomic_read(&bh->b_count) == bh->b_size)
1381 bh = bh->b_reqnext;
1382 bcount -= count;
1383 }
1384 pc->bh = bh;
1385}
1386
1387/*
1388 * idetape_next_pc_storage returns a pointer to a place in which we can
1389 * safely store a packet command, even though we intend to leave the
1390 * driver. A storage space for a maximum of IDETAPE_PC_STACK packet
1391 * commands is allocated at initialization time.
1392 */
1393static idetape_pc_t *idetape_next_pc_storage (ide_drive_t *drive)
1394{
1395 idetape_tape_t *tape = drive->driver_data;
1396
1397#if IDETAPE_DEBUG_LOG
1398 if (tape->debug_level >= 5)
1399 printk(KERN_INFO "ide-tape: pc_stack_index=%d\n",
1400 tape->pc_stack_index);
1401#endif /* IDETAPE_DEBUG_LOG */
1402 if (tape->pc_stack_index == IDETAPE_PC_STACK)
1403 tape->pc_stack_index=0;
1404 return (&tape->pc_stack[tape->pc_stack_index++]);
1405}
1406
1407/*
1408 * idetape_next_rq_storage is used along with idetape_next_pc_storage.
1409 * Since we queue packet commands in the request queue, we need to
1410 * allocate a request, along with the allocation of a packet command.
1411 */
1412
1413/**************************************************************
1414 * *
1415 * This should get fixed to use kmalloc(.., GFP_ATOMIC) *
1416 * followed later on by kfree(). -ml *
1417 * *
1418 **************************************************************/
1419
1420static struct request *idetape_next_rq_storage (ide_drive_t *drive)
1421{
1422 idetape_tape_t *tape = drive->driver_data;
1423
1424#if IDETAPE_DEBUG_LOG
1425 if (tape->debug_level >= 5)
1426 printk(KERN_INFO "ide-tape: rq_stack_index=%d\n",
1427 tape->rq_stack_index);
1428#endif /* IDETAPE_DEBUG_LOG */
1429 if (tape->rq_stack_index == IDETAPE_PC_STACK)
1430 tape->rq_stack_index=0;
1431 return (&tape->rq_stack[tape->rq_stack_index++]);
1432}
1433
1434/*
1435 * idetape_init_pc initializes a packet command.
1436 */
1437static void idetape_init_pc (idetape_pc_t *pc)
1438{
1439 memset(pc->c, 0, 12);
1440 pc->retries = 0;
1441 pc->flags = 0;
1442 pc->request_transfer = 0;
1443 pc->buffer = pc->pc_buffer;
1444 pc->buffer_size = IDETAPE_PC_BUFFER_SIZE;
1445 pc->bh = NULL;
1446 pc->b_data = NULL;
1447}
1448
1449/*
1450 * idetape_analyze_error is called on each failed packet command retry
1451 * to analyze the request sense. We currently do not utilize this
1452 * information.
1453 */
1454static void idetape_analyze_error (ide_drive_t *drive, idetape_request_sense_result_t *result)
1455{
1456 idetape_tape_t *tape = drive->driver_data;
1457 idetape_pc_t *pc = tape->failed_pc;
1458
1459 tape->sense = *result;
1460 tape->sense_key = result->sense_key;
1461 tape->asc = result->asc;
1462 tape->ascq = result->ascq;
1463#if IDETAPE_DEBUG_LOG
1464 /*
1465 * Without debugging, we only log an error if we decided to
1466 * give up retrying.
1467 */
1468 if (tape->debug_level >= 1)
1469 printk(KERN_INFO "ide-tape: pc = %x, sense key = %x, "
1470 "asc = %x, ascq = %x\n",
1471 pc->c[0], result->sense_key,
1472 result->asc, result->ascq);
1473#endif /* IDETAPE_DEBUG_LOG */
1474
1475 /*
1476 * Correct pc->actually_transferred by asking the tape.
1477 */
1478 if (test_bit(PC_DMA_ERROR, &pc->flags)) {
1479 pc->actually_transferred = pc->request_transfer - tape->tape_block_size * ntohl(get_unaligned(&result->information));
1480 idetape_update_buffers(pc);
1481 }
1482
1483 /*
1484 * If error was the result of a zero-length read or write command,
1485 * with sense key=5, asc=0x22, ascq=0, let it slide. Some drives
1486 * (i.e. Seagate STT3401A Travan) don't support 0-length read/writes.
1487 */
1488 if ((pc->c[0] == IDETAPE_READ_CMD || pc->c[0] == IDETAPE_WRITE_CMD)
1489 && pc->c[4] == 0 && pc->c[3] == 0 && pc->c[2] == 0) { /* length==0 */
1490 if (result->sense_key == 5) {
1491 /* don't report an error, everything's ok */
1492 pc->error = 0;
1493 /* don't retry read/write */
1494 set_bit(PC_ABORT, &pc->flags);
1495 }
1496 }
1497 if (pc->c[0] == IDETAPE_READ_CMD && result->filemark) {
1498 pc->error = IDETAPE_ERROR_FILEMARK;
1499 set_bit(PC_ABORT, &pc->flags);
1500 }
1501 if (pc->c[0] == IDETAPE_WRITE_CMD) {
1502 if (result->eom ||
1503 (result->sense_key == 0xd && result->asc == 0x0 &&
1504 result->ascq == 0x2)) {
1505 pc->error = IDETAPE_ERROR_EOD;
1506 set_bit(PC_ABORT, &pc->flags);
1507 }
1508 }
1509 if (pc->c[0] == IDETAPE_READ_CMD || pc->c[0] == IDETAPE_WRITE_CMD) {
1510 if (result->sense_key == 8) {
1511 pc->error = IDETAPE_ERROR_EOD;
1512 set_bit(PC_ABORT, &pc->flags);
1513 }
1514 if (!test_bit(PC_ABORT, &pc->flags) &&
1515 pc->actually_transferred)
1516 pc->retries = IDETAPE_MAX_PC_RETRIES + 1;
1517 }
1518}
1519
1520/*
1521 * idetape_active_next_stage will declare the next stage as "active".
1522 */
1523static void idetape_active_next_stage (ide_drive_t *drive)
1524{
1525 idetape_tape_t *tape = drive->driver_data;
1526 idetape_stage_t *stage = tape->next_stage;
1527 struct request *rq = &stage->rq;
1528
1529#if IDETAPE_DEBUG_LOG
1530 if (tape->debug_level >= 4)
1531 printk(KERN_INFO "ide-tape: Reached idetape_active_next_stage\n");
1532#endif /* IDETAPE_DEBUG_LOG */
1533#if IDETAPE_DEBUG_BUGS
1534 if (stage == NULL) {
1535 printk(KERN_ERR "ide-tape: bug: Trying to activate a non existing stage\n");
1536 return;
1537 }
1538#endif /* IDETAPE_DEBUG_BUGS */
1539
1540 rq->rq_disk = tape->disk;
1541 rq->buffer = NULL;
1542 rq->special = (void *)stage->bh;
1543 tape->active_data_request = rq;
1544 tape->active_stage = stage;
1545 tape->next_stage = stage->next;
1546}
1547
1548/*
1549 * idetape_increase_max_pipeline_stages is a part of the feedback
1550 * loop which tries to find the optimum number of stages. In the
1551 * feedback loop, we are starting from a minimum maximum number of
1552 * stages, and if we sense that the pipeline is empty, we try to
1553 * increase it, until we reach the user compile time memory limit.
1554 */
1555static void idetape_increase_max_pipeline_stages (ide_drive_t *drive)
1556{
1557 idetape_tape_t *tape = drive->driver_data;
1558 int increase = (tape->max_pipeline - tape->min_pipeline) / 10;
1559
1560#if IDETAPE_DEBUG_LOG
1561 if (tape->debug_level >= 4)
1562 printk (KERN_INFO "ide-tape: Reached idetape_increase_max_pipeline_stages\n");
1563#endif /* IDETAPE_DEBUG_LOG */
1564
1565 tape->max_stages += max(increase, 1);
1566 tape->max_stages = max(tape->max_stages, tape->min_pipeline);
1567 tape->max_stages = min(tape->max_stages, tape->max_pipeline);
1568}
1569
1570/*
1571 * idetape_kfree_stage calls kfree to completely free a stage, along with
1572 * its related buffers.
1573 */
1574static void __idetape_kfree_stage (idetape_stage_t *stage)
1575{
1576 struct idetape_bh *prev_bh, *bh = stage->bh;
1577 int size;
1578
1579 while (bh != NULL) {
1580 if (bh->b_data != NULL) {
1581 size = (int) bh->b_size;
1582 while (size > 0) {
1583 free_page((unsigned long) bh->b_data);
1584 size -= PAGE_SIZE;
1585 bh->b_data += PAGE_SIZE;
1586 }
1587 }
1588 prev_bh = bh;
1589 bh = bh->b_reqnext;
1590 kfree(prev_bh);
1591 }
1592 kfree(stage);
1593}
1594
1595static void idetape_kfree_stage (idetape_tape_t *tape, idetape_stage_t *stage)
1596{
1597 __idetape_kfree_stage(stage);
1598}
1599
1600/*
1601 * idetape_remove_stage_head removes tape->first_stage from the pipeline.
1602 * The caller should avoid race conditions.
1603 */
1604static void idetape_remove_stage_head (ide_drive_t *drive)
1605{
1606 idetape_tape_t *tape = drive->driver_data;
1607 idetape_stage_t *stage;
1608
1609#if IDETAPE_DEBUG_LOG
1610 if (tape->debug_level >= 4)
1611 printk(KERN_INFO "ide-tape: Reached idetape_remove_stage_head\n");
1612#endif /* IDETAPE_DEBUG_LOG */
1613#if IDETAPE_DEBUG_BUGS
1614 if (tape->first_stage == NULL) {
1615 printk(KERN_ERR "ide-tape: bug: tape->first_stage is NULL\n");
1616 return;
1617 }
1618 if (tape->active_stage == tape->first_stage) {
1619 printk(KERN_ERR "ide-tape: bug: Trying to free our active pipeline stage\n");
1620 return;
1621 }
1622#endif /* IDETAPE_DEBUG_BUGS */
1623 stage = tape->first_stage;
1624 tape->first_stage = stage->next;
1625 idetape_kfree_stage(tape, stage);
1626 tape->nr_stages--;
1627 if (tape->first_stage == NULL) {
1628 tape->last_stage = NULL;
1629#if IDETAPE_DEBUG_BUGS
1630 if (tape->next_stage != NULL)
1631 printk(KERN_ERR "ide-tape: bug: tape->next_stage != NULL\n");
1632 if (tape->nr_stages)
1633 printk(KERN_ERR "ide-tape: bug: nr_stages should be 0 now\n");
1634#endif /* IDETAPE_DEBUG_BUGS */
1635 }
1636}
1637
1638/*
1639 * This will free all the pipeline stages starting from new_last_stage->next
1640 * to the end of the list, and point tape->last_stage to new_last_stage.
1641 */
1642static void idetape_abort_pipeline(ide_drive_t *drive,
1643 idetape_stage_t *new_last_stage)
1644{
1645 idetape_tape_t *tape = drive->driver_data;
1646 idetape_stage_t *stage = new_last_stage->next;
1647 idetape_stage_t *nstage;
1648
1649#if IDETAPE_DEBUG_LOG
1650 if (tape->debug_level >= 4)
1651 printk(KERN_INFO "ide-tape: %s: idetape_abort_pipeline called\n", tape->name);
1652#endif
1653 while (stage) {
1654 nstage = stage->next;
1655 idetape_kfree_stage(tape, stage);
1656 --tape->nr_stages;
1657 --tape->nr_pending_stages;
1658 stage = nstage;
1659 }
1660 if (new_last_stage)
1661 new_last_stage->next = NULL;
1662 tape->last_stage = new_last_stage;
1663 tape->next_stage = NULL;
1664}
1665
1666/*
1667 * idetape_end_request is used to finish servicing a request, and to
1668 * insert a pending pipeline request into the main device queue.
1669 */
1670static int idetape_end_request(ide_drive_t *drive, int uptodate, int nr_sects)
1671{
1672 struct request *rq = HWGROUP(drive)->rq;
1673 idetape_tape_t *tape = drive->driver_data;
1674 unsigned long flags;
1675 int error;
1676 int remove_stage = 0;
1677 idetape_stage_t *active_stage;
1678
1679#if IDETAPE_DEBUG_LOG
1680 if (tape->debug_level >= 4)
1681 printk(KERN_INFO "ide-tape: Reached idetape_end_request\n");
1682#endif /* IDETAPE_DEBUG_LOG */
1683
1684 switch (uptodate) {
1685 case 0: error = IDETAPE_ERROR_GENERAL; break;
1686 case 1: error = 0; break;
1687 default: error = uptodate;
1688 }
1689 rq->errors = error;
1690 if (error)
1691 tape->failed_pc = NULL;
1692
1693 spin_lock_irqsave(&tape->spinlock, flags);
1694
1695 /* The request was a pipelined data transfer request */
1696 if (tape->active_data_request == rq) {
1697 active_stage = tape->active_stage;
1698 tape->active_stage = NULL;
1699 tape->active_data_request = NULL;
1700 tape->nr_pending_stages--;
1701 if (rq->cmd[0] & REQ_IDETAPE_WRITE) {
1702 remove_stage = 1;
1703 if (error) {
1704 set_bit(IDETAPE_PIPELINE_ERROR, &tape->flags);
1705 if (error == IDETAPE_ERROR_EOD)
1706 idetape_abort_pipeline(drive, active_stage);
1707 }
1708 } else if (rq->cmd[0] & REQ_IDETAPE_READ) {
1709 if (error == IDETAPE_ERROR_EOD) {
1710 set_bit(IDETAPE_PIPELINE_ERROR, &tape->flags);
1711 idetape_abort_pipeline(drive, active_stage);
1712 }
1713 }
1714 if (tape->next_stage != NULL) {
1715 idetape_active_next_stage(drive);
1716
1717 /*
1718 * Insert the next request into the request queue.
1719 */
1720 (void) ide_do_drive_cmd(drive, tape->active_data_request, ide_end);
1721 } else if (!error) {
1722 idetape_increase_max_pipeline_stages(drive);
1723 }
1724 }
1725 ide_end_drive_cmd(drive, 0, 0);
1726// blkdev_dequeue_request(rq);
1727// drive->rq = NULL;
1728// end_that_request_last(rq);
1729
1730 if (remove_stage)
1731 idetape_remove_stage_head(drive);
1732 if (tape->active_data_request == NULL)
1733 clear_bit(IDETAPE_PIPELINE_ACTIVE, &tape->flags);
1734 spin_unlock_irqrestore(&tape->spinlock, flags);
1735 return 0;
1736}
1737
1738static ide_startstop_t idetape_request_sense_callback (ide_drive_t *drive)
1739{
1740 idetape_tape_t *tape = drive->driver_data;
1741
1742#if IDETAPE_DEBUG_LOG
1743 if (tape->debug_level >= 4)
1744 printk(KERN_INFO "ide-tape: Reached idetape_request_sense_callback\n");
1745#endif /* IDETAPE_DEBUG_LOG */
1746 if (!tape->pc->error) {
1747 idetape_analyze_error(drive, (idetape_request_sense_result_t *) tape->pc->buffer);
1748 idetape_end_request(drive, 1, 0);
1749 } else {
1750 printk(KERN_ERR "ide-tape: Error in REQUEST SENSE itself - Aborting request!\n");
1751 idetape_end_request(drive, 0, 0);
1752 }
1753 return ide_stopped;
1754}
1755
1756static void idetape_create_request_sense_cmd (idetape_pc_t *pc)
1757{
1758 idetape_init_pc(pc);
1759 pc->c[0] = IDETAPE_REQUEST_SENSE_CMD;
1760 pc->c[4] = 20;
1761 pc->request_transfer = 20;
1762 pc->callback = &idetape_request_sense_callback;
1763}
1764
1765static void idetape_init_rq(struct request *rq, u8 cmd)
1766{
1767 memset(rq, 0, sizeof(*rq));
4aff5e23 1768 rq->cmd_type = REQ_TYPE_SPECIAL;
1da177e4
LT
1769 rq->cmd[0] = cmd;
1770}
1771
1772/*
1773 * idetape_queue_pc_head generates a new packet command request in front
1774 * of the request queue, before the current request, so that it will be
1775 * processed immediately, on the next pass through the driver.
1776 *
1777 * idetape_queue_pc_head is called from the request handling part of
1778 * the driver (the "bottom" part). Safe storage for the request should
1779 * be allocated with idetape_next_pc_storage and idetape_next_rq_storage
1780 * before calling idetape_queue_pc_head.
1781 *
1782 * Memory for those requests is pre-allocated at initialization time, and
1783 * is limited to IDETAPE_PC_STACK requests. We assume that we have enough
1784 * space for the maximum possible number of inter-dependent packet commands.
1785 *
1786 * The higher level of the driver - The ioctl handler and the character
1787 * device handling functions should queue request to the lower level part
1788 * and wait for their completion using idetape_queue_pc_tail or
1789 * idetape_queue_rw_tail.
1790 */
1791static void idetape_queue_pc_head (ide_drive_t *drive, idetape_pc_t *pc,struct request *rq)
1792{
1793 struct ide_tape_obj *tape = drive->driver_data;
1794
1795 idetape_init_rq(rq, REQ_IDETAPE_PC1);
1796 rq->buffer = (char *) pc;
1797 rq->rq_disk = tape->disk;
1798 (void) ide_do_drive_cmd(drive, rq, ide_preempt);
1799}
1800
1801/*
1802 * idetape_retry_pc is called when an error was detected during the
1803 * last packet command. We queue a request sense packet command in
1804 * the head of the request list.
1805 */
1806static ide_startstop_t idetape_retry_pc (ide_drive_t *drive)
1807{
1808 idetape_tape_t *tape = drive->driver_data;
1809 idetape_pc_t *pc;
1810 struct request *rq;
1da177e4 1811
0e38a66a 1812 (void)drive->hwif->INB(IDE_ERROR_REG);
1da177e4
LT
1813 pc = idetape_next_pc_storage(drive);
1814 rq = idetape_next_rq_storage(drive);
1815 idetape_create_request_sense_cmd(pc);
1816 set_bit(IDETAPE_IGNORE_DSC, &tape->flags);
1817 idetape_queue_pc_head(drive, pc, rq);
1818 return ide_stopped;
1819}
1820
1821/*
1822 * idetape_postpone_request postpones the current request so that
1823 * ide.c will be able to service requests from another device on
1824 * the same hwgroup while we are polling for DSC.
1825 */
1826static void idetape_postpone_request (ide_drive_t *drive)
1827{
1828 idetape_tape_t *tape = drive->driver_data;
1829
1830#if IDETAPE_DEBUG_LOG
1831 if (tape->debug_level >= 4)
1832 printk(KERN_INFO "ide-tape: idetape_postpone_request\n");
1833#endif
1834 tape->postponed_rq = HWGROUP(drive)->rq;
1835 ide_stall_queue(drive, tape->dsc_polling_frequency);
1836}
1837
1838/*
1839 * idetape_pc_intr is the usual interrupt handler which will be called
1840 * during a packet command. We will transfer some of the data (as
1841 * requested by the drive) and will re-point interrupt handler to us.
1842 * When data transfer is finished, we will act according to the
1843 * algorithm described before idetape_issue_packet_command.
1844 *
1845 */
1846static ide_startstop_t idetape_pc_intr (ide_drive_t *drive)
1847{
1848 ide_hwif_t *hwif = drive->hwif;
1849 idetape_tape_t *tape = drive->driver_data;
1da177e4
LT
1850 atapi_bcount_t bcount;
1851 atapi_ireason_t ireason;
1852 idetape_pc_t *pc = tape->pc;
1da177e4
LT
1853 unsigned int temp;
1854#if SIMULATE_ERRORS
1855 static int error_sim_count = 0;
1856#endif
22c525b9 1857 u8 stat;
1da177e4
LT
1858
1859#if IDETAPE_DEBUG_LOG
1860 if (tape->debug_level >= 4)
1861 printk(KERN_INFO "ide-tape: Reached idetape_pc_intr "
1862 "interrupt handler\n");
1863#endif /* IDETAPE_DEBUG_LOG */
1864
1865 /* Clear the interrupt */
22c525b9 1866 stat = hwif->INB(IDE_STATUS_REG);
1da177e4
LT
1867
1868 if (test_bit(PC_DMA_IN_PROGRESS, &pc->flags)) {
22c525b9 1869 if (hwif->ide_dma_end(drive) || (stat & ERR_STAT)) {
1da177e4
LT
1870 /*
1871 * A DMA error is sometimes expected. For example,
1872 * if the tape is crossing a filemark during a
1873 * READ command, it will issue an irq and position
1874 * itself before the filemark, so that only a partial
1875 * data transfer will occur (which causes the DMA
1876 * error). In that case, we will later ask the tape
1877 * how much bytes of the original request were
1878 * actually transferred (we can't receive that
1879 * information from the DMA engine on most chipsets).
1880 */
1881
1882 /*
1883 * On the contrary, a DMA error is never expected;
1884 * it usually indicates a hardware error or abort.
1885 * If the tape crosses a filemark during a READ
1886 * command, it will issue an irq and position itself
1887 * after the filemark (not before). Only a partial
1888 * data transfer will occur, but no DMA error.
1889 * (AS, 19 Apr 2001)
1890 */
1891 set_bit(PC_DMA_ERROR, &pc->flags);
1892 } else {
1893 pc->actually_transferred = pc->request_transfer;
1894 idetape_update_buffers(pc);
1895 }
1896#if IDETAPE_DEBUG_LOG
1897 if (tape->debug_level >= 4)
1898 printk(KERN_INFO "ide-tape: DMA finished\n");
1899#endif /* IDETAPE_DEBUG_LOG */
1900 }
1901
1902 /* No more interrupts */
22c525b9 1903 if ((stat & DRQ_STAT) == 0) {
1da177e4
LT
1904#if IDETAPE_DEBUG_LOG
1905 if (tape->debug_level >= 2)
1906 printk(KERN_INFO "ide-tape: Packet command completed, %d bytes transferred\n", pc->actually_transferred);
1907#endif /* IDETAPE_DEBUG_LOG */
1908 clear_bit(PC_DMA_IN_PROGRESS, &pc->flags);
1909
1910 local_irq_enable();
1911
1912#if SIMULATE_ERRORS
1913 if ((pc->c[0] == IDETAPE_WRITE_CMD ||
1914 pc->c[0] == IDETAPE_READ_CMD) &&
1915 (++error_sim_count % 100) == 0) {
1916 printk(KERN_INFO "ide-tape: %s: simulating error\n",
1917 tape->name);
22c525b9 1918 stat |= ERR_STAT;
1da177e4
LT
1919 }
1920#endif
22c525b9
BZ
1921 if ((stat & ERR_STAT) && pc->c[0] == IDETAPE_REQUEST_SENSE_CMD)
1922 stat &= ~ERR_STAT;
1923 if ((stat & ERR_STAT) || test_bit(PC_DMA_ERROR, &pc->flags)) {
1924 /* Error detected */
1da177e4
LT
1925#if IDETAPE_DEBUG_LOG
1926 if (tape->debug_level >= 1)
1927 printk(KERN_INFO "ide-tape: %s: I/O error\n",
1928 tape->name);
1929#endif /* IDETAPE_DEBUG_LOG */
1930 if (pc->c[0] == IDETAPE_REQUEST_SENSE_CMD) {
1931 printk(KERN_ERR "ide-tape: I/O error in request sense command\n");
1932 return ide_do_reset(drive);
1933 }
1934#if IDETAPE_DEBUG_LOG
1935 if (tape->debug_level >= 1)
1936 printk(KERN_INFO "ide-tape: [cmd %x]: check condition\n", pc->c[0]);
1937#endif
1938 /* Retry operation */
1939 return idetape_retry_pc(drive);
1940 }
1941 pc->error = 0;
1942 if (test_bit(PC_WAIT_FOR_DSC, &pc->flags) &&
22c525b9 1943 (stat & SEEK_STAT) == 0) {
1da177e4
LT
1944 /* Media access command */
1945 tape->dsc_polling_start = jiffies;
1946 tape->dsc_polling_frequency = IDETAPE_DSC_MA_FAST;
1947 tape->dsc_timeout = jiffies + IDETAPE_DSC_MA_TIMEOUT;
1948 /* Allow ide.c to handle other requests */
1949 idetape_postpone_request(drive);
1950 return ide_stopped;
1951 }
1952 if (tape->failed_pc == pc)
1953 tape->failed_pc = NULL;
1954 /* Command finished - Call the callback function */
1955 return pc->callback(drive);
1956 }
1957 if (test_and_clear_bit(PC_DMA_IN_PROGRESS, &pc->flags)) {
1958 printk(KERN_ERR "ide-tape: The tape wants to issue more "
1959 "interrupts in DMA mode\n");
1960 printk(KERN_ERR "ide-tape: DMA disabled, reverting to PIO\n");
7469aaf6 1961 ide_dma_off(drive);
1da177e4
LT
1962 return ide_do_reset(drive);
1963 }
1964 /* Get the number of bytes to transfer on this interrupt. */
1965 bcount.b.high = hwif->INB(IDE_BCOUNTH_REG);
1966 bcount.b.low = hwif->INB(IDE_BCOUNTL_REG);
1967
1968 ireason.all = hwif->INB(IDE_IREASON_REG);
1969
1970 if (ireason.b.cod) {
1971 printk(KERN_ERR "ide-tape: CoD != 0 in idetape_pc_intr\n");
1972 return ide_do_reset(drive);
1973 }
1974 if (ireason.b.io == test_bit(PC_WRITING, &pc->flags)) {
1975 /* Hopefully, we will never get here */
1976 printk(KERN_ERR "ide-tape: We wanted to %s, ",
1977 ireason.b.io ? "Write":"Read");
1978 printk(KERN_ERR "ide-tape: but the tape wants us to %s !\n",
1979 ireason.b.io ? "Read":"Write");
1980 return ide_do_reset(drive);
1981 }
1982 if (!test_bit(PC_WRITING, &pc->flags)) {
1983 /* Reading - Check that we have enough space */
1984 temp = pc->actually_transferred + bcount.all;
1985 if (temp > pc->request_transfer) {
1986 if (temp > pc->buffer_size) {
1987 printk(KERN_ERR "ide-tape: The tape wants to send us more data than expected - discarding data\n");
1988 idetape_discard_data(drive, bcount.all);
1989 ide_set_handler(drive, &idetape_pc_intr, IDETAPE_WAIT_CMD, NULL);
1990 return ide_started;
1991 }
1992#if IDETAPE_DEBUG_LOG
1993 if (tape->debug_level >= 2)
1994 printk(KERN_NOTICE "ide-tape: The tape wants to send us more data than expected - allowing transfer\n");
1995#endif /* IDETAPE_DEBUG_LOG */
1996 }
1997 }
1998 if (test_bit(PC_WRITING, &pc->flags)) {
1999 if (pc->bh != NULL)
2000 idetape_output_buffers(drive, pc, bcount.all);
2001 else
2002 /* Write the current buffer */
2003 HWIF(drive)->atapi_output_bytes(drive, pc->current_position, bcount.all);
2004 } else {
2005 if (pc->bh != NULL)
2006 idetape_input_buffers(drive, pc, bcount.all);
2007 else
2008 /* Read the current buffer */
2009 HWIF(drive)->atapi_input_bytes(drive, pc->current_position, bcount.all);
2010 }
2011 /* Update the current position */
2012 pc->actually_transferred += bcount.all;
2013 pc->current_position += bcount.all;
2014#if IDETAPE_DEBUG_LOG
2015 if (tape->debug_level >= 2)
2016 printk(KERN_INFO "ide-tape: [cmd %x] transferred %d bytes on that interrupt\n", pc->c[0], bcount.all);
2017#endif
2018 /* And set the interrupt handler again */
2019 ide_set_handler(drive, &idetape_pc_intr, IDETAPE_WAIT_CMD, NULL);
2020 return ide_started;
2021}
2022
2023/*
2024 * Packet Command Interface
2025 *
2026 * The current Packet Command is available in tape->pc, and will not
2027 * change until we finish handling it. Each packet command is associated
2028 * with a callback function that will be called when the command is
2029 * finished.
2030 *
2031 * The handling will be done in three stages:
2032 *
2033 * 1. idetape_issue_packet_command will send the packet command to the
2034 * drive, and will set the interrupt handler to idetape_pc_intr.
2035 *
2036 * 2. On each interrupt, idetape_pc_intr will be called. This step
2037 * will be repeated until the device signals us that no more
2038 * interrupts will be issued.
2039 *
2040 * 3. ATAPI Tape media access commands have immediate status with a
2041 * delayed process. In case of a successful initiation of a
2042 * media access packet command, the DSC bit will be set when the
2043 * actual execution of the command is finished.
2044 * Since the tape drive will not issue an interrupt, we have to
2045 * poll for this event. In this case, we define the request as
2046 * "low priority request" by setting rq_status to
2047 * IDETAPE_RQ_POSTPONED, set a timer to poll for DSC and exit
2048 * the driver.
2049 *
2050 * ide.c will then give higher priority to requests which
2051 * originate from the other device, until will change rq_status
2052 * to RQ_ACTIVE.
2053 *
2054 * 4. When the packet command is finished, it will be checked for errors.
2055 *
2056 * 5. In case an error was found, we queue a request sense packet
2057 * command in front of the request queue and retry the operation
2058 * up to IDETAPE_MAX_PC_RETRIES times.
2059 *
2060 * 6. In case no error was found, or we decided to give up and not
2061 * to retry again, the callback function will be called and then
2062 * we will handle the next request.
2063 *
2064 */
2065static ide_startstop_t idetape_transfer_pc(ide_drive_t *drive)
2066{
2067 ide_hwif_t *hwif = drive->hwif;
2068 idetape_tape_t *tape = drive->driver_data;
2069 idetape_pc_t *pc = tape->pc;
2070 atapi_ireason_t ireason;
2071 int retries = 100;
2072 ide_startstop_t startstop;
2073
2074 if (ide_wait_stat(&startstop,drive,DRQ_STAT,BUSY_STAT,WAIT_READY)) {
2075 printk(KERN_ERR "ide-tape: Strange, packet command initiated yet DRQ isn't asserted\n");
2076 return startstop;
2077 }
2078 ireason.all = hwif->INB(IDE_IREASON_REG);
2079 while (retries-- && (!ireason.b.cod || ireason.b.io)) {
2080 printk(KERN_ERR "ide-tape: (IO,CoD != (0,1) while issuing "
2081 "a packet command, retrying\n");
2082 udelay(100);
2083 ireason.all = hwif->INB(IDE_IREASON_REG);
2084 if (retries == 0) {
2085 printk(KERN_ERR "ide-tape: (IO,CoD != (0,1) while "
2086 "issuing a packet command, ignoring\n");
2087 ireason.b.cod = 1;
2088 ireason.b.io = 0;
2089 }
2090 }
2091 if (!ireason.b.cod || ireason.b.io) {
2092 printk(KERN_ERR "ide-tape: (IO,CoD) != (0,1) while issuing "
2093 "a packet command\n");
2094 return ide_do_reset(drive);
2095 }
2096 /* Set the interrupt routine */
2097 ide_set_handler(drive, &idetape_pc_intr, IDETAPE_WAIT_CMD, NULL);
2098#ifdef CONFIG_BLK_DEV_IDEDMA
2099 /* Begin DMA, if necessary */
2100 if (test_bit(PC_DMA_IN_PROGRESS, &pc->flags))
2101 hwif->dma_start(drive);
2102#endif
2103 /* Send the actual packet */
2104 HWIF(drive)->atapi_output_bytes(drive, pc->c, 12);
2105 return ide_started;
2106}
2107
2108static ide_startstop_t idetape_issue_packet_command (ide_drive_t *drive, idetape_pc_t *pc)
2109{
2110 ide_hwif_t *hwif = drive->hwif;
2111 idetape_tape_t *tape = drive->driver_data;
2112 atapi_bcount_t bcount;
2113 int dma_ok = 0;
2114
2115#if IDETAPE_DEBUG_BUGS
2116 if (tape->pc->c[0] == IDETAPE_REQUEST_SENSE_CMD &&
2117 pc->c[0] == IDETAPE_REQUEST_SENSE_CMD) {
2118 printk(KERN_ERR "ide-tape: possible ide-tape.c bug - "
2119 "Two request sense in serial were issued\n");
2120 }
2121#endif /* IDETAPE_DEBUG_BUGS */
2122
2123 if (tape->failed_pc == NULL && pc->c[0] != IDETAPE_REQUEST_SENSE_CMD)
2124 tape->failed_pc = pc;
2125 /* Set the current packet command */
2126 tape->pc = pc;
2127
2128 if (pc->retries > IDETAPE_MAX_PC_RETRIES ||
2129 test_bit(PC_ABORT, &pc->flags)) {
2130 /*
2131 * We will "abort" retrying a packet command in case
2132 * a legitimate error code was received (crossing a
2133 * filemark, or end of the media, for example).
2134 */
2135 if (!test_bit(PC_ABORT, &pc->flags)) {
2136 if (!(pc->c[0] == IDETAPE_TEST_UNIT_READY_CMD &&
2137 tape->sense_key == 2 && tape->asc == 4 &&
2138 (tape->ascq == 1 || tape->ascq == 8))) {
2139 printk(KERN_ERR "ide-tape: %s: I/O error, "
2140 "pc = %2x, key = %2x, "
2141 "asc = %2x, ascq = %2x\n",
2142 tape->name, pc->c[0],
2143 tape->sense_key, tape->asc,
2144 tape->ascq);
2145 }
2146 /* Giving up */
2147 pc->error = IDETAPE_ERROR_GENERAL;
2148 }
2149 tape->failed_pc = NULL;
2150 return pc->callback(drive);
2151 }
2152#if IDETAPE_DEBUG_LOG
2153 if (tape->debug_level >= 2)
2154 printk(KERN_INFO "ide-tape: Retry number - %d, cmd = %02X\n", pc->retries, pc->c[0]);
2155#endif /* IDETAPE_DEBUG_LOG */
2156
2157 pc->retries++;
2158 /* We haven't transferred any data yet */
2159 pc->actually_transferred = 0;
2160 pc->current_position = pc->buffer;
2161 /* Request to transfer the entire buffer at once */
2162 bcount.all = pc->request_transfer;
2163
2164 if (test_and_clear_bit(PC_DMA_ERROR, &pc->flags)) {
2165 printk(KERN_WARNING "ide-tape: DMA disabled, "
2166 "reverting to PIO\n");
7469aaf6 2167 ide_dma_off(drive);
1da177e4
LT
2168 }
2169 if (test_bit(PC_DMA_RECOMMENDED, &pc->flags) && drive->using_dma)
2170 dma_ok = !hwif->dma_setup(drive);
2171
2172 if (IDE_CONTROL_REG)
2173 hwif->OUTB(drive->ctl, IDE_CONTROL_REG);
2174 hwif->OUTB(dma_ok ? 1 : 0, IDE_FEATURE_REG); /* Use PIO/DMA */
2175 hwif->OUTB(bcount.b.high, IDE_BCOUNTH_REG);
2176 hwif->OUTB(bcount.b.low, IDE_BCOUNTL_REG);
2177 hwif->OUTB(drive->select.all, IDE_SELECT_REG);
2178 if (dma_ok) /* Will begin DMA later */
2179 set_bit(PC_DMA_IN_PROGRESS, &pc->flags);
2180 if (test_bit(IDETAPE_DRQ_INTERRUPT, &tape->flags)) {
2181 ide_set_handler(drive, &idetape_transfer_pc, IDETAPE_WAIT_CMD, NULL);
2182 hwif->OUTB(WIN_PACKETCMD, IDE_COMMAND_REG);
2183 return ide_started;
2184 } else {
2185 hwif->OUTB(WIN_PACKETCMD, IDE_COMMAND_REG);
2186 return idetape_transfer_pc(drive);
2187 }
2188}
2189
2190/*
2191 * General packet command callback function.
2192 */
2193static ide_startstop_t idetape_pc_callback (ide_drive_t *drive)
2194{
2195 idetape_tape_t *tape = drive->driver_data;
2196
2197#if IDETAPE_DEBUG_LOG
2198 if (tape->debug_level >= 4)
2199 printk(KERN_INFO "ide-tape: Reached idetape_pc_callback\n");
2200#endif /* IDETAPE_DEBUG_LOG */
2201
2202 idetape_end_request(drive, tape->pc->error ? 0 : 1, 0);
2203 return ide_stopped;
2204}
2205
2206/*
2207 * A mode sense command is used to "sense" tape parameters.
2208 */
2209static void idetape_create_mode_sense_cmd (idetape_pc_t *pc, u8 page_code)
2210{
2211 idetape_init_pc(pc);
2212 pc->c[0] = IDETAPE_MODE_SENSE_CMD;
2213 if (page_code != IDETAPE_BLOCK_DESCRIPTOR)
2214 pc->c[1] = 8; /* DBD = 1 - Don't return block descriptors */
2215 pc->c[2] = page_code;
2216 /*
2217 * Changed pc->c[3] to 0 (255 will at best return unused info).
2218 *
2219 * For SCSI this byte is defined as subpage instead of high byte
2220 * of length and some IDE drives seem to interpret it this way
2221 * and return an error when 255 is used.
2222 */
2223 pc->c[3] = 0;
2224 pc->c[4] = 255; /* (We will just discard data in that case) */
2225 if (page_code == IDETAPE_BLOCK_DESCRIPTOR)
2226 pc->request_transfer = 12;
2227 else if (page_code == IDETAPE_CAPABILITIES_PAGE)
2228 pc->request_transfer = 24;
2229 else
2230 pc->request_transfer = 50;
2231 pc->callback = &idetape_pc_callback;
2232}
2233
2234static void calculate_speeds(ide_drive_t *drive)
2235{
2236 idetape_tape_t *tape = drive->driver_data;
2237 int full = 125, empty = 75;
2238
2239 if (time_after(jiffies, tape->controlled_pipeline_head_time + 120 * HZ)) {
2240 tape->controlled_previous_pipeline_head = tape->controlled_last_pipeline_head;
2241 tape->controlled_previous_head_time = tape->controlled_pipeline_head_time;
2242 tape->controlled_last_pipeline_head = tape->pipeline_head;
2243 tape->controlled_pipeline_head_time = jiffies;
2244 }
2245 if (time_after(jiffies, tape->controlled_pipeline_head_time + 60 * HZ))
2246 tape->controlled_pipeline_head_speed = (tape->pipeline_head - tape->controlled_last_pipeline_head) * 32 * HZ / (jiffies - tape->controlled_pipeline_head_time);
2247 else if (time_after(jiffies, tape->controlled_previous_head_time))
2248 tape->controlled_pipeline_head_speed = (tape->pipeline_head - tape->controlled_previous_pipeline_head) * 32 * HZ / (jiffies - tape->controlled_previous_head_time);
2249
2250 if (tape->nr_pending_stages < tape->max_stages /*- 1 */) {
2251 /* -1 for read mode error recovery */
2252 if (time_after(jiffies, tape->uncontrolled_previous_head_time + 10 * HZ)) {
2253 tape->uncontrolled_pipeline_head_time = jiffies;
2254 tape->uncontrolled_pipeline_head_speed = (tape->pipeline_head - tape->uncontrolled_previous_pipeline_head) * 32 * HZ / (jiffies - tape->uncontrolled_previous_head_time);
2255 }
2256 } else {
2257 tape->uncontrolled_previous_head_time = jiffies;
2258 tape->uncontrolled_previous_pipeline_head = tape->pipeline_head;
2259 if (time_after(jiffies, tape->uncontrolled_pipeline_head_time + 30 * HZ)) {
2260 tape->uncontrolled_pipeline_head_time = jiffies;
2261 }
2262 }
2263 tape->pipeline_head_speed = max(tape->uncontrolled_pipeline_head_speed, tape->controlled_pipeline_head_speed);
2264 if (tape->speed_control == 0) {
2265 tape->max_insert_speed = 5000;
2266 } else if (tape->speed_control == 1) {
2267 if (tape->nr_pending_stages >= tape->max_stages / 2)
2268 tape->max_insert_speed = tape->pipeline_head_speed +
2269 (1100 - tape->pipeline_head_speed) * 2 * (tape->nr_pending_stages - tape->max_stages / 2) / tape->max_stages;
2270 else
2271 tape->max_insert_speed = 500 +
2272 (tape->pipeline_head_speed - 500) * 2 * tape->nr_pending_stages / tape->max_stages;
2273 if (tape->nr_pending_stages >= tape->max_stages * 99 / 100)
2274 tape->max_insert_speed = 5000;
2275 } else if (tape->speed_control == 2) {
2276 tape->max_insert_speed = tape->pipeline_head_speed * empty / 100 +
2277 (tape->pipeline_head_speed * full / 100 - tape->pipeline_head_speed * empty / 100) * tape->nr_pending_stages / tape->max_stages;
2278 } else
2279 tape->max_insert_speed = tape->speed_control;
2280 tape->max_insert_speed = max(tape->max_insert_speed, 500);
2281}
2282
2283static ide_startstop_t idetape_media_access_finished (ide_drive_t *drive)
2284{
2285 idetape_tape_t *tape = drive->driver_data;
2286 idetape_pc_t *pc = tape->pc;
22c525b9 2287 u8 stat;
1da177e4 2288
22c525b9
BZ
2289 stat = drive->hwif->INB(IDE_STATUS_REG);
2290 if (stat & SEEK_STAT) {
2291 if (stat & ERR_STAT) {
1da177e4
LT
2292 /* Error detected */
2293 if (pc->c[0] != IDETAPE_TEST_UNIT_READY_CMD)
2294 printk(KERN_ERR "ide-tape: %s: I/O error, ",
2295 tape->name);
2296 /* Retry operation */
2297 return idetape_retry_pc(drive);
2298 }
2299 pc->error = 0;
2300 if (tape->failed_pc == pc)
2301 tape->failed_pc = NULL;
2302 } else {
2303 pc->error = IDETAPE_ERROR_GENERAL;
2304 tape->failed_pc = NULL;
2305 }
2306 return pc->callback(drive);
2307}
2308
2309static ide_startstop_t idetape_rw_callback (ide_drive_t *drive)
2310{
2311 idetape_tape_t *tape = drive->driver_data;
2312 struct request *rq = HWGROUP(drive)->rq;
2313 int blocks = tape->pc->actually_transferred / tape->tape_block_size;
2314
2315 tape->avg_size += blocks * tape->tape_block_size;
2316 tape->insert_size += blocks * tape->tape_block_size;
2317 if (tape->insert_size > 1024 * 1024)
2318 tape->measure_insert_time = 1;
2319 if (tape->measure_insert_time) {
2320 tape->measure_insert_time = 0;
2321 tape->insert_time = jiffies;
2322 tape->insert_size = 0;
2323 }
2324 if (time_after(jiffies, tape->insert_time))
2325 tape->insert_speed = tape->insert_size / 1024 * HZ / (jiffies - tape->insert_time);
9bae1ff3 2326 if (time_after_eq(jiffies, tape->avg_time + HZ)) {
1da177e4
LT
2327 tape->avg_speed = tape->avg_size * HZ / (jiffies - tape->avg_time) / 1024;
2328 tape->avg_size = 0;
2329 tape->avg_time = jiffies;
2330 }
2331
2332#if IDETAPE_DEBUG_LOG
2333 if (tape->debug_level >= 4)
2334 printk(KERN_INFO "ide-tape: Reached idetape_rw_callback\n");
2335#endif /* IDETAPE_DEBUG_LOG */
2336
2337 tape->first_frame_position += blocks;
2338 rq->current_nr_sectors -= blocks;
2339
2340 if (!tape->pc->error)
2341 idetape_end_request(drive, 1, 0);
2342 else
2343 idetape_end_request(drive, tape->pc->error, 0);
2344 return ide_stopped;
2345}
2346
2347static void idetape_create_read_cmd(idetape_tape_t *tape, idetape_pc_t *pc, unsigned int length, struct idetape_bh *bh)
2348{
2349 idetape_init_pc(pc);
2350 pc->c[0] = IDETAPE_READ_CMD;
2351 put_unaligned(htonl(length), (unsigned int *) &pc->c[1]);
2352 pc->c[1] = 1;
2353 pc->callback = &idetape_rw_callback;
2354 pc->bh = bh;
2355 atomic_set(&bh->b_count, 0);
2356 pc->buffer = NULL;
2357 pc->request_transfer = pc->buffer_size = length * tape->tape_block_size;
2358 if (pc->request_transfer == tape->stage_size)
2359 set_bit(PC_DMA_RECOMMENDED, &pc->flags);
2360}
2361
2362static void idetape_create_read_buffer_cmd(idetape_tape_t *tape, idetape_pc_t *pc, unsigned int length, struct idetape_bh *bh)
2363{
2364 int size = 32768;
2365 struct idetape_bh *p = bh;
2366
2367 idetape_init_pc(pc);
2368 pc->c[0] = IDETAPE_READ_BUFFER_CMD;
2369 pc->c[1] = IDETAPE_RETRIEVE_FAULTY_BLOCK;
2370 pc->c[7] = size >> 8;
2371 pc->c[8] = size & 0xff;
2372 pc->callback = &idetape_pc_callback;
2373 pc->bh = bh;
2374 atomic_set(&bh->b_count, 0);
2375 pc->buffer = NULL;
2376 while (p) {
2377 atomic_set(&p->b_count, 0);
2378 p = p->b_reqnext;
2379 }
2380 pc->request_transfer = pc->buffer_size = size;
2381}
2382
2383static void idetape_create_write_cmd(idetape_tape_t *tape, idetape_pc_t *pc, unsigned int length, struct idetape_bh *bh)
2384{
2385 idetape_init_pc(pc);
2386 pc->c[0] = IDETAPE_WRITE_CMD;
2387 put_unaligned(htonl(length), (unsigned int *) &pc->c[1]);
2388 pc->c[1] = 1;
2389 pc->callback = &idetape_rw_callback;
2390 set_bit(PC_WRITING, &pc->flags);
2391 pc->bh = bh;
2392 pc->b_data = bh->b_data;
2393 pc->b_count = atomic_read(&bh->b_count);
2394 pc->buffer = NULL;
2395 pc->request_transfer = pc->buffer_size = length * tape->tape_block_size;
2396 if (pc->request_transfer == tape->stage_size)
2397 set_bit(PC_DMA_RECOMMENDED, &pc->flags);
2398}
2399
2400/*
2401 * idetape_do_request is our request handling function.
2402 */
2403static ide_startstop_t idetape_do_request(ide_drive_t *drive,
2404 struct request *rq, sector_t block)
2405{
2406 idetape_tape_t *tape = drive->driver_data;
2407 idetape_pc_t *pc = NULL;
2408 struct request *postponed_rq = tape->postponed_rq;
22c525b9 2409 u8 stat;
1da177e4
LT
2410
2411#if IDETAPE_DEBUG_LOG
2412#if 0
2413 if (tape->debug_level >= 5)
cdd60262
JA
2414 printk(KERN_INFO "ide-tape: %d, "
2415 "dev: %s, cmd: %ld, errors: %d\n",
1da177e4
LT
2416 rq->rq_disk->disk_name, rq->cmd[0], rq->errors);
2417#endif
2418 if (tape->debug_level >= 2)
2419 printk(KERN_INFO "ide-tape: sector: %ld, "
2420 "nr_sectors: %ld, current_nr_sectors: %d\n",
2421 rq->sector, rq->nr_sectors, rq->current_nr_sectors);
2422#endif /* IDETAPE_DEBUG_LOG */
2423
4aff5e23 2424 if (!blk_special_request(rq)) {
1da177e4
LT
2425 /*
2426 * We do not support buffer cache originated requests.
2427 */
2428 printk(KERN_NOTICE "ide-tape: %s: Unsupported request in "
4aff5e23 2429 "request queue (%d)\n", drive->name, rq->cmd_type);
1da177e4
LT
2430 ide_end_request(drive, 0, 0);
2431 return ide_stopped;
2432 }
2433
2434 /*
2435 * Retry a failed packet command
2436 */
2437 if (tape->failed_pc != NULL &&
2438 tape->pc->c[0] == IDETAPE_REQUEST_SENSE_CMD) {
2439 return idetape_issue_packet_command(drive, tape->failed_pc);
2440 }
2441#if IDETAPE_DEBUG_BUGS
2442 if (postponed_rq != NULL)
2443 if (rq != postponed_rq) {
2444 printk(KERN_ERR "ide-tape: ide-tape.c bug - "
2445 "Two DSC requests were queued\n");
2446 idetape_end_request(drive, 0, 0);
2447 return ide_stopped;
2448 }
2449#endif /* IDETAPE_DEBUG_BUGS */
2450
2451 tape->postponed_rq = NULL;
2452
2453 /*
2454 * If the tape is still busy, postpone our request and service
2455 * the other device meanwhile.
2456 */
22c525b9 2457 stat = drive->hwif->INB(IDE_STATUS_REG);
1da177e4
LT
2458
2459 if (!drive->dsc_overlap && !(rq->cmd[0] & REQ_IDETAPE_PC2))
2460 set_bit(IDETAPE_IGNORE_DSC, &tape->flags);
2461
2462 if (drive->post_reset == 1) {
2463 set_bit(IDETAPE_IGNORE_DSC, &tape->flags);
2464 drive->post_reset = 0;
2465 }
2466
2467 if (tape->tape_still_time > 100 && tape->tape_still_time < 200)
2468 tape->measure_insert_time = 1;
2469 if (time_after(jiffies, tape->insert_time))
2470 tape->insert_speed = tape->insert_size / 1024 * HZ / (jiffies - tape->insert_time);
2471 calculate_speeds(drive);
2472 if (!test_and_clear_bit(IDETAPE_IGNORE_DSC, &tape->flags) &&
22c525b9 2473 (stat & SEEK_STAT) == 0) {
1da177e4
LT
2474 if (postponed_rq == NULL) {
2475 tape->dsc_polling_start = jiffies;
2476 tape->dsc_polling_frequency = tape->best_dsc_rw_frequency;
2477 tape->dsc_timeout = jiffies + IDETAPE_DSC_RW_TIMEOUT;
2478 } else if (time_after(jiffies, tape->dsc_timeout)) {
2479 printk(KERN_ERR "ide-tape: %s: DSC timeout\n",
2480 tape->name);
2481 if (rq->cmd[0] & REQ_IDETAPE_PC2) {
2482 idetape_media_access_finished(drive);
2483 return ide_stopped;
2484 } else {
2485 return ide_do_reset(drive);
2486 }
9bae1ff3 2487 } else if (time_after(jiffies, tape->dsc_polling_start + IDETAPE_DSC_MA_THRESHOLD))
1da177e4
LT
2488 tape->dsc_polling_frequency = IDETAPE_DSC_MA_SLOW;
2489 idetape_postpone_request(drive);
2490 return ide_stopped;
2491 }
2492 if (rq->cmd[0] & REQ_IDETAPE_READ) {
2493 tape->buffer_head++;
1da177e4
LT
2494 tape->postpone_cnt = 0;
2495 pc = idetape_next_pc_storage(drive);
2496 idetape_create_read_cmd(tape, pc, rq->current_nr_sectors, (struct idetape_bh *)rq->special);
2497 goto out;
2498 }
2499 if (rq->cmd[0] & REQ_IDETAPE_WRITE) {
2500 tape->buffer_head++;
1da177e4
LT
2501 tape->postpone_cnt = 0;
2502 pc = idetape_next_pc_storage(drive);
2503 idetape_create_write_cmd(tape, pc, rq->current_nr_sectors, (struct idetape_bh *)rq->special);
2504 goto out;
2505 }
2506 if (rq->cmd[0] & REQ_IDETAPE_READ_BUFFER) {
2507 tape->postpone_cnt = 0;
2508 pc = idetape_next_pc_storage(drive);
2509 idetape_create_read_buffer_cmd(tape, pc, rq->current_nr_sectors, (struct idetape_bh *)rq->special);
2510 goto out;
2511 }
2512 if (rq->cmd[0] & REQ_IDETAPE_PC1) {
2513 pc = (idetape_pc_t *) rq->buffer;
2514 rq->cmd[0] &= ~(REQ_IDETAPE_PC1);
2515 rq->cmd[0] |= REQ_IDETAPE_PC2;
2516 goto out;
2517 }
2518 if (rq->cmd[0] & REQ_IDETAPE_PC2) {
2519 idetape_media_access_finished(drive);
2520 return ide_stopped;
2521 }
2522 BUG();
2523out:
2524 return idetape_issue_packet_command(drive, pc);
2525}
2526
2527/*
2528 * Pipeline related functions
2529 */
2530static inline int idetape_pipeline_active (idetape_tape_t *tape)
2531{
2532 int rc1, rc2;
2533
2534 rc1 = test_bit(IDETAPE_PIPELINE_ACTIVE, &tape->flags);
2535 rc2 = (tape->active_data_request != NULL);
2536 return rc1;
2537}
2538
2539/*
2540 * idetape_kmalloc_stage uses __get_free_page to allocate a pipeline
2541 * stage, along with all the necessary small buffers which together make
2542 * a buffer of size tape->stage_size (or a bit more). We attempt to
2543 * combine sequential pages as much as possible.
2544 *
2545 * Returns a pointer to the new allocated stage, or NULL if we
2546 * can't (or don't want to) allocate a stage.
2547 *
2548 * Pipeline stages are optional and are used to increase performance.
2549 * If we can't allocate them, we'll manage without them.
2550 */
2551static idetape_stage_t *__idetape_kmalloc_stage (idetape_tape_t *tape, int full, int clear)
2552{
2553 idetape_stage_t *stage;
2554 struct idetape_bh *prev_bh, *bh;
2555 int pages = tape->pages_per_stage;
2556 char *b_data = NULL;
2557
5cbded58 2558 if ((stage = kmalloc(sizeof (idetape_stage_t),GFP_KERNEL)) == NULL)
1da177e4
LT
2559 return NULL;
2560 stage->next = NULL;
2561
5cbded58 2562 bh = stage->bh = kmalloc(sizeof(struct idetape_bh), GFP_KERNEL);
1da177e4
LT
2563 if (bh == NULL)
2564 goto abort;
2565 bh->b_reqnext = NULL;
2566 if ((bh->b_data = (char *) __get_free_page (GFP_KERNEL)) == NULL)
2567 goto abort;
2568 if (clear)
2569 memset(bh->b_data, 0, PAGE_SIZE);
2570 bh->b_size = PAGE_SIZE;
2571 atomic_set(&bh->b_count, full ? bh->b_size : 0);
2572
2573 while (--pages) {
2574 if ((b_data = (char *) __get_free_page (GFP_KERNEL)) == NULL)
2575 goto abort;
2576 if (clear)
2577 memset(b_data, 0, PAGE_SIZE);
2578 if (bh->b_data == b_data + PAGE_SIZE) {
2579 bh->b_size += PAGE_SIZE;
2580 bh->b_data -= PAGE_SIZE;
2581 if (full)
2582 atomic_add(PAGE_SIZE, &bh->b_count);
2583 continue;
2584 }
2585 if (b_data == bh->b_data + bh->b_size) {
2586 bh->b_size += PAGE_SIZE;
2587 if (full)
2588 atomic_add(PAGE_SIZE, &bh->b_count);
2589 continue;
2590 }
2591 prev_bh = bh;
5cbded58 2592 if ((bh = kmalloc(sizeof(struct idetape_bh), GFP_KERNEL)) == NULL) {
1da177e4
LT
2593 free_page((unsigned long) b_data);
2594 goto abort;
2595 }
2596 bh->b_reqnext = NULL;
2597 bh->b_data = b_data;
2598 bh->b_size = PAGE_SIZE;
2599 atomic_set(&bh->b_count, full ? bh->b_size : 0);
2600 prev_bh->b_reqnext = bh;
2601 }
2602 bh->b_size -= tape->excess_bh_size;
2603 if (full)
2604 atomic_sub(tape->excess_bh_size, &bh->b_count);
2605 return stage;
2606abort:
2607 __idetape_kfree_stage(stage);
2608 return NULL;
2609}
2610
2611static idetape_stage_t *idetape_kmalloc_stage (idetape_tape_t *tape)
2612{
2613 idetape_stage_t *cache_stage = tape->cache_stage;
2614
2615#if IDETAPE_DEBUG_LOG
2616 if (tape->debug_level >= 4)
2617 printk(KERN_INFO "ide-tape: Reached idetape_kmalloc_stage\n");
2618#endif /* IDETAPE_DEBUG_LOG */
2619
2620 if (tape->nr_stages >= tape->max_stages)
2621 return NULL;
2622 if (cache_stage != NULL) {
2623 tape->cache_stage = NULL;
2624 return cache_stage;
2625 }
2626 return __idetape_kmalloc_stage(tape, 0, 0);
2627}
2628
dcd96379 2629static int idetape_copy_stage_from_user (idetape_tape_t *tape, idetape_stage_t *stage, const char __user *buf, int n)
1da177e4
LT
2630{
2631 struct idetape_bh *bh = tape->bh;
2632 int count;
dcd96379 2633 int ret = 0;
1da177e4
LT
2634
2635 while (n) {
2636#if IDETAPE_DEBUG_BUGS
2637 if (bh == NULL) {
2638 printk(KERN_ERR "ide-tape: bh == NULL in "
2639 "idetape_copy_stage_from_user\n");
dcd96379 2640 return 1;
1da177e4
LT
2641 }
2642#endif /* IDETAPE_DEBUG_BUGS */
2643 count = min((unsigned int)(bh->b_size - atomic_read(&bh->b_count)), (unsigned int)n);
dcd96379
DW
2644 if (copy_from_user(bh->b_data + atomic_read(&bh->b_count), buf, count))
2645 ret = 1;
1da177e4
LT
2646 n -= count;
2647 atomic_add(count, &bh->b_count);
2648 buf += count;
2649 if (atomic_read(&bh->b_count) == bh->b_size) {
2650 bh = bh->b_reqnext;
2651 if (bh)
2652 atomic_set(&bh->b_count, 0);
2653 }
2654 }
2655 tape->bh = bh;
dcd96379 2656 return ret;
1da177e4
LT
2657}
2658
dcd96379 2659static int idetape_copy_stage_to_user (idetape_tape_t *tape, char __user *buf, idetape_stage_t *stage, int n)
1da177e4
LT
2660{
2661 struct idetape_bh *bh = tape->bh;
2662 int count;
dcd96379 2663 int ret = 0;
1da177e4
LT
2664
2665 while (n) {
2666#if IDETAPE_DEBUG_BUGS
2667 if (bh == NULL) {
2668 printk(KERN_ERR "ide-tape: bh == NULL in "
2669 "idetape_copy_stage_to_user\n");
dcd96379 2670 return 1;
1da177e4
LT
2671 }
2672#endif /* IDETAPE_DEBUG_BUGS */
2673 count = min(tape->b_count, n);
dcd96379
DW
2674 if (copy_to_user(buf, tape->b_data, count))
2675 ret = 1;
1da177e4
LT
2676 n -= count;
2677 tape->b_data += count;
2678 tape->b_count -= count;
2679 buf += count;
2680 if (!tape->b_count) {
2681 tape->bh = bh = bh->b_reqnext;
2682 if (bh) {
2683 tape->b_data = bh->b_data;
2684 tape->b_count = atomic_read(&bh->b_count);
2685 }
2686 }
2687 }
dcd96379 2688 return ret;
1da177e4
LT
2689}
2690
2691static void idetape_init_merge_stage (idetape_tape_t *tape)
2692{
2693 struct idetape_bh *bh = tape->merge_stage->bh;
2694
2695 tape->bh = bh;
2696 if (tape->chrdev_direction == idetape_direction_write)
2697 atomic_set(&bh->b_count, 0);
2698 else {
2699 tape->b_data = bh->b_data;
2700 tape->b_count = atomic_read(&bh->b_count);
2701 }
2702}
2703
2704static void idetape_switch_buffers (idetape_tape_t *tape, idetape_stage_t *stage)
2705{
2706 struct idetape_bh *tmp;
2707
2708 tmp = stage->bh;
2709 stage->bh = tape->merge_stage->bh;
2710 tape->merge_stage->bh = tmp;
2711 idetape_init_merge_stage(tape);
2712}
2713
2714/*
2715 * idetape_add_stage_tail adds a new stage at the end of the pipeline.
2716 */
2717static void idetape_add_stage_tail (ide_drive_t *drive,idetape_stage_t *stage)
2718{
2719 idetape_tape_t *tape = drive->driver_data;
2720 unsigned long flags;
2721
2722#if IDETAPE_DEBUG_LOG
2723 if (tape->debug_level >= 4)
2724 printk (KERN_INFO "ide-tape: Reached idetape_add_stage_tail\n");
2725#endif /* IDETAPE_DEBUG_LOG */
2726 spin_lock_irqsave(&tape->spinlock, flags);
2727 stage->next = NULL;
2728 if (tape->last_stage != NULL)
2729 tape->last_stage->next=stage;
2730 else
2731 tape->first_stage = tape->next_stage=stage;
2732 tape->last_stage = stage;
2733 if (tape->next_stage == NULL)
2734 tape->next_stage = tape->last_stage;
2735 tape->nr_stages++;
2736 tape->nr_pending_stages++;
2737 spin_unlock_irqrestore(&tape->spinlock, flags);
2738}
2739
2740/*
2741 * idetape_wait_for_request installs a completion in a pending request
2742 * and sleeps until it is serviced.
2743 *
2744 * The caller should ensure that the request will not be serviced
2745 * before we install the completion (usually by disabling interrupts).
2746 */
2747static void idetape_wait_for_request (ide_drive_t *drive, struct request *rq)
2748{
6e9a4738 2749 DECLARE_COMPLETION_ONSTACK(wait);
1da177e4
LT
2750 idetape_tape_t *tape = drive->driver_data;
2751
2752#if IDETAPE_DEBUG_BUGS
4aff5e23 2753 if (rq == NULL || !blk_special_request(rq)) {
1da177e4
LT
2754 printk (KERN_ERR "ide-tape: bug: Trying to sleep on non-valid request\n");
2755 return;
2756 }
2757#endif /* IDETAPE_DEBUG_BUGS */
c00895ab 2758 rq->end_io_data = &wait;
1da177e4
LT
2759 rq->end_io = blk_end_sync_rq;
2760 spin_unlock_irq(&tape->spinlock);
2761 wait_for_completion(&wait);
2762 /* The stage and its struct request have been deallocated */
2763 spin_lock_irq(&tape->spinlock);
2764}
2765
2766static ide_startstop_t idetape_read_position_callback (ide_drive_t *drive)
2767{
2768 idetape_tape_t *tape = drive->driver_data;
2769 idetape_read_position_result_t *result;
2770
2771#if IDETAPE_DEBUG_LOG
2772 if (tape->debug_level >= 4)
2773 printk(KERN_INFO "ide-tape: Reached idetape_read_position_callback\n");
2774#endif /* IDETAPE_DEBUG_LOG */
2775
2776 if (!tape->pc->error) {
2777 result = (idetape_read_position_result_t *) tape->pc->buffer;
2778#if IDETAPE_DEBUG_LOG
2779 if (tape->debug_level >= 2)
2780 printk(KERN_INFO "ide-tape: BOP - %s\n",result->bop ? "Yes":"No");
2781 if (tape->debug_level >= 2)
2782 printk(KERN_INFO "ide-tape: EOP - %s\n",result->eop ? "Yes":"No");
2783#endif /* IDETAPE_DEBUG_LOG */
2784 if (result->bpu) {
2785 printk(KERN_INFO "ide-tape: Block location is unknown to the tape\n");
2786 clear_bit(IDETAPE_ADDRESS_VALID, &tape->flags);
2787 idetape_end_request(drive, 0, 0);
2788 } else {
2789#if IDETAPE_DEBUG_LOG
2790 if (tape->debug_level >= 2)
2791 printk(KERN_INFO "ide-tape: Block Location - %u\n", ntohl(result->first_block));
2792#endif /* IDETAPE_DEBUG_LOG */
2793 tape->partition = result->partition;
2794 tape->first_frame_position = ntohl(result->first_block);
2795 tape->last_frame_position = ntohl(result->last_block);
2796 tape->blocks_in_buffer = result->blocks_in_buffer[2];
2797 set_bit(IDETAPE_ADDRESS_VALID, &tape->flags);
2798 idetape_end_request(drive, 1, 0);
2799 }
2800 } else {
2801 idetape_end_request(drive, 0, 0);
2802 }
2803 return ide_stopped;
2804}
2805
2806/*
2807 * idetape_create_write_filemark_cmd will:
2808 *
2809 * 1. Write a filemark if write_filemark=1.
2810 * 2. Flush the device buffers without writing a filemark
2811 * if write_filemark=0.
2812 *
2813 */
2814static void idetape_create_write_filemark_cmd (ide_drive_t *drive, idetape_pc_t *pc,int write_filemark)
2815{
2816 idetape_init_pc(pc);
2817 pc->c[0] = IDETAPE_WRITE_FILEMARK_CMD;
2818 pc->c[4] = write_filemark;
2819 set_bit(PC_WAIT_FOR_DSC, &pc->flags);
2820 pc->callback = &idetape_pc_callback;
2821}
2822
2823static void idetape_create_test_unit_ready_cmd(idetape_pc_t *pc)
2824{
2825 idetape_init_pc(pc);
2826 pc->c[0] = IDETAPE_TEST_UNIT_READY_CMD;
2827 pc->callback = &idetape_pc_callback;
2828}
2829
2830/*
2831 * idetape_queue_pc_tail is based on the following functions:
2832 *
2833 * ide_do_drive_cmd from ide.c
2834 * cdrom_queue_request and cdrom_queue_packet_command from ide-cd.c
2835 *
2836 * We add a special packet command request to the tail of the request
2837 * queue, and wait for it to be serviced.
2838 *
2839 * This is not to be called from within the request handling part
2840 * of the driver ! We allocate here data in the stack, and it is valid
2841 * until the request is finished. This is not the case for the bottom
2842 * part of the driver, where we are always leaving the functions to wait
2843 * for an interrupt or a timer event.
2844 *
2845 * From the bottom part of the driver, we should allocate safe memory
2846 * using idetape_next_pc_storage and idetape_next_rq_storage, and add
2847 * the request to the request list without waiting for it to be serviced !
2848 * In that case, we usually use idetape_queue_pc_head.
2849 */
2850static int __idetape_queue_pc_tail (ide_drive_t *drive, idetape_pc_t *pc)
2851{
2852 struct ide_tape_obj *tape = drive->driver_data;
2853 struct request rq;
2854
2855 idetape_init_rq(&rq, REQ_IDETAPE_PC1);
2856 rq.buffer = (char *) pc;
2857 rq.rq_disk = tape->disk;
2858 return ide_do_drive_cmd(drive, &rq, ide_wait);
2859}
2860
2861static void idetape_create_load_unload_cmd (ide_drive_t *drive, idetape_pc_t *pc,int cmd)
2862{
2863 idetape_init_pc(pc);
2864 pc->c[0] = IDETAPE_LOAD_UNLOAD_CMD;
2865 pc->c[4] = cmd;
2866 set_bit(PC_WAIT_FOR_DSC, &pc->flags);
2867 pc->callback = &idetape_pc_callback;
2868}
2869
2870static int idetape_wait_ready(ide_drive_t *drive, unsigned long timeout)
2871{
2872 idetape_tape_t *tape = drive->driver_data;
2873 idetape_pc_t pc;
2874 int load_attempted = 0;
2875
2876 /*
2877 * Wait for the tape to become ready
2878 */
2879 set_bit(IDETAPE_MEDIUM_PRESENT, &tape->flags);
2880 timeout += jiffies;
2881 while (time_before(jiffies, timeout)) {
2882 idetape_create_test_unit_ready_cmd(&pc);
2883 if (!__idetape_queue_pc_tail(drive, &pc))
2884 return 0;
2885 if ((tape->sense_key == 2 && tape->asc == 4 && tape->ascq == 2)
2886 || (tape->asc == 0x3A)) { /* no media */
2887 if (load_attempted)
2888 return -ENOMEDIUM;
2889 idetape_create_load_unload_cmd(drive, &pc, IDETAPE_LU_LOAD_MASK);
2890 __idetape_queue_pc_tail(drive, &pc);
2891 load_attempted = 1;
2892 /* not about to be ready */
2893 } else if (!(tape->sense_key == 2 && tape->asc == 4 &&
2894 (tape->ascq == 1 || tape->ascq == 8)))
2895 return -EIO;
80ce45fd 2896 msleep(100);
1da177e4
LT
2897 }
2898 return -EIO;
2899}
2900
2901static int idetape_queue_pc_tail (ide_drive_t *drive,idetape_pc_t *pc)
2902{
2903 return __idetape_queue_pc_tail(drive, pc);
2904}
2905
2906static int idetape_flush_tape_buffers (ide_drive_t *drive)
2907{
2908 idetape_pc_t pc;
2909 int rc;
2910
2911 idetape_create_write_filemark_cmd(drive, &pc, 0);
2912 if ((rc = idetape_queue_pc_tail(drive, &pc)))
2913 return rc;
2914 idetape_wait_ready(drive, 60 * 5 * HZ);
2915 return 0;
2916}
2917
2918static void idetape_create_read_position_cmd (idetape_pc_t *pc)
2919{
2920 idetape_init_pc(pc);
2921 pc->c[0] = IDETAPE_READ_POSITION_CMD;
2922 pc->request_transfer = 20;
2923 pc->callback = &idetape_read_position_callback;
2924}
2925
2926static int idetape_read_position (ide_drive_t *drive)
2927{
2928 idetape_tape_t *tape = drive->driver_data;
2929 idetape_pc_t pc;
2930 int position;
2931
2932#if IDETAPE_DEBUG_LOG
2933 if (tape->debug_level >= 4)
2934 printk(KERN_INFO "ide-tape: Reached idetape_read_position\n");
2935#endif /* IDETAPE_DEBUG_LOG */
2936
2937 idetape_create_read_position_cmd(&pc);
2938 if (idetape_queue_pc_tail(drive, &pc))
2939 return -1;
2940 position = tape->first_frame_position;
2941 return position;
2942}
2943
2944static void idetape_create_locate_cmd (ide_drive_t *drive, idetape_pc_t *pc, unsigned int block, u8 partition, int skip)
2945{
2946 idetape_init_pc(pc);
2947 pc->c[0] = IDETAPE_LOCATE_CMD;
2948 pc->c[1] = 2;
2949 put_unaligned(htonl(block), (unsigned int *) &pc->c[3]);
2950 pc->c[8] = partition;
2951 set_bit(PC_WAIT_FOR_DSC, &pc->flags);
2952 pc->callback = &idetape_pc_callback;
2953}
2954
2955static int idetape_create_prevent_cmd (ide_drive_t *drive, idetape_pc_t *pc, int prevent)
2956{
2957 idetape_tape_t *tape = drive->driver_data;
2958
2959 if (!tape->capabilities.lock)
2960 return 0;
2961
2962 idetape_init_pc(pc);
2963 pc->c[0] = IDETAPE_PREVENT_CMD;
2964 pc->c[4] = prevent;
2965 pc->callback = &idetape_pc_callback;
2966 return 1;
2967}
2968
2969static int __idetape_discard_read_pipeline (ide_drive_t *drive)
2970{
2971 idetape_tape_t *tape = drive->driver_data;
2972 unsigned long flags;
2973 int cnt;
2974
2975 if (tape->chrdev_direction != idetape_direction_read)
2976 return 0;
2977
2978 /* Remove merge stage. */
2979 cnt = tape->merge_stage_size / tape->tape_block_size;
2980 if (test_and_clear_bit(IDETAPE_FILEMARK, &tape->flags))
2981 ++cnt; /* Filemarks count as 1 sector */
2982 tape->merge_stage_size = 0;
2983 if (tape->merge_stage != NULL) {
2984 __idetape_kfree_stage(tape->merge_stage);
2985 tape->merge_stage = NULL;
2986 }
2987
2988 /* Clear pipeline flags. */
2989 clear_bit(IDETAPE_PIPELINE_ERROR, &tape->flags);
2990 tape->chrdev_direction = idetape_direction_none;
2991
2992 /* Remove pipeline stages. */
2993 if (tape->first_stage == NULL)
2994 return 0;
2995
2996 spin_lock_irqsave(&tape->spinlock, flags);
2997 tape->next_stage = NULL;
2998 if (idetape_pipeline_active(tape))
2999 idetape_wait_for_request(drive, tape->active_data_request);
3000 spin_unlock_irqrestore(&tape->spinlock, flags);
3001
3002 while (tape->first_stage != NULL) {
3003 struct request *rq_ptr = &tape->first_stage->rq;
3004
3005 cnt += rq_ptr->nr_sectors - rq_ptr->current_nr_sectors;
3006 if (rq_ptr->errors == IDETAPE_ERROR_FILEMARK)
3007 ++cnt;
3008 idetape_remove_stage_head(drive);
3009 }
3010 tape->nr_pending_stages = 0;
3011 tape->max_stages = tape->min_pipeline;
3012 return cnt;
3013}
3014
3015/*
3016 * idetape_position_tape positions the tape to the requested block
3017 * using the LOCATE packet command. A READ POSITION command is then
3018 * issued to check where we are positioned.
3019 *
3020 * Like all higher level operations, we queue the commands at the tail
3021 * of the request queue and wait for their completion.
3022 *
3023 */
3024static int idetape_position_tape (ide_drive_t *drive, unsigned int block, u8 partition, int skip)
3025{
3026 idetape_tape_t *tape = drive->driver_data;
3027 int retval;
3028 idetape_pc_t pc;
3029
3030 if (tape->chrdev_direction == idetape_direction_read)
3031 __idetape_discard_read_pipeline(drive);
3032 idetape_wait_ready(drive, 60 * 5 * HZ);
3033 idetape_create_locate_cmd(drive, &pc, block, partition, skip);
3034 retval = idetape_queue_pc_tail(drive, &pc);
3035 if (retval)
3036 return (retval);
3037
3038 idetape_create_read_position_cmd(&pc);
3039 return (idetape_queue_pc_tail(drive, &pc));
3040}
3041
3042static void idetape_discard_read_pipeline (ide_drive_t *drive, int restore_position)
3043{
3044 idetape_tape_t *tape = drive->driver_data;
3045 int cnt;
3046 int seek, position;
3047
3048 cnt = __idetape_discard_read_pipeline(drive);
3049 if (restore_position) {
3050 position = idetape_read_position(drive);
3051 seek = position > cnt ? position - cnt : 0;
3052 if (idetape_position_tape(drive, seek, 0, 0)) {
3053 printk(KERN_INFO "ide-tape: %s: position_tape failed in discard_pipeline()\n", tape->name);
3054 return;
3055 }
3056 }
3057}
3058
3059/*
3060 * idetape_queue_rw_tail generates a read/write request for the block
3061 * device interface and wait for it to be serviced.
3062 */
3063static int idetape_queue_rw_tail(ide_drive_t *drive, int cmd, int blocks, struct idetape_bh *bh)
3064{
3065 idetape_tape_t *tape = drive->driver_data;
3066 struct request rq;
3067
3068#if IDETAPE_DEBUG_LOG
3069 if (tape->debug_level >= 2)
3070 printk(KERN_INFO "ide-tape: idetape_queue_rw_tail: cmd=%d\n",cmd);
3071#endif /* IDETAPE_DEBUG_LOG */
3072#if IDETAPE_DEBUG_BUGS
3073 if (idetape_pipeline_active(tape)) {
3074 printk(KERN_ERR "ide-tape: bug: the pipeline is active in idetape_queue_rw_tail\n");
3075 return (0);
3076 }
3077#endif /* IDETAPE_DEBUG_BUGS */
3078
3079 idetape_init_rq(&rq, cmd);
3080 rq.rq_disk = tape->disk;
3081 rq.special = (void *)bh;
3082 rq.sector = tape->first_frame_position;
3083 rq.nr_sectors = rq.current_nr_sectors = blocks;
3084 (void) ide_do_drive_cmd(drive, &rq, ide_wait);
3085
3086 if ((cmd & (REQ_IDETAPE_READ | REQ_IDETAPE_WRITE)) == 0)
3087 return 0;
3088
3089 if (tape->merge_stage)
3090 idetape_init_merge_stage(tape);
3091 if (rq.errors == IDETAPE_ERROR_GENERAL)
3092 return -EIO;
3093 return (tape->tape_block_size * (blocks-rq.current_nr_sectors));
3094}
3095
3096/*
3097 * idetape_insert_pipeline_into_queue is used to start servicing the
3098 * pipeline stages, starting from tape->next_stage.
3099 */
3100static void idetape_insert_pipeline_into_queue (ide_drive_t *drive)
3101{
3102 idetape_tape_t *tape = drive->driver_data;
3103
3104 if (tape->next_stage == NULL)
3105 return;
3106 if (!idetape_pipeline_active(tape)) {
3107 set_bit(IDETAPE_PIPELINE_ACTIVE, &tape->flags);
3108 idetape_active_next_stage(drive);
3109 (void) ide_do_drive_cmd(drive, tape->active_data_request, ide_end);
3110 }
3111}
3112
3113static void idetape_create_inquiry_cmd (idetape_pc_t *pc)
3114{
3115 idetape_init_pc(pc);
3116 pc->c[0] = IDETAPE_INQUIRY_CMD;
3117 pc->c[4] = pc->request_transfer = 254;
3118 pc->callback = &idetape_pc_callback;
3119}
3120
3121static void idetape_create_rewind_cmd (ide_drive_t *drive, idetape_pc_t *pc)
3122{
3123 idetape_init_pc(pc);
3124 pc->c[0] = IDETAPE_REWIND_CMD;
3125 set_bit(PC_WAIT_FOR_DSC, &pc->flags);
3126 pc->callback = &idetape_pc_callback;
3127}
3128
3129#if 0
3130static void idetape_create_mode_select_cmd (idetape_pc_t *pc, int length)
3131{
3132 idetape_init_pc(pc);
3133 set_bit(PC_WRITING, &pc->flags);
3134 pc->c[0] = IDETAPE_MODE_SELECT_CMD;
3135 pc->c[1] = 0x10;
3136 put_unaligned(htons(length), (unsigned short *) &pc->c[3]);
3137 pc->request_transfer = 255;
3138 pc->callback = &idetape_pc_callback;
3139}
3140#endif
3141
3142static void idetape_create_erase_cmd (idetape_pc_t *pc)
3143{
3144 idetape_init_pc(pc);
3145 pc->c[0] = IDETAPE_ERASE_CMD;
3146 pc->c[1] = 1;
3147 set_bit(PC_WAIT_FOR_DSC, &pc->flags);
3148 pc->callback = &idetape_pc_callback;
3149}
3150
3151static void idetape_create_space_cmd (idetape_pc_t *pc,int count, u8 cmd)
3152{
3153 idetape_init_pc(pc);
3154 pc->c[0] = IDETAPE_SPACE_CMD;
3155 put_unaligned(htonl(count), (unsigned int *) &pc->c[1]);
3156 pc->c[1] = cmd;
3157 set_bit(PC_WAIT_FOR_DSC, &pc->flags);
3158 pc->callback = &idetape_pc_callback;
3159}
3160
3161static void idetape_wait_first_stage (ide_drive_t *drive)
3162{
3163 idetape_tape_t *tape = drive->driver_data;
3164 unsigned long flags;
3165
3166 if (tape->first_stage == NULL)
3167 return;
3168 spin_lock_irqsave(&tape->spinlock, flags);
3169 if (tape->active_stage == tape->first_stage)
3170 idetape_wait_for_request(drive, tape->active_data_request);
3171 spin_unlock_irqrestore(&tape->spinlock, flags);
3172}
3173
3174/*
3175 * idetape_add_chrdev_write_request tries to add a character device
3176 * originated write request to our pipeline. In case we don't succeed,
3177 * we revert to non-pipelined operation mode for this request.
3178 *
3179 * 1. Try to allocate a new pipeline stage.
3180 * 2. If we can't, wait for more and more requests to be serviced
3181 * and try again each time.
3182 * 3. If we still can't allocate a stage, fallback to
3183 * non-pipelined operation mode for this request.
3184 */
3185static int idetape_add_chrdev_write_request (ide_drive_t *drive, int blocks)
3186{
3187 idetape_tape_t *tape = drive->driver_data;
3188 idetape_stage_t *new_stage;
3189 unsigned long flags;
3190 struct request *rq;
3191
3192#if IDETAPE_DEBUG_LOG
3193 if (tape->debug_level >= 3)
3194 printk(KERN_INFO "ide-tape: Reached idetape_add_chrdev_write_request\n");
3195#endif /* IDETAPE_DEBUG_LOG */
3196
3197 /*
3198 * Attempt to allocate a new stage.
3199 * Pay special attention to possible race conditions.
3200 */
3201 while ((new_stage = idetape_kmalloc_stage(tape)) == NULL) {
3202 spin_lock_irqsave(&tape->spinlock, flags);
3203 if (idetape_pipeline_active(tape)) {
3204 idetape_wait_for_request(drive, tape->active_data_request);
3205 spin_unlock_irqrestore(&tape->spinlock, flags);
3206 } else {
3207 spin_unlock_irqrestore(&tape->spinlock, flags);
3208 idetape_insert_pipeline_into_queue(drive);
3209 if (idetape_pipeline_active(tape))
3210 continue;
3211 /*
3212 * Linux is short on memory. Fallback to
3213 * non-pipelined operation mode for this request.
3214 */
3215 return idetape_queue_rw_tail(drive, REQ_IDETAPE_WRITE, blocks, tape->merge_stage->bh);
3216 }
3217 }
3218 rq = &new_stage->rq;
3219 idetape_init_rq(rq, REQ_IDETAPE_WRITE);
3220 /* Doesn't actually matter - We always assume sequential access */
3221 rq->sector = tape->first_frame_position;
3222 rq->nr_sectors = rq->current_nr_sectors = blocks;
3223
3224 idetape_switch_buffers(tape, new_stage);
3225 idetape_add_stage_tail(drive, new_stage);
3226 tape->pipeline_head++;
1da177e4
LT
3227 calculate_speeds(drive);
3228
3229 /*
3230 * Estimate whether the tape has stopped writing by checking
3231 * if our write pipeline is currently empty. If we are not
3232 * writing anymore, wait for the pipeline to be full enough
3233 * (90%) before starting to service requests, so that we will
3234 * be able to keep up with the higher speeds of the tape.
3235 */
3236 if (!idetape_pipeline_active(tape)) {
3237 if (tape->nr_stages >= tape->max_stages * 9 / 10 ||
3238 tape->nr_stages >= tape->max_stages - tape->uncontrolled_pipeline_head_speed * 3 * 1024 / tape->tape_block_size) {
3239 tape->measure_insert_time = 1;
3240 tape->insert_time = jiffies;
3241 tape->insert_size = 0;
3242 tape->insert_speed = 0;
3243 idetape_insert_pipeline_into_queue(drive);
3244 }
3245 }
3246 if (test_and_clear_bit(IDETAPE_PIPELINE_ERROR, &tape->flags))
3247 /* Return a deferred error */
3248 return -EIO;
3249 return blocks;
3250}
3251
3252/*
3253 * idetape_wait_for_pipeline will wait until all pending pipeline
3254 * requests are serviced. Typically called on device close.
3255 */
3256static void idetape_wait_for_pipeline (ide_drive_t *drive)
3257{
3258 idetape_tape_t *tape = drive->driver_data;
3259 unsigned long flags;
3260
3261 while (tape->next_stage || idetape_pipeline_active(tape)) {
3262 idetape_insert_pipeline_into_queue(drive);
3263 spin_lock_irqsave(&tape->spinlock, flags);
3264 if (idetape_pipeline_active(tape))
3265 idetape_wait_for_request(drive, tape->active_data_request);
3266 spin_unlock_irqrestore(&tape->spinlock, flags);
3267 }
3268}
3269
3270static void idetape_empty_write_pipeline (ide_drive_t *drive)
3271{
3272 idetape_tape_t *tape = drive->driver_data;
3273 int blocks, min;
3274 struct idetape_bh *bh;
3275
3276#if IDETAPE_DEBUG_BUGS
3277 if (tape->chrdev_direction != idetape_direction_write) {
3278 printk(KERN_ERR "ide-tape: bug: Trying to empty write pipeline, but we are not writing.\n");
3279 return;
3280 }
3281 if (tape->merge_stage_size > tape->stage_size) {
3282 printk(KERN_ERR "ide-tape: bug: merge_buffer too big\n");
3283 tape->merge_stage_size = tape->stage_size;
3284 }
3285#endif /* IDETAPE_DEBUG_BUGS */
3286 if (tape->merge_stage_size) {
3287 blocks = tape->merge_stage_size / tape->tape_block_size;
3288 if (tape->merge_stage_size % tape->tape_block_size) {
3289 unsigned int i;
3290
3291 blocks++;
3292 i = tape->tape_block_size - tape->merge_stage_size % tape->tape_block_size;
3293 bh = tape->bh->b_reqnext;
3294 while (bh) {
3295 atomic_set(&bh->b_count, 0);
3296 bh = bh->b_reqnext;
3297 }
3298 bh = tape->bh;
3299 while (i) {
3300 if (bh == NULL) {
3301
3302 printk(KERN_INFO "ide-tape: bug, bh NULL\n");
3303 break;
3304 }
3305 min = min(i, (unsigned int)(bh->b_size - atomic_read(&bh->b_count)));
3306 memset(bh->b_data + atomic_read(&bh->b_count), 0, min);
3307 atomic_add(min, &bh->b_count);
3308 i -= min;
3309 bh = bh->b_reqnext;
3310 }
3311 }
3312 (void) idetape_add_chrdev_write_request(drive, blocks);
3313 tape->merge_stage_size = 0;
3314 }
3315 idetape_wait_for_pipeline(drive);
3316 if (tape->merge_stage != NULL) {
3317 __idetape_kfree_stage(tape->merge_stage);
3318 tape->merge_stage = NULL;
3319 }
3320 clear_bit(IDETAPE_PIPELINE_ERROR, &tape->flags);
3321 tape->chrdev_direction = idetape_direction_none;
3322
3323 /*
3324 * On the next backup, perform the feedback loop again.
3325 * (I don't want to keep sense information between backups,
3326 * as some systems are constantly on, and the system load
3327 * can be totally different on the next backup).
3328 */
3329 tape->max_stages = tape->min_pipeline;
3330#if IDETAPE_DEBUG_BUGS
3331 if (tape->first_stage != NULL ||
3332 tape->next_stage != NULL ||
3333 tape->last_stage != NULL ||
3334 tape->nr_stages != 0) {
3335 printk(KERN_ERR "ide-tape: ide-tape pipeline bug, "
3336 "first_stage %p, next_stage %p, "
3337 "last_stage %p, nr_stages %d\n",
3338 tape->first_stage, tape->next_stage,
3339 tape->last_stage, tape->nr_stages);
3340 }
3341#endif /* IDETAPE_DEBUG_BUGS */
3342}
3343
3344static void idetape_restart_speed_control (ide_drive_t *drive)
3345{
3346 idetape_tape_t *tape = drive->driver_data;
3347
3348 tape->restart_speed_control_req = 0;
3349 tape->pipeline_head = 0;
3350 tape->controlled_last_pipeline_head = tape->uncontrolled_last_pipeline_head = 0;
3351 tape->controlled_previous_pipeline_head = tape->uncontrolled_previous_pipeline_head = 0;
3352 tape->pipeline_head_speed = tape->controlled_pipeline_head_speed = 5000;
3353 tape->uncontrolled_pipeline_head_speed = 0;
3354 tape->controlled_pipeline_head_time = tape->uncontrolled_pipeline_head_time = jiffies;
3355 tape->controlled_previous_head_time = tape->uncontrolled_previous_head_time = jiffies;
3356}
3357
3358static int idetape_initiate_read (ide_drive_t *drive, int max_stages)
3359{
3360 idetape_tape_t *tape = drive->driver_data;
3361 idetape_stage_t *new_stage;
3362 struct request rq;
3363 int bytes_read;
3364 int blocks = tape->capabilities.ctl;
3365
3366 /* Initialize read operation */
3367 if (tape->chrdev_direction != idetape_direction_read) {
3368 if (tape->chrdev_direction == idetape_direction_write) {
3369 idetape_empty_write_pipeline(drive);
3370 idetape_flush_tape_buffers(drive);
3371 }
3372#if IDETAPE_DEBUG_BUGS
3373 if (tape->merge_stage || tape->merge_stage_size) {
3374 printk (KERN_ERR "ide-tape: merge_stage_size should be 0 now\n");
3375 tape->merge_stage_size = 0;
3376 }
3377#endif /* IDETAPE_DEBUG_BUGS */
3378 if ((tape->merge_stage = __idetape_kmalloc_stage(tape, 0, 0)) == NULL)
3379 return -ENOMEM;
3380 tape->chrdev_direction = idetape_direction_read;
3381
3382 /*
3383 * Issue a read 0 command to ensure that DSC handshake
3384 * is switched from completion mode to buffer available
3385 * mode.
3386 * No point in issuing this if DSC overlap isn't supported,
3387 * some drives (Seagate STT3401A) will return an error.
3388 */
3389 if (drive->dsc_overlap) {
3390 bytes_read = idetape_queue_rw_tail(drive, REQ_IDETAPE_READ, 0, tape->merge_stage->bh);
3391 if (bytes_read < 0) {
3392 __idetape_kfree_stage(tape->merge_stage);
3393 tape->merge_stage = NULL;
3394 tape->chrdev_direction = idetape_direction_none;
3395 return bytes_read;
3396 }
3397 }
3398 }
3399 if (tape->restart_speed_control_req)
3400 idetape_restart_speed_control(drive);
3401 idetape_init_rq(&rq, REQ_IDETAPE_READ);
3402 rq.sector = tape->first_frame_position;
3403 rq.nr_sectors = rq.current_nr_sectors = blocks;
3404 if (!test_bit(IDETAPE_PIPELINE_ERROR, &tape->flags) &&
3405 tape->nr_stages < max_stages) {
3406 new_stage = idetape_kmalloc_stage(tape);
3407 while (new_stage != NULL) {
3408 new_stage->rq = rq;
3409 idetape_add_stage_tail(drive, new_stage);
3410 if (tape->nr_stages >= max_stages)
3411 break;
3412 new_stage = idetape_kmalloc_stage(tape);
3413 }
3414 }
3415 if (!idetape_pipeline_active(tape)) {
3416 if (tape->nr_pending_stages >= 3 * max_stages / 4) {
3417 tape->measure_insert_time = 1;
3418 tape->insert_time = jiffies;
3419 tape->insert_size = 0;
3420 tape->insert_speed = 0;
3421 idetape_insert_pipeline_into_queue(drive);
3422 }
3423 }
3424 return 0;
3425}
3426
3427/*
3428 * idetape_add_chrdev_read_request is called from idetape_chrdev_read
3429 * to service a character device read request and add read-ahead
3430 * requests to our pipeline.
3431 */
3432static int idetape_add_chrdev_read_request (ide_drive_t *drive,int blocks)
3433{
3434 idetape_tape_t *tape = drive->driver_data;
3435 unsigned long flags;
3436 struct request *rq_ptr;
3437 int bytes_read;
3438
3439#if IDETAPE_DEBUG_LOG
3440 if (tape->debug_level >= 4)
3441 printk(KERN_INFO "ide-tape: Reached idetape_add_chrdev_read_request, %d blocks\n", blocks);
3442#endif /* IDETAPE_DEBUG_LOG */
3443
3444 /*
3445 * If we are at a filemark, return a read length of 0
3446 */
3447 if (test_bit(IDETAPE_FILEMARK, &tape->flags))
3448 return 0;
3449
3450 /*
3451 * Wait for the next block to be available at the head
3452 * of the pipeline
3453 */
3454 idetape_initiate_read(drive, tape->max_stages);
3455 if (tape->first_stage == NULL) {
3456 if (test_bit(IDETAPE_PIPELINE_ERROR, &tape->flags))
3457 return 0;
3458 return idetape_queue_rw_tail(drive, REQ_IDETAPE_READ, blocks, tape->merge_stage->bh);
3459 }
3460 idetape_wait_first_stage(drive);
3461 rq_ptr = &tape->first_stage->rq;
3462 bytes_read = tape->tape_block_size * (rq_ptr->nr_sectors - rq_ptr->current_nr_sectors);
3463 rq_ptr->nr_sectors = rq_ptr->current_nr_sectors = 0;
3464
3465
3466 if (rq_ptr->errors == IDETAPE_ERROR_EOD)
3467 return 0;
3468 else {
3469 idetape_switch_buffers(tape, tape->first_stage);
3470 if (rq_ptr->errors == IDETAPE_ERROR_FILEMARK)
3471 set_bit(IDETAPE_FILEMARK, &tape->flags);
3472 spin_lock_irqsave(&tape->spinlock, flags);
3473 idetape_remove_stage_head(drive);
3474 spin_unlock_irqrestore(&tape->spinlock, flags);
3475 tape->pipeline_head++;
1da177e4
LT
3476 calculate_speeds(drive);
3477 }
3478#if IDETAPE_DEBUG_BUGS
3479 if (bytes_read > blocks * tape->tape_block_size) {
3480 printk(KERN_ERR "ide-tape: bug: trying to return more bytes than requested\n");
3481 bytes_read = blocks * tape->tape_block_size;
3482 }
3483#endif /* IDETAPE_DEBUG_BUGS */
3484 return (bytes_read);
3485}
3486
3487static void idetape_pad_zeros (ide_drive_t *drive, int bcount)
3488{
3489 idetape_tape_t *tape = drive->driver_data;
3490 struct idetape_bh *bh;
3491 int blocks;
3492
3493 while (bcount) {
3494 unsigned int count;
3495
3496 bh = tape->merge_stage->bh;
3497 count = min(tape->stage_size, bcount);
3498 bcount -= count;
3499 blocks = count / tape->tape_block_size;
3500 while (count) {
3501 atomic_set(&bh->b_count, min(count, (unsigned int)bh->b_size));
3502 memset(bh->b_data, 0, atomic_read(&bh->b_count));
3503 count -= atomic_read(&bh->b_count);
3504 bh = bh->b_reqnext;
3505 }
3506 idetape_queue_rw_tail(drive, REQ_IDETAPE_WRITE, blocks, tape->merge_stage->bh);
3507 }
3508}
3509
3510static int idetape_pipeline_size (ide_drive_t *drive)
3511{
3512 idetape_tape_t *tape = drive->driver_data;
3513 idetape_stage_t *stage;
3514 struct request *rq;
3515 int size = 0;
3516
3517 idetape_wait_for_pipeline(drive);
3518 stage = tape->first_stage;
3519 while (stage != NULL) {
3520 rq = &stage->rq;
3521 size += tape->tape_block_size * (rq->nr_sectors-rq->current_nr_sectors);
3522 if (rq->errors == IDETAPE_ERROR_FILEMARK)
3523 size += tape->tape_block_size;
3524 stage = stage->next;
3525 }
3526 size += tape->merge_stage_size;
3527 return size;
3528}
3529
3530/*
3531 * Rewinds the tape to the Beginning Of the current Partition (BOP).
3532 *
3533 * We currently support only one partition.
3534 */
3535static int idetape_rewind_tape (ide_drive_t *drive)
3536{
3537 int retval;
3538 idetape_pc_t pc;
3539#if IDETAPE_DEBUG_LOG
3540 idetape_tape_t *tape = drive->driver_data;
3541 if (tape->debug_level >= 2)
3542 printk(KERN_INFO "ide-tape: Reached idetape_rewind_tape\n");
3543#endif /* IDETAPE_DEBUG_LOG */
3544
3545 idetape_create_rewind_cmd(drive, &pc);
3546 retval = idetape_queue_pc_tail(drive, &pc);
3547 if (retval)
3548 return retval;
3549
3550 idetape_create_read_position_cmd(&pc);
3551 retval = idetape_queue_pc_tail(drive, &pc);
3552 if (retval)
3553 return retval;
3554 return 0;
3555}
3556
3557/*
3558 * Our special ide-tape ioctl's.
3559 *
3560 * Currently there aren't any ioctl's.
3561 * mtio.h compatible commands should be issued to the character device
3562 * interface.
3563 */
3564static int idetape_blkdev_ioctl(ide_drive_t *drive, unsigned int cmd, unsigned long arg)
3565{
3566 idetape_tape_t *tape = drive->driver_data;
3567 idetape_config_t config;
3568 void __user *argp = (void __user *)arg;
3569
3570#if IDETAPE_DEBUG_LOG
3571 if (tape->debug_level >= 4)
3572 printk(KERN_INFO "ide-tape: Reached idetape_blkdev_ioctl\n");
3573#endif /* IDETAPE_DEBUG_LOG */
3574 switch (cmd) {
3575 case 0x0340:
3576 if (copy_from_user(&config, argp, sizeof (idetape_config_t)))
3577 return -EFAULT;
3578 tape->best_dsc_rw_frequency = config.dsc_rw_frequency;
3579 tape->max_stages = config.nr_stages;
3580 break;
3581 case 0x0350:
3582 config.dsc_rw_frequency = (int) tape->best_dsc_rw_frequency;
3583 config.nr_stages = tape->max_stages;
3584 if (copy_to_user(argp, &config, sizeof (idetape_config_t)))
3585 return -EFAULT;
3586 break;
3587 default:
3588 return -EIO;
3589 }
3590 return 0;
3591}
3592
3593/*
3594 * idetape_space_over_filemarks is now a bit more complicated than just
3595 * passing the command to the tape since we may have crossed some
3596 * filemarks during our pipelined read-ahead mode.
3597 *
3598 * As a minor side effect, the pipeline enables us to support MTFSFM when
3599 * the filemark is in our internal pipeline even if the tape doesn't
3600 * support spacing over filemarks in the reverse direction.
3601 */
3602static int idetape_space_over_filemarks (ide_drive_t *drive,short mt_op,int mt_count)
3603{
3604 idetape_tape_t *tape = drive->driver_data;
3605 idetape_pc_t pc;
3606 unsigned long flags;
3607 int retval,count=0;
3608
3609 if (mt_count == 0)
3610 return 0;
3611 if (MTBSF == mt_op || MTBSFM == mt_op) {
3612 if (!tape->capabilities.sprev)
3613 return -EIO;
3614 mt_count = - mt_count;
3615 }
3616
3617 if (tape->chrdev_direction == idetape_direction_read) {
3618 /*
3619 * We have a read-ahead buffer. Scan it for crossed
3620 * filemarks.
3621 */
3622 tape->merge_stage_size = 0;
3623 if (test_and_clear_bit(IDETAPE_FILEMARK, &tape->flags))
3624 ++count;
3625 while (tape->first_stage != NULL) {
3626 if (count == mt_count) {
3627 if (mt_op == MTFSFM)
3628 set_bit(IDETAPE_FILEMARK, &tape->flags);
3629 return 0;
3630 }
3631 spin_lock_irqsave(&tape->spinlock, flags);
3632 if (tape->first_stage == tape->active_stage) {
3633 /*
3634 * We have reached the active stage in the read pipeline.
3635 * There is no point in allowing the drive to continue
3636 * reading any farther, so we stop the pipeline.
3637 *
3638 * This section should be moved to a separate subroutine,
3639 * because a similar function is performed in
3640 * __idetape_discard_read_pipeline(), for example.
3641 */
3642 tape->next_stage = NULL;
3643 spin_unlock_irqrestore(&tape->spinlock, flags);
3644 idetape_wait_first_stage(drive);
3645 tape->next_stage = tape->first_stage->next;
3646 } else
3647 spin_unlock_irqrestore(&tape->spinlock, flags);
3648 if (tape->first_stage->rq.errors == IDETAPE_ERROR_FILEMARK)
3649 ++count;
3650 idetape_remove_stage_head(drive);
3651 }
3652 idetape_discard_read_pipeline(drive, 0);
3653 }
3654
3655 /*
3656 * The filemark was not found in our internal pipeline.
3657 * Now we can issue the space command.
3658 */
3659 switch (mt_op) {
3660 case MTFSF:
3661 case MTBSF:
3662 idetape_create_space_cmd(&pc,mt_count-count,IDETAPE_SPACE_OVER_FILEMARK);
3663 return (idetape_queue_pc_tail(drive, &pc));
3664 case MTFSFM:
3665 case MTBSFM:
3666 if (!tape->capabilities.sprev)
3667 return (-EIO);
3668 retval = idetape_space_over_filemarks(drive, MTFSF, mt_count-count);
3669 if (retval) return (retval);
3670 count = (MTBSFM == mt_op ? 1 : -1);
3671 return (idetape_space_over_filemarks(drive, MTFSF, count));
3672 default:
3673 printk(KERN_ERR "ide-tape: MTIO operation %d not supported\n",mt_op);
3674 return (-EIO);
3675 }
3676}
3677
3678
3679/*
3680 * Our character device read / write functions.
3681 *
3682 * The tape is optimized to maximize throughput when it is transferring
3683 * an integral number of the "continuous transfer limit", which is
3684 * a parameter of the specific tape (26 KB on my particular tape).
3685 * (32 kB for Onstream)
3686 *
3687 * As of version 1.3 of the driver, the character device provides an
3688 * abstract continuous view of the media - any mix of block sizes (even 1
3689 * byte) on the same backup/restore procedure is supported. The driver
3690 * will internally convert the requests to the recommended transfer unit,
3691 * so that an unmatch between the user's block size to the recommended
3692 * size will only result in a (slightly) increased driver overhead, but
3693 * will no longer hit performance.
3694 * This is not applicable to Onstream.
3695 */
3696static ssize_t idetape_chrdev_read (struct file *file, char __user *buf,
3697 size_t count, loff_t *ppos)
3698{
3699 struct ide_tape_obj *tape = ide_tape_f(file);
3700 ide_drive_t *drive = tape->drive;
3701 ssize_t bytes_read,temp, actually_read = 0, rc;
dcd96379 3702 ssize_t ret = 0;
1da177e4
LT
3703
3704#if IDETAPE_DEBUG_LOG
3705 if (tape->debug_level >= 3)
3706 printk(KERN_INFO "ide-tape: Reached idetape_chrdev_read, count %Zd\n", count);
3707#endif /* IDETAPE_DEBUG_LOG */
3708
3709 if (tape->chrdev_direction != idetape_direction_read) {
3710 if (test_bit(IDETAPE_DETECT_BS, &tape->flags))
3711 if (count > tape->tape_block_size &&
3712 (count % tape->tape_block_size) == 0)
3713 tape->user_bs_factor = count / tape->tape_block_size;
3714 }
3715 if ((rc = idetape_initiate_read(drive, tape->max_stages)) < 0)
3716 return rc;
3717 if (count == 0)
3718 return (0);
3719 if (tape->merge_stage_size) {
3720 actually_read = min((unsigned int)(tape->merge_stage_size), (unsigned int)count);
dcd96379
DW
3721 if (idetape_copy_stage_to_user(tape, buf, tape->merge_stage, actually_read))
3722 ret = -EFAULT;
1da177e4
LT
3723 buf += actually_read;
3724 tape->merge_stage_size -= actually_read;
3725 count -= actually_read;
3726 }
3727 while (count >= tape->stage_size) {
3728 bytes_read = idetape_add_chrdev_read_request(drive, tape->capabilities.ctl);
3729 if (bytes_read <= 0)
3730 goto finish;
dcd96379
DW
3731 if (idetape_copy_stage_to_user(tape, buf, tape->merge_stage, bytes_read))
3732 ret = -EFAULT;
1da177e4
LT
3733 buf += bytes_read;
3734 count -= bytes_read;
3735 actually_read += bytes_read;
3736 }
3737 if (count) {
3738 bytes_read = idetape_add_chrdev_read_request(drive, tape->capabilities.ctl);
3739 if (bytes_read <= 0)
3740 goto finish;
3741 temp = min((unsigned long)count, (unsigned long)bytes_read);
dcd96379
DW
3742 if (idetape_copy_stage_to_user(tape, buf, tape->merge_stage, temp))
3743 ret = -EFAULT;
1da177e4
LT
3744 actually_read += temp;
3745 tape->merge_stage_size = bytes_read-temp;
3746 }
3747finish:
3748 if (!actually_read && test_bit(IDETAPE_FILEMARK, &tape->flags)) {
3749#if IDETAPE_DEBUG_LOG
3750 if (tape->debug_level >= 2)
3751 printk(KERN_INFO "ide-tape: %s: spacing over filemark\n", tape->name);
3752#endif
3753 idetape_space_over_filemarks(drive, MTFSF, 1);
3754 return 0;
3755 }
dcd96379
DW
3756
3757 return (ret) ? ret : actually_read;
1da177e4
LT
3758}
3759
3760static ssize_t idetape_chrdev_write (struct file *file, const char __user *buf,
3761 size_t count, loff_t *ppos)
3762{
3763 struct ide_tape_obj *tape = ide_tape_f(file);
3764 ide_drive_t *drive = tape->drive;
dcd96379
DW
3765 ssize_t actually_written = 0;
3766 ssize_t ret = 0;
1da177e4
LT
3767
3768 /* The drive is write protected. */
3769 if (tape->write_prot)
3770 return -EACCES;
3771
3772#if IDETAPE_DEBUG_LOG
3773 if (tape->debug_level >= 3)
3774 printk(KERN_INFO "ide-tape: Reached idetape_chrdev_write, "
3775 "count %Zd\n", count);
3776#endif /* IDETAPE_DEBUG_LOG */
3777
3778 /* Initialize write operation */
3779 if (tape->chrdev_direction != idetape_direction_write) {
3780 if (tape->chrdev_direction == idetape_direction_read)
3781 idetape_discard_read_pipeline(drive, 1);
3782#if IDETAPE_DEBUG_BUGS
3783 if (tape->merge_stage || tape->merge_stage_size) {
3784 printk(KERN_ERR "ide-tape: merge_stage_size "
3785 "should be 0 now\n");
3786 tape->merge_stage_size = 0;
3787 }
3788#endif /* IDETAPE_DEBUG_BUGS */
3789 if ((tape->merge_stage = __idetape_kmalloc_stage(tape, 0, 0)) == NULL)
3790 return -ENOMEM;
3791 tape->chrdev_direction = idetape_direction_write;
3792 idetape_init_merge_stage(tape);
3793
3794 /*
3795 * Issue a write 0 command to ensure that DSC handshake
3796 * is switched from completion mode to buffer available
3797 * mode.
3798 * No point in issuing this if DSC overlap isn't supported,
3799 * some drives (Seagate STT3401A) will return an error.
3800 */
3801 if (drive->dsc_overlap) {
dcd96379 3802 ssize_t retval = idetape_queue_rw_tail(drive, REQ_IDETAPE_WRITE, 0, tape->merge_stage->bh);
1da177e4
LT
3803 if (retval < 0) {
3804 __idetape_kfree_stage(tape->merge_stage);
3805 tape->merge_stage = NULL;
3806 tape->chrdev_direction = idetape_direction_none;
3807 return retval;
3808 }
3809 }
3810 }
3811 if (count == 0)
3812 return (0);
3813 if (tape->restart_speed_control_req)
3814 idetape_restart_speed_control(drive);
3815 if (tape->merge_stage_size) {
3816#if IDETAPE_DEBUG_BUGS
3817 if (tape->merge_stage_size >= tape->stage_size) {
3818 printk(KERN_ERR "ide-tape: bug: merge buffer too big\n");
3819 tape->merge_stage_size = 0;
3820 }
3821#endif /* IDETAPE_DEBUG_BUGS */
3822 actually_written = min((unsigned int)(tape->stage_size - tape->merge_stage_size), (unsigned int)count);
dcd96379
DW
3823 if (idetape_copy_stage_from_user(tape, tape->merge_stage, buf, actually_written))
3824 ret = -EFAULT;
1da177e4
LT
3825 buf += actually_written;
3826 tape->merge_stage_size += actually_written;
3827 count -= actually_written;
3828
3829 if (tape->merge_stage_size == tape->stage_size) {
dcd96379 3830 ssize_t retval;
1da177e4
LT
3831 tape->merge_stage_size = 0;
3832 retval = idetape_add_chrdev_write_request(drive, tape->capabilities.ctl);
3833 if (retval <= 0)
3834 return (retval);
3835 }
3836 }
3837 while (count >= tape->stage_size) {
dcd96379
DW
3838 ssize_t retval;
3839 if (idetape_copy_stage_from_user(tape, tape->merge_stage, buf, tape->stage_size))
3840 ret = -EFAULT;
1da177e4
LT
3841 buf += tape->stage_size;
3842 count -= tape->stage_size;
3843 retval = idetape_add_chrdev_write_request(drive, tape->capabilities.ctl);
3844 actually_written += tape->stage_size;
3845 if (retval <= 0)
3846 return (retval);
3847 }
3848 if (count) {
3849 actually_written += count;
dcd96379
DW
3850 if (idetape_copy_stage_from_user(tape, tape->merge_stage, buf, count))
3851 ret = -EFAULT;
1da177e4
LT
3852 tape->merge_stage_size += count;
3853 }
dcd96379 3854 return (ret) ? ret : actually_written;
1da177e4
LT
3855}
3856
3857static int idetape_write_filemark (ide_drive_t *drive)
3858{
3859 idetape_pc_t pc;
3860
3861 /* Write a filemark */
3862 idetape_create_write_filemark_cmd(drive, &pc, 1);
3863 if (idetape_queue_pc_tail(drive, &pc)) {
3864 printk(KERN_ERR "ide-tape: Couldn't write a filemark\n");
3865 return -EIO;
3866 }
3867 return 0;
3868}
3869
3870/*
3871 * idetape_mtioctop is called from idetape_chrdev_ioctl when
3872 * the general mtio MTIOCTOP ioctl is requested.
3873 *
3874 * We currently support the following mtio.h operations:
3875 *
3876 * MTFSF - Space over mt_count filemarks in the positive direction.
3877 * The tape is positioned after the last spaced filemark.
3878 *
3879 * MTFSFM - Same as MTFSF, but the tape is positioned before the
3880 * last filemark.
3881 *
3882 * MTBSF - Steps background over mt_count filemarks, tape is
3883 * positioned before the last filemark.
3884 *
3885 * MTBSFM - Like MTBSF, only tape is positioned after the last filemark.
3886 *
3887 * Note:
3888 *
3889 * MTBSF and MTBSFM are not supported when the tape doesn't
3890 * support spacing over filemarks in the reverse direction.
3891 * In this case, MTFSFM is also usually not supported (it is
3892 * supported in the rare case in which we crossed the filemark
3893 * during our read-ahead pipelined operation mode).
3894 *
3895 * MTWEOF - Writes mt_count filemarks. Tape is positioned after
3896 * the last written filemark.
3897 *
3898 * MTREW - Rewinds tape.
3899 *
3900 * MTLOAD - Loads the tape.
3901 *
3902 * MTOFFL - Puts the tape drive "Offline": Rewinds the tape and
3903 * MTUNLOAD prevents further access until the media is replaced.
3904 *
3905 * MTNOP - Flushes tape buffers.
3906 *
3907 * MTRETEN - Retension media. This typically consists of one end
3908 * to end pass on the media.
3909 *
3910 * MTEOM - Moves to the end of recorded data.
3911 *
3912 * MTERASE - Erases tape.
3913 *
3914 * MTSETBLK - Sets the user block size to mt_count bytes. If
3915 * mt_count is 0, we will attempt to autodetect
3916 * the block size.
3917 *
3918 * MTSEEK - Positions the tape in a specific block number, where
3919 * each block is assumed to contain which user_block_size
3920 * bytes.
3921 *
3922 * MTSETPART - Switches to another tape partition.
3923 *
3924 * MTLOCK - Locks the tape door.
3925 *
3926 * MTUNLOCK - Unlocks the tape door.
3927 *
3928 * The following commands are currently not supported:
3929 *
3930 * MTFSS, MTBSS, MTWSM, MTSETDENSITY,
3931 * MTSETDRVBUFFER, MT_ST_BOOLEANS, MT_ST_WRITE_THRESHOLD.
3932 */
3933static int idetape_mtioctop (ide_drive_t *drive,short mt_op,int mt_count)
3934{
3935 idetape_tape_t *tape = drive->driver_data;
3936 idetape_pc_t pc;
3937 int i,retval;
3938
3939#if IDETAPE_DEBUG_LOG
3940 if (tape->debug_level >= 1)
3941 printk(KERN_INFO "ide-tape: Handling MTIOCTOP ioctl: "
3942 "mt_op=%d, mt_count=%d\n", mt_op, mt_count);
3943#endif /* IDETAPE_DEBUG_LOG */
3944 /*
3945 * Commands which need our pipelined read-ahead stages.
3946 */
3947 switch (mt_op) {
3948 case MTFSF:
3949 case MTFSFM:
3950 case MTBSF:
3951 case MTBSFM:
3952 if (!mt_count)
3953 return (0);
3954 return (idetape_space_over_filemarks(drive,mt_op,mt_count));
3955 default:
3956 break;
3957 }
3958 switch (mt_op) {
3959 case MTWEOF:
3960 if (tape->write_prot)
3961 return -EACCES;
3962 idetape_discard_read_pipeline(drive, 1);
3963 for (i = 0; i < mt_count; i++) {
3964 retval = idetape_write_filemark(drive);
3965 if (retval)
3966 return retval;
3967 }
3968 return (0);
3969 case MTREW:
3970 idetape_discard_read_pipeline(drive, 0);
3971 if (idetape_rewind_tape(drive))
3972 return -EIO;
3973 return 0;
3974 case MTLOAD:
3975 idetape_discard_read_pipeline(drive, 0);
3976 idetape_create_load_unload_cmd(drive, &pc, IDETAPE_LU_LOAD_MASK);
3977 return (idetape_queue_pc_tail(drive, &pc));
3978 case MTUNLOAD:
3979 case MTOFFL:
3980 /*
3981 * If door is locked, attempt to unlock before
3982 * attempting to eject.
3983 */
3984 if (tape->door_locked) {
3985 if (idetape_create_prevent_cmd(drive, &pc, 0))
3986 if (!idetape_queue_pc_tail(drive, &pc))
3987 tape->door_locked = DOOR_UNLOCKED;
3988 }
3989 idetape_discard_read_pipeline(drive, 0);
3990 idetape_create_load_unload_cmd(drive, &pc,!IDETAPE_LU_LOAD_MASK);
3991 retval = idetape_queue_pc_tail(drive, &pc);
3992 if (!retval)
3993 clear_bit(IDETAPE_MEDIUM_PRESENT, &tape->flags);
3994 return retval;
3995 case MTNOP:
3996 idetape_discard_read_pipeline(drive, 0);
3997 return (idetape_flush_tape_buffers(drive));
3998 case MTRETEN:
3999 idetape_discard_read_pipeline(drive, 0);
4000 idetape_create_load_unload_cmd(drive, &pc,IDETAPE_LU_RETENSION_MASK | IDETAPE_LU_LOAD_MASK);
4001 return (idetape_queue_pc_tail(drive, &pc));
4002 case MTEOM:
4003 idetape_create_space_cmd(&pc, 0, IDETAPE_SPACE_TO_EOD);
4004 return (idetape_queue_pc_tail(drive, &pc));
4005 case MTERASE:
4006 (void) idetape_rewind_tape(drive);
4007 idetape_create_erase_cmd(&pc);
4008 return (idetape_queue_pc_tail(drive, &pc));
4009 case MTSETBLK:
4010 if (mt_count) {
4011 if (mt_count < tape->tape_block_size || mt_count % tape->tape_block_size)
4012 return -EIO;
4013 tape->user_bs_factor = mt_count / tape->tape_block_size;
4014 clear_bit(IDETAPE_DETECT_BS, &tape->flags);
4015 } else
4016 set_bit(IDETAPE_DETECT_BS, &tape->flags);
4017 return 0;
4018 case MTSEEK:
4019 idetape_discard_read_pipeline(drive, 0);
4020 return idetape_position_tape(drive, mt_count * tape->user_bs_factor, tape->partition, 0);
4021 case MTSETPART:
4022 idetape_discard_read_pipeline(drive, 0);
4023 return (idetape_position_tape(drive, 0, mt_count, 0));
4024 case MTFSR:
4025 case MTBSR:
4026 case MTLOCK:
4027 if (!idetape_create_prevent_cmd(drive, &pc, 1))
4028 return 0;
4029 retval = idetape_queue_pc_tail(drive, &pc);
4030 if (retval) return retval;
4031 tape->door_locked = DOOR_EXPLICITLY_LOCKED;
4032 return 0;
4033 case MTUNLOCK:
4034 if (!idetape_create_prevent_cmd(drive, &pc, 0))
4035 return 0;
4036 retval = idetape_queue_pc_tail(drive, &pc);
4037 if (retval) return retval;
4038 tape->door_locked = DOOR_UNLOCKED;
4039 return 0;
4040 default:
4041 printk(KERN_ERR "ide-tape: MTIO operation %d not "
4042 "supported\n", mt_op);
4043 return (-EIO);
4044 }
4045}
4046
4047/*
4048 * Our character device ioctls.
4049 *
4050 * General mtio.h magnetic io commands are supported here, and not in
4051 * the corresponding block interface.
4052 *
4053 * The following ioctls are supported:
4054 *
4055 * MTIOCTOP - Refer to idetape_mtioctop for detailed description.
4056 *
4057 * MTIOCGET - The mt_dsreg field in the returned mtget structure
4058 * will be set to (user block size in bytes <<
4059 * MT_ST_BLKSIZE_SHIFT) & MT_ST_BLKSIZE_MASK.
4060 *
4061 * The mt_blkno is set to the current user block number.
4062 * The other mtget fields are not supported.
4063 *
4064 * MTIOCPOS - The current tape "block position" is returned. We
4065 * assume that each block contains user_block_size
4066 * bytes.
4067 *
4068 * Our own ide-tape ioctls are supported on both interfaces.
4069 */
4070static int idetape_chrdev_ioctl (struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
4071{
4072 struct ide_tape_obj *tape = ide_tape_f(file);
4073 ide_drive_t *drive = tape->drive;
4074 struct mtop mtop;
4075 struct mtget mtget;
4076 struct mtpos mtpos;
4077 int block_offset = 0, position = tape->first_frame_position;
4078 void __user *argp = (void __user *)arg;
4079
4080#if IDETAPE_DEBUG_LOG
4081 if (tape->debug_level >= 3)
4082 printk(KERN_INFO "ide-tape: Reached idetape_chrdev_ioctl, "
4083 "cmd=%u\n", cmd);
4084#endif /* IDETAPE_DEBUG_LOG */
4085
4086 tape->restart_speed_control_req = 1;
4087 if (tape->chrdev_direction == idetape_direction_write) {
4088 idetape_empty_write_pipeline(drive);
4089 idetape_flush_tape_buffers(drive);
4090 }
4091 if (cmd == MTIOCGET || cmd == MTIOCPOS) {
4092 block_offset = idetape_pipeline_size(drive) / (tape->tape_block_size * tape->user_bs_factor);
4093 if ((position = idetape_read_position(drive)) < 0)
4094 return -EIO;
4095 }
4096 switch (cmd) {
4097 case MTIOCTOP:
4098 if (copy_from_user(&mtop, argp, sizeof (struct mtop)))
4099 return -EFAULT;
4100 return (idetape_mtioctop(drive,mtop.mt_op,mtop.mt_count));
4101 case MTIOCGET:
4102 memset(&mtget, 0, sizeof (struct mtget));
4103 mtget.mt_type = MT_ISSCSI2;
4104 mtget.mt_blkno = position / tape->user_bs_factor - block_offset;
4105 mtget.mt_dsreg = ((tape->tape_block_size * tape->user_bs_factor) << MT_ST_BLKSIZE_SHIFT) & MT_ST_BLKSIZE_MASK;
4106 if (tape->drv_write_prot) {
4107 mtget.mt_gstat |= GMT_WR_PROT(0xffffffff);
4108 }
4109 if (copy_to_user(argp, &mtget, sizeof(struct mtget)))
4110 return -EFAULT;
4111 return 0;
4112 case MTIOCPOS:
4113 mtpos.mt_blkno = position / tape->user_bs_factor - block_offset;
4114 if (copy_to_user(argp, &mtpos, sizeof(struct mtpos)))
4115 return -EFAULT;
4116 return 0;
4117 default:
4118 if (tape->chrdev_direction == idetape_direction_read)
4119 idetape_discard_read_pipeline(drive, 1);
4120 return idetape_blkdev_ioctl(drive, cmd, arg);
4121 }
4122}
4123
4124static void idetape_get_blocksize_from_block_descriptor(ide_drive_t *drive);
4125
4126/*
4127 * Our character device open function.
4128 */
4129static int idetape_chrdev_open (struct inode *inode, struct file *filp)
4130{
4131 unsigned int minor = iminor(inode), i = minor & ~0xc0;
4132 ide_drive_t *drive;
4133 idetape_tape_t *tape;
4134 idetape_pc_t pc;
4135 int retval;
4136
4137 /*
4138 * We really want to do nonseekable_open(inode, filp); here, but some
4139 * versions of tar incorrectly call lseek on tapes and bail out if that
4140 * fails. So we disallow pread() and pwrite(), but permit lseeks.
4141 */
4142 filp->f_mode &= ~(FMODE_PREAD | FMODE_PWRITE);
4143
4144#if IDETAPE_DEBUG_LOG
4145 printk(KERN_INFO "ide-tape: Reached idetape_chrdev_open\n");
4146#endif /* IDETAPE_DEBUG_LOG */
4147
4148 if (i >= MAX_HWIFS * MAX_DRIVES)
4149 return -ENXIO;
4150
4151 if (!(tape = ide_tape_chrdev_get(i)))
4152 return -ENXIO;
4153
4154 drive = tape->drive;
4155
4156 filp->private_data = tape;
4157
4158 if (test_and_set_bit(IDETAPE_BUSY, &tape->flags)) {
4159 retval = -EBUSY;
4160 goto out_put_tape;
4161 }
4162
4163 retval = idetape_wait_ready(drive, 60 * HZ);
4164 if (retval) {
4165 clear_bit(IDETAPE_BUSY, &tape->flags);
4166 printk(KERN_ERR "ide-tape: %s: drive not ready\n", tape->name);
4167 goto out_put_tape;
4168 }
4169
4170 idetape_read_position(drive);
4171 if (!test_bit(IDETAPE_ADDRESS_VALID, &tape->flags))
4172 (void)idetape_rewind_tape(drive);
4173
4174 if (tape->chrdev_direction != idetape_direction_read)
4175 clear_bit(IDETAPE_PIPELINE_ERROR, &tape->flags);
4176
4177 /* Read block size and write protect status from drive. */
4178 idetape_get_blocksize_from_block_descriptor(drive);
4179
4180 /* Set write protect flag if device is opened as read-only. */
4181 if ((filp->f_flags & O_ACCMODE) == O_RDONLY)
4182 tape->write_prot = 1;
4183 else
4184 tape->write_prot = tape->drv_write_prot;
4185
4186 /* Make sure drive isn't write protected if user wants to write. */
4187 if (tape->write_prot) {
4188 if ((filp->f_flags & O_ACCMODE) == O_WRONLY ||
4189 (filp->f_flags & O_ACCMODE) == O_RDWR) {
4190 clear_bit(IDETAPE_BUSY, &tape->flags);
4191 retval = -EROFS;
4192 goto out_put_tape;
4193 }
4194 }
4195
4196 /*
4197 * Lock the tape drive door so user can't eject.
4198 */
4199 if (tape->chrdev_direction == idetape_direction_none) {
4200 if (idetape_create_prevent_cmd(drive, &pc, 1)) {
4201 if (!idetape_queue_pc_tail(drive, &pc)) {
4202 if (tape->door_locked != DOOR_EXPLICITLY_LOCKED)
4203 tape->door_locked = DOOR_LOCKED;
4204 }
4205 }
4206 }
4207 idetape_restart_speed_control(drive);
4208 tape->restart_speed_control_req = 0;
4209 return 0;
4210
4211out_put_tape:
4212 ide_tape_put(tape);
4213 return retval;
4214}
4215
4216static void idetape_write_release (ide_drive_t *drive, unsigned int minor)
4217{
4218 idetape_tape_t *tape = drive->driver_data;
4219
4220 idetape_empty_write_pipeline(drive);
4221 tape->merge_stage = __idetape_kmalloc_stage(tape, 1, 0);
4222 if (tape->merge_stage != NULL) {
4223 idetape_pad_zeros(drive, tape->tape_block_size * (tape->user_bs_factor - 1));
4224 __idetape_kfree_stage(tape->merge_stage);
4225 tape->merge_stage = NULL;
4226 }
4227 idetape_write_filemark(drive);
4228 idetape_flush_tape_buffers(drive);
4229 idetape_flush_tape_buffers(drive);
4230}
4231
4232/*
4233 * Our character device release function.
4234 */
4235static int idetape_chrdev_release (struct inode *inode, struct file *filp)
4236{
4237 struct ide_tape_obj *tape = ide_tape_f(filp);
4238 ide_drive_t *drive = tape->drive;
4239 idetape_pc_t pc;
4240 unsigned int minor = iminor(inode);
4241
4242 lock_kernel();
4243 tape = drive->driver_data;
4244#if IDETAPE_DEBUG_LOG
4245 if (tape->debug_level >= 3)
4246 printk(KERN_INFO "ide-tape: Reached idetape_chrdev_release\n");
4247#endif /* IDETAPE_DEBUG_LOG */
4248
4249 if (tape->chrdev_direction == idetape_direction_write)
4250 idetape_write_release(drive, minor);
4251 if (tape->chrdev_direction == idetape_direction_read) {
4252 if (minor < 128)
4253 idetape_discard_read_pipeline(drive, 1);
4254 else
4255 idetape_wait_for_pipeline(drive);
4256 }
4257 if (tape->cache_stage != NULL) {
4258 __idetape_kfree_stage(tape->cache_stage);
4259 tape->cache_stage = NULL;
4260 }
4261 if (minor < 128 && test_bit(IDETAPE_MEDIUM_PRESENT, &tape->flags))
4262 (void) idetape_rewind_tape(drive);
4263 if (tape->chrdev_direction == idetape_direction_none) {
4264 if (tape->door_locked == DOOR_LOCKED) {
4265 if (idetape_create_prevent_cmd(drive, &pc, 0)) {
4266 if (!idetape_queue_pc_tail(drive, &pc))
4267 tape->door_locked = DOOR_UNLOCKED;
4268 }
4269 }
4270 }
4271 clear_bit(IDETAPE_BUSY, &tape->flags);
4272 ide_tape_put(tape);
4273 unlock_kernel();
4274 return 0;
4275}
4276
4277/*
4278 * idetape_identify_device is called to check the contents of the
4279 * ATAPI IDENTIFY command results. We return:
4280 *
4281 * 1 If the tape can be supported by us, based on the information
4282 * we have so far.
4283 *
4284 * 0 If this tape driver is not currently supported by us.
4285 */
4286static int idetape_identify_device (ide_drive_t *drive)
4287{
4288 struct idetape_id_gcw gcw;
4289 struct hd_driveid *id = drive->id;
4290#if IDETAPE_DEBUG_INFO
4291 unsigned short mask,i;
4292#endif /* IDETAPE_DEBUG_INFO */
4293
4294 if (drive->id_read == 0)
4295 return 1;
4296
4297 *((unsigned short *) &gcw) = id->config;
4298
4299#if IDETAPE_DEBUG_INFO
4300 printk(KERN_INFO "ide-tape: Dumping ATAPI Identify Device tape parameters\n");
4301 printk(KERN_INFO "ide-tape: Protocol Type: ");
4302 switch (gcw.protocol) {
4303 case 0: case 1: printk("ATA\n");break;
4304 case 2: printk("ATAPI\n");break;
4305 case 3: printk("Reserved (Unknown to ide-tape)\n");break;
4306 }
4307 printk(KERN_INFO "ide-tape: Device Type: %x - ",gcw.device_type);
4308 switch (gcw.device_type) {
4309 case 0: printk("Direct-access Device\n");break;
4310 case 1: printk("Streaming Tape Device\n");break;
4311 case 2: case 3: case 4: printk("Reserved\n");break;
4312 case 5: printk("CD-ROM Device\n");break;
4313 case 6: printk("Reserved\n");
4314 case 7: printk("Optical memory Device\n");break;
4315 case 0x1f: printk("Unknown or no Device type\n");break;
4316 default: printk("Reserved\n");
4317 }
4318 printk(KERN_INFO "ide-tape: Removable: %s",gcw.removable ? "Yes\n":"No\n");
4319 printk(KERN_INFO "ide-tape: Command Packet DRQ Type: ");
4320 switch (gcw.drq_type) {
4321 case 0: printk("Microprocessor DRQ\n");break;
4322 case 1: printk("Interrupt DRQ\n");break;
4323 case 2: printk("Accelerated DRQ\n");break;
4324 case 3: printk("Reserved\n");break;
4325 }
4326 printk(KERN_INFO "ide-tape: Command Packet Size: ");
4327 switch (gcw.packet_size) {
4328 case 0: printk("12 bytes\n");break;
4329 case 1: printk("16 bytes\n");break;
4330 default: printk("Reserved\n");break;
4331 }
4332 printk(KERN_INFO "ide-tape: Model: %.40s\n",id->model);
4333 printk(KERN_INFO "ide-tape: Firmware Revision: %.8s\n",id->fw_rev);
4334 printk(KERN_INFO "ide-tape: Serial Number: %.20s\n",id->serial_no);
4335 printk(KERN_INFO "ide-tape: Write buffer size: %d bytes\n",id->buf_size*512);
4336 printk(KERN_INFO "ide-tape: DMA: %s",id->capability & 0x01 ? "Yes\n":"No\n");
4337 printk(KERN_INFO "ide-tape: LBA: %s",id->capability & 0x02 ? "Yes\n":"No\n");
4338 printk(KERN_INFO "ide-tape: IORDY can be disabled: %s",id->capability & 0x04 ? "Yes\n":"No\n");
4339 printk(KERN_INFO "ide-tape: IORDY supported: %s",id->capability & 0x08 ? "Yes\n":"Unknown\n");
4340 printk(KERN_INFO "ide-tape: ATAPI overlap supported: %s",id->capability & 0x20 ? "Yes\n":"No\n");
4341 printk(KERN_INFO "ide-tape: PIO Cycle Timing Category: %d\n",id->tPIO);
4342 printk(KERN_INFO "ide-tape: DMA Cycle Timing Category: %d\n",id->tDMA);
4343 printk(KERN_INFO "ide-tape: Single Word DMA supported modes: ");
4344 for (i=0,mask=1;i<8;i++,mask=mask << 1) {
4345 if (id->dma_1word & mask)
4346 printk("%d ",i);
4347 if (id->dma_1word & (mask << 8))
4348 printk("(active) ");
4349 }
4350 printk("\n");
4351 printk(KERN_INFO "ide-tape: Multi Word DMA supported modes: ");
4352 for (i=0,mask=1;i<8;i++,mask=mask << 1) {
4353 if (id->dma_mword & mask)
4354 printk("%d ",i);
4355 if (id->dma_mword & (mask << 8))
4356 printk("(active) ");
4357 }
4358 printk("\n");
4359 if (id->field_valid & 0x0002) {
4360 printk(KERN_INFO "ide-tape: Enhanced PIO Modes: %s\n",
4361 id->eide_pio_modes & 1 ? "Mode 3":"None");
4362 printk(KERN_INFO "ide-tape: Minimum Multi-word DMA cycle per word: ");
4363 if (id->eide_dma_min == 0)
4364 printk("Not supported\n");
4365 else
4366 printk("%d ns\n",id->eide_dma_min);
4367
4368 printk(KERN_INFO "ide-tape: Manufacturer\'s Recommended Multi-word cycle: ");
4369 if (id->eide_dma_time == 0)
4370 printk("Not supported\n");
4371 else
4372 printk("%d ns\n",id->eide_dma_time);
4373
4374 printk(KERN_INFO "ide-tape: Minimum PIO cycle without IORDY: ");
4375 if (id->eide_pio == 0)
4376 printk("Not supported\n");
4377 else
4378 printk("%d ns\n",id->eide_pio);
4379
4380 printk(KERN_INFO "ide-tape: Minimum PIO cycle with IORDY: ");
4381 if (id->eide_pio_iordy == 0)
4382 printk("Not supported\n");
4383 else
4384 printk("%d ns\n",id->eide_pio_iordy);
4385
4386 } else
4387 printk(KERN_INFO "ide-tape: According to the device, fields 64-70 are not valid.\n");
4388#endif /* IDETAPE_DEBUG_INFO */
4389
4390 /* Check that we can support this device */
4391
4392 if (gcw.protocol !=2 )
4393 printk(KERN_ERR "ide-tape: Protocol is not ATAPI\n");
4394 else if (gcw.device_type != 1)
4395 printk(KERN_ERR "ide-tape: Device type is not set to tape\n");
4396 else if (!gcw.removable)
4397 printk(KERN_ERR "ide-tape: The removable flag is not set\n");
4398 else if (gcw.packet_size != 0) {
4399 printk(KERN_ERR "ide-tape: Packet size is not 12 bytes long\n");
4400 if (gcw.packet_size == 1)
4401 printk(KERN_ERR "ide-tape: Sorry, padding to 16 bytes is still not supported\n");
4402 } else
4403 return 1;
4404 return 0;
4405}
4406
4407/*
4408 * Use INQUIRY to get the firmware revision
4409 */
4410static void idetape_get_inquiry_results (ide_drive_t *drive)
4411{
4412 char *r;
4413 idetape_tape_t *tape = drive->driver_data;
4414 idetape_pc_t pc;
4415 idetape_inquiry_result_t *inquiry;
4416
4417 idetape_create_inquiry_cmd(&pc);
4418 if (idetape_queue_pc_tail(drive, &pc)) {
4419 printk(KERN_ERR "ide-tape: %s: can't get INQUIRY results\n", tape->name);
4420 return;
4421 }
4422 inquiry = (idetape_inquiry_result_t *) pc.buffer;
4423 memcpy(tape->vendor_id, inquiry->vendor_id, 8);
4424 memcpy(tape->product_id, inquiry->product_id, 16);
4425 memcpy(tape->firmware_revision, inquiry->revision_level, 4);
4426 ide_fixstring(tape->vendor_id, 10, 0);
4427 ide_fixstring(tape->product_id, 18, 0);
4428 ide_fixstring(tape->firmware_revision, 6, 0);
4429 r = tape->firmware_revision;
4430 if (*(r + 1) == '.')
4431 tape->firmware_revision_num = (*r - '0') * 100 + (*(r + 2) - '0') * 10 + *(r + 3) - '0';
4432 printk(KERN_INFO "ide-tape: %s <-> %s: %s %s rev %s\n", drive->name, tape->name, tape->vendor_id, tape->product_id, tape->firmware_revision);
4433}
4434
4435/*
4436 * idetape_get_mode_sense_results asks the tape about its various
4437 * parameters. In particular, we will adjust our data transfer buffer
4438 * size to the recommended value as returned by the tape.
4439 */
4440static void idetape_get_mode_sense_results (ide_drive_t *drive)
4441{
4442 idetape_tape_t *tape = drive->driver_data;
4443 idetape_pc_t pc;
4444 idetape_mode_parameter_header_t *header;
4445 idetape_capabilities_page_t *capabilities;
4446
4447 idetape_create_mode_sense_cmd(&pc, IDETAPE_CAPABILITIES_PAGE);
4448 if (idetape_queue_pc_tail(drive, &pc)) {
4449 printk(KERN_ERR "ide-tape: Can't get tape parameters - assuming some default values\n");
4450 tape->tape_block_size = 512;
4451 tape->capabilities.ctl = 52;
4452 tape->capabilities.speed = 450;
4453 tape->capabilities.buffer_size = 6 * 52;
4454 return;
4455 }
4456 header = (idetape_mode_parameter_header_t *) pc.buffer;
4457 capabilities = (idetape_capabilities_page_t *) (pc.buffer + sizeof(idetape_mode_parameter_header_t) + header->bdl);
4458
4459 capabilities->max_speed = ntohs(capabilities->max_speed);
4460 capabilities->ctl = ntohs(capabilities->ctl);
4461 capabilities->speed = ntohs(capabilities->speed);
4462 capabilities->buffer_size = ntohs(capabilities->buffer_size);
4463
4464 if (!capabilities->speed) {
4465 printk(KERN_INFO "ide-tape: %s: overriding capabilities->speed (assuming 650KB/sec)\n", drive->name);
4466 capabilities->speed = 650;
4467 }
4468 if (!capabilities->max_speed) {
4469 printk(KERN_INFO "ide-tape: %s: overriding capabilities->max_speed (assuming 650KB/sec)\n", drive->name);
4470 capabilities->max_speed = 650;
4471 }
4472
4473 tape->capabilities = *capabilities; /* Save us a copy */
4474 if (capabilities->blk512)
4475 tape->tape_block_size = 512;
4476 else if (capabilities->blk1024)
4477 tape->tape_block_size = 1024;
4478
4479#if IDETAPE_DEBUG_INFO
4480 printk(KERN_INFO "ide-tape: Dumping the results of the MODE SENSE packet command\n");
4481 printk(KERN_INFO "ide-tape: Mode Parameter Header:\n");
4482 printk(KERN_INFO "ide-tape: Mode Data Length - %d\n",header->mode_data_length);
4483 printk(KERN_INFO "ide-tape: Medium Type - %d\n",header->medium_type);
4484 printk(KERN_INFO "ide-tape: Device Specific Parameter - %d\n",header->dsp);
4485 printk(KERN_INFO "ide-tape: Block Descriptor Length - %d\n",header->bdl);
4486
4487 printk(KERN_INFO "ide-tape: Capabilities and Mechanical Status Page:\n");
4488 printk(KERN_INFO "ide-tape: Page code - %d\n",capabilities->page_code);
4489 printk(KERN_INFO "ide-tape: Page length - %d\n",capabilities->page_length);
4490 printk(KERN_INFO "ide-tape: Read only - %s\n",capabilities->ro ? "Yes":"No");
4491 printk(KERN_INFO "ide-tape: Supports reverse space - %s\n",capabilities->sprev ? "Yes":"No");
4492 printk(KERN_INFO "ide-tape: Supports erase initiated formatting - %s\n",capabilities->efmt ? "Yes":"No");
4493 printk(KERN_INFO "ide-tape: Supports QFA two Partition format - %s\n",capabilities->qfa ? "Yes":"No");
4494 printk(KERN_INFO "ide-tape: Supports locking the medium - %s\n",capabilities->lock ? "Yes":"No");
4495 printk(KERN_INFO "ide-tape: The volume is currently locked - %s\n",capabilities->locked ? "Yes":"No");
4496 printk(KERN_INFO "ide-tape: The device defaults in the prevent state - %s\n",capabilities->prevent ? "Yes":"No");
4497 printk(KERN_INFO "ide-tape: Supports ejecting the medium - %s\n",capabilities->eject ? "Yes":"No");
4498 printk(KERN_INFO "ide-tape: Supports error correction - %s\n",capabilities->ecc ? "Yes":"No");
4499 printk(KERN_INFO "ide-tape: Supports data compression - %s\n",capabilities->cmprs ? "Yes":"No");
4500 printk(KERN_INFO "ide-tape: Supports 512 bytes block size - %s\n",capabilities->blk512 ? "Yes":"No");
4501 printk(KERN_INFO "ide-tape: Supports 1024 bytes block size - %s\n",capabilities->blk1024 ? "Yes":"No");
4502 printk(KERN_INFO "ide-tape: Supports 32768 bytes block size / Restricted byte count for PIO transfers - %s\n",capabilities->blk32768 ? "Yes":"No");
4503 printk(KERN_INFO "ide-tape: Maximum supported speed in KBps - %d\n",capabilities->max_speed);
4504 printk(KERN_INFO "ide-tape: Continuous transfer limits in blocks - %d\n",capabilities->ctl);
4505 printk(KERN_INFO "ide-tape: Current speed in KBps - %d\n",capabilities->speed);
4506 printk(KERN_INFO "ide-tape: Buffer size - %d\n",capabilities->buffer_size*512);
4507#endif /* IDETAPE_DEBUG_INFO */
4508}
4509
4510/*
4511 * ide_get_blocksize_from_block_descriptor does a mode sense page 0 with block descriptor
4512 * and if it succeeds sets the tape block size with the reported value
4513 */
4514static void idetape_get_blocksize_from_block_descriptor(ide_drive_t *drive)
4515{
4516
4517 idetape_tape_t *tape = drive->driver_data;
4518 idetape_pc_t pc;
4519 idetape_mode_parameter_header_t *header;
4520 idetape_parameter_block_descriptor_t *block_descrp;
4521
4522 idetape_create_mode_sense_cmd(&pc, IDETAPE_BLOCK_DESCRIPTOR);
4523 if (idetape_queue_pc_tail(drive, &pc)) {
4524 printk(KERN_ERR "ide-tape: Can't get block descriptor\n");
4525 if (tape->tape_block_size == 0) {
4526 printk(KERN_WARNING "ide-tape: Cannot deal with zero block size, assume 32k\n");
4527 tape->tape_block_size = 32768;
4528 }
4529 return;
4530 }
4531 header = (idetape_mode_parameter_header_t *) pc.buffer;
4532 block_descrp = (idetape_parameter_block_descriptor_t *) (pc.buffer + sizeof(idetape_mode_parameter_header_t));
4533 tape->tape_block_size =( block_descrp->length[0]<<16) + (block_descrp->length[1]<<8) + block_descrp->length[2];
4534 tape->drv_write_prot = (header->dsp & 0x80) >> 7;
4535
4536#if IDETAPE_DEBUG_INFO
4537 printk(KERN_INFO "ide-tape: Adjusted block size - %d\n", tape->tape_block_size);
4538#endif /* IDETAPE_DEBUG_INFO */
4539}
7662d046
BZ
4540
4541#ifdef CONFIG_IDE_PROC_FS
1da177e4
LT
4542static void idetape_add_settings (ide_drive_t *drive)
4543{
4544 idetape_tape_t *tape = drive->driver_data;
4545
4546/*
1497943e 4547 * drive setting name read/write data type min max mul_factor div_factor data pointer set function
1da177e4 4548 */
1497943e
BZ
4549 ide_add_setting(drive, "buffer", SETTING_READ, TYPE_SHORT, 0, 0xffff, 1, 2, &tape->capabilities.buffer_size, NULL);
4550 ide_add_setting(drive, "pipeline_min", SETTING_RW, TYPE_INT, 1, 0xffff, tape->stage_size / 1024, 1, &tape->min_pipeline, NULL);
4551 ide_add_setting(drive, "pipeline", SETTING_RW, TYPE_INT, 1, 0xffff, tape->stage_size / 1024, 1, &tape->max_stages, NULL);
4552 ide_add_setting(drive, "pipeline_max", SETTING_RW, TYPE_INT, 1, 0xffff, tape->stage_size / 1024, 1, &tape->max_pipeline, NULL);
4553 ide_add_setting(drive, "pipeline_used", SETTING_READ, TYPE_INT, 0, 0xffff, tape->stage_size / 1024, 1, &tape->nr_stages, NULL);
4554 ide_add_setting(drive, "pipeline_pending", SETTING_READ, TYPE_INT, 0, 0xffff, tape->stage_size / 1024, 1, &tape->nr_pending_stages, NULL);
4555 ide_add_setting(drive, "speed", SETTING_READ, TYPE_SHORT, 0, 0xffff, 1, 1, &tape->capabilities.speed, NULL);
4556 ide_add_setting(drive, "stage", SETTING_READ, TYPE_INT, 0, 0xffff, 1, 1024, &tape->stage_size, NULL);
4557 ide_add_setting(drive, "tdsc", SETTING_RW, TYPE_INT, IDETAPE_DSC_RW_MIN, IDETAPE_DSC_RW_MAX, 1000, HZ, &tape->best_dsc_rw_frequency, NULL);
4558 ide_add_setting(drive, "dsc_overlap", SETTING_RW, TYPE_BYTE, 0, 1, 1, 1, &drive->dsc_overlap, NULL);
4559 ide_add_setting(drive, "pipeline_head_speed_c",SETTING_READ, TYPE_INT, 0, 0xffff, 1, 1, &tape->controlled_pipeline_head_speed, NULL);
4560 ide_add_setting(drive, "pipeline_head_speed_u",SETTING_READ, TYPE_INT, 0, 0xffff, 1, 1, &tape->uncontrolled_pipeline_head_speed,NULL);
4561 ide_add_setting(drive, "avg_speed", SETTING_READ, TYPE_INT, 0, 0xffff, 1, 1, &tape->avg_speed, NULL);
4562 ide_add_setting(drive, "debug_level", SETTING_RW, TYPE_INT, 0, 0xffff, 1, 1, &tape->debug_level, NULL);
1da177e4 4563}
7662d046
BZ
4564#else
4565static inline void idetape_add_settings(ide_drive_t *drive) { ; }
4566#endif
1da177e4
LT
4567
4568/*
4569 * ide_setup is called to:
4570 *
4571 * 1. Initialize our various state variables.
4572 * 2. Ask the tape for its capabilities.
4573 * 3. Allocate a buffer which will be used for data
4574 * transfer. The buffer size is chosen based on
4575 * the recommendation which we received in step (2).
4576 *
4577 * Note that at this point ide.c already assigned us an irq, so that
4578 * we can queue requests here and wait for their completion.
4579 */
4580static void idetape_setup (ide_drive_t *drive, idetape_tape_t *tape, int minor)
4581{
4582 unsigned long t1, tmid, tn, t;
4583 int speed;
4584 struct idetape_id_gcw gcw;
4585 int stage_size;
4586 struct sysinfo si;
4587
4588 spin_lock_init(&tape->spinlock);
4589 drive->dsc_overlap = 1;
4590#ifdef CONFIG_BLK_DEV_IDEPCI
4591 if (HWIF(drive)->pci_dev != NULL) {
4592 /*
4593 * These two ide-pci host adapters appear to need DSC overlap disabled.
4594 * This probably needs further analysis.
4595 */
4596 if ((HWIF(drive)->pci_dev->device == PCI_DEVICE_ID_ARTOP_ATP850UF) ||
4597 (HWIF(drive)->pci_dev->device == PCI_DEVICE_ID_TTI_HPT343)) {
4598 printk(KERN_INFO "ide-tape: %s: disabling DSC overlap\n", tape->name);
4599 drive->dsc_overlap = 0;
4600 }
4601 }
4602#endif /* CONFIG_BLK_DEV_IDEPCI */
4603 /* Seagate Travan drives do not support DSC overlap. */
4604 if (strstr(drive->id->model, "Seagate STT3401"))
4605 drive->dsc_overlap = 0;
4606 tape->minor = minor;
4607 tape->name[0] = 'h';
4608 tape->name[1] = 't';
4609 tape->name[2] = '0' + minor;
4610 tape->chrdev_direction = idetape_direction_none;
4611 tape->pc = tape->pc_stack;
4612 tape->max_insert_speed = 10000;
4613 tape->speed_control = 1;
4614 *((unsigned short *) &gcw) = drive->id->config;
4615 if (gcw.drq_type == 1)
4616 set_bit(IDETAPE_DRQ_INTERRUPT, &tape->flags);
4617
4618 tape->min_pipeline = tape->max_pipeline = tape->max_stages = 10;
4619
4620 idetape_get_inquiry_results(drive);
4621 idetape_get_mode_sense_results(drive);
4622 idetape_get_blocksize_from_block_descriptor(drive);
4623 tape->user_bs_factor = 1;
4624 tape->stage_size = tape->capabilities.ctl * tape->tape_block_size;
4625 while (tape->stage_size > 0xffff) {
4626 printk(KERN_NOTICE "ide-tape: decreasing stage size\n");
4627 tape->capabilities.ctl /= 2;
4628 tape->stage_size = tape->capabilities.ctl * tape->tape_block_size;
4629 }
4630 stage_size = tape->stage_size;
4631 tape->pages_per_stage = stage_size / PAGE_SIZE;
4632 if (stage_size % PAGE_SIZE) {
4633 tape->pages_per_stage++;
4634 tape->excess_bh_size = PAGE_SIZE - stage_size % PAGE_SIZE;
4635 }
4636
4637 /*
4638 * Select the "best" DSC read/write polling frequency
4639 * and pipeline size.
4640 */
4641 speed = max(tape->capabilities.speed, tape->capabilities.max_speed);
4642
4643 tape->max_stages = speed * 1000 * 10 / tape->stage_size;
4644
4645 /*
4646 * Limit memory use for pipeline to 10% of physical memory
4647 */
4648 si_meminfo(&si);
4649 if (tape->max_stages * tape->stage_size > si.totalram * si.mem_unit / 10)
4650 tape->max_stages = si.totalram * si.mem_unit / (10 * tape->stage_size);
4651 tape->max_stages = min(tape->max_stages, IDETAPE_MAX_PIPELINE_STAGES);
4652 tape->min_pipeline = min(tape->max_stages, IDETAPE_MIN_PIPELINE_STAGES);
4653 tape->max_pipeline = min(tape->max_stages * 2, IDETAPE_MAX_PIPELINE_STAGES);
4654 if (tape->max_stages == 0)
4655 tape->max_stages = tape->min_pipeline = tape->max_pipeline = 1;
4656
4657 t1 = (tape->stage_size * HZ) / (speed * 1000);
4658 tmid = (tape->capabilities.buffer_size * 32 * HZ) / (speed * 125);
4659 tn = (IDETAPE_FIFO_THRESHOLD * tape->stage_size * HZ) / (speed * 1000);
4660
4661 if (tape->max_stages)
4662 t = tn;
4663 else
4664 t = t1;
4665
4666 /*
4667 * Ensure that the number we got makes sense; limit
4668 * it within IDETAPE_DSC_RW_MIN and IDETAPE_DSC_RW_MAX.
4669 */
4670 tape->best_dsc_rw_frequency = max_t(unsigned long, min_t(unsigned long, t, IDETAPE_DSC_RW_MAX), IDETAPE_DSC_RW_MIN);
4671 printk(KERN_INFO "ide-tape: %s <-> %s: %dKBps, %d*%dkB buffer, "
4672 "%dkB pipeline, %lums tDSC%s\n",
4673 drive->name, tape->name, tape->capabilities.speed,
4674 (tape->capabilities.buffer_size * 512) / tape->stage_size,
4675 tape->stage_size / 1024,
4676 tape->max_stages * tape->stage_size / 1024,
4677 tape->best_dsc_rw_frequency * 1000 / HZ,
4678 drive->using_dma ? ", DMA":"");
4679
4680 idetape_add_settings(drive);
4681}
4682
4031bbe4 4683static void ide_tape_remove(ide_drive_t *drive)
1da177e4
LT
4684{
4685 idetape_tape_t *tape = drive->driver_data;
1da177e4 4686
7662d046 4687 ide_proc_unregister_driver(drive, tape->driver);
1da177e4
LT
4688
4689 ide_unregister_region(tape->disk);
4690
4691 ide_tape_put(tape);
1da177e4
LT
4692}
4693
4694static void ide_tape_release(struct kref *kref)
4695{
4696 struct ide_tape_obj *tape = to_ide_tape(kref);
4697 ide_drive_t *drive = tape->drive;
4698 struct gendisk *g = tape->disk;
4699
8604affd
BZ
4700 BUG_ON(tape->first_stage != NULL || tape->merge_stage_size);
4701
1da177e4
LT
4702 drive->dsc_overlap = 0;
4703 drive->driver_data = NULL;
dbc1272e
TJ
4704 device_destroy(idetape_sysfs_class, MKDEV(IDETAPE_MAJOR, tape->minor));
4705 device_destroy(idetape_sysfs_class, MKDEV(IDETAPE_MAJOR, tape->minor + 128));
1da177e4
LT
4706 idetape_devs[tape->minor] = NULL;
4707 g->private_data = NULL;
4708 put_disk(g);
4709 kfree(tape);
4710}
4711
ecfd80e4 4712#ifdef CONFIG_IDE_PROC_FS
1da177e4
LT
4713static int proc_idetape_read_name
4714 (char *page, char **start, off_t off, int count, int *eof, void *data)
4715{
4716 ide_drive_t *drive = (ide_drive_t *) data;
4717 idetape_tape_t *tape = drive->driver_data;
4718 char *out = page;
4719 int len;
4720
4721 len = sprintf(out, "%s\n", tape->name);
4722 PROC_IDE_READ_RETURN(page, start, off, count, eof, len);
4723}
4724
4725static ide_proc_entry_t idetape_proc[] = {
4726 { "capacity", S_IFREG|S_IRUGO, proc_ide_read_capacity, NULL },
4727 { "name", S_IFREG|S_IRUGO, proc_idetape_read_name, NULL },
4728 { NULL, 0, NULL, NULL }
4729};
1da177e4
LT
4730#endif
4731
4031bbe4 4732static int ide_tape_probe(ide_drive_t *);
1da177e4 4733
1da177e4 4734static ide_driver_t idetape_driver = {
8604affd 4735 .gen_driver = {
4ef3b8f4 4736 .owner = THIS_MODULE,
8604affd
BZ
4737 .name = "ide-tape",
4738 .bus = &ide_bus_type,
8604affd 4739 },
4031bbe4
RK
4740 .probe = ide_tape_probe,
4741 .remove = ide_tape_remove,
1da177e4
LT
4742 .version = IDETAPE_VERSION,
4743 .media = ide_tape,
1da177e4 4744 .supports_dsc_overlap = 1,
1da177e4
LT
4745 .do_request = idetape_do_request,
4746 .end_request = idetape_end_request,
4747 .error = __ide_error,
4748 .abort = __ide_abort,
7662d046 4749#ifdef CONFIG_IDE_PROC_FS
1da177e4 4750 .proc = idetape_proc,
7662d046 4751#endif
1da177e4
LT
4752};
4753
4754/*
4755 * Our character device supporting functions, passed to register_chrdev.
4756 */
2b8693c0 4757static const struct file_operations idetape_fops = {
1da177e4
LT
4758 .owner = THIS_MODULE,
4759 .read = idetape_chrdev_read,
4760 .write = idetape_chrdev_write,
4761 .ioctl = idetape_chrdev_ioctl,
4762 .open = idetape_chrdev_open,
4763 .release = idetape_chrdev_release,
4764};
4765
4766static int idetape_open(struct inode *inode, struct file *filp)
4767{
4768 struct gendisk *disk = inode->i_bdev->bd_disk;
4769 struct ide_tape_obj *tape;
1da177e4
LT
4770
4771 if (!(tape = ide_tape_get(disk)))
4772 return -ENXIO;
4773
1da177e4
LT
4774 return 0;
4775}
4776
4777static int idetape_release(struct inode *inode, struct file *filp)
4778{
4779 struct gendisk *disk = inode->i_bdev->bd_disk;
4780 struct ide_tape_obj *tape = ide_tape_g(disk);
1da177e4
LT
4781
4782 ide_tape_put(tape);
4783
4784 return 0;
4785}
4786
4787static int idetape_ioctl(struct inode *inode, struct file *file,
4788 unsigned int cmd, unsigned long arg)
4789{
4790 struct block_device *bdev = inode->i_bdev;
4791 struct ide_tape_obj *tape = ide_tape_g(bdev->bd_disk);
4792 ide_drive_t *drive = tape->drive;
4793 int err = generic_ide_ioctl(drive, file, bdev, cmd, arg);
4794 if (err == -EINVAL)
4795 err = idetape_blkdev_ioctl(drive, cmd, arg);
4796 return err;
4797}
4798
4799static struct block_device_operations idetape_block_ops = {
4800 .owner = THIS_MODULE,
4801 .open = idetape_open,
4802 .release = idetape_release,
4803 .ioctl = idetape_ioctl,
4804};
4805
4031bbe4 4806static int ide_tape_probe(ide_drive_t *drive)
1da177e4
LT
4807{
4808 idetape_tape_t *tape;
4809 struct gendisk *g;
4810 int minor;
4811
4812 if (!strstr("ide-tape", drive->driver_req))
4813 goto failed;
4814 if (!drive->present)
4815 goto failed;
4816 if (drive->media != ide_tape)
4817 goto failed;
4818 if (!idetape_identify_device (drive)) {
4819 printk(KERN_ERR "ide-tape: %s: not supported by this version of ide-tape\n", drive->name);
4820 goto failed;
4821 }
4822 if (drive->scsi) {
4823 printk("ide-tape: passing drive %s to ide-scsi emulation.\n", drive->name);
4824 goto failed;
4825 }
4826 if (strstr(drive->id->model, "OnStream DI-")) {
4827 printk(KERN_WARNING "ide-tape: Use drive %s with ide-scsi emulation and osst.\n", drive->name);
4828 printk(KERN_WARNING "ide-tape: OnStream support will be removed soon from ide-tape!\n");
4829 }
5cbded58 4830 tape = kzalloc(sizeof (idetape_tape_t), GFP_KERNEL);
1da177e4
LT
4831 if (tape == NULL) {
4832 printk(KERN_ERR "ide-tape: %s: Can't allocate a tape structure\n", drive->name);
4833 goto failed;
4834 }
4835
4836 g = alloc_disk(1 << PARTN_BITS);
4837 if (!g)
4838 goto out_free_tape;
4839
4840 ide_init_disk(g, drive);
4841
7662d046 4842 ide_proc_register_driver(drive, &idetape_driver);
1da177e4 4843
1da177e4
LT
4844 kref_init(&tape->kref);
4845
4846 tape->drive = drive;
4847 tape->driver = &idetape_driver;
4848 tape->disk = g;
4849
4850 g->private_data = &tape->driver;
4851
4852 drive->driver_data = tape;
4853
cf8b8975 4854 mutex_lock(&idetape_ref_mutex);
1da177e4
LT
4855 for (minor = 0; idetape_devs[minor]; minor++)
4856 ;
4857 idetape_devs[minor] = tape;
cf8b8975 4858 mutex_unlock(&idetape_ref_mutex);
1da177e4
LT
4859
4860 idetape_setup(drive, tape, minor);
4861
dbc1272e
TJ
4862 device_create(idetape_sysfs_class, &drive->gendev,
4863 MKDEV(IDETAPE_MAJOR, minor), "%s", tape->name);
4864 device_create(idetape_sysfs_class, &drive->gendev,
4865 MKDEV(IDETAPE_MAJOR, minor + 128), "n%s", tape->name);
d5dee80a 4866
1da177e4
LT
4867 g->fops = &idetape_block_ops;
4868 ide_register_region(g);
4869
4870 return 0;
8604affd 4871
1da177e4
LT
4872out_free_tape:
4873 kfree(tape);
4874failed:
8604affd 4875 return -ENODEV;
1da177e4
LT
4876}
4877
4878MODULE_DESCRIPTION("ATAPI Streaming TAPE Driver");
4879MODULE_LICENSE("GPL");
4880
4881static void __exit idetape_exit (void)
4882{
8604affd 4883 driver_unregister(&idetape_driver.gen_driver);
d5dee80a 4884 class_destroy(idetape_sysfs_class);
1da177e4
LT
4885 unregister_chrdev(IDETAPE_MAJOR, "ht");
4886}
4887
17514e8a 4888static int __init idetape_init(void)
1da177e4 4889{
d5dee80a
WD
4890 int error = 1;
4891 idetape_sysfs_class = class_create(THIS_MODULE, "ide_tape");
4892 if (IS_ERR(idetape_sysfs_class)) {
4893 idetape_sysfs_class = NULL;
4894 printk(KERN_ERR "Unable to create sysfs class for ide tapes\n");
4895 error = -EBUSY;
4896 goto out;
4897 }
4898
1da177e4
LT
4899 if (register_chrdev(IDETAPE_MAJOR, "ht", &idetape_fops)) {
4900 printk(KERN_ERR "ide-tape: Failed to register character device interface\n");
d5dee80a
WD
4901 error = -EBUSY;
4902 goto out_free_class;
1da177e4 4903 }
d5dee80a
WD
4904
4905 error = driver_register(&idetape_driver.gen_driver);
4906 if (error)
4907 goto out_free_driver;
4908
4909 return 0;
4910
4911out_free_driver:
4912 driver_unregister(&idetape_driver.gen_driver);
4913out_free_class:
4914 class_destroy(idetape_sysfs_class);
4915out:
4916 return error;
1da177e4
LT
4917}
4918
263756ec 4919MODULE_ALIAS("ide:*m-tape*");
1da177e4
LT
4920module_init(idetape_init);
4921module_exit(idetape_exit);
4922MODULE_ALIAS_CHARDEV_MAJOR(IDETAPE_MAJOR);