Drivers: hv: balloon: keep track of where ha_region starts
[linux-2.6-block.git] / drivers / hv / hv_balloon.c
CommitLineData
9aa8b50b
S
1/*
2 * Copyright (c) 2012, Microsoft Corporation.
3 *
4 * Author:
5 * K. Y. Srinivasan <kys@microsoft.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License version 2 as published
9 * by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14 * NON INFRINGEMENT. See the GNU General Public License for more
15 * details.
16 *
17 */
18
19#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21#include <linux/kernel.h>
ae339336 22#include <linux/jiffies.h>
9aa8b50b
S
23#include <linux/mman.h>
24#include <linux/delay.h>
25#include <linux/init.h>
26#include <linux/module.h>
27#include <linux/slab.h>
28#include <linux/kthread.h>
29#include <linux/completion.h>
30#include <linux/memory_hotplug.h>
31#include <linux/memory.h>
32#include <linux/notifier.h>
9aa8b50b
S
33#include <linux/percpu_counter.h>
34
35#include <linux/hyperv.h>
36
37/*
38 * We begin with definitions supporting the Dynamic Memory protocol
39 * with the host.
40 *
41 * Begin protocol definitions.
42 */
43
44
45
46/*
47 * Protocol versions. The low word is the minor version, the high word the major
48 * version.
49 *
50 * History:
51 * Initial version 1.0
52 * Changed to 0.1 on 2009/03/25
53 * Changes to 0.2 on 2009/05/14
54 * Changes to 0.3 on 2009/12/03
55 * Changed to 1.0 on 2011/04/05
56 */
57
58#define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor)))
59#define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16)
60#define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff)
61
62enum {
63 DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3),
64 DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0),
b6ddeae1 65 DYNMEM_PROTOCOL_VERSION_3 = DYNMEM_MAKE_VERSION(2, 0),
9aa8b50b
S
66
67 DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1,
68 DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2,
b6ddeae1 69 DYNMEM_PROTOCOL_VERSION_WIN10 = DYNMEM_PROTOCOL_VERSION_3,
9aa8b50b 70
b6ddeae1 71 DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN10
9aa8b50b
S
72};
73
74
75
76/*
77 * Message Types
78 */
79
80enum dm_message_type {
81 /*
82 * Version 0.3
83 */
84 DM_ERROR = 0,
85 DM_VERSION_REQUEST = 1,
86 DM_VERSION_RESPONSE = 2,
87 DM_CAPABILITIES_REPORT = 3,
88 DM_CAPABILITIES_RESPONSE = 4,
89 DM_STATUS_REPORT = 5,
90 DM_BALLOON_REQUEST = 6,
91 DM_BALLOON_RESPONSE = 7,
92 DM_UNBALLOON_REQUEST = 8,
93 DM_UNBALLOON_RESPONSE = 9,
94 DM_MEM_HOT_ADD_REQUEST = 10,
95 DM_MEM_HOT_ADD_RESPONSE = 11,
96 DM_VERSION_03_MAX = 11,
97 /*
98 * Version 1.0.
99 */
100 DM_INFO_MESSAGE = 12,
101 DM_VERSION_1_MAX = 12
102};
103
104
105/*
106 * Structures defining the dynamic memory management
107 * protocol.
108 */
109
110union dm_version {
111 struct {
112 __u16 minor_version;
113 __u16 major_version;
114 };
115 __u32 version;
116} __packed;
117
118
119union dm_caps {
120 struct {
121 __u64 balloon:1;
122 __u64 hot_add:1;
647965a2
S
123 /*
124 * To support guests that may have alignment
125 * limitations on hot-add, the guest can specify
126 * its alignment requirements; a value of n
127 * represents an alignment of 2^n in mega bytes.
128 */
129 __u64 hot_add_alignment:4;
130 __u64 reservedz:58;
9aa8b50b
S
131 } cap_bits;
132 __u64 caps;
133} __packed;
134
135union dm_mem_page_range {
136 struct {
137 /*
138 * The PFN number of the first page in the range.
139 * 40 bits is the architectural limit of a PFN
140 * number for AMD64.
141 */
142 __u64 start_page:40;
143 /*
144 * The number of pages in the range.
145 */
146 __u64 page_cnt:24;
147 } finfo;
148 __u64 page_range;
149} __packed;
150
151
152
153/*
154 * The header for all dynamic memory messages:
155 *
156 * type: Type of the message.
157 * size: Size of the message in bytes; including the header.
158 * trans_id: The guest is responsible for manufacturing this ID.
159 */
160
161struct dm_header {
162 __u16 type;
163 __u16 size;
164 __u32 trans_id;
165} __packed;
166
167/*
168 * A generic message format for dynamic memory.
169 * Specific message formats are defined later in the file.
170 */
171
172struct dm_message {
173 struct dm_header hdr;
174 __u8 data[]; /* enclosed message */
175} __packed;
176
177
178/*
179 * Specific message types supporting the dynamic memory protocol.
180 */
181
182/*
183 * Version negotiation message. Sent from the guest to the host.
184 * The guest is free to try different versions until the host
185 * accepts the version.
186 *
187 * dm_version: The protocol version requested.
188 * is_last_attempt: If TRUE, this is the last version guest will request.
189 * reservedz: Reserved field, set to zero.
190 */
191
192struct dm_version_request {
193 struct dm_header hdr;
194 union dm_version version;
195 __u32 is_last_attempt:1;
196 __u32 reservedz:31;
197} __packed;
198
199/*
200 * Version response message; Host to Guest and indicates
201 * if the host has accepted the version sent by the guest.
202 *
203 * is_accepted: If TRUE, host has accepted the version and the guest
204 * should proceed to the next stage of the protocol. FALSE indicates that
205 * guest should re-try with a different version.
206 *
207 * reservedz: Reserved field, set to zero.
208 */
209
210struct dm_version_response {
211 struct dm_header hdr;
212 __u64 is_accepted:1;
213 __u64 reservedz:63;
214} __packed;
215
216/*
217 * Message reporting capabilities. This is sent from the guest to the
218 * host.
219 */
220
221struct dm_capabilities {
222 struct dm_header hdr;
223 union dm_caps caps;
224 __u64 min_page_cnt;
225 __u64 max_page_number;
226} __packed;
227
228/*
229 * Response to the capabilities message. This is sent from the host to the
230 * guest. This message notifies if the host has accepted the guest's
231 * capabilities. If the host has not accepted, the guest must shutdown
232 * the service.
233 *
234 * is_accepted: Indicates if the host has accepted guest's capabilities.
235 * reservedz: Must be 0.
236 */
237
238struct dm_capabilities_resp_msg {
239 struct dm_header hdr;
240 __u64 is_accepted:1;
241 __u64 reservedz:63;
242} __packed;
243
244/*
245 * This message is used to report memory pressure from the guest.
246 * This message is not part of any transaction and there is no
247 * response to this message.
248 *
249 * num_avail: Available memory in pages.
250 * num_committed: Committed memory in pages.
251 * page_file_size: The accumulated size of all page files
252 * in the system in pages.
253 * zero_free: The nunber of zero and free pages.
254 * page_file_writes: The writes to the page file in pages.
255 * io_diff: An indicator of file cache efficiency or page file activity,
256 * calculated as File Cache Page Fault Count - Page Read Count.
257 * This value is in pages.
258 *
259 * Some of these metrics are Windows specific and fortunately
260 * the algorithm on the host side that computes the guest memory
261 * pressure only uses num_committed value.
262 */
263
264struct dm_status {
265 struct dm_header hdr;
266 __u64 num_avail;
267 __u64 num_committed;
268 __u64 page_file_size;
269 __u64 zero_free;
270 __u32 page_file_writes;
271 __u32 io_diff;
272} __packed;
273
274
275/*
276 * Message to ask the guest to allocate memory - balloon up message.
277 * This message is sent from the host to the guest. The guest may not be
278 * able to allocate as much memory as requested.
279 *
280 * num_pages: number of pages to allocate.
281 */
282
283struct dm_balloon {
284 struct dm_header hdr;
285 __u32 num_pages;
286 __u32 reservedz;
287} __packed;
288
289
290/*
291 * Balloon response message; this message is sent from the guest
292 * to the host in response to the balloon message.
293 *
294 * reservedz: Reserved; must be set to zero.
295 * more_pages: If FALSE, this is the last message of the transaction.
296 * if TRUE there will atleast one more message from the guest.
297 *
298 * range_count: The number of ranges in the range array.
299 *
300 * range_array: An array of page ranges returned to the host.
301 *
302 */
303
304struct dm_balloon_response {
305 struct dm_header hdr;
306 __u32 reservedz;
307 __u32 more_pages:1;
308 __u32 range_count:31;
309 union dm_mem_page_range range_array[];
310} __packed;
311
312/*
313 * Un-balloon message; this message is sent from the host
314 * to the guest to give guest more memory.
315 *
316 * more_pages: If FALSE, this is the last message of the transaction.
317 * if TRUE there will atleast one more message from the guest.
318 *
319 * reservedz: Reserved; must be set to zero.
320 *
321 * range_count: The number of ranges in the range array.
322 *
323 * range_array: An array of page ranges returned to the host.
324 *
325 */
326
327struct dm_unballoon_request {
328 struct dm_header hdr;
329 __u32 more_pages:1;
330 __u32 reservedz:31;
331 __u32 range_count;
332 union dm_mem_page_range range_array[];
333} __packed;
334
335/*
336 * Un-balloon response message; this message is sent from the guest
337 * to the host in response to an unballoon request.
338 *
339 */
340
341struct dm_unballoon_response {
342 struct dm_header hdr;
343} __packed;
344
345
346/*
347 * Hot add request message. Message sent from the host to the guest.
348 *
349 * mem_range: Memory range to hot add.
350 *
351 * On Linux we currently don't support this since we cannot hot add
352 * arbitrary granularity of memory.
353 */
354
355struct dm_hot_add {
356 struct dm_header hdr;
357 union dm_mem_page_range range;
358} __packed;
359
360/*
361 * Hot add response message.
362 * This message is sent by the guest to report the status of a hot add request.
363 * If page_count is less than the requested page count, then the host should
364 * assume all further hot add requests will fail, since this indicates that
365 * the guest has hit an upper physical memory barrier.
366 *
367 * Hot adds may also fail due to low resources; in this case, the guest must
368 * not complete this message until the hot add can succeed, and the host must
369 * not send a new hot add request until the response is sent.
370 * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS
371 * times it fails the request.
372 *
373 *
374 * page_count: number of pages that were successfully hot added.
375 *
376 * result: result of the operation 1: success, 0: failure.
377 *
378 */
379
380struct dm_hot_add_response {
381 struct dm_header hdr;
382 __u32 page_count;
383 __u32 result;
384} __packed;
385
386/*
387 * Types of information sent from host to the guest.
388 */
389
390enum dm_info_type {
391 INFO_TYPE_MAX_PAGE_CNT = 0,
392 MAX_INFO_TYPE
393};
394
395
396/*
397 * Header for the information message.
398 */
399
400struct dm_info_header {
401 enum dm_info_type type;
402 __u32 data_size;
403} __packed;
404
405/*
406 * This message is sent from the host to the guest to pass
407 * some relevant information (win8 addition).
408 *
409 * reserved: no used.
410 * info_size: size of the information blob.
411 * info: information blob.
412 */
413
414struct dm_info_msg {
6427a0d7 415 struct dm_header hdr;
9aa8b50b
S
416 __u32 reserved;
417 __u32 info_size;
418 __u8 info[];
419};
420
421/*
422 * End protocol definitions.
423 */
424
1cac8cd4
S
425/*
426 * State to manage hot adding memory into the guest.
427 * The range start_pfn : end_pfn specifies the range
428 * that the host has asked us to hot add. The range
429 * start_pfn : ha_end_pfn specifies the range that we have
430 * currently hot added. We hot add in multiples of 128M
431 * chunks; it is possible that we may not be able to bring
432 * online all the pages in the region. The range
7cf3b79e 433 * covered_start_pfn:covered_end_pfn defines the pages that can
1cac8cd4
S
434 * be brough online.
435 */
436
437struct hv_hotadd_state {
438 struct list_head list;
439 unsigned long start_pfn;
7cf3b79e 440 unsigned long covered_start_pfn;
1cac8cd4
S
441 unsigned long covered_end_pfn;
442 unsigned long ha_end_pfn;
443 unsigned long end_pfn;
444};
445
6571b2da
S
446struct balloon_state {
447 __u32 num_pages;
448 struct work_struct wrk;
449};
450
c51af826
S
451struct hot_add_wrk {
452 union dm_mem_page_range ha_page_range;
1cac8cd4 453 union dm_mem_page_range ha_region_range;
c51af826
S
454 struct work_struct wrk;
455};
456
1cac8cd4 457static bool hot_add = true;
9aa8b50b 458static bool do_hot_add;
e500d158
S
459/*
460 * Delay reporting memory pressure by
461 * the specified number of seconds.
462 */
1cac8cd4 463static uint pressure_report_delay = 45;
9aa8b50b 464
ae339336
S
465/*
466 * The last time we posted a pressure report to host.
467 */
468static unsigned long last_post_time;
469
9aa8b50b
S
470module_param(hot_add, bool, (S_IRUGO | S_IWUSR));
471MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add");
472
e500d158
S
473module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR));
474MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure");
9aa8b50b
S
475static atomic_t trans_id = ATOMIC_INIT(0);
476
477static int dm_ring_size = (5 * PAGE_SIZE);
478
479/*
480 * Driver specific state.
481 */
482
483enum hv_dm_state {
484 DM_INITIALIZING = 0,
485 DM_INITIALIZED,
486 DM_BALLOON_UP,
487 DM_BALLOON_DOWN,
488 DM_HOT_ADD,
489 DM_INIT_ERROR
490};
491
492
493static __u8 recv_buffer[PAGE_SIZE];
494static __u8 *send_buffer;
495#define PAGES_IN_2M 512
1cac8cd4 496#define HA_CHUNK (32 * 1024)
9aa8b50b
S
497
498struct hv_dynmem_device {
499 struct hv_device *dev;
500 enum hv_dm_state state;
501 struct completion host_event;
502 struct completion config_event;
503
504 /*
505 * Number of pages we have currently ballooned out.
506 */
507 unsigned int num_pages_ballooned;
549fd280
VK
508 unsigned int num_pages_onlined;
509 unsigned int num_pages_added;
9aa8b50b
S
510
511 /*
6571b2da
S
512 * State to manage the ballooning (up) operation.
513 */
514 struct balloon_state balloon_wrk;
515
c51af826
S
516 /*
517 * State to execute the "hot-add" operation.
518 */
519 struct hot_add_wrk ha_wrk;
520
1cac8cd4
S
521 /*
522 * This state tracks if the host has specified a hot-add
523 * region.
524 */
525 bool host_specified_ha_region;
526
527 /*
528 * State to synchronize hot-add.
529 */
530 struct completion ol_waitevent;
531 bool ha_waiting;
6571b2da
S
532 /*
533 * This thread handles hot-add
9aa8b50b
S
534 * requests from the host as well as notifying
535 * the host with regards to memory pressure in
536 * the guest.
537 */
538 struct task_struct *thread;
539
22f88475 540 struct mutex ha_region_mutex;
22f88475 541
1cac8cd4
S
542 /*
543 * A list of hot-add regions.
544 */
545 struct list_head ha_region_list;
546
9aa8b50b
S
547 /*
548 * We start with the highest version we can support
549 * and downgrade based on the host; we save here the
550 * next version to try.
551 */
552 __u32 next_version;
553};
554
555static struct hv_dynmem_device dm_device;
556
ae339336 557static void post_status(struct hv_dynmem_device *dm);
22f88475 558
1cac8cd4 559#ifdef CONFIG_MEMORY_HOTPLUG
22f88475
S
560static int hv_memory_notifier(struct notifier_block *nb, unsigned long val,
561 void *v)
562{
549fd280
VK
563 struct memory_notify *mem = (struct memory_notify *)v;
564
22f88475
S
565 switch (val) {
566 case MEM_GOING_ONLINE:
b05d8d9e 567 mutex_lock(&dm_device.ha_region_mutex);
22f88475
S
568 break;
569
570 case MEM_ONLINE:
549fd280 571 dm_device.num_pages_onlined += mem->nr_pages;
22f88475 572 case MEM_CANCEL_ONLINE:
4e4bd36f
VK
573 if (val == MEM_ONLINE ||
574 mutex_is_locked(&dm_device.ha_region_mutex))
575 mutex_unlock(&dm_device.ha_region_mutex);
22f88475
S
576 if (dm_device.ha_waiting) {
577 dm_device.ha_waiting = false;
578 complete(&dm_device.ol_waitevent);
579 }
580 break;
581
22f88475 582 case MEM_OFFLINE:
549fd280
VK
583 mutex_lock(&dm_device.ha_region_mutex);
584 dm_device.num_pages_onlined -= mem->nr_pages;
585 mutex_unlock(&dm_device.ha_region_mutex);
586 break;
587 case MEM_GOING_OFFLINE:
22f88475
S
588 case MEM_CANCEL_OFFLINE:
589 break;
590 }
591 return NOTIFY_OK;
592}
593
594static struct notifier_block hv_memory_nb = {
595 .notifier_call = hv_memory_notifier,
596 .priority = 0
597};
598
1cac8cd4 599
a6025a2a 600static void hv_bring_pgs_online(unsigned long start_pfn, unsigned long size)
9aa8b50b 601{
1cac8cd4 602 int i;
9aa8b50b 603
1cac8cd4
S
604 for (i = 0; i < size; i++) {
605 struct page *pg;
606 pg = pfn_to_page(start_pfn + i);
607 __online_page_set_limits(pg);
608 __online_page_increment_counters(pg);
609 __online_page_free(pg);
610 }
611}
612
613static void hv_mem_hot_add(unsigned long start, unsigned long size,
614 unsigned long pfn_count,
615 struct hv_hotadd_state *has)
616{
617 int ret = 0;
ed07ec93 618 int i, nid;
1cac8cd4
S
619 unsigned long start_pfn;
620 unsigned long processed_pfn;
621 unsigned long total_pfn = pfn_count;
622
623 for (i = 0; i < (size/HA_CHUNK); i++) {
624 start_pfn = start + (i * HA_CHUNK);
625 has->ha_end_pfn += HA_CHUNK;
626
627 if (total_pfn > HA_CHUNK) {
628 processed_pfn = HA_CHUNK;
629 total_pfn -= HA_CHUNK;
630 } else {
631 processed_pfn = total_pfn;
632 total_pfn = 0;
633 }
634
635 has->covered_end_pfn += processed_pfn;
9aa8b50b 636
1cac8cd4
S
637 init_completion(&dm_device.ol_waitevent);
638 dm_device.ha_waiting = true;
9aa8b50b 639
b05d8d9e 640 mutex_unlock(&dm_device.ha_region_mutex);
1cac8cd4
S
641 nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn));
642 ret = add_memory(nid, PFN_PHYS((start_pfn)),
643 (HA_CHUNK << PAGE_SHIFT));
644
645 if (ret) {
646 pr_info("hot_add memory failed error is %d\n", ret);
7f4f2302
S
647 if (ret == -EEXIST) {
648 /*
649 * This error indicates that the error
650 * is not a transient failure. This is the
651 * case where the guest's physical address map
652 * precludes hot adding memory. Stop all further
653 * memory hot-add.
654 */
655 do_hot_add = false;
656 }
1cac8cd4
S
657 has->ha_end_pfn -= HA_CHUNK;
658 has->covered_end_pfn -= processed_pfn;
f3f6eb80 659 mutex_lock(&dm_device.ha_region_mutex);
1cac8cd4
S
660 break;
661 }
9aa8b50b
S
662
663 /*
1cac8cd4 664 * Wait for the memory block to be onlined.
ed07ec93
S
665 * Since the hot add has succeeded, it is ok to
666 * proceed even if the pages in the hot added region
667 * have not been "onlined" within the allowed time.
9aa8b50b 668 */
ed07ec93 669 wait_for_completion_timeout(&dm_device.ol_waitevent, 5*HZ);
b05d8d9e 670 mutex_lock(&dm_device.ha_region_mutex);
ae339336 671 post_status(&dm_device);
9aa8b50b
S
672 }
673
1cac8cd4
S
674 return;
675}
676
677static void hv_online_page(struct page *pg)
678{
679 struct list_head *cur;
680 struct hv_hotadd_state *has;
681 unsigned long cur_start_pgp;
682 unsigned long cur_end_pgp;
683
1cac8cd4
S
684 list_for_each(cur, &dm_device.ha_region_list) {
685 has = list_entry(cur, struct hv_hotadd_state, list);
7cf3b79e
VK
686 cur_start_pgp = (unsigned long)
687 pfn_to_page(has->covered_start_pfn);
1cac8cd4
S
688 cur_end_pgp = (unsigned long)pfn_to_page(has->covered_end_pfn);
689
690 if (((unsigned long)pg >= cur_start_pgp) &&
691 ((unsigned long)pg < cur_end_pgp)) {
692 /*
693 * This frame is currently backed; online the
694 * page.
695 */
696 __online_page_set_limits(pg);
697 __online_page_increment_counters(pg);
698 __online_page_free(pg);
1cac8cd4
S
699 }
700 }
701}
702
703static bool pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt)
704{
705 struct list_head *cur;
706 struct hv_hotadd_state *has;
707 unsigned long residual, new_inc;
708
709 if (list_empty(&dm_device.ha_region_list))
710 return false;
711
712 list_for_each(cur, &dm_device.ha_region_list) {
713 has = list_entry(cur, struct hv_hotadd_state, list);
714
715 /*
716 * If the pfn range we are dealing with is not in the current
717 * "hot add block", move on.
718 */
77c0c973 719 if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
1cac8cd4
S
720 continue;
721 /*
722 * If the current hot add-request extends beyond
723 * our current limit; extend it.
724 */
725 if ((start_pfn + pfn_cnt) > has->end_pfn) {
726 residual = (start_pfn + pfn_cnt - has->end_pfn);
727 /*
728 * Extend the region by multiples of HA_CHUNK.
729 */
730 new_inc = (residual / HA_CHUNK) * HA_CHUNK;
731 if (residual % HA_CHUNK)
732 new_inc += HA_CHUNK;
733
734 has->end_pfn += new_inc;
735 }
736
737 /*
738 * If the current start pfn is not where the covered_end
739 * is, update it.
740 */
741
5abbbb75 742 if (has->covered_end_pfn != start_pfn)
1cac8cd4 743 has->covered_end_pfn = start_pfn;
5abbbb75 744
1cac8cd4
S
745 return true;
746
747 }
748
749 return false;
750}
751
752static unsigned long handle_pg_range(unsigned long pg_start,
753 unsigned long pg_count)
754{
755 unsigned long start_pfn = pg_start;
756 unsigned long pfn_cnt = pg_count;
757 unsigned long size;
758 struct list_head *cur;
759 struct hv_hotadd_state *has;
760 unsigned long pgs_ol = 0;
761 unsigned long old_covered_state;
762
763 if (list_empty(&dm_device.ha_region_list))
764 return 0;
765
766 list_for_each(cur, &dm_device.ha_region_list) {
767 has = list_entry(cur, struct hv_hotadd_state, list);
768
769 /*
770 * If the pfn range we are dealing with is not in the current
771 * "hot add block", move on.
772 */
77c0c973 773 if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
1cac8cd4
S
774 continue;
775
776 old_covered_state = has->covered_end_pfn;
777
778 if (start_pfn < has->ha_end_pfn) {
779 /*
780 * This is the case where we are backing pages
781 * in an already hot added region. Bring
782 * these pages online first.
783 */
784 pgs_ol = has->ha_end_pfn - start_pfn;
785 if (pgs_ol > pfn_cnt)
786 pgs_ol = pfn_cnt;
d6cbd2c3
VK
787
788 /*
789 * Check if the corresponding memory block is already
790 * online by checking its last previously backed page.
791 * In case it is we need to bring rest (which was not
792 * backed previously) online too.
793 */
794 if (start_pfn > has->start_pfn &&
795 !PageReserved(pfn_to_page(start_pfn - 1)))
796 hv_bring_pgs_online(start_pfn, pgs_ol);
797
1cac8cd4 798 has->covered_end_pfn += pgs_ol;
1cac8cd4
S
799 pfn_cnt -= pgs_ol;
800 }
801
802 if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) {
803 /*
804 * We have some residual hot add range
805 * that needs to be hot added; hot add
806 * it now. Hot add a multiple of
807 * of HA_CHUNK that fully covers the pages
808 * we have.
809 */
810 size = (has->end_pfn - has->ha_end_pfn);
811 if (pfn_cnt <= size) {
812 size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK);
813 if (pfn_cnt % HA_CHUNK)
814 size += HA_CHUNK;
815 } else {
816 pfn_cnt = size;
817 }
818 hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has);
819 }
820 /*
821 * If we managed to online any pages that were given to us,
822 * we declare success.
823 */
824 return has->covered_end_pfn - old_covered_state;
825
826 }
827
828 return 0;
829}
830
831static unsigned long process_hot_add(unsigned long pg_start,
832 unsigned long pfn_cnt,
833 unsigned long rg_start,
834 unsigned long rg_size)
835{
836 struct hv_hotadd_state *ha_region = NULL;
837
838 if (pfn_cnt == 0)
839 return 0;
840
841 if (!dm_device.host_specified_ha_region)
842 if (pfn_covered(pg_start, pfn_cnt))
843 goto do_pg_range;
844
845 /*
846 * If the host has specified a hot-add range; deal with it first.
847 */
848
647965a2 849 if (rg_size != 0) {
1cac8cd4
S
850 ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL);
851 if (!ha_region)
852 return 0;
853
854 INIT_LIST_HEAD(&ha_region->list);
855
856 list_add_tail(&ha_region->list, &dm_device.ha_region_list);
857 ha_region->start_pfn = rg_start;
858 ha_region->ha_end_pfn = rg_start;
7cf3b79e 859 ha_region->covered_start_pfn = pg_start;
1cac8cd4
S
860 ha_region->covered_end_pfn = pg_start;
861 ha_region->end_pfn = rg_start + rg_size;
862 }
863
864do_pg_range:
865 /*
866 * Process the page range specified; bringing them
867 * online if possible.
868 */
869 return handle_pg_range(pg_start, pfn_cnt);
870}
871
872#endif
873
874static void hot_add_req(struct work_struct *dummy)
875{
876 struct dm_hot_add_response resp;
877#ifdef CONFIG_MEMORY_HOTPLUG
878 unsigned long pg_start, pfn_cnt;
879 unsigned long rg_start, rg_sz;
880#endif
881 struct hv_dynmem_device *dm = &dm_device;
882
9aa8b50b
S
883 memset(&resp, 0, sizeof(struct dm_hot_add_response));
884 resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE;
885 resp.hdr.size = sizeof(struct dm_hot_add_response);
9aa8b50b 886
1cac8cd4 887#ifdef CONFIG_MEMORY_HOTPLUG
b05d8d9e 888 mutex_lock(&dm_device.ha_region_mutex);
1cac8cd4
S
889 pg_start = dm->ha_wrk.ha_page_range.finfo.start_page;
890 pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt;
9aa8b50b 891
1cac8cd4
S
892 rg_start = dm->ha_wrk.ha_region_range.finfo.start_page;
893 rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt;
894
895 if ((rg_start == 0) && (!dm->host_specified_ha_region)) {
896 unsigned long region_size;
897 unsigned long region_start;
898
899 /*
900 * The host has not specified the hot-add region.
901 * Based on the hot-add page range being specified,
902 * compute a hot-add region that can cover the pages
903 * that need to be hot-added while ensuring the alignment
904 * and size requirements of Linux as it relates to hot-add.
905 */
906 region_start = pg_start;
907 region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK;
908 if (pfn_cnt % HA_CHUNK)
909 region_size += HA_CHUNK;
910
911 region_start = (pg_start / HA_CHUNK) * HA_CHUNK;
912
913 rg_start = region_start;
914 rg_sz = region_size;
915 }
916
7f4f2302
S
917 if (do_hot_add)
918 resp.page_count = process_hot_add(pg_start, pfn_cnt,
919 rg_start, rg_sz);
549fd280
VK
920
921 dm->num_pages_added += resp.page_count;
b05d8d9e 922 mutex_unlock(&dm_device.ha_region_mutex);
1cac8cd4 923#endif
7f4f2302
S
924 /*
925 * The result field of the response structure has the
926 * following semantics:
927 *
928 * 1. If all or some pages hot-added: Guest should return success.
929 *
930 * 2. If no pages could be hot-added:
931 *
932 * If the guest returns success, then the host
933 * will not attempt any further hot-add operations. This
934 * signifies a permanent failure.
935 *
936 * If the guest returns failure, then this failure will be
937 * treated as a transient failure and the host may retry the
938 * hot-add operation after some delay.
939 */
1cac8cd4
S
940 if (resp.page_count > 0)
941 resp.result = 1;
7f4f2302
S
942 else if (!do_hot_add)
943 resp.result = 1;
1cac8cd4
S
944 else
945 resp.result = 0;
946
947 if (!do_hot_add || (resp.page_count == 0))
948 pr_info("Memory hot add failed\n");
949
950 dm->state = DM_INITIALIZED;
20138d6c 951 resp.hdr.trans_id = atomic_inc_return(&trans_id);
1cac8cd4 952 vmbus_sendpacket(dm->dev->channel, &resp,
9aa8b50b
S
953 sizeof(struct dm_hot_add_response),
954 (unsigned long)NULL,
955 VM_PKT_DATA_INBAND, 0);
9aa8b50b
S
956}
957
958static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg)
959{
6427a0d7
S
960 struct dm_info_header *info_hdr;
961
962 info_hdr = (struct dm_info_header *)msg->info;
963
964 switch (info_hdr->type) {
9aa8b50b
S
965 case INFO_TYPE_MAX_PAGE_CNT:
966 pr_info("Received INFO_TYPE_MAX_PAGE_CNT\n");
6427a0d7 967 pr_info("Data Size is %d\n", info_hdr->data_size);
9aa8b50b
S
968 break;
969 default:
6427a0d7 970 pr_info("Received Unknown type: %d\n", info_hdr->type);
9aa8b50b
S
971 }
972}
973
a6025a2a 974static unsigned long compute_balloon_floor(void)
1c7db96f
S
975{
976 unsigned long min_pages;
977#define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
978 /* Simple continuous piecewiese linear function:
979 * max MiB -> min MiB gradient
980 * 0 0
981 * 16 16
982 * 32 24
983 * 128 72 (1/2)
984 * 512 168 (1/4)
985 * 2048 360 (1/8)
7fb0e1a6
VK
986 * 8192 744 (1/16)
987 * 32768 1512 (1/32)
1c7db96f
S
988 */
989 if (totalram_pages < MB2PAGES(128))
990 min_pages = MB2PAGES(8) + (totalram_pages >> 1);
991 else if (totalram_pages < MB2PAGES(512))
992 min_pages = MB2PAGES(40) + (totalram_pages >> 2);
993 else if (totalram_pages < MB2PAGES(2048))
994 min_pages = MB2PAGES(104) + (totalram_pages >> 3);
79208c57 995 else if (totalram_pages < MB2PAGES(8192))
7fb0e1a6 996 min_pages = MB2PAGES(232) + (totalram_pages >> 4);
1c7db96f 997 else
7fb0e1a6 998 min_pages = MB2PAGES(488) + (totalram_pages >> 5);
1c7db96f
S
999#undef MB2PAGES
1000 return min_pages;
1001}
1002
9aa8b50b
S
1003/*
1004 * Post our status as it relates memory pressure to the
1005 * host. Host expects the guests to post this status
1006 * periodically at 1 second intervals.
1007 *
1008 * The metrics specified in this protocol are very Windows
1009 * specific and so we cook up numbers here to convey our memory
1010 * pressure.
1011 */
1012
1013static void post_status(struct hv_dynmem_device *dm)
1014{
1015 struct dm_status status;
0731572b 1016 struct sysinfo val;
ae339336
S
1017 unsigned long now = jiffies;
1018 unsigned long last_post = last_post_time;
9aa8b50b 1019
e500d158
S
1020 if (pressure_report_delay > 0) {
1021 --pressure_report_delay;
1022 return;
1023 }
ae339336
S
1024
1025 if (!time_after(now, (last_post_time + HZ)))
1026 return;
1027
0731572b 1028 si_meminfo(&val);
9aa8b50b
S
1029 memset(&status, 0, sizeof(struct dm_status));
1030 status.hdr.type = DM_STATUS_REPORT;
1031 status.hdr.size = sizeof(struct dm_status);
1032 status.hdr.trans_id = atomic_inc_return(&trans_id);
1033
0731572b 1034 /*
549fd280
VK
1035 * The host expects the guest to report free and committed memory.
1036 * Furthermore, the host expects the pressure information to include
1037 * the ballooned out pages. For a given amount of memory that we are
1038 * managing we need to compute a floor below which we should not
1039 * balloon. Compute this and add it to the pressure report.
1040 * We also need to report all offline pages (num_pages_added -
1041 * num_pages_onlined) as committed to the host, otherwise it can try
1042 * asking us to balloon them out.
0731572b
S
1043 */
1044 status.num_avail = val.freeram;
1c7db96f 1045 status.num_committed = vm_memory_committed() +
549fd280
VK
1046 dm->num_pages_ballooned +
1047 (dm->num_pages_added > dm->num_pages_onlined ?
1048 dm->num_pages_added - dm->num_pages_onlined : 0) +
1049 compute_balloon_floor();
9aa8b50b 1050
c5e2254f
S
1051 /*
1052 * If our transaction ID is no longer current, just don't
1053 * send the status. This can happen if we were interrupted
1054 * after we picked our transaction ID.
1055 */
1056 if (status.hdr.trans_id != atomic_read(&trans_id))
1057 return;
1058
ae339336
S
1059 /*
1060 * If the last post time that we sampled has changed,
1061 * we have raced, don't post the status.
1062 */
1063 if (last_post != last_post_time)
1064 return;
1065
1066 last_post_time = jiffies;
9aa8b50b
S
1067 vmbus_sendpacket(dm->dev->channel, &status,
1068 sizeof(struct dm_status),
1069 (unsigned long)NULL,
1070 VM_PKT_DATA_INBAND, 0);
1071
1072}
1073
989623c7 1074static void free_balloon_pages(struct hv_dynmem_device *dm,
9aa8b50b
S
1075 union dm_mem_page_range *range_array)
1076{
1077 int num_pages = range_array->finfo.page_cnt;
1078 __u64 start_frame = range_array->finfo.start_page;
1079 struct page *pg;
1080 int i;
1081
1082 for (i = 0; i < num_pages; i++) {
1083 pg = pfn_to_page(i + start_frame);
1084 __free_page(pg);
1085 dm->num_pages_ballooned--;
1086 }
1087}
1088
1089
1090
797f88c9
VK
1091static unsigned int alloc_balloon_pages(struct hv_dynmem_device *dm,
1092 unsigned int num_pages,
1093 struct dm_balloon_response *bl_resp,
1094 int alloc_unit)
9aa8b50b 1095{
797f88c9 1096 unsigned int i = 0;
9aa8b50b
S
1097 struct page *pg;
1098
1099 if (num_pages < alloc_unit)
1100 return 0;
1101
1102 for (i = 0; (i * alloc_unit) < num_pages; i++) {
1103 if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) >
1104 PAGE_SIZE)
1105 return i * alloc_unit;
1106
1107 /*
1108 * We execute this code in a thread context. Furthermore,
1109 * we don't want the kernel to try too hard.
1110 */
1111 pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY |
1112 __GFP_NOMEMALLOC | __GFP_NOWARN,
1113 get_order(alloc_unit << PAGE_SHIFT));
1114
0a1a86ac 1115 if (!pg)
9aa8b50b 1116 return i * alloc_unit;
9aa8b50b
S
1117
1118 dm->num_pages_ballooned += alloc_unit;
1119
f766dc1e
S
1120 /*
1121 * If we allocatted 2M pages; split them so we
1122 * can free them in any order we get.
1123 */
1124
1125 if (alloc_unit != 1)
1126 split_page(pg, get_order(alloc_unit << PAGE_SHIFT));
1127
9aa8b50b
S
1128 bl_resp->range_count++;
1129 bl_resp->range_array[i].finfo.start_page =
1130 page_to_pfn(pg);
1131 bl_resp->range_array[i].finfo.page_cnt = alloc_unit;
1132 bl_resp->hdr.size += sizeof(union dm_mem_page_range);
1133
1134 }
1135
1136 return num_pages;
1137}
1138
1139
1140
6571b2da 1141static void balloon_up(struct work_struct *dummy)
9aa8b50b 1142{
797f88c9
VK
1143 unsigned int num_pages = dm_device.balloon_wrk.num_pages;
1144 unsigned int num_ballooned = 0;
9aa8b50b
S
1145 struct dm_balloon_response *bl_resp;
1146 int alloc_unit;
1147 int ret;
9aa8b50b
S
1148 bool done = false;
1149 int i;
530d15b9
VK
1150 struct sysinfo val;
1151 unsigned long floor;
9aa8b50b 1152
f6712238
DC
1153 /* The host balloons pages in 2M granularity. */
1154 WARN_ON_ONCE(num_pages % PAGES_IN_2M != 0);
9aa8b50b
S
1155
1156 /*
f766dc1e
S
1157 * We will attempt 2M allocations. However, if we fail to
1158 * allocate 2M chunks, we will go back to 4k allocations.
9aa8b50b 1159 */
f766dc1e 1160 alloc_unit = 512;
9aa8b50b 1161
530d15b9
VK
1162 si_meminfo(&val);
1163 floor = compute_balloon_floor();
1164
1165 /* Refuse to balloon below the floor, keep the 2M granularity. */
ba0c4441 1166 if (val.freeram < num_pages || val.freeram - num_pages < floor) {
530d15b9
VK
1167 num_pages = val.freeram > floor ? (val.freeram - floor) : 0;
1168 num_pages -= num_pages % PAGES_IN_2M;
1169 }
1170
9aa8b50b
S
1171 while (!done) {
1172 bl_resp = (struct dm_balloon_response *)send_buffer;
1173 memset(send_buffer, 0, PAGE_SIZE);
1174 bl_resp->hdr.type = DM_BALLOON_RESPONSE;
9aa8b50b
S
1175 bl_resp->hdr.size = sizeof(struct dm_balloon_response);
1176 bl_resp->more_pages = 1;
1177
1178
1179 num_pages -= num_ballooned;
6571b2da 1180 num_ballooned = alloc_balloon_pages(&dm_device, num_pages,
0a1a86ac 1181 bl_resp, alloc_unit);
9aa8b50b 1182
f6712238 1183 if (alloc_unit != 1 && num_ballooned == 0) {
f766dc1e
S
1184 alloc_unit = 1;
1185 continue;
1186 }
1187
0a1a86ac 1188 if (num_ballooned == 0 || num_ballooned == num_pages) {
9aa8b50b
S
1189 bl_resp->more_pages = 0;
1190 done = true;
6571b2da 1191 dm_device.state = DM_INITIALIZED;
9aa8b50b
S
1192 }
1193
1194 /*
1195 * We are pushing a lot of data through the channel;
1196 * deal with transient failures caused because of the
1197 * lack of space in the ring buffer.
1198 */
1199
1200 do {
20138d6c 1201 bl_resp->hdr.trans_id = atomic_inc_return(&trans_id);
9aa8b50b
S
1202 ret = vmbus_sendpacket(dm_device.dev->channel,
1203 bl_resp,
1204 bl_resp->hdr.size,
1205 (unsigned long)NULL,
1206 VM_PKT_DATA_INBAND, 0);
1207
1208 if (ret == -EAGAIN)
1209 msleep(20);
ae339336 1210 post_status(&dm_device);
9aa8b50b
S
1211 } while (ret == -EAGAIN);
1212
1213 if (ret) {
1214 /*
1215 * Free up the memory we allocatted.
1216 */
1217 pr_info("Balloon response failed\n");
1218
1219 for (i = 0; i < bl_resp->range_count; i++)
6571b2da 1220 free_balloon_pages(&dm_device,
9aa8b50b
S
1221 &bl_resp->range_array[i]);
1222
1223 done = true;
1224 }
1225 }
1226
1227}
1228
1229static void balloon_down(struct hv_dynmem_device *dm,
1230 struct dm_unballoon_request *req)
1231{
1232 union dm_mem_page_range *range_array = req->range_array;
1233 int range_count = req->range_count;
1234 struct dm_unballoon_response resp;
1235 int i;
1236
ae339336 1237 for (i = 0; i < range_count; i++) {
9aa8b50b 1238 free_balloon_pages(dm, &range_array[i]);
ab3de22b 1239 complete(&dm_device.config_event);
ae339336 1240 }
9aa8b50b
S
1241
1242 if (req->more_pages == 1)
1243 return;
1244
1245 memset(&resp, 0, sizeof(struct dm_unballoon_response));
1246 resp.hdr.type = DM_UNBALLOON_RESPONSE;
1247 resp.hdr.trans_id = atomic_inc_return(&trans_id);
1248 resp.hdr.size = sizeof(struct dm_unballoon_response);
1249
1250 vmbus_sendpacket(dm_device.dev->channel, &resp,
1251 sizeof(struct dm_unballoon_response),
1252 (unsigned long)NULL,
1253 VM_PKT_DATA_INBAND, 0);
1254
1255 dm->state = DM_INITIALIZED;
1256}
1257
1258static void balloon_onchannelcallback(void *context);
1259
1260static int dm_thread_func(void *dm_dev)
1261{
1262 struct hv_dynmem_device *dm = dm_dev;
9aa8b50b
S
1263
1264 while (!kthread_should_stop()) {
ab3de22b 1265 wait_for_completion_interruptible_timeout(
5dba4c56 1266 &dm_device.config_event, 1*HZ);
9aa8b50b
S
1267 /*
1268 * The host expects us to post information on the memory
1269 * pressure every second.
1270 */
ab3de22b
S
1271 reinit_completion(&dm_device.config_event);
1272 post_status(dm);
9aa8b50b
S
1273 }
1274
1275 return 0;
1276}
1277
1278
1279static void version_resp(struct hv_dynmem_device *dm,
1280 struct dm_version_response *vresp)
1281{
1282 struct dm_version_request version_req;
1283 int ret;
1284
1285 if (vresp->is_accepted) {
1286 /*
1287 * We are done; wakeup the
1288 * context waiting for version
1289 * negotiation.
1290 */
1291 complete(&dm->host_event);
1292 return;
1293 }
1294 /*
1295 * If there are more versions to try, continue
1296 * with negotiations; if not
1297 * shutdown the service since we are not able
1298 * to negotiate a suitable version number
1299 * with the host.
1300 */
1301 if (dm->next_version == 0)
1302 goto version_error;
1303
9aa8b50b
S
1304 memset(&version_req, 0, sizeof(struct dm_version_request));
1305 version_req.hdr.type = DM_VERSION_REQUEST;
1306 version_req.hdr.size = sizeof(struct dm_version_request);
1307 version_req.hdr.trans_id = atomic_inc_return(&trans_id);
b6ddeae1
AN
1308 version_req.version.version = dm->next_version;
1309
1310 /*
1311 * Set the next version to try in case current version fails.
1312 * Win7 protocol ought to be the last one to try.
1313 */
1314 switch (version_req.version.version) {
1315 case DYNMEM_PROTOCOL_VERSION_WIN8:
1316 dm->next_version = DYNMEM_PROTOCOL_VERSION_WIN7;
1317 version_req.is_last_attempt = 0;
1318 break;
1319 default:
1320 dm->next_version = 0;
1321 version_req.is_last_attempt = 1;
1322 }
9aa8b50b
S
1323
1324 ret = vmbus_sendpacket(dm->dev->channel, &version_req,
1325 sizeof(struct dm_version_request),
1326 (unsigned long)NULL,
1327 VM_PKT_DATA_INBAND, 0);
1328
1329 if (ret)
1330 goto version_error;
1331
1332 return;
1333
1334version_error:
1335 dm->state = DM_INIT_ERROR;
1336 complete(&dm->host_event);
1337}
1338
1339static void cap_resp(struct hv_dynmem_device *dm,
1340 struct dm_capabilities_resp_msg *cap_resp)
1341{
1342 if (!cap_resp->is_accepted) {
1343 pr_info("Capabilities not accepted by host\n");
1344 dm->state = DM_INIT_ERROR;
1345 }
1346 complete(&dm->host_event);
1347}
1348
1349static void balloon_onchannelcallback(void *context)
1350{
1351 struct hv_device *dev = context;
1352 u32 recvlen;
1353 u64 requestid;
1354 struct dm_message *dm_msg;
1355 struct dm_header *dm_hdr;
1356 struct hv_dynmem_device *dm = hv_get_drvdata(dev);
6571b2da 1357 struct dm_balloon *bal_msg;
c51af826
S
1358 struct dm_hot_add *ha_msg;
1359 union dm_mem_page_range *ha_pg_range;
1cac8cd4 1360 union dm_mem_page_range *ha_region;
9aa8b50b
S
1361
1362 memset(recv_buffer, 0, sizeof(recv_buffer));
1363 vmbus_recvpacket(dev->channel, recv_buffer,
1364 PAGE_SIZE, &recvlen, &requestid);
1365
1366 if (recvlen > 0) {
1367 dm_msg = (struct dm_message *)recv_buffer;
1368 dm_hdr = &dm_msg->hdr;
1369
1370 switch (dm_hdr->type) {
1371 case DM_VERSION_RESPONSE:
1372 version_resp(dm,
1373 (struct dm_version_response *)dm_msg);
1374 break;
1375
1376 case DM_CAPABILITIES_RESPONSE:
1377 cap_resp(dm,
1378 (struct dm_capabilities_resp_msg *)dm_msg);
1379 break;
1380
1381 case DM_BALLOON_REQUEST:
6571b2da
S
1382 if (dm->state == DM_BALLOON_UP)
1383 pr_warn("Currently ballooning\n");
1384 bal_msg = (struct dm_balloon *)recv_buffer;
9aa8b50b 1385 dm->state = DM_BALLOON_UP;
6571b2da
S
1386 dm_device.balloon_wrk.num_pages = bal_msg->num_pages;
1387 schedule_work(&dm_device.balloon_wrk.wrk);
9aa8b50b
S
1388 break;
1389
1390 case DM_UNBALLOON_REQUEST:
1391 dm->state = DM_BALLOON_DOWN;
1392 balloon_down(dm,
1393 (struct dm_unballoon_request *)recv_buffer);
1394 break;
1395
1396 case DM_MEM_HOT_ADD_REQUEST:
c51af826
S
1397 if (dm->state == DM_HOT_ADD)
1398 pr_warn("Currently hot-adding\n");
9aa8b50b 1399 dm->state = DM_HOT_ADD;
c51af826 1400 ha_msg = (struct dm_hot_add *)recv_buffer;
1cac8cd4
S
1401 if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) {
1402 /*
1403 * This is a normal hot-add request specifying
1404 * hot-add memory.
1405 */
d19a55d6 1406 dm->host_specified_ha_region = false;
1cac8cd4
S
1407 ha_pg_range = &ha_msg->range;
1408 dm->ha_wrk.ha_page_range = *ha_pg_range;
1409 dm->ha_wrk.ha_region_range.page_range = 0;
1410 } else {
1411 /*
1412 * Host is specifying that we first hot-add
1413 * a region and then partially populate this
1414 * region.
1415 */
1416 dm->host_specified_ha_region = true;
1417 ha_pg_range = &ha_msg->range;
1418 ha_region = &ha_pg_range[1];
1419 dm->ha_wrk.ha_page_range = *ha_pg_range;
1420 dm->ha_wrk.ha_region_range = *ha_region;
1421 }
c51af826 1422 schedule_work(&dm_device.ha_wrk.wrk);
9aa8b50b
S
1423 break;
1424
1425 case DM_INFO_MESSAGE:
1426 process_info(dm, (struct dm_info_msg *)dm_msg);
1427 break;
1428
1429 default:
1430 pr_err("Unhandled message: type: %d\n", dm_hdr->type);
1431
1432 }
1433 }
1434
1435}
1436
1437static int balloon_probe(struct hv_device *dev,
1438 const struct hv_vmbus_device_id *dev_id)
1439{
b057b3ad
NMG
1440 int ret;
1441 unsigned long t;
9aa8b50b
S
1442 struct dm_version_request version_req;
1443 struct dm_capabilities cap_msg;
1444
1445 do_hot_add = hot_add;
1446
1447 /*
1448 * First allocate a send buffer.
1449 */
1450
1451 send_buffer = kmalloc(PAGE_SIZE, GFP_KERNEL);
1452 if (!send_buffer)
1453 return -ENOMEM;
1454
1455 ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0,
1456 balloon_onchannelcallback, dev);
1457
1458 if (ret)
33080c1c 1459 goto probe_error0;
9aa8b50b
S
1460
1461 dm_device.dev = dev;
1462 dm_device.state = DM_INITIALIZING;
b6ddeae1 1463 dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN8;
9aa8b50b
S
1464 init_completion(&dm_device.host_event);
1465 init_completion(&dm_device.config_event);
1cac8cd4 1466 INIT_LIST_HEAD(&dm_device.ha_region_list);
22f88475 1467 mutex_init(&dm_device.ha_region_mutex);
6571b2da 1468 INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up);
c51af826 1469 INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req);
1cac8cd4 1470 dm_device.host_specified_ha_region = false;
9aa8b50b
S
1471
1472 dm_device.thread =
1473 kthread_run(dm_thread_func, &dm_device, "hv_balloon");
1474 if (IS_ERR(dm_device.thread)) {
1475 ret = PTR_ERR(dm_device.thread);
33080c1c 1476 goto probe_error1;
9aa8b50b
S
1477 }
1478
1cac8cd4
S
1479#ifdef CONFIG_MEMORY_HOTPLUG
1480 set_online_page_callback(&hv_online_page);
22f88475 1481 register_memory_notifier(&hv_memory_nb);
1cac8cd4
S
1482#endif
1483
9aa8b50b
S
1484 hv_set_drvdata(dev, &dm_device);
1485 /*
1486 * Initiate the hand shake with the host and negotiate
1487 * a version that the host can support. We start with the
1488 * highest version number and go down if the host cannot
1489 * support it.
1490 */
1491 memset(&version_req, 0, sizeof(struct dm_version_request));
1492 version_req.hdr.type = DM_VERSION_REQUEST;
1493 version_req.hdr.size = sizeof(struct dm_version_request);
1494 version_req.hdr.trans_id = atomic_inc_return(&trans_id);
b6ddeae1 1495 version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN10;
9aa8b50b
S
1496 version_req.is_last_attempt = 0;
1497
1498 ret = vmbus_sendpacket(dev->channel, &version_req,
1499 sizeof(struct dm_version_request),
1500 (unsigned long)NULL,
7a64b864 1501 VM_PKT_DATA_INBAND, 0);
9aa8b50b 1502 if (ret)
33080c1c 1503 goto probe_error2;
9aa8b50b
S
1504
1505 t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1506 if (t == 0) {
1507 ret = -ETIMEDOUT;
33080c1c 1508 goto probe_error2;
9aa8b50b
S
1509 }
1510
1511 /*
1512 * If we could not negotiate a compatible version with the host
1513 * fail the probe function.
1514 */
1515 if (dm_device.state == DM_INIT_ERROR) {
1516 ret = -ETIMEDOUT;
33080c1c 1517 goto probe_error2;
9aa8b50b
S
1518 }
1519 /*
1520 * Now submit our capabilities to the host.
1521 */
1522 memset(&cap_msg, 0, sizeof(struct dm_capabilities));
1523 cap_msg.hdr.type = DM_CAPABILITIES_REPORT;
1524 cap_msg.hdr.size = sizeof(struct dm_capabilities);
1525 cap_msg.hdr.trans_id = atomic_inc_return(&trans_id);
1526
1527 cap_msg.caps.cap_bits.balloon = 1;
9aa8b50b
S
1528 cap_msg.caps.cap_bits.hot_add = 1;
1529
647965a2
S
1530 /*
1531 * Specify our alignment requirements as it relates
1532 * memory hot-add. Specify 128MB alignment.
1533 */
1534 cap_msg.caps.cap_bits.hot_add_alignment = 7;
1535
9aa8b50b
S
1536 /*
1537 * Currently the host does not use these
1538 * values and we set them to what is done in the
1539 * Windows driver.
1540 */
1541 cap_msg.min_page_cnt = 0;
1542 cap_msg.max_page_number = -1;
1543
1544 ret = vmbus_sendpacket(dev->channel, &cap_msg,
1545 sizeof(struct dm_capabilities),
1546 (unsigned long)NULL,
7a64b864 1547 VM_PKT_DATA_INBAND, 0);
9aa8b50b 1548 if (ret)
33080c1c 1549 goto probe_error2;
9aa8b50b
S
1550
1551 t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1552 if (t == 0) {
1553 ret = -ETIMEDOUT;
33080c1c 1554 goto probe_error2;
9aa8b50b
S
1555 }
1556
1557 /*
1558 * If the host does not like our capabilities,
1559 * fail the probe function.
1560 */
1561 if (dm_device.state == DM_INIT_ERROR) {
1562 ret = -ETIMEDOUT;
33080c1c 1563 goto probe_error2;
9aa8b50b
S
1564 }
1565
1566 dm_device.state = DM_INITIALIZED;
1567
1568 return 0;
1569
33080c1c 1570probe_error2:
1cac8cd4
S
1571#ifdef CONFIG_MEMORY_HOTPLUG
1572 restore_online_page_callback(&hv_online_page);
1573#endif
9aa8b50b
S
1574 kthread_stop(dm_device.thread);
1575
33080c1c 1576probe_error1:
9aa8b50b 1577 vmbus_close(dev->channel);
33080c1c
S
1578probe_error0:
1579 kfree(send_buffer);
9aa8b50b
S
1580 return ret;
1581}
1582
1583static int balloon_remove(struct hv_device *dev)
1584{
1585 struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1cac8cd4
S
1586 struct list_head *cur, *tmp;
1587 struct hv_hotadd_state *has;
9aa8b50b
S
1588
1589 if (dm->num_pages_ballooned != 0)
1590 pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned);
1591
6571b2da 1592 cancel_work_sync(&dm->balloon_wrk.wrk);
c51af826 1593 cancel_work_sync(&dm->ha_wrk.wrk);
1cac8cd4 1594
9aa8b50b
S
1595 vmbus_close(dev->channel);
1596 kthread_stop(dm->thread);
33080c1c 1597 kfree(send_buffer);
1cac8cd4
S
1598#ifdef CONFIG_MEMORY_HOTPLUG
1599 restore_online_page_callback(&hv_online_page);
22f88475 1600 unregister_memory_notifier(&hv_memory_nb);
1cac8cd4
S
1601#endif
1602 list_for_each_safe(cur, tmp, &dm->ha_region_list) {
1603 has = list_entry(cur, struct hv_hotadd_state, list);
1604 list_del(&has->list);
1605 kfree(has);
1606 }
9aa8b50b
S
1607
1608 return 0;
1609}
1610
1611static const struct hv_vmbus_device_id id_table[] = {
1612 /* Dynamic Memory Class ID */
1613 /* 525074DC-8985-46e2-8057-A307DC18A502 */
d13984e5 1614 { HV_DM_GUID, },
9aa8b50b
S
1615 { },
1616};
1617
1618MODULE_DEVICE_TABLE(vmbus, id_table);
1619
1620static struct hv_driver balloon_drv = {
1621 .name = "hv_balloon",
1622 .id_table = id_table,
1623 .probe = balloon_probe,
1624 .remove = balloon_remove,
1625};
1626
1627static int __init init_balloon_drv(void)
1628{
1629
1630 return vmbus_driver_register(&balloon_drv);
1631}
1632
9aa8b50b 1633module_init(init_balloon_drv);
9aa8b50b
S
1634
1635MODULE_DESCRIPTION("Hyper-V Balloon");
9aa8b50b 1636MODULE_LICENSE("GPL");