Merge tag 'block-5.18-2022-04-08' of git://git.kernel.dk/linux-block
[linux-block.git] / drivers / hv / ring_buffer.c
CommitLineData
3b20eb23 1// SPDX-License-Identifier: GPL-2.0-only
3e7ee490
HJ
2/*
3 *
4 * Copyright (c) 2009, Microsoft Corporation.
5 *
3e7ee490
HJ
6 * Authors:
7 * Haiyang Zhang <haiyangz@microsoft.com>
8 * Hank Janssen <hjanssen@microsoft.com>
b2a5a585 9 * K. Y. Srinivasan <kys@microsoft.com>
3e7ee490 10 */
0a46618d 11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3e7ee490 12
a0086dc5
GKH
13#include <linux/kernel.h>
14#include <linux/mm.h>
46a97191 15#include <linux/hyperv.h>
011a7c3c 16#include <linux/uio.h>
9988ce68
VK
17#include <linux/vmalloc.h>
18#include <linux/slab.h>
8dd45f2a 19#include <linux/prefetch.h>
9a879772
TL
20#include <linux/io.h>
21#include <asm/mshyperv.h>
3f335ea2 22
0f2a6619 23#include "hyperv_vmbus.h"
3e7ee490 24
f3dd3f47 25#define VMBUS_PKT_TRAILER 8
26
98fa8cf4
S
27/*
28 * When we write to the ring buffer, check if the host needs to
29 * be signaled. Here is the details of this protocol:
30 *
31 * 1. The host guarantees that while it is draining the
32 * ring buffer, it will set the interrupt_mask to
33 * indicate it does not need to be interrupted when
34 * new data is placed.
35 *
36 * 2. The host guarantees that it will completely drain
37 * the ring buffer before exiting the read loop. Further,
38 * once the ring buffer is empty, it will clear the
39 * interrupt_mask and re-check to see if new data has
40 * arrived.
1f6ee4e7
S
41 *
42 * KYS: Oct. 30, 2016:
43 * It looks like Windows hosts have logic to deal with DOS attacks that
44 * can be triggered if it receives interrupts when it is not expecting
45 * the interrupt. The host expects interrupts only when the ring
46 * transitions from empty to non-empty (or full to non full on the guest
47 * to host ring).
48 * So, base the signaling decision solely on the ring state until the
49 * host logic is fixed.
98fa8cf4
S
50 */
51
b103a56f 52static void hv_signal_on_write(u32 old_write, struct vmbus_channel *channel)
98fa8cf4 53{
1f6ee4e7
S
54 struct hv_ring_buffer_info *rbi = &channel->outbound;
55
dcd0eeca 56 virt_mb();
d45faaee 57 if (READ_ONCE(rbi->ring_buffer->interrupt_mask))
1f6ee4e7 58 return;
98fa8cf4 59
e91e84fa 60 /* check interrupt_mask before read_index */
dcd0eeca 61 virt_rmb();
98fa8cf4
S
62 /*
63 * This is the only case we need to signal when the
64 * ring transitions from being empty to non-empty.
65 */
396ae57e
KB
66 if (old_write == READ_ONCE(rbi->ring_buffer->read_index)) {
67 ++channel->intr_out_empty;
1f6ee4e7 68 vmbus_setevent(channel);
396ae57e 69 }
98fa8cf4
S
70}
71
822f18d4 72/* Get the next write location for the specified ring buffer. */
4d643114 73static inline u32
2b8a912e 74hv_get_next_write_location(struct hv_ring_buffer_info *ring_info)
3e7ee490 75{
fc8c72eb 76 u32 next = ring_info->ring_buffer->write_index;
3e7ee490 77
3e7ee490
HJ
78 return next;
79}
80
822f18d4 81/* Set the next write location for the specified ring buffer. */
3e7ee490 82static inline void
2b8a912e 83hv_set_next_write_location(struct hv_ring_buffer_info *ring_info,
fc8c72eb 84 u32 next_write_location)
3e7ee490 85{
fc8c72eb 86 ring_info->ring_buffer->write_index = next_write_location;
3e7ee490
HJ
87}
88
822f18d4 89/* Get the size of the ring buffer. */
4d643114 90static inline u32
e4165a0f 91hv_get_ring_buffersize(const struct hv_ring_buffer_info *ring_info)
3e7ee490 92{
fc8c72eb 93 return ring_info->ring_datasize;
3e7ee490
HJ
94}
95
822f18d4 96/* Get the read and write indices as u64 of the specified ring buffer. */
59471438 97static inline u64
2b8a912e 98hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info)
3e7ee490 99{
fc8c72eb 100 return (u64)ring_info->ring_buffer->write_index << 32;
3e7ee490
HJ
101}
102
7581578d 103/*
7581578d
S
104 * Helper routine to copy from source to ring buffer.
105 * Assume there is enough room. Handles wrap-around in dest case only!!
7581578d
S
106 */
107static u32 hv_copyto_ringbuffer(
fc8c72eb
HZ
108 struct hv_ring_buffer_info *ring_info,
109 u32 start_write_offset,
e4165a0f 110 const void *src,
7581578d
S
111 u32 srclen)
112{
113 void *ring_buffer = hv_get_ring_buffer(ring_info);
114 u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
f24f0b49
VK
115
116 memcpy(ring_buffer + start_write_offset, src, srclen);
3e7ee490 117
7581578d 118 start_write_offset += srclen;
8d12f882
SH
119 if (start_write_offset >= ring_buffer_size)
120 start_write_offset -= ring_buffer_size;
7581578d
S
121
122 return start_write_offset;
123}
3e7ee490 124
0487426f
SH
125/*
126 *
127 * hv_get_ringbuffer_availbytes()
128 *
129 * Get number of bytes available to read and to write to
130 * for the specified ring buffer
131 */
132static void
133hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info *rbi,
134 u32 *read, u32 *write)
135{
136 u32 read_loc, write_loc, dsize;
137
138 /* Capture the read/write indices before they changed */
139 read_loc = READ_ONCE(rbi->ring_buffer->read_index);
140 write_loc = READ_ONCE(rbi->ring_buffer->write_index);
141 dsize = rbi->ring_datasize;
142
143 *write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
144 read_loc - write_loc;
145 *read = dsize - *write;
146}
147
822f18d4 148/* Get various debug metrics for the specified ring buffer. */
14948e39 149int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
ba50bf1c 150 struct hv_ring_buffer_debug_info *debug_info)
3e7ee490 151{
fc8c72eb
HZ
152 u32 bytes_avail_towrite;
153 u32 bytes_avail_toread;
3e7ee490 154
14948e39
KB
155 mutex_lock(&ring_info->ring_buffer_mutex);
156
157 if (!ring_info->ring_buffer) {
158 mutex_unlock(&ring_info->ring_buffer_mutex);
ba50bf1c 159 return -EINVAL;
14948e39 160 }
ba50bf1c
DC
161
162 hv_get_ringbuffer_availbytes(ring_info,
163 &bytes_avail_toread,
164 &bytes_avail_towrite);
165 debug_info->bytes_avail_toread = bytes_avail_toread;
166 debug_info->bytes_avail_towrite = bytes_avail_towrite;
167 debug_info->current_read_index = ring_info->ring_buffer->read_index;
168 debug_info->current_write_index = ring_info->ring_buffer->write_index;
169 debug_info->current_interrupt_mask
170 = ring_info->ring_buffer->interrupt_mask;
14948e39
KB
171 mutex_unlock(&ring_info->ring_buffer_mutex);
172
ba50bf1c 173 return 0;
3e7ee490 174}
4827ee1d 175EXPORT_SYMBOL_GPL(hv_ringbuffer_get_debuginfo);
3e7ee490 176
14948e39
KB
177/* Initialize a channel's ring buffer info mutex locks */
178void hv_ringbuffer_pre_init(struct vmbus_channel *channel)
179{
180 mutex_init(&channel->inbound.ring_buffer_mutex);
181 mutex_init(&channel->outbound.ring_buffer_mutex);
182}
183
822f18d4 184/* Initialize the ring buffer. */
72a95cbc 185int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info,
adae1e93 186 struct page *pages, u32 page_cnt, u32 max_pkt_size)
3e7ee490 187{
9988ce68 188 struct page **pages_wraparound;
9a879772
TL
189 unsigned long *pfns_wraparound;
190 u64 pfn;
191 int i;
9988ce68
VK
192
193 BUILD_BUG_ON((sizeof(struct hv_ring_buffer) != PAGE_SIZE));
3e7ee490 194
9988ce68
VK
195 /*
196 * First page holds struct hv_ring_buffer, do wraparound mapping for
197 * the rest.
198 */
9a879772
TL
199 if (hv_isolation_type_snp()) {
200 pfn = page_to_pfn(pages) +
201 PFN_DOWN(ms_hyperv.shared_gpa_boundary);
202
203 pfns_wraparound = kcalloc(page_cnt * 2 - 1,
204 sizeof(unsigned long), GFP_KERNEL);
205 if (!pfns_wraparound)
206 return -ENOMEM;
207
208 pfns_wraparound[0] = pfn;
209 for (i = 0; i < 2 * (page_cnt - 1); i++)
210 pfns_wraparound[i + 1] = pfn + i % (page_cnt - 1) + 1;
211
212 ring_info->ring_buffer = (struct hv_ring_buffer *)
213 vmap_pfn(pfns_wraparound, page_cnt * 2 - 1,
214 PAGE_KERNEL);
215 kfree(pfns_wraparound);
216
217 if (!ring_info->ring_buffer)
218 return -ENOMEM;
219
220 /* Zero ring buffer after setting memory host visibility. */
221 memset(ring_info->ring_buffer, 0x00, PAGE_SIZE * page_cnt);
222 } else {
223 pages_wraparound = kcalloc(page_cnt * 2 - 1,
224 sizeof(struct page *),
225 GFP_KERNEL);
01ccca3c
LR
226 if (!pages_wraparound)
227 return -ENOMEM;
9a879772
TL
228
229 pages_wraparound[0] = pages;
230 for (i = 0; i < 2 * (page_cnt - 1); i++)
231 pages_wraparound[i + 1] =
232 &pages[i % (page_cnt - 1) + 1];
233
234 ring_info->ring_buffer = (struct hv_ring_buffer *)
235 vmap(pages_wraparound, page_cnt * 2 - 1, VM_MAP,
236 PAGE_KERNEL);
237
238 kfree(pages_wraparound);
239 if (!ring_info->ring_buffer)
240 return -ENOMEM;
241 }
9988ce68 242
9988ce68 243
fc8c72eb
HZ
244 ring_info->ring_buffer->read_index =
245 ring_info->ring_buffer->write_index = 0;
3e7ee490 246
822f18d4 247 /* Set the feature bit for enabling flow control. */
046c7911
S
248 ring_info->ring_buffer->feature_bits.value = 1;
249
9988ce68 250 ring_info->ring_size = page_cnt << PAGE_SHIFT;
63273cb4
LL
251 ring_info->ring_size_div10_reciprocal =
252 reciprocal_value(ring_info->ring_size / 10);
9988ce68
VK
253 ring_info->ring_datasize = ring_info->ring_size -
254 sizeof(struct hv_ring_buffer);
4713eb7b 255 ring_info->priv_read_index = 0;
3e7ee490 256
adae1e93
AB
257 /* Initialize buffer that holds copies of incoming packets */
258 if (max_pkt_size) {
259 ring_info->pkt_buffer = kzalloc(max_pkt_size, GFP_KERNEL);
260 if (!ring_info->pkt_buffer)
261 return -ENOMEM;
262 ring_info->pkt_buffer_size = max_pkt_size;
263 }
264
fc8c72eb 265 spin_lock_init(&ring_info->ring_lock);
3e7ee490
HJ
266
267 return 0;
268}
269
822f18d4 270/* Cleanup the ring buffer. */
2dba688b 271void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info)
3e7ee490 272{
14948e39 273 mutex_lock(&ring_info->ring_buffer_mutex);
9988ce68 274 vunmap(ring_info->ring_buffer);
ae6935ed 275 ring_info->ring_buffer = NULL;
14948e39 276 mutex_unlock(&ring_info->ring_buffer_mutex);
adae1e93
AB
277
278 kfree(ring_info->pkt_buffer);
f1940d4e 279 ring_info->pkt_buffer = NULL;
adae1e93 280 ring_info->pkt_buffer_size = 0;
3e7ee490
HJ
281}
282
822f18d4 283/* Write to the ring buffer. */
1f6ee4e7 284int hv_ringbuffer_write(struct vmbus_channel *channel,
e8b7db38
AB
285 const struct kvec *kv_list, u32 kv_count,
286 u64 requestid)
3e7ee490 287{
2c616a8b 288 int i;
fc8c72eb 289 u32 bytes_avail_towrite;
2c616a8b 290 u32 totalbytes_towrite = sizeof(u64);
66a60543 291 u32 next_write_location;
98fa8cf4 292 u32 old_write;
2c616a8b
SH
293 u64 prev_indices;
294 unsigned long flags;
1f6ee4e7 295 struct hv_ring_buffer_info *outring_info = &channel->outbound;
e8b7db38
AB
296 struct vmpacket_descriptor *desc = kv_list[0].iov_base;
297 u64 rqst_id = VMBUS_NO_RQSTOR;
3e7ee490 298
e7e97dd8
S
299 if (channel->rescind)
300 return -ENODEV;
301
011a7c3c
S
302 for (i = 0; i < kv_count; i++)
303 totalbytes_towrite += kv_list[i].iov_len;
3e7ee490 304
5529eaf6 305 spin_lock_irqsave(&outring_info->ring_lock, flags);
3e7ee490 306
a6341f00 307 bytes_avail_towrite = hv_get_bytes_to_write(outring_info);
3e7ee490 308
822f18d4
VK
309 /*
310 * If there is only room for the packet, assume it is full.
311 * Otherwise, the next time around, we think the ring buffer
312 * is empty since the read index == write index.
313 */
fc8c72eb 314 if (bytes_avail_towrite <= totalbytes_towrite) {
396ae57e
KB
315 ++channel->out_full_total;
316
317 if (!channel->out_full_flag) {
318 ++channel->out_full_first;
319 channel->out_full_flag = true;
320 }
321
5529eaf6 322 spin_unlock_irqrestore(&outring_info->ring_lock, flags);
d2598f01 323 return -EAGAIN;
3e7ee490
HJ
324 }
325
396ae57e
KB
326 channel->out_full_flag = false;
327
454f18a9 328 /* Write to the ring buffer */
2b8a912e 329 next_write_location = hv_get_next_write_location(outring_info);
3e7ee490 330
98fa8cf4
S
331 old_write = next_write_location;
332
011a7c3c 333 for (i = 0; i < kv_count; i++) {
2b8a912e 334 next_write_location = hv_copyto_ringbuffer(outring_info,
fc8c72eb 335 next_write_location,
011a7c3c
S
336 kv_list[i].iov_base,
337 kv_list[i].iov_len);
3e7ee490
HJ
338 }
339
e8b7db38
AB
340 /*
341 * Allocate the request ID after the data has been copied into the
342 * ring buffer. Once this request ID is allocated, the completion
343 * path could find the data and free it.
344 */
345
346 if (desc->flags == VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED) {
bf5fd8ca
APM
347 if (channel->next_request_id_callback != NULL) {
348 rqst_id = channel->next_request_id_callback(channel, requestid);
349 if (rqst_id == VMBUS_RQST_ERROR) {
350 spin_unlock_irqrestore(&outring_info->ring_lock, flags);
351 return -EAGAIN;
352 }
e8b7db38
AB
353 }
354 }
355 desc = hv_get_ring_buffer(outring_info) + old_write;
356 desc->trans_id = (rqst_id == VMBUS_NO_RQSTOR) ? requestid : rqst_id;
357
454f18a9 358 /* Set previous packet start */
2b8a912e 359 prev_indices = hv_get_ring_bufferindices(outring_info);
3e7ee490 360
2b8a912e 361 next_write_location = hv_copyto_ringbuffer(outring_info,
fc8c72eb
HZ
362 next_write_location,
363 &prev_indices,
b219b3f7 364 sizeof(u64));
3e7ee490 365
98fa8cf4 366 /* Issue a full memory barrier before updating the write index */
dcd0eeca 367 virt_mb();
3e7ee490 368
454f18a9 369 /* Now, update the write location */
2b8a912e 370 hv_set_next_write_location(outring_info, next_write_location);
3e7ee490 371
3e7ee490 372
5529eaf6 373 spin_unlock_irqrestore(&outring_info->ring_lock, flags);
98fa8cf4 374
b103a56f 375 hv_signal_on_write(old_write, channel);
e7e97dd8 376
e8b7db38
AB
377 if (channel->rescind) {
378 if (rqst_id != VMBUS_NO_RQSTOR) {
379 /* Reclaim request ID to avoid leak of IDs */
bf5fd8ca
APM
380 if (channel->request_addr_callback != NULL)
381 channel->request_addr_callback(channel, rqst_id);
e8b7db38 382 }
e7e97dd8 383 return -ENODEV;
e8b7db38 384 }
e7e97dd8 385
3e7ee490
HJ
386 return 0;
387}
388
3372592a 389int hv_ringbuffer_read(struct vmbus_channel *channel,
940b68e2 390 void *buffer, u32 buflen, u32 *buffer_actual_len,
3372592a 391 u64 *requestid, bool raw)
3e7ee490 392{
4226ff69
SH
393 struct vmpacket_descriptor *desc;
394 u32 packetlen, offset;
395
396 if (unlikely(buflen == 0))
a16e1485 397 return -EINVAL;
3e7ee490 398
940b68e2
VK
399 *buffer_actual_len = 0;
400 *requestid = 0;
401
454f18a9 402 /* Make sure there is something to read */
4226ff69
SH
403 desc = hv_pkt_iter_first(channel);
404 if (desc == NULL) {
940b68e2
VK
405 /*
406 * No error is set when there is even no header, drivers are
407 * supposed to analyze buffer_actual_len.
408 */
42dd2715 409 return 0;
940b68e2 410 }
3e7ee490 411
4226ff69
SH
412 offset = raw ? 0 : (desc->offset8 << 3);
413 packetlen = (desc->len8 << 3) - offset;
940b68e2 414 *buffer_actual_len = packetlen;
4226ff69 415 *requestid = desc->trans_id;
940b68e2 416
4226ff69 417 if (unlikely(packetlen > buflen))
3eba9a77 418 return -ENOBUFS;
3e7ee490 419
4226ff69
SH
420 /* since ring is double mapped, only one copy is necessary */
421 memcpy(buffer, (const char *)desc + offset, packetlen);
3e7ee490 422
4226ff69 423 /* Advance ring index to next packet descriptor */
adae1e93 424 __hv_pkt_iter_next(channel, desc, true);
3e7ee490 425
4226ff69
SH
426 /* Notify host of update */
427 hv_pkt_iter_close(channel);
c2b8e520 428
42dd2715 429 return 0;
b5f53dde 430}
f3dd3f47 431
432/*
433 * Determine number of bytes available in ring buffer after
434 * the current iterator (priv_read_index) location.
435 *
436 * This is similar to hv_get_bytes_to_read but with private
437 * read index instead.
438 */
439static u32 hv_pkt_iter_avail(const struct hv_ring_buffer_info *rbi)
440{
441 u32 priv_read_loc = rbi->priv_read_index;
b6cae15b
MK
442 u32 write_loc;
443
444 /*
445 * The Hyper-V host writes the packet data, then uses
446 * store_release() to update the write_index. Use load_acquire()
447 * here to prevent loads of the packet data from being re-ordered
448 * before the read of the write_index and potentially getting
449 * stale data.
450 */
451 write_loc = virt_load_acquire(&rbi->ring_buffer->write_index);
f3dd3f47 452
453 if (write_loc >= priv_read_loc)
454 return write_loc - priv_read_loc;
455 else
456 return (rbi->ring_datasize - priv_read_loc) + write_loc;
457}
458
adae1e93
AB
459/*
460 * Get first vmbus packet without copying it out of the ring buffer
461 */
462struct vmpacket_descriptor *hv_pkt_iter_first_raw(struct vmbus_channel *channel)
463{
464 struct hv_ring_buffer_info *rbi = &channel->inbound;
465
466 hv_debug_delay_test(channel, MESSAGE_DELAY);
467
468 if (hv_pkt_iter_avail(rbi) < sizeof(struct vmpacket_descriptor))
469 return NULL;
470
471 return (struct vmpacket_descriptor *)(hv_get_ring_buffer(rbi) + rbi->priv_read_index);
472}
473EXPORT_SYMBOL_GPL(hv_pkt_iter_first_raw);
474
f3dd3f47 475/*
476 * Get first vmbus packet from ring buffer after read_index
477 *
478 * If ring buffer is empty, returns NULL and no other action needed.
479 */
480struct vmpacket_descriptor *hv_pkt_iter_first(struct vmbus_channel *channel)
481{
482 struct hv_ring_buffer_info *rbi = &channel->inbound;
adae1e93
AB
483 struct vmpacket_descriptor *desc, *desc_copy;
484 u32 bytes_avail, pkt_len, pkt_offset;
f3dd3f47 485
adae1e93
AB
486 desc = hv_pkt_iter_first_raw(channel);
487 if (!desc)
f3dd3f47 488 return NULL;
489
adae1e93
AB
490 bytes_avail = min(rbi->pkt_buffer_size, hv_pkt_iter_avail(rbi));
491
492 /*
493 * Ensure the compiler does not use references to incoming Hyper-V values (which
494 * could change at any moment) when reading local variables later in the code
495 */
496 pkt_len = READ_ONCE(desc->len8) << 3;
497 pkt_offset = READ_ONCE(desc->offset8) << 3;
498
499 /*
500 * If pkt_len is invalid, set it to the smaller of hv_pkt_iter_avail() and
501 * rbi->pkt_buffer_size
502 */
503 if (pkt_len < sizeof(struct vmpacket_descriptor) || pkt_len > bytes_avail)
504 pkt_len = bytes_avail;
505
506 /*
507 * If pkt_offset is invalid, arbitrarily set it to
508 * the size of vmpacket_descriptor
509 */
510 if (pkt_offset < sizeof(struct vmpacket_descriptor) || pkt_offset > pkt_len)
511 pkt_offset = sizeof(struct vmpacket_descriptor);
512
513 /* Copy the Hyper-V packet out of the ring buffer */
514 desc_copy = (struct vmpacket_descriptor *)rbi->pkt_buffer;
515 memcpy(desc_copy, desc, pkt_len);
516
517 /*
518 * Hyper-V could still change len8 and offset8 after the earlier read.
519 * Ensure that desc_copy has legal values for len8 and offset8 that
520 * are consistent with the copy we just made
521 */
522 desc_copy->len8 = pkt_len >> 3;
523 desc_copy->offset8 = pkt_offset >> 3;
15e1674d 524
adae1e93 525 return desc_copy;
f3dd3f47 526}
527EXPORT_SYMBOL_GPL(hv_pkt_iter_first);
528
529/*
530 * Get next vmbus packet from ring buffer.
531 *
532 * Advances the current location (priv_read_index) and checks for more
533 * data. If the end of the ring buffer is reached, then return NULL.
534 */
535struct vmpacket_descriptor *
536__hv_pkt_iter_next(struct vmbus_channel *channel,
adae1e93
AB
537 const struct vmpacket_descriptor *desc,
538 bool copy)
f3dd3f47 539{
540 struct hv_ring_buffer_info *rbi = &channel->inbound;
541 u32 packetlen = desc->len8 << 3;
542 u32 dsize = rbi->ring_datasize;
543
af9ca6f9 544 hv_debug_delay_test(channel, MESSAGE_DELAY);
f3dd3f47 545 /* bump offset to next potential packet */
546 rbi->priv_read_index += packetlen + VMBUS_PKT_TRAILER;
547 if (rbi->priv_read_index >= dsize)
548 rbi->priv_read_index -= dsize;
549
550 /* more data? */
adae1e93 551 return copy ? hv_pkt_iter_first(channel) : hv_pkt_iter_first_raw(channel);
f3dd3f47 552}
553EXPORT_SYMBOL_GPL(__hv_pkt_iter_next);
554
655296c8
MK
555/* How many bytes were read in this iterator cycle */
556static u32 hv_pkt_iter_bytes_read(const struct hv_ring_buffer_info *rbi,
557 u32 start_read_index)
558{
559 if (rbi->priv_read_index >= start_read_index)
560 return rbi->priv_read_index - start_read_index;
561 else
562 return rbi->ring_datasize - start_read_index +
563 rbi->priv_read_index;
564}
565
f3dd3f47 566/*
71b38245
MK
567 * Update host ring buffer after iterating over packets. If the host has
568 * stopped queuing new entries because it found the ring buffer full, and
569 * sufficient space is being freed up, signal the host. But be careful to
570 * only signal the host when necessary, both for performance reasons and
571 * because Hyper-V protects itself by throttling guests that signal
572 * inappropriately.
573 *
574 * Determining when to signal is tricky. There are three key data inputs
575 * that must be handled in this order to avoid race conditions:
576 *
577 * 1. Update the read_index
578 * 2. Read the pending_send_sz
579 * 3. Read the current write_index
580 *
581 * The interrupt_mask is not used to determine when to signal. The
582 * interrupt_mask is used only on the guest->host ring buffer when
583 * sending requests to the host. The host does not use it on the host->
584 * guest ring buffer to indicate whether it should be signaled.
f3dd3f47 585 */
586void hv_pkt_iter_close(struct vmbus_channel *channel)
587{
588 struct hv_ring_buffer_info *rbi = &channel->inbound;
655296c8 589 u32 curr_write_sz, pending_sz, bytes_read, start_read_index;
f3dd3f47 590
591 /*
592 * Make sure all reads are done before we update the read index since
593 * the writer may start writing to the read area once the read index
594 * is updated.
595 */
596 virt_rmb();
655296c8 597 start_read_index = rbi->ring_buffer->read_index;
f3dd3f47 598 rbi->ring_buffer->read_index = rbi->priv_read_index;
599
71b38245
MK
600 /*
601 * Older versions of Hyper-V (before WS2102 and Win8) do not
602 * implement pending_send_sz and simply poll if the host->guest
603 * ring buffer is full. No signaling is needed or expected.
604 */
655296c8
MK
605 if (!rbi->ring_buffer->feature_bits.feat_pending_send_sz)
606 return;
607
8dd45f2a
SH
608 /*
609 * Issue a full memory barrier before making the signaling decision.
71b38245
MK
610 * If reading pending_send_sz were to be reordered and happen
611 * before we commit the new read_index, a race could occur. If the
612 * host were to set the pending_send_sz after we have sampled
613 * pending_send_sz, and the ring buffer blocks before we commit the
8dd45f2a
SH
614 * read index, we could miss sending the interrupt. Issue a full
615 * memory barrier to address this.
616 */
617 virt_mb();
618
71b38245
MK
619 /*
620 * If the pending_send_sz is zero, then the ring buffer is not
621 * blocked and there is no need to signal. This is far by the
622 * most common case, so exit quickly for best performance.
623 */
655296c8
MK
624 pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz);
625 if (!pending_sz)
8dd45f2a
SH
626 return;
627
655296c8
MK
628 /*
629 * Ensure the read of write_index in hv_get_bytes_to_write()
630 * happens after the read of pending_send_sz.
631 */
632 virt_rmb();
633 curr_write_sz = hv_get_bytes_to_write(rbi);
634 bytes_read = hv_pkt_iter_bytes_read(rbi, start_read_index);
8dd45f2a 635
655296c8 636 /*
71b38245
MK
637 * We want to signal the host only if we're transitioning
638 * from a "not enough free space" state to a "enough free
639 * space" state. For example, it's possible that this function
640 * could run and free up enough space to signal the host, and then
641 * run again and free up additional space before the host has a
642 * chance to clear the pending_send_sz. The 2nd invocation would
643 * be a null transition from "enough free space" to "enough free
644 * space", which doesn't warrant a signal.
645 *
646 * Exactly filling the ring buffer is treated as "not enough
647 * space". The ring buffer always must have at least one byte
648 * empty so the empty and full conditions are distinguishable.
649 * hv_get_bytes_to_write() doesn't fully tell the truth in
650 * this regard.
651 *
652 * So first check if we were in the "enough free space" state
653 * before we began the iteration. If so, the host was not
654 * blocked, and there's no need to signal.
655296c8 655 */
655296c8
MK
656 if (curr_write_sz - bytes_read > pending_sz)
657 return;
658
71b38245
MK
659 /*
660 * Similarly, if the new state is "not enough space", then
661 * there's no need to signal.
662 */
655296c8
MK
663 if (curr_write_sz <= pending_sz)
664 return;
03bad714 665
396ae57e 666 ++channel->intr_in_full;
03bad714 667 vmbus_setevent(channel);
f3dd3f47 668}
669EXPORT_SYMBOL_GPL(hv_pkt_iter_close);