drm/nouveau/svm: fail NOUVEAU_SVM_INIT ioctl on unsupported devices
[linux-2.6-block.git] / drivers / gpu / drm / nouveau / nouveau_svm.c
CommitLineData
eeaf06ac
BS
1/*
2 * Copyright 2018 Red Hat Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22#include "nouveau_svm.h"
23#include "nouveau_drv.h"
24#include "nouveau_chan.h"
f180bf12 25#include "nouveau_dmem.h"
eeaf06ac
BS
26
27#include <nvif/notify.h>
28#include <nvif/object.h>
29#include <nvif/vmm.h>
30
31#include <nvif/class.h>
32#include <nvif/clb069.h>
33#include <nvif/ifc00d.h>
34
35#include <linux/sched/mm.h>
36#include <linux/sort.h>
37#include <linux/hmm.h>
38
39struct nouveau_svm {
40 struct nouveau_drm *drm;
41 struct mutex mutex;
42 struct list_head inst;
43
44 struct nouveau_svm_fault_buffer {
45 int id;
46 struct nvif_object object;
47 u32 entries;
48 u32 getaddr;
49 u32 putaddr;
50 u32 get;
51 u32 put;
52 struct nvif_notify notify;
53
54 struct nouveau_svm_fault {
55 u64 inst;
56 u64 addr;
57 u64 time;
58 u32 engine;
59 u8 gpc;
60 u8 hub;
61 u8 access;
62 u8 client;
63 u8 fault;
64 struct nouveau_svmm *svmm;
65 } **fault;
66 int fault_nr;
67 } buffer[1];
68};
69
70#define SVM_DBG(s,f,a...) NV_DEBUG((s)->drm, "svm: "f"\n", ##a)
71#define SVM_ERR(s,f,a...) NV_WARN((s)->drm, "svm: "f"\n", ##a)
72
e3d8b089
RC
73struct nouveau_pfnmap_args {
74 struct nvif_ioctl_v0 i;
75 struct nvif_ioctl_mthd_v0 m;
76 struct nvif_vmm_pfnmap_v0 p;
77};
78
eeaf06ac
BS
79struct nouveau_ivmm {
80 struct nouveau_svmm *svmm;
81 u64 inst;
82 struct list_head head;
83};
84
85static struct nouveau_ivmm *
86nouveau_ivmm_find(struct nouveau_svm *svm, u64 inst)
87{
88 struct nouveau_ivmm *ivmm;
89 list_for_each_entry(ivmm, &svm->inst, head) {
90 if (ivmm->inst == inst)
91 return ivmm;
92 }
93 return NULL;
94}
95
eeaf06ac
BS
96#define SVMM_DBG(s,f,a...) \
97 NV_DEBUG((s)->vmm->cli->drm, "svm-%p: "f"\n", (s), ##a)
98#define SVMM_ERR(s,f,a...) \
99 NV_WARN((s)->vmm->cli->drm, "svm-%p: "f"\n", (s), ##a)
100
f180bf12
JG
101int
102nouveau_svmm_bind(struct drm_device *dev, void *data,
103 struct drm_file *file_priv)
104{
105 struct nouveau_cli *cli = nouveau_cli(file_priv);
106 struct drm_nouveau_svm_bind *args = data;
107 unsigned target, cmd, priority;
cfa736f5 108 unsigned long addr, end;
f180bf12
JG
109 struct mm_struct *mm;
110
111 args->va_start &= PAGE_MASK;
cfa736f5 112 args->va_end = ALIGN(args->va_end, PAGE_SIZE);
f180bf12
JG
113
114 /* Sanity check arguments */
115 if (args->reserved0 || args->reserved1)
116 return -EINVAL;
117 if (args->header & (~NOUVEAU_SVM_BIND_VALID_MASK))
118 return -EINVAL;
119 if (args->va_start >= args->va_end)
120 return -EINVAL;
f180bf12
JG
121
122 cmd = args->header >> NOUVEAU_SVM_BIND_COMMAND_SHIFT;
123 cmd &= NOUVEAU_SVM_BIND_COMMAND_MASK;
124 switch (cmd) {
125 case NOUVEAU_SVM_BIND_COMMAND__MIGRATE:
126 break;
127 default:
128 return -EINVAL;
129 }
130
131 priority = args->header >> NOUVEAU_SVM_BIND_PRIORITY_SHIFT;
132 priority &= NOUVEAU_SVM_BIND_PRIORITY_MASK;
133
134 /* FIXME support CPU target ie all target value < GPU_VRAM */
135 target = args->header >> NOUVEAU_SVM_BIND_TARGET_SHIFT;
136 target &= NOUVEAU_SVM_BIND_TARGET_MASK;
137 switch (target) {
138 case NOUVEAU_SVM_BIND_TARGET__GPU_VRAM:
139 break;
140 default:
141 return -EINVAL;
142 }
143
144 /*
145 * FIXME: For now refuse non 0 stride, we need to change the migrate
146 * kernel function to handle stride to avoid to create a mess within
147 * each device driver.
148 */
149 if (args->stride)
150 return -EINVAL;
151
f180bf12
JG
152 /*
153 * Ok we are ask to do something sane, for now we only support migrate
154 * commands but we will add things like memory policy (what to do on
155 * page fault) and maybe some other commands.
156 */
157
158 mm = get_task_mm(current);
d8ed45c5 159 mmap_read_lock(mm);
f180bf12 160
822cab61 161 if (!cli->svm.svmm) {
d8ed45c5 162 mmap_read_unlock(mm);
822cab61
RC
163 return -EINVAL;
164 }
165
cfa736f5 166 for (addr = args->va_start, end = args->va_end; addr < end;) {
f180bf12
JG
167 struct vm_area_struct *vma;
168 unsigned long next;
169
170 vma = find_vma_intersection(mm, addr, end);
171 if (!vma)
172 break;
173
b92103b5 174 addr = max(addr, vma->vm_start);
f180bf12
JG
175 next = min(vma->vm_end, end);
176 /* This is a best effort so we ignore errors */
e3d8b089
RC
177 nouveau_dmem_migrate_vma(cli->drm, cli->svm.svmm, vma, addr,
178 next);
f180bf12
JG
179 addr = next;
180 }
181
182 /*
183 * FIXME Return the number of page we have migrated, again we need to
184 * update the migrate API to return that information so that we can
185 * report it to user space.
186 */
187 args->result = 0;
188
d8ed45c5 189 mmap_read_unlock(mm);
f180bf12
JG
190 mmput(mm);
191
192 return 0;
193}
194
eeaf06ac
BS
195/* Unlink channel instance from SVMM. */
196void
197nouveau_svmm_part(struct nouveau_svmm *svmm, u64 inst)
198{
199 struct nouveau_ivmm *ivmm;
200 if (svmm) {
201 mutex_lock(&svmm->vmm->cli->drm->svm->mutex);
202 ivmm = nouveau_ivmm_find(svmm->vmm->cli->drm->svm, inst);
203 if (ivmm) {
204 list_del(&ivmm->head);
205 kfree(ivmm);
206 }
207 mutex_unlock(&svmm->vmm->cli->drm->svm->mutex);
208 }
209}
210
211/* Link channel instance to SVMM. */
212int
213nouveau_svmm_join(struct nouveau_svmm *svmm, u64 inst)
214{
215 struct nouveau_ivmm *ivmm;
216 if (svmm) {
217 if (!(ivmm = kmalloc(sizeof(*ivmm), GFP_KERNEL)))
218 return -ENOMEM;
219 ivmm->svmm = svmm;
220 ivmm->inst = inst;
221
222 mutex_lock(&svmm->vmm->cli->drm->svm->mutex);
223 list_add(&ivmm->head, &svmm->vmm->cli->drm->svm->inst);
224 mutex_unlock(&svmm->vmm->cli->drm->svm->mutex);
225 }
226 return 0;
227}
228
229/* Invalidate SVMM address-range on GPU. */
f8477ce6 230void
eeaf06ac
BS
231nouveau_svmm_invalidate(struct nouveau_svmm *svmm, u64 start, u64 limit)
232{
233 if (limit > start) {
234 bool super = svmm->vmm->vmm.object.client->super;
235 svmm->vmm->vmm.object.client->super = true;
236 nvif_object_mthd(&svmm->vmm->vmm.object, NVIF_VMM_V0_PFNCLR,
237 &(struct nvif_vmm_pfnclr_v0) {
238 .addr = start,
239 .size = limit - start,
240 }, sizeof(struct nvif_vmm_pfnclr_v0));
241 svmm->vmm->vmm.object.client->super = super;
242 }
243}
244
245static int
c625c274
JG
246nouveau_svmm_invalidate_range_start(struct mmu_notifier *mn,
247 const struct mmu_notifier_range *update)
eeaf06ac 248{
c625c274
JG
249 struct nouveau_svmm *svmm =
250 container_of(mn, struct nouveau_svmm, notifier);
eeaf06ac
BS
251 unsigned long start = update->start;
252 unsigned long limit = update->end;
253
1f961807 254 if (!mmu_notifier_range_blockable(update))
eeaf06ac
BS
255 return -EAGAIN;
256
257 SVMM_DBG(svmm, "invalidate %016lx-%016lx", start, limit);
258
259 mutex_lock(&svmm->mutex);
c625c274
JG
260 if (unlikely(!svmm->vmm))
261 goto out;
262
f8477ce6
RC
263 /*
264 * Ignore invalidation callbacks for device private pages since
265 * the invalidation is handled as part of the migration process.
266 */
267 if (update->event == MMU_NOTIFY_MIGRATE &&
268 update->migrate_pgmap_owner == svmm->vmm->cli->drm->dev)
269 goto out;
270
eeaf06ac
BS
271 if (limit > svmm->unmanaged.start && start < svmm->unmanaged.limit) {
272 if (start < svmm->unmanaged.start) {
273 nouveau_svmm_invalidate(svmm, start,
274 svmm->unmanaged.limit);
275 }
276 start = svmm->unmanaged.limit;
277 }
278
279 nouveau_svmm_invalidate(svmm, start, limit);
c625c274
JG
280
281out:
eeaf06ac
BS
282 mutex_unlock(&svmm->mutex);
283 return 0;
284}
285
c625c274
JG
286static void nouveau_svmm_free_notifier(struct mmu_notifier *mn)
287{
288 kfree(container_of(mn, struct nouveau_svmm, notifier));
289}
290
291static const struct mmu_notifier_ops nouveau_mn_ops = {
292 .invalidate_range_start = nouveau_svmm_invalidate_range_start,
293 .free_notifier = nouveau_svmm_free_notifier,
294};
295
eeaf06ac
BS
296void
297nouveau_svmm_fini(struct nouveau_svmm **psvmm)
298{
299 struct nouveau_svmm *svmm = *psvmm;
300 if (svmm) {
c625c274
JG
301 mutex_lock(&svmm->mutex);
302 svmm->vmm = NULL;
303 mutex_unlock(&svmm->mutex);
304 mmu_notifier_put(&svmm->notifier);
eeaf06ac
BS
305 *psvmm = NULL;
306 }
307}
308
309int
310nouveau_svmm_init(struct drm_device *dev, void *data,
311 struct drm_file *file_priv)
312{
313 struct nouveau_cli *cli = nouveau_cli(file_priv);
314 struct nouveau_svmm *svmm;
315 struct drm_nouveau_svm_init *args = data;
316 int ret;
317
dcd602cc
KH
318 /* We need to fail if svm is disabled */
319 if (!cli->drm->svm)
320 return -ENOSYS;
321
eeaf06ac
BS
322 /* Allocate tracking for SVM-enabled VMM. */
323 if (!(svmm = kzalloc(sizeof(*svmm), GFP_KERNEL)))
324 return -ENOMEM;
325 svmm->vmm = &cli->svm;
326 svmm->unmanaged.start = args->unmanaged_addr;
327 svmm->unmanaged.limit = args->unmanaged_addr + args->unmanaged_size;
328 mutex_init(&svmm->mutex);
329
330 /* Check that SVM isn't already enabled for the client. */
331 mutex_lock(&cli->mutex);
332 if (cli->svm.cli) {
333 ret = -EBUSY;
c625c274 334 goto out_free;
eeaf06ac
BS
335 }
336
337 /* Allocate a new GPU VMM that can support SVM (managed by the
338 * client, with replayable faults enabled).
339 *
340 * All future channel/memory allocations will make use of this
341 * VMM instead of the standard one.
342 */
45faf3d7
BS
343 ret = nvif_vmm_ctor(&cli->mmu, "svmVmm",
344 cli->vmm.vmm.object.oclass, true,
eeaf06ac
BS
345 args->unmanaged_addr, args->unmanaged_size,
346 &(struct gp100_vmm_v0) {
347 .fault_replay = true,
348 }, sizeof(struct gp100_vmm_v0), &cli->svm.vmm);
349 if (ret)
c625c274 350 goto out_free;
eeaf06ac 351
d8ed45c5 352 mmap_write_lock(current->mm);
c625c274
JG
353 svmm->notifier.ops = &nouveau_mn_ops;
354 ret = __mmu_notifier_register(&svmm->notifier, current->mm);
eeaf06ac 355 if (ret)
20fef4ef 356 goto out_mm_unlock;
c625c274
JG
357 /* Note, ownership of svmm transfers to mmu_notifier */
358
359 cli->svm.svmm = svmm;
360 cli->svm.cli = cli;
d8ed45c5 361 mmap_write_unlock(current->mm);
eeaf06ac 362 mutex_unlock(&cli->mutex);
c625c274
JG
363 return 0;
364
c625c274 365out_mm_unlock:
d8ed45c5 366 mmap_write_unlock(current->mm);
c625c274
JG
367out_free:
368 mutex_unlock(&cli->mutex);
369 kfree(svmm);
eeaf06ac
BS
370 return ret;
371}
372
eeaf06ac
BS
373/* Issue fault replay for GPU to retry accesses that faulted previously. */
374static void
375nouveau_svm_fault_replay(struct nouveau_svm *svm)
376{
377 SVM_DBG(svm, "replay");
378 WARN_ON(nvif_object_mthd(&svm->drm->client.vmm.vmm.object,
379 GP100_VMM_VN_FAULT_REPLAY,
380 &(struct gp100_vmm_fault_replay_vn) {},
381 sizeof(struct gp100_vmm_fault_replay_vn)));
382}
383
384/* Cancel a replayable fault that could not be handled.
385 *
386 * Cancelling the fault will trigger recovery to reset the engine
387 * and kill the offending channel (ie. GPU SIGSEGV).
388 */
389static void
390nouveau_svm_fault_cancel(struct nouveau_svm *svm,
391 u64 inst, u8 hub, u8 gpc, u8 client)
392{
393 SVM_DBG(svm, "cancel %016llx %d %02x %02x", inst, hub, gpc, client);
394 WARN_ON(nvif_object_mthd(&svm->drm->client.vmm.vmm.object,
395 GP100_VMM_VN_FAULT_CANCEL,
396 &(struct gp100_vmm_fault_cancel_v0) {
397 .hub = hub,
398 .gpc = gpc,
399 .client = client,
400 .inst = inst,
401 }, sizeof(struct gp100_vmm_fault_cancel_v0)));
402}
403
404static void
405nouveau_svm_fault_cancel_fault(struct nouveau_svm *svm,
406 struct nouveau_svm_fault *fault)
407{
408 nouveau_svm_fault_cancel(svm, fault->inst,
409 fault->hub,
410 fault->gpc,
411 fault->client);
412}
413
414static int
415nouveau_svm_fault_cmp(const void *a, const void *b)
416{
417 const struct nouveau_svm_fault *fa = *(struct nouveau_svm_fault **)a;
418 const struct nouveau_svm_fault *fb = *(struct nouveau_svm_fault **)b;
419 int ret;
420 if ((ret = (s64)fa->inst - fb->inst))
421 return ret;
422 if ((ret = (s64)fa->addr - fb->addr))
423 return ret;
424 /*XXX: atomic? */
425 return (fa->access == 0 || fa->access == 3) -
426 (fb->access == 0 || fb->access == 3);
427}
428
429static void
430nouveau_svm_fault_cache(struct nouveau_svm *svm,
431 struct nouveau_svm_fault_buffer *buffer, u32 offset)
432{
433 struct nvif_object *memory = &buffer->object;
434 const u32 instlo = nvif_rd32(memory, offset + 0x00);
435 const u32 insthi = nvif_rd32(memory, offset + 0x04);
436 const u32 addrlo = nvif_rd32(memory, offset + 0x08);
437 const u32 addrhi = nvif_rd32(memory, offset + 0x0c);
438 const u32 timelo = nvif_rd32(memory, offset + 0x10);
439 const u32 timehi = nvif_rd32(memory, offset + 0x14);
440 const u32 engine = nvif_rd32(memory, offset + 0x18);
441 const u32 info = nvif_rd32(memory, offset + 0x1c);
442 const u64 inst = (u64)insthi << 32 | instlo;
443 const u8 gpc = (info & 0x1f000000) >> 24;
444 const u8 hub = (info & 0x00100000) >> 20;
445 const u8 client = (info & 0x00007f00) >> 8;
446 struct nouveau_svm_fault *fault;
447
448 //XXX: i think we're supposed to spin waiting */
449 if (WARN_ON(!(info & 0x80000000)))
450 return;
451
452 nvif_mask(memory, offset + 0x1c, 0x80000000, 0x00000000);
453
454 if (!buffer->fault[buffer->fault_nr]) {
455 fault = kmalloc(sizeof(*fault), GFP_KERNEL);
456 if (WARN_ON(!fault)) {
457 nouveau_svm_fault_cancel(svm, inst, hub, gpc, client);
458 return;
459 }
460 buffer->fault[buffer->fault_nr] = fault;
461 }
462
463 fault = buffer->fault[buffer->fault_nr++];
464 fault->inst = inst;
465 fault->addr = (u64)addrhi << 32 | addrlo;
466 fault->time = (u64)timehi << 32 | timelo;
467 fault->engine = engine;
468 fault->gpc = gpc;
469 fault->hub = hub;
470 fault->access = (info & 0x000f0000) >> 16;
471 fault->client = client;
472 fault->fault = (info & 0x0000001f);
473
474 SVM_DBG(svm, "fault %016llx %016llx %02x",
475 fault->inst, fault->addr, fault->access);
476}
477
20fef4ef
JG
478struct svm_notifier {
479 struct mmu_interval_notifier notifier;
480 struct nouveau_svmm *svmm;
481};
482
483static bool nouveau_svm_range_invalidate(struct mmu_interval_notifier *mni,
484 const struct mmu_notifier_range *range,
485 unsigned long cur_seq)
02712bc3 486{
20fef4ef
JG
487 struct svm_notifier *sn =
488 container_of(mni, struct svm_notifier, notifier);
02712bc3 489
20fef4ef
JG
490 /*
491 * serializes the update to mni->invalidate_seq done by caller and
492 * prevents invalidation of the PTE from progressing while HW is being
493 * programmed. This is very hacky and only works because the normal
494 * notifier that does invalidation is always called after the range
495 * notifier.
496 */
497 if (mmu_notifier_range_blockable(range))
498 mutex_lock(&sn->svmm->mutex);
499 else if (!mutex_trylock(&sn->svmm->mutex))
500 return false;
501 mmu_interval_set_seq(mni, cur_seq);
502 mutex_unlock(&sn->svmm->mutex);
503 return true;
02712bc3
CH
504}
505
20fef4ef
JG
506static const struct mmu_interval_notifier_ops nouveau_svm_mni_ops = {
507 .invalidate = nouveau_svm_range_invalidate,
508};
509
2733ea14 510static void nouveau_hmm_convert_pfn(struct nouveau_drm *drm,
b223555d
RC
511 struct hmm_range *range,
512 struct nouveau_pfnmap_args *args)
2733ea14 513{
0cafc62e 514 struct page *page;
2733ea14
JG
515
516 /*
b223555d 517 * The address prepared here is passed through nvif_object_ioctl()
2733ea14
JG
518 * to an eventual DMA map in something like gp100_vmm_pgt_pfn()
519 *
520 * This is all just encoding the internal hmm representation into a
521 * different nouveau internal representation.
522 */
0cafc62e 523 if (!(range->hmm_pfns[0] & HMM_PFN_VALID)) {
b223555d 524 args->p.phys[0] = 0;
0cafc62e 525 return;
2733ea14 526 }
2733ea14 527
0cafc62e 528 page = hmm_pfn_to_page(range->hmm_pfns[0]);
b223555d
RC
529 /*
530 * Only map compound pages to the GPU if the CPU is also mapping the
531 * page as a compound page. Otherwise, the PTE protections might not be
532 * consistent (e.g., CPU only maps part of a compound page).
533 * Note that the underlying page might still be larger than the
534 * CPU mapping (e.g., a PUD sized compound page partially mapped with
535 * a PMD sized page table entry).
536 */
537 if (hmm_pfn_to_map_order(range->hmm_pfns[0])) {
538 unsigned long addr = args->p.addr;
539
540 args->p.page = hmm_pfn_to_map_order(range->hmm_pfns[0]) +
541 PAGE_SHIFT;
542 args->p.size = 1UL << args->p.page;
543 args->p.addr &= ~(args->p.size - 1);
544 page -= (addr - args->p.addr) >> PAGE_SHIFT;
2733ea14 545 }
0cafc62e 546 if (is_device_private_page(page))
b223555d 547 args->p.phys[0] = nouveau_dmem_page_addr(page) |
0cafc62e
RC
548 NVIF_VMM_PFNMAP_V0_V |
549 NVIF_VMM_PFNMAP_V0_VRAM;
550 else
b223555d 551 args->p.phys[0] = page_to_phys(page) |
0cafc62e
RC
552 NVIF_VMM_PFNMAP_V0_V |
553 NVIF_VMM_PFNMAP_V0_HOST;
554 if (range->hmm_pfns[0] & HMM_PFN_WRITE)
b223555d 555 args->p.phys[0] |= NVIF_VMM_PFNMAP_V0_W;
2733ea14
JG
556}
557
20fef4ef 558static int nouveau_range_fault(struct nouveau_svmm *svmm,
b223555d
RC
559 struct nouveau_drm *drm,
560 struct nouveau_pfnmap_args *args, u32 size,
561 unsigned long hmm_flags,
2733ea14 562 struct svm_notifier *notifier)
02712bc3 563{
20fef4ef
JG
564 unsigned long timeout =
565 jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
566 /* Have HMM fault pages within the fault window to the GPU. */
0cafc62e 567 unsigned long hmm_pfns[1];
20fef4ef
JG
568 struct hmm_range range = {
569 .notifier = &notifier->notifier,
570 .start = notifier->notifier.interval_tree.start,
571 .end = notifier->notifier.interval_tree.last + 1,
0cafc62e 572 .default_flags = hmm_flags,
2733ea14 573 .hmm_pfns = hmm_pfns,
ed710a6e 574 .dev_private_owner = drm->dev,
20fef4ef
JG
575 };
576 struct mm_struct *mm = notifier->notifier.mm;
be957c88 577 int ret;
02712bc3 578
20fef4ef
JG
579 while (true) {
580 if (time_after(jiffies, timeout))
581 return -EBUSY;
02712bc3 582
20fef4ef 583 range.notifier_seq = mmu_interval_read_begin(range.notifier);
d8ed45c5 584 mmap_read_lock(mm);
6bfef2f9 585 ret = hmm_range_fault(&range);
d8ed45c5 586 mmap_read_unlock(mm);
be957c88
JG
587 if (ret) {
588 if (ret == -EBUSY)
20fef4ef
JG
589 continue;
590 return ret;
591 }
02712bc3 592
20fef4ef
JG
593 mutex_lock(&svmm->mutex);
594 if (mmu_interval_read_retry(range.notifier,
595 range.notifier_seq)) {
596 mutex_unlock(&svmm->mutex);
597 continue;
598 }
599 break;
02712bc3
CH
600 }
601
b223555d 602 nouveau_hmm_convert_pfn(drm, &range, args);
20fef4ef
JG
603
604 svmm->vmm->vmm.object.client->super = true;
b223555d 605 ret = nvif_object_ioctl(&svmm->vmm->vmm.object, args, size, NULL);
20fef4ef
JG
606 svmm->vmm->vmm.object.client->super = false;
607 mutex_unlock(&svmm->mutex);
608
609 return ret;
02712bc3
CH
610}
611
eeaf06ac
BS
612static int
613nouveau_svm_fault(struct nvif_notify *notify)
614{
615 struct nouveau_svm_fault_buffer *buffer =
616 container_of(notify, typeof(*buffer), notify);
617 struct nouveau_svm *svm =
618 container_of(buffer, typeof(*svm), buffer[buffer->id]);
619 struct nvif_object *device = &svm->drm->client.device.object;
620 struct nouveau_svmm *svmm;
621 struct {
0cafc62e
RC
622 struct nouveau_pfnmap_args i;
623 u64 phys[1];
eeaf06ac 624 } args;
0cafc62e 625 unsigned long hmm_flags;
eeaf06ac 626 u64 inst, start, limit;
0cafc62e 627 int fi, fn;
eeaf06ac
BS
628 int replay = 0, ret;
629
630 /* Parse available fault buffer entries into a cache, and update
631 * the GET pointer so HW can reuse the entries.
632 */
633 SVM_DBG(svm, "fault handler");
634 if (buffer->get == buffer->put) {
635 buffer->put = nvif_rd32(device, buffer->putaddr);
636 buffer->get = nvif_rd32(device, buffer->getaddr);
637 if (buffer->get == buffer->put)
638 return NVIF_NOTIFY_KEEP;
639 }
640 buffer->fault_nr = 0;
641
642 SVM_DBG(svm, "get %08x put %08x", buffer->get, buffer->put);
643 while (buffer->get != buffer->put) {
644 nouveau_svm_fault_cache(svm, buffer, buffer->get * 0x20);
645 if (++buffer->get == buffer->entries)
646 buffer->get = 0;
647 }
648 nvif_wr32(device, buffer->getaddr, buffer->get);
649 SVM_DBG(svm, "%d fault(s) pending", buffer->fault_nr);
650
651 /* Sort parsed faults by instance pointer to prevent unnecessary
652 * instance to SVMM translations, followed by address and access
653 * type to reduce the amount of work when handling the faults.
654 */
655 sort(buffer->fault, buffer->fault_nr, sizeof(*buffer->fault),
656 nouveau_svm_fault_cmp, NULL);
657
658 /* Lookup SVMM structure for each unique instance pointer. */
659 mutex_lock(&svm->mutex);
660 for (fi = 0, svmm = NULL; fi < buffer->fault_nr; fi++) {
661 if (!svmm || buffer->fault[fi]->inst != inst) {
662 struct nouveau_ivmm *ivmm =
663 nouveau_ivmm_find(svm, buffer->fault[fi]->inst);
664 svmm = ivmm ? ivmm->svmm : NULL;
665 inst = buffer->fault[fi]->inst;
666 SVM_DBG(svm, "inst %016llx -> svm-%p", inst, svmm);
667 }
668 buffer->fault[fi]->svmm = svmm;
669 }
670 mutex_unlock(&svm->mutex);
671
672 /* Process list of faults. */
673 args.i.i.version = 0;
674 args.i.i.type = NVIF_IOCTL_V0_MTHD;
675 args.i.m.version = 0;
676 args.i.m.method = NVIF_VMM_V0_PFNMAP;
677 args.i.p.version = 0;
678
679 for (fi = 0; fn = fi + 1, fi < buffer->fault_nr; fi = fn) {
20fef4ef 680 struct svm_notifier notifier;
c625c274
JG
681 struct mm_struct *mm;
682
eeaf06ac
BS
683 /* Cancel any faults from non-SVM channels. */
684 if (!(svmm = buffer->fault[fi]->svmm)) {
685 nouveau_svm_fault_cancel_fault(svm, buffer->fault[fi]);
686 continue;
687 }
688 SVMM_DBG(svmm, "addr %016llx", buffer->fault[fi]->addr);
689
690 /* We try and group handling of faults within a small
691 * window into a single update.
692 */
693 start = buffer->fault[fi]->addr;
0cafc62e 694 limit = start + PAGE_SIZE;
eeaf06ac
BS
695 if (start < svmm->unmanaged.limit)
696 limit = min_t(u64, limit, svmm->unmanaged.start);
eeaf06ac 697
0cafc62e
RC
698 /*
699 * Prepare the GPU-side update of all pages within the
700 * fault window, determining required pages and access
701 * permissions based on pending faults.
eeaf06ac 702 */
0cafc62e
RC
703 args.i.p.addr = start;
704 args.i.p.page = PAGE_SHIFT;
705 args.i.p.size = PAGE_SIZE;
706 /*
707 * Determine required permissions based on GPU fault
708 * access flags.
709 * XXX: atomic?
710 */
711 switch (buffer->fault[fi]->access) {
712 case 0: /* READ. */
713 hmm_flags = HMM_PFN_REQ_FAULT;
714 break;
715 case 3: /* PREFETCH. */
716 hmm_flags = 0;
717 break;
718 default:
719 hmm_flags = HMM_PFN_REQ_FAULT | HMM_PFN_REQ_WRITE;
720 break;
eeaf06ac 721 }
eeaf06ac 722
0cafc62e
RC
723 mm = svmm->notifier.mm;
724 if (!mmget_not_zero(mm)) {
eeaf06ac
BS
725 nouveau_svm_fault_cancel_fault(svm, buffer->fault[fi]);
726 continue;
727 }
728
0cafc62e
RC
729 notifier.svmm = svmm;
730 ret = mmu_interval_notifier_insert(&notifier.notifier, mm,
731 args.i.p.addr, args.i.p.size,
732 &nouveau_svm_mni_ops);
733 if (!ret) {
b223555d
RC
734 ret = nouveau_range_fault(svmm, svm->drm, &args.i,
735 sizeof(args), hmm_flags, &notifier);
0cafc62e
RC
736 mmu_interval_notifier_remove(&notifier.notifier);
737 }
738 mmput(mm);
eeaf06ac 739
b223555d 740 limit = args.i.p.addr + args.i.p.size;
0cafc62e 741 for (fn = fi; ++fn < buffer->fault_nr; ) {
eeaf06ac
BS
742 /* It's okay to skip over duplicate addresses from the
743 * same SVMM as faults are ordered by access type such
744 * that only the first one needs to be handled.
745 *
746 * ie. WRITE faults appear first, thus any handling of
747 * pending READ faults will already be satisfied.
b223555d
RC
748 * But if a large page is mapped, make sure subsequent
749 * fault addresses have sufficient access permission.
eeaf06ac 750 */
0cafc62e 751 if (buffer->fault[fn]->svmm != svmm ||
b223555d
RC
752 buffer->fault[fn]->addr >= limit ||
753 (buffer->fault[fi]->access == 0 /* READ. */ &&
754 !(args.phys[0] & NVIF_VMM_PFNMAP_V0_V)) ||
755 (buffer->fault[fi]->access != 0 /* READ. */ &&
756 buffer->fault[fi]->access != 3 /* PREFETCH. */ &&
757 !(args.phys[0] & NVIF_VMM_PFNMAP_V0_W)))
eeaf06ac 758 break;
eeaf06ac
BS
759 }
760
0cafc62e
RC
761 /* If handling failed completely, cancel all faults. */
762 if (ret) {
763 while (fi < fn) {
764 struct nouveau_svm_fault *fault =
765 buffer->fault[fi++];
eeaf06ac 766
eeaf06ac 767 nouveau_svm_fault_cancel_fault(svm, fault);
eeaf06ac 768 }
0cafc62e 769 } else
eeaf06ac 770 replay++;
eeaf06ac
BS
771 }
772
773 /* Issue fault replay to the GPU. */
774 if (replay)
775 nouveau_svm_fault_replay(svm);
776 return NVIF_NOTIFY_KEEP;
777}
778
e3d8b089
RC
779static struct nouveau_pfnmap_args *
780nouveau_pfns_to_args(void *pfns)
781{
782 return container_of(pfns, struct nouveau_pfnmap_args, p.phys);
783}
784
785u64 *
786nouveau_pfns_alloc(unsigned long npages)
787{
788 struct nouveau_pfnmap_args *args;
789
790 args = kzalloc(struct_size(args, p.phys, npages), GFP_KERNEL);
791 if (!args)
792 return NULL;
793
794 args->i.type = NVIF_IOCTL_V0_MTHD;
795 args->m.method = NVIF_VMM_V0_PFNMAP;
796 args->p.page = PAGE_SHIFT;
797
798 return args->p.phys;
799}
800
801void
802nouveau_pfns_free(u64 *pfns)
803{
804 struct nouveau_pfnmap_args *args = nouveau_pfns_to_args(pfns);
805
806 kfree(args);
807}
808
809void
810nouveau_pfns_map(struct nouveau_svmm *svmm, struct mm_struct *mm,
811 unsigned long addr, u64 *pfns, unsigned long npages)
812{
813 struct nouveau_pfnmap_args *args = nouveau_pfns_to_args(pfns);
814 int ret;
815
816 args->p.addr = addr;
817 args->p.size = npages << PAGE_SHIFT;
818
819 mutex_lock(&svmm->mutex);
820
821 svmm->vmm->vmm.object.client->super = true;
822 ret = nvif_object_ioctl(&svmm->vmm->vmm.object, args, sizeof(*args) +
823 npages * sizeof(args->p.phys[0]), NULL);
824 svmm->vmm->vmm.object.client->super = false;
825
826 mutex_unlock(&svmm->mutex);
827}
828
eeaf06ac
BS
829static void
830nouveau_svm_fault_buffer_fini(struct nouveau_svm *svm, int id)
831{
832 struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id];
833 nvif_notify_put(&buffer->notify);
834}
835
836static int
837nouveau_svm_fault_buffer_init(struct nouveau_svm *svm, int id)
838{
839 struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id];
840 struct nvif_object *device = &svm->drm->client.device.object;
841 buffer->get = nvif_rd32(device, buffer->getaddr);
842 buffer->put = nvif_rd32(device, buffer->putaddr);
843 SVM_DBG(svm, "get %08x put %08x (init)", buffer->get, buffer->put);
844 return nvif_notify_get(&buffer->notify);
845}
846
847static void
848nouveau_svm_fault_buffer_dtor(struct nouveau_svm *svm, int id)
849{
850 struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id];
851 int i;
852
853 if (buffer->fault) {
854 for (i = 0; buffer->fault[i] && i < buffer->entries; i++)
855 kfree(buffer->fault[i]);
856 kvfree(buffer->fault);
857 }
858
859 nouveau_svm_fault_buffer_fini(svm, id);
860
f7a7d22a 861 nvif_notify_dtor(&buffer->notify);
9ac596a4 862 nvif_object_dtor(&buffer->object);
eeaf06ac
BS
863}
864
865static int
866nouveau_svm_fault_buffer_ctor(struct nouveau_svm *svm, s32 oclass, int id)
867{
868 struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id];
869 struct nouveau_drm *drm = svm->drm;
870 struct nvif_object *device = &drm->client.device.object;
871 struct nvif_clb069_v0 args = {};
872 int ret;
873
874 buffer->id = id;
875
9ac596a4
BS
876 ret = nvif_object_ctor(device, "svmFaultBuffer", 0, oclass, &args,
877 sizeof(args), &buffer->object);
eeaf06ac
BS
878 if (ret < 0) {
879 SVM_ERR(svm, "Fault buffer allocation failed: %d", ret);
880 return ret;
881 }
882
883 nvif_object_map(&buffer->object, NULL, 0);
884 buffer->entries = args.entries;
885 buffer->getaddr = args.get;
886 buffer->putaddr = args.put;
887
f7a7d22a
BS
888 ret = nvif_notify_ctor(&buffer->object, "svmFault", nouveau_svm_fault,
889 true, NVB069_V0_NTFY_FAULT, NULL, 0, 0,
eeaf06ac
BS
890 &buffer->notify);
891 if (ret)
892 return ret;
893
894 buffer->fault = kvzalloc(sizeof(*buffer->fault) * buffer->entries, GFP_KERNEL);
895 if (!buffer->fault)
896 return -ENOMEM;
897
898 return nouveau_svm_fault_buffer_init(svm, id);
899}
900
901void
902nouveau_svm_resume(struct nouveau_drm *drm)
903{
904 struct nouveau_svm *svm = drm->svm;
905 if (svm)
906 nouveau_svm_fault_buffer_init(svm, 0);
907}
908
909void
910nouveau_svm_suspend(struct nouveau_drm *drm)
911{
912 struct nouveau_svm *svm = drm->svm;
913 if (svm)
914 nouveau_svm_fault_buffer_fini(svm, 0);
915}
916
917void
918nouveau_svm_fini(struct nouveau_drm *drm)
919{
920 struct nouveau_svm *svm = drm->svm;
921 if (svm) {
922 nouveau_svm_fault_buffer_dtor(svm, 0);
923 kfree(drm->svm);
924 drm->svm = NULL;
925 }
926}
927
928void
929nouveau_svm_init(struct nouveau_drm *drm)
930{
931 static const struct nvif_mclass buffers[] = {
932 { VOLTA_FAULT_BUFFER_A, 0 },
933 { MAXWELL_FAULT_BUFFER_A, 0 },
934 {}
935 };
936 struct nouveau_svm *svm;
937 int ret;
938
939 /* Disable on Volta and newer until channel recovery is fixed,
940 * otherwise clients will have a trivial way to trash the GPU
941 * for everyone.
942 */
943 if (drm->client.device.info.family > NV_DEVICE_INFO_V0_PASCAL)
944 return;
945
946 if (!(drm->svm = svm = kzalloc(sizeof(*drm->svm), GFP_KERNEL)))
947 return;
948
949 drm->svm->drm = drm;
950 mutex_init(&drm->svm->mutex);
951 INIT_LIST_HEAD(&drm->svm->inst);
952
953 ret = nvif_mclass(&drm->client.device.object, buffers);
954 if (ret < 0) {
955 SVM_DBG(svm, "No supported fault buffer class");
956 nouveau_svm_fini(drm);
957 return;
958 }
959
960 ret = nouveau_svm_fault_buffer_ctor(svm, buffers[ret].oclass, 0);
961 if (ret) {
962 nouveau_svm_fini(drm);
963 return;
964 }
965
966 SVM_DBG(svm, "Initialised");
967}