drm/i915: Use a define for the default priority [0]
[linux-block.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1 133 */
27af5eea 134#include <linux/interrupt.h>
b20385f1
OM
135
136#include <drm/drmP.h>
137#include <drm/i915_drm.h>
138#include "i915_drv.h"
3bbaba0c 139#include "intel_mocs.h"
127f1003 140
e981e7b1
TD
141#define RING_EXECLIST_QFULL (1 << 0x2)
142#define RING_EXECLIST1_VALID (1 << 0x3)
143#define RING_EXECLIST0_VALID (1 << 0x4)
144#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
145#define RING_EXECLIST1_ACTIVE (1 << 0x11)
146#define RING_EXECLIST0_ACTIVE (1 << 0x12)
147
148#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
149#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
150#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
151#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
152#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
153#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9 154
70c2a24d
CW
155#define GEN8_CTX_STATUS_COMPLETED_MASK \
156 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
157 GEN8_CTX_STATUS_PREEMPTED | \
158 GEN8_CTX_STATUS_ELEMENT_SWITCH)
159
8670d6f9
OM
160#define CTX_LRI_HEADER_0 0x01
161#define CTX_CONTEXT_CONTROL 0x02
162#define CTX_RING_HEAD 0x04
163#define CTX_RING_TAIL 0x06
164#define CTX_RING_BUFFER_START 0x08
165#define CTX_RING_BUFFER_CONTROL 0x0a
166#define CTX_BB_HEAD_U 0x0c
167#define CTX_BB_HEAD_L 0x0e
168#define CTX_BB_STATE 0x10
169#define CTX_SECOND_BB_HEAD_U 0x12
170#define CTX_SECOND_BB_HEAD_L 0x14
171#define CTX_SECOND_BB_STATE 0x16
172#define CTX_BB_PER_CTX_PTR 0x18
173#define CTX_RCS_INDIRECT_CTX 0x1a
174#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
175#define CTX_LRI_HEADER_1 0x21
176#define CTX_CTX_TIMESTAMP 0x22
177#define CTX_PDP3_UDW 0x24
178#define CTX_PDP3_LDW 0x26
179#define CTX_PDP2_UDW 0x28
180#define CTX_PDP2_LDW 0x2a
181#define CTX_PDP1_UDW 0x2c
182#define CTX_PDP1_LDW 0x2e
183#define CTX_PDP0_UDW 0x30
184#define CTX_PDP0_LDW 0x32
185#define CTX_LRI_HEADER_2 0x41
186#define CTX_R_PWR_CLK_STATE 0x42
187#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
188
56e51bf0 189#define CTX_REG(reg_state, pos, reg, val) do { \
f0f59a00 190 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
0d925ea0
VS
191 (reg_state)[(pos)+1] = (val); \
192} while (0)
193
194#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
d852c7bf 195 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
e5815a2e
MT
196 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
197 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
9244a817 198} while (0)
e5815a2e 199
9244a817 200#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
2dba3239
MT
201 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
202 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
9244a817 203} while (0)
2dba3239 204
71562919
MT
205#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
206#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
84b790f8 207
0e93cdd4
CW
208/* Typical size of the average request (2 pipecontrols and a MI_BB) */
209#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
210
a3aabe86
CW
211#define WA_TAIL_DWORDS 2
212
e2efd130 213static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 214 struct intel_engine_cs *engine);
a3aabe86
CW
215static void execlists_init_reg_state(u32 *reg_state,
216 struct i915_gem_context *ctx,
217 struct intel_engine_cs *engine,
218 struct intel_ring *ring);
7ba717cf 219
73e4d07f
OM
220/**
221 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
14bb2c11 222 * @dev_priv: i915 device private
73e4d07f
OM
223 * @enable_execlists: value of i915.enable_execlists module parameter.
224 *
225 * Only certain platforms support Execlists (the prerequisites being
27401d12 226 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
227 *
228 * Return: 1 if Execlists is supported and has to be enabled.
229 */
c033666a 230int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
127f1003 231{
a0bd6c31
ZL
232 /* On platforms with execlist available, vGPU will only
233 * support execlist mode, no ring buffer mode.
234 */
c033666a 235 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
a0bd6c31
ZL
236 return 1;
237
c033666a 238 if (INTEL_GEN(dev_priv) >= 9)
70ee45e1
DL
239 return 1;
240
127f1003
OM
241 if (enable_execlists == 0)
242 return 0;
243
5a21b665
DV
244 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
245 USES_PPGTT(dev_priv) &&
246 i915.use_mmio_flip >= 0)
127f1003
OM
247 return 1;
248
249 return 0;
250}
ede7d42b 251
73e4d07f 252/**
ca82580c
TU
253 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
254 * descriptor for a pinned context
ca82580c 255 * @ctx: Context to work on
9021ad03 256 * @engine: Engine the descriptor will be used with
73e4d07f 257 *
ca82580c
TU
258 * The context descriptor encodes various attributes of a context,
259 * including its GTT address and some flags. Because it's fairly
260 * expensive to calculate, we'll just do it once and cache the result,
261 * which remains valid until the context is unpinned.
262 *
6e5248b5
DV
263 * This is what a descriptor looks like, from LSB to MSB::
264 *
2355cf08 265 * bits 0-11: flags, GEN8_CTX_* (cached in ctx->desc_template)
6e5248b5
DV
266 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
267 * bits 32-52: ctx ID, a globally unique tag
268 * bits 53-54: mbz, reserved for use by hardware
269 * bits 55-63: group ID, currently unused and set to 0
73e4d07f 270 */
ca82580c 271static void
e2efd130 272intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
0bc40be8 273 struct intel_engine_cs *engine)
84b790f8 274{
9021ad03 275 struct intel_context *ce = &ctx->engine[engine->id];
7069b144 276 u64 desc;
84b790f8 277
7069b144 278 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
84b790f8 279
2355cf08 280 desc = ctx->desc_template; /* bits 0-11 */
bde13ebd 281 desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
9021ad03 282 /* bits 12-31 */
7069b144 283 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
5af05fef 284
9021ad03 285 ce->lrc_desc = desc;
5af05fef
MT
286}
287
e2efd130 288uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
0bc40be8 289 struct intel_engine_cs *engine)
84b790f8 290{
0bc40be8 291 return ctx->engine[engine->id].lrc_desc;
ca82580c 292}
203a571b 293
bbd6c47e
CW
294static inline void
295execlists_context_status_change(struct drm_i915_gem_request *rq,
296 unsigned long status)
84b790f8 297{
bbd6c47e
CW
298 /*
299 * Only used when GVT-g is enabled now. When GVT-g is disabled,
300 * The compiler should eliminate this function as dead-code.
301 */
302 if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
303 return;
6daccb0b 304
3fc03069
CD
305 atomic_notifier_call_chain(&rq->engine->context_status_notifier,
306 status, rq);
84b790f8
BW
307}
308
c6a2ac71
TU
309static void
310execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
311{
312 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
313 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
314 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
315 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
316}
317
70c2a24d 318static u64 execlists_update_context(struct drm_i915_gem_request *rq)
ae1250b9 319{
70c2a24d 320 struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
04da811b
ZW
321 struct i915_hw_ppgtt *ppgtt =
322 rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
70c2a24d 323 u32 *reg_state = ce->lrc_reg_state;
ae1250b9 324
e6ba9992 325 reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
ae1250b9 326
c6a2ac71
TU
327 /* True 32b PPGTT with dynamic page allocation: update PDP
328 * registers and point the unallocated PDPs to scratch page.
329 * PML4 is allocated during ppgtt init, so this is not needed
330 * in 48-bit mode.
331 */
949e8ab3 332 if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
c6a2ac71 333 execlists_update_context_pdps(ppgtt, reg_state);
70c2a24d
CW
334
335 return ce->lrc_desc;
ae1250b9
OM
336}
337
70c2a24d 338static void execlists_submit_ports(struct intel_engine_cs *engine)
bbd6c47e 339{
70c2a24d 340 struct execlist_port *port = engine->execlist_port;
bbd6c47e 341 u32 __iomem *elsp =
77f0d0e9
CW
342 engine->i915->regs + i915_mmio_reg_offset(RING_ELSP(engine));
343 unsigned int n;
bbd6c47e 344
77f0d0e9
CW
345 for (n = ARRAY_SIZE(engine->execlist_port); n--; ) {
346 struct drm_i915_gem_request *rq;
347 unsigned int count;
348 u64 desc;
349
350 rq = port_unpack(&port[n], &count);
351 if (rq) {
352 GEM_BUG_ON(count > !n);
353 if (!count++)
354 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
355 port_set(&port[n], port_pack(rq, count));
356 desc = execlists_update_context(rq);
357 GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
358 } else {
359 GEM_BUG_ON(!n);
360 desc = 0;
361 }
bbd6c47e 362
77f0d0e9
CW
363 writel(upper_32_bits(desc), elsp);
364 writel(lower_32_bits(desc), elsp);
365 }
bbd6c47e
CW
366}
367
70c2a24d 368static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
84b790f8 369{
70c2a24d 370 return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
6095868a 371 i915_gem_context_force_single_submission(ctx));
70c2a24d 372}
84b790f8 373
70c2a24d
CW
374static bool can_merge_ctx(const struct i915_gem_context *prev,
375 const struct i915_gem_context *next)
376{
377 if (prev != next)
378 return false;
26720ab9 379
70c2a24d
CW
380 if (ctx_single_port_submission(prev))
381 return false;
26720ab9 382
70c2a24d 383 return true;
84b790f8
BW
384}
385
77f0d0e9
CW
386static void port_assign(struct execlist_port *port,
387 struct drm_i915_gem_request *rq)
388{
389 GEM_BUG_ON(rq == port_request(port));
390
391 if (port_isset(port))
392 i915_gem_request_put(port_request(port));
393
394 port_set(port, port_pack(i915_gem_request_get(rq), port_count(port)));
395}
396
70c2a24d 397static void execlists_dequeue(struct intel_engine_cs *engine)
acdd884a 398{
20311bd3 399 struct drm_i915_gem_request *last;
70c2a24d 400 struct execlist_port *port = engine->execlist_port;
20311bd3 401 struct rb_node *rb;
70c2a24d
CW
402 bool submit = false;
403
77f0d0e9 404 last = port_request(port);
70c2a24d
CW
405 if (last)
406 /* WaIdleLiteRestore:bdw,skl
407 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
9b81d556 408 * as we resubmit the request. See gen8_emit_breadcrumb()
70c2a24d
CW
409 * for where we prepare the padding after the end of the
410 * request.
411 */
412 last->tail = last->wa_tail;
e981e7b1 413
77f0d0e9 414 GEM_BUG_ON(port_isset(&port[1]));
acdd884a 415
70c2a24d
CW
416 /* Hardware submission is through 2 ports. Conceptually each port
417 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
418 * static for a context, and unique to each, so we only execute
419 * requests belonging to a single context from each ring. RING_HEAD
420 * is maintained by the CS in the context image, it marks the place
421 * where it got up to last time, and through RING_TAIL we tell the CS
422 * where we want to execute up to this time.
423 *
424 * In this list the requests are in order of execution. Consecutive
425 * requests from the same context are adjacent in the ringbuffer. We
426 * can combine these requests into a single RING_TAIL update:
427 *
428 * RING_HEAD...req1...req2
429 * ^- RING_TAIL
430 * since to execute req2 the CS must first execute req1.
431 *
432 * Our goal then is to point each port to the end of a consecutive
433 * sequence of requests as being the most optimal (fewest wake ups
434 * and context switches) submission.
779949f4 435 */
acdd884a 436
9f7886d0 437 spin_lock_irq(&engine->timeline->lock);
20311bd3
CW
438 rb = engine->execlist_first;
439 while (rb) {
440 struct drm_i915_gem_request *cursor =
441 rb_entry(rb, typeof(*cursor), priotree.node);
442
70c2a24d
CW
443 /* Can we combine this request with the current port? It has to
444 * be the same context/ringbuffer and not have any exceptions
445 * (e.g. GVT saying never to combine contexts).
c6a2ac71 446 *
70c2a24d
CW
447 * If we can combine the requests, we can execute both by
448 * updating the RING_TAIL to point to the end of the second
449 * request, and so we never need to tell the hardware about
450 * the first.
53292cdb 451 */
70c2a24d
CW
452 if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
453 /* If we are on the second port and cannot combine
454 * this request with the last, then we are done.
455 */
456 if (port != engine->execlist_port)
457 break;
458
459 /* If GVT overrides us we only ever submit port[0],
460 * leaving port[1] empty. Note that we also have
461 * to be careful that we don't queue the same
462 * context (even though a different request) to
463 * the second port.
464 */
d7ab992c
MH
465 if (ctx_single_port_submission(last->ctx) ||
466 ctx_single_port_submission(cursor->ctx))
70c2a24d
CW
467 break;
468
469 GEM_BUG_ON(last->ctx == cursor->ctx);
470
77f0d0e9
CW
471 if (submit)
472 port_assign(port, last);
70c2a24d
CW
473 port++;
474 }
d55ac5bf 475
20311bd3
CW
476 rb = rb_next(rb);
477 rb_erase(&cursor->priotree.node, &engine->execlist_queue);
478 RB_CLEAR_NODE(&cursor->priotree.node);
479 cursor->priotree.priority = INT_MAX;
480
d55ac5bf 481 __i915_gem_request_submit(cursor);
77f0d0e9 482 trace_i915_gem_request_in(cursor, port_index(port, engine));
70c2a24d
CW
483 last = cursor;
484 submit = true;
485 }
486 if (submit) {
77f0d0e9 487 port_assign(port, last);
20311bd3 488 engine->execlist_first = rb;
53292cdb 489 }
9f7886d0 490 spin_unlock_irq(&engine->timeline->lock);
53292cdb 491
70c2a24d
CW
492 if (submit)
493 execlists_submit_ports(engine);
acdd884a
MT
494}
495
816ee798 496static bool execlists_elsp_ready(const struct intel_engine_cs *engine)
91a41032 497{
816ee798 498 const struct execlist_port *port = engine->execlist_port;
91a41032 499
77f0d0e9 500 return port_count(&port[0]) + port_count(&port[1]) < 2;
91a41032
BW
501}
502
6e5248b5 503/*
73e4d07f
OM
504 * Check the unread Context Status Buffers and manage the submission of new
505 * contexts to the ELSP accordingly.
506 */
27af5eea 507static void intel_lrc_irq_handler(unsigned long data)
e981e7b1 508{
27af5eea 509 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
70c2a24d 510 struct execlist_port *port = engine->execlist_port;
c033666a 511 struct drm_i915_private *dev_priv = engine->i915;
c6a2ac71 512
48921260
CW
513 /* We can skip acquiring intel_runtime_pm_get() here as it was taken
514 * on our behalf by the request (see i915_gem_mark_busy()) and it will
515 * not be relinquished until the device is idle (see
516 * i915_gem_idle_work_handler()). As a precaution, we make sure
517 * that all ELSP are drained i.e. we have processed the CSB,
518 * before allowing ourselves to idle and calling intel_runtime_pm_put().
519 */
520 GEM_BUG_ON(!dev_priv->gt.awake);
521
3756685a 522 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
c6a2ac71 523
899f6204
CW
524 /* Prefer doing test_and_clear_bit() as a two stage operation to avoid
525 * imposing the cost of a locked atomic transaction when submitting a
526 * new request (outside of the context-switch interrupt).
527 */
528 while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
70c2a24d
CW
529 u32 __iomem *csb_mmio =
530 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
531 u32 __iomem *buf =
532 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
4af0d727 533 unsigned int head, tail;
70c2a24d 534
2e70b8c6
CW
535 /* The write will be ordered by the uncached read (itself
536 * a memory barrier), so we do not need another in the form
537 * of a locked instruction. The race between the interrupt
538 * handler and the split test/clear is harmless as we order
539 * our clear before the CSB read. If the interrupt arrived
540 * first between the test and the clear, we read the updated
541 * CSB and clear the bit. If the interrupt arrives as we read
542 * the CSB or later (i.e. after we had cleared the bit) the bit
543 * is set and we do a new loop.
544 */
545 __clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
4af0d727
CW
546 head = readl(csb_mmio);
547 tail = GEN8_CSB_WRITE_PTR(head);
548 head = GEN8_CSB_READ_PTR(head);
549 while (head != tail) {
77f0d0e9 550 struct drm_i915_gem_request *rq;
4af0d727 551 unsigned int status;
77f0d0e9 552 unsigned int count;
4af0d727
CW
553
554 if (++head == GEN8_CSB_ENTRIES)
555 head = 0;
70c2a24d 556
2ffe80aa
CW
557 /* We are flying near dragons again.
558 *
559 * We hold a reference to the request in execlist_port[]
560 * but no more than that. We are operating in softirq
561 * context and so cannot hold any mutex or sleep. That
562 * prevents us stopping the requests we are processing
563 * in port[] from being retired simultaneously (the
564 * breadcrumb will be complete before we see the
565 * context-switch). As we only hold the reference to the
566 * request, any pointer chasing underneath the request
567 * is subject to a potential use-after-free. Thus we
568 * store all of the bookkeeping within port[] as
569 * required, and avoid using unguarded pointers beneath
570 * request itself. The same applies to the atomic
571 * status notifier.
572 */
573
4af0d727 574 status = readl(buf + 2 * head);
70c2a24d
CW
575 if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
576 continue;
577
86aa7e76 578 /* Check the context/desc id for this event matches */
4af0d727 579 GEM_DEBUG_BUG_ON(readl(buf + 2 * head + 1) !=
77f0d0e9 580 port->context_id);
86aa7e76 581
77f0d0e9
CW
582 rq = port_unpack(port, &count);
583 GEM_BUG_ON(count == 0);
584 if (--count == 0) {
70c2a24d 585 GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
77f0d0e9
CW
586 GEM_BUG_ON(!i915_gem_request_completed(rq));
587 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
588
589 trace_i915_gem_request_out(rq);
590 i915_gem_request_put(rq);
70c2a24d 591
70c2a24d
CW
592 port[0] = port[1];
593 memset(&port[1], 0, sizeof(port[1]));
77f0d0e9
CW
594 } else {
595 port_set(port, port_pack(rq, count));
70c2a24d 596 }
26720ab9 597
77f0d0e9
CW
598 /* After the final element, the hw should be idle */
599 GEM_BUG_ON(port_count(port) == 0 &&
70c2a24d 600 !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
4af0d727 601 }
e1fee72c 602
4af0d727 603 writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
70c2a24d 604 csb_mmio);
e981e7b1
TD
605 }
606
70c2a24d
CW
607 if (execlists_elsp_ready(engine))
608 execlists_dequeue(engine);
c6a2ac71 609
70c2a24d 610 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
e981e7b1
TD
611}
612
20311bd3
CW
613static bool insert_request(struct i915_priotree *pt, struct rb_root *root)
614{
615 struct rb_node **p, *rb;
616 bool first = true;
617
618 /* most positive priority is scheduled first, equal priorities fifo */
619 rb = NULL;
620 p = &root->rb_node;
621 while (*p) {
622 struct i915_priotree *pos;
623
624 rb = *p;
625 pos = rb_entry(rb, typeof(*pos), node);
626 if (pt->priority > pos->priority) {
627 p = &rb->rb_left;
628 } else {
629 p = &rb->rb_right;
630 first = false;
631 }
632 }
633 rb_link_node(&pt->node, rb, p);
634 rb_insert_color(&pt->node, root);
635
636 return first;
637}
638
f4ea6bdd 639static void execlists_submit_request(struct drm_i915_gem_request *request)
acdd884a 640{
4a570db5 641 struct intel_engine_cs *engine = request->engine;
5590af3e 642 unsigned long flags;
acdd884a 643
663f71e7
CW
644 /* Will be called from irq-context when using foreign fences. */
645 spin_lock_irqsave(&engine->timeline->lock, flags);
acdd884a 646
3833281a 647 if (insert_request(&request->priotree, &engine->execlist_queue)) {
20311bd3 648 engine->execlist_first = &request->priotree.node;
48ea2554 649 if (execlists_elsp_ready(engine))
3833281a
CW
650 tasklet_hi_schedule(&engine->irq_tasklet);
651 }
acdd884a 652
663f71e7 653 spin_unlock_irqrestore(&engine->timeline->lock, flags);
acdd884a
MT
654}
655
20311bd3
CW
656static struct intel_engine_cs *
657pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
658{
a79a524e
CW
659 struct intel_engine_cs *engine =
660 container_of(pt, struct drm_i915_gem_request, priotree)->engine;
661
662 GEM_BUG_ON(!locked);
20311bd3 663
20311bd3 664 if (engine != locked) {
a79a524e
CW
665 spin_unlock(&locked->timeline->lock);
666 spin_lock(&engine->timeline->lock);
20311bd3
CW
667 }
668
669 return engine;
670}
671
672static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
673{
a79a524e 674 struct intel_engine_cs *engine;
20311bd3
CW
675 struct i915_dependency *dep, *p;
676 struct i915_dependency stack;
677 LIST_HEAD(dfs);
678
679 if (prio <= READ_ONCE(request->priotree.priority))
680 return;
681
70cd1476
CW
682 /* Need BKL in order to use the temporary link inside i915_dependency */
683 lockdep_assert_held(&request->i915->drm.struct_mutex);
20311bd3
CW
684
685 stack.signaler = &request->priotree;
686 list_add(&stack.dfs_link, &dfs);
687
688 /* Recursively bump all dependent priorities to match the new request.
689 *
690 * A naive approach would be to use recursion:
691 * static void update_priorities(struct i915_priotree *pt, prio) {
692 * list_for_each_entry(dep, &pt->signalers_list, signal_link)
693 * update_priorities(dep->signal, prio)
694 * insert_request(pt);
695 * }
696 * but that may have unlimited recursion depth and so runs a very
697 * real risk of overunning the kernel stack. Instead, we build
698 * a flat list of all dependencies starting with the current request.
699 * As we walk the list of dependencies, we add all of its dependencies
700 * to the end of the list (this may include an already visited
701 * request) and continue to walk onwards onto the new dependencies. The
702 * end result is a topological list of requests in reverse order, the
703 * last element in the list is the request we must execute first.
704 */
705 list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
706 struct i915_priotree *pt = dep->signaler;
707
a79a524e
CW
708 /* Within an engine, there can be no cycle, but we may
709 * refer to the same dependency chain multiple times
710 * (redundant dependencies are not eliminated) and across
711 * engines.
712 */
713 list_for_each_entry(p, &pt->signalers_list, signal_link) {
714 GEM_BUG_ON(p->signaler->priority < pt->priority);
20311bd3
CW
715 if (prio > READ_ONCE(p->signaler->priority))
716 list_move_tail(&p->dfs_link, &dfs);
a79a524e 717 }
20311bd3 718
0798cff4 719 list_safe_reset_next(dep, p, dfs_link);
20311bd3
CW
720 }
721
a79a524e
CW
722 engine = request->engine;
723 spin_lock_irq(&engine->timeline->lock);
724
20311bd3
CW
725 /* Fifo and depth-first replacement ensure our deps execute before us */
726 list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
727 struct i915_priotree *pt = dep->signaler;
728
729 INIT_LIST_HEAD(&dep->dfs_link);
730
731 engine = pt_lock_engine(pt, engine);
732
733 if (prio <= pt->priority)
734 continue;
735
20311bd3 736 pt->priority = prio;
a79a524e
CW
737 if (!RB_EMPTY_NODE(&pt->node)) {
738 rb_erase(&pt->node, &engine->execlist_queue);
739 if (insert_request(pt, &engine->execlist_queue))
740 engine->execlist_first = &pt->node;
741 }
20311bd3
CW
742 }
743
a79a524e 744 spin_unlock_irq(&engine->timeline->lock);
20311bd3
CW
745
746 /* XXX Do we need to preempt to make room for us and our deps? */
747}
748
266a240b
CW
749static struct intel_ring *
750execlists_context_pin(struct intel_engine_cs *engine,
751 struct i915_gem_context *ctx)
dcb4c12a 752{
9021ad03 753 struct intel_context *ce = &ctx->engine[engine->id];
2947e408 754 unsigned int flags;
7d774cac 755 void *vaddr;
ca82580c 756 int ret;
dcb4c12a 757
91c8a326 758 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
ca82580c 759
266a240b
CW
760 if (likely(ce->pin_count++))
761 goto out;
a533b4ba 762 GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
24f1d3cc 763
e8a9c58f
CW
764 if (!ce->state) {
765 ret = execlists_context_deferred_alloc(ctx, engine);
766 if (ret)
767 goto err;
768 }
56f6e0a7 769 GEM_BUG_ON(!ce->state);
e8a9c58f 770
72b72ae4 771 flags = PIN_GLOBAL | PIN_HIGH;
feef2a7c
DCS
772 if (ctx->ggtt_offset_bias)
773 flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
2947e408
CW
774
775 ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN, flags);
e84fe803 776 if (ret)
24f1d3cc 777 goto err;
7ba717cf 778
bf3783e5 779 vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
7d774cac
TU
780 if (IS_ERR(vaddr)) {
781 ret = PTR_ERR(vaddr);
bf3783e5 782 goto unpin_vma;
82352e90
TU
783 }
784
d822bb18 785 ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
e84fe803 786 if (ret)
7d774cac 787 goto unpin_map;
d1675198 788
0bc40be8 789 intel_lr_context_descriptor_update(ctx, engine);
9021ad03 790
a3aabe86
CW
791 ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
792 ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
bde13ebd 793 i915_ggtt_offset(ce->ring->vma);
a3aabe86 794
a4f5ea64 795 ce->state->obj->mm.dirty = true;
e93c28f3 796
9a6feaf0 797 i915_gem_context_get(ctx);
266a240b
CW
798out:
799 return ce->ring;
7ba717cf 800
7d774cac 801unpin_map:
bf3783e5
CW
802 i915_gem_object_unpin_map(ce->state->obj);
803unpin_vma:
804 __i915_vma_unpin(ce->state);
24f1d3cc 805err:
9021ad03 806 ce->pin_count = 0;
266a240b 807 return ERR_PTR(ret);
e84fe803
NH
808}
809
e8a9c58f
CW
810static void execlists_context_unpin(struct intel_engine_cs *engine,
811 struct i915_gem_context *ctx)
e84fe803 812{
9021ad03 813 struct intel_context *ce = &ctx->engine[engine->id];
e84fe803 814
91c8a326 815 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
9021ad03 816 GEM_BUG_ON(ce->pin_count == 0);
321fe304 817
9021ad03 818 if (--ce->pin_count)
24f1d3cc 819 return;
e84fe803 820
aad29fbb 821 intel_ring_unpin(ce->ring);
dcb4c12a 822
bf3783e5
CW
823 i915_gem_object_unpin_map(ce->state->obj);
824 i915_vma_unpin(ce->state);
321fe304 825
9a6feaf0 826 i915_gem_context_put(ctx);
dcb4c12a
OM
827}
828
f73e7399 829static int execlists_request_alloc(struct drm_i915_gem_request *request)
ef11c01d
CW
830{
831 struct intel_engine_cs *engine = request->engine;
832 struct intel_context *ce = &request->ctx->engine[engine->id];
73dec95e 833 u32 *cs;
ef11c01d
CW
834 int ret;
835
e8a9c58f
CW
836 GEM_BUG_ON(!ce->pin_count);
837
ef11c01d
CW
838 /* Flush enough space to reduce the likelihood of waiting after
839 * we start building the request - in which case we will just
840 * have to repeat work.
841 */
842 request->reserved_space += EXECLISTS_REQUEST_SIZE;
843
ef11c01d
CW
844 if (i915.enable_guc_submission) {
845 /*
846 * Check that the GuC has space for the request before
847 * going any further, as the i915_add_request() call
848 * later on mustn't fail ...
849 */
850 ret = i915_guc_wq_reserve(request);
851 if (ret)
e8a9c58f 852 goto err;
ef11c01d
CW
853 }
854
73dec95e
TU
855 cs = intel_ring_begin(request, 0);
856 if (IS_ERR(cs)) {
857 ret = PTR_ERR(cs);
ef11c01d 858 goto err_unreserve;
73dec95e 859 }
ef11c01d
CW
860
861 if (!ce->initialised) {
862 ret = engine->init_context(request);
863 if (ret)
864 goto err_unreserve;
865
866 ce->initialised = true;
867 }
868
869 /* Note that after this point, we have committed to using
870 * this request as it is being used to both track the
871 * state of engine initialisation and liveness of the
872 * golden renderstate above. Think twice before you try
873 * to cancel/unwind this request now.
874 */
875
876 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
877 return 0;
878
879err_unreserve:
880 if (i915.enable_guc_submission)
881 i915_guc_wq_unreserve(request);
e8a9c58f 882err:
ef11c01d
CW
883 return ret;
884}
885
9e000847
AS
886/*
887 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
888 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
889 * but there is a slight complication as this is applied in WA batch where the
890 * values are only initialized once so we cannot take register value at the
891 * beginning and reuse it further; hence we save its value to memory, upload a
892 * constant value with bit21 set and then we restore it back with the saved value.
893 * To simplify the WA, a constant value is formed by using the default value
894 * of this register. This shouldn't be a problem because we are only modifying
895 * it for a short period and this batch in non-premptible. We can ofcourse
896 * use additional instructions that read the actual value of the register
897 * at that time and set our bit of interest but it makes the WA complicated.
898 *
899 * This WA is also required for Gen9 so extracting as a function avoids
900 * code duplication.
901 */
097d4f1c
TU
902static u32 *
903gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
17ee950d 904{
097d4f1c
TU
905 *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
906 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
907 *batch++ = i915_ggtt_offset(engine->scratch) + 256;
908 *batch++ = 0;
909
910 *batch++ = MI_LOAD_REGISTER_IMM(1);
911 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
912 *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
913
9f235dfa
TU
914 batch = gen8_emit_pipe_control(batch,
915 PIPE_CONTROL_CS_STALL |
916 PIPE_CONTROL_DC_FLUSH_ENABLE,
917 0);
097d4f1c
TU
918
919 *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
920 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
921 *batch++ = i915_ggtt_offset(engine->scratch) + 256;
922 *batch++ = 0;
923
924 return batch;
17ee950d
AS
925}
926
6e5248b5
DV
927/*
928 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
929 * initialized at the beginning and shared across all contexts but this field
930 * helps us to have multiple batches at different offsets and select them based
931 * on a criteria. At the moment this batch always start at the beginning of the page
932 * and at this point we don't have multiple wa_ctx batch buffers.
4d78c8dc 933 *
6e5248b5
DV
934 * The number of WA applied are not known at the beginning; we use this field
935 * to return the no of DWORDS written.
17ee950d 936 *
6e5248b5
DV
937 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
938 * so it adds NOOPs as padding to make it cacheline aligned.
939 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
940 * makes a complete batch buffer.
17ee950d 941 */
097d4f1c 942static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
17ee950d 943{
7ad00d1a 944 /* WaDisableCtxRestoreArbitration:bdw,chv */
097d4f1c 945 *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
17ee950d 946
c82435bb 947 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
097d4f1c
TU
948 if (IS_BROADWELL(engine->i915))
949 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
c82435bb 950
0160f055
AS
951 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
952 /* Actual scratch location is at 128 bytes offset */
9f235dfa
TU
953 batch = gen8_emit_pipe_control(batch,
954 PIPE_CONTROL_FLUSH_L3 |
955 PIPE_CONTROL_GLOBAL_GTT_IVB |
956 PIPE_CONTROL_CS_STALL |
957 PIPE_CONTROL_QW_WRITE,
958 i915_ggtt_offset(engine->scratch) +
959 2 * CACHELINE_BYTES);
0160f055 960
17ee950d 961 /* Pad to end of cacheline */
097d4f1c
TU
962 while ((unsigned long)batch % CACHELINE_BYTES)
963 *batch++ = MI_NOOP;
17ee950d
AS
964
965 /*
966 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
967 * execution depends on the length specified in terms of cache lines
968 * in the register CTX_RCS_INDIRECT_CTX
969 */
970
097d4f1c 971 return batch;
17ee950d
AS
972}
973
6e5248b5
DV
974/*
975 * This batch is started immediately after indirect_ctx batch. Since we ensure
976 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
17ee950d 977 *
6e5248b5 978 * The number of DWORDS written are returned using this field.
17ee950d
AS
979 *
980 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
981 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
982 */
097d4f1c 983static u32 *gen8_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
17ee950d 984{
7ad00d1a 985 /* WaDisableCtxRestoreArbitration:bdw,chv */
097d4f1c
TU
986 *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
987 *batch++ = MI_BATCH_BUFFER_END;
17ee950d 988
097d4f1c 989 return batch;
17ee950d
AS
990}
991
097d4f1c 992static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
0504cffc 993{
9fb5026f 994 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
097d4f1c 995 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
a4106a78 996
9fb5026f 997 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
097d4f1c
TU
998 *batch++ = MI_LOAD_REGISTER_IMM(1);
999 *batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
1000 *batch++ = _MASKED_BIT_DISABLE(
1001 GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
1002 *batch++ = MI_NOOP;
873e8171 1003
066d4628
MK
1004 /* WaClearSlmSpaceAtContextSwitch:kbl */
1005 /* Actual scratch location is at 128 bytes offset */
097d4f1c 1006 if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
9f235dfa
TU
1007 batch = gen8_emit_pipe_control(batch,
1008 PIPE_CONTROL_FLUSH_L3 |
1009 PIPE_CONTROL_GLOBAL_GTT_IVB |
1010 PIPE_CONTROL_CS_STALL |
1011 PIPE_CONTROL_QW_WRITE,
1012 i915_ggtt_offset(engine->scratch)
1013 + 2 * CACHELINE_BYTES);
066d4628 1014 }
3485d99e 1015
9fb5026f 1016 /* WaMediaPoolStateCmdInWABB:bxt,glk */
3485d99e
TG
1017 if (HAS_POOLED_EU(engine->i915)) {
1018 /*
1019 * EU pool configuration is setup along with golden context
1020 * during context initialization. This value depends on
1021 * device type (2x6 or 3x6) and needs to be updated based
1022 * on which subslice is disabled especially for 2x6
1023 * devices, however it is safe to load default
1024 * configuration of 3x6 device instead of masking off
1025 * corresponding bits because HW ignores bits of a disabled
1026 * subslice and drops down to appropriate config. Please
1027 * see render_state_setup() in i915_gem_render_state.c for
1028 * possible configurations, to avoid duplication they are
1029 * not shown here again.
1030 */
097d4f1c
TU
1031 *batch++ = GEN9_MEDIA_POOL_STATE;
1032 *batch++ = GEN9_MEDIA_POOL_ENABLE;
1033 *batch++ = 0x00777000;
1034 *batch++ = 0;
1035 *batch++ = 0;
1036 *batch++ = 0;
3485d99e
TG
1037 }
1038
0504cffc 1039 /* Pad to end of cacheline */
097d4f1c
TU
1040 while ((unsigned long)batch % CACHELINE_BYTES)
1041 *batch++ = MI_NOOP;
0504cffc 1042
097d4f1c 1043 return batch;
0504cffc
AS
1044}
1045
097d4f1c 1046static u32 *gen9_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
0504cffc 1047{
097d4f1c 1048 *batch++ = MI_BATCH_BUFFER_END;
0504cffc 1049
097d4f1c 1050 return batch;
0504cffc
AS
1051}
1052
097d4f1c
TU
1053#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
1054
1055static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
17ee950d 1056{
48bb74e4
CW
1057 struct drm_i915_gem_object *obj;
1058 struct i915_vma *vma;
1059 int err;
17ee950d 1060
097d4f1c 1061 obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
48bb74e4
CW
1062 if (IS_ERR(obj))
1063 return PTR_ERR(obj);
17ee950d 1064
a01cb37a 1065 vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
48bb74e4
CW
1066 if (IS_ERR(vma)) {
1067 err = PTR_ERR(vma);
1068 goto err;
17ee950d
AS
1069 }
1070
48bb74e4
CW
1071 err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1072 if (err)
1073 goto err;
1074
1075 engine->wa_ctx.vma = vma;
17ee950d 1076 return 0;
48bb74e4
CW
1077
1078err:
1079 i915_gem_object_put(obj);
1080 return err;
17ee950d
AS
1081}
1082
097d4f1c 1083static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
17ee950d 1084{
19880c4a 1085 i915_vma_unpin_and_release(&engine->wa_ctx.vma);
17ee950d
AS
1086}
1087
097d4f1c
TU
1088typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1089
0bc40be8 1090static int intel_init_workaround_bb(struct intel_engine_cs *engine)
17ee950d 1091{
48bb74e4 1092 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
097d4f1c
TU
1093 struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
1094 &wa_ctx->per_ctx };
1095 wa_bb_func_t wa_bb_fn[2];
17ee950d 1096 struct page *page;
097d4f1c
TU
1097 void *batch, *batch_ptr;
1098 unsigned int i;
48bb74e4 1099 int ret;
17ee950d 1100
097d4f1c
TU
1101 if (WARN_ON(engine->id != RCS || !engine->scratch))
1102 return -EINVAL;
17ee950d 1103
097d4f1c
TU
1104 switch (INTEL_GEN(engine->i915)) {
1105 case 9:
1106 wa_bb_fn[0] = gen9_init_indirectctx_bb;
1107 wa_bb_fn[1] = gen9_init_perctx_bb;
1108 break;
1109 case 8:
1110 wa_bb_fn[0] = gen8_init_indirectctx_bb;
1111 wa_bb_fn[1] = gen8_init_perctx_bb;
1112 break;
1113 default:
1114 MISSING_CASE(INTEL_GEN(engine->i915));
5e60d790 1115 return 0;
0504cffc 1116 }
5e60d790 1117
097d4f1c 1118 ret = lrc_setup_wa_ctx(engine);
17ee950d
AS
1119 if (ret) {
1120 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1121 return ret;
1122 }
1123
48bb74e4 1124 page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
097d4f1c 1125 batch = batch_ptr = kmap_atomic(page);
17ee950d 1126
097d4f1c
TU
1127 /*
1128 * Emit the two workaround batch buffers, recording the offset from the
1129 * start of the workaround batch buffer object for each and their
1130 * respective sizes.
1131 */
1132 for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1133 wa_bb[i]->offset = batch_ptr - batch;
1134 if (WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, CACHELINE_BYTES))) {
1135 ret = -EINVAL;
1136 break;
1137 }
1138 batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1139 wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
17ee950d
AS
1140 }
1141
097d4f1c
TU
1142 BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
1143
17ee950d
AS
1144 kunmap_atomic(batch);
1145 if (ret)
097d4f1c 1146 lrc_destroy_wa_ctx(engine);
17ee950d
AS
1147
1148 return ret;
1149}
1150
0bc40be8 1151static int gen8_init_common_ring(struct intel_engine_cs *engine)
9b1136d5 1152{
c033666a 1153 struct drm_i915_private *dev_priv = engine->i915;
6b764a59
CW
1154 struct execlist_port *port = engine->execlist_port;
1155 unsigned int n;
77f0d0e9 1156 bool submit;
821ed7df
CW
1157 int ret;
1158
1159 ret = intel_mocs_init_engine(engine);
1160 if (ret)
1161 return ret;
9b1136d5 1162
ad07dfcd 1163 intel_engine_reset_breadcrumbs(engine);
f3b8f912 1164 intel_engine_init_hangcheck(engine);
821ed7df 1165
0bc40be8 1166 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
0bc40be8 1167 I915_WRITE(RING_MODE_GEN7(engine),
9b1136d5 1168 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
f3b8f912
CW
1169 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1170 engine->status_page.ggtt_offset);
1171 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
dfc53c5e 1172
0bc40be8 1173 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
9b1136d5 1174
c87d50cc 1175 /* After a GPU reset, we may have requests to replay */
f747026c 1176 clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
6b764a59 1177
77f0d0e9 1178 submit = false;
6b764a59 1179 for (n = 0; n < ARRAY_SIZE(engine->execlist_port); n++) {
77f0d0e9 1180 if (!port_isset(&port[n]))
6b764a59
CW
1181 break;
1182
1183 DRM_DEBUG_DRIVER("Restarting %s:%d from 0x%x\n",
1184 engine->name, n,
77f0d0e9 1185 port_request(&port[n])->global_seqno);
6b764a59
CW
1186
1187 /* Discard the current inflight count */
77f0d0e9
CW
1188 port_set(&port[n], port_request(&port[n]));
1189 submit = true;
c87d50cc 1190 }
821ed7df 1191
77f0d0e9 1192 if (submit && !i915.enable_guc_submission)
6b764a59
CW
1193 execlists_submit_ports(engine);
1194
821ed7df 1195 return 0;
9b1136d5
OM
1196}
1197
0bc40be8 1198static int gen8_init_render_ring(struct intel_engine_cs *engine)
9b1136d5 1199{
c033666a 1200 struct drm_i915_private *dev_priv = engine->i915;
9b1136d5
OM
1201 int ret;
1202
0bc40be8 1203 ret = gen8_init_common_ring(engine);
9b1136d5
OM
1204 if (ret)
1205 return ret;
1206
1207 /* We need to disable the AsyncFlip performance optimisations in order
1208 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1209 * programmed to '1' on all products.
1210 *
1211 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1212 */
1213 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1214
9b1136d5
OM
1215 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1216
0bc40be8 1217 return init_workarounds_ring(engine);
9b1136d5
OM
1218}
1219
0bc40be8 1220static int gen9_init_render_ring(struct intel_engine_cs *engine)
82ef822e
DL
1221{
1222 int ret;
1223
0bc40be8 1224 ret = gen8_init_common_ring(engine);
82ef822e
DL
1225 if (ret)
1226 return ret;
1227
0bc40be8 1228 return init_workarounds_ring(engine);
82ef822e
DL
1229}
1230
821ed7df
CW
1231static void reset_common_ring(struct intel_engine_cs *engine,
1232 struct drm_i915_gem_request *request)
1233{
821ed7df 1234 struct execlist_port *port = engine->execlist_port;
c0dcb203
CW
1235 struct intel_context *ce;
1236
1237 /* If the request was innocent, we leave the request in the ELSP
1238 * and will try to replay it on restarting. The context image may
1239 * have been corrupted by the reset, in which case we may have
1240 * to service a new GPU hang, but more likely we can continue on
1241 * without impact.
1242 *
1243 * If the request was guilty, we presume the context is corrupt
1244 * and have to at least restore the RING register in the context
1245 * image back to the expected values to skip over the guilty request.
1246 */
1247 if (!request || request->fence.error != -EIO)
1248 return;
821ed7df 1249
a3aabe86
CW
1250 /* We want a simple context + ring to execute the breadcrumb update.
1251 * We cannot rely on the context being intact across the GPU hang,
1252 * so clear it and rebuild just what we need for the breadcrumb.
1253 * All pending requests for this context will be zapped, and any
1254 * future request will be after userspace has had the opportunity
1255 * to recreate its own state.
1256 */
c0dcb203 1257 ce = &request->ctx->engine[engine->id];
a3aabe86
CW
1258 execlists_init_reg_state(ce->lrc_reg_state,
1259 request->ctx, engine, ce->ring);
1260
821ed7df 1261 /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
a3aabe86
CW
1262 ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1263 i915_ggtt_offset(ce->ring->vma);
821ed7df 1264 ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
a3aabe86 1265
821ed7df 1266 request->ring->head = request->postfix;
821ed7df
CW
1267 intel_ring_update_space(request->ring);
1268
821ed7df 1269 /* Catch up with any missed context-switch interrupts */
77f0d0e9
CW
1270 if (request->ctx != port_request(port)->ctx) {
1271 i915_gem_request_put(port_request(port));
821ed7df
CW
1272 port[0] = port[1];
1273 memset(&port[1], 0, sizeof(port[1]));
1274 }
1275
77f0d0e9 1276 GEM_BUG_ON(request->ctx != port_request(port)->ctx);
a3aabe86
CW
1277
1278 /* Reset WaIdleLiteRestore:bdw,skl as well */
450362d3
CW
1279 request->tail =
1280 intel_ring_wrap(request->ring,
1281 request->wa_tail - WA_TAIL_DWORDS*sizeof(u32));
ed1501d4 1282 assert_ring_tail_valid(request->ring, request->tail);
821ed7df
CW
1283}
1284
7a01a0a2
MT
1285static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1286{
1287 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
4a570db5 1288 struct intel_engine_cs *engine = req->engine;
e7167769 1289 const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
73dec95e
TU
1290 u32 *cs;
1291 int i;
7a01a0a2 1292
73dec95e
TU
1293 cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1294 if (IS_ERR(cs))
1295 return PTR_ERR(cs);
7a01a0a2 1296
73dec95e 1297 *cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
e7167769 1298 for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
7a01a0a2
MT
1299 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1300
73dec95e
TU
1301 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
1302 *cs++ = upper_32_bits(pd_daddr);
1303 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
1304 *cs++ = lower_32_bits(pd_daddr);
7a01a0a2
MT
1305 }
1306
73dec95e
TU
1307 *cs++ = MI_NOOP;
1308 intel_ring_advance(req, cs);
7a01a0a2
MT
1309
1310 return 0;
1311}
1312
be795fc1 1313static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
803688ba 1314 u64 offset, u32 len,
54af56db 1315 const unsigned int flags)
15648585 1316{
73dec95e 1317 u32 *cs;
15648585
OM
1318 int ret;
1319
7a01a0a2
MT
1320 /* Don't rely in hw updating PDPs, specially in lite-restore.
1321 * Ideally, we should set Force PD Restore in ctx descriptor,
1322 * but we can't. Force Restore would be a second option, but
1323 * it is unsafe in case of lite-restore (because the ctx is
2dba3239
MT
1324 * not idle). PML4 is allocated during ppgtt init so this is
1325 * not needed in 48-bit.*/
7a01a0a2 1326 if (req->ctx->ppgtt &&
54af56db
MK
1327 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings) &&
1328 !i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
1329 !intel_vgpu_active(req->i915)) {
1330 ret = intel_logical_ring_emit_pdps(req);
1331 if (ret)
1332 return ret;
7a01a0a2 1333
666796da 1334 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
7a01a0a2
MT
1335 }
1336
73dec95e
TU
1337 cs = intel_ring_begin(req, 4);
1338 if (IS_ERR(cs))
1339 return PTR_ERR(cs);
15648585
OM
1340
1341 /* FIXME(BDW): Address space and security selectors. */
54af56db
MK
1342 *cs++ = MI_BATCH_BUFFER_START_GEN8 |
1343 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
1344 (flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
73dec95e
TU
1345 *cs++ = lower_32_bits(offset);
1346 *cs++ = upper_32_bits(offset);
1347 *cs++ = MI_NOOP;
1348 intel_ring_advance(req, cs);
15648585
OM
1349
1350 return 0;
1351}
1352
31bb59cc 1353static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
73d477f6 1354{
c033666a 1355 struct drm_i915_private *dev_priv = engine->i915;
31bb59cc
CW
1356 I915_WRITE_IMR(engine,
1357 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1358 POSTING_READ_FW(RING_IMR(engine->mmio_base));
73d477f6
OM
1359}
1360
31bb59cc 1361static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
73d477f6 1362{
c033666a 1363 struct drm_i915_private *dev_priv = engine->i915;
31bb59cc 1364 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
73d477f6
OM
1365}
1366
7c9cf4e3 1367static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
4712274c 1368{
73dec95e 1369 u32 cmd, *cs;
4712274c 1370
73dec95e
TU
1371 cs = intel_ring_begin(request, 4);
1372 if (IS_ERR(cs))
1373 return PTR_ERR(cs);
4712274c
OM
1374
1375 cmd = MI_FLUSH_DW + 1;
1376
f0a1fb10
CW
1377 /* We always require a command barrier so that subsequent
1378 * commands, such as breadcrumb interrupts, are strictly ordered
1379 * wrt the contents of the write cache being flushed to memory
1380 * (and thus being coherent from the CPU).
1381 */
1382 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1383
7c9cf4e3 1384 if (mode & EMIT_INVALIDATE) {
f0a1fb10 1385 cmd |= MI_INVALIDATE_TLB;
1dae2dfb 1386 if (request->engine->id == VCS)
f0a1fb10 1387 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1388 }
1389
73dec95e
TU
1390 *cs++ = cmd;
1391 *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1392 *cs++ = 0; /* upper addr */
1393 *cs++ = 0; /* value */
1394 intel_ring_advance(request, cs);
4712274c
OM
1395
1396 return 0;
1397}
1398
7deb4d39 1399static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
7c9cf4e3 1400 u32 mode)
4712274c 1401{
b5321f30 1402 struct intel_engine_cs *engine = request->engine;
bde13ebd
CW
1403 u32 scratch_addr =
1404 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
0b2d0934 1405 bool vf_flush_wa = false, dc_flush_wa = false;
73dec95e 1406 u32 *cs, flags = 0;
0b2d0934 1407 int len;
4712274c
OM
1408
1409 flags |= PIPE_CONTROL_CS_STALL;
1410
7c9cf4e3 1411 if (mode & EMIT_FLUSH) {
4712274c
OM
1412 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1413 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
965fd602 1414 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
40a24488 1415 flags |= PIPE_CONTROL_FLUSH_ENABLE;
4712274c
OM
1416 }
1417
7c9cf4e3 1418 if (mode & EMIT_INVALIDATE) {
4712274c
OM
1419 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1420 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1421 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1422 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1423 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1424 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1425 flags |= PIPE_CONTROL_QW_WRITE;
1426 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
4712274c 1427
1a5a9ce7
BW
1428 /*
1429 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1430 * pipe control.
1431 */
c033666a 1432 if (IS_GEN9(request->i915))
1a5a9ce7 1433 vf_flush_wa = true;
0b2d0934
MK
1434
1435 /* WaForGAMHang:kbl */
1436 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1437 dc_flush_wa = true;
1a5a9ce7 1438 }
9647ff36 1439
0b2d0934
MK
1440 len = 6;
1441
1442 if (vf_flush_wa)
1443 len += 6;
1444
1445 if (dc_flush_wa)
1446 len += 12;
1447
73dec95e
TU
1448 cs = intel_ring_begin(request, len);
1449 if (IS_ERR(cs))
1450 return PTR_ERR(cs);
4712274c 1451
9f235dfa
TU
1452 if (vf_flush_wa)
1453 cs = gen8_emit_pipe_control(cs, 0, 0);
9647ff36 1454
9f235dfa
TU
1455 if (dc_flush_wa)
1456 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
1457 0);
0b2d0934 1458
9f235dfa 1459 cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
0b2d0934 1460
9f235dfa
TU
1461 if (dc_flush_wa)
1462 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
0b2d0934 1463
73dec95e 1464 intel_ring_advance(request, cs);
4712274c
OM
1465
1466 return 0;
1467}
1468
7c17d377
CW
1469/*
1470 * Reserve space for 2 NOOPs at the end of each request to be
1471 * used as a workaround for not being allowed to do lite
1472 * restore with HEAD==TAIL (WaIdleLiteRestore).
1473 */
73dec95e 1474static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
4da46e1e 1475{
73dec95e
TU
1476 *cs++ = MI_NOOP;
1477 *cs++ = MI_NOOP;
1478 request->wa_tail = intel_ring_offset(request, cs);
caddfe71 1479}
4da46e1e 1480
73dec95e 1481static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
caddfe71 1482{
7c17d377
CW
1483 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1484 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
4da46e1e 1485
73dec95e
TU
1486 *cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
1487 *cs++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
1488 *cs++ = 0;
1489 *cs++ = request->global_seqno;
1490 *cs++ = MI_USER_INTERRUPT;
1491 *cs++ = MI_NOOP;
1492 request->tail = intel_ring_offset(request, cs);
ed1501d4 1493 assert_ring_tail_valid(request->ring, request->tail);
caddfe71 1494
73dec95e 1495 gen8_emit_wa_tail(request, cs);
7c17d377 1496}
4da46e1e 1497
98f29e8d
CW
1498static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
1499
caddfe71 1500static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
73dec95e 1501 u32 *cs)
7c17d377 1502{
ce81a65c
MW
1503 /* We're using qword write, seqno should be aligned to 8 bytes. */
1504 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1505
7c17d377
CW
1506 /* w/a for post sync ops following a GPGPU operation we
1507 * need a prior CS_STALL, which is emitted by the flush
1508 * following the batch.
1509 */
73dec95e
TU
1510 *cs++ = GFX_OP_PIPE_CONTROL(6);
1511 *cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
1512 PIPE_CONTROL_QW_WRITE;
1513 *cs++ = intel_hws_seqno_address(request->engine);
1514 *cs++ = 0;
1515 *cs++ = request->global_seqno;
ce81a65c 1516 /* We're thrashing one dword of HWS. */
73dec95e
TU
1517 *cs++ = 0;
1518 *cs++ = MI_USER_INTERRUPT;
1519 *cs++ = MI_NOOP;
1520 request->tail = intel_ring_offset(request, cs);
ed1501d4 1521 assert_ring_tail_valid(request->ring, request->tail);
caddfe71 1522
73dec95e 1523 gen8_emit_wa_tail(request, cs);
4da46e1e
OM
1524}
1525
98f29e8d
CW
1526static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;
1527
8753181e 1528static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
e7778be1
TD
1529{
1530 int ret;
1531
4ac9659e 1532 ret = intel_ring_workarounds_emit(req);
e7778be1
TD
1533 if (ret)
1534 return ret;
1535
3bbaba0c
PA
1536 ret = intel_rcs_context_init_mocs(req);
1537 /*
1538 * Failing to program the MOCS is non-fatal.The system will not
1539 * run at peak performance. So generate an error and carry on.
1540 */
1541 if (ret)
1542 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1543
4e50f082 1544 return i915_gem_render_state_emit(req);
e7778be1
TD
1545}
1546
73e4d07f
OM
1547/**
1548 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
14bb2c11 1549 * @engine: Engine Command Streamer.
73e4d07f 1550 */
0bc40be8 1551void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
454afebd 1552{
6402c330 1553 struct drm_i915_private *dev_priv;
9832b9da 1554
27af5eea
TU
1555 /*
1556 * Tasklet cannot be active at this point due intel_mark_active/idle
1557 * so this is just for documentation.
1558 */
1559 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1560 tasklet_kill(&engine->irq_tasklet);
1561
c033666a 1562 dev_priv = engine->i915;
6402c330 1563
0bc40be8 1564 if (engine->buffer) {
0bc40be8 1565 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
b0366a54 1566 }
48d82387 1567
0bc40be8
TU
1568 if (engine->cleanup)
1569 engine->cleanup(engine);
48d82387 1570
57e88531
CW
1571 if (engine->status_page.vma) {
1572 i915_gem_object_unpin_map(engine->status_page.vma->obj);
1573 engine->status_page.vma = NULL;
48d82387 1574 }
e8a9c58f
CW
1575
1576 intel_engine_cleanup_common(engine);
17ee950d 1577
097d4f1c 1578 lrc_destroy_wa_ctx(engine);
c033666a 1579 engine->i915 = NULL;
3b3f1650
AG
1580 dev_priv->engine[engine->id] = NULL;
1581 kfree(engine);
454afebd
OM
1582}
1583
ff44ad51 1584static void execlists_set_default_submission(struct intel_engine_cs *engine)
ddd66c51 1585{
ff44ad51
CW
1586 engine->submit_request = execlists_submit_request;
1587 engine->schedule = execlists_schedule;
c9203e82 1588 engine->irq_tasklet.func = intel_lrc_irq_handler;
ddd66c51
CW
1589}
1590
c9cacf93 1591static void
e1382efb 1592logical_ring_default_vfuncs(struct intel_engine_cs *engine)
c9cacf93
TU
1593{
1594 /* Default vfuncs which can be overriden by each engine. */
0bc40be8 1595 engine->init_hw = gen8_init_common_ring;
821ed7df 1596 engine->reset_hw = reset_common_ring;
e8a9c58f
CW
1597
1598 engine->context_pin = execlists_context_pin;
1599 engine->context_unpin = execlists_context_unpin;
1600
f73e7399
CW
1601 engine->request_alloc = execlists_request_alloc;
1602
0bc40be8 1603 engine->emit_flush = gen8_emit_flush;
9b81d556 1604 engine->emit_breadcrumb = gen8_emit_breadcrumb;
98f29e8d 1605 engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
ff44ad51
CW
1606
1607 engine->set_default_submission = execlists_set_default_submission;
ddd66c51 1608
31bb59cc
CW
1609 engine->irq_enable = gen8_logical_ring_enable_irq;
1610 engine->irq_disable = gen8_logical_ring_disable_irq;
0bc40be8 1611 engine->emit_bb_start = gen8_emit_bb_start;
c9cacf93
TU
1612}
1613
d9f3af96 1614static inline void
c2c7f240 1615logical_ring_default_irqs(struct intel_engine_cs *engine)
d9f3af96 1616{
c2c7f240 1617 unsigned shift = engine->irq_shift;
0bc40be8
TU
1618 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1619 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
d9f3af96
TU
1620}
1621
7d774cac 1622static int
bf3783e5 1623lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
04794adb 1624{
57e88531 1625 const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
7d774cac 1626 void *hws;
04794adb
TU
1627
1628 /* The HWSP is part of the default context object in LRC mode. */
bf3783e5 1629 hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
7d774cac
TU
1630 if (IS_ERR(hws))
1631 return PTR_ERR(hws);
57e88531
CW
1632
1633 engine->status_page.page_addr = hws + hws_offset;
bde13ebd 1634 engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
57e88531 1635 engine->status_page.vma = vma;
7d774cac
TU
1636
1637 return 0;
04794adb
TU
1638}
1639
bb45438f
TU
1640static void
1641logical_ring_setup(struct intel_engine_cs *engine)
1642{
1643 struct drm_i915_private *dev_priv = engine->i915;
1644 enum forcewake_domains fw_domains;
1645
019bf277
TU
1646 intel_engine_setup_common(engine);
1647
bb45438f
TU
1648 /* Intentionally left blank. */
1649 engine->buffer = NULL;
1650
1651 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1652 RING_ELSP(engine),
1653 FW_REG_WRITE);
1654
1655 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1656 RING_CONTEXT_STATUS_PTR(engine),
1657 FW_REG_READ | FW_REG_WRITE);
1658
1659 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1660 RING_CONTEXT_STATUS_BUF_BASE(engine),
1661 FW_REG_READ);
1662
1663 engine->fw_domains = fw_domains;
1664
bb45438f
TU
1665 tasklet_init(&engine->irq_tasklet,
1666 intel_lrc_irq_handler, (unsigned long)engine);
1667
bb45438f
TU
1668 logical_ring_default_vfuncs(engine);
1669 logical_ring_default_irqs(engine);
bb45438f
TU
1670}
1671
a19d6ff2
TU
1672static int
1673logical_ring_init(struct intel_engine_cs *engine)
1674{
1675 struct i915_gem_context *dctx = engine->i915->kernel_context;
1676 int ret;
1677
019bf277 1678 ret = intel_engine_init_common(engine);
a19d6ff2
TU
1679 if (ret)
1680 goto error;
1681
a19d6ff2
TU
1682 /* And setup the hardware status page. */
1683 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
1684 if (ret) {
1685 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
1686 goto error;
1687 }
1688
1689 return 0;
1690
1691error:
1692 intel_logical_ring_cleanup(engine);
1693 return ret;
1694}
1695
88d2ba2e 1696int logical_render_ring_init(struct intel_engine_cs *engine)
a19d6ff2
TU
1697{
1698 struct drm_i915_private *dev_priv = engine->i915;
1699 int ret;
1700
bb45438f
TU
1701 logical_ring_setup(engine);
1702
a19d6ff2
TU
1703 if (HAS_L3_DPF(dev_priv))
1704 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1705
1706 /* Override some for render ring. */
1707 if (INTEL_GEN(dev_priv) >= 9)
1708 engine->init_hw = gen9_init_render_ring;
1709 else
1710 engine->init_hw = gen8_init_render_ring;
1711 engine->init_context = gen8_init_rcs_context;
a19d6ff2 1712 engine->emit_flush = gen8_emit_flush_render;
9b81d556 1713 engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
98f29e8d 1714 engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
a19d6ff2 1715
f51455d4 1716 ret = intel_engine_create_scratch(engine, PAGE_SIZE);
a19d6ff2
TU
1717 if (ret)
1718 return ret;
1719
1720 ret = intel_init_workaround_bb(engine);
1721 if (ret) {
1722 /*
1723 * We continue even if we fail to initialize WA batch
1724 * because we only expect rare glitches but nothing
1725 * critical to prevent us from using GPU
1726 */
1727 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1728 ret);
1729 }
1730
d038fc7e 1731 return logical_ring_init(engine);
a19d6ff2
TU
1732}
1733
88d2ba2e 1734int logical_xcs_ring_init(struct intel_engine_cs *engine)
bb45438f
TU
1735{
1736 logical_ring_setup(engine);
1737
1738 return logical_ring_init(engine);
454afebd
OM
1739}
1740
0cea6502 1741static u32
c033666a 1742make_rpcs(struct drm_i915_private *dev_priv)
0cea6502
JM
1743{
1744 u32 rpcs = 0;
1745
1746 /*
1747 * No explicit RPCS request is needed to ensure full
1748 * slice/subslice/EU enablement prior to Gen9.
1749 */
c033666a 1750 if (INTEL_GEN(dev_priv) < 9)
0cea6502
JM
1751 return 0;
1752
1753 /*
1754 * Starting in Gen9, render power gating can leave
1755 * slice/subslice/EU in a partially enabled state. We
1756 * must make an explicit request through RPCS for full
1757 * enablement.
1758 */
43b67998 1759 if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
0cea6502 1760 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
f08a0c92 1761 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
0cea6502
JM
1762 GEN8_RPCS_S_CNT_SHIFT;
1763 rpcs |= GEN8_RPCS_ENABLE;
1764 }
1765
43b67998 1766 if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
0cea6502 1767 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
57ec171e 1768 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
0cea6502
JM
1769 GEN8_RPCS_SS_CNT_SHIFT;
1770 rpcs |= GEN8_RPCS_ENABLE;
1771 }
1772
43b67998
ID
1773 if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
1774 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
0cea6502 1775 GEN8_RPCS_EU_MIN_SHIFT;
43b67998 1776 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
0cea6502
JM
1777 GEN8_RPCS_EU_MAX_SHIFT;
1778 rpcs |= GEN8_RPCS_ENABLE;
1779 }
1780
1781 return rpcs;
1782}
1783
0bc40be8 1784static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
71562919
MT
1785{
1786 u32 indirect_ctx_offset;
1787
c033666a 1788 switch (INTEL_GEN(engine->i915)) {
71562919 1789 default:
c033666a 1790 MISSING_CASE(INTEL_GEN(engine->i915));
71562919
MT
1791 /* fall through */
1792 case 9:
1793 indirect_ctx_offset =
1794 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1795 break;
1796 case 8:
1797 indirect_ctx_offset =
1798 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1799 break;
1800 }
1801
1802 return indirect_ctx_offset;
1803}
1804
56e51bf0 1805static void execlists_init_reg_state(u32 *regs,
a3aabe86
CW
1806 struct i915_gem_context *ctx,
1807 struct intel_engine_cs *engine,
1808 struct intel_ring *ring)
8670d6f9 1809{
a3aabe86
CW
1810 struct drm_i915_private *dev_priv = engine->i915;
1811 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
56e51bf0
TU
1812 u32 base = engine->mmio_base;
1813 bool rcs = engine->id == RCS;
1814
1815 /* A context is actually a big batch buffer with several
1816 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
1817 * values we are setting here are only for the first context restore:
1818 * on a subsequent save, the GPU will recreate this batchbuffer with new
1819 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
1820 * we are not initializing here).
1821 */
1822 regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
1823 MI_LRI_FORCE_POSTED;
1824
1825 CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
1826 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1827 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
1828 (HAS_RESOURCE_STREAMER(dev_priv) ?
1829 CTX_CTRL_RS_CTX_ENABLE : 0)));
1830 CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
1831 CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
1832 CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
1833 CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
1834 RING_CTL_SIZE(ring->size) | RING_VALID);
1835 CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
1836 CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
1837 CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
1838 CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
1839 CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
1840 CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
1841 if (rcs) {
1842 CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
1843 CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
1844 CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
1845 RING_INDIRECT_CTX_OFFSET(base), 0);
8670d6f9 1846
48bb74e4 1847 if (engine->wa_ctx.vma) {
0bc40be8 1848 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
bde13ebd 1849 u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
17ee950d 1850
56e51bf0 1851 regs[CTX_RCS_INDIRECT_CTX + 1] =
097d4f1c
TU
1852 (ggtt_offset + wa_ctx->indirect_ctx.offset) |
1853 (wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
17ee950d 1854
56e51bf0 1855 regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
0bc40be8 1856 intel_lr_indirect_ctx_offset(engine) << 6;
17ee950d 1857
56e51bf0 1858 regs[CTX_BB_PER_CTX_PTR + 1] =
097d4f1c 1859 (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
17ee950d 1860 }
8670d6f9 1861 }
56e51bf0
TU
1862
1863 regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
1864
1865 CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
0d925ea0 1866 /* PDP values well be assigned later if needed */
56e51bf0
TU
1867 CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
1868 CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
1869 CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
1870 CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
1871 CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
1872 CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
1873 CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
1874 CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
d7b2633d 1875
949e8ab3 1876 if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
2dba3239
MT
1877 /* 64b PPGTT (48bit canonical)
1878 * PDP0_DESCRIPTOR contains the base address to PML4 and
1879 * other PDP Descriptors are ignored.
1880 */
56e51bf0 1881 ASSIGN_CTX_PML4(ppgtt, regs);
2dba3239
MT
1882 }
1883
56e51bf0
TU
1884 if (rcs) {
1885 regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1886 CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
1887 make_rpcs(dev_priv));
8670d6f9 1888 }
a3aabe86
CW
1889}
1890
1891static int
1892populate_lr_context(struct i915_gem_context *ctx,
1893 struct drm_i915_gem_object *ctx_obj,
1894 struct intel_engine_cs *engine,
1895 struct intel_ring *ring)
1896{
1897 void *vaddr;
1898 int ret;
1899
1900 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1901 if (ret) {
1902 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1903 return ret;
1904 }
1905
1906 vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
1907 if (IS_ERR(vaddr)) {
1908 ret = PTR_ERR(vaddr);
1909 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
1910 return ret;
1911 }
a4f5ea64 1912 ctx_obj->mm.dirty = true;
a3aabe86
CW
1913
1914 /* The second page of the context object contains some fields which must
1915 * be set up prior to the first execution. */
1916
1917 execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
1918 ctx, engine, ring);
8670d6f9 1919
7d774cac 1920 i915_gem_object_unpin_map(ctx_obj);
8670d6f9
OM
1921
1922 return 0;
1923}
1924
e2efd130 1925static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 1926 struct intel_engine_cs *engine)
ede7d42b 1927{
8c857917 1928 struct drm_i915_gem_object *ctx_obj;
9021ad03 1929 struct intel_context *ce = &ctx->engine[engine->id];
bf3783e5 1930 struct i915_vma *vma;
8c857917 1931 uint32_t context_size;
7e37f889 1932 struct intel_ring *ring;
8c857917
OM
1933 int ret;
1934
9021ad03 1935 WARN_ON(ce->state);
ede7d42b 1936
63ffbcda 1937 context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
8c857917 1938
d1675198
AD
1939 /* One extra page as the sharing data between driver and GuC */
1940 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
1941
12d79d78 1942 ctx_obj = i915_gem_object_create(ctx->i915, context_size);
fe3db79b 1943 if (IS_ERR(ctx_obj)) {
3126a660 1944 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
fe3db79b 1945 return PTR_ERR(ctx_obj);
8c857917
OM
1946 }
1947
a01cb37a 1948 vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
bf3783e5
CW
1949 if (IS_ERR(vma)) {
1950 ret = PTR_ERR(vma);
1951 goto error_deref_obj;
1952 }
1953
7e37f889 1954 ring = intel_engine_create_ring(engine, ctx->ring_size);
dca33ecc
CW
1955 if (IS_ERR(ring)) {
1956 ret = PTR_ERR(ring);
e84fe803 1957 goto error_deref_obj;
8670d6f9
OM
1958 }
1959
dca33ecc 1960 ret = populate_lr_context(ctx, ctx_obj, engine, ring);
8670d6f9
OM
1961 if (ret) {
1962 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
dca33ecc 1963 goto error_ring_free;
84c2377f
OM
1964 }
1965
dca33ecc 1966 ce->ring = ring;
bf3783e5 1967 ce->state = vma;
0d402a24 1968 ce->initialised |= engine->init_context == NULL;
ede7d42b
OM
1969
1970 return 0;
8670d6f9 1971
dca33ecc 1972error_ring_free:
7e37f889 1973 intel_ring_free(ring);
e84fe803 1974error_deref_obj:
f8c417cd 1975 i915_gem_object_put(ctx_obj);
8670d6f9 1976 return ret;
ede7d42b 1977}
3e5b6f05 1978
821ed7df 1979void intel_lr_context_resume(struct drm_i915_private *dev_priv)
3e5b6f05 1980{
e2f80391 1981 struct intel_engine_cs *engine;
bafb2f7d 1982 struct i915_gem_context *ctx;
3b3f1650 1983 enum intel_engine_id id;
bafb2f7d
CW
1984
1985 /* Because we emit WA_TAIL_DWORDS there may be a disparity
1986 * between our bookkeeping in ce->ring->head and ce->ring->tail and
1987 * that stored in context. As we only write new commands from
1988 * ce->ring->tail onwards, everything before that is junk. If the GPU
1989 * starts reading from its RING_HEAD from the context, it may try to
1990 * execute that junk and die.
1991 *
1992 * So to avoid that we reset the context images upon resume. For
1993 * simplicity, we just zero everything out.
1994 */
1995 list_for_each_entry(ctx, &dev_priv->context_list, link) {
3b3f1650 1996 for_each_engine(engine, dev_priv, id) {
bafb2f7d
CW
1997 struct intel_context *ce = &ctx->engine[engine->id];
1998 u32 *reg;
3e5b6f05 1999
bafb2f7d
CW
2000 if (!ce->state)
2001 continue;
7d774cac 2002
bafb2f7d
CW
2003 reg = i915_gem_object_pin_map(ce->state->obj,
2004 I915_MAP_WB);
2005 if (WARN_ON(IS_ERR(reg)))
2006 continue;
3e5b6f05 2007
bafb2f7d
CW
2008 reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2009 reg[CTX_RING_HEAD+1] = 0;
2010 reg[CTX_RING_TAIL+1] = 0;
3e5b6f05 2011
a4f5ea64 2012 ce->state->obj->mm.dirty = true;
bafb2f7d 2013 i915_gem_object_unpin_map(ce->state->obj);
3e5b6f05 2014
e6ba9992 2015 intel_ring_reset(ce->ring, 0);
bafb2f7d 2016 }
3e5b6f05
TD
2017 }
2018}