Merge tag 'bcachefs-2024-10-05' of git://evilpiepirate.org/bcachefs
[linux-block.git] / drivers / gpu / drm / xe / xe_gt_mcr.c
CommitLineData
dd08ebf6
MB
1// SPDX-License-Identifier: MIT
2/*
3 * Copyright © 2022 Intel Corporation
4 */
5
dd08ebf6 6#include "xe_gt_mcr.h"
ea9f879d 7
226bfec8 8#include "regs/xe_gt_regs.h"
bde5d767 9#include "xe_assert.h"
ea9f879d 10#include "xe_gt.h"
fc7c7498 11#include "xe_gt_printk.h"
dd08ebf6
MB
12#include "xe_gt_topology.h"
13#include "xe_gt_types.h"
fc7c7498 14#include "xe_guc_hwconfig.h"
dd08ebf6 15#include "xe_mmio.h"
be46d7aa 16#include "xe_sriov.h"
dd08ebf6 17
dd08ebf6
MB
18/**
19 * DOC: GT Multicast/Replicated (MCR) Register Support
20 *
21 * Some GT registers are designed as "multicast" or "replicated" registers:
22 * multiple instances of the same register share a single MMIO offset. MCR
23 * registers are generally used when the hardware needs to potentially track
24 * independent values of a register per hardware unit (e.g., per-subslice,
25 * per-L3bank, etc.). The specific types of replication that exist vary
26 * per-platform.
27 *
28 * MMIO accesses to MCR registers are controlled according to the settings
29 * programmed in the platform's MCR_SELECTOR register(s). MMIO writes to MCR
62421b45 30 * registers can be done in either multicast (a single write updates all
dd08ebf6 31 * instances of the register to the same value) or unicast (a write updates only
62421b45
LDM
32 * one specific instance) form. Reads of MCR registers always operate in a
33 * unicast manner regardless of how the multicast/unicast bit is set in
34 * MCR_SELECTOR. Selection of a specific MCR instance for unicast operations is
35 * referred to as "steering."
dd08ebf6
MB
36 *
37 * If MCR register operations are steered toward a hardware unit that is
38 * fused off or currently powered down due to power gating, the MMIO operation
39 * is "terminated" by the hardware. Terminated read operations will return a
40 * value of zero and terminated unicast write operations will be silently
6b980aa8
LDM
41 * ignored. During device initialization, the goal of the various
42 * ``init_steering_*()`` functions is to apply the platform-specific rules for
43 * each MCR register type to identify a steering target that will select a
44 * non-terminated instance.
be46d7aa
MW
45 *
46 * MCR registers are not available on Virtual Function (VF).
dd08ebf6
MB
47 */
48
ce8bf5bd
LDM
49#define STEER_SEMAPHORE XE_REG(0xFD0)
50
36e22be4
LDM
51static inline struct xe_reg to_xe_reg(struct xe_reg_mcr reg_mcr)
52{
53 return reg_mcr.__reg;
54}
55
dd08ebf6
MB
56enum {
57 MCR_OP_READ,
58 MCR_OP_WRITE
59};
60
61static const struct xe_mmio_range xelp_l3bank_steering_table[] = {
62 { 0x00B100, 0x00B3FF },
63 {},
64};
65
e84535d8
LDM
66static const struct xe_mmio_range xehp_l3bank_steering_table[] = {
67 { 0x008C80, 0x008CFF },
68 { 0x00B100, 0x00B3FF },
69 {},
70};
71
dd08ebf6
MB
72/*
73 * Although the bspec lists more "MSLICE" ranges than shown here, some of those
74 * are of a "GAM" subclass that has special rules and doesn't need to be
75 * included here.
76 */
77static const struct xe_mmio_range xehp_mslice_steering_table[] = {
78 { 0x00DD00, 0x00DDFF },
79 { 0x00E900, 0x00FFFF }, /* 0xEA00 - OxEFFF is unused */
80 {},
81};
82
83static const struct xe_mmio_range xehp_lncf_steering_table[] = {
84 { 0x00B000, 0x00B0FF },
85 { 0x00D880, 0x00D8FF },
86 {},
87};
88
89/*
90 * We have several types of MCR registers where steering to (0,0) will always
91 * provide us with a non-terminated value. We'll stick them all in the same
92 * table for simplicity.
93 */
94static const struct xe_mmio_range xehpc_instance0_steering_table[] = {
95 { 0x004000, 0x004AFF }, /* HALF-BSLICE */
96 { 0x008800, 0x00887F }, /* CC */
97 { 0x008A80, 0x008AFF }, /* TILEPSMI */
98 { 0x00B000, 0x00B0FF }, /* HALF-BSLICE */
99 { 0x00B100, 0x00B3FF }, /* L3BANK */
100 { 0x00C800, 0x00CFFF }, /* HALF-BSLICE */
101 { 0x00D800, 0x00D8FF }, /* HALF-BSLICE */
102 { 0x00DD00, 0x00DDFF }, /* BSLICE */
103 { 0x00E900, 0x00E9FF }, /* HALF-BSLICE */
104 { 0x00EC00, 0x00EEFF }, /* HALF-BSLICE */
105 { 0x00F000, 0x00FFFF }, /* HALF-BSLICE */
106 { 0x024180, 0x0241FF }, /* HALF-BSLICE */
107 {},
108};
109
110static const struct xe_mmio_range xelpg_instance0_steering_table[] = {
111 { 0x000B00, 0x000BFF }, /* SQIDI */
112 { 0x001000, 0x001FFF }, /* SQIDI */
113 { 0x004000, 0x0048FF }, /* GAM */
114 { 0x008700, 0x0087FF }, /* SQIDI */
115 { 0x00B000, 0x00B0FF }, /* NODE */
116 { 0x00C800, 0x00CFFF }, /* GAM */
117 { 0x00D880, 0x00D8FF }, /* NODE */
118 { 0x00DD00, 0x00DDFF }, /* OAAL2 */
119 {},
120};
121
122static const struct xe_mmio_range xelpg_l3bank_steering_table[] = {
123 { 0x00B100, 0x00B3FF },
124 {},
125};
126
127static const struct xe_mmio_range xelp_dss_steering_table[] = {
128 { 0x008150, 0x00815F },
129 { 0x009520, 0x00955F },
130 { 0x00DE80, 0x00E8FF },
131 { 0x024A00, 0x024A7F },
132 {},
133};
134
135/* DSS steering is used for GSLICE ranges as well */
136static const struct xe_mmio_range xehp_dss_steering_table[] = {
137 { 0x005200, 0x0052FF }, /* GSLICE */
138 { 0x005400, 0x007FFF }, /* GSLICE */
139 { 0x008140, 0x00815F }, /* GSLICE (0x8140-0x814F), DSS (0x8150-0x815F) */
140 { 0x008D00, 0x008DFF }, /* DSS */
141 { 0x0094D0, 0x00955F }, /* GSLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */
142 { 0x009680, 0x0096FF }, /* DSS */
143 { 0x00D800, 0x00D87F }, /* GSLICE */
144 { 0x00DC00, 0x00DCFF }, /* GSLICE */
145 { 0x00DE80, 0x00E8FF }, /* DSS (0xE000-0xE0FF reserved ) */
146 { 0x017000, 0x017FFF }, /* GSLICE */
147 { 0x024A00, 0x024A7F }, /* DSS */
148 {},
149};
150
151/* DSS steering is used for COMPUTE ranges as well */
152static const struct xe_mmio_range xehpc_dss_steering_table[] = {
153 { 0x008140, 0x00817F }, /* COMPUTE (0x8140-0x814F & 0x8160-0x817F), DSS (0x8150-0x815F) */
154 { 0x0094D0, 0x00955F }, /* COMPUTE (0x94D0-0x951F), DSS (0x9520-0x955F) */
155 { 0x009680, 0x0096FF }, /* DSS */
156 { 0x00DC00, 0x00DCFF }, /* COMPUTE */
157 { 0x00DE80, 0x00E7FF }, /* DSS (0xDF00-0xE1FF reserved ) */
158 {},
159};
160
161/* DSS steering is used for SLICE ranges as well */
162static const struct xe_mmio_range xelpg_dss_steering_table[] = {
163 { 0x005200, 0x0052FF }, /* SLICE */
164 { 0x005500, 0x007FFF }, /* SLICE */
165 { 0x008140, 0x00815F }, /* SLICE (0x8140-0x814F), DSS (0x8150-0x815F) */
166 { 0x0094D0, 0x00955F }, /* SLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */
167 { 0x009680, 0x0096FF }, /* DSS */
168 { 0x00D800, 0x00D87F }, /* SLICE */
169 { 0x00DC00, 0x00DCFF }, /* SLICE */
170 { 0x00DE80, 0x00E8FF }, /* DSS (0xE000-0xE0FF reserved) */
171 {},
172};
173
174static const struct xe_mmio_range xelpmp_oaddrm_steering_table[] = {
175 { 0x393200, 0x39323F },
176 { 0x393400, 0x3934FF },
177 {},
178};
179
564d64f8
LDM
180static const struct xe_mmio_range dg2_implicit_steering_table[] = {
181 { 0x000B00, 0x000BFF }, /* SF (SQIDI replication) */
182 { 0x001000, 0x001FFF }, /* SF (SQIDI replication) */
183 { 0x004000, 0x004AFF }, /* GAM (MSLICE replication) */
184 { 0x008700, 0x0087FF }, /* MCFG (SQIDI replication) */
185 { 0x00C800, 0x00CFFF }, /* GAM (MSLICE replication) */
186 { 0x00F000, 0x00FFFF }, /* GAM (MSLICE replication) */
dd08ebf6
MB
187 {},
188};
189
5c82000f
MR
190static const struct xe_mmio_range xe2lpg_dss_steering_table[] = {
191 { 0x005200, 0x0052FF }, /* SLICE */
192 { 0x005500, 0x007FFF }, /* SLICE */
193 { 0x008140, 0x00815F }, /* SLICE (0x8140-0x814F), DSS (0x8150-0x815F) */
194 { 0x0094D0, 0x00955F }, /* SLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */
195 { 0x009680, 0x0096FF }, /* DSS */
196 { 0x00D800, 0x00D87F }, /* SLICE */
197 { 0x00DC00, 0x00DCFF }, /* SLICE */
198 { 0x00DE80, 0x00E8FF }, /* DSS (0xE000-0xE0FF reserved) */
199 { 0x00E980, 0x00E9FF }, /* SLICE */
200 { 0x013000, 0x0133FF }, /* DSS (0x13000-0x131FF), SLICE (0x13200-0x133FF) */
201 {},
202};
203
204static const struct xe_mmio_range xe2lpg_sqidi_psmi_steering_table[] = {
205 { 0x000B00, 0x000BFF },
206 { 0x001000, 0x001FFF },
207 {},
208};
209
210static const struct xe_mmio_range xe2lpg_instance0_steering_table[] = {
211 { 0x004000, 0x004AFF }, /* GAM, rsvd, GAMWKR */
212 { 0x008700, 0x00887F }, /* SQIDI, MEMPIPE */
213 { 0x00B000, 0x00B3FF }, /* NODE, L3BANK */
214 { 0x00C800, 0x00CFFF }, /* GAM */
215 { 0x00D880, 0x00D8FF }, /* NODE */
216 { 0x00DD00, 0x00DDFF }, /* MEMPIPE */
217 { 0x00E900, 0x00E97F }, /* MEMPIPE */
218 { 0x00F000, 0x00FFFF }, /* GAM, GAMWKR */
219 { 0x013400, 0x0135FF }, /* MEMPIPE */
220 {},
221};
222
8e99b545
MR
223static const struct xe_mmio_range xe2lpm_gpmxmt_steering_table[] = {
224 { 0x388160, 0x38817F },
225 { 0x389480, 0x3894CF },
226 {},
227};
228
229static const struct xe_mmio_range xe2lpm_instance0_steering_table[] = {
230 { 0x384000, 0x3847DF }, /* GAM, rsvd, GAM */
231 { 0x384900, 0x384AFF }, /* GAM */
232 { 0x389560, 0x3895FF }, /* MEDIAINF */
233 { 0x38B600, 0x38B8FF }, /* L3BANK */
234 { 0x38C800, 0x38D07F }, /* GAM, MEDIAINF */
235 { 0x38F000, 0x38F0FF }, /* GAM */
236 { 0x393C00, 0x393C7F }, /* MEDIAINF */
237 {},
238};
239
dd08ebf6
MB
240static void init_steering_l3bank(struct xe_gt *gt)
241{
242 if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270) {
d9b79ad2 243 u32 mslice_mask = REG_FIELD_GET(MEML3_EN_MASK,
ce8bf5bd 244 xe_mmio_read32(gt, MIRROR_FUSE3));
dd08ebf6 245 u32 bank_mask = REG_FIELD_GET(GT_L3_EXC_MASK,
ce8bf5bd 246 xe_mmio_read32(gt, XEHP_FUSE4));
dd08ebf6
MB
247
248 /*
249 * Group selects mslice, instance selects bank within mslice.
250 * Bank 0 is always valid _except_ when the bank mask is 010b.
251 */
252 gt->steering[L3BANK].group_target = __ffs(mslice_mask);
253 gt->steering[L3BANK].instance_target =
254 bank_mask & BIT(0) ? 0 : 2;
e84535d8 255 } else if (gt_to_xe(gt)->info.platform == XE_DG2) {
d9b79ad2 256 u32 mslice_mask = REG_FIELD_GET(MEML3_EN_MASK,
ce8bf5bd 257 xe_mmio_read32(gt, MIRROR_FUSE3));
e84535d8
LDM
258 u32 bank = __ffs(mslice_mask) * 8;
259
260 /*
261 * Like mslice registers, look for a valid mslice and steer to
262 * the first L3BANK of that quad. Access to the Nth L3 bank is
263 * split between the first bits of group and instance
264 */
265 gt->steering[L3BANK].group_target = (bank >> 2) & 0x7;
266 gt->steering[L3BANK].instance_target = bank & 0x3;
dd08ebf6 267 } else {
d9b79ad2 268 u32 fuse = REG_FIELD_GET(L3BANK_MASK,
ce8bf5bd 269 ~xe_mmio_read32(gt, MIRROR_FUSE3));
dd08ebf6
MB
270
271 gt->steering[L3BANK].group_target = 0; /* unused */
272 gt->steering[L3BANK].instance_target = __ffs(fuse);
273 }
274}
275
276static void init_steering_mslice(struct xe_gt *gt)
277{
d9b79ad2 278 u32 mask = REG_FIELD_GET(MEML3_EN_MASK,
ce8bf5bd 279 xe_mmio_read32(gt, MIRROR_FUSE3));
dd08ebf6
MB
280
281 /*
282 * mslice registers are valid (not terminated) if either the meml3
283 * associated with the mslice is present, or at least one DSS associated
284 * with the mslice is present. There will always be at least one meml3
285 * so we can just use that to find a non-terminated mslice and ignore
286 * the DSS fusing.
287 */
288 gt->steering[MSLICE].group_target = __ffs(mask);
289 gt->steering[MSLICE].instance_target = 0; /* unused */
290
291 /*
292 * LNCF termination is also based on mslice presence, so we'll set
293 * it up here. Either LNCF within a non-terminated mslice will work,
294 * so we just always pick LNCF 0 here.
295 */
296 gt->steering[LNCF].group_target = __ffs(mask) << 1;
297 gt->steering[LNCF].instance_target = 0; /* unused */
298}
299
bde5d767
ZD
300static unsigned int dss_per_group(struct xe_gt *gt)
301{
fc7c7498
MR
302 struct xe_guc *guc = &gt->uc.guc;
303 u32 max_slices = 0, max_subslices = 0;
304 int ret;
305
306 /*
307 * Try to query the GuC's hwconfig table for the maximum number of
308 * slices and subslices. These don't reflect the platform's actual
309 * slice/DSS counts, just the physical layout by which we should
310 * determine the steering targets. On older platforms with older GuC
311 * firmware releases it's possible that these attributes may not be
312 * included in the table, so we can always fall back to the old
313 * hardcoded layouts.
314 */
315#define HWCONFIG_ATTR_MAX_SLICES 1
316#define HWCONFIG_ATTR_MAX_SUBSLICES 70
317
318 ret = xe_guc_hwconfig_lookup_u32(guc, HWCONFIG_ATTR_MAX_SLICES,
319 &max_slices);
320 if (ret < 0 || max_slices == 0)
321 goto fallback;
322
323 ret = xe_guc_hwconfig_lookup_u32(guc, HWCONFIG_ATTR_MAX_SUBSLICES,
324 &max_subslices);
325 if (ret < 0 || max_subslices == 0)
326 goto fallback;
327
328 return DIV_ROUND_UP(max_subslices, max_slices);
329
330fallback:
331 xe_gt_dbg(gt, "GuC hwconfig cannot provide dss/slice; using typical fallback values\n");
788d2ad6
AH
332 if (gt_to_xe(gt)->info.platform == XE_PVC)
333 return 8;
334 else if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1250)
335 return 4;
336 else
337 return 6;
bde5d767
ZD
338}
339
340/**
341 * xe_gt_mcr_get_dss_steering - Get the group/instance steering for a DSS
342 * @gt: GT structure
343 * @dss: DSS ID to obtain steering for
344 * @group: pointer to storage for steering group ID
345 * @instance: pointer to storage for steering instance ID
346 */
347void xe_gt_mcr_get_dss_steering(struct xe_gt *gt, unsigned int dss, u16 *group, u16 *instance)
dd08ebf6 348{
bde5d767
ZD
349 xe_gt_assert(gt, dss < XE_MAX_DSS_FUSE_BITS);
350
fc7c7498
MR
351 *group = dss / gt->steering_dss_per_grp;
352 *instance = dss % gt->steering_dss_per_grp;
bde5d767
ZD
353}
354
355static void init_steering_dss(struct xe_gt *gt)
356{
fc7c7498
MR
357 gt->steering_dss_per_grp = dss_per_group(gt);
358
bde5d767
ZD
359 xe_gt_mcr_get_dss_steering(gt,
360 min(xe_dss_mask_group_ffs(gt->fuse_topo.g_dss_mask, 0, 0),
361 xe_dss_mask_group_ffs(gt->fuse_topo.c_dss_mask, 0, 0)),
362 &gt->steering[DSS].group_target,
363 &gt->steering[DSS].instance_target);
dd08ebf6
MB
364}
365
366static void init_steering_oaddrm(struct xe_gt *gt)
367{
368 /*
369 * First instance is only terminated if the entire first media slice
370 * is absent (i.e., no VCS0 or VECS0).
371 */
372 if (gt->info.engine_mask & (XE_HW_ENGINE_VCS0 | XE_HW_ENGINE_VECS0))
373 gt->steering[OADDRM].group_target = 0;
374 else
375 gt->steering[OADDRM].group_target = 1;
376
4f82ac61 377 gt->steering[OADDRM].instance_target = 0; /* unused */
dd08ebf6
MB
378}
379
5c82000f
MR
380static void init_steering_sqidi_psmi(struct xe_gt *gt)
381{
382 u32 mask = REG_FIELD_GET(XE2_NODE_ENABLE_MASK,
383 xe_mmio_read32(gt, MIRROR_FUSE3));
384 u32 select = __ffs(mask);
385
386 gt->steering[SQIDI_PSMI].group_target = select >> 1;
387 gt->steering[SQIDI_PSMI].instance_target = select & 0x1;
388}
389
dd08ebf6
MB
390static void init_steering_inst0(struct xe_gt *gt)
391{
4f82ac61
MR
392 gt->steering[INSTANCE0].group_target = 0; /* unused */
393 gt->steering[INSTANCE0].instance_target = 0; /* unused */
dd08ebf6
MB
394}
395
396static const struct {
397 const char *name;
72e8d73b 398 void (*init)(struct xe_gt *gt);
dd08ebf6 399} xe_steering_types[] = {
3319b213
LDM
400 [L3BANK] = { "L3BANK", init_steering_l3bank },
401 [MSLICE] = { "MSLICE", init_steering_mslice },
402 [LNCF] = { "LNCF", NULL }, /* initialized by mslice init */
403 [DSS] = { "DSS", init_steering_dss },
8e99b545 404 [OADDRM] = { "OADDRM / GPMXMT", init_steering_oaddrm },
5c82000f 405 [SQIDI_PSMI] = { "SQIDI_PSMI", init_steering_sqidi_psmi },
3319b213 406 [INSTANCE0] = { "INSTANCE 0", init_steering_inst0 },
564d64f8 407 [IMPLICIT_STEERING] = { "IMPLICIT", NULL },
dd08ebf6
MB
408};
409
2d3789e3
MW
410/**
411 * xe_gt_mcr_init_early - Early initialization of the MCR support
412 * @gt: GT structure
413 *
414 * Perform early software only initialization of the MCR lock to allow
415 * the synchronization on accessing the STEER_SEMAPHORE register and
416 * use the xe_gt_mcr_multicast_write() function.
417 */
418void xe_gt_mcr_init_early(struct xe_gt *gt)
dd08ebf6 419{
564d64f8 420 BUILD_BUG_ON(IMPLICIT_STEERING + 1 != NUM_STEERING_TYPES);
dd08ebf6
MB
421 BUILD_BUG_ON(ARRAY_SIZE(xe_steering_types) != NUM_STEERING_TYPES);
422
2d3789e3
MW
423 spin_lock_init(&gt->mcr_lock);
424}
425
426/**
427 * xe_gt_mcr_init - Normal initialization of the MCR support
428 * @gt: GT structure
429 *
430 * Perform normal initialization of the MCR for all usages.
431 */
432void xe_gt_mcr_init(struct xe_gt *gt)
433{
434 struct xe_device *xe = gt_to_xe(gt);
435
be46d7aa
MW
436 if (IS_SRIOV_VF(xe))
437 return;
438
dd08ebf6
MB
439 if (gt->info.type == XE_GT_TYPE_MEDIA) {
440 drm_WARN_ON(&xe->drm, MEDIA_VER(xe) < 13);
441
7929ffce 442 if (MEDIA_VERx100(xe) >= 1301) {
8e99b545
MR
443 gt->steering[OADDRM].ranges = xe2lpm_gpmxmt_steering_table;
444 gt->steering[INSTANCE0].ranges = xe2lpm_instance0_steering_table;
445 } else {
446 gt->steering[OADDRM].ranges = xelpmp_oaddrm_steering_table;
447 }
dd08ebf6 448 } else {
5c82000f
MR
449 if (GRAPHICS_VER(xe) >= 20) {
450 gt->steering[DSS].ranges = xe2lpg_dss_steering_table;
451 gt->steering[SQIDI_PSMI].ranges = xe2lpg_sqidi_psmi_steering_table;
452 gt->steering[INSTANCE0].ranges = xe2lpg_instance0_steering_table;
453 } else if (GRAPHICS_VERx100(xe) >= 1270) {
436dbd6b
LDM
454 gt->steering[INSTANCE0].ranges = xelpg_instance0_steering_table;
455 gt->steering[L3BANK].ranges = xelpg_l3bank_steering_table;
456 gt->steering[DSS].ranges = xelpg_dss_steering_table;
457 } else if (xe->info.platform == XE_PVC) {
458 gt->steering[INSTANCE0].ranges = xehpc_instance0_steering_table;
459 gt->steering[DSS].ranges = xehpc_dss_steering_table;
460 } else if (xe->info.platform == XE_DG2) {
461 gt->steering[L3BANK].ranges = xehp_l3bank_steering_table;
462 gt->steering[MSLICE].ranges = xehp_mslice_steering_table;
463 gt->steering[LNCF].ranges = xehp_lncf_steering_table;
464 gt->steering[DSS].ranges = xehp_dss_steering_table;
465 gt->steering[IMPLICIT_STEERING].ranges = dg2_implicit_steering_table;
466 } else {
467 gt->steering[L3BANK].ranges = xelp_l3bank_steering_table;
468 gt->steering[DSS].ranges = xelp_dss_steering_table;
469 }
dd08ebf6
MB
470 }
471
472 /* Select non-terminated steering target for each type */
473 for (int i = 0; i < NUM_STEERING_TYPES; i++)
474 if (gt->steering[i].ranges && xe_steering_types[i].init)
475 xe_steering_types[i].init(gt);
476}
477
564d64f8
LDM
478/**
479 * xe_gt_mcr_set_implicit_defaults - Initialize steer control registers
480 * @gt: GT structure
481 *
482 * Some register ranges don't need to have their steering control registers
483 * changed on each access - it's sufficient to set them once on initialization.
484 * This function sets those registers for each platform *
485 */
486void xe_gt_mcr_set_implicit_defaults(struct xe_gt *gt)
487{
488 struct xe_device *xe = gt_to_xe(gt);
489
be46d7aa
MW
490 if (IS_SRIOV_VF(xe))
491 return;
492
564d64f8 493 if (xe->info.platform == XE_DG2) {
d9b79ad2
LDM
494 u32 steer_val = REG_FIELD_PREP(MCR_SLICE_MASK, 0) |
495 REG_FIELD_PREP(MCR_SUBSLICE_MASK, 2);
564d64f8 496
ce8bf5bd
LDM
497 xe_mmio_write32(gt, MCFG_MCR_SELECTOR, steer_val);
498 xe_mmio_write32(gt, SF_MCR_SELECTOR, steer_val);
564d64f8
LDM
499 /*
500 * For GAM registers, all reads should be directed to instance 1
501 * (unicast reads against other instances are not allowed),
502 * and instance 1 is already the hardware's default steering
503 * target, which we never change
504 */
505 }
506}
507
dd08ebf6
MB
508/*
509 * xe_gt_mcr_get_nonterminated_steering - find group/instance values that
510 * will steer a register to a non-terminated instance
511 * @gt: GT structure
512 * @reg: register for which the steering is required
513 * @group: return variable for group steering
514 * @instance: return variable for instance steering
515 *
516 * This function returns a group/instance pair that is guaranteed to work for
517 * read steering of the given register. Note that a value will be returned even
518 * if the register is not replicated and therefore does not actually require
519 * steering.
520 *
521 * Returns true if the caller should steer to the @group/@instance values
564d64f8 522 * returned. Returns false if the caller need not perform any steering
dd08ebf6
MB
523 */
524static bool xe_gt_mcr_get_nonterminated_steering(struct xe_gt *gt,
36e22be4 525 struct xe_reg_mcr reg_mcr,
dd08ebf6
MB
526 u8 *group, u8 *instance)
527{
36e22be4 528 const struct xe_reg reg = to_xe_reg(reg_mcr);
564d64f8
LDM
529 const struct xe_mmio_range *implicit_ranges;
530
531 for (int type = 0; type < IMPLICIT_STEERING; type++) {
dd08ebf6
MB
532 if (!gt->steering[type].ranges)
533 continue;
534
535 for (int i = 0; gt->steering[type].ranges[i].end > 0; i++) {
9fa81f91 536 if (xe_mmio_in_range(gt, &gt->steering[type].ranges[i], reg)) {
dd08ebf6
MB
537 *group = gt->steering[type].group_target;
538 *instance = gt->steering[type].instance_target;
539 return true;
540 }
541 }
542 }
543
564d64f8
LDM
544 implicit_ranges = gt->steering[IMPLICIT_STEERING].ranges;
545 if (implicit_ranges)
546 for (int i = 0; implicit_ranges[i].end > 0; i++)
9fa81f91 547 if (xe_mmio_in_range(gt, &implicit_ranges[i], reg))
564d64f8 548 return false;
dd08ebf6
MB
549
550 /*
564d64f8
LDM
551 * Not found in a steering table and not a register with implicit
552 * steering. Just steer to 0/0 as a guess and raise a warning.
dd08ebf6
MB
553 */
554 drm_WARN(&gt_to_xe(gt)->drm, true,
555 "Did not find MCR register %#x in any MCR steering table\n",
ee21379a 556 reg.addr);
dd08ebf6
MB
557 *group = 0;
558 *instance = 0;
559
560 return true;
561}
562
dd08ebf6
MB
563/*
564 * Obtain exclusive access to MCR steering. On MTL and beyond we also need
565 * to synchronize with external clients (e.g., firmware), so a semaphore
566 * register will also need to be taken.
567 */
97fd7a7e 568static void mcr_lock(struct xe_gt *gt) __acquires(&gt->mcr_lock)
dd08ebf6
MB
569{
570 struct xe_device *xe = gt_to_xe(gt);
dc97898e 571 int ret = 0;
dd08ebf6
MB
572
573 spin_lock(&gt->mcr_lock);
574
575 /*
576 * Starting with MTL we also need to grab a semaphore register
577 * to synchronize with external agents (e.g., firmware) that now
43b5d81e
DCS
578 * shares the same steering control register. The semaphore is obtained
579 * when a read to the relevant register returns 1.
dd08ebf6
MB
580 */
581 if (GRAPHICS_VERx100(xe) >= 1270)
43b5d81e 582 ret = xe_mmio_wait32(gt, STEER_SEMAPHORE, 0x1, 0x1, 10, NULL,
a56d8dab 583 true);
dd08ebf6
MB
584
585 drm_WARN_ON_ONCE(&xe->drm, ret == -ETIMEDOUT);
586}
587
97fd7a7e 588static void mcr_unlock(struct xe_gt *gt) __releases(&gt->mcr_lock)
fb1d55ef 589{
43b5d81e 590 /* Release hardware semaphore - this is done by writing 1 to the register */
dd08ebf6
MB
591 if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270)
592 xe_mmio_write32(gt, STEER_SEMAPHORE, 0x1);
593
594 spin_unlock(&gt->mcr_lock);
595}
596
597/*
598 * Access a register with specific MCR steering
599 *
600 * Caller needs to make sure the relevant forcewake wells are up.
601 */
36e22be4
LDM
602static u32 rw_with_mcr_steering(struct xe_gt *gt, struct xe_reg_mcr reg_mcr,
603 u8 rw_flag, int group, int instance, u32 value)
dd08ebf6 604{
36e22be4 605 const struct xe_reg reg = to_xe_reg(reg_mcr);
ce8bf5bd
LDM
606 struct xe_reg steer_reg;
607 u32 steer_val, val = 0;
dd08ebf6
MB
608
609 lockdep_assert_held(&gt->mcr_lock);
610
611 if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270) {
ce8bf5bd 612 steer_reg = MTL_MCR_SELECTOR;
dd08ebf6
MB
613 steer_val = REG_FIELD_PREP(MTL_MCR_GROUPID, group) |
614 REG_FIELD_PREP(MTL_MCR_INSTANCEID, instance);
615 } else {
ce8bf5bd 616 steer_reg = MCR_SELECTOR;
d9b79ad2
LDM
617 steer_val = REG_FIELD_PREP(MCR_SLICE_MASK, group) |
618 REG_FIELD_PREP(MCR_SUBSLICE_MASK, instance);
dd08ebf6
MB
619 }
620
621 /*
215bb2ce
LDM
622 * Always leave the hardware in multicast mode when doing reads and only
623 * change it to unicast mode when doing writes of a specific instance.
624 *
625 * The setting of the multicast/unicast bit usually wouldn't matter for
626 * read operations (which always return the value from a single register
627 * instance regardless of how that bit is set), but some platforms may
628 * have workarounds requiring us to remain in multicast mode for reads,
629 * e.g. Wa_22013088509 on PVC. There's no real downside to this, so
630 * we'll just go ahead and do so on all platforms; we'll only clear the
631 * multicast bit from the mask when explicitly doing a write operation.
dd08ebf6
MB
632 *
633 * No need to save old steering reg value.
634 */
635 if (rw_flag == MCR_OP_READ)
d9b79ad2 636 steer_val |= MCR_MULTICAST;
dd08ebf6
MB
637
638 xe_mmio_write32(gt, steer_reg, steer_val);
639
640 if (rw_flag == MCR_OP_READ)
ce8bf5bd 641 val = xe_mmio_read32(gt, reg);
dd08ebf6 642 else
ce8bf5bd 643 xe_mmio_write32(gt, reg, value);
dd08ebf6
MB
644
645 /*
646 * If we turned off the multicast bit (during a write) we're required
647 * to turn it back on before finishing. The group and instance values
648 * don't matter since they'll be re-programmed on the next MCR
649 * operation.
650 */
651 if (rw_flag == MCR_OP_WRITE)
d9b79ad2 652 xe_mmio_write32(gt, steer_reg, MCR_MULTICAST);
dd08ebf6
MB
653
654 return val;
655}
656
657/**
658 * xe_gt_mcr_unicast_read_any - reads a non-terminated instance of an MCR register
659 * @gt: GT structure
36e22be4 660 * @reg_mcr: register to read
dd08ebf6
MB
661 *
662 * Reads a GT MCR register. The read will be steered to a non-terminated
663 * instance (i.e., one that isn't fused off or powered down by power gating).
664 * This function assumes the caller is already holding any necessary forcewake
665 * domains.
666 *
667 * Returns the value from a non-terminated instance of @reg.
668 */
36e22be4 669u32 xe_gt_mcr_unicast_read_any(struct xe_gt *gt, struct xe_reg_mcr reg_mcr)
dd08ebf6 670{
36e22be4 671 const struct xe_reg reg = to_xe_reg(reg_mcr);
dd08ebf6
MB
672 u8 group, instance;
673 u32 val;
674 bool steer;
675
be46d7aa
MW
676 xe_gt_assert(gt, !IS_SRIOV_VF(gt_to_xe(gt)));
677
36e22be4
LDM
678 steer = xe_gt_mcr_get_nonterminated_steering(gt, reg_mcr,
679 &group, &instance);
dd08ebf6
MB
680
681 if (steer) {
682 mcr_lock(gt);
36e22be4 683 val = rw_with_mcr_steering(gt, reg_mcr, MCR_OP_READ,
dd08ebf6
MB
684 group, instance, 0);
685 mcr_unlock(gt);
686 } else {
ce8bf5bd 687 val = xe_mmio_read32(gt, reg);
dd08ebf6
MB
688 }
689
690 return val;
691}
692
693/**
694 * xe_gt_mcr_unicast_read - read a specific instance of an MCR register
695 * @gt: GT structure
36e22be4 696 * @reg_mcr: the MCR register to read
dd08ebf6
MB
697 * @group: the MCR group
698 * @instance: the MCR instance
699 *
700 * Returns the value read from an MCR register after steering toward a specific
701 * group/instance.
702 */
703u32 xe_gt_mcr_unicast_read(struct xe_gt *gt,
36e22be4 704 struct xe_reg_mcr reg_mcr,
dd08ebf6
MB
705 int group, int instance)
706{
707 u32 val;
708
be46d7aa
MW
709 xe_gt_assert(gt, !IS_SRIOV_VF(gt_to_xe(gt)));
710
dd08ebf6 711 mcr_lock(gt);
36e22be4 712 val = rw_with_mcr_steering(gt, reg_mcr, MCR_OP_READ, group, instance, 0);
dd08ebf6
MB
713 mcr_unlock(gt);
714
715 return val;
716}
717
718/**
719 * xe_gt_mcr_unicast_write - write a specific instance of an MCR register
720 * @gt: GT structure
36e22be4 721 * @reg_mcr: the MCR register to write
dd08ebf6
MB
722 * @value: value to write
723 * @group: the MCR group
724 * @instance: the MCR instance
725 *
726 * Write an MCR register in unicast mode after steering toward a specific
727 * group/instance.
728 */
36e22be4
LDM
729void xe_gt_mcr_unicast_write(struct xe_gt *gt, struct xe_reg_mcr reg_mcr,
730 u32 value, int group, int instance)
dd08ebf6 731{
be46d7aa
MW
732 xe_gt_assert(gt, !IS_SRIOV_VF(gt_to_xe(gt)));
733
dd08ebf6 734 mcr_lock(gt);
36e22be4 735 rw_with_mcr_steering(gt, reg_mcr, MCR_OP_WRITE, group, instance, value);
dd08ebf6
MB
736 mcr_unlock(gt);
737}
738
739/**
740 * xe_gt_mcr_multicast_write - write a value to all instances of an MCR register
741 * @gt: GT structure
36e22be4 742 * @reg_mcr: the MCR register to write
dd08ebf6
MB
743 * @value: value to write
744 *
745 * Write an MCR register in multicast mode to update all instances.
746 */
36e22be4
LDM
747void xe_gt_mcr_multicast_write(struct xe_gt *gt, struct xe_reg_mcr reg_mcr,
748 u32 value)
dd08ebf6 749{
36e22be4
LDM
750 struct xe_reg reg = to_xe_reg(reg_mcr);
751
be46d7aa
MW
752 xe_gt_assert(gt, !IS_SRIOV_VF(gt_to_xe(gt)));
753
dd08ebf6
MB
754 /*
755 * Synchronize with any unicast operations. Once we have exclusive
756 * access, the MULTICAST bit should already be set, so there's no need
757 * to touch the steering register.
758 */
759 mcr_lock(gt);
ce8bf5bd 760 xe_mmio_write32(gt, reg, value);
dd08ebf6
MB
761 mcr_unlock(gt);
762}
763
764void xe_gt_mcr_steering_dump(struct xe_gt *gt, struct drm_printer *p)
765{
766 for (int i = 0; i < NUM_STEERING_TYPES; i++) {
767 if (gt->steering[i].ranges) {
768 drm_printf(p, "%s steering: group=%#x, instance=%#x\n",
769 xe_steering_types[i].name,
770 gt->steering[i].group_target,
771 gt->steering[i].instance_target);
772 for (int j = 0; gt->steering[i].ranges[j].end; j++)
773 drm_printf(p, "\t0x%06x - 0x%06x\n",
774 gt->steering[i].ranges[j].start,
775 gt->steering[i].ranges[j].end);
776 }
777 }
778}