treewide: kmalloc() -> kmalloc_array()
[linux-block.git] / drivers / gpu / drm / ttm / ttm_page_alloc_dma.c
CommitLineData
2334b75f
KRW
1/*
2 * Copyright 2011 (c) Oracle Corp.
3
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sub license,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the
12 * next paragraph) shall be included in all copies or substantial portions
13 * of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Author: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
24 */
25
26/*
27 * A simple DMA pool losely based on dmapool.c. It has certain advantages
28 * over the DMA pools:
29 * - Pool collects resently freed pages for reuse (and hooks up to
30 * the shrinker).
31 * - Tracks currently in use pages
32 * - Tracks whether the page is UC, WB or cached (and reverts to WB
33 * when freed).
34 */
35
7aeb7448 36#if defined(CONFIG_SWIOTLB) || defined(CONFIG_INTEL_IOMMU)
25d0479a
JP
37#define pr_fmt(fmt) "[TTM] " fmt
38
2334b75f
KRW
39#include <linux/dma-mapping.h>
40#include <linux/list.h>
41#include <linux/seq_file.h> /* for seq_printf */
42#include <linux/slab.h>
43#include <linux/spinlock.h>
44#include <linux/highmem.h>
45#include <linux/mm_types.h>
46#include <linux/module.h>
47#include <linux/mm.h>
48#include <linux/atomic.h>
49#include <linux/device.h>
50#include <linux/kthread.h>
760285e7
DH
51#include <drm/ttm/ttm_bo_driver.h>
52#include <drm/ttm/ttm_page_alloc.h>
e6bf6e57 53#if IS_ENABLED(CONFIG_AGP)
2334b75f
KRW
54#include <asm/agp.h>
55#endif
ed3ba079
LA
56#ifdef CONFIG_X86
57#include <asm/set_memory.h>
58#endif
2334b75f
KRW
59
60#define NUM_PAGES_TO_ALLOC (PAGE_SIZE/sizeof(struct page *))
61#define SMALL_ALLOCATION 4
62#define FREE_ALL_PAGES (~0U)
648bc357 63#define VADDR_FLAG_HUGE_POOL 1UL
8f2112f8 64#define VADDR_FLAG_UPDATED_COUNT 2UL
2334b75f
KRW
65
66enum pool_type {
19dde589
CK
67 IS_UNDEFINED = 0,
68 IS_WC = 1 << 1,
69 IS_UC = 1 << 2,
70 IS_CACHED = 1 << 3,
648bc357
CK
71 IS_DMA32 = 1 << 4,
72 IS_HUGE = 1 << 5
2334b75f 73};
19dde589 74
2334b75f 75/*
648bc357 76 * The pool structure. There are up to nine pools:
2334b75f
KRW
77 * - generic (not restricted to DMA32):
78 * - write combined, uncached, cached.
79 * - dma32 (up to 2^32 - so up 4GB):
80 * - write combined, uncached, cached.
648bc357
CK
81 * - huge (not restricted to DMA32):
82 * - write combined, uncached, cached.
2334b75f
KRW
83 * for each 'struct device'. The 'cached' is for pages that are actively used.
84 * The other ones can be shrunk by the shrinker API if neccessary.
85 * @pools: The 'struct device->dma_pools' link.
86 * @type: Type of the pool
19dde589 87 * @lock: Protects the free_list from concurrnet access. Must be
2334b75f
KRW
88 * used with irqsave/irqrestore variants because pool allocator maybe called
89 * from delayed work.
2334b75f
KRW
90 * @free_list: Pool of pages that are free to be used. No order requirements.
91 * @dev: The device that is associated with these pools.
92 * @size: Size used during DMA allocation.
93 * @npages_free: Count of available pages for re-use.
94 * @npages_in_use: Count of pages that are in use.
95 * @nfrees: Stats when pool is shrinking.
96 * @nrefills: Stats when the pool is grown.
97 * @gfp_flags: Flags to pass for alloc_page.
98 * @name: Name of the pool.
99 * @dev_name: Name derieved from dev - similar to how dev_info works.
100 * Used during shutdown as the dev_info during release is unavailable.
101 */
102struct dma_pool {
103 struct list_head pools; /* The 'struct device->dma_pools link */
104 enum pool_type type;
105 spinlock_t lock;
2334b75f
KRW
106 struct list_head free_list;
107 struct device *dev;
108 unsigned size;
109 unsigned npages_free;
110 unsigned npages_in_use;
111 unsigned long nfrees; /* Stats when shrunk. */
112 unsigned long nrefills; /* Stats when grown. */
113 gfp_t gfp_flags;
114 char name[13]; /* "cached dma32" */
115 char dev_name[64]; /* Constructed from dev */
116};
117
118/*
119 * The accounting page keeping track of the allocated page along with
120 * the DMA address.
121 * @page_list: The link to the 'page_list' in 'struct dma_pool'.
648bc357
CK
122 * @vaddr: The virtual address of the page and a flag if the page belongs to a
123 * huge pool
2334b75f
KRW
124 * @dma: The bus address of the page. If the page is not allocated
125 * via the DMA API, it will be -1.
126 */
127struct dma_page {
128 struct list_head page_list;
648bc357 129 unsigned long vaddr;
2334b75f
KRW
130 struct page *p;
131 dma_addr_t dma;
132};
133
134/*
135 * Limits for the pool. They are handled without locks because only place where
136 * they may change is in sysfs store. They won't have immediate effect anyway
137 * so forcing serialization to access them is pointless.
138 */
139
140struct ttm_pool_opts {
141 unsigned alloc_size;
142 unsigned max_size;
143 unsigned small;
144};
145
146/*
147 * Contains the list of all of the 'struct device' and their corresponding
148 * DMA pools. Guarded by _mutex->lock.
149 * @pools: The link to 'struct ttm_pool_manager->pools'
150 * @dev: The 'struct device' associated with the 'pool'
151 * @pool: The 'struct dma_pool' associated with the 'dev'
152 */
153struct device_pools {
154 struct list_head pools;
155 struct device *dev;
156 struct dma_pool *pool;
157};
158
159/*
160 * struct ttm_pool_manager - Holds memory pools for fast allocation
161 *
162 * @lock: Lock used when adding/removing from pools
163 * @pools: List of 'struct device' and 'struct dma_pool' tuples.
164 * @options: Limits for the pool.
165 * @npools: Total amount of pools in existence.
166 * @shrinker: The structure used by [un|]register_shrinker
167 */
168struct ttm_pool_manager {
169 struct mutex lock;
170 struct list_head pools;
171 struct ttm_pool_opts options;
172 unsigned npools;
173 struct shrinker mm_shrink;
174 struct kobject kobj;
175};
176
177static struct ttm_pool_manager *_manager;
178
179static struct attribute ttm_page_pool_max = {
180 .name = "pool_max_size",
181 .mode = S_IRUGO | S_IWUSR
182};
183static struct attribute ttm_page_pool_small = {
184 .name = "pool_small_allocation",
185 .mode = S_IRUGO | S_IWUSR
186};
187static struct attribute ttm_page_pool_alloc_size = {
188 .name = "pool_allocation_size",
189 .mode = S_IRUGO | S_IWUSR
190};
191
192static struct attribute *ttm_pool_attrs[] = {
193 &ttm_page_pool_max,
194 &ttm_page_pool_small,
195 &ttm_page_pool_alloc_size,
196 NULL
197};
198
199static void ttm_pool_kobj_release(struct kobject *kobj)
200{
201 struct ttm_pool_manager *m =
202 container_of(kobj, struct ttm_pool_manager, kobj);
203 kfree(m);
204}
205
206static ssize_t ttm_pool_store(struct kobject *kobj, struct attribute *attr,
207 const char *buffer, size_t size)
208{
209 struct ttm_pool_manager *m =
210 container_of(kobj, struct ttm_pool_manager, kobj);
211 int chars;
212 unsigned val;
c68edaa0 213
2334b75f
KRW
214 chars = sscanf(buffer, "%u", &val);
215 if (chars == 0)
216 return size;
217
218 /* Convert kb to number of pages */
219 val = val / (PAGE_SIZE >> 10);
220
c68edaa0 221 if (attr == &ttm_page_pool_max) {
2334b75f 222 m->options.max_size = val;
c68edaa0 223 } else if (attr == &ttm_page_pool_small) {
2334b75f 224 m->options.small = val;
c68edaa0 225 } else if (attr == &ttm_page_pool_alloc_size) {
2334b75f 226 if (val > NUM_PAGES_TO_ALLOC*8) {
25d0479a 227 pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n",
2334b75f
KRW
228 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 7),
229 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
230 return size;
231 } else if (val > NUM_PAGES_TO_ALLOC) {
25d0479a
JP
232 pr_warn("Setting allocation size to larger than %lu is not recommended\n",
233 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
2334b75f
KRW
234 }
235 m->options.alloc_size = val;
236 }
237
238 return size;
239}
240
241static ssize_t ttm_pool_show(struct kobject *kobj, struct attribute *attr,
242 char *buffer)
243{
244 struct ttm_pool_manager *m =
245 container_of(kobj, struct ttm_pool_manager, kobj);
246 unsigned val = 0;
247
248 if (attr == &ttm_page_pool_max)
249 val = m->options.max_size;
250 else if (attr == &ttm_page_pool_small)
251 val = m->options.small;
252 else if (attr == &ttm_page_pool_alloc_size)
253 val = m->options.alloc_size;
254
255 val = val * (PAGE_SIZE >> 10);
256
257 return snprintf(buffer, PAGE_SIZE, "%u\n", val);
258}
259
260static const struct sysfs_ops ttm_pool_sysfs_ops = {
261 .show = &ttm_pool_show,
262 .store = &ttm_pool_store,
263};
264
265static struct kobj_type ttm_pool_kobj_type = {
266 .release = &ttm_pool_kobj_release,
267 .sysfs_ops = &ttm_pool_sysfs_ops,
268 .default_attrs = ttm_pool_attrs,
269};
270
271#ifndef CONFIG_X86
272static int set_pages_array_wb(struct page **pages, int addrinarray)
273{
e6bf6e57 274#if IS_ENABLED(CONFIG_AGP)
2334b75f
KRW
275 int i;
276
277 for (i = 0; i < addrinarray; i++)
278 unmap_page_from_agp(pages[i]);
279#endif
280 return 0;
281}
282
283static int set_pages_array_wc(struct page **pages, int addrinarray)
284{
e6bf6e57 285#if IS_ENABLED(CONFIG_AGP)
2334b75f
KRW
286 int i;
287
288 for (i = 0; i < addrinarray; i++)
289 map_page_into_agp(pages[i]);
290#endif
291 return 0;
292}
293
294static int set_pages_array_uc(struct page **pages, int addrinarray)
295{
e6bf6e57 296#if IS_ENABLED(CONFIG_AGP)
2334b75f
KRW
297 int i;
298
299 for (i = 0; i < addrinarray; i++)
300 map_page_into_agp(pages[i]);
301#endif
302 return 0;
303}
304#endif /* for !CONFIG_X86 */
305
306static int ttm_set_pages_caching(struct dma_pool *pool,
307 struct page **pages, unsigned cpages)
308{
309 int r = 0;
310 /* Set page caching */
311 if (pool->type & IS_UC) {
312 r = set_pages_array_uc(pages, cpages);
313 if (r)
25d0479a 314 pr_err("%s: Failed to set %d pages to uc!\n",
2334b75f
KRW
315 pool->dev_name, cpages);
316 }
317 if (pool->type & IS_WC) {
318 r = set_pages_array_wc(pages, cpages);
319 if (r)
25d0479a 320 pr_err("%s: Failed to set %d pages to wc!\n",
2334b75f
KRW
321 pool->dev_name, cpages);
322 }
323 return r;
324}
325
326static void __ttm_dma_free_page(struct dma_pool *pool, struct dma_page *d_page)
327{
328 dma_addr_t dma = d_page->dma;
648bc357
CK
329 d_page->vaddr &= ~VADDR_FLAG_HUGE_POOL;
330 dma_free_coherent(pool->dev, pool->size, (void *)d_page->vaddr, dma);
2334b75f
KRW
331
332 kfree(d_page);
333 d_page = NULL;
334}
335static struct dma_page *__ttm_dma_alloc_page(struct dma_pool *pool)
336{
337 struct dma_page *d_page;
40b4667b 338 unsigned long attrs = 0;
648bc357 339 void *vaddr;
2334b75f
KRW
340
341 d_page = kmalloc(sizeof(struct dma_page), GFP_KERNEL);
342 if (!d_page)
343 return NULL;
344
40b4667b
CK
345 if (pool->type & IS_HUGE)
346 attrs = DMA_ATTR_NO_WARN;
347
348 vaddr = dma_alloc_attrs(pool->dev, pool->size, &d_page->dma,
349 pool->gfp_flags, attrs);
648bc357
CK
350 if (vaddr) {
351 if (is_vmalloc_addr(vaddr))
352 d_page->p = vmalloc_to_page(vaddr);
1c34d824 353 else
648bc357
CK
354 d_page->p = virt_to_page(vaddr);
355 d_page->vaddr = (unsigned long)vaddr;
356 if (pool->type & IS_HUGE)
357 d_page->vaddr |= VADDR_FLAG_HUGE_POOL;
1c34d824 358 } else {
2334b75f
KRW
359 kfree(d_page);
360 d_page = NULL;
361 }
362 return d_page;
363}
364static enum pool_type ttm_to_type(int flags, enum ttm_caching_state cstate)
365{
366 enum pool_type type = IS_UNDEFINED;
367
368 if (flags & TTM_PAGE_FLAG_DMA32)
369 type |= IS_DMA32;
370 if (cstate == tt_cached)
371 type |= IS_CACHED;
372 else if (cstate == tt_uncached)
373 type |= IS_UC;
374 else
375 type |= IS_WC;
376
377 return type;
378}
379
380static void ttm_pool_update_free_locked(struct dma_pool *pool,
381 unsigned freed_pages)
382{
383 pool->npages_free -= freed_pages;
384 pool->nfrees += freed_pages;
385
386}
387
388/* set memory back to wb and free the pages. */
648bc357
CK
389static void ttm_dma_page_put(struct dma_pool *pool, struct dma_page *d_page)
390{
391 struct page *page = d_page->p;
392 unsigned i, num_pages;
648bc357
CK
393
394 /* Don't set WB on WB page pool. */
395 if (!(pool->type & IS_CACHED)) {
396 num_pages = pool->size / PAGE_SIZE;
397 for (i = 0; i < num_pages; ++i, ++page) {
7ca34ddc 398 if (set_pages_array_wb(&page, 1)) {
648bc357
CK
399 pr_err("%s: Failed to set %d pages to wb!\n",
400 pool->dev_name, 1);
401 }
402 }
403 }
404
405 list_del(&d_page->page_list);
406 __ttm_dma_free_page(pool, d_page);
407}
408
2334b75f
KRW
409static void ttm_dma_pages_put(struct dma_pool *pool, struct list_head *d_pages,
410 struct page *pages[], unsigned npages)
411{
412 struct dma_page *d_page, *tmp;
413
648bc357
CK
414 if (pool->type & IS_HUGE) {
415 list_for_each_entry_safe(d_page, tmp, d_pages, page_list)
416 ttm_dma_page_put(pool, d_page);
417
418 return;
419 }
420
36d7c537
KRW
421 /* Don't set WB on WB page pool. */
422 if (npages && !(pool->type & IS_CACHED) &&
423 set_pages_array_wb(pages, npages))
25d0479a
JP
424 pr_err("%s: Failed to set %d pages to wb!\n",
425 pool->dev_name, npages);
2334b75f
KRW
426
427 list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
428 list_del(&d_page->page_list);
429 __ttm_dma_free_page(pool, d_page);
430 }
431}
432
2334b75f
KRW
433/*
434 * Free pages from pool.
435 *
436 * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
437 * number of pages in one go.
438 *
439 * @pool: to free the pages from
440 * @nr_free: If set to true will free all pages in pool
881fdaa5 441 * @use_static: Safe to use static buffer
2334b75f 442 **/
a91576d7 443static unsigned ttm_dma_page_pool_free(struct dma_pool *pool, unsigned nr_free,
881fdaa5 444 bool use_static)
2334b75f 445{
881fdaa5 446 static struct page *static_buf[NUM_PAGES_TO_ALLOC];
2334b75f
KRW
447 unsigned long irq_flags;
448 struct dma_page *dma_p, *tmp;
449 struct page **pages_to_free;
450 struct list_head d_pages;
451 unsigned freed_pages = 0,
452 npages_to_free = nr_free;
453
454 if (NUM_PAGES_TO_ALLOC < nr_free)
455 npages_to_free = NUM_PAGES_TO_ALLOC;
456#if 0
457 if (nr_free > 1) {
458 pr_debug("%s: (%s:%d) Attempting to free %d (%d) pages\n",
25d0479a
JP
459 pool->dev_name, pool->name, current->pid,
460 npages_to_free, nr_free);
2334b75f
KRW
461 }
462#endif
881fdaa5
TH
463 if (use_static)
464 pages_to_free = static_buf;
465 else
6da2ec56
KC
466 pages_to_free = kmalloc_array(npages_to_free,
467 sizeof(struct page *),
468 GFP_KERNEL);
2334b75f
KRW
469
470 if (!pages_to_free) {
767601d1 471 pr_debug("%s: Failed to allocate memory for pool free operation\n",
25d0479a 472 pool->dev_name);
2334b75f
KRW
473 return 0;
474 }
475 INIT_LIST_HEAD(&d_pages);
476restart:
477 spin_lock_irqsave(&pool->lock, irq_flags);
478
479 /* We picking the oldest ones off the list */
480 list_for_each_entry_safe_reverse(dma_p, tmp, &pool->free_list,
481 page_list) {
482 if (freed_pages >= npages_to_free)
483 break;
484
485 /* Move the dma_page from one list to another. */
486 list_move(&dma_p->page_list, &d_pages);
487
488 pages_to_free[freed_pages++] = dma_p->p;
489 /* We can only remove NUM_PAGES_TO_ALLOC at a time. */
490 if (freed_pages >= NUM_PAGES_TO_ALLOC) {
491
492 ttm_pool_update_free_locked(pool, freed_pages);
493 /**
494 * Because changing page caching is costly
495 * we unlock the pool to prevent stalling.
496 */
497 spin_unlock_irqrestore(&pool->lock, irq_flags);
498
499 ttm_dma_pages_put(pool, &d_pages, pages_to_free,
500 freed_pages);
501
502 INIT_LIST_HEAD(&d_pages);
503
504 if (likely(nr_free != FREE_ALL_PAGES))
505 nr_free -= freed_pages;
506
507 if (NUM_PAGES_TO_ALLOC >= nr_free)
508 npages_to_free = nr_free;
509 else
510 npages_to_free = NUM_PAGES_TO_ALLOC;
511
512 freed_pages = 0;
513
514 /* free all so restart the processing */
515 if (nr_free)
516 goto restart;
517
518 /* Not allowed to fall through or break because
519 * following context is inside spinlock while we are
520 * outside here.
521 */
522 goto out;
523
524 }
525 }
526
527 /* remove range of pages from the pool */
528 if (freed_pages) {
529 ttm_pool_update_free_locked(pool, freed_pages);
530 nr_free -= freed_pages;
531 }
532
533 spin_unlock_irqrestore(&pool->lock, irq_flags);
534
535 if (freed_pages)
536 ttm_dma_pages_put(pool, &d_pages, pages_to_free, freed_pages);
537out:
881fdaa5
TH
538 if (pages_to_free != static_buf)
539 kfree(pages_to_free);
2334b75f
KRW
540 return nr_free;
541}
542
543static void ttm_dma_free_pool(struct device *dev, enum pool_type type)
544{
545 struct device_pools *p;
546 struct dma_pool *pool;
547
548 if (!dev)
549 return;
550
551 mutex_lock(&_manager->lock);
552 list_for_each_entry_reverse(p, &_manager->pools, pools) {
553 if (p->dev != dev)
554 continue;
555 pool = p->pool;
556 if (pool->type != type)
557 continue;
558
559 list_del(&p->pools);
560 kfree(p);
561 _manager->npools--;
562 break;
563 }
564 list_for_each_entry_reverse(pool, &dev->dma_pools, pools) {
565 if (pool->type != type)
566 continue;
567 /* Takes a spinlock.. */
881fdaa5
TH
568 /* OK to use static buffer since global mutex is held. */
569 ttm_dma_page_pool_free(pool, FREE_ALL_PAGES, true);
2334b75f
KRW
570 WARN_ON(((pool->npages_in_use + pool->npages_free) != 0));
571 /* This code path is called after _all_ references to the
572 * struct device has been dropped - so nobody should be
573 * touching it. In case somebody is trying to _add_ we are
574 * guarded by the mutex. */
575 list_del(&pool->pools);
576 kfree(pool);
577 break;
578 }
579 mutex_unlock(&_manager->lock);
580}
581
582/*
583 * On free-ing of the 'struct device' this deconstructor is run.
584 * Albeit the pool might have already been freed earlier.
585 */
586static void ttm_dma_pool_release(struct device *dev, void *res)
587{
588 struct dma_pool *pool = *(struct dma_pool **)res;
589
590 if (pool)
591 ttm_dma_free_pool(dev, pool->type);
592}
593
594static int ttm_dma_pool_match(struct device *dev, void *res, void *match_data)
595{
596 return *(struct dma_pool **)res == match_data;
597}
598
599static struct dma_pool *ttm_dma_pool_init(struct device *dev, gfp_t flags,
600 enum pool_type type)
601{
648bc357
CK
602 const char *n[] = {"wc", "uc", "cached", " dma32", "huge"};
603 enum pool_type t[] = {IS_WC, IS_UC, IS_CACHED, IS_DMA32, IS_HUGE};
2334b75f
KRW
604 struct device_pools *sec_pool = NULL;
605 struct dma_pool *pool = NULL, **ptr;
606 unsigned i;
607 int ret = -ENODEV;
608 char *p;
609
610 if (!dev)
611 return NULL;
612
613 ptr = devres_alloc(ttm_dma_pool_release, sizeof(*ptr), GFP_KERNEL);
614 if (!ptr)
615 return NULL;
616
617 ret = -ENOMEM;
618
619 pool = kmalloc_node(sizeof(struct dma_pool), GFP_KERNEL,
620 dev_to_node(dev));
621 if (!pool)
622 goto err_mem;
623
624 sec_pool = kmalloc_node(sizeof(struct device_pools), GFP_KERNEL,
625 dev_to_node(dev));
626 if (!sec_pool)
627 goto err_mem;
628
629 INIT_LIST_HEAD(&sec_pool->pools);
630 sec_pool->dev = dev;
631 sec_pool->pool = pool;
632
633 INIT_LIST_HEAD(&pool->free_list);
2334b75f
KRW
634 INIT_LIST_HEAD(&pool->pools);
635 spin_lock_init(&pool->lock);
636 pool->dev = dev;
637 pool->npages_free = pool->npages_in_use = 0;
638 pool->nfrees = 0;
639 pool->gfp_flags = flags;
648bc357
CK
640 if (type & IS_HUGE)
641#ifdef CONFIG_TRANSPARENT_HUGEPAGE
642 pool->size = HPAGE_PMD_SIZE;
643#else
644 BUG();
645#endif
646 else
647 pool->size = PAGE_SIZE;
2334b75f
KRW
648 pool->type = type;
649 pool->nrefills = 0;
650 p = pool->name;
648bc357 651 for (i = 0; i < ARRAY_SIZE(t); i++) {
2334b75f
KRW
652 if (type & t[i]) {
653 p += snprintf(p, sizeof(pool->name) - (p - pool->name),
654 "%s", n[i]);
655 }
656 }
657 *p = 0;
658 /* We copy the name for pr_ calls b/c when dma_pool_destroy is called
659 * - the kobj->name has already been deallocated.*/
660 snprintf(pool->dev_name, sizeof(pool->dev_name), "%s %s",
661 dev_driver_string(dev), dev_name(dev));
662 mutex_lock(&_manager->lock);
663 /* You can get the dma_pool from either the global: */
664 list_add(&sec_pool->pools, &_manager->pools);
665 _manager->npools++;
666 /* or from 'struct device': */
667 list_add(&pool->pools, &dev->dma_pools);
668 mutex_unlock(&_manager->lock);
669
670 *ptr = pool;
671 devres_add(dev, ptr);
672
673 return pool;
674err_mem:
675 devres_free(ptr);
676 kfree(sec_pool);
677 kfree(pool);
678 return ERR_PTR(ret);
679}
680
681static struct dma_pool *ttm_dma_find_pool(struct device *dev,
682 enum pool_type type)
683{
add3d95d 684 struct dma_pool *pool, *tmp;
2334b75f
KRW
685
686 if (type == IS_UNDEFINED)
add3d95d 687 return NULL;
2334b75f
KRW
688
689 /* NB: We iterate on the 'struct dev' which has no spinlock, but
690 * it does have a kref which we have taken. The kref is taken during
691 * graphic driver loading - in the drm_pci_init it calls either
692 * pci_dev_get or pci_register_driver which both end up taking a kref
693 * on 'struct device'.
694 *
695 * On teardown, the graphic drivers end up quiescing the TTM (put_pages)
696 * and calls the dev_res deconstructors: ttm_dma_pool_release. The nice
697 * thing is at that point of time there are no pages associated with the
698 * driver so this function will not be called.
699 */
add3d95d
TSD
700 list_for_each_entry_safe(pool, tmp, &dev->dma_pools, pools)
701 if (pool->type == type)
702 return pool;
703 return NULL;
2334b75f
KRW
704}
705
706/*
707 * Free pages the pages that failed to change the caching state. If there
708 * are pages that have changed their caching state already put them to the
709 * pool.
710 */
711static void ttm_dma_handle_caching_state_failure(struct dma_pool *pool,
712 struct list_head *d_pages,
713 struct page **failed_pages,
714 unsigned cpages)
715{
716 struct dma_page *d_page, *tmp;
717 struct page *p;
718 unsigned i = 0;
719
720 p = failed_pages[0];
721 if (!p)
722 return;
723 /* Find the failed page. */
724 list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
725 if (d_page->p != p)
726 continue;
727 /* .. and then progress over the full list. */
728 list_del(&d_page->page_list);
729 __ttm_dma_free_page(pool, d_page);
730 if (++i < cpages)
731 p = failed_pages[i];
732 else
733 break;
734 }
735
736}
737
738/*
739 * Allocate 'count' pages, and put 'need' number of them on the
740 * 'pages' and as well on the 'dma_address' starting at 'dma_offset' offset.
741 * The full list of pages should also be on 'd_pages'.
742 * We return zero for success, and negative numbers as errors.
743 */
744static int ttm_dma_pool_alloc_new_pages(struct dma_pool *pool,
745 struct list_head *d_pages,
746 unsigned count)
747{
748 struct page **caching_array;
749 struct dma_page *dma_p;
750 struct page *p;
751 int r = 0;
648bc357 752 unsigned i, j, npages, cpages;
2334b75f
KRW
753 unsigned max_cpages = min(count,
754 (unsigned)(PAGE_SIZE/sizeof(struct page *)));
755
756 /* allocate array for page caching change */
6da2ec56
KC
757 caching_array = kmalloc_array(max_cpages, sizeof(struct page *),
758 GFP_KERNEL);
2334b75f
KRW
759
760 if (!caching_array) {
767601d1 761 pr_debug("%s: Unable to allocate table for new pages\n",
25d0479a 762 pool->dev_name);
2334b75f
KRW
763 return -ENOMEM;
764 }
765
42bdbb6e 766 if (count > 1)
2334b75f 767 pr_debug("%s: (%s:%d) Getting %d pages\n",
25d0479a 768 pool->dev_name, pool->name, current->pid, count);
2334b75f
KRW
769
770 for (i = 0, cpages = 0; i < count; ++i) {
771 dma_p = __ttm_dma_alloc_page(pool);
772 if (!dma_p) {
767601d1
MD
773 pr_debug("%s: Unable to get page %u\n",
774 pool->dev_name, i);
2334b75f
KRW
775
776 /* store already allocated pages in the pool after
777 * setting the caching state */
778 if (cpages) {
779 r = ttm_set_pages_caching(pool, caching_array,
780 cpages);
781 if (r)
782 ttm_dma_handle_caching_state_failure(
783 pool, d_pages, caching_array,
784 cpages);
785 }
786 r = -ENOMEM;
787 goto out;
788 }
789 p = dma_p->p;
648bc357
CK
790 list_add(&dma_p->page_list, d_pages);
791
2334b75f
KRW
792#ifdef CONFIG_HIGHMEM
793 /* gfp flags of highmem page should never be dma32 so we
794 * we should be fine in such case
795 */
648bc357
CK
796 if (PageHighMem(p))
797 continue;
2334b75f 798#endif
648bc357
CK
799
800 npages = pool->size / PAGE_SIZE;
801 for (j = 0; j < npages; ++j) {
802 caching_array[cpages++] = p + j;
2334b75f
KRW
803 if (cpages == max_cpages) {
804 /* Note: Cannot hold the spinlock */
805 r = ttm_set_pages_caching(pool, caching_array,
648bc357 806 cpages);
2334b75f
KRW
807 if (r) {
808 ttm_dma_handle_caching_state_failure(
648bc357
CK
809 pool, d_pages, caching_array,
810 cpages);
2334b75f
KRW
811 goto out;
812 }
813 cpages = 0;
814 }
815 }
2334b75f
KRW
816 }
817
818 if (cpages) {
819 r = ttm_set_pages_caching(pool, caching_array, cpages);
820 if (r)
821 ttm_dma_handle_caching_state_failure(pool, d_pages,
822 caching_array, cpages);
823 }
824out:
825 kfree(caching_array);
826 return r;
827}
828
829/*
830 * @return count of pages still required to fulfill the request.
8e7e7052 831 */
2334b75f
KRW
832static int ttm_dma_page_pool_fill_locked(struct dma_pool *pool,
833 unsigned long *irq_flags)
834{
835 unsigned count = _manager->options.small;
836 int r = pool->npages_free;
837
838 if (count > pool->npages_free) {
839 struct list_head d_pages;
840
841 INIT_LIST_HEAD(&d_pages);
842
843 spin_unlock_irqrestore(&pool->lock, *irq_flags);
844
845 /* Returns how many more are neccessary to fulfill the
846 * request. */
847 r = ttm_dma_pool_alloc_new_pages(pool, &d_pages, count);
848
849 spin_lock_irqsave(&pool->lock, *irq_flags);
850 if (!r) {
851 /* Add the fresh to the end.. */
852 list_splice(&d_pages, &pool->free_list);
853 ++pool->nrefills;
854 pool->npages_free += count;
855 r = count;
856 } else {
857 struct dma_page *d_page;
858 unsigned cpages = 0;
859
767601d1
MD
860 pr_debug("%s: Failed to fill %s pool (r:%d)!\n",
861 pool->dev_name, pool->name, r);
2334b75f
KRW
862
863 list_for_each_entry(d_page, &d_pages, page_list) {
864 cpages++;
865 }
866 list_splice_tail(&d_pages, &pool->free_list);
867 pool->npages_free += cpages;
868 r = cpages;
869 }
870 }
871 return r;
872}
873
874/*
2334b75f
KRW
875 * The populate list is actually a stack (not that is matters as TTM
876 * allocates one page at a time.
8f2112f8 877 * return dma_page pointer if success, otherwise NULL.
2334b75f 878 */
8f2112f8 879static struct dma_page *ttm_dma_pool_get_pages(struct dma_pool *pool,
8e7e7052 880 struct ttm_dma_tt *ttm_dma,
2334b75f
KRW
881 unsigned index)
882{
8f2112f8 883 struct dma_page *d_page = NULL;
8e7e7052 884 struct ttm_tt *ttm = &ttm_dma->ttm;
2334b75f 885 unsigned long irq_flags;
8f2112f8 886 int count;
2334b75f
KRW
887
888 spin_lock_irqsave(&pool->lock, irq_flags);
889 count = ttm_dma_page_pool_fill_locked(pool, &irq_flags);
890 if (count) {
891 d_page = list_first_entry(&pool->free_list, struct dma_page, page_list);
892 ttm->pages[index] = d_page->p;
8e7e7052
JG
893 ttm_dma->dma_address[index] = d_page->dma;
894 list_move_tail(&d_page->page_list, &ttm_dma->pages_list);
2334b75f
KRW
895 pool->npages_in_use += 1;
896 pool->npages_free -= 1;
897 }
898 spin_unlock_irqrestore(&pool->lock, irq_flags);
8f2112f8 899 return d_page;
2334b75f
KRW
900}
901
648bc357
CK
902static gfp_t ttm_dma_pool_gfp_flags(struct ttm_dma_tt *ttm_dma, bool huge)
903{
904 struct ttm_tt *ttm = &ttm_dma->ttm;
905 gfp_t gfp_flags;
906
907 if (ttm->page_flags & TTM_PAGE_FLAG_DMA32)
908 gfp_flags = GFP_USER | GFP_DMA32;
909 else
910 gfp_flags = GFP_HIGHUSER;
911 if (ttm->page_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
912 gfp_flags |= __GFP_ZERO;
913
914 if (huge) {
da291320
MD
915 gfp_flags |= GFP_TRANSHUGE_LIGHT | __GFP_NORETRY |
916 __GFP_KSWAPD_RECLAIM;
648bc357 917 gfp_flags &= ~__GFP_MOVABLE;
f4c80991 918 gfp_flags &= ~__GFP_COMP;
648bc357
CK
919 }
920
cb5f1a52
AG
921 if (ttm->page_flags & TTM_PAGE_FLAG_NO_RETRY)
922 gfp_flags |= __GFP_RETRY_MAYFAIL;
923
648bc357
CK
924 return gfp_flags;
925}
926
2334b75f
KRW
927/*
928 * On success pages list will hold count number of correctly
929 * cached pages. On failure will hold the negative return value (-ENOMEM, etc).
930 */
d0cef9fa
RH
931int ttm_dma_populate(struct ttm_dma_tt *ttm_dma, struct device *dev,
932 struct ttm_operation_ctx *ctx)
2334b75f 933{
8e7e7052 934 struct ttm_tt *ttm = &ttm_dma->ttm;
3231a769 935 struct ttm_mem_global *mem_glob = ttm->bdev->glob->mem_glob;
648bc357 936 unsigned long num_pages = ttm->num_pages;
2334b75f 937 struct dma_pool *pool;
8f2112f8 938 struct dma_page *d_page;
2334b75f
KRW
939 enum pool_type type;
940 unsigned i;
2334b75f
KRW
941 int ret;
942
943 if (ttm->state != tt_unpopulated)
944 return 0;
945
ec3fe391
RH
946 if (ttm_check_under_lowerlimit(mem_glob, num_pages, ctx))
947 return -ENOMEM;
948
648bc357
CK
949 INIT_LIST_HEAD(&ttm_dma->pages_list);
950 i = 0;
951
2334b75f 952 type = ttm_to_type(ttm->page_flags, ttm->caching_state);
648bc357
CK
953
954#ifdef CONFIG_TRANSPARENT_HUGEPAGE
955 if (ttm->page_flags & TTM_PAGE_FLAG_DMA32)
956 goto skip_huge;
957
958 pool = ttm_dma_find_pool(dev, type | IS_HUGE);
2334b75f 959 if (!pool) {
648bc357 960 gfp_t gfp_flags = ttm_dma_pool_gfp_flags(ttm_dma, true);
19dde589 961
648bc357
CK
962 pool = ttm_dma_pool_init(dev, gfp_flags, type | IS_HUGE);
963 if (IS_ERR_OR_NULL(pool))
964 goto skip_huge;
965 }
19dde589 966
648bc357
CK
967 while (num_pages >= HPAGE_PMD_NR) {
968 unsigned j;
969
8f2112f8
RH
970 d_page = ttm_dma_pool_get_pages(pool, ttm_dma, i);
971 if (!d_page)
648bc357
CK
972 break;
973
974 ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
d0cef9fa 975 pool->size, ctx);
648bc357
CK
976 if (unlikely(ret != 0)) {
977 ttm_dma_unpopulate(ttm_dma, dev);
2334b75f
KRW
978 return -ENOMEM;
979 }
648bc357 980
8f2112f8 981 d_page->vaddr |= VADDR_FLAG_UPDATED_COUNT;
648bc357
CK
982 for (j = i + 1; j < (i + HPAGE_PMD_NR); ++j) {
983 ttm->pages[j] = ttm->pages[j - 1] + 1;
984 ttm_dma->dma_address[j] = ttm_dma->dma_address[j - 1] +
985 PAGE_SIZE;
986 }
987
988 i += HPAGE_PMD_NR;
989 num_pages -= HPAGE_PMD_NR;
2334b75f
KRW
990 }
991
648bc357
CK
992skip_huge:
993#endif
994
995 pool = ttm_dma_find_pool(dev, type);
996 if (!pool) {
997 gfp_t gfp_flags = ttm_dma_pool_gfp_flags(ttm_dma, false);
998
999 pool = ttm_dma_pool_init(dev, gfp_flags, type);
1000 if (IS_ERR_OR_NULL(pool))
1001 return -ENOMEM;
1002 }
1003
1004 while (num_pages) {
8f2112f8
RH
1005 d_page = ttm_dma_pool_get_pages(pool, ttm_dma, i);
1006 if (!d_page) {
8e7e7052 1007 ttm_dma_unpopulate(ttm_dma, dev);
2334b75f
KRW
1008 return -ENOMEM;
1009 }
1010
d188bfa5 1011 ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
d0cef9fa 1012 pool->size, ctx);
2334b75f 1013 if (unlikely(ret != 0)) {
8e7e7052 1014 ttm_dma_unpopulate(ttm_dma, dev);
2334b75f
KRW
1015 return -ENOMEM;
1016 }
648bc357 1017
8f2112f8 1018 d_page->vaddr |= VADDR_FLAG_UPDATED_COUNT;
648bc357
CK
1019 ++i;
1020 --num_pages;
2334b75f
KRW
1021 }
1022
1023 if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
1024 ret = ttm_tt_swapin(ttm);
1025 if (unlikely(ret != 0)) {
8e7e7052 1026 ttm_dma_unpopulate(ttm_dma, dev);
2334b75f
KRW
1027 return ret;
1028 }
1029 }
1030
1031 ttm->state = tt_unbound;
1032 return 0;
1033}
1034EXPORT_SYMBOL_GPL(ttm_dma_populate);
1035
2334b75f 1036/* Put all pages in pages list to correct pool to wait for reuse */
8e7e7052 1037void ttm_dma_unpopulate(struct ttm_dma_tt *ttm_dma, struct device *dev)
2334b75f 1038{
8e7e7052 1039 struct ttm_tt *ttm = &ttm_dma->ttm;
3231a769 1040 struct ttm_mem_global *mem_glob = ttm->bdev->glob->mem_glob;
2334b75f
KRW
1041 struct dma_pool *pool;
1042 struct dma_page *d_page, *next;
1043 enum pool_type type;
1044 bool is_cached = false;
648bc357 1045 unsigned count, i, npages = 0;
2334b75f
KRW
1046 unsigned long irq_flags;
1047
1048 type = ttm_to_type(ttm->page_flags, ttm->caching_state);
648bc357
CK
1049
1050#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1051 pool = ttm_dma_find_pool(dev, type | IS_HUGE);
1052 if (pool) {
1053 count = 0;
1054 list_for_each_entry_safe(d_page, next, &ttm_dma->pages_list,
1055 page_list) {
1056 if (!(d_page->vaddr & VADDR_FLAG_HUGE_POOL))
1057 continue;
1058
1059 count++;
8f2112f8 1060 if (d_page->vaddr & VADDR_FLAG_UPDATED_COUNT) {
3231a769
CK
1061 ttm_mem_global_free_page(mem_glob, d_page->p,
1062 pool->size);
8f2112f8
RH
1063 d_page->vaddr &= ~VADDR_FLAG_UPDATED_COUNT;
1064 }
648bc357
CK
1065 ttm_dma_page_put(pool, d_page);
1066 }
1067
1068 spin_lock_irqsave(&pool->lock, irq_flags);
1069 pool->npages_in_use -= count;
1070 pool->nfrees += count;
1071 spin_unlock_irqrestore(&pool->lock, irq_flags);
1072 }
1073#endif
1074
2334b75f 1075 pool = ttm_dma_find_pool(dev, type);
0e113315 1076 if (!pool)
2334b75f 1077 return;
0e113315 1078
2334b75f
KRW
1079 is_cached = (ttm_dma_find_pool(pool->dev,
1080 ttm_to_type(ttm->page_flags, tt_cached)) == pool);
1081
1082 /* make sure pages array match list and count number of pages */
648bc357 1083 count = 0;
8f2112f8
RH
1084 list_for_each_entry_safe(d_page, next, &ttm_dma->pages_list,
1085 page_list) {
2334b75f
KRW
1086 ttm->pages[count] = d_page->p;
1087 count++;
8f2112f8
RH
1088
1089 if (d_page->vaddr & VADDR_FLAG_UPDATED_COUNT) {
3231a769
CK
1090 ttm_mem_global_free_page(mem_glob, d_page->p,
1091 pool->size);
8f2112f8
RH
1092 d_page->vaddr &= ~VADDR_FLAG_UPDATED_COUNT;
1093 }
1094
1095 if (is_cached)
1096 ttm_dma_page_put(pool, d_page);
2334b75f
KRW
1097 }
1098
1099 spin_lock_irqsave(&pool->lock, irq_flags);
1100 pool->npages_in_use -= count;
1101 if (is_cached) {
1102 pool->nfrees += count;
1103 } else {
1104 pool->npages_free += count;
8e7e7052 1105 list_splice(&ttm_dma->pages_list, &pool->free_list);
e9308884
JG
1106 /*
1107 * Wait to have at at least NUM_PAGES_TO_ALLOC number of pages
1108 * to free in order to minimize calls to set_memory_wb().
1109 */
1110 if (pool->npages_free >= (_manager->options.max_size +
1111 NUM_PAGES_TO_ALLOC))
2c05114d 1112 npages = pool->npages_free - _manager->options.max_size;
2334b75f
KRW
1113 }
1114 spin_unlock_irqrestore(&pool->lock, irq_flags);
1115
8e7e7052 1116 INIT_LIST_HEAD(&ttm_dma->pages_list);
2334b75f
KRW
1117 for (i = 0; i < ttm->num_pages; i++) {
1118 ttm->pages[i] = NULL;
8e7e7052 1119 ttm_dma->dma_address[i] = 0;
2334b75f
KRW
1120 }
1121
2c05114d
KRW
1122 /* shrink pool if necessary (only on !is_cached pools)*/
1123 if (npages)
881fdaa5 1124 ttm_dma_page_pool_free(pool, npages, false);
2334b75f
KRW
1125 ttm->state = tt_unpopulated;
1126}
1127EXPORT_SYMBOL_GPL(ttm_dma_unpopulate);
1128
1129/**
1130 * Callback for mm to request pool to reduce number of page held.
7dc19d5a
DC
1131 *
1132 * XXX: (dchinner) Deadlock warning!
1133 *
7dc19d5a
DC
1134 * I'm getting sadder as I hear more pathetical whimpers about needing per-pool
1135 * shrinkers
2334b75f 1136 */
7dc19d5a
DC
1137static unsigned long
1138ttm_dma_pool_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
2334b75f 1139{
46c2df68 1140 static unsigned start_pool;
2334b75f 1141 unsigned idx = 0;
46c2df68 1142 unsigned pool_offset;
2334b75f
KRW
1143 unsigned shrink_pages = sc->nr_to_scan;
1144 struct device_pools *p;
7dc19d5a 1145 unsigned long freed = 0;
2334b75f
KRW
1146
1147 if (list_empty(&_manager->pools))
7dc19d5a 1148 return SHRINK_STOP;
2334b75f 1149
22e71691
TH
1150 if (!mutex_trylock(&_manager->lock))
1151 return SHRINK_STOP;
11e504cc
TH
1152 if (!_manager->npools)
1153 goto out;
46c2df68 1154 pool_offset = ++start_pool % _manager->npools;
2334b75f
KRW
1155 list_for_each_entry(p, &_manager->pools, pools) {
1156 unsigned nr_free;
1157
7920aa5a 1158 if (!p->dev)
2334b75f
KRW
1159 continue;
1160 if (shrink_pages == 0)
1161 break;
1162 /* Do it in round-robin fashion. */
1163 if (++idx < pool_offset)
1164 continue;
1165 nr_free = shrink_pages;
881fdaa5
TH
1166 /* OK to use static buffer since global mutex is held. */
1167 shrink_pages = ttm_dma_page_pool_free(p->pool, nr_free, true);
7dc19d5a
DC
1168 freed += nr_free - shrink_pages;
1169
2334b75f 1170 pr_debug("%s: (%s:%d) Asked to shrink %d, have %d more to go\n",
25d0479a
JP
1171 p->pool->dev_name, p->pool->name, current->pid,
1172 nr_free, shrink_pages);
2334b75f 1173 }
11e504cc 1174out:
2334b75f 1175 mutex_unlock(&_manager->lock);
7dc19d5a
DC
1176 return freed;
1177}
1178
1179static unsigned long
1180ttm_dma_pool_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1181{
1182 struct device_pools *p;
1183 unsigned long count = 0;
1184
22e71691
TH
1185 if (!mutex_trylock(&_manager->lock))
1186 return 0;
7dc19d5a
DC
1187 list_for_each_entry(p, &_manager->pools, pools)
1188 count += p->pool->npages_free;
1189 mutex_unlock(&_manager->lock);
1190 return count;
2334b75f
KRW
1191}
1192
e2721595 1193static int ttm_dma_pool_mm_shrink_init(struct ttm_pool_manager *manager)
2334b75f 1194{
7dc19d5a
DC
1195 manager->mm_shrink.count_objects = ttm_dma_pool_shrink_count;
1196 manager->mm_shrink.scan_objects = &ttm_dma_pool_shrink_scan;
2334b75f 1197 manager->mm_shrink.seeks = 1;
e2721595 1198 return register_shrinker(&manager->mm_shrink);
2334b75f
KRW
1199}
1200
1201static void ttm_dma_pool_mm_shrink_fini(struct ttm_pool_manager *manager)
1202{
1203 unregister_shrinker(&manager->mm_shrink);
1204}
1205
1206int ttm_dma_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages)
1207{
e2721595 1208 int ret;
2334b75f
KRW
1209
1210 WARN_ON(_manager);
1211
25d0479a 1212 pr_info("Initializing DMA pool allocator\n");
2334b75f
KRW
1213
1214 _manager = kzalloc(sizeof(*_manager), GFP_KERNEL);
1215 if (!_manager)
e2721595 1216 return -ENOMEM;
2334b75f
KRW
1217
1218 mutex_init(&_manager->lock);
1219 INIT_LIST_HEAD(&_manager->pools);
1220
1221 _manager->options.max_size = max_pages;
1222 _manager->options.small = SMALL_ALLOCATION;
1223 _manager->options.alloc_size = NUM_PAGES_TO_ALLOC;
1224
1225 /* This takes care of auto-freeing the _manager */
1226 ret = kobject_init_and_add(&_manager->kobj, &ttm_pool_kobj_type,
1227 &glob->kobj, "dma_pool");
e2721595
RH
1228 if (unlikely(ret != 0))
1229 goto error;
1230
1231 ret = ttm_dma_pool_mm_shrink_init(_manager);
1232 if (unlikely(ret != 0))
1233 goto error;
2334b75f 1234 return 0;
e2721595
RH
1235
1236error:
1237 kobject_put(&_manager->kobj);
1238 _manager = NULL;
2334b75f
KRW
1239 return ret;
1240}
1241
1242void ttm_dma_page_alloc_fini(void)
1243{
1244 struct device_pools *p, *t;
1245
25d0479a 1246 pr_info("Finalizing DMA pool allocator\n");
2334b75f
KRW
1247 ttm_dma_pool_mm_shrink_fini(_manager);
1248
1249 list_for_each_entry_safe_reverse(p, t, &_manager->pools, pools) {
1250 dev_dbg(p->dev, "(%s:%d) Freeing.\n", p->pool->name,
1251 current->pid);
1252 WARN_ON(devres_destroy(p->dev, ttm_dma_pool_release,
1253 ttm_dma_pool_match, p->pool));
1254 ttm_dma_free_pool(p->dev, p->pool->type);
1255 }
1256 kobject_put(&_manager->kobj);
1257 _manager = NULL;
1258}
1259
1260int ttm_dma_page_alloc_debugfs(struct seq_file *m, void *data)
1261{
1262 struct device_pools *p;
1263 struct dma_pool *pool = NULL;
2334b75f
KRW
1264
1265 if (!_manager) {
1266 seq_printf(m, "No pool allocator running.\n");
1267 return 0;
1268 }
cf7d1bdf 1269 seq_printf(m, " pool refills pages freed inuse available name\n");
2334b75f
KRW
1270 mutex_lock(&_manager->lock);
1271 list_for_each_entry(p, &_manager->pools, pools) {
1272 struct device *dev = p->dev;
1273 if (!dev)
1274 continue;
1275 pool = p->pool;
1276 seq_printf(m, "%13s %12ld %13ld %8d %8d %8s\n",
1277 pool->name, pool->nrefills,
1278 pool->nfrees, pool->npages_in_use,
1279 pool->npages_free,
1280 pool->dev_name);
1281 }
1282 mutex_unlock(&_manager->lock);
1283 return 0;
1284}
1285EXPORT_SYMBOL_GPL(ttm_dma_page_alloc_debugfs);
7aeb7448
TH
1286
1287#endif