Merge tag 'asoc-fix-v5.19-rc0' of https://git.kernel.org/pub/scm/linux/kernel/git...
[linux-block.git] / drivers / hv / vmbus_drv.c
CommitLineData
3b20eb23 1// SPDX-License-Identifier: GPL-2.0-only
3e7ee490 2/*
3e7ee490
HJ
3 * Copyright (c) 2009, Microsoft Corporation.
4 *
3e7ee490
HJ
5 * Authors:
6 * Haiyang Zhang <haiyangz@microsoft.com>
7 * Hank Janssen <hjanssen@microsoft.com>
b0069f43 8 * K. Y. Srinivasan <kys@microsoft.com>
3e7ee490 9 */
0a46618d
HJ
10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
3e7ee490
HJ
12#include <linux/init.h>
13#include <linux/module.h>
14#include <linux/device.h>
3e7ee490
HJ
15#include <linux/interrupt.h>
16#include <linux/sysctl.h>
5a0e3ad6 17#include <linux/slab.h>
b0069f43 18#include <linux/acpi.h>
8b5d6d3b 19#include <linux/completion.h>
46a97191 20#include <linux/hyperv.h>
b0209501 21#include <linux/kernel_stat.h>
4061ed9e 22#include <linux/clockchips.h>
e513229b 23#include <linux/cpu.h>
68db0cf1
IM
24#include <linux/sched/task_stack.h>
25
1f48dcf1 26#include <linux/delay.h>
96c1d058 27#include <linux/notifier.h>
f39650de 28#include <linux/panic_notifier.h>
96c1d058 29#include <linux/ptrace.h>
35464483 30#include <linux/screen_info.h>
510f7aef 31#include <linux/kdebug.h>
6d146aef 32#include <linux/efi.h>
4b44f2d1 33#include <linux/random.h>
f3a99e76 34#include <linux/kernel.h>
63ecc6d2 35#include <linux/syscore_ops.h>
743b237c 36#include <linux/dma-map-ops.h>
fd1fea68 37#include <clocksource/hyperv_timer.h>
0f2a6619 38#include "hyperv_vmbus.h"
3e7ee490 39
fc76936d
SH
40struct vmbus_dynid {
41 struct list_head node;
42 struct hv_vmbus_device_id id;
43};
44
607c1a11 45static struct acpi_device *hv_acpi_dev;
1168ac22 46
71a6655d 47static struct completion probe_event;
98db4335 48
76d36ab7 49static int hyperv_cpuhp_online;
96c1d058 50
81b18bce
SM
51static void *hv_panic_page;
52
d608715d
MK
53static long __percpu *vmbus_evt;
54
626b901f 55/* Values parsed from ACPI DSDT */
d608715d 56int vmbus_irq;
626b901f
MK
57int vmbus_interrupt;
58
040026df
TL
59/*
60 * Boolean to control whether to report panic messages over Hyper-V.
61 *
b18e3589 62 * It can be set via /proc/sys/kernel/hyperv_record_panic_msg
040026df
TL
63 */
64static int sysctl_record_panic_msg = 1;
65
66static int hyperv_report_reg(void)
67{
68 return !sysctl_record_panic_msg || !hv_panic_page;
69}
70
510f7aef
VK
71static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
72 void *args)
73{
74 struct pt_regs *regs;
75
74347a99 76 vmbus_initiate_unload(true);
510f7aef 77
73f26e52
TL
78 /*
79 * Hyper-V should be notified only once about a panic. If we will be
9f8b577f
APM
80 * doing hv_kmsg_dump() with kmsg data later, don't do the notification
81 * here.
73f26e52
TL
82 */
83 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE
040026df 84 && hyperv_report_reg()) {
74347a99 85 regs = current_pt_regs();
f3a99e76 86 hyperv_report_panic(regs, val, false);
74347a99 87 }
96c1d058
NM
88 return NOTIFY_DONE;
89}
90
510f7aef
VK
91static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
92 void *args)
93{
49971e6b 94 struct die_args *die = args;
510f7aef
VK
95 struct pt_regs *regs = die->regs;
96
608a973b
MK
97 /* Don't notify Hyper-V if the die event is other than oops */
98 if (val != DIE_OOPS)
99 return NOTIFY_DONE;
100
73f26e52
TL
101 /*
102 * Hyper-V should be notified only once about a panic. If we will be
9f8b577f
APM
103 * doing hv_kmsg_dump() with kmsg data later, don't do the notification
104 * here.
73f26e52 105 */
040026df 106 if (hyperv_report_reg())
f3a99e76 107 hyperv_report_panic(regs, val, true);
510f7aef
VK
108 return NOTIFY_DONE;
109}
110
111static struct notifier_block hyperv_die_block = {
112 .notifier_call = hyperv_die_event,
113};
96c1d058
NM
114static struct notifier_block hyperv_panic_block = {
115 .notifier_call = hyperv_panic_event,
116};
117
6d146aef
JO
118static const char *fb_mmio_name = "fb_range";
119static struct resource *fb_mmio;
e2e80841 120static struct resource *hyperv_mmio;
8aea7f82 121static DEFINE_MUTEX(hyperv_mmio_lock);
98db4335 122
cf6a2eac
S
123static int vmbus_exists(void)
124{
125 if (hv_acpi_dev == NULL)
126 return -ENODEV;
127
128 return 0;
129}
130
c2e5df61 131static u8 channel_monitor_group(const struct vmbus_channel *channel)
76c52bbe
GKH
132{
133 return (u8)channel->offermsg.monitorid / 32;
134}
135
c2e5df61 136static u8 channel_monitor_offset(const struct vmbus_channel *channel)
76c52bbe
GKH
137{
138 return (u8)channel->offermsg.monitorid % 32;
139}
140
c2e5df61
SH
141static u32 channel_pending(const struct vmbus_channel *channel,
142 const struct hv_monitor_page *monitor_page)
76c52bbe
GKH
143{
144 u8 monitor_group = channel_monitor_group(channel);
c2e5df61 145
76c52bbe
GKH
146 return monitor_page->trigger_group[monitor_group].pending;
147}
148
c2e5df61
SH
149static u32 channel_latency(const struct vmbus_channel *channel,
150 const struct hv_monitor_page *monitor_page)
1cee272b
GKH
151{
152 u8 monitor_group = channel_monitor_group(channel);
153 u8 monitor_offset = channel_monitor_offset(channel);
c2e5df61 154
1cee272b
GKH
155 return monitor_page->latency[monitor_group][monitor_offset];
156}
157
4947c745
GKH
158static u32 channel_conn_id(struct vmbus_channel *channel,
159 struct hv_monitor_page *monitor_page)
160{
161 u8 monitor_group = channel_monitor_group(channel);
162 u8 monitor_offset = channel_monitor_offset(channel);
e4f2212e 163
4947c745
GKH
164 return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
165}
166
03f3a910
GKH
167static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
168 char *buf)
169{
170 struct hv_device *hv_dev = device_to_hv_device(dev);
171
172 if (!hv_dev->channel)
173 return -ENODEV;
174 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
175}
176static DEVICE_ATTR_RO(id);
177
a8fb5f3d
GKH
178static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
179 char *buf)
180{
181 struct hv_device *hv_dev = device_to_hv_device(dev);
182
183 if (!hv_dev->channel)
184 return -ENODEV;
185 return sprintf(buf, "%d\n", hv_dev->channel->state);
186}
187static DEVICE_ATTR_RO(state);
188
5ffd00e2
GKH
189static ssize_t monitor_id_show(struct device *dev,
190 struct device_attribute *dev_attr, char *buf)
191{
192 struct hv_device *hv_dev = device_to_hv_device(dev);
193
194 if (!hv_dev->channel)
195 return -ENODEV;
196 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
197}
198static DEVICE_ATTR_RO(monitor_id);
199
68234c04
GKH
200static ssize_t class_id_show(struct device *dev,
201 struct device_attribute *dev_attr, char *buf)
202{
203 struct hv_device *hv_dev = device_to_hv_device(dev);
204
205 if (!hv_dev->channel)
206 return -ENODEV;
207 return sprintf(buf, "{%pUl}\n",
458c4475 208 &hv_dev->channel->offermsg.offer.if_type);
68234c04
GKH
209}
210static DEVICE_ATTR_RO(class_id);
211
7c55e1d0
GKH
212static ssize_t device_id_show(struct device *dev,
213 struct device_attribute *dev_attr, char *buf)
214{
215 struct hv_device *hv_dev = device_to_hv_device(dev);
216
217 if (!hv_dev->channel)
218 return -ENODEV;
219 return sprintf(buf, "{%pUl}\n",
458c4475 220 &hv_dev->channel->offermsg.offer.if_instance);
7c55e1d0
GKH
221}
222static DEVICE_ATTR_RO(device_id);
223
647fa371
GKH
224static ssize_t modalias_show(struct device *dev,
225 struct device_attribute *dev_attr, char *buf)
226{
227 struct hv_device *hv_dev = device_to_hv_device(dev);
647fa371 228
0027e3fd 229 return sprintf(buf, "vmbus:%*phN\n", UUID_SIZE, &hv_dev->dev_type);
647fa371
GKH
230}
231static DEVICE_ATTR_RO(modalias);
232
7ceb1c37
SH
233#ifdef CONFIG_NUMA
234static ssize_t numa_node_show(struct device *dev,
235 struct device_attribute *attr, char *buf)
236{
237 struct hv_device *hv_dev = device_to_hv_device(dev);
238
239 if (!hv_dev->channel)
240 return -ENODEV;
241
458d090f 242 return sprintf(buf, "%d\n", cpu_to_node(hv_dev->channel->target_cpu));
7ceb1c37
SH
243}
244static DEVICE_ATTR_RO(numa_node);
245#endif
246
76c52bbe
GKH
247static ssize_t server_monitor_pending_show(struct device *dev,
248 struct device_attribute *dev_attr,
249 char *buf)
250{
251 struct hv_device *hv_dev = device_to_hv_device(dev);
252
253 if (!hv_dev->channel)
254 return -ENODEV;
255 return sprintf(buf, "%d\n",
256 channel_pending(hv_dev->channel,
fd8e3c35 257 vmbus_connection.monitor_pages[0]));
76c52bbe
GKH
258}
259static DEVICE_ATTR_RO(server_monitor_pending);
260
261static ssize_t client_monitor_pending_show(struct device *dev,
262 struct device_attribute *dev_attr,
263 char *buf)
264{
265 struct hv_device *hv_dev = device_to_hv_device(dev);
266
267 if (!hv_dev->channel)
268 return -ENODEV;
269 return sprintf(buf, "%d\n",
270 channel_pending(hv_dev->channel,
271 vmbus_connection.monitor_pages[1]));
272}
273static DEVICE_ATTR_RO(client_monitor_pending);
68234c04 274
1cee272b
GKH
275static ssize_t server_monitor_latency_show(struct device *dev,
276 struct device_attribute *dev_attr,
277 char *buf)
278{
279 struct hv_device *hv_dev = device_to_hv_device(dev);
280
281 if (!hv_dev->channel)
282 return -ENODEV;
283 return sprintf(buf, "%d\n",
284 channel_latency(hv_dev->channel,
285 vmbus_connection.monitor_pages[0]));
286}
287static DEVICE_ATTR_RO(server_monitor_latency);
288
289static ssize_t client_monitor_latency_show(struct device *dev,
290 struct device_attribute *dev_attr,
291 char *buf)
292{
293 struct hv_device *hv_dev = device_to_hv_device(dev);
294
295 if (!hv_dev->channel)
296 return -ENODEV;
297 return sprintf(buf, "%d\n",
298 channel_latency(hv_dev->channel,
299 vmbus_connection.monitor_pages[1]));
300}
301static DEVICE_ATTR_RO(client_monitor_latency);
302
4947c745
GKH
303static ssize_t server_monitor_conn_id_show(struct device *dev,
304 struct device_attribute *dev_attr,
305 char *buf)
306{
307 struct hv_device *hv_dev = device_to_hv_device(dev);
308
309 if (!hv_dev->channel)
310 return -ENODEV;
311 return sprintf(buf, "%d\n",
312 channel_conn_id(hv_dev->channel,
313 vmbus_connection.monitor_pages[0]));
314}
315static DEVICE_ATTR_RO(server_monitor_conn_id);
316
317static ssize_t client_monitor_conn_id_show(struct device *dev,
318 struct device_attribute *dev_attr,
319 char *buf)
320{
321 struct hv_device *hv_dev = device_to_hv_device(dev);
322
323 if (!hv_dev->channel)
324 return -ENODEV;
325 return sprintf(buf, "%d\n",
326 channel_conn_id(hv_dev->channel,
327 vmbus_connection.monitor_pages[1]));
328}
329static DEVICE_ATTR_RO(client_monitor_conn_id);
330
98f4c651
GKH
331static ssize_t out_intr_mask_show(struct device *dev,
332 struct device_attribute *dev_attr, char *buf)
333{
334 struct hv_device *hv_dev = device_to_hv_device(dev);
335 struct hv_ring_buffer_debug_info outbound;
ba50bf1c 336 int ret;
98f4c651
GKH
337
338 if (!hv_dev->channel)
339 return -ENODEV;
ba50bf1c
DC
340
341 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
342 &outbound);
343 if (ret < 0)
344 return ret;
345
98f4c651
GKH
346 return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
347}
348static DEVICE_ATTR_RO(out_intr_mask);
349
350static ssize_t out_read_index_show(struct device *dev,
351 struct device_attribute *dev_attr, char *buf)
352{
353 struct hv_device *hv_dev = device_to_hv_device(dev);
354 struct hv_ring_buffer_debug_info outbound;
ba50bf1c 355 int ret;
98f4c651
GKH
356
357 if (!hv_dev->channel)
358 return -ENODEV;
ba50bf1c
DC
359
360 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
361 &outbound);
362 if (ret < 0)
363 return ret;
98f4c651
GKH
364 return sprintf(buf, "%d\n", outbound.current_read_index);
365}
366static DEVICE_ATTR_RO(out_read_index);
367
368static ssize_t out_write_index_show(struct device *dev,
369 struct device_attribute *dev_attr,
370 char *buf)
371{
372 struct hv_device *hv_dev = device_to_hv_device(dev);
373 struct hv_ring_buffer_debug_info outbound;
ba50bf1c 374 int ret;
98f4c651
GKH
375
376 if (!hv_dev->channel)
377 return -ENODEV;
ba50bf1c
DC
378
379 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
380 &outbound);
381 if (ret < 0)
382 return ret;
98f4c651
GKH
383 return sprintf(buf, "%d\n", outbound.current_write_index);
384}
385static DEVICE_ATTR_RO(out_write_index);
386
387static ssize_t out_read_bytes_avail_show(struct device *dev,
388 struct device_attribute *dev_attr,
389 char *buf)
390{
391 struct hv_device *hv_dev = device_to_hv_device(dev);
392 struct hv_ring_buffer_debug_info outbound;
ba50bf1c 393 int ret;
98f4c651
GKH
394
395 if (!hv_dev->channel)
396 return -ENODEV;
ba50bf1c
DC
397
398 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
399 &outbound);
400 if (ret < 0)
401 return ret;
98f4c651
GKH
402 return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
403}
404static DEVICE_ATTR_RO(out_read_bytes_avail);
405
406static ssize_t out_write_bytes_avail_show(struct device *dev,
407 struct device_attribute *dev_attr,
408 char *buf)
409{
410 struct hv_device *hv_dev = device_to_hv_device(dev);
411 struct hv_ring_buffer_debug_info outbound;
ba50bf1c 412 int ret;
98f4c651
GKH
413
414 if (!hv_dev->channel)
415 return -ENODEV;
ba50bf1c
DC
416
417 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
418 &outbound);
419 if (ret < 0)
420 return ret;
98f4c651
GKH
421 return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
422}
423static DEVICE_ATTR_RO(out_write_bytes_avail);
424
425static ssize_t in_intr_mask_show(struct device *dev,
426 struct device_attribute *dev_attr, char *buf)
427{
428 struct hv_device *hv_dev = device_to_hv_device(dev);
429 struct hv_ring_buffer_debug_info inbound;
ba50bf1c 430 int ret;
98f4c651
GKH
431
432 if (!hv_dev->channel)
433 return -ENODEV;
ba50bf1c
DC
434
435 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
436 if (ret < 0)
437 return ret;
438
98f4c651
GKH
439 return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
440}
441static DEVICE_ATTR_RO(in_intr_mask);
442
443static ssize_t in_read_index_show(struct device *dev,
444 struct device_attribute *dev_attr, char *buf)
445{
446 struct hv_device *hv_dev = device_to_hv_device(dev);
447 struct hv_ring_buffer_debug_info inbound;
ba50bf1c 448 int ret;
98f4c651
GKH
449
450 if (!hv_dev->channel)
451 return -ENODEV;
ba50bf1c
DC
452
453 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
454 if (ret < 0)
455 return ret;
456
98f4c651
GKH
457 return sprintf(buf, "%d\n", inbound.current_read_index);
458}
459static DEVICE_ATTR_RO(in_read_index);
460
461static ssize_t in_write_index_show(struct device *dev,
462 struct device_attribute *dev_attr, char *buf)
463{
464 struct hv_device *hv_dev = device_to_hv_device(dev);
465 struct hv_ring_buffer_debug_info inbound;
ba50bf1c 466 int ret;
98f4c651
GKH
467
468 if (!hv_dev->channel)
469 return -ENODEV;
ba50bf1c
DC
470
471 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
472 if (ret < 0)
473 return ret;
474
98f4c651
GKH
475 return sprintf(buf, "%d\n", inbound.current_write_index);
476}
477static DEVICE_ATTR_RO(in_write_index);
478
479static ssize_t in_read_bytes_avail_show(struct device *dev,
480 struct device_attribute *dev_attr,
481 char *buf)
482{
483 struct hv_device *hv_dev = device_to_hv_device(dev);
484 struct hv_ring_buffer_debug_info inbound;
ba50bf1c 485 int ret;
98f4c651
GKH
486
487 if (!hv_dev->channel)
488 return -ENODEV;
ba50bf1c
DC
489
490 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
491 if (ret < 0)
492 return ret;
493
98f4c651
GKH
494 return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
495}
496static DEVICE_ATTR_RO(in_read_bytes_avail);
497
498static ssize_t in_write_bytes_avail_show(struct device *dev,
499 struct device_attribute *dev_attr,
500 char *buf)
501{
502 struct hv_device *hv_dev = device_to_hv_device(dev);
503 struct hv_ring_buffer_debug_info inbound;
ba50bf1c 504 int ret;
98f4c651
GKH
505
506 if (!hv_dev->channel)
507 return -ENODEV;
ba50bf1c
DC
508
509 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
510 if (ret < 0)
511 return ret;
512
98f4c651
GKH
513 return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
514}
515static DEVICE_ATTR_RO(in_write_bytes_avail);
516
042ab031
DC
517static ssize_t channel_vp_mapping_show(struct device *dev,
518 struct device_attribute *dev_attr,
519 char *buf)
520{
521 struct hv_device *hv_dev = device_to_hv_device(dev);
522 struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
042ab031
DC
523 int buf_size = PAGE_SIZE, n_written, tot_written;
524 struct list_head *cur;
525
526 if (!channel)
527 return -ENODEV;
528
3eb0ac86
APM
529 mutex_lock(&vmbus_connection.channel_mutex);
530
042ab031
DC
531 tot_written = snprintf(buf, buf_size, "%u:%u\n",
532 channel->offermsg.child_relid, channel->target_cpu);
533
042ab031
DC
534 list_for_each(cur, &channel->sc_list) {
535 if (tot_written >= buf_size - 1)
536 break;
537
538 cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
539 n_written = scnprintf(buf + tot_written,
540 buf_size - tot_written,
541 "%u:%u\n",
542 cur_sc->offermsg.child_relid,
543 cur_sc->target_cpu);
544 tot_written += n_written;
545 }
546
3eb0ac86 547 mutex_unlock(&vmbus_connection.channel_mutex);
042ab031
DC
548
549 return tot_written;
550}
551static DEVICE_ATTR_RO(channel_vp_mapping);
552
7047f17d
S
553static ssize_t vendor_show(struct device *dev,
554 struct device_attribute *dev_attr,
555 char *buf)
556{
557 struct hv_device *hv_dev = device_to_hv_device(dev);
e4f2212e 558
7047f17d
S
559 return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
560}
561static DEVICE_ATTR_RO(vendor);
562
563static ssize_t device_show(struct device *dev,
564 struct device_attribute *dev_attr,
565 char *buf)
566{
567 struct hv_device *hv_dev = device_to_hv_device(dev);
e4f2212e 568
7047f17d
S
569 return sprintf(buf, "0x%x\n", hv_dev->device_id);
570}
571static DEVICE_ATTR_RO(device);
572
d765edbb
SH
573static ssize_t driver_override_store(struct device *dev,
574 struct device_attribute *attr,
575 const char *buf, size_t count)
576{
577 struct hv_device *hv_dev = device_to_hv_device(dev);
578 char *driver_override, *old, *cp;
579
580 /* We need to keep extra room for a newline */
581 if (count >= (PAGE_SIZE - 1))
582 return -EINVAL;
583
584 driver_override = kstrndup(buf, count, GFP_KERNEL);
585 if (!driver_override)
586 return -ENOMEM;
587
588 cp = strchr(driver_override, '\n');
589 if (cp)
590 *cp = '\0';
591
592 device_lock(dev);
593 old = hv_dev->driver_override;
594 if (strlen(driver_override)) {
595 hv_dev->driver_override = driver_override;
596 } else {
597 kfree(driver_override);
598 hv_dev->driver_override = NULL;
599 }
600 device_unlock(dev);
601
602 kfree(old);
603
604 return count;
605}
606
607static ssize_t driver_override_show(struct device *dev,
608 struct device_attribute *attr, char *buf)
609{
610 struct hv_device *hv_dev = device_to_hv_device(dev);
611 ssize_t len;
612
613 device_lock(dev);
614 len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override);
615 device_unlock(dev);
616
617 return len;
618}
619static DEVICE_ATTR_RW(driver_override);
620
98f4c651 621/* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
fc76936d 622static struct attribute *vmbus_dev_attrs[] = {
03f3a910 623 &dev_attr_id.attr,
a8fb5f3d 624 &dev_attr_state.attr,
5ffd00e2 625 &dev_attr_monitor_id.attr,
68234c04 626 &dev_attr_class_id.attr,
7c55e1d0 627 &dev_attr_device_id.attr,
647fa371 628 &dev_attr_modalias.attr,
7ceb1c37
SH
629#ifdef CONFIG_NUMA
630 &dev_attr_numa_node.attr,
631#endif
76c52bbe
GKH
632 &dev_attr_server_monitor_pending.attr,
633 &dev_attr_client_monitor_pending.attr,
1cee272b
GKH
634 &dev_attr_server_monitor_latency.attr,
635 &dev_attr_client_monitor_latency.attr,
4947c745
GKH
636 &dev_attr_server_monitor_conn_id.attr,
637 &dev_attr_client_monitor_conn_id.attr,
98f4c651
GKH
638 &dev_attr_out_intr_mask.attr,
639 &dev_attr_out_read_index.attr,
640 &dev_attr_out_write_index.attr,
641 &dev_attr_out_read_bytes_avail.attr,
642 &dev_attr_out_write_bytes_avail.attr,
643 &dev_attr_in_intr_mask.attr,
644 &dev_attr_in_read_index.attr,
645 &dev_attr_in_write_index.attr,
646 &dev_attr_in_read_bytes_avail.attr,
647 &dev_attr_in_write_bytes_avail.attr,
042ab031 648 &dev_attr_channel_vp_mapping.attr,
7047f17d
S
649 &dev_attr_vendor.attr,
650 &dev_attr_device.attr,
d765edbb 651 &dev_attr_driver_override.attr,
03f3a910
GKH
652 NULL,
653};
46fc1548
KB
654
655/*
656 * Device-level attribute_group callback function. Returns the permission for
657 * each attribute, and returns 0 if an attribute is not visible.
658 */
659static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj,
660 struct attribute *attr, int idx)
661{
662 struct device *dev = kobj_to_dev(kobj);
663 const struct hv_device *hv_dev = device_to_hv_device(dev);
664
665 /* Hide the monitor attributes if the monitor mechanism is not used. */
666 if (!hv_dev->channel->offermsg.monitor_allocated &&
667 (attr == &dev_attr_monitor_id.attr ||
668 attr == &dev_attr_server_monitor_pending.attr ||
669 attr == &dev_attr_client_monitor_pending.attr ||
670 attr == &dev_attr_server_monitor_latency.attr ||
671 attr == &dev_attr_client_monitor_latency.attr ||
672 attr == &dev_attr_server_monitor_conn_id.attr ||
673 attr == &dev_attr_client_monitor_conn_id.attr))
674 return 0;
675
676 return attr->mode;
677}
678
679static const struct attribute_group vmbus_dev_group = {
680 .attrs = vmbus_dev_attrs,
681 .is_visible = vmbus_dev_attr_is_visible
682};
683__ATTRIBUTE_GROUPS(vmbus_dev);
03f3a910 684
c068e3f4
DC
685/* Set up the attribute for /sys/bus/vmbus/hibernation */
686static ssize_t hibernation_show(struct bus_type *bus, char *buf)
687{
688 return sprintf(buf, "%d\n", !!hv_is_hibernation_supported());
689}
690
691static BUS_ATTR_RO(hibernation);
692
693static struct attribute *vmbus_bus_attrs[] = {
694 &bus_attr_hibernation.attr,
695 NULL,
696};
697static const struct attribute_group vmbus_bus_group = {
698 .attrs = vmbus_bus_attrs,
699};
700__ATTRIBUTE_GROUPS(vmbus_bus);
701
adde2487
S
702/*
703 * vmbus_uevent - add uevent for our device
704 *
705 * This routine is invoked when a device is added or removed on the vmbus to
706 * generate a uevent to udev in the userspace. The udev will then look at its
707 * rule and the uevent generated here to load the appropriate driver
0ddda660
S
708 *
709 * The alias string will be of the form vmbus:guid where guid is the string
710 * representation of the device guid (each byte of the guid will be
711 * represented with two hex characters.
adde2487
S
712 */
713static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
714{
715 struct hv_device *dev = device_to_hv_device(device);
0027e3fd 716 const char *format = "MODALIAS=vmbus:%*phN";
0ddda660 717
0027e3fd 718 return add_uevent_var(env, format, UUID_SIZE, &dev->dev_type);
adde2487
S
719}
720
d765edbb 721static const struct hv_vmbus_device_id *
593db803 722hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid)
d765edbb
SH
723{
724 if (id == NULL)
725 return NULL; /* empty device table */
726
593db803
AS
727 for (; !guid_is_null(&id->guid); id++)
728 if (guid_equal(&id->guid, guid))
d765edbb
SH
729 return id;
730
731 return NULL;
732}
733
734static const struct hv_vmbus_device_id *
593db803 735hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid)
3037a7b6 736{
fc76936d
SH
737 const struct hv_vmbus_device_id *id = NULL;
738 struct vmbus_dynid *dynid;
739
fc76936d
SH
740 spin_lock(&drv->dynids.lock);
741 list_for_each_entry(dynid, &drv->dynids.list, node) {
593db803 742 if (guid_equal(&dynid->id.guid, guid)) {
fc76936d
SH
743 id = &dynid->id;
744 break;
745 }
746 }
747 spin_unlock(&drv->dynids.lock);
748
d765edbb
SH
749 return id;
750}
fc76936d 751
593db803 752static const struct hv_vmbus_device_id vmbus_device_null;
fc76936d 753
d765edbb
SH
754/*
755 * Return a matching hv_vmbus_device_id pointer.
756 * If there is no match, return NULL.
757 */
758static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
759 struct hv_device *dev)
760{
593db803 761 const guid_t *guid = &dev->dev_type;
d765edbb 762 const struct hv_vmbus_device_id *id;
3037a7b6 763
d765edbb
SH
764 /* When driver_override is set, only bind to the matching driver */
765 if (dev->driver_override && strcmp(dev->driver_override, drv->name))
766 return NULL;
767
768 /* Look at the dynamic ids first, before the static ones */
769 id = hv_vmbus_dynid_match(drv, guid);
770 if (!id)
771 id = hv_vmbus_dev_match(drv->id_table, guid);
772
773 /* driver_override will always match, send a dummy id */
774 if (!id && dev->driver_override)
775 id = &vmbus_device_null;
776
777 return id;
3037a7b6
S
778}
779
fc76936d 780/* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
593db803 781static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid)
fc76936d
SH
782{
783 struct vmbus_dynid *dynid;
784
785 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
786 if (!dynid)
787 return -ENOMEM;
788
789 dynid->id.guid = *guid;
790
791 spin_lock(&drv->dynids.lock);
792 list_add_tail(&dynid->node, &drv->dynids.list);
793 spin_unlock(&drv->dynids.lock);
794
795 return driver_attach(&drv->driver);
796}
797
798static void vmbus_free_dynids(struct hv_driver *drv)
799{
800 struct vmbus_dynid *dynid, *n;
801
802 spin_lock(&drv->dynids.lock);
803 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
804 list_del(&dynid->node);
805 kfree(dynid);
806 }
807 spin_unlock(&drv->dynids.lock);
808}
809
fc76936d
SH
810/*
811 * store_new_id - sysfs frontend to vmbus_add_dynid()
812 *
813 * Allow GUIDs to be added to an existing driver via sysfs.
814 */
815static ssize_t new_id_store(struct device_driver *driver, const char *buf,
816 size_t count)
817{
818 struct hv_driver *drv = drv_to_hv_drv(driver);
593db803 819 guid_t guid;
fc76936d
SH
820 ssize_t retval;
821
593db803 822 retval = guid_parse(buf, &guid);
31100108
AS
823 if (retval)
824 return retval;
fc76936d 825
d765edbb 826 if (hv_vmbus_dynid_match(drv, &guid))
fc76936d
SH
827 return -EEXIST;
828
829 retval = vmbus_add_dynid(drv, &guid);
830 if (retval)
831 return retval;
832 return count;
833}
834static DRIVER_ATTR_WO(new_id);
835
836/*
837 * store_remove_id - remove a PCI device ID from this driver
838 *
839 * Removes a dynamic pci device ID to this driver.
840 */
841static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
842 size_t count)
843{
844 struct hv_driver *drv = drv_to_hv_drv(driver);
845 struct vmbus_dynid *dynid, *n;
593db803 846 guid_t guid;
31100108 847 ssize_t retval;
fc76936d 848
593db803 849 retval = guid_parse(buf, &guid);
31100108
AS
850 if (retval)
851 return retval;
fc76936d 852
31100108 853 retval = -ENODEV;
fc76936d
SH
854 spin_lock(&drv->dynids.lock);
855 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
856 struct hv_vmbus_device_id *id = &dynid->id;
857
593db803 858 if (guid_equal(&id->guid, &guid)) {
fc76936d
SH
859 list_del(&dynid->node);
860 kfree(dynid);
861 retval = count;
862 break;
863 }
864 }
865 spin_unlock(&drv->dynids.lock);
866
867 return retval;
868}
869static DRIVER_ATTR_WO(remove_id);
870
871static struct attribute *vmbus_drv_attrs[] = {
872 &driver_attr_new_id.attr,
873 &driver_attr_remove_id.attr,
874 NULL,
875};
876ATTRIBUTE_GROUPS(vmbus_drv);
3037a7b6 877
b7fc147b
S
878
879/*
880 * vmbus_match - Attempt to match the specified device to the specified driver
881 */
882static int vmbus_match(struct device *device, struct device_driver *driver)
883{
b7fc147b 884 struct hv_driver *drv = drv_to_hv_drv(driver);
e8e27047 885 struct hv_device *hv_dev = device_to_hv_device(device);
b7fc147b 886
8981da32
DC
887 /* The hv_sock driver handles all hv_sock offers. */
888 if (is_hvsock_channel(hv_dev->channel))
889 return drv->hvsock;
890
d765edbb 891 if (hv_vmbus_get_id(drv, hv_dev))
3037a7b6 892 return 1;
de632a2b 893
5841a829 894 return 0;
b7fc147b
S
895}
896
f1f0d67b
S
897/*
898 * vmbus_probe - Add the new vmbus's child device
899 */
900static int vmbus_probe(struct device *child_device)
901{
902 int ret = 0;
903 struct hv_driver *drv =
904 drv_to_hv_drv(child_device->driver);
9efd21e1 905 struct hv_device *dev = device_to_hv_device(child_device);
84946899 906 const struct hv_vmbus_device_id *dev_id;
f1f0d67b 907
d765edbb 908 dev_id = hv_vmbus_get_id(drv, dev);
9efd21e1 909 if (drv->probe) {
84946899 910 ret = drv->probe(dev, dev_id);
b14a7b30 911 if (ret != 0)
0a46618d
HJ
912 pr_err("probe failed for device %s (%d)\n",
913 dev_name(child_device), ret);
f1f0d67b 914
f1f0d67b 915 } else {
0a46618d
HJ
916 pr_err("probe not set for driver %s\n",
917 dev_name(child_device));
6de925b1 918 ret = -ENODEV;
f1f0d67b
S
919 }
920 return ret;
921}
922
37200078
MK
923/*
924 * vmbus_dma_configure -- Configure DMA coherence for VMbus device
925 */
926static int vmbus_dma_configure(struct device *child_device)
927{
928 /*
929 * On ARM64, propagate the DMA coherence setting from the top level
930 * VMbus ACPI device to the child VMbus device being added here.
931 * On x86/x64 coherence is assumed and these calls have no effect.
932 */
933 hv_setup_dma_ops(child_device,
934 device_get_dma_attr(&hv_acpi_dev->dev) == DEV_DMA_COHERENT);
935 return 0;
936}
937
c5dce3db
S
938/*
939 * vmbus_remove - Remove a vmbus device
940 */
fc7a6209 941static void vmbus_remove(struct device *child_device)
c5dce3db 942{
d15a0301 943 struct hv_driver *drv;
415b023a 944 struct hv_device *dev = device_to_hv_device(child_device);
c5dce3db 945
d15a0301
S
946 if (child_device->driver) {
947 drv = drv_to_hv_drv(child_device->driver);
948 if (drv->remove)
949 drv->remove(dev);
d15a0301 950 }
c5dce3db
S
951}
952
eb1bb259
S
953/*
954 * vmbus_shutdown - Shutdown a vmbus device
955 */
956static void vmbus_shutdown(struct device *child_device)
957{
958 struct hv_driver *drv;
ca6887fb 959 struct hv_device *dev = device_to_hv_device(child_device);
eb1bb259
S
960
961
962 /* The device may not be attached yet */
963 if (!child_device->driver)
964 return;
965
966 drv = drv_to_hv_drv(child_device->driver);
967
ca6887fb
S
968 if (drv->shutdown)
969 drv->shutdown(dev);
eb1bb259
S
970}
971
83b50f83 972#ifdef CONFIG_PM_SLEEP
271b2224
DC
973/*
974 * vmbus_suspend - Suspend a vmbus device
975 */
976static int vmbus_suspend(struct device *child_device)
977{
978 struct hv_driver *drv;
979 struct hv_device *dev = device_to_hv_device(child_device);
980
981 /* The device may not be attached yet */
982 if (!child_device->driver)
983 return 0;
984
985 drv = drv_to_hv_drv(child_device->driver);
986 if (!drv->suspend)
987 return -EOPNOTSUPP;
988
989 return drv->suspend(dev);
990}
991
992/*
993 * vmbus_resume - Resume a vmbus device
994 */
995static int vmbus_resume(struct device *child_device)
996{
997 struct hv_driver *drv;
998 struct hv_device *dev = device_to_hv_device(child_device);
999
1000 /* The device may not be attached yet */
1001 if (!child_device->driver)
1002 return 0;
1003
1004 drv = drv_to_hv_drv(child_device->driver);
1005 if (!drv->resume)
1006 return -EOPNOTSUPP;
1007
1008 return drv->resume(dev);
1009}
1a06d017
DC
1010#else
1011#define vmbus_suspend NULL
1012#define vmbus_resume NULL
83b50f83 1013#endif /* CONFIG_PM_SLEEP */
086e7a56
S
1014
1015/*
1016 * vmbus_device_release - Final callback release of the vmbus child device
1017 */
1018static void vmbus_device_release(struct device *device)
1019{
e8e27047 1020 struct hv_device *hv_dev = device_to_hv_device(device);
34c6801e 1021 struct vmbus_channel *channel = hv_dev->channel;
086e7a56 1022
af9ca6f9
BB
1023 hv_debug_rm_dev_dir(hv_dev);
1024
54a66265 1025 mutex_lock(&vmbus_connection.channel_mutex);
800b9329 1026 hv_process_channel_removal(channel);
54a66265 1027 mutex_unlock(&vmbus_connection.channel_mutex);
e8e27047 1028 kfree(hv_dev);
086e7a56
S
1029}
1030
271b2224 1031/*
1a06d017
DC
1032 * Note: we must use the "noirq" ops: see the comment before vmbus_bus_pm.
1033 *
1034 * suspend_noirq/resume_noirq are set to NULL to support Suspend-to-Idle: we
1035 * shouldn't suspend the vmbus devices upon Suspend-to-Idle, otherwise there
1036 * is no way to wake up a Generation-2 VM.
1037 *
1038 * The other 4 ops are for hibernation.
271b2224 1039 */
1a06d017 1040
271b2224 1041static const struct dev_pm_ops vmbus_pm = {
1a06d017
DC
1042 .suspend_noirq = NULL,
1043 .resume_noirq = NULL,
1044 .freeze_noirq = vmbus_suspend,
1045 .thaw_noirq = vmbus_resume,
1046 .poweroff_noirq = vmbus_suspend,
1047 .restore_noirq = vmbus_resume,
271b2224
DC
1048};
1049
454f18a9 1050/* The one and only one */
9adcac5c
S
1051static struct bus_type hv_bus = {
1052 .name = "vmbus",
1053 .match = vmbus_match,
1054 .shutdown = vmbus_shutdown,
1055 .remove = vmbus_remove,
1056 .probe = vmbus_probe,
1057 .uevent = vmbus_uevent,
37200078 1058 .dma_configure = vmbus_dma_configure,
fc76936d
SH
1059 .dev_groups = vmbus_dev_groups,
1060 .drv_groups = vmbus_drv_groups,
c068e3f4 1061 .bus_groups = vmbus_bus_groups,
271b2224 1062 .pm = &vmbus_pm,
3e7ee490
HJ
1063};
1064
bf6506f6
TT
1065struct onmessage_work_context {
1066 struct work_struct work;
a276463b
VK
1067 struct {
1068 struct hv_message_header header;
1069 u8 payload[];
1070 } msg;
bf6506f6
TT
1071};
1072
1073static void vmbus_onmessage_work(struct work_struct *work)
1074{
1075 struct onmessage_work_context *ctx;
1076
09a19628
VK
1077 /* Do not process messages if we're in DISCONNECTED state */
1078 if (vmbus_connection.conn_state == DISCONNECTED)
1079 return;
1080
bf6506f6
TT
1081 ctx = container_of(work, struct onmessage_work_context,
1082 work);
5cc41500
VK
1083 vmbus_onmessage((struct vmbus_channel_message_header *)
1084 &ctx->msg.payload);
bf6506f6
TT
1085 kfree(ctx);
1086}
1087
d81274aa 1088void vmbus_on_msg_dpc(unsigned long data)
36199a99 1089{
37cdd991
SH
1090 struct hv_per_cpu_context *hv_cpu = (void *)data;
1091 void *page_addr = hv_cpu->synic_message_page;
fe8c1b18 1092 struct hv_message msg_copy, *msg = (struct hv_message *)page_addr +
36199a99 1093 VMBUS_MESSAGE_SINT;
652594c7 1094 struct vmbus_channel_message_header *hdr;
9c400d35 1095 enum vmbus_channel_message_type msgtype;
e6242fa0 1096 const struct vmbus_channel_message_table_entry *entry;
bf6506f6 1097 struct onmessage_work_context *ctx;
9c400d35 1098 __u8 payload_size;
fe8c1b18 1099 u32 message_type;
36199a99 1100
b0a284dc
VK
1101 /*
1102 * 'enum vmbus_channel_message_type' is supposed to always be 'u32' as
1103 * it is being used in 'struct vmbus_channel_message_header' definition
1104 * which is supposed to match hypervisor ABI.
1105 */
1106 BUILD_BUG_ON(sizeof(enum vmbus_channel_message_type) != sizeof(u32));
1107
fe8c1b18
APM
1108 /*
1109 * Since the message is in memory shared with the host, an erroneous or
1110 * malicious Hyper-V could modify the message while vmbus_on_msg_dpc()
1111 * or individual message handlers are executing; to prevent this, copy
1112 * the message into private memory.
1113 */
1114 memcpy(&msg_copy, msg, sizeof(struct hv_message));
1115
1116 message_type = msg_copy.header.message_type;
cd95aad5 1117 if (message_type == HVMSG_NONE)
7be3e169
VK
1118 /* no msg */
1119 return;
652594c7 1120
fe8c1b18 1121 hdr = (struct vmbus_channel_message_header *)msg_copy.u.payload;
9c400d35 1122 msgtype = hdr->msgtype;
652594c7 1123
c9fe0f8f
VK
1124 trace_vmbus_on_msg_dpc(hdr);
1125
9c400d35
APM
1126 if (msgtype >= CHANNELMSG_COUNT) {
1127 WARN_ONCE(1, "unknown msgtype=%d\n", msgtype);
7be3e169
VK
1128 goto msg_handled;
1129 }
652594c7 1130
fe8c1b18 1131 payload_size = msg_copy.header.payload_size;
9c400d35
APM
1132 if (payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT) {
1133 WARN_ONCE(1, "payload size is too large (%d)\n", payload_size);
ac0f7d42
VK
1134 goto msg_handled;
1135 }
1136
9c400d35 1137 entry = &channel_message_table[msgtype];
ddc9d357
DC
1138
1139 if (!entry->message_handler)
1140 goto msg_handled;
1141
9c400d35
APM
1142 if (payload_size < entry->min_payload_len) {
1143 WARN_ONCE(1, "message too short: msgtype=%d len=%d\n", msgtype, payload_size);
52c7803f
VK
1144 goto msg_handled;
1145 }
1146
7be3e169 1147 if (entry->handler_type == VMHT_BLOCKING) {
a70d298c 1148 ctx = kmalloc(struct_size(ctx, msg.payload, payload_size), GFP_ATOMIC);
7be3e169
VK
1149 if (ctx == NULL)
1150 return;
652594c7 1151
7be3e169 1152 INIT_WORK(&ctx->work, vmbus_onmessage_work);
fe8c1b18 1153 memcpy(&ctx->msg, &msg_copy, sizeof(msg->header) + payload_size);
652594c7 1154
54a66265
S
1155 /*
1156 * The host can generate a rescind message while we
1157 * may still be handling the original offer. We deal with
b9fa1b87
APM
1158 * this condition by relying on the synchronization provided
1159 * by offer_in_progress and by channel_mutex. See also the
1160 * inline comments in vmbus_onoffer_rescind().
54a66265 1161 */
9c400d35 1162 switch (msgtype) {
54a66265
S
1163 case CHANNELMSG_RESCIND_CHANNELOFFER:
1164 /*
1165 * If we are handling the rescind message;
1166 * schedule the work on the global work queue.
8a857c55
APM
1167 *
1168 * The OFFER message and the RESCIND message should
1169 * not be handled by the same serialized work queue,
1170 * because the OFFER handler may call vmbus_open(),
1171 * which tries to open the channel by sending an
1172 * OPEN_CHANNEL message to the host and waits for
1173 * the host's response; however, if the host has
1174 * rescinded the channel before it receives the
1175 * OPEN_CHANNEL message, the host just silently
1176 * ignores the OPEN_CHANNEL message; as a result,
1177 * the guest's OFFER handler hangs for ever, if we
1178 * handle the RESCIND message in the same serialized
1179 * work queue: the RESCIND handler can not start to
1180 * run before the OFFER handler finishes.
54a66265 1181 */
b9fa1b87 1182 schedule_work(&ctx->work);
54a66265
S
1183 break;
1184
1185 case CHANNELMSG_OFFERCHANNEL:
b9fa1b87
APM
1186 /*
1187 * The host sends the offer message of a given channel
1188 * before sending the rescind message of the same
1189 * channel. These messages are sent to the guest's
1190 * connect CPU; the guest then starts processing them
1191 * in the tasklet handler on this CPU:
1192 *
1193 * VMBUS_CONNECT_CPU
1194 *
1195 * [vmbus_on_msg_dpc()]
1196 * atomic_inc() // CHANNELMSG_OFFERCHANNEL
1197 * queue_work()
1198 * ...
1199 * [vmbus_on_msg_dpc()]
1200 * schedule_work() // CHANNELMSG_RESCIND_CHANNELOFFER
1201 *
1202 * We rely on the memory-ordering properties of the
1203 * queue_work() and schedule_work() primitives, which
1204 * guarantee that the atomic increment will be visible
1205 * to the CPUs which will execute the offer & rescind
1206 * works by the time these works will start execution.
1207 */
54a66265 1208 atomic_inc(&vmbus_connection.offer_in_progress);
b9fa1b87 1209 fallthrough;
54a66265
S
1210
1211 default:
1212 queue_work(vmbus_connection.work_queue, &ctx->work);
1213 }
7be3e169
VK
1214 } else
1215 entry->message_handler(hdr);
36199a99 1216
652594c7 1217msg_handled:
cd95aad5 1218 vmbus_signal_eom(msg, message_type);
36199a99
GKH
1219}
1220
83b50f83 1221#ifdef CONFIG_PM_SLEEP
1f48dcf1
DC
1222/*
1223 * Fake RESCIND_CHANNEL messages to clean up hv_sock channels by force for
1224 * hibernation, because hv_sock connections can not persist across hibernation.
1225 */
1226static void vmbus_force_channel_rescinded(struct vmbus_channel *channel)
1227{
1228 struct onmessage_work_context *ctx;
1229 struct vmbus_channel_rescind_offer *rescind;
1230
1231 WARN_ON(!is_hvsock_channel(channel));
1232
1233 /*
a276463b 1234 * Allocation size is small and the allocation should really not fail,
1f48dcf1
DC
1235 * otherwise the state of the hv_sock connections ends up in limbo.
1236 */
a276463b
VK
1237 ctx = kzalloc(sizeof(*ctx) + sizeof(*rescind),
1238 GFP_KERNEL | __GFP_NOFAIL);
1f48dcf1
DC
1239
1240 /*
1241 * So far, these are not really used by Linux. Just set them to the
1242 * reasonable values conforming to the definitions of the fields.
1243 */
1244 ctx->msg.header.message_type = 1;
1245 ctx->msg.header.payload_size = sizeof(*rescind);
1246
1247 /* These values are actually used by Linux. */
a276463b 1248 rescind = (struct vmbus_channel_rescind_offer *)ctx->msg.payload;
1f48dcf1
DC
1249 rescind->header.msgtype = CHANNELMSG_RESCIND_CHANNELOFFER;
1250 rescind->child_relid = channel->offermsg.child_relid;
1251
1252 INIT_WORK(&ctx->work, vmbus_onmessage_work);
1253
b9fa1b87 1254 queue_work(vmbus_connection.work_queue, &ctx->work);
1f48dcf1 1255}
83b50f83 1256#endif /* CONFIG_PM_SLEEP */
631e63a9
SH
1257
1258/*
1259 * Schedule all channels with events pending
1260 */
1261static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
1262{
1263 unsigned long *recv_int_page;
1264 u32 maxbits, relid;
1265
1266 if (vmbus_proto_version < VERSION_WIN8) {
1267 maxbits = MAX_NUM_CHANNELS_SUPPORTED;
1268 recv_int_page = vmbus_connection.recv_int_page;
1269 } else {
1270 /*
1271 * When the host is win8 and beyond, the event page
1272 * can be directly checked to get the id of the channel
1273 * that has the interrupt pending.
1274 */
1275 void *page_addr = hv_cpu->synic_event_page;
1276 union hv_synic_event_flags *event
1277 = (union hv_synic_event_flags *)page_addr +
1278 VMBUS_MESSAGE_SINT;
1279
1280 maxbits = HV_EVENT_FLAGS_COUNT;
1281 recv_int_page = event->flags;
1282 }
1283
1284 if (unlikely(!recv_int_page))
1285 return;
1286
1287 for_each_set_bit(relid, recv_int_page, maxbits) {
9403b66e 1288 void (*callback_fn)(void *context);
631e63a9
SH
1289 struct vmbus_channel *channel;
1290
1291 if (!sync_test_and_clear_bit(relid, recv_int_page))
1292 continue;
1293
1294 /* Special case - vmbus channel protocol msg */
1295 if (relid == 0)
1296 continue;
1297
8b6a877c
APM
1298 /*
1299 * Pairs with the kfree_rcu() in vmbus_chan_release().
1300 * Guarantees that the channel data structure doesn't
1301 * get freed while the channel pointer below is being
1302 * dereferenced.
1303 */
8200f208
SH
1304 rcu_read_lock();
1305
631e63a9 1306 /* Find channel based on relid */
8b6a877c
APM
1307 channel = relid2channel(relid);
1308 if (channel == NULL)
1309 goto sched_unlock_rcu;
b71e3282 1310
8b6a877c
APM
1311 if (channel->rescind)
1312 goto sched_unlock_rcu;
6f3d791f 1313
9403b66e
APM
1314 /*
1315 * Make sure that the ring buffer data structure doesn't get
1316 * freed while we dereference the ring buffer pointer. Test
1317 * for the channel's onchannel_callback being NULL within a
1318 * sched_lock critical section. See also the inline comments
1319 * in vmbus_reset_channel_cb().
1320 */
1321 spin_lock(&channel->sched_lock);
991f8f1c 1322
9403b66e
APM
1323 callback_fn = channel->onchannel_callback;
1324 if (unlikely(callback_fn == NULL))
1325 goto sched_unlock;
6981fbf3 1326
8b6a877c 1327 trace_vmbus_chan_sched(channel);
b71e3282 1328
8b6a877c 1329 ++channel->interrupts;
6981fbf3 1330
8b6a877c
APM
1331 switch (channel->callback_mode) {
1332 case HV_CALL_ISR:
9403b66e 1333 (*callback_fn)(channel->channel_callback_context);
8b6a877c 1334 break;
b71e3282 1335
8b6a877c
APM
1336 case HV_CALL_BATCHED:
1337 hv_begin_read(&channel->inbound);
1338 fallthrough;
1339 case HV_CALL_DIRECT:
1340 tasklet_schedule(&channel->callback_event);
631e63a9 1341 }
8200f208 1342
9403b66e
APM
1343sched_unlock:
1344 spin_unlock(&channel->sched_lock);
8b6a877c 1345sched_unlock_rcu:
8200f208 1346 rcu_read_unlock();
631e63a9
SH
1347 }
1348}
1349
76d388cd 1350static void vmbus_isr(void)
36199a99 1351{
37cdd991
SH
1352 struct hv_per_cpu_context *hv_cpu
1353 = this_cpu_ptr(hv_context.cpu_context);
1354 void *page_addr = hv_cpu->synic_event_page;
36199a99
GKH
1355 struct hv_message *msg;
1356 union hv_synic_event_flags *event;
ae4636e6 1357 bool handled = false;
36199a99 1358
37cdd991 1359 if (unlikely(page_addr == NULL))
76d388cd 1360 return;
5ab05951
S
1361
1362 event = (union hv_synic_event_flags *)page_addr +
1363 VMBUS_MESSAGE_SINT;
7341d908
S
1364 /*
1365 * Check for events before checking for messages. This is the order
1366 * in which events and messages are checked in Windows guests on
1367 * Hyper-V, and the Windows team suggested we do the same.
1368 */
36199a99 1369
6552ecd7
S
1370 if ((vmbus_proto_version == VERSION_WS2008) ||
1371 (vmbus_proto_version == VERSION_WIN7)) {
36199a99 1372
6552ecd7 1373 /* Since we are a child, we only need to check bit 0 */
5c1bec61 1374 if (sync_test_and_clear_bit(0, event->flags))
6552ecd7 1375 handled = true;
6552ecd7
S
1376 } else {
1377 /*
1378 * Our host is win8 or above. The signaling mechanism
1379 * has changed and we can directly look at the event page.
1380 * If bit n is set then we have an interrup on the channel
1381 * whose id is n.
1382 */
ae4636e6 1383 handled = true;
ae4636e6 1384 }
793be9c7 1385
6552ecd7 1386 if (handled)
631e63a9 1387 vmbus_chan_sched(hv_cpu);
6552ecd7 1388
37cdd991 1389 page_addr = hv_cpu->synic_message_page;
7341d908
S
1390 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1391
1392 /* Check if there are actual msgs to be processed */
4061ed9e 1393 if (msg->header.message_type != HVMSG_NONE) {
fd1fea68
MK
1394 if (msg->header.message_type == HVMSG_TIMER_EXPIRED) {
1395 hv_stimer0_isr();
1396 vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
1397 } else
37cdd991 1398 tasklet_schedule(&hv_cpu->msg_dpc);
4061ed9e 1399 }
4b44f2d1 1400
703f7066 1401 add_interrupt_randomness(vmbus_interrupt);
d608715d
MK
1402}
1403
1404static irqreturn_t vmbus_percpu_isr(int irq, void *dev_id)
1405{
1406 vmbus_isr();
1407 return IRQ_HANDLED;
793be9c7
S
1408}
1409
81b18bce
SM
1410/*
1411 * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg
1412 * buffer and call into Hyper-V to transfer the data.
1413 */
1414static void hv_kmsg_dump(struct kmsg_dumper *dumper,
1415 enum kmsg_dump_reason reason)
1416{
f9f3f02d 1417 struct kmsg_dump_iter iter;
81b18bce 1418 size_t bytes_written;
81b18bce
SM
1419
1420 /* We are only interested in panics. */
1421 if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg))
1422 return;
1423
81b18bce
SM
1424 /*
1425 * Write dump contents to the page. No need to synchronize; panic should
1426 * be single-threaded.
1427 */
f9f3f02d
JO
1428 kmsg_dump_rewind(&iter);
1429 kmsg_dump_get_buffer(&iter, false, hv_panic_page, HV_HYP_PAGE_SIZE,
ddcaf3ca 1430 &bytes_written);
b548a774
MK
1431 if (!bytes_written)
1432 return;
1433 /*
1434 * P3 to contain the physical address of the panic page & P4 to
1435 * contain the size of the panic data in that page. Rest of the
1436 * registers are no-op when the NOTIFY_MSG flag is set.
1437 */
1438 hv_set_register(HV_REGISTER_CRASH_P0, 0);
1439 hv_set_register(HV_REGISTER_CRASH_P1, 0);
1440 hv_set_register(HV_REGISTER_CRASH_P2, 0);
1441 hv_set_register(HV_REGISTER_CRASH_P3, virt_to_phys(hv_panic_page));
1442 hv_set_register(HV_REGISTER_CRASH_P4, bytes_written);
1443
1444 /*
1445 * Let Hyper-V know there is crash data available along with
1446 * the panic message.
1447 */
1448 hv_set_register(HV_REGISTER_CRASH_CTL,
1449 (HV_CRASH_CTL_CRASH_NOTIFY | HV_CRASH_CTL_CRASH_NOTIFY_MSG));
81b18bce
SM
1450}
1451
1452static struct kmsg_dumper hv_kmsg_dumper = {
1453 .dump = hv_kmsg_dump,
1454};
1455
b0c03eff
MC
1456static void hv_kmsg_dump_register(void)
1457{
1458 int ret;
1459
1460 hv_panic_page = hv_alloc_hyperv_zeroed_page();
1461 if (!hv_panic_page) {
1462 pr_err("Hyper-V: panic message page memory allocation failed\n");
1463 return;
1464 }
1465
1466 ret = kmsg_dump_register(&hv_kmsg_dumper);
1467 if (ret) {
1468 pr_err("Hyper-V: kmsg dump register error 0x%x\n", ret);
1469 hv_free_hyperv_page((unsigned long)hv_panic_page);
1470 hv_panic_page = NULL;
1471 }
1472}
1473
81b18bce 1474static struct ctl_table_header *hv_ctl_table_hdr;
81b18bce
SM
1475
1476/*
1477 * sysctl option to allow the user to control whether kmsg data should be
1478 * reported to Hyper-V on panic.
1479 */
1480static struct ctl_table hv_ctl_table[] = {
1481 {
1482 .procname = "hyperv_record_panic_msg",
1483 .data = &sysctl_record_panic_msg,
1484 .maxlen = sizeof(int),
1485 .mode = 0644,
1486 .proc_handler = proc_dointvec_minmax,
eec4844f
MC
1487 .extra1 = SYSCTL_ZERO,
1488 .extra2 = SYSCTL_ONE
81b18bce
SM
1489 },
1490 {}
1491};
1492
1493static struct ctl_table hv_root_table[] = {
1494 {
1495 .procname = "kernel",
1496 .mode = 0555,
1497 .child = hv_ctl_table
1498 },
1499 {}
1500};
e513229b 1501
3e189519 1502/*
90c9960e
GKH
1503 * vmbus_bus_init -Main vmbus driver initialization routine.
1504 *
1505 * Here, we
0686e4f4 1506 * - initialize the vmbus driver context
0686e4f4 1507 * - invoke the vmbus hv main init routine
0686e4f4 1508 * - retrieve the channel offers
90c9960e 1509 */
efc26722 1510static int vmbus_bus_init(void)
3e7ee490 1511{
90c9960e 1512 int ret;
3e7ee490 1513
6d26e38f 1514 ret = hv_init();
90c9960e 1515 if (ret != 0) {
0a46618d 1516 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
d6c1c5de 1517 return ret;
3e7ee490
HJ
1518 }
1519
9adcac5c 1520 ret = bus_register(&hv_bus);
d6c1c5de 1521 if (ret)
d6f3609d 1522 return ret;
3e7ee490 1523
d608715d
MK
1524 /*
1525 * VMbus interrupts are best modeled as per-cpu interrupts. If
1526 * on an architecture with support for per-cpu IRQs (e.g. ARM64),
1527 * allocate a per-cpu IRQ using standard Linux kernel functionality.
1528 * If not on such an architecture (e.g., x86/x64), then rely on
1529 * code in the arch-specific portion of the code tree to connect
1530 * the VMbus interrupt handler.
1531 */
1532
1533 if (vmbus_irq == -1) {
1534 hv_setup_vmbus_handler(vmbus_isr);
1535 } else {
1536 vmbus_evt = alloc_percpu(long);
1537 ret = request_percpu_irq(vmbus_irq, vmbus_percpu_isr,
1538 "Hyper-V VMbus", vmbus_evt);
1539 if (ret) {
1540 pr_err("Can't request Hyper-V VMbus IRQ %d, Err %d",
1541 vmbus_irq, ret);
1542 free_percpu(vmbus_evt);
1543 goto err_setup;
1544 }
1545 }
3e7ee490 1546
2608fb65
JW
1547 ret = hv_synic_alloc();
1548 if (ret)
1549 goto err_alloc;
fd1fea68 1550
800b6902 1551 /*
fd1fea68
MK
1552 * Initialize the per-cpu interrupt state and stimer state.
1553 * Then connect to the host.
800b6902 1554 */
4a5f3cde 1555 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
76d36ab7
VK
1556 hv_synic_init, hv_synic_cleanup);
1557 if (ret < 0)
fd1fea68 1558 goto err_cpuhp;
76d36ab7
VK
1559 hyperv_cpuhp_online = ret;
1560
800b6902 1561 ret = vmbus_connect();
8b9987e9 1562 if (ret)
17efbee8 1563 goto err_connect;
800b6902 1564
9f8b577f
APM
1565 if (hv_is_isolation_supported())
1566 sysctl_record_panic_msg = 0;
1567
96c1d058
NM
1568 /*
1569 * Only register if the crash MSRs are available
1570 */
cc2dd402 1571 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
81b18bce
SM
1572 u64 hyperv_crash_ctl;
1573 /*
9f8b577f
APM
1574 * Panic message recording (sysctl_record_panic_msg)
1575 * is enabled by default in non-isolated guests and
1576 * disabled by default in isolated guests; the panic
1577 * message recording won't be available in isolated
1578 * guests should the following registration fail.
81b18bce
SM
1579 */
1580 hv_ctl_table_hdr = register_sysctl_table(hv_root_table);
1581 if (!hv_ctl_table_hdr)
1582 pr_err("Hyper-V: sysctl table register error");
1583
1584 /*
1585 * Register for panic kmsg callback only if the right
1586 * capability is supported by the hypervisor.
1587 */
f3c5e63c 1588 hyperv_crash_ctl = hv_get_register(HV_REGISTER_CRASH_CTL);
b0c03eff
MC
1589 if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG)
1590 hv_kmsg_dump_register();
81b18bce 1591
510f7aef 1592 register_die_notifier(&hyperv_die_block);
96c1d058
NM
1593 }
1594
74347a99
TL
1595 /*
1596 * Always register the panic notifier because we need to unload
1597 * the VMbus channel connection to prevent any VMbus
1598 * activity after the VM panics.
1599 */
1600 atomic_notifier_chain_register(&panic_notifier_list,
1601 &hyperv_panic_block);
1602
2d6e882b 1603 vmbus_request_offers();
8b5d6d3b 1604
d6c1c5de 1605 return 0;
8b9987e9 1606
17efbee8 1607err_connect:
76d36ab7 1608 cpuhp_remove_state(hyperv_cpuhp_online);
fd1fea68 1609err_cpuhp:
2608fb65 1610 hv_synic_free();
4df4cb9e 1611err_alloc:
d608715d
MK
1612 if (vmbus_irq == -1) {
1613 hv_remove_vmbus_handler();
1614 } else {
1615 free_percpu_irq(vmbus_irq, vmbus_evt);
1616 free_percpu(vmbus_evt);
1617 }
626b901f 1618err_setup:
8b9987e9 1619 bus_unregister(&hv_bus);
8afc06dd
SM
1620 unregister_sysctl_table(hv_ctl_table_hdr);
1621 hv_ctl_table_hdr = NULL;
8b9987e9 1622 return ret;
3e7ee490
HJ
1623}
1624
90c9960e 1625/**
35464483
JO
1626 * __vmbus_child_driver_register() - Register a vmbus's driver
1627 * @hv_driver: Pointer to driver structure you want to register
768fa219
GKH
1628 * @owner: owner module of the drv
1629 * @mod_name: module name string
3e189519
HJ
1630 *
1631 * Registers the given driver with Linux through the 'driver_register()' call
768fa219 1632 * and sets up the hyper-v vmbus handling for this driver.
3e189519
HJ
1633 * It will return the state of the 'driver_register()' call.
1634 *
90c9960e 1635 */
768fa219 1636int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
3e7ee490 1637{
5d48a1c2 1638 int ret;
3e7ee490 1639
768fa219 1640 pr_info("registering driver %s\n", hv_driver->name);
3e7ee490 1641
cf6a2eac
S
1642 ret = vmbus_exists();
1643 if (ret < 0)
1644 return ret;
1645
768fa219
GKH
1646 hv_driver->driver.name = hv_driver->name;
1647 hv_driver->driver.owner = owner;
1648 hv_driver->driver.mod_name = mod_name;
1649 hv_driver->driver.bus = &hv_bus;
3e7ee490 1650
fc76936d
SH
1651 spin_lock_init(&hv_driver->dynids.lock);
1652 INIT_LIST_HEAD(&hv_driver->dynids.list);
1653
768fa219 1654 ret = driver_register(&hv_driver->driver);
3e7ee490 1655
5d48a1c2 1656 return ret;
3e7ee490 1657}
768fa219 1658EXPORT_SYMBOL_GPL(__vmbus_driver_register);
3e7ee490 1659
90c9960e 1660/**
768fa219 1661 * vmbus_driver_unregister() - Unregister a vmbus's driver
35464483
JO
1662 * @hv_driver: Pointer to driver structure you want to
1663 * un-register
3e189519 1664 *
768fa219
GKH
1665 * Un-register the given driver that was previous registered with a call to
1666 * vmbus_driver_register()
90c9960e 1667 */
768fa219 1668void vmbus_driver_unregister(struct hv_driver *hv_driver)
3e7ee490 1669{
768fa219 1670 pr_info("unregistering driver %s\n", hv_driver->name);
3e7ee490 1671
fc76936d 1672 if (!vmbus_exists()) {
8f257a14 1673 driver_unregister(&hv_driver->driver);
fc76936d
SH
1674 vmbus_free_dynids(hv_driver);
1675 }
3e7ee490 1676}
768fa219 1677EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
3e7ee490 1678
c2e5df61
SH
1679
1680/*
1681 * Called when last reference to channel is gone.
1682 */
1683static void vmbus_chan_release(struct kobject *kobj)
1684{
1685 struct vmbus_channel *channel
1686 = container_of(kobj, struct vmbus_channel, kobj);
1687
1688 kfree_rcu(channel, rcu);
1689}
1690
1691struct vmbus_chan_attribute {
1692 struct attribute attr;
14948e39 1693 ssize_t (*show)(struct vmbus_channel *chan, char *buf);
c2e5df61
SH
1694 ssize_t (*store)(struct vmbus_channel *chan,
1695 const char *buf, size_t count);
1696};
1697#define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
1698 struct vmbus_chan_attribute chan_attr_##_name \
1699 = __ATTR(_name, _mode, _show, _store)
1700#define VMBUS_CHAN_ATTR_RW(_name) \
1701 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
1702#define VMBUS_CHAN_ATTR_RO(_name) \
1703 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
1704#define VMBUS_CHAN_ATTR_WO(_name) \
1705 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)
1706
1707static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
1708 struct attribute *attr, char *buf)
1709{
1710 const struct vmbus_chan_attribute *attribute
1711 = container_of(attr, struct vmbus_chan_attribute, attr);
14948e39 1712 struct vmbus_channel *chan
c2e5df61
SH
1713 = container_of(kobj, struct vmbus_channel, kobj);
1714
1715 if (!attribute->show)
1716 return -EIO;
1717
1718 return attribute->show(chan, buf);
1719}
1720
75278105
APM
1721static ssize_t vmbus_chan_attr_store(struct kobject *kobj,
1722 struct attribute *attr, const char *buf,
1723 size_t count)
1724{
1725 const struct vmbus_chan_attribute *attribute
1726 = container_of(attr, struct vmbus_chan_attribute, attr);
1727 struct vmbus_channel *chan
1728 = container_of(kobj, struct vmbus_channel, kobj);
1729
1730 if (!attribute->store)
1731 return -EIO;
1732
1733 return attribute->store(chan, buf, count);
1734}
1735
c2e5df61
SH
1736static const struct sysfs_ops vmbus_chan_sysfs_ops = {
1737 .show = vmbus_chan_attr_show,
75278105 1738 .store = vmbus_chan_attr_store,
c2e5df61
SH
1739};
1740
14948e39 1741static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf)
c2e5df61 1742{
14948e39
KB
1743 struct hv_ring_buffer_info *rbi = &channel->outbound;
1744 ssize_t ret;
c2e5df61 1745
14948e39
KB
1746 mutex_lock(&rbi->ring_buffer_mutex);
1747 if (!rbi->ring_buffer) {
1748 mutex_unlock(&rbi->ring_buffer_mutex);
fcedbb29 1749 return -EINVAL;
14948e39 1750 }
fcedbb29 1751
14948e39
KB
1752 ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1753 mutex_unlock(&rbi->ring_buffer_mutex);
1754 return ret;
c2e5df61 1755}
875c362b 1756static VMBUS_CHAN_ATTR_RO(out_mask);
c2e5df61 1757
14948e39 1758static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf)
c2e5df61 1759{
14948e39
KB
1760 struct hv_ring_buffer_info *rbi = &channel->inbound;
1761 ssize_t ret;
c2e5df61 1762
14948e39
KB
1763 mutex_lock(&rbi->ring_buffer_mutex);
1764 if (!rbi->ring_buffer) {
1765 mutex_unlock(&rbi->ring_buffer_mutex);
fcedbb29 1766 return -EINVAL;
14948e39 1767 }
fcedbb29 1768
14948e39
KB
1769 ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1770 mutex_unlock(&rbi->ring_buffer_mutex);
1771 return ret;
c2e5df61 1772}
875c362b 1773static VMBUS_CHAN_ATTR_RO(in_mask);
c2e5df61 1774
14948e39 1775static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf)
c2e5df61 1776{
14948e39
KB
1777 struct hv_ring_buffer_info *rbi = &channel->inbound;
1778 ssize_t ret;
c2e5df61 1779
14948e39
KB
1780 mutex_lock(&rbi->ring_buffer_mutex);
1781 if (!rbi->ring_buffer) {
1782 mutex_unlock(&rbi->ring_buffer_mutex);
fcedbb29 1783 return -EINVAL;
14948e39 1784 }
fcedbb29 1785
14948e39
KB
1786 ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
1787 mutex_unlock(&rbi->ring_buffer_mutex);
1788 return ret;
c2e5df61 1789}
875c362b 1790static VMBUS_CHAN_ATTR_RO(read_avail);
c2e5df61 1791
14948e39 1792static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf)
c2e5df61 1793{
14948e39
KB
1794 struct hv_ring_buffer_info *rbi = &channel->outbound;
1795 ssize_t ret;
c2e5df61 1796
14948e39
KB
1797 mutex_lock(&rbi->ring_buffer_mutex);
1798 if (!rbi->ring_buffer) {
1799 mutex_unlock(&rbi->ring_buffer_mutex);
fcedbb29 1800 return -EINVAL;
14948e39 1801 }
fcedbb29 1802
14948e39
KB
1803 ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
1804 mutex_unlock(&rbi->ring_buffer_mutex);
1805 return ret;
c2e5df61 1806}
875c362b 1807static VMBUS_CHAN_ATTR_RO(write_avail);
c2e5df61 1808
75278105 1809static ssize_t target_cpu_show(struct vmbus_channel *channel, char *buf)
c2e5df61
SH
1810{
1811 return sprintf(buf, "%u\n", channel->target_cpu);
1812}
75278105
APM
1813static ssize_t target_cpu_store(struct vmbus_channel *channel,
1814 const char *buf, size_t count)
1815{
afaa33da 1816 u32 target_cpu, origin_cpu;
75278105 1817 ssize_t ret = count;
75278105
APM
1818
1819 if (vmbus_proto_version < VERSION_WIN10_V4_1)
1820 return -EIO;
1821
1822 if (sscanf(buf, "%uu", &target_cpu) != 1)
1823 return -EIO;
1824
1825 /* Validate target_cpu for the cpumask_test_cpu() operation below. */
1826 if (target_cpu >= nr_cpumask_bits)
1827 return -EINVAL;
1828
1829 /* No CPUs should come up or down during this. */
1830 cpus_read_lock();
1831
0a968209 1832 if (!cpu_online(target_cpu)) {
75278105
APM
1833 cpus_read_unlock();
1834 return -EINVAL;
1835 }
1836
1837 /*
1838 * Synchronizes target_cpu_store() and channel closure:
1839 *
1840 * { Initially: state = CHANNEL_OPENED }
1841 *
1842 * CPU1 CPU2
1843 *
1844 * [target_cpu_store()] [vmbus_disconnect_ring()]
1845 *
1846 * LOCK channel_mutex LOCK channel_mutex
1847 * LOAD r1 = state LOAD r2 = state
1848 * IF (r1 == CHANNEL_OPENED) IF (r2 == CHANNEL_OPENED)
1849 * SEND MODIFYCHANNEL STORE state = CHANNEL_OPEN
1850 * [...] SEND CLOSECHANNEL
1851 * UNLOCK channel_mutex UNLOCK channel_mutex
1852 *
1853 * Forbids: r1 == r2 == CHANNEL_OPENED (i.e., CPU1's LOCK precedes
1854 * CPU2's LOCK) && CPU2's SEND precedes CPU1's SEND
1855 *
1856 * Note. The host processes the channel messages "sequentially", in
1857 * the order in which they are received on a per-partition basis.
1858 */
1859 mutex_lock(&vmbus_connection.channel_mutex);
1860
1861 /*
1862 * Hyper-V will ignore MODIFYCHANNEL messages for "non-open" channels;
1863 * avoid sending the message and fail here for such channels.
1864 */
1865 if (channel->state != CHANNEL_OPENED_STATE) {
1866 ret = -EIO;
1867 goto cpu_store_unlock;
1868 }
1869
afaa33da
APM
1870 origin_cpu = channel->target_cpu;
1871 if (target_cpu == origin_cpu)
75278105
APM
1872 goto cpu_store_unlock;
1873
870ced05 1874 if (vmbus_send_modifychannel(channel,
75278105
APM
1875 hv_cpu_number_to_vp_number(target_cpu))) {
1876 ret = -EIO;
1877 goto cpu_store_unlock;
1878 }
1879
1880 /*
870ced05
APM
1881 * For version before VERSION_WIN10_V5_3, the following warning holds:
1882 *
75278105
APM
1883 * Warning. At this point, there is *no* guarantee that the host will
1884 * have successfully processed the vmbus_send_modifychannel() request.
1885 * See the header comment of vmbus_send_modifychannel() for more info.
1886 *
1887 * Lags in the processing of the above vmbus_send_modifychannel() can
1888 * result in missed interrupts if the "old" target CPU is taken offline
1889 * before Hyper-V starts sending interrupts to the "new" target CPU.
1890 * But apart from this offlining scenario, the code tolerates such
1891 * lags. It will function correctly even if a channel interrupt comes
1892 * in on a CPU that is different from the channel target_cpu value.
1893 */
1894
1895 channel->target_cpu = target_cpu;
75278105 1896
afaa33da
APM
1897 /* See init_vp_index(). */
1898 if (hv_is_perf_channel(channel))
de96e8a0 1899 hv_update_allocated_cpus(origin_cpu, target_cpu);
afaa33da
APM
1900
1901 /* Currently set only for storvsc channels. */
1902 if (channel->change_target_cpu_callback) {
1903 (*channel->change_target_cpu_callback)(channel,
1904 origin_cpu, target_cpu);
1905 }
1906
75278105
APM
1907cpu_store_unlock:
1908 mutex_unlock(&vmbus_connection.channel_mutex);
1909 cpus_read_unlock();
1910 return ret;
1911}
1912static VMBUS_CHAN_ATTR(cpu, 0644, target_cpu_show, target_cpu_store);
c2e5df61 1913
14948e39 1914static ssize_t channel_pending_show(struct vmbus_channel *channel,
c2e5df61
SH
1915 char *buf)
1916{
1917 return sprintf(buf, "%d\n",
1918 channel_pending(channel,
1919 vmbus_connection.monitor_pages[1]));
1920}
f0434de4 1921static VMBUS_CHAN_ATTR(pending, 0444, channel_pending_show, NULL);
c2e5df61 1922
14948e39 1923static ssize_t channel_latency_show(struct vmbus_channel *channel,
c2e5df61
SH
1924 char *buf)
1925{
1926 return sprintf(buf, "%d\n",
1927 channel_latency(channel,
1928 vmbus_connection.monitor_pages[1]));
1929}
f0434de4 1930static VMBUS_CHAN_ATTR(latency, 0444, channel_latency_show, NULL);
c2e5df61 1931
14948e39 1932static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf)
6981fbf3
SH
1933{
1934 return sprintf(buf, "%llu\n", channel->interrupts);
1935}
f0434de4 1936static VMBUS_CHAN_ATTR(interrupts, 0444, channel_interrupts_show, NULL);
6981fbf3 1937
14948e39 1938static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf)
6981fbf3
SH
1939{
1940 return sprintf(buf, "%llu\n", channel->sig_events);
1941}
f0434de4 1942static VMBUS_CHAN_ATTR(events, 0444, channel_events_show, NULL);
6981fbf3 1943
14948e39 1944static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel,
396ae57e
KB
1945 char *buf)
1946{
1947 return sprintf(buf, "%llu\n",
1948 (unsigned long long)channel->intr_in_full);
1949}
1950static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL);
1951
14948e39 1952static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel,
396ae57e
KB
1953 char *buf)
1954{
1955 return sprintf(buf, "%llu\n",
1956 (unsigned long long)channel->intr_out_empty);
1957}
1958static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL);
1959
14948e39 1960static ssize_t channel_out_full_first_show(struct vmbus_channel *channel,
396ae57e
KB
1961 char *buf)
1962{
1963 return sprintf(buf, "%llu\n",
1964 (unsigned long long)channel->out_full_first);
1965}
1966static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL);
1967
14948e39 1968static ssize_t channel_out_full_total_show(struct vmbus_channel *channel,
396ae57e
KB
1969 char *buf)
1970{
1971 return sprintf(buf, "%llu\n",
1972 (unsigned long long)channel->out_full_total);
1973}
1974static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL);
1975
14948e39 1976static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel,
f0fa2974
SH
1977 char *buf)
1978{
1979 return sprintf(buf, "%u\n", channel->offermsg.monitorid);
1980}
f0434de4 1981static VMBUS_CHAN_ATTR(monitor_id, 0444, subchannel_monitor_id_show, NULL);
f0fa2974 1982
14948e39 1983static ssize_t subchannel_id_show(struct vmbus_channel *channel,
f0fa2974
SH
1984 char *buf)
1985{
1986 return sprintf(buf, "%u\n",
1987 channel->offermsg.offer.sub_channel_index);
1988}
1989static VMBUS_CHAN_ATTR_RO(subchannel_id);
1990
c2e5df61
SH
1991static struct attribute *vmbus_chan_attrs[] = {
1992 &chan_attr_out_mask.attr,
1993 &chan_attr_in_mask.attr,
1994 &chan_attr_read_avail.attr,
1995 &chan_attr_write_avail.attr,
1996 &chan_attr_cpu.attr,
1997 &chan_attr_pending.attr,
1998 &chan_attr_latency.attr,
6981fbf3
SH
1999 &chan_attr_interrupts.attr,
2000 &chan_attr_events.attr,
396ae57e
KB
2001 &chan_attr_intr_in_full.attr,
2002 &chan_attr_intr_out_empty.attr,
2003 &chan_attr_out_full_first.attr,
2004 &chan_attr_out_full_total.attr,
f0fa2974
SH
2005 &chan_attr_monitor_id.attr,
2006 &chan_attr_subchannel_id.attr,
c2e5df61
SH
2007 NULL
2008};
2009
46fc1548
KB
2010/*
2011 * Channel-level attribute_group callback function. Returns the permission for
2012 * each attribute, and returns 0 if an attribute is not visible.
2013 */
2014static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj,
2015 struct attribute *attr, int idx)
2016{
2017 const struct vmbus_channel *channel =
2018 container_of(kobj, struct vmbus_channel, kobj);
2019
2020 /* Hide the monitor attributes if the monitor mechanism is not used. */
2021 if (!channel->offermsg.monitor_allocated &&
2022 (attr == &chan_attr_pending.attr ||
2023 attr == &chan_attr_latency.attr ||
2024 attr == &chan_attr_monitor_id.attr))
2025 return 0;
2026
2027 return attr->mode;
2028}
2029
2030static struct attribute_group vmbus_chan_group = {
2031 .attrs = vmbus_chan_attrs,
2032 .is_visible = vmbus_chan_attr_is_visible
2033};
2034
c2e5df61
SH
2035static struct kobj_type vmbus_chan_ktype = {
2036 .sysfs_ops = &vmbus_chan_sysfs_ops,
2037 .release = vmbus_chan_release,
c2e5df61
SH
2038};
2039
2040/*
2041 * vmbus_add_channel_kobj - setup a sub-directory under device/channels
2042 */
2043int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
2044{
46fc1548 2045 const struct device *device = &dev->device;
c2e5df61
SH
2046 struct kobject *kobj = &channel->kobj;
2047 u32 relid = channel->offermsg.child_relid;
2048 int ret;
2049
2050 kobj->kset = dev->channels_kset;
2051 ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
2052 "%u", relid);
8bc69f86
ML
2053 if (ret) {
2054 kobject_put(kobj);
c2e5df61 2055 return ret;
8bc69f86 2056 }
c2e5df61 2057
46fc1548
KB
2058 ret = sysfs_create_group(kobj, &vmbus_chan_group);
2059
2060 if (ret) {
2061 /*
2062 * The calling functions' error handling paths will cleanup the
2063 * empty channel directory.
2064 */
8bc69f86 2065 kobject_put(kobj);
46fc1548
KB
2066 dev_err(device, "Unable to set up channel sysfs files\n");
2067 return ret;
2068 }
2069
c2e5df61
SH
2070 kobject_uevent(kobj, KOBJ_ADD);
2071
2072 return 0;
2073}
2074
46fc1548
KB
2075/*
2076 * vmbus_remove_channel_attr_group - remove the channel's attribute group
2077 */
2078void vmbus_remove_channel_attr_group(struct vmbus_channel *channel)
2079{
2080 sysfs_remove_group(&channel->kobj, &vmbus_chan_group);
2081}
2082
3e189519 2083/*
f2c73011 2084 * vmbus_device_create - Creates and registers a new child device
3e189519 2085 * on the vmbus.
90c9960e 2086 */
593db803
AS
2087struct hv_device *vmbus_device_create(const guid_t *type,
2088 const guid_t *instance,
1b9d48f2 2089 struct vmbus_channel *channel)
3e7ee490 2090{
3d3b5518 2091 struct hv_device *child_device_obj;
3e7ee490 2092
6bad88da
S
2093 child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
2094 if (!child_device_obj) {
0a46618d 2095 pr_err("Unable to allocate device object for child device\n");
3e7ee490
HJ
2096 return NULL;
2097 }
2098
cae5b843 2099 child_device_obj->channel = channel;
593db803
AS
2100 guid_copy(&child_device_obj->dev_type, type);
2101 guid_copy(&child_device_obj->dev_instance, instance);
7047f17d 2102 child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
3e7ee490 2103
3e7ee490
HJ
2104 return child_device_obj;
2105}
2106
3e189519 2107/*
22794281 2108 * vmbus_device_register - Register the child device
90c9960e 2109 */
22794281 2110int vmbus_device_register(struct hv_device *child_device_obj)
3e7ee490 2111{
c2e5df61
SH
2112 struct kobject *kobj = &child_device_obj->device.kobj;
2113 int ret;
6bad88da 2114
f6b2db08 2115 dev_set_name(&child_device_obj->device, "%pUl",
458c4475 2116 &child_device_obj->channel->offermsg.offer.if_instance);
3e7ee490 2117
0bce28b6 2118 child_device_obj->device.bus = &hv_bus;
607c1a11 2119 child_device_obj->device.parent = &hv_acpi_dev->dev;
6bad88da 2120 child_device_obj->device.release = vmbus_device_release;
3e7ee490 2121
3a546958
APM
2122 child_device_obj->device.dma_parms = &child_device_obj->dma_parms;
2123 child_device_obj->device.dma_mask = &child_device_obj->dma_mask;
2124 dma_set_mask(&child_device_obj->device, DMA_BIT_MASK(64));
2125
90c9960e
GKH
2126 /*
2127 * Register with the LDM. This will kick off the driver/device
2128 * binding...which will eventually call vmbus_match() and vmbus_probe()
2129 */
6bad88da 2130 ret = device_register(&child_device_obj->device);
c2e5df61 2131 if (ret) {
0a46618d 2132 pr_err("Unable to register child device\n");
c2e5df61
SH
2133 return ret;
2134 }
2135
2136 child_device_obj->channels_kset = kset_create_and_add("channels",
2137 NULL, kobj);
2138 if (!child_device_obj->channels_kset) {
2139 ret = -ENOMEM;
2140 goto err_dev_unregister;
2141 }
2142
2143 ret = vmbus_add_channel_kobj(child_device_obj,
2144 child_device_obj->channel);
2145 if (ret) {
2146 pr_err("Unable to register primary channeln");
2147 goto err_kset_unregister;
2148 }
af9ca6f9 2149 hv_debug_add_dev_dir(child_device_obj);
c2e5df61
SH
2150
2151 return 0;
2152
2153err_kset_unregister:
2154 kset_unregister(child_device_obj->channels_kset);
3e7ee490 2155
c2e5df61
SH
2156err_dev_unregister:
2157 device_unregister(&child_device_obj->device);
3e7ee490
HJ
2158 return ret;
2159}
2160
3e189519 2161/*
696453ba 2162 * vmbus_device_unregister - Remove the specified child device
3e189519 2163 * from the vmbus.
90c9960e 2164 */
696453ba 2165void vmbus_device_unregister(struct hv_device *device_obj)
3e7ee490 2166{
84672369
FS
2167 pr_debug("child device %s unregistered\n",
2168 dev_name(&device_obj->device));
2169
869b5567
DC
2170 kset_unregister(device_obj->channels_kset);
2171
90c9960e
GKH
2172 /*
2173 * Kick off the process of unregistering the device.
2174 * This will call vmbus_remove() and eventually vmbus_device_release()
2175 */
6bad88da 2176 device_unregister(&device_obj->device);
3e7ee490
HJ
2177}
2178
3e7ee490 2179
b0069f43 2180/*
7f163a6f 2181 * VMBUS is an acpi enumerated device. Get the information we
90f34535 2182 * need from DSDT.
b0069f43 2183 */
7f163a6f 2184#define VTPM_BASE_ADDRESS 0xfed40000
90f34535 2185static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
b0069f43 2186{
7f163a6f
JO
2187 resource_size_t start = 0;
2188 resource_size_t end = 0;
2189 struct resource *new_res;
2190 struct resource **old_res = &hyperv_mmio;
2191 struct resource **prev_res = NULL;
626b901f 2192 struct resource r;
7f163a6f 2193
90f34535 2194 switch (res->type) {
7f163a6f
JO
2195
2196 /*
2197 * "Address" descriptors are for bus windows. Ignore
2198 * "memory" descriptors, which are for registers on
2199 * devices.
2200 */
2201 case ACPI_RESOURCE_TYPE_ADDRESS32:
2202 start = res->data.address32.address.minimum;
2203 end = res->data.address32.address.maximum;
4eb923f8 2204 break;
b0069f43 2205
90f34535 2206 case ACPI_RESOURCE_TYPE_ADDRESS64:
7f163a6f
JO
2207 start = res->data.address64.address.minimum;
2208 end = res->data.address64.address.maximum;
4eb923f8 2209 break;
7f163a6f 2210
626b901f
MK
2211 /*
2212 * The IRQ information is needed only on ARM64, which Hyper-V
2213 * sets up in the extended format. IRQ information is present
2214 * on x86/x64 in the non-extended format but it is not used by
2215 * Linux. So don't bother checking for the non-extended format.
2216 */
2217 case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
2218 if (!acpi_dev_resource_interrupt(res, 0, &r)) {
2219 pr_err("Unable to parse Hyper-V ACPI interrupt\n");
2220 return AE_ERROR;
2221 }
2222 /* ARM64 INTID for VMbus */
2223 vmbus_interrupt = res->data.extended_irq.interrupts[0];
2224 /* Linux IRQ number */
2225 vmbus_irq = r.start;
2226 return AE_OK;
2227
7f163a6f
JO
2228 default:
2229 /* Unused resource type */
2230 return AE_OK;
2231
b0069f43 2232 }
7f163a6f
JO
2233 /*
2234 * Ignore ranges that are below 1MB, as they're not
2235 * necessary or useful here.
2236 */
2237 if (end < 0x100000)
2238 return AE_OK;
2239
2240 new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
2241 if (!new_res)
2242 return AE_NO_MEMORY;
2243
2244 /* If this range overlaps the virtual TPM, truncate it. */
2245 if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
2246 end = VTPM_BASE_ADDRESS;
2247
2248 new_res->name = "hyperv mmio";
2249 new_res->flags = IORESOURCE_MEM;
2250 new_res->start = start;
2251 new_res->end = end;
2252
40f26f31 2253 /*
40f26f31
JO
2254 * If two ranges are adjacent, merge them.
2255 */
7f163a6f
JO
2256 do {
2257 if (!*old_res) {
2258 *old_res = new_res;
2259 break;
2260 }
2261
40f26f31
JO
2262 if (((*old_res)->end + 1) == new_res->start) {
2263 (*old_res)->end = new_res->end;
2264 kfree(new_res);
2265 break;
2266 }
2267
2268 if ((*old_res)->start == new_res->end + 1) {
2269 (*old_res)->start = new_res->start;
2270 kfree(new_res);
2271 break;
2272 }
2273
23a06831 2274 if ((*old_res)->start > new_res->end) {
7f163a6f
JO
2275 new_res->sibling = *old_res;
2276 if (prev_res)
2277 (*prev_res)->sibling = new_res;
2278 *old_res = new_res;
2279 break;
2280 }
2281
2282 prev_res = old_res;
2283 old_res = &(*old_res)->sibling;
2284
2285 } while (1);
b0069f43
S
2286
2287 return AE_OK;
2288}
2289
7f163a6f
JO
2290static int vmbus_acpi_remove(struct acpi_device *device)
2291{
2292 struct resource *cur_res;
2293 struct resource *next_res;
2294
2295 if (hyperv_mmio) {
6d146aef
JO
2296 if (fb_mmio) {
2297 __release_region(hyperv_mmio, fb_mmio->start,
2298 resource_size(fb_mmio));
2299 fb_mmio = NULL;
2300 }
2301
7f163a6f
JO
2302 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
2303 next_res = cur_res->sibling;
2304 kfree(cur_res);
2305 }
2306 }
2307
2308 return 0;
2309}
2310
6d146aef
JO
2311static void vmbus_reserve_fb(void)
2312{
2313 int size;
2314 /*
2315 * Make a claim for the frame buffer in the resource tree under the
2316 * first node, which will be the one below 4GB. The length seems to
2317 * be underreported, particularly in a Generation 1 VM. So start out
2318 * reserving a larger area and make it smaller until it succeeds.
2319 */
2320
2321 if (screen_info.lfb_base) {
2322 if (efi_enabled(EFI_BOOT))
2323 size = max_t(__u32, screen_info.lfb_size, 0x800000);
2324 else
2325 size = max_t(__u32, screen_info.lfb_size, 0x4000000);
2326
2327 for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
2328 fb_mmio = __request_region(hyperv_mmio,
2329 screen_info.lfb_base, size,
2330 fb_mmio_name, 0);
2331 }
2332 }
2333}
2334
35464483
JO
2335/**
2336 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
2337 * @new: If successful, supplied a pointer to the
2338 * allocated MMIO space.
2339 * @device_obj: Identifies the caller
2340 * @min: Minimum guest physical address of the
2341 * allocation
2342 * @max: Maximum guest physical address
2343 * @size: Size of the range to be allocated
2344 * @align: Alignment of the range to be allocated
2345 * @fb_overlap_ok: Whether this allocation can be allowed
2346 * to overlap the video frame buffer.
2347 *
2348 * This function walks the resources granted to VMBus by the
2349 * _CRS object in the ACPI namespace underneath the parent
2350 * "bridge" whether that's a root PCI bus in the Generation 1
2351 * case or a Module Device in the Generation 2 case. It then
2352 * attempts to allocate from the global MMIO pool in a way that
2353 * matches the constraints supplied in these parameters and by
2354 * that _CRS.
2355 *
2356 * Return: 0 on success, -errno on failure
2357 */
2358int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
2359 resource_size_t min, resource_size_t max,
2360 resource_size_t size, resource_size_t align,
2361 bool fb_overlap_ok)
2362{
be000f93 2363 struct resource *iter, *shadow;
ea37a6b8 2364 resource_size_t range_min, range_max, start;
35464483 2365 const char *dev_n = dev_name(&device_obj->device);
ea37a6b8 2366 int retval;
e16dad6b
JO
2367
2368 retval = -ENXIO;
8aea7f82 2369 mutex_lock(&hyperv_mmio_lock);
35464483 2370
ea37a6b8
JO
2371 /*
2372 * If overlaps with frame buffers are allowed, then first attempt to
2373 * make the allocation from within the reserved region. Because it
2374 * is already reserved, no shadow allocation is necessary.
2375 */
2376 if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
2377 !(max < fb_mmio->start)) {
2378
2379 range_min = fb_mmio->start;
2380 range_max = fb_mmio->end;
2381 start = (range_min + align - 1) & ~(align - 1);
2382 for (; start + size - 1 <= range_max; start += align) {
2383 *new = request_mem_region_exclusive(start, size, dev_n);
2384 if (*new) {
2385 retval = 0;
2386 goto exit;
2387 }
2388 }
2389 }
2390
35464483
JO
2391 for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2392 if ((iter->start >= max) || (iter->end <= min))
2393 continue;
2394
2395 range_min = iter->start;
2396 range_max = iter->end;
ea37a6b8
JO
2397 start = (range_min + align - 1) & ~(align - 1);
2398 for (; start + size - 1 <= range_max; start += align) {
2399 shadow = __request_region(iter, start, size, NULL,
2400 IORESOURCE_BUSY);
2401 if (!shadow)
2402 continue;
2403
2404 *new = request_mem_region_exclusive(start, size, dev_n);
2405 if (*new) {
2406 shadow->name = (char *)*new;
2407 retval = 0;
2408 goto exit;
35464483
JO
2409 }
2410
ea37a6b8 2411 __release_region(iter, start, size);
35464483
JO
2412 }
2413 }
2414
e16dad6b 2415exit:
8aea7f82 2416 mutex_unlock(&hyperv_mmio_lock);
e16dad6b 2417 return retval;
35464483
JO
2418}
2419EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
2420
97fb77dc
JO
2421/**
2422 * vmbus_free_mmio() - Free a memory-mapped I/O range.
2423 * @start: Base address of region to release.
2424 * @size: Size of the range to be allocated
2425 *
2426 * This function releases anything requested by
2427 * vmbus_mmio_allocate().
2428 */
2429void vmbus_free_mmio(resource_size_t start, resource_size_t size)
2430{
be000f93
JO
2431 struct resource *iter;
2432
8aea7f82 2433 mutex_lock(&hyperv_mmio_lock);
be000f93
JO
2434 for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2435 if ((iter->start >= start + size) || (iter->end <= start))
2436 continue;
2437
2438 __release_region(iter, start, size);
2439 }
97fb77dc 2440 release_mem_region(start, size);
8aea7f82 2441 mutex_unlock(&hyperv_mmio_lock);
97fb77dc
JO
2442
2443}
2444EXPORT_SYMBOL_GPL(vmbus_free_mmio);
2445
b0069f43
S
2446static int vmbus_acpi_add(struct acpi_device *device)
2447{
2448 acpi_status result;
90f34535 2449 int ret_val = -ENODEV;
7f163a6f 2450 struct acpi_device *ancestor;
b0069f43 2451
607c1a11
S
2452 hv_acpi_dev = device;
2453
37200078
MK
2454 /*
2455 * Older versions of Hyper-V for ARM64 fail to include the _CCA
2456 * method on the top level VMbus device in the DSDT. But devices
2457 * are hardware coherent in all current Hyper-V use cases, so fix
2458 * up the ACPI device to behave as if _CCA is present and indicates
2459 * hardware coherence.
2460 */
2461 ACPI_COMPANION_SET(&device->dev, device);
2462 if (IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED) &&
2463 device_get_dma_attr(&device->dev) == DEV_DMA_NOT_SUPPORTED) {
2464 pr_info("No ACPI _CCA found; assuming coherent device I/O\n");
2465 device->flags.cca_seen = true;
2466 device->flags.coherent_dma = true;
2467 }
2468
0a4425b6 2469 result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
90f34535 2470 vmbus_walk_resources, NULL);
b0069f43 2471
90f34535
S
2472 if (ACPI_FAILURE(result))
2473 goto acpi_walk_err;
2474 /*
7f163a6f
JO
2475 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
2476 * firmware) is the VMOD that has the mmio ranges. Get that.
90f34535 2477 */
7f163a6f
JO
2478 for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
2479 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
2480 vmbus_walk_resources, NULL);
90f34535
S
2481
2482 if (ACPI_FAILURE(result))
7f163a6f 2483 continue;
6d146aef
JO
2484 if (hyperv_mmio) {
2485 vmbus_reserve_fb();
7f163a6f 2486 break;
6d146aef 2487 }
b0069f43 2488 }
90f34535
S
2489 ret_val = 0;
2490
2491acpi_walk_err:
b0069f43 2492 complete(&probe_event);
7f163a6f
JO
2493 if (ret_val)
2494 vmbus_acpi_remove(device);
90f34535 2495 return ret_val;
b0069f43
S
2496}
2497
83b50f83 2498#ifdef CONFIG_PM_SLEEP
f53335e3
DC
2499static int vmbus_bus_suspend(struct device *dev)
2500{
b307b389 2501 struct vmbus_channel *channel, *sc;
1f48dcf1
DC
2502
2503 while (atomic_read(&vmbus_connection.offer_in_progress) != 0) {
2504 /*
2505 * We wait here until the completion of any channel
2506 * offers that are currently in progress.
2507 */
14c685d9 2508 usleep_range(1000, 2000);
1f48dcf1
DC
2509 }
2510
2511 mutex_lock(&vmbus_connection.channel_mutex);
2512 list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2513 if (!is_hvsock_channel(channel))
2514 continue;
2515
2516 vmbus_force_channel_rescinded(channel);
2517 }
2518 mutex_unlock(&vmbus_connection.channel_mutex);
2519
b307b389
DC
2520 /*
2521 * Wait until all the sub-channels and hv_sock channels have been
2522 * cleaned up. Sub-channels should be destroyed upon suspend, otherwise
2523 * they would conflict with the new sub-channels that will be created
2524 * in the resume path. hv_sock channels should also be destroyed, but
2525 * a hv_sock channel of an established hv_sock connection can not be
2526 * really destroyed since it may still be referenced by the userspace
2527 * application, so we just force the hv_sock channel to be rescinded
2528 * by vmbus_force_channel_rescinded(), and the userspace application
2529 * will thoroughly destroy the channel after hibernation.
2530 *
2531 * Note: the counter nr_chan_close_on_suspend may never go above 0 if
2532 * the VM has no sub-channel and hv_sock channel, e.g. a 1-vCPU VM.
2533 */
2534 if (atomic_read(&vmbus_connection.nr_chan_close_on_suspend) > 0)
2535 wait_for_completion(&vmbus_connection.ready_for_suspend_event);
2536
19873eec
DC
2537 if (atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) != 0) {
2538 pr_err("Can not suspend due to a previous failed resuming\n");
2539 return -EBUSY;
2540 }
d8bd2d44 2541
b307b389
DC
2542 mutex_lock(&vmbus_connection.channel_mutex);
2543
2544 list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
d8bd2d44 2545 /*
8b6a877c
APM
2546 * Remove the channel from the array of channels and invalidate
2547 * the channel's relid. Upon resume, vmbus_onoffer() will fix
2548 * up the relid (and other fields, if necessary) and add the
2549 * channel back to the array.
d8bd2d44 2550 */
8b6a877c 2551 vmbus_channel_unmap_relid(channel);
d8bd2d44
DC
2552 channel->offermsg.child_relid = INVALID_RELID;
2553
b307b389
DC
2554 if (is_hvsock_channel(channel)) {
2555 if (!channel->rescind) {
2556 pr_err("hv_sock channel not rescinded!\n");
2557 WARN_ON_ONCE(1);
2558 }
2559 continue;
2560 }
2561
b307b389
DC
2562 list_for_each_entry(sc, &channel->sc_list, sc_list) {
2563 pr_err("Sub-channel not deleted!\n");
2564 WARN_ON_ONCE(1);
2565 }
d8bd2d44
DC
2566
2567 atomic_inc(&vmbus_connection.nr_chan_fixup_on_resume);
b307b389
DC
2568 }
2569
2570 mutex_unlock(&vmbus_connection.channel_mutex);
2571
f53335e3
DC
2572 vmbus_initiate_unload(false);
2573
d8bd2d44
DC
2574 /* Reset the event for the next resume. */
2575 reinit_completion(&vmbus_connection.ready_for_resume_event);
2576
f53335e3
DC
2577 return 0;
2578}
2579
2580static int vmbus_bus_resume(struct device *dev)
2581{
2582 struct vmbus_channel_msginfo *msginfo;
2583 size_t msgsize;
2584 int ret;
2585
2586 /*
2587 * We only use the 'vmbus_proto_version', which was in use before
2588 * hibernation, to re-negotiate with the host.
2589 */
bedc61a9 2590 if (!vmbus_proto_version) {
f53335e3
DC
2591 pr_err("Invalid proto version = 0x%x\n", vmbus_proto_version);
2592 return -EINVAL;
2593 }
2594
2595 msgsize = sizeof(*msginfo) +
2596 sizeof(struct vmbus_channel_initiate_contact);
2597
2598 msginfo = kzalloc(msgsize, GFP_KERNEL);
2599
2600 if (msginfo == NULL)
2601 return -ENOMEM;
2602
2603 ret = vmbus_negotiate_version(msginfo, vmbus_proto_version);
2604
2605 kfree(msginfo);
2606
2607 if (ret != 0)
2608 return ret;
2609
d8bd2d44
DC
2610 WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) == 0);
2611
f53335e3
DC
2612 vmbus_request_offers();
2613
19873eec
DC
2614 if (wait_for_completion_timeout(
2615 &vmbus_connection.ready_for_resume_event, 10 * HZ) == 0)
2616 pr_err("Some vmbus device is missing after suspending?\n");
d8bd2d44 2617
b307b389
DC
2618 /* Reset the event for the next suspend. */
2619 reinit_completion(&vmbus_connection.ready_for_suspend_event);
2620
f53335e3
DC
2621 return 0;
2622}
1a06d017
DC
2623#else
2624#define vmbus_bus_suspend NULL
2625#define vmbus_bus_resume NULL
83b50f83 2626#endif /* CONFIG_PM_SLEEP */
f53335e3 2627
b0069f43
S
2628static const struct acpi_device_id vmbus_acpi_device_ids[] = {
2629 {"VMBUS", 0},
9d7b18d1 2630 {"VMBus", 0},
b0069f43
S
2631 {"", 0},
2632};
2633MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
2634
f53335e3 2635/*
1a06d017
DC
2636 * Note: we must use the "no_irq" ops, otherwise hibernation can not work with
2637 * PCI device assignment, because "pci_dev_pm_ops" uses the "noirq" ops: in
2638 * the resume path, the pci "noirq" restore op runs before "non-noirq" op (see
f53335e3
DC
2639 * resume_target_kernel() -> dpm_resume_start(), and hibernation_restore() ->
2640 * dpm_resume_end()). This means vmbus_bus_resume() and the pci-hyperv's
1a06d017
DC
2641 * resume callback must also run via the "noirq" ops.
2642 *
2643 * Set suspend_noirq/resume_noirq to NULL for Suspend-to-Idle: see the comment
2644 * earlier in this file before vmbus_pm.
f53335e3 2645 */
1a06d017 2646
f53335e3 2647static const struct dev_pm_ops vmbus_bus_pm = {
1a06d017
DC
2648 .suspend_noirq = NULL,
2649 .resume_noirq = NULL,
2650 .freeze_noirq = vmbus_bus_suspend,
2651 .thaw_noirq = vmbus_bus_resume,
2652 .poweroff_noirq = vmbus_bus_suspend,
2653 .restore_noirq = vmbus_bus_resume
f53335e3
DC
2654};
2655
b0069f43
S
2656static struct acpi_driver vmbus_acpi_driver = {
2657 .name = "vmbus",
2658 .ids = vmbus_acpi_device_ids,
2659 .ops = {
2660 .add = vmbus_acpi_add,
e4ecb41c 2661 .remove = vmbus_acpi_remove,
b0069f43 2662 },
f53335e3 2663 .drv.pm = &vmbus_bus_pm,
b0069f43
S
2664};
2665
2517281d
VK
2666static void hv_kexec_handler(void)
2667{
fd1fea68 2668 hv_stimer_global_cleanup();
75ff3a8a 2669 vmbus_initiate_unload(false);
523b9408
VK
2670 /* Make sure conn_state is set as hv_synic_cleanup checks for it */
2671 mb();
76d36ab7 2672 cpuhp_remove_state(hyperv_cpuhp_online);
2517281d
VK
2673};
2674
b4370df2
VK
2675static void hv_crash_handler(struct pt_regs *regs)
2676{
fd1fea68
MK
2677 int cpu;
2678
75ff3a8a 2679 vmbus_initiate_unload(true);
b4370df2
VK
2680 /*
2681 * In crash handler we can't schedule synic cleanup for all CPUs,
2682 * doing the cleanup for current CPU only. This should be sufficient
2683 * for kdump.
2684 */
fd1fea68
MK
2685 cpu = smp_processor_id();
2686 hv_stimer_cleanup(cpu);
7a1323b5 2687 hv_synic_disable_regs(cpu);
b4370df2
VK
2688};
2689
63ecc6d2
DC
2690static int hv_synic_suspend(void)
2691{
2692 /*
4df4cb9e
MK
2693 * When we reach here, all the non-boot CPUs have been offlined.
2694 * If we're in a legacy configuration where stimer Direct Mode is
2695 * not enabled, the stimers on the non-boot CPUs have been unbound
2696 * in hv_synic_cleanup() -> hv_stimer_legacy_cleanup() ->
63ecc6d2
DC
2697 * hv_stimer_cleanup() -> clockevents_unbind_device().
2698 *
4df4cb9e
MK
2699 * hv_synic_suspend() only runs on CPU0 with interrupts disabled.
2700 * Here we do not call hv_stimer_legacy_cleanup() on CPU0 because:
2701 * 1) it's unnecessary as interrupts remain disabled between
2702 * syscore_suspend() and syscore_resume(): see create_image() and
2703 * resume_target_kernel()
63ecc6d2
DC
2704 * 2) the stimer on CPU0 is automatically disabled later by
2705 * syscore_suspend() -> timekeeping_suspend() -> tick_suspend() -> ...
4df4cb9e
MK
2706 * -> clockevents_shutdown() -> ... -> hv_ce_shutdown()
2707 * 3) a warning would be triggered if we call
2708 * clockevents_unbind_device(), which may sleep, in an
2709 * interrupts-disabled context.
63ecc6d2
DC
2710 */
2711
2712 hv_synic_disable_regs(0);
2713
2714 return 0;
2715}
2716
2717static void hv_synic_resume(void)
2718{
2719 hv_synic_enable_regs(0);
2720
2721 /*
2722 * Note: we don't need to call hv_stimer_init(0), because the timer
2723 * on CPU0 is not unbound in hv_synic_suspend(), and the timer is
2724 * automatically re-enabled in timekeeping_resume().
2725 */
2726}
2727
2728/* The callbacks run only on CPU0, with irqs_disabled. */
2729static struct syscore_ops hv_synic_syscore_ops = {
2730 .suspend = hv_synic_suspend,
2731 .resume = hv_synic_resume,
2732};
2733
607c1a11 2734static int __init hv_acpi_init(void)
1168ac22 2735{
2dda95f8 2736 int ret, t;
b0069f43 2737
4a5f3cde 2738 if (!hv_is_hyperv_initialized())
0592969e
JW
2739 return -ENODEV;
2740
7e279d78
WL
2741 if (hv_root_partition)
2742 return 0;
2743
b0069f43
S
2744 init_completion(&probe_event);
2745
2746 /*
efc26722 2747 * Get ACPI resources first.
b0069f43 2748 */
0246604c
S
2749 ret = acpi_bus_register_driver(&vmbus_acpi_driver);
2750
b0069f43
S
2751 if (ret)
2752 return ret;
2753
2dda95f8
S
2754 t = wait_for_completion_timeout(&probe_event, 5*HZ);
2755 if (t == 0) {
2756 ret = -ETIMEDOUT;
2757 goto cleanup;
2758 }
d608715d
MK
2759
2760 /*
2761 * If we're on an architecture with a hardcoded hypervisor
2762 * vector (i.e. x86/x64), override the VMbus interrupt found
2763 * in the ACPI tables. Ensure vmbus_irq is not set since the
2764 * normal Linux IRQ mechanism is not used in this case.
2765 */
2766#ifdef HYPERVISOR_CALLBACK_VECTOR
2767 vmbus_interrupt = HYPERVISOR_CALLBACK_VECTOR;
2768 vmbus_irq = -1;
2769#endif
2770
af9ca6f9 2771 hv_debug_init();
b0069f43 2772
efc26722 2773 ret = vmbus_bus_init();
91fd799e 2774 if (ret)
2dda95f8
S
2775 goto cleanup;
2776
2517281d 2777 hv_setup_kexec_handler(hv_kexec_handler);
b4370df2 2778 hv_setup_crash_handler(hv_crash_handler);
2517281d 2779
63ecc6d2
DC
2780 register_syscore_ops(&hv_synic_syscore_ops);
2781
2dda95f8
S
2782 return 0;
2783
2784cleanup:
2785 acpi_bus_unregister_driver(&vmbus_acpi_driver);
cf6a2eac 2786 hv_acpi_dev = NULL;
91fd799e 2787 return ret;
1168ac22
S
2788}
2789
93e5bd06
S
2790static void __exit vmbus_exit(void)
2791{
e72e7ac5
VK
2792 int cpu;
2793
63ecc6d2
DC
2794 unregister_syscore_ops(&hv_synic_syscore_ops);
2795
2517281d 2796 hv_remove_kexec_handler();
b4370df2 2797 hv_remove_crash_handler();
09a19628 2798 vmbus_connection.conn_state = DISCONNECTED;
fd1fea68 2799 hv_stimer_global_cleanup();
2db84eff 2800 vmbus_disconnect();
d608715d
MK
2801 if (vmbus_irq == -1) {
2802 hv_remove_vmbus_handler();
2803 } else {
2804 free_percpu_irq(vmbus_irq, vmbus_evt);
2805 free_percpu(vmbus_evt);
2806 }
37cdd991
SH
2807 for_each_online_cpu(cpu) {
2808 struct hv_per_cpu_context *hv_cpu
2809 = per_cpu_ptr(hv_context.cpu_context, cpu);
2810
2811 tasklet_kill(&hv_cpu->msg_dpc);
2812 }
af9ca6f9
BB
2813 hv_debug_rm_all_dir();
2814
93e5bd06 2815 vmbus_free_channels();
8b6a877c 2816 kfree(vmbus_connection.channels);
37cdd991 2817
cc2dd402 2818 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
81b18bce 2819 kmsg_dump_unregister(&hv_kmsg_dumper);
510f7aef 2820 unregister_die_notifier(&hyperv_die_block);
096c605f 2821 }
81b18bce 2822
792f232d
GP
2823 /*
2824 * The panic notifier is always registered, hence we should
2825 * also unconditionally unregister it here as well.
2826 */
2827 atomic_notifier_chain_unregister(&panic_notifier_list,
2828 &hyperv_panic_block);
2829
81b18bce 2830 free_page((unsigned long)hv_panic_page);
8afc06dd
SM
2831 unregister_sysctl_table(hv_ctl_table_hdr);
2832 hv_ctl_table_hdr = NULL;
93e5bd06 2833 bus_unregister(&hv_bus);
37cdd991 2834
76d36ab7 2835 cpuhp_remove_state(hyperv_cpuhp_online);
06210b42 2836 hv_synic_free();
93e5bd06
S
2837 acpi_bus_unregister_driver(&vmbus_acpi_driver);
2838}
2839
1168ac22 2840
90c9960e 2841MODULE_LICENSE("GPL");
674eecb3 2842MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver");
3e7ee490 2843
43d4e119 2844subsys_initcall(hv_acpi_init);
93e5bd06 2845module_exit(vmbus_exit);