drm/i915: Remove intel_ring.last_retired_head
[linux-block.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1 133 */
27af5eea 134#include <linux/interrupt.h>
b20385f1
OM
135
136#include <drm/drmP.h>
137#include <drm/i915_drm.h>
138#include "i915_drv.h"
3bbaba0c 139#include "intel_mocs.h"
127f1003 140
468c6816 141#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
142#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
e981e7b1
TD
145#define RING_EXECLIST_QFULL (1 << 0x2)
146#define RING_EXECLIST1_VALID (1 << 0x3)
147#define RING_EXECLIST0_VALID (1 << 0x4)
148#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149#define RING_EXECLIST1_ACTIVE (1 << 0x11)
150#define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9 158
70c2a24d
CW
159#define GEN8_CTX_STATUS_COMPLETED_MASK \
160 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
161 GEN8_CTX_STATUS_PREEMPTED | \
162 GEN8_CTX_STATUS_ELEMENT_SWITCH)
163
8670d6f9
OM
164#define CTX_LRI_HEADER_0 0x01
165#define CTX_CONTEXT_CONTROL 0x02
166#define CTX_RING_HEAD 0x04
167#define CTX_RING_TAIL 0x06
168#define CTX_RING_BUFFER_START 0x08
169#define CTX_RING_BUFFER_CONTROL 0x0a
170#define CTX_BB_HEAD_U 0x0c
171#define CTX_BB_HEAD_L 0x0e
172#define CTX_BB_STATE 0x10
173#define CTX_SECOND_BB_HEAD_U 0x12
174#define CTX_SECOND_BB_HEAD_L 0x14
175#define CTX_SECOND_BB_STATE 0x16
176#define CTX_BB_PER_CTX_PTR 0x18
177#define CTX_RCS_INDIRECT_CTX 0x1a
178#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
179#define CTX_LRI_HEADER_1 0x21
180#define CTX_CTX_TIMESTAMP 0x22
181#define CTX_PDP3_UDW 0x24
182#define CTX_PDP3_LDW 0x26
183#define CTX_PDP2_UDW 0x28
184#define CTX_PDP2_LDW 0x2a
185#define CTX_PDP1_UDW 0x2c
186#define CTX_PDP1_LDW 0x2e
187#define CTX_PDP0_UDW 0x30
188#define CTX_PDP0_LDW 0x32
189#define CTX_LRI_HEADER_2 0x41
190#define CTX_R_PWR_CLK_STATE 0x42
191#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
192
56e51bf0 193#define CTX_REG(reg_state, pos, reg, val) do { \
f0f59a00 194 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
0d925ea0
VS
195 (reg_state)[(pos)+1] = (val); \
196} while (0)
197
198#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
d852c7bf 199 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
e5815a2e
MT
200 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
201 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
9244a817 202} while (0)
e5815a2e 203
9244a817 204#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
2dba3239
MT
205 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
206 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
9244a817 207} while (0)
2dba3239 208
71562919
MT
209#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
210#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
84b790f8 211
0e93cdd4
CW
212/* Typical size of the average request (2 pipecontrols and a MI_BB) */
213#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
214
a3aabe86
CW
215#define WA_TAIL_DWORDS 2
216
e2efd130 217static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 218 struct intel_engine_cs *engine);
a3aabe86
CW
219static void execlists_init_reg_state(u32 *reg_state,
220 struct i915_gem_context *ctx,
221 struct intel_engine_cs *engine,
222 struct intel_ring *ring);
7ba717cf 223
73e4d07f
OM
224/**
225 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
14bb2c11 226 * @dev_priv: i915 device private
73e4d07f
OM
227 * @enable_execlists: value of i915.enable_execlists module parameter.
228 *
229 * Only certain platforms support Execlists (the prerequisites being
27401d12 230 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
231 *
232 * Return: 1 if Execlists is supported and has to be enabled.
233 */
c033666a 234int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
127f1003 235{
a0bd6c31
ZL
236 /* On platforms with execlist available, vGPU will only
237 * support execlist mode, no ring buffer mode.
238 */
c033666a 239 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
a0bd6c31
ZL
240 return 1;
241
c033666a 242 if (INTEL_GEN(dev_priv) >= 9)
70ee45e1
DL
243 return 1;
244
127f1003
OM
245 if (enable_execlists == 0)
246 return 0;
247
5a21b665
DV
248 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
249 USES_PPGTT(dev_priv) &&
250 i915.use_mmio_flip >= 0)
127f1003
OM
251 return 1;
252
253 return 0;
254}
ede7d42b 255
73e4d07f 256/**
ca82580c
TU
257 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
258 * descriptor for a pinned context
ca82580c 259 * @ctx: Context to work on
9021ad03 260 * @engine: Engine the descriptor will be used with
73e4d07f 261 *
ca82580c
TU
262 * The context descriptor encodes various attributes of a context,
263 * including its GTT address and some flags. Because it's fairly
264 * expensive to calculate, we'll just do it once and cache the result,
265 * which remains valid until the context is unpinned.
266 *
6e5248b5
DV
267 * This is what a descriptor looks like, from LSB to MSB::
268 *
2355cf08 269 * bits 0-11: flags, GEN8_CTX_* (cached in ctx->desc_template)
6e5248b5
DV
270 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
271 * bits 32-52: ctx ID, a globally unique tag
272 * bits 53-54: mbz, reserved for use by hardware
273 * bits 55-63: group ID, currently unused and set to 0
73e4d07f 274 */
ca82580c 275static void
e2efd130 276intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
0bc40be8 277 struct intel_engine_cs *engine)
84b790f8 278{
9021ad03 279 struct intel_context *ce = &ctx->engine[engine->id];
7069b144 280 u64 desc;
84b790f8 281
7069b144 282 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
84b790f8 283
2355cf08 284 desc = ctx->desc_template; /* bits 0-11 */
bde13ebd 285 desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
9021ad03 286 /* bits 12-31 */
7069b144 287 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
5af05fef 288
9021ad03 289 ce->lrc_desc = desc;
5af05fef
MT
290}
291
e2efd130 292uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
0bc40be8 293 struct intel_engine_cs *engine)
84b790f8 294{
0bc40be8 295 return ctx->engine[engine->id].lrc_desc;
ca82580c 296}
203a571b 297
bbd6c47e
CW
298static inline void
299execlists_context_status_change(struct drm_i915_gem_request *rq,
300 unsigned long status)
84b790f8 301{
bbd6c47e
CW
302 /*
303 * Only used when GVT-g is enabled now. When GVT-g is disabled,
304 * The compiler should eliminate this function as dead-code.
305 */
306 if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
307 return;
6daccb0b 308
3fc03069
CD
309 atomic_notifier_call_chain(&rq->engine->context_status_notifier,
310 status, rq);
84b790f8
BW
311}
312
c6a2ac71
TU
313static void
314execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
315{
316 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
317 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
318 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
319 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
320}
321
70c2a24d 322static u64 execlists_update_context(struct drm_i915_gem_request *rq)
ae1250b9 323{
70c2a24d 324 struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
04da811b
ZW
325 struct i915_hw_ppgtt *ppgtt =
326 rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
70c2a24d 327 u32 *reg_state = ce->lrc_reg_state;
ae1250b9 328
944a36d4 329 GEM_BUG_ON(!IS_ALIGNED(rq->tail, 8));
caddfe71 330 reg_state[CTX_RING_TAIL+1] = rq->tail;
ae1250b9 331
c6a2ac71
TU
332 /* True 32b PPGTT with dynamic page allocation: update PDP
333 * registers and point the unallocated PDPs to scratch page.
334 * PML4 is allocated during ppgtt init, so this is not needed
335 * in 48-bit mode.
336 */
949e8ab3 337 if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
c6a2ac71 338 execlists_update_context_pdps(ppgtt, reg_state);
70c2a24d
CW
339
340 return ce->lrc_desc;
ae1250b9
OM
341}
342
70c2a24d 343static void execlists_submit_ports(struct intel_engine_cs *engine)
bbd6c47e 344{
70c2a24d
CW
345 struct drm_i915_private *dev_priv = engine->i915;
346 struct execlist_port *port = engine->execlist_port;
bbd6c47e
CW
347 u32 __iomem *elsp =
348 dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
349 u64 desc[2];
350
c816e605 351 GEM_BUG_ON(port[0].count > 1);
70c2a24d
CW
352 if (!port[0].count)
353 execlists_context_status_change(port[0].request,
354 INTEL_CONTEXT_SCHEDULE_IN);
355 desc[0] = execlists_update_context(port[0].request);
ae9a043b 356 GEM_DEBUG_EXEC(port[0].context_id = upper_32_bits(desc[0]));
816ee798 357 port[0].count++;
70c2a24d
CW
358
359 if (port[1].request) {
360 GEM_BUG_ON(port[1].count);
361 execlists_context_status_change(port[1].request,
362 INTEL_CONTEXT_SCHEDULE_IN);
363 desc[1] = execlists_update_context(port[1].request);
ae9a043b 364 GEM_DEBUG_EXEC(port[1].context_id = upper_32_bits(desc[1]));
70c2a24d 365 port[1].count = 1;
bbd6c47e
CW
366 } else {
367 desc[1] = 0;
368 }
70c2a24d 369 GEM_BUG_ON(desc[0] == desc[1]);
bbd6c47e
CW
370
371 /* You must always write both descriptors in the order below. */
372 writel(upper_32_bits(desc[1]), elsp);
373 writel(lower_32_bits(desc[1]), elsp);
374
375 writel(upper_32_bits(desc[0]), elsp);
376 /* The context is automatically loaded after the following */
377 writel(lower_32_bits(desc[0]), elsp);
378}
379
70c2a24d 380static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
84b790f8 381{
70c2a24d 382 return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
6095868a 383 i915_gem_context_force_single_submission(ctx));
70c2a24d 384}
84b790f8 385
70c2a24d
CW
386static bool can_merge_ctx(const struct i915_gem_context *prev,
387 const struct i915_gem_context *next)
388{
389 if (prev != next)
390 return false;
26720ab9 391
70c2a24d
CW
392 if (ctx_single_port_submission(prev))
393 return false;
26720ab9 394
70c2a24d 395 return true;
84b790f8
BW
396}
397
70c2a24d 398static void execlists_dequeue(struct intel_engine_cs *engine)
acdd884a 399{
20311bd3 400 struct drm_i915_gem_request *last;
70c2a24d 401 struct execlist_port *port = engine->execlist_port;
d55ac5bf 402 unsigned long flags;
20311bd3 403 struct rb_node *rb;
70c2a24d
CW
404 bool submit = false;
405
6c943de6
CW
406 /* After execlist_first is updated, the tasklet will be rescheduled.
407 *
408 * If we are currently running (inside the tasklet) and a third
409 * party queues a request and so updates engine->execlist_first under
410 * the spinlock (which we have elided), it will atomically set the
411 * TASKLET_SCHED flag causing the us to be re-executed and pick up
412 * the change in state (the update to TASKLET_SCHED incurs a memory
413 * barrier making this cross-cpu checking safe).
414 */
415 if (!READ_ONCE(engine->execlist_first))
416 return;
417
70c2a24d
CW
418 last = port->request;
419 if (last)
420 /* WaIdleLiteRestore:bdw,skl
421 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
9b81d556 422 * as we resubmit the request. See gen8_emit_breadcrumb()
70c2a24d
CW
423 * for where we prepare the padding after the end of the
424 * request.
425 */
426 last->tail = last->wa_tail;
e981e7b1 427
70c2a24d 428 GEM_BUG_ON(port[1].request);
acdd884a 429
70c2a24d
CW
430 /* Hardware submission is through 2 ports. Conceptually each port
431 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
432 * static for a context, and unique to each, so we only execute
433 * requests belonging to a single context from each ring. RING_HEAD
434 * is maintained by the CS in the context image, it marks the place
435 * where it got up to last time, and through RING_TAIL we tell the CS
436 * where we want to execute up to this time.
437 *
438 * In this list the requests are in order of execution. Consecutive
439 * requests from the same context are adjacent in the ringbuffer. We
440 * can combine these requests into a single RING_TAIL update:
441 *
442 * RING_HEAD...req1...req2
443 * ^- RING_TAIL
444 * since to execute req2 the CS must first execute req1.
445 *
446 * Our goal then is to point each port to the end of a consecutive
447 * sequence of requests as being the most optimal (fewest wake ups
448 * and context switches) submission.
779949f4 449 */
acdd884a 450
d55ac5bf 451 spin_lock_irqsave(&engine->timeline->lock, flags);
20311bd3
CW
452 rb = engine->execlist_first;
453 while (rb) {
454 struct drm_i915_gem_request *cursor =
455 rb_entry(rb, typeof(*cursor), priotree.node);
456
70c2a24d
CW
457 /* Can we combine this request with the current port? It has to
458 * be the same context/ringbuffer and not have any exceptions
459 * (e.g. GVT saying never to combine contexts).
c6a2ac71 460 *
70c2a24d
CW
461 * If we can combine the requests, we can execute both by
462 * updating the RING_TAIL to point to the end of the second
463 * request, and so we never need to tell the hardware about
464 * the first.
53292cdb 465 */
70c2a24d
CW
466 if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
467 /* If we are on the second port and cannot combine
468 * this request with the last, then we are done.
469 */
470 if (port != engine->execlist_port)
471 break;
472
473 /* If GVT overrides us we only ever submit port[0],
474 * leaving port[1] empty. Note that we also have
475 * to be careful that we don't queue the same
476 * context (even though a different request) to
477 * the second port.
478 */
d7ab992c
MH
479 if (ctx_single_port_submission(last->ctx) ||
480 ctx_single_port_submission(cursor->ctx))
70c2a24d
CW
481 break;
482
483 GEM_BUG_ON(last->ctx == cursor->ctx);
484
485 i915_gem_request_assign(&port->request, last);
486 port++;
487 }
d55ac5bf 488
20311bd3
CW
489 rb = rb_next(rb);
490 rb_erase(&cursor->priotree.node, &engine->execlist_queue);
491 RB_CLEAR_NODE(&cursor->priotree.node);
492 cursor->priotree.priority = INT_MAX;
493
d55ac5bf 494 __i915_gem_request_submit(cursor);
d7d96833 495 trace_i915_gem_request_in(cursor, port - engine->execlist_port);
70c2a24d
CW
496 last = cursor;
497 submit = true;
498 }
499 if (submit) {
70c2a24d 500 i915_gem_request_assign(&port->request, last);
20311bd3 501 engine->execlist_first = rb;
53292cdb 502 }
d55ac5bf 503 spin_unlock_irqrestore(&engine->timeline->lock, flags);
53292cdb 504
70c2a24d
CW
505 if (submit)
506 execlists_submit_ports(engine);
acdd884a
MT
507}
508
70c2a24d 509static bool execlists_elsp_idle(struct intel_engine_cs *engine)
e981e7b1 510{
70c2a24d 511 return !engine->execlist_port[0].request;
e981e7b1
TD
512}
513
816ee798 514static bool execlists_elsp_ready(const struct intel_engine_cs *engine)
91a41032 515{
816ee798 516 const struct execlist_port *port = engine->execlist_port;
91a41032 517
816ee798 518 return port[0].count + port[1].count < 2;
91a41032
BW
519}
520
6e5248b5 521/*
73e4d07f
OM
522 * Check the unread Context Status Buffers and manage the submission of new
523 * contexts to the ELSP accordingly.
524 */
27af5eea 525static void intel_lrc_irq_handler(unsigned long data)
e981e7b1 526{
27af5eea 527 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
70c2a24d 528 struct execlist_port *port = engine->execlist_port;
c033666a 529 struct drm_i915_private *dev_priv = engine->i915;
c6a2ac71 530
3756685a 531 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
c6a2ac71 532
899f6204
CW
533 /* Prefer doing test_and_clear_bit() as a two stage operation to avoid
534 * imposing the cost of a locked atomic transaction when submitting a
535 * new request (outside of the context-switch interrupt).
536 */
537 while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
70c2a24d
CW
538 u32 __iomem *csb_mmio =
539 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
540 u32 __iomem *buf =
541 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
542 unsigned int csb, head, tail;
543
899f6204 544 clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
70c2a24d
CW
545 csb = readl(csb_mmio);
546 head = GEN8_CSB_READ_PTR(csb);
547 tail = GEN8_CSB_WRITE_PTR(csb);
a37951ac
CW
548 if (head == tail)
549 break;
550
70c2a24d
CW
551 if (tail < head)
552 tail += GEN8_CSB_ENTRIES;
a37951ac 553 do {
70c2a24d
CW
554 unsigned int idx = ++head % GEN8_CSB_ENTRIES;
555 unsigned int status = readl(buf + 2 * idx);
556
2ffe80aa
CW
557 /* We are flying near dragons again.
558 *
559 * We hold a reference to the request in execlist_port[]
560 * but no more than that. We are operating in softirq
561 * context and so cannot hold any mutex or sleep. That
562 * prevents us stopping the requests we are processing
563 * in port[] from being retired simultaneously (the
564 * breadcrumb will be complete before we see the
565 * context-switch). As we only hold the reference to the
566 * request, any pointer chasing underneath the request
567 * is subject to a potential use-after-free. Thus we
568 * store all of the bookkeeping within port[] as
569 * required, and avoid using unguarded pointers beneath
570 * request itself. The same applies to the atomic
571 * status notifier.
572 */
573
70c2a24d
CW
574 if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
575 continue;
576
86aa7e76 577 /* Check the context/desc id for this event matches */
ae9a043b
CW
578 GEM_DEBUG_BUG_ON(readl(buf + 2 * idx + 1) !=
579 port[0].context_id);
86aa7e76 580
70c2a24d
CW
581 GEM_BUG_ON(port[0].count == 0);
582 if (--port[0].count == 0) {
583 GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
fe9ae7a3 584 GEM_BUG_ON(!i915_gem_request_completed(port[0].request));
70c2a24d
CW
585 execlists_context_status_change(port[0].request,
586 INTEL_CONTEXT_SCHEDULE_OUT);
587
d7d96833 588 trace_i915_gem_request_out(port[0].request);
70c2a24d
CW
589 i915_gem_request_put(port[0].request);
590 port[0] = port[1];
591 memset(&port[1], 0, sizeof(port[1]));
70c2a24d 592 }
26720ab9 593
70c2a24d
CW
594 GEM_BUG_ON(port[0].count == 0 &&
595 !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
a37951ac 596 } while (head < tail);
e1fee72c 597
70c2a24d
CW
598 writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
599 GEN8_CSB_WRITE_PTR(csb) << 8),
600 csb_mmio);
e981e7b1
TD
601 }
602
70c2a24d
CW
603 if (execlists_elsp_ready(engine))
604 execlists_dequeue(engine);
c6a2ac71 605
70c2a24d 606 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
e981e7b1
TD
607}
608
20311bd3
CW
609static bool insert_request(struct i915_priotree *pt, struct rb_root *root)
610{
611 struct rb_node **p, *rb;
612 bool first = true;
613
614 /* most positive priority is scheduled first, equal priorities fifo */
615 rb = NULL;
616 p = &root->rb_node;
617 while (*p) {
618 struct i915_priotree *pos;
619
620 rb = *p;
621 pos = rb_entry(rb, typeof(*pos), node);
622 if (pt->priority > pos->priority) {
623 p = &rb->rb_left;
624 } else {
625 p = &rb->rb_right;
626 first = false;
627 }
628 }
629 rb_link_node(&pt->node, rb, p);
630 rb_insert_color(&pt->node, root);
631
632 return first;
633}
634
f4ea6bdd 635static void execlists_submit_request(struct drm_i915_gem_request *request)
acdd884a 636{
4a570db5 637 struct intel_engine_cs *engine = request->engine;
5590af3e 638 unsigned long flags;
acdd884a 639
663f71e7
CW
640 /* Will be called from irq-context when using foreign fences. */
641 spin_lock_irqsave(&engine->timeline->lock, flags);
acdd884a 642
3833281a 643 if (insert_request(&request->priotree, &engine->execlist_queue)) {
20311bd3 644 engine->execlist_first = &request->priotree.node;
48ea2554 645 if (execlists_elsp_ready(engine))
3833281a
CW
646 tasklet_hi_schedule(&engine->irq_tasklet);
647 }
acdd884a 648
663f71e7 649 spin_unlock_irqrestore(&engine->timeline->lock, flags);
acdd884a
MT
650}
651
20311bd3
CW
652static struct intel_engine_cs *
653pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
654{
655 struct intel_engine_cs *engine;
656
657 engine = container_of(pt,
658 struct drm_i915_gem_request,
659 priotree)->engine;
660 if (engine != locked) {
661 if (locked)
662 spin_unlock_irq(&locked->timeline->lock);
663 spin_lock_irq(&engine->timeline->lock);
664 }
665
666 return engine;
667}
668
669static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
670{
671 struct intel_engine_cs *engine = NULL;
672 struct i915_dependency *dep, *p;
673 struct i915_dependency stack;
674 LIST_HEAD(dfs);
675
676 if (prio <= READ_ONCE(request->priotree.priority))
677 return;
678
70cd1476
CW
679 /* Need BKL in order to use the temporary link inside i915_dependency */
680 lockdep_assert_held(&request->i915->drm.struct_mutex);
20311bd3
CW
681
682 stack.signaler = &request->priotree;
683 list_add(&stack.dfs_link, &dfs);
684
685 /* Recursively bump all dependent priorities to match the new request.
686 *
687 * A naive approach would be to use recursion:
688 * static void update_priorities(struct i915_priotree *pt, prio) {
689 * list_for_each_entry(dep, &pt->signalers_list, signal_link)
690 * update_priorities(dep->signal, prio)
691 * insert_request(pt);
692 * }
693 * but that may have unlimited recursion depth and so runs a very
694 * real risk of overunning the kernel stack. Instead, we build
695 * a flat list of all dependencies starting with the current request.
696 * As we walk the list of dependencies, we add all of its dependencies
697 * to the end of the list (this may include an already visited
698 * request) and continue to walk onwards onto the new dependencies. The
699 * end result is a topological list of requests in reverse order, the
700 * last element in the list is the request we must execute first.
701 */
702 list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
703 struct i915_priotree *pt = dep->signaler;
704
705 list_for_each_entry(p, &pt->signalers_list, signal_link)
706 if (prio > READ_ONCE(p->signaler->priority))
707 list_move_tail(&p->dfs_link, &dfs);
708
0798cff4 709 list_safe_reset_next(dep, p, dfs_link);
20311bd3
CW
710 if (!RB_EMPTY_NODE(&pt->node))
711 continue;
712
713 engine = pt_lock_engine(pt, engine);
714
715 /* If it is not already in the rbtree, we can update the
716 * priority inplace and skip over it (and its dependencies)
717 * if it is referenced *again* as we descend the dfs.
718 */
719 if (prio > pt->priority && RB_EMPTY_NODE(&pt->node)) {
720 pt->priority = prio;
721 list_del_init(&dep->dfs_link);
722 }
723 }
724
725 /* Fifo and depth-first replacement ensure our deps execute before us */
726 list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
727 struct i915_priotree *pt = dep->signaler;
728
729 INIT_LIST_HEAD(&dep->dfs_link);
730
731 engine = pt_lock_engine(pt, engine);
732
733 if (prio <= pt->priority)
734 continue;
735
736 GEM_BUG_ON(RB_EMPTY_NODE(&pt->node));
737
738 pt->priority = prio;
739 rb_erase(&pt->node, &engine->execlist_queue);
740 if (insert_request(pt, &engine->execlist_queue))
741 engine->execlist_first = &pt->node;
742 }
743
744 if (engine)
745 spin_unlock_irq(&engine->timeline->lock);
746
747 /* XXX Do we need to preempt to make room for us and our deps? */
748}
749
e8a9c58f
CW
750static int execlists_context_pin(struct intel_engine_cs *engine,
751 struct i915_gem_context *ctx)
dcb4c12a 752{
9021ad03 753 struct intel_context *ce = &ctx->engine[engine->id];
2947e408 754 unsigned int flags;
7d774cac 755 void *vaddr;
ca82580c 756 int ret;
dcb4c12a 757
91c8a326 758 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
ca82580c 759
9021ad03 760 if (ce->pin_count++)
24f1d3cc 761 return 0;
a533b4ba 762 GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
24f1d3cc 763
e8a9c58f
CW
764 if (!ce->state) {
765 ret = execlists_context_deferred_alloc(ctx, engine);
766 if (ret)
767 goto err;
768 }
56f6e0a7 769 GEM_BUG_ON(!ce->state);
e8a9c58f 770
72b72ae4 771 flags = PIN_GLOBAL | PIN_HIGH;
feef2a7c
DCS
772 if (ctx->ggtt_offset_bias)
773 flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
2947e408
CW
774
775 ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN, flags);
e84fe803 776 if (ret)
24f1d3cc 777 goto err;
7ba717cf 778
bf3783e5 779 vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
7d774cac
TU
780 if (IS_ERR(vaddr)) {
781 ret = PTR_ERR(vaddr);
bf3783e5 782 goto unpin_vma;
82352e90
TU
783 }
784
d3ef1af6 785 ret = intel_ring_pin(ce->ring, ctx->ggtt_offset_bias);
e84fe803 786 if (ret)
7d774cac 787 goto unpin_map;
d1675198 788
0bc40be8 789 intel_lr_context_descriptor_update(ctx, engine);
9021ad03 790
a3aabe86
CW
791 ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
792 ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
bde13ebd 793 i915_ggtt_offset(ce->ring->vma);
a3aabe86 794
a4f5ea64 795 ce->state->obj->mm.dirty = true;
e93c28f3 796
9a6feaf0 797 i915_gem_context_get(ctx);
24f1d3cc 798 return 0;
7ba717cf 799
7d774cac 800unpin_map:
bf3783e5
CW
801 i915_gem_object_unpin_map(ce->state->obj);
802unpin_vma:
803 __i915_vma_unpin(ce->state);
24f1d3cc 804err:
9021ad03 805 ce->pin_count = 0;
e84fe803
NH
806 return ret;
807}
808
e8a9c58f
CW
809static void execlists_context_unpin(struct intel_engine_cs *engine,
810 struct i915_gem_context *ctx)
e84fe803 811{
9021ad03 812 struct intel_context *ce = &ctx->engine[engine->id];
e84fe803 813
91c8a326 814 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
9021ad03 815 GEM_BUG_ON(ce->pin_count == 0);
321fe304 816
9021ad03 817 if (--ce->pin_count)
24f1d3cc 818 return;
e84fe803 819
aad29fbb 820 intel_ring_unpin(ce->ring);
dcb4c12a 821
bf3783e5
CW
822 i915_gem_object_unpin_map(ce->state->obj);
823 i915_vma_unpin(ce->state);
321fe304 824
9a6feaf0 825 i915_gem_context_put(ctx);
dcb4c12a
OM
826}
827
f73e7399 828static int execlists_request_alloc(struct drm_i915_gem_request *request)
ef11c01d
CW
829{
830 struct intel_engine_cs *engine = request->engine;
831 struct intel_context *ce = &request->ctx->engine[engine->id];
73dec95e 832 u32 *cs;
ef11c01d
CW
833 int ret;
834
e8a9c58f
CW
835 GEM_BUG_ON(!ce->pin_count);
836
ef11c01d
CW
837 /* Flush enough space to reduce the likelihood of waiting after
838 * we start building the request - in which case we will just
839 * have to repeat work.
840 */
841 request->reserved_space += EXECLISTS_REQUEST_SIZE;
842
e8a9c58f 843 GEM_BUG_ON(!ce->ring);
ef11c01d
CW
844 request->ring = ce->ring;
845
ef11c01d
CW
846 if (i915.enable_guc_submission) {
847 /*
848 * Check that the GuC has space for the request before
849 * going any further, as the i915_add_request() call
850 * later on mustn't fail ...
851 */
852 ret = i915_guc_wq_reserve(request);
853 if (ret)
e8a9c58f 854 goto err;
ef11c01d
CW
855 }
856
73dec95e
TU
857 cs = intel_ring_begin(request, 0);
858 if (IS_ERR(cs)) {
859 ret = PTR_ERR(cs);
ef11c01d 860 goto err_unreserve;
73dec95e 861 }
ef11c01d
CW
862
863 if (!ce->initialised) {
864 ret = engine->init_context(request);
865 if (ret)
866 goto err_unreserve;
867
868 ce->initialised = true;
869 }
870
871 /* Note that after this point, we have committed to using
872 * this request as it is being used to both track the
873 * state of engine initialisation and liveness of the
874 * golden renderstate above. Think twice before you try
875 * to cancel/unwind this request now.
876 */
877
878 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
879 return 0;
880
881err_unreserve:
882 if (i915.enable_guc_submission)
883 i915_guc_wq_unreserve(request);
e8a9c58f 884err:
ef11c01d
CW
885 return ret;
886}
887
9e000847
AS
888/*
889 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
890 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
891 * but there is a slight complication as this is applied in WA batch where the
892 * values are only initialized once so we cannot take register value at the
893 * beginning and reuse it further; hence we save its value to memory, upload a
894 * constant value with bit21 set and then we restore it back with the saved value.
895 * To simplify the WA, a constant value is formed by using the default value
896 * of this register. This shouldn't be a problem because we are only modifying
897 * it for a short period and this batch in non-premptible. We can ofcourse
898 * use additional instructions that read the actual value of the register
899 * at that time and set our bit of interest but it makes the WA complicated.
900 *
901 * This WA is also required for Gen9 so extracting as a function avoids
902 * code duplication.
903 */
097d4f1c
TU
904static u32 *
905gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
17ee950d 906{
097d4f1c
TU
907 *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
908 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
909 *batch++ = i915_ggtt_offset(engine->scratch) + 256;
910 *batch++ = 0;
911
912 *batch++ = MI_LOAD_REGISTER_IMM(1);
913 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
914 *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
915
9f235dfa
TU
916 batch = gen8_emit_pipe_control(batch,
917 PIPE_CONTROL_CS_STALL |
918 PIPE_CONTROL_DC_FLUSH_ENABLE,
919 0);
097d4f1c
TU
920
921 *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
922 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
923 *batch++ = i915_ggtt_offset(engine->scratch) + 256;
924 *batch++ = 0;
925
926 return batch;
17ee950d
AS
927}
928
6e5248b5
DV
929/*
930 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
931 * initialized at the beginning and shared across all contexts but this field
932 * helps us to have multiple batches at different offsets and select them based
933 * on a criteria. At the moment this batch always start at the beginning of the page
934 * and at this point we don't have multiple wa_ctx batch buffers.
4d78c8dc 935 *
6e5248b5
DV
936 * The number of WA applied are not known at the beginning; we use this field
937 * to return the no of DWORDS written.
17ee950d 938 *
6e5248b5
DV
939 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
940 * so it adds NOOPs as padding to make it cacheline aligned.
941 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
942 * makes a complete batch buffer.
17ee950d 943 */
097d4f1c 944static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
17ee950d 945{
7ad00d1a 946 /* WaDisableCtxRestoreArbitration:bdw,chv */
097d4f1c 947 *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
17ee950d 948
c82435bb 949 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
097d4f1c
TU
950 if (IS_BROADWELL(engine->i915))
951 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
c82435bb 952
0160f055
AS
953 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
954 /* Actual scratch location is at 128 bytes offset */
9f235dfa
TU
955 batch = gen8_emit_pipe_control(batch,
956 PIPE_CONTROL_FLUSH_L3 |
957 PIPE_CONTROL_GLOBAL_GTT_IVB |
958 PIPE_CONTROL_CS_STALL |
959 PIPE_CONTROL_QW_WRITE,
960 i915_ggtt_offset(engine->scratch) +
961 2 * CACHELINE_BYTES);
0160f055 962
17ee950d 963 /* Pad to end of cacheline */
097d4f1c
TU
964 while ((unsigned long)batch % CACHELINE_BYTES)
965 *batch++ = MI_NOOP;
17ee950d
AS
966
967 /*
968 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
969 * execution depends on the length specified in terms of cache lines
970 * in the register CTX_RCS_INDIRECT_CTX
971 */
972
097d4f1c 973 return batch;
17ee950d
AS
974}
975
6e5248b5
DV
976/*
977 * This batch is started immediately after indirect_ctx batch. Since we ensure
978 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
17ee950d 979 *
6e5248b5 980 * The number of DWORDS written are returned using this field.
17ee950d
AS
981 *
982 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
983 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
984 */
097d4f1c 985static u32 *gen8_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
17ee950d 986{
7ad00d1a 987 /* WaDisableCtxRestoreArbitration:bdw,chv */
097d4f1c
TU
988 *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
989 *batch++ = MI_BATCH_BUFFER_END;
17ee950d 990
097d4f1c 991 return batch;
17ee950d
AS
992}
993
097d4f1c 994static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
0504cffc 995{
9fb5026f 996 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
097d4f1c 997 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
a4106a78 998
9fb5026f 999 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
097d4f1c
TU
1000 *batch++ = MI_LOAD_REGISTER_IMM(1);
1001 *batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
1002 *batch++ = _MASKED_BIT_DISABLE(
1003 GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
1004 *batch++ = MI_NOOP;
873e8171 1005
066d4628
MK
1006 /* WaClearSlmSpaceAtContextSwitch:kbl */
1007 /* Actual scratch location is at 128 bytes offset */
097d4f1c 1008 if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
9f235dfa
TU
1009 batch = gen8_emit_pipe_control(batch,
1010 PIPE_CONTROL_FLUSH_L3 |
1011 PIPE_CONTROL_GLOBAL_GTT_IVB |
1012 PIPE_CONTROL_CS_STALL |
1013 PIPE_CONTROL_QW_WRITE,
1014 i915_ggtt_offset(engine->scratch)
1015 + 2 * CACHELINE_BYTES);
066d4628 1016 }
3485d99e 1017
9fb5026f 1018 /* WaMediaPoolStateCmdInWABB:bxt,glk */
3485d99e
TG
1019 if (HAS_POOLED_EU(engine->i915)) {
1020 /*
1021 * EU pool configuration is setup along with golden context
1022 * during context initialization. This value depends on
1023 * device type (2x6 or 3x6) and needs to be updated based
1024 * on which subslice is disabled especially for 2x6
1025 * devices, however it is safe to load default
1026 * configuration of 3x6 device instead of masking off
1027 * corresponding bits because HW ignores bits of a disabled
1028 * subslice and drops down to appropriate config. Please
1029 * see render_state_setup() in i915_gem_render_state.c for
1030 * possible configurations, to avoid duplication they are
1031 * not shown here again.
1032 */
097d4f1c
TU
1033 *batch++ = GEN9_MEDIA_POOL_STATE;
1034 *batch++ = GEN9_MEDIA_POOL_ENABLE;
1035 *batch++ = 0x00777000;
1036 *batch++ = 0;
1037 *batch++ = 0;
1038 *batch++ = 0;
3485d99e
TG
1039 }
1040
0504cffc 1041 /* Pad to end of cacheline */
097d4f1c
TU
1042 while ((unsigned long)batch % CACHELINE_BYTES)
1043 *batch++ = MI_NOOP;
0504cffc 1044
097d4f1c 1045 return batch;
0504cffc
AS
1046}
1047
097d4f1c 1048static u32 *gen9_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
0504cffc 1049{
097d4f1c 1050 *batch++ = MI_BATCH_BUFFER_END;
0504cffc 1051
097d4f1c 1052 return batch;
0504cffc
AS
1053}
1054
097d4f1c
TU
1055#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
1056
1057static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
17ee950d 1058{
48bb74e4
CW
1059 struct drm_i915_gem_object *obj;
1060 struct i915_vma *vma;
1061 int err;
17ee950d 1062
097d4f1c 1063 obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
48bb74e4
CW
1064 if (IS_ERR(obj))
1065 return PTR_ERR(obj);
17ee950d 1066
a01cb37a 1067 vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
48bb74e4
CW
1068 if (IS_ERR(vma)) {
1069 err = PTR_ERR(vma);
1070 goto err;
17ee950d
AS
1071 }
1072
48bb74e4
CW
1073 err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1074 if (err)
1075 goto err;
1076
1077 engine->wa_ctx.vma = vma;
17ee950d 1078 return 0;
48bb74e4
CW
1079
1080err:
1081 i915_gem_object_put(obj);
1082 return err;
17ee950d
AS
1083}
1084
097d4f1c 1085static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
17ee950d 1086{
19880c4a 1087 i915_vma_unpin_and_release(&engine->wa_ctx.vma);
17ee950d
AS
1088}
1089
097d4f1c
TU
1090typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1091
0bc40be8 1092static int intel_init_workaround_bb(struct intel_engine_cs *engine)
17ee950d 1093{
48bb74e4 1094 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
097d4f1c
TU
1095 struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
1096 &wa_ctx->per_ctx };
1097 wa_bb_func_t wa_bb_fn[2];
17ee950d 1098 struct page *page;
097d4f1c
TU
1099 void *batch, *batch_ptr;
1100 unsigned int i;
48bb74e4 1101 int ret;
17ee950d 1102
097d4f1c
TU
1103 if (WARN_ON(engine->id != RCS || !engine->scratch))
1104 return -EINVAL;
17ee950d 1105
097d4f1c
TU
1106 switch (INTEL_GEN(engine->i915)) {
1107 case 9:
1108 wa_bb_fn[0] = gen9_init_indirectctx_bb;
1109 wa_bb_fn[1] = gen9_init_perctx_bb;
1110 break;
1111 case 8:
1112 wa_bb_fn[0] = gen8_init_indirectctx_bb;
1113 wa_bb_fn[1] = gen8_init_perctx_bb;
1114 break;
1115 default:
1116 MISSING_CASE(INTEL_GEN(engine->i915));
5e60d790 1117 return 0;
0504cffc 1118 }
5e60d790 1119
097d4f1c 1120 ret = lrc_setup_wa_ctx(engine);
17ee950d
AS
1121 if (ret) {
1122 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1123 return ret;
1124 }
1125
48bb74e4 1126 page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
097d4f1c 1127 batch = batch_ptr = kmap_atomic(page);
17ee950d 1128
097d4f1c
TU
1129 /*
1130 * Emit the two workaround batch buffers, recording the offset from the
1131 * start of the workaround batch buffer object for each and their
1132 * respective sizes.
1133 */
1134 for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1135 wa_bb[i]->offset = batch_ptr - batch;
1136 if (WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, CACHELINE_BYTES))) {
1137 ret = -EINVAL;
1138 break;
1139 }
1140 batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1141 wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
17ee950d
AS
1142 }
1143
097d4f1c
TU
1144 BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
1145
17ee950d
AS
1146 kunmap_atomic(batch);
1147 if (ret)
097d4f1c 1148 lrc_destroy_wa_ctx(engine);
17ee950d
AS
1149
1150 return ret;
1151}
1152
22cc440e
CW
1153static u32 port_seqno(struct execlist_port *port)
1154{
1155 return port->request ? port->request->global_seqno : 0;
1156}
1157
0bc40be8 1158static int gen8_init_common_ring(struct intel_engine_cs *engine)
9b1136d5 1159{
c033666a 1160 struct drm_i915_private *dev_priv = engine->i915;
821ed7df
CW
1161 int ret;
1162
1163 ret = intel_mocs_init_engine(engine);
1164 if (ret)
1165 return ret;
9b1136d5 1166
ad07dfcd 1167 intel_engine_reset_breadcrumbs(engine);
f3b8f912 1168 intel_engine_init_hangcheck(engine);
821ed7df 1169
0bc40be8 1170 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
0bc40be8 1171 I915_WRITE(RING_MODE_GEN7(engine),
9b1136d5 1172 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
f3b8f912
CW
1173 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1174 engine->status_page.ggtt_offset);
1175 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
dfc53c5e 1176
0bc40be8 1177 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
9b1136d5 1178
c87d50cc 1179 /* After a GPU reset, we may have requests to replay */
f747026c 1180 clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
31de7350 1181 if (!i915.enable_guc_submission && !execlists_elsp_idle(engine)) {
22cc440e
CW
1182 DRM_DEBUG_DRIVER("Restarting %s from requests [0x%x, 0x%x]\n",
1183 engine->name,
1184 port_seqno(&engine->execlist_port[0]),
1185 port_seqno(&engine->execlist_port[1]));
c87d50cc
CW
1186 engine->execlist_port[0].count = 0;
1187 engine->execlist_port[1].count = 0;
821ed7df 1188 execlists_submit_ports(engine);
c87d50cc 1189 }
821ed7df
CW
1190
1191 return 0;
9b1136d5
OM
1192}
1193
0bc40be8 1194static int gen8_init_render_ring(struct intel_engine_cs *engine)
9b1136d5 1195{
c033666a 1196 struct drm_i915_private *dev_priv = engine->i915;
9b1136d5
OM
1197 int ret;
1198
0bc40be8 1199 ret = gen8_init_common_ring(engine);
9b1136d5
OM
1200 if (ret)
1201 return ret;
1202
1203 /* We need to disable the AsyncFlip performance optimisations in order
1204 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1205 * programmed to '1' on all products.
1206 *
1207 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1208 */
1209 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1210
9b1136d5
OM
1211 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1212
0bc40be8 1213 return init_workarounds_ring(engine);
9b1136d5
OM
1214}
1215
0bc40be8 1216static int gen9_init_render_ring(struct intel_engine_cs *engine)
82ef822e
DL
1217{
1218 int ret;
1219
0bc40be8 1220 ret = gen8_init_common_ring(engine);
82ef822e
DL
1221 if (ret)
1222 return ret;
1223
0bc40be8 1224 return init_workarounds_ring(engine);
82ef822e
DL
1225}
1226
821ed7df
CW
1227static void reset_common_ring(struct intel_engine_cs *engine,
1228 struct drm_i915_gem_request *request)
1229{
821ed7df 1230 struct execlist_port *port = engine->execlist_port;
c0dcb203
CW
1231 struct intel_context *ce;
1232
1233 /* If the request was innocent, we leave the request in the ELSP
1234 * and will try to replay it on restarting. The context image may
1235 * have been corrupted by the reset, in which case we may have
1236 * to service a new GPU hang, but more likely we can continue on
1237 * without impact.
1238 *
1239 * If the request was guilty, we presume the context is corrupt
1240 * and have to at least restore the RING register in the context
1241 * image back to the expected values to skip over the guilty request.
1242 */
1243 if (!request || request->fence.error != -EIO)
1244 return;
821ed7df 1245
a3aabe86
CW
1246 /* We want a simple context + ring to execute the breadcrumb update.
1247 * We cannot rely on the context being intact across the GPU hang,
1248 * so clear it and rebuild just what we need for the breadcrumb.
1249 * All pending requests for this context will be zapped, and any
1250 * future request will be after userspace has had the opportunity
1251 * to recreate its own state.
1252 */
c0dcb203 1253 ce = &request->ctx->engine[engine->id];
a3aabe86
CW
1254 execlists_init_reg_state(ce->lrc_reg_state,
1255 request->ctx, engine, ce->ring);
1256
821ed7df 1257 /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
a3aabe86
CW
1258 ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1259 i915_ggtt_offset(ce->ring->vma);
821ed7df 1260 ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
a3aabe86 1261
821ed7df 1262 request->ring->head = request->postfix;
821ed7df
CW
1263 intel_ring_update_space(request->ring);
1264
821ed7df 1265 /* Catch up with any missed context-switch interrupts */
821ed7df
CW
1266 if (request->ctx != port[0].request->ctx) {
1267 i915_gem_request_put(port[0].request);
1268 port[0] = port[1];
1269 memset(&port[1], 0, sizeof(port[1]));
1270 }
1271
821ed7df 1272 GEM_BUG_ON(request->ctx != port[0].request->ctx);
a3aabe86
CW
1273
1274 /* Reset WaIdleLiteRestore:bdw,skl as well */
1275 request->tail = request->wa_tail - WA_TAIL_DWORDS * sizeof(u32);
944a36d4 1276 GEM_BUG_ON(!IS_ALIGNED(request->tail, 8));
821ed7df
CW
1277}
1278
7a01a0a2
MT
1279static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1280{
1281 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
4a570db5 1282 struct intel_engine_cs *engine = req->engine;
e7167769 1283 const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
73dec95e
TU
1284 u32 *cs;
1285 int i;
7a01a0a2 1286
73dec95e
TU
1287 cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1288 if (IS_ERR(cs))
1289 return PTR_ERR(cs);
7a01a0a2 1290
73dec95e 1291 *cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
e7167769 1292 for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
7a01a0a2
MT
1293 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1294
73dec95e
TU
1295 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
1296 *cs++ = upper_32_bits(pd_daddr);
1297 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
1298 *cs++ = lower_32_bits(pd_daddr);
7a01a0a2
MT
1299 }
1300
73dec95e
TU
1301 *cs++ = MI_NOOP;
1302 intel_ring_advance(req, cs);
7a01a0a2
MT
1303
1304 return 0;
1305}
1306
be795fc1 1307static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
803688ba 1308 u64 offset, u32 len,
54af56db 1309 const unsigned int flags)
15648585 1310{
73dec95e 1311 u32 *cs;
15648585
OM
1312 int ret;
1313
7a01a0a2
MT
1314 /* Don't rely in hw updating PDPs, specially in lite-restore.
1315 * Ideally, we should set Force PD Restore in ctx descriptor,
1316 * but we can't. Force Restore would be a second option, but
1317 * it is unsafe in case of lite-restore (because the ctx is
2dba3239
MT
1318 * not idle). PML4 is allocated during ppgtt init so this is
1319 * not needed in 48-bit.*/
7a01a0a2 1320 if (req->ctx->ppgtt &&
54af56db
MK
1321 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings) &&
1322 !i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
1323 !intel_vgpu_active(req->i915)) {
1324 ret = intel_logical_ring_emit_pdps(req);
1325 if (ret)
1326 return ret;
7a01a0a2 1327
666796da 1328 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
7a01a0a2
MT
1329 }
1330
73dec95e
TU
1331 cs = intel_ring_begin(req, 4);
1332 if (IS_ERR(cs))
1333 return PTR_ERR(cs);
15648585
OM
1334
1335 /* FIXME(BDW): Address space and security selectors. */
54af56db
MK
1336 *cs++ = MI_BATCH_BUFFER_START_GEN8 |
1337 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
1338 (flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
73dec95e
TU
1339 *cs++ = lower_32_bits(offset);
1340 *cs++ = upper_32_bits(offset);
1341 *cs++ = MI_NOOP;
1342 intel_ring_advance(req, cs);
15648585
OM
1343
1344 return 0;
1345}
1346
31bb59cc 1347static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
73d477f6 1348{
c033666a 1349 struct drm_i915_private *dev_priv = engine->i915;
31bb59cc
CW
1350 I915_WRITE_IMR(engine,
1351 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1352 POSTING_READ_FW(RING_IMR(engine->mmio_base));
73d477f6
OM
1353}
1354
31bb59cc 1355static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
73d477f6 1356{
c033666a 1357 struct drm_i915_private *dev_priv = engine->i915;
31bb59cc 1358 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
73d477f6
OM
1359}
1360
7c9cf4e3 1361static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
4712274c 1362{
73dec95e 1363 u32 cmd, *cs;
4712274c 1364
73dec95e
TU
1365 cs = intel_ring_begin(request, 4);
1366 if (IS_ERR(cs))
1367 return PTR_ERR(cs);
4712274c
OM
1368
1369 cmd = MI_FLUSH_DW + 1;
1370
f0a1fb10
CW
1371 /* We always require a command barrier so that subsequent
1372 * commands, such as breadcrumb interrupts, are strictly ordered
1373 * wrt the contents of the write cache being flushed to memory
1374 * (and thus being coherent from the CPU).
1375 */
1376 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1377
7c9cf4e3 1378 if (mode & EMIT_INVALIDATE) {
f0a1fb10 1379 cmd |= MI_INVALIDATE_TLB;
1dae2dfb 1380 if (request->engine->id == VCS)
f0a1fb10 1381 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1382 }
1383
73dec95e
TU
1384 *cs++ = cmd;
1385 *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1386 *cs++ = 0; /* upper addr */
1387 *cs++ = 0; /* value */
1388 intel_ring_advance(request, cs);
4712274c
OM
1389
1390 return 0;
1391}
1392
7deb4d39 1393static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
7c9cf4e3 1394 u32 mode)
4712274c 1395{
b5321f30 1396 struct intel_engine_cs *engine = request->engine;
bde13ebd
CW
1397 u32 scratch_addr =
1398 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
0b2d0934 1399 bool vf_flush_wa = false, dc_flush_wa = false;
73dec95e 1400 u32 *cs, flags = 0;
0b2d0934 1401 int len;
4712274c
OM
1402
1403 flags |= PIPE_CONTROL_CS_STALL;
1404
7c9cf4e3 1405 if (mode & EMIT_FLUSH) {
4712274c
OM
1406 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1407 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
965fd602 1408 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
40a24488 1409 flags |= PIPE_CONTROL_FLUSH_ENABLE;
4712274c
OM
1410 }
1411
7c9cf4e3 1412 if (mode & EMIT_INVALIDATE) {
4712274c
OM
1413 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1414 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1415 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1416 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1417 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1418 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1419 flags |= PIPE_CONTROL_QW_WRITE;
1420 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
4712274c 1421
1a5a9ce7
BW
1422 /*
1423 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1424 * pipe control.
1425 */
c033666a 1426 if (IS_GEN9(request->i915))
1a5a9ce7 1427 vf_flush_wa = true;
0b2d0934
MK
1428
1429 /* WaForGAMHang:kbl */
1430 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1431 dc_flush_wa = true;
1a5a9ce7 1432 }
9647ff36 1433
0b2d0934
MK
1434 len = 6;
1435
1436 if (vf_flush_wa)
1437 len += 6;
1438
1439 if (dc_flush_wa)
1440 len += 12;
1441
73dec95e
TU
1442 cs = intel_ring_begin(request, len);
1443 if (IS_ERR(cs))
1444 return PTR_ERR(cs);
4712274c 1445
9f235dfa
TU
1446 if (vf_flush_wa)
1447 cs = gen8_emit_pipe_control(cs, 0, 0);
9647ff36 1448
9f235dfa
TU
1449 if (dc_flush_wa)
1450 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
1451 0);
0b2d0934 1452
9f235dfa 1453 cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
0b2d0934 1454
9f235dfa
TU
1455 if (dc_flush_wa)
1456 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
0b2d0934 1457
73dec95e 1458 intel_ring_advance(request, cs);
4712274c
OM
1459
1460 return 0;
1461}
1462
7c17d377
CW
1463/*
1464 * Reserve space for 2 NOOPs at the end of each request to be
1465 * used as a workaround for not being allowed to do lite
1466 * restore with HEAD==TAIL (WaIdleLiteRestore).
1467 */
73dec95e 1468static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
4da46e1e 1469{
73dec95e
TU
1470 *cs++ = MI_NOOP;
1471 *cs++ = MI_NOOP;
1472 request->wa_tail = intel_ring_offset(request, cs);
caddfe71 1473}
4da46e1e 1474
73dec95e 1475static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
caddfe71 1476{
7c17d377
CW
1477 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1478 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
4da46e1e 1479
73dec95e
TU
1480 *cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
1481 *cs++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
1482 *cs++ = 0;
1483 *cs++ = request->global_seqno;
1484 *cs++ = MI_USER_INTERRUPT;
1485 *cs++ = MI_NOOP;
1486 request->tail = intel_ring_offset(request, cs);
944a36d4 1487 GEM_BUG_ON(!IS_ALIGNED(request->tail, 8));
caddfe71 1488
73dec95e 1489 gen8_emit_wa_tail(request, cs);
7c17d377 1490}
4da46e1e 1491
98f29e8d
CW
1492static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
1493
caddfe71 1494static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
73dec95e 1495 u32 *cs)
7c17d377 1496{
ce81a65c
MW
1497 /* We're using qword write, seqno should be aligned to 8 bytes. */
1498 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1499
7c17d377
CW
1500 /* w/a for post sync ops following a GPGPU operation we
1501 * need a prior CS_STALL, which is emitted by the flush
1502 * following the batch.
1503 */
73dec95e
TU
1504 *cs++ = GFX_OP_PIPE_CONTROL(6);
1505 *cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
1506 PIPE_CONTROL_QW_WRITE;
1507 *cs++ = intel_hws_seqno_address(request->engine);
1508 *cs++ = 0;
1509 *cs++ = request->global_seqno;
ce81a65c 1510 /* We're thrashing one dword of HWS. */
73dec95e
TU
1511 *cs++ = 0;
1512 *cs++ = MI_USER_INTERRUPT;
1513 *cs++ = MI_NOOP;
1514 request->tail = intel_ring_offset(request, cs);
944a36d4 1515 GEM_BUG_ON(!IS_ALIGNED(request->tail, 8));
caddfe71 1516
73dec95e 1517 gen8_emit_wa_tail(request, cs);
4da46e1e
OM
1518}
1519
98f29e8d
CW
1520static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;
1521
8753181e 1522static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
e7778be1
TD
1523{
1524 int ret;
1525
4ac9659e 1526 ret = intel_ring_workarounds_emit(req);
e7778be1
TD
1527 if (ret)
1528 return ret;
1529
3bbaba0c
PA
1530 ret = intel_rcs_context_init_mocs(req);
1531 /*
1532 * Failing to program the MOCS is non-fatal.The system will not
1533 * run at peak performance. So generate an error and carry on.
1534 */
1535 if (ret)
1536 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1537
4e50f082 1538 return i915_gem_render_state_emit(req);
e7778be1
TD
1539}
1540
73e4d07f
OM
1541/**
1542 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
14bb2c11 1543 * @engine: Engine Command Streamer.
73e4d07f 1544 */
0bc40be8 1545void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
454afebd 1546{
6402c330 1547 struct drm_i915_private *dev_priv;
9832b9da 1548
27af5eea
TU
1549 /*
1550 * Tasklet cannot be active at this point due intel_mark_active/idle
1551 * so this is just for documentation.
1552 */
1553 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1554 tasklet_kill(&engine->irq_tasklet);
1555
c033666a 1556 dev_priv = engine->i915;
6402c330 1557
0bc40be8 1558 if (engine->buffer) {
0bc40be8 1559 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
b0366a54 1560 }
48d82387 1561
0bc40be8
TU
1562 if (engine->cleanup)
1563 engine->cleanup(engine);
48d82387 1564
57e88531
CW
1565 if (engine->status_page.vma) {
1566 i915_gem_object_unpin_map(engine->status_page.vma->obj);
1567 engine->status_page.vma = NULL;
48d82387 1568 }
e8a9c58f
CW
1569
1570 intel_engine_cleanup_common(engine);
17ee950d 1571
097d4f1c 1572 lrc_destroy_wa_ctx(engine);
c033666a 1573 engine->i915 = NULL;
3b3f1650
AG
1574 dev_priv->engine[engine->id] = NULL;
1575 kfree(engine);
454afebd
OM
1576}
1577
ff44ad51 1578static void execlists_set_default_submission(struct intel_engine_cs *engine)
ddd66c51 1579{
ff44ad51
CW
1580 engine->submit_request = execlists_submit_request;
1581 engine->schedule = execlists_schedule;
c9203e82 1582 engine->irq_tasklet.func = intel_lrc_irq_handler;
ddd66c51
CW
1583}
1584
c9cacf93 1585static void
e1382efb 1586logical_ring_default_vfuncs(struct intel_engine_cs *engine)
c9cacf93
TU
1587{
1588 /* Default vfuncs which can be overriden by each engine. */
0bc40be8 1589 engine->init_hw = gen8_init_common_ring;
821ed7df 1590 engine->reset_hw = reset_common_ring;
e8a9c58f
CW
1591
1592 engine->context_pin = execlists_context_pin;
1593 engine->context_unpin = execlists_context_unpin;
1594
f73e7399
CW
1595 engine->request_alloc = execlists_request_alloc;
1596
0bc40be8 1597 engine->emit_flush = gen8_emit_flush;
9b81d556 1598 engine->emit_breadcrumb = gen8_emit_breadcrumb;
98f29e8d 1599 engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
ff44ad51
CW
1600
1601 engine->set_default_submission = execlists_set_default_submission;
ddd66c51 1602
31bb59cc
CW
1603 engine->irq_enable = gen8_logical_ring_enable_irq;
1604 engine->irq_disable = gen8_logical_ring_disable_irq;
0bc40be8 1605 engine->emit_bb_start = gen8_emit_bb_start;
c9cacf93
TU
1606}
1607
d9f3af96 1608static inline void
c2c7f240 1609logical_ring_default_irqs(struct intel_engine_cs *engine)
d9f3af96 1610{
c2c7f240 1611 unsigned shift = engine->irq_shift;
0bc40be8
TU
1612 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1613 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
d9f3af96
TU
1614}
1615
7d774cac 1616static int
bf3783e5 1617lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
04794adb 1618{
57e88531 1619 const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
7d774cac 1620 void *hws;
04794adb
TU
1621
1622 /* The HWSP is part of the default context object in LRC mode. */
bf3783e5 1623 hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
7d774cac
TU
1624 if (IS_ERR(hws))
1625 return PTR_ERR(hws);
57e88531
CW
1626
1627 engine->status_page.page_addr = hws + hws_offset;
bde13ebd 1628 engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
57e88531 1629 engine->status_page.vma = vma;
7d774cac
TU
1630
1631 return 0;
04794adb
TU
1632}
1633
bb45438f
TU
1634static void
1635logical_ring_setup(struct intel_engine_cs *engine)
1636{
1637 struct drm_i915_private *dev_priv = engine->i915;
1638 enum forcewake_domains fw_domains;
1639
019bf277
TU
1640 intel_engine_setup_common(engine);
1641
bb45438f
TU
1642 /* Intentionally left blank. */
1643 engine->buffer = NULL;
1644
1645 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1646 RING_ELSP(engine),
1647 FW_REG_WRITE);
1648
1649 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1650 RING_CONTEXT_STATUS_PTR(engine),
1651 FW_REG_READ | FW_REG_WRITE);
1652
1653 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1654 RING_CONTEXT_STATUS_BUF_BASE(engine),
1655 FW_REG_READ);
1656
1657 engine->fw_domains = fw_domains;
1658
bb45438f
TU
1659 tasklet_init(&engine->irq_tasklet,
1660 intel_lrc_irq_handler, (unsigned long)engine);
1661
bb45438f
TU
1662 logical_ring_default_vfuncs(engine);
1663 logical_ring_default_irqs(engine);
bb45438f
TU
1664}
1665
a19d6ff2
TU
1666static int
1667logical_ring_init(struct intel_engine_cs *engine)
1668{
1669 struct i915_gem_context *dctx = engine->i915->kernel_context;
1670 int ret;
1671
019bf277 1672 ret = intel_engine_init_common(engine);
a19d6ff2
TU
1673 if (ret)
1674 goto error;
1675
a19d6ff2
TU
1676 /* And setup the hardware status page. */
1677 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
1678 if (ret) {
1679 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
1680 goto error;
1681 }
1682
1683 return 0;
1684
1685error:
1686 intel_logical_ring_cleanup(engine);
1687 return ret;
1688}
1689
88d2ba2e 1690int logical_render_ring_init(struct intel_engine_cs *engine)
a19d6ff2
TU
1691{
1692 struct drm_i915_private *dev_priv = engine->i915;
1693 int ret;
1694
bb45438f
TU
1695 logical_ring_setup(engine);
1696
a19d6ff2
TU
1697 if (HAS_L3_DPF(dev_priv))
1698 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1699
1700 /* Override some for render ring. */
1701 if (INTEL_GEN(dev_priv) >= 9)
1702 engine->init_hw = gen9_init_render_ring;
1703 else
1704 engine->init_hw = gen8_init_render_ring;
1705 engine->init_context = gen8_init_rcs_context;
a19d6ff2 1706 engine->emit_flush = gen8_emit_flush_render;
9b81d556 1707 engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
98f29e8d 1708 engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
a19d6ff2 1709
f51455d4 1710 ret = intel_engine_create_scratch(engine, PAGE_SIZE);
a19d6ff2
TU
1711 if (ret)
1712 return ret;
1713
1714 ret = intel_init_workaround_bb(engine);
1715 if (ret) {
1716 /*
1717 * We continue even if we fail to initialize WA batch
1718 * because we only expect rare glitches but nothing
1719 * critical to prevent us from using GPU
1720 */
1721 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1722 ret);
1723 }
1724
d038fc7e 1725 return logical_ring_init(engine);
a19d6ff2
TU
1726}
1727
88d2ba2e 1728int logical_xcs_ring_init(struct intel_engine_cs *engine)
bb45438f
TU
1729{
1730 logical_ring_setup(engine);
1731
1732 return logical_ring_init(engine);
454afebd
OM
1733}
1734
0cea6502 1735static u32
c033666a 1736make_rpcs(struct drm_i915_private *dev_priv)
0cea6502
JM
1737{
1738 u32 rpcs = 0;
1739
1740 /*
1741 * No explicit RPCS request is needed to ensure full
1742 * slice/subslice/EU enablement prior to Gen9.
1743 */
c033666a 1744 if (INTEL_GEN(dev_priv) < 9)
0cea6502
JM
1745 return 0;
1746
1747 /*
1748 * Starting in Gen9, render power gating can leave
1749 * slice/subslice/EU in a partially enabled state. We
1750 * must make an explicit request through RPCS for full
1751 * enablement.
1752 */
43b67998 1753 if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
0cea6502 1754 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
f08a0c92 1755 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
0cea6502
JM
1756 GEN8_RPCS_S_CNT_SHIFT;
1757 rpcs |= GEN8_RPCS_ENABLE;
1758 }
1759
43b67998 1760 if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
0cea6502 1761 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
57ec171e 1762 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
0cea6502
JM
1763 GEN8_RPCS_SS_CNT_SHIFT;
1764 rpcs |= GEN8_RPCS_ENABLE;
1765 }
1766
43b67998
ID
1767 if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
1768 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
0cea6502 1769 GEN8_RPCS_EU_MIN_SHIFT;
43b67998 1770 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
0cea6502
JM
1771 GEN8_RPCS_EU_MAX_SHIFT;
1772 rpcs |= GEN8_RPCS_ENABLE;
1773 }
1774
1775 return rpcs;
1776}
1777
0bc40be8 1778static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
71562919
MT
1779{
1780 u32 indirect_ctx_offset;
1781
c033666a 1782 switch (INTEL_GEN(engine->i915)) {
71562919 1783 default:
c033666a 1784 MISSING_CASE(INTEL_GEN(engine->i915));
71562919
MT
1785 /* fall through */
1786 case 9:
1787 indirect_ctx_offset =
1788 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1789 break;
1790 case 8:
1791 indirect_ctx_offset =
1792 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1793 break;
1794 }
1795
1796 return indirect_ctx_offset;
1797}
1798
56e51bf0 1799static void execlists_init_reg_state(u32 *regs,
a3aabe86
CW
1800 struct i915_gem_context *ctx,
1801 struct intel_engine_cs *engine,
1802 struct intel_ring *ring)
8670d6f9 1803{
a3aabe86
CW
1804 struct drm_i915_private *dev_priv = engine->i915;
1805 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
56e51bf0
TU
1806 u32 base = engine->mmio_base;
1807 bool rcs = engine->id == RCS;
1808
1809 /* A context is actually a big batch buffer with several
1810 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
1811 * values we are setting here are only for the first context restore:
1812 * on a subsequent save, the GPU will recreate this batchbuffer with new
1813 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
1814 * we are not initializing here).
1815 */
1816 regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
1817 MI_LRI_FORCE_POSTED;
1818
1819 CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
1820 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1821 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
1822 (HAS_RESOURCE_STREAMER(dev_priv) ?
1823 CTX_CTRL_RS_CTX_ENABLE : 0)));
1824 CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
1825 CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
1826 CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
1827 CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
1828 RING_CTL_SIZE(ring->size) | RING_VALID);
1829 CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
1830 CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
1831 CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
1832 CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
1833 CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
1834 CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
1835 if (rcs) {
1836 CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
1837 CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
1838 CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
1839 RING_INDIRECT_CTX_OFFSET(base), 0);
8670d6f9 1840
48bb74e4 1841 if (engine->wa_ctx.vma) {
0bc40be8 1842 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
bde13ebd 1843 u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
17ee950d 1844
56e51bf0 1845 regs[CTX_RCS_INDIRECT_CTX + 1] =
097d4f1c
TU
1846 (ggtt_offset + wa_ctx->indirect_ctx.offset) |
1847 (wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
17ee950d 1848
56e51bf0 1849 regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
0bc40be8 1850 intel_lr_indirect_ctx_offset(engine) << 6;
17ee950d 1851
56e51bf0 1852 regs[CTX_BB_PER_CTX_PTR + 1] =
097d4f1c 1853 (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
17ee950d 1854 }
8670d6f9 1855 }
56e51bf0
TU
1856
1857 regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
1858
1859 CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
0d925ea0 1860 /* PDP values well be assigned later if needed */
56e51bf0
TU
1861 CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
1862 CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
1863 CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
1864 CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
1865 CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
1866 CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
1867 CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
1868 CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
d7b2633d 1869
949e8ab3 1870 if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
2dba3239
MT
1871 /* 64b PPGTT (48bit canonical)
1872 * PDP0_DESCRIPTOR contains the base address to PML4 and
1873 * other PDP Descriptors are ignored.
1874 */
56e51bf0 1875 ASSIGN_CTX_PML4(ppgtt, regs);
2dba3239
MT
1876 }
1877
56e51bf0
TU
1878 if (rcs) {
1879 regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1880 CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
1881 make_rpcs(dev_priv));
8670d6f9 1882 }
a3aabe86
CW
1883}
1884
1885static int
1886populate_lr_context(struct i915_gem_context *ctx,
1887 struct drm_i915_gem_object *ctx_obj,
1888 struct intel_engine_cs *engine,
1889 struct intel_ring *ring)
1890{
1891 void *vaddr;
1892 int ret;
1893
1894 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1895 if (ret) {
1896 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1897 return ret;
1898 }
1899
1900 vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
1901 if (IS_ERR(vaddr)) {
1902 ret = PTR_ERR(vaddr);
1903 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
1904 return ret;
1905 }
a4f5ea64 1906 ctx_obj->mm.dirty = true;
a3aabe86
CW
1907
1908 /* The second page of the context object contains some fields which must
1909 * be set up prior to the first execution. */
1910
1911 execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
1912 ctx, engine, ring);
8670d6f9 1913
7d774cac 1914 i915_gem_object_unpin_map(ctx_obj);
8670d6f9
OM
1915
1916 return 0;
1917}
1918
c5d46ee2
DG
1919/**
1920 * intel_lr_context_size() - return the size of the context for an engine
14bb2c11 1921 * @engine: which engine to find the context size for
c5d46ee2
DG
1922 *
1923 * Each engine may require a different amount of space for a context image,
1924 * so when allocating (or copying) an image, this function can be used to
1925 * find the right size for the specific engine.
1926 *
1927 * Return: size (in bytes) of an engine-specific context image
1928 *
1929 * Note: this size includes the HWSP, which is part of the context image
1930 * in LRC mode, but does not include the "shared data page" used with
1931 * GuC submission. The caller should account for this if using the GuC.
1932 */
0bc40be8 1933uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
8c857917
OM
1934{
1935 int ret = 0;
1936
c033666a 1937 WARN_ON(INTEL_GEN(engine->i915) < 8);
8c857917 1938
0bc40be8 1939 switch (engine->id) {
8c857917 1940 case RCS:
c033666a 1941 if (INTEL_GEN(engine->i915) >= 9)
468c6816
MN
1942 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
1943 else
1944 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
1945 break;
1946 case VCS:
1947 case BCS:
1948 case VECS:
1949 case VCS2:
1950 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
1951 break;
1952 }
1953
1954 return ret;
ede7d42b
OM
1955}
1956
e2efd130 1957static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 1958 struct intel_engine_cs *engine)
ede7d42b 1959{
8c857917 1960 struct drm_i915_gem_object *ctx_obj;
9021ad03 1961 struct intel_context *ce = &ctx->engine[engine->id];
bf3783e5 1962 struct i915_vma *vma;
8c857917 1963 uint32_t context_size;
7e37f889 1964 struct intel_ring *ring;
8c857917
OM
1965 int ret;
1966
9021ad03 1967 WARN_ON(ce->state);
ede7d42b 1968
f51455d4
CW
1969 context_size = round_up(intel_lr_context_size(engine),
1970 I915_GTT_PAGE_SIZE);
8c857917 1971
d1675198
AD
1972 /* One extra page as the sharing data between driver and GuC */
1973 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
1974
12d79d78 1975 ctx_obj = i915_gem_object_create(ctx->i915, context_size);
fe3db79b 1976 if (IS_ERR(ctx_obj)) {
3126a660 1977 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
fe3db79b 1978 return PTR_ERR(ctx_obj);
8c857917
OM
1979 }
1980
a01cb37a 1981 vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
bf3783e5
CW
1982 if (IS_ERR(vma)) {
1983 ret = PTR_ERR(vma);
1984 goto error_deref_obj;
1985 }
1986
7e37f889 1987 ring = intel_engine_create_ring(engine, ctx->ring_size);
dca33ecc
CW
1988 if (IS_ERR(ring)) {
1989 ret = PTR_ERR(ring);
e84fe803 1990 goto error_deref_obj;
8670d6f9
OM
1991 }
1992
dca33ecc 1993 ret = populate_lr_context(ctx, ctx_obj, engine, ring);
8670d6f9
OM
1994 if (ret) {
1995 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
dca33ecc 1996 goto error_ring_free;
84c2377f
OM
1997 }
1998
dca33ecc 1999 ce->ring = ring;
bf3783e5 2000 ce->state = vma;
9021ad03 2001 ce->initialised = engine->init_context == NULL;
ede7d42b
OM
2002
2003 return 0;
8670d6f9 2004
dca33ecc 2005error_ring_free:
7e37f889 2006 intel_ring_free(ring);
e84fe803 2007error_deref_obj:
f8c417cd 2008 i915_gem_object_put(ctx_obj);
8670d6f9 2009 return ret;
ede7d42b 2010}
3e5b6f05 2011
821ed7df 2012void intel_lr_context_resume(struct drm_i915_private *dev_priv)
3e5b6f05 2013{
e2f80391 2014 struct intel_engine_cs *engine;
bafb2f7d 2015 struct i915_gem_context *ctx;
3b3f1650 2016 enum intel_engine_id id;
bafb2f7d
CW
2017
2018 /* Because we emit WA_TAIL_DWORDS there may be a disparity
2019 * between our bookkeeping in ce->ring->head and ce->ring->tail and
2020 * that stored in context. As we only write new commands from
2021 * ce->ring->tail onwards, everything before that is junk. If the GPU
2022 * starts reading from its RING_HEAD from the context, it may try to
2023 * execute that junk and die.
2024 *
2025 * So to avoid that we reset the context images upon resume. For
2026 * simplicity, we just zero everything out.
2027 */
2028 list_for_each_entry(ctx, &dev_priv->context_list, link) {
3b3f1650 2029 for_each_engine(engine, dev_priv, id) {
bafb2f7d
CW
2030 struct intel_context *ce = &ctx->engine[engine->id];
2031 u32 *reg;
3e5b6f05 2032
bafb2f7d
CW
2033 if (!ce->state)
2034 continue;
7d774cac 2035
bafb2f7d
CW
2036 reg = i915_gem_object_pin_map(ce->state->obj,
2037 I915_MAP_WB);
2038 if (WARN_ON(IS_ERR(reg)))
2039 continue;
3e5b6f05 2040
bafb2f7d
CW
2041 reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2042 reg[CTX_RING_HEAD+1] = 0;
2043 reg[CTX_RING_TAIL+1] = 0;
3e5b6f05 2044
a4f5ea64 2045 ce->state->obj->mm.dirty = true;
bafb2f7d 2046 i915_gem_object_unpin_map(ce->state->obj);
3e5b6f05 2047
bafb2f7d 2048 ce->ring->head = ce->ring->tail = 0;
bafb2f7d
CW
2049 intel_ring_update_space(ce->ring);
2050 }
3e5b6f05
TD
2051 }
2052}