drm/i915: Use reservation_object_lock()
[linux-block.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1 133 */
27af5eea 134#include <linux/interrupt.h>
b20385f1
OM
135
136#include <drm/drmP.h>
137#include <drm/i915_drm.h>
138#include "i915_drv.h"
3bbaba0c 139#include "intel_mocs.h"
127f1003 140
468c6816 141#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
142#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
e981e7b1
TD
145#define RING_EXECLIST_QFULL (1 << 0x2)
146#define RING_EXECLIST1_VALID (1 << 0x3)
147#define RING_EXECLIST0_VALID (1 << 0x4)
148#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149#define RING_EXECLIST1_ACTIVE (1 << 0x11)
150#define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9 158
70c2a24d
CW
159#define GEN8_CTX_STATUS_COMPLETED_MASK \
160 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
161 GEN8_CTX_STATUS_PREEMPTED | \
162 GEN8_CTX_STATUS_ELEMENT_SWITCH)
163
8670d6f9
OM
164#define CTX_LRI_HEADER_0 0x01
165#define CTX_CONTEXT_CONTROL 0x02
166#define CTX_RING_HEAD 0x04
167#define CTX_RING_TAIL 0x06
168#define CTX_RING_BUFFER_START 0x08
169#define CTX_RING_BUFFER_CONTROL 0x0a
170#define CTX_BB_HEAD_U 0x0c
171#define CTX_BB_HEAD_L 0x0e
172#define CTX_BB_STATE 0x10
173#define CTX_SECOND_BB_HEAD_U 0x12
174#define CTX_SECOND_BB_HEAD_L 0x14
175#define CTX_SECOND_BB_STATE 0x16
176#define CTX_BB_PER_CTX_PTR 0x18
177#define CTX_RCS_INDIRECT_CTX 0x1a
178#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
179#define CTX_LRI_HEADER_1 0x21
180#define CTX_CTX_TIMESTAMP 0x22
181#define CTX_PDP3_UDW 0x24
182#define CTX_PDP3_LDW 0x26
183#define CTX_PDP2_UDW 0x28
184#define CTX_PDP2_LDW 0x2a
185#define CTX_PDP1_UDW 0x2c
186#define CTX_PDP1_LDW 0x2e
187#define CTX_PDP0_UDW 0x30
188#define CTX_PDP0_LDW 0x32
189#define CTX_LRI_HEADER_2 0x41
190#define CTX_R_PWR_CLK_STATE 0x42
191#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
192
0d925ea0 193#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
f0f59a00 194 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
0d925ea0
VS
195 (reg_state)[(pos)+1] = (val); \
196} while (0)
197
198#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
d852c7bf 199 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
e5815a2e
MT
200 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
201 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
9244a817 202} while (0)
e5815a2e 203
9244a817 204#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
2dba3239
MT
205 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
206 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
9244a817 207} while (0)
2dba3239 208
71562919
MT
209#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
210#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
84b790f8 211
0e93cdd4
CW
212/* Typical size of the average request (2 pipecontrols and a MI_BB) */
213#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
214
a3aabe86
CW
215#define WA_TAIL_DWORDS 2
216
e2efd130 217static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 218 struct intel_engine_cs *engine);
a3aabe86
CW
219static void execlists_init_reg_state(u32 *reg_state,
220 struct i915_gem_context *ctx,
221 struct intel_engine_cs *engine,
222 struct intel_ring *ring);
7ba717cf 223
73e4d07f
OM
224/**
225 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
14bb2c11 226 * @dev_priv: i915 device private
73e4d07f
OM
227 * @enable_execlists: value of i915.enable_execlists module parameter.
228 *
229 * Only certain platforms support Execlists (the prerequisites being
27401d12 230 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
231 *
232 * Return: 1 if Execlists is supported and has to be enabled.
233 */
c033666a 234int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
127f1003 235{
a0bd6c31
ZL
236 /* On platforms with execlist available, vGPU will only
237 * support execlist mode, no ring buffer mode.
238 */
c033666a 239 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
a0bd6c31
ZL
240 return 1;
241
c033666a 242 if (INTEL_GEN(dev_priv) >= 9)
70ee45e1
DL
243 return 1;
244
127f1003
OM
245 if (enable_execlists == 0)
246 return 0;
247
5a21b665
DV
248 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
249 USES_PPGTT(dev_priv) &&
250 i915.use_mmio_flip >= 0)
127f1003
OM
251 return 1;
252
253 return 0;
254}
ede7d42b 255
73e4d07f 256/**
ca82580c
TU
257 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
258 * descriptor for a pinned context
ca82580c 259 * @ctx: Context to work on
9021ad03 260 * @engine: Engine the descriptor will be used with
73e4d07f 261 *
ca82580c
TU
262 * The context descriptor encodes various attributes of a context,
263 * including its GTT address and some flags. Because it's fairly
264 * expensive to calculate, we'll just do it once and cache the result,
265 * which remains valid until the context is unpinned.
266 *
6e5248b5
DV
267 * This is what a descriptor looks like, from LSB to MSB::
268 *
2355cf08 269 * bits 0-11: flags, GEN8_CTX_* (cached in ctx->desc_template)
6e5248b5
DV
270 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
271 * bits 32-52: ctx ID, a globally unique tag
272 * bits 53-54: mbz, reserved for use by hardware
273 * bits 55-63: group ID, currently unused and set to 0
73e4d07f 274 */
ca82580c 275static void
e2efd130 276intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
0bc40be8 277 struct intel_engine_cs *engine)
84b790f8 278{
9021ad03 279 struct intel_context *ce = &ctx->engine[engine->id];
7069b144 280 u64 desc;
84b790f8 281
7069b144 282 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
84b790f8 283
2355cf08 284 desc = ctx->desc_template; /* bits 0-11 */
bde13ebd 285 desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
9021ad03 286 /* bits 12-31 */
7069b144 287 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
5af05fef 288
9021ad03 289 ce->lrc_desc = desc;
5af05fef
MT
290}
291
e2efd130 292uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
0bc40be8 293 struct intel_engine_cs *engine)
84b790f8 294{
0bc40be8 295 return ctx->engine[engine->id].lrc_desc;
ca82580c 296}
203a571b 297
bbd6c47e
CW
298static inline void
299execlists_context_status_change(struct drm_i915_gem_request *rq,
300 unsigned long status)
84b790f8 301{
bbd6c47e
CW
302 /*
303 * Only used when GVT-g is enabled now. When GVT-g is disabled,
304 * The compiler should eliminate this function as dead-code.
305 */
306 if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
307 return;
6daccb0b 308
bbd6c47e 309 atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
84b790f8
BW
310}
311
c6a2ac71
TU
312static void
313execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
314{
315 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
316 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
317 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
318 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
319}
320
70c2a24d 321static u64 execlists_update_context(struct drm_i915_gem_request *rq)
ae1250b9 322{
70c2a24d 323 struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
04da811b
ZW
324 struct i915_hw_ppgtt *ppgtt =
325 rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
70c2a24d 326 u32 *reg_state = ce->lrc_reg_state;
ae1250b9 327
944a36d4 328 GEM_BUG_ON(!IS_ALIGNED(rq->tail, 8));
caddfe71 329 reg_state[CTX_RING_TAIL+1] = rq->tail;
ae1250b9 330
c6a2ac71
TU
331 /* True 32b PPGTT with dynamic page allocation: update PDP
332 * registers and point the unallocated PDPs to scratch page.
333 * PML4 is allocated during ppgtt init, so this is not needed
334 * in 48-bit mode.
335 */
949e8ab3 336 if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
c6a2ac71 337 execlists_update_context_pdps(ppgtt, reg_state);
70c2a24d
CW
338
339 return ce->lrc_desc;
ae1250b9
OM
340}
341
70c2a24d 342static void execlists_submit_ports(struct intel_engine_cs *engine)
bbd6c47e 343{
70c2a24d
CW
344 struct drm_i915_private *dev_priv = engine->i915;
345 struct execlist_port *port = engine->execlist_port;
bbd6c47e
CW
346 u32 __iomem *elsp =
347 dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
348 u64 desc[2];
349
c816e605 350 GEM_BUG_ON(port[0].count > 1);
70c2a24d
CW
351 if (!port[0].count)
352 execlists_context_status_change(port[0].request,
353 INTEL_CONTEXT_SCHEDULE_IN);
354 desc[0] = execlists_update_context(port[0].request);
ae9a043b 355 GEM_DEBUG_EXEC(port[0].context_id = upper_32_bits(desc[0]));
816ee798 356 port[0].count++;
70c2a24d
CW
357
358 if (port[1].request) {
359 GEM_BUG_ON(port[1].count);
360 execlists_context_status_change(port[1].request,
361 INTEL_CONTEXT_SCHEDULE_IN);
362 desc[1] = execlists_update_context(port[1].request);
ae9a043b 363 GEM_DEBUG_EXEC(port[1].context_id = upper_32_bits(desc[1]));
70c2a24d 364 port[1].count = 1;
bbd6c47e
CW
365 } else {
366 desc[1] = 0;
367 }
70c2a24d 368 GEM_BUG_ON(desc[0] == desc[1]);
bbd6c47e
CW
369
370 /* You must always write both descriptors in the order below. */
371 writel(upper_32_bits(desc[1]), elsp);
372 writel(lower_32_bits(desc[1]), elsp);
373
374 writel(upper_32_bits(desc[0]), elsp);
375 /* The context is automatically loaded after the following */
376 writel(lower_32_bits(desc[0]), elsp);
377}
378
70c2a24d 379static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
84b790f8 380{
70c2a24d 381 return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
6095868a 382 i915_gem_context_force_single_submission(ctx));
70c2a24d 383}
84b790f8 384
70c2a24d
CW
385static bool can_merge_ctx(const struct i915_gem_context *prev,
386 const struct i915_gem_context *next)
387{
388 if (prev != next)
389 return false;
26720ab9 390
70c2a24d
CW
391 if (ctx_single_port_submission(prev))
392 return false;
26720ab9 393
70c2a24d 394 return true;
84b790f8
BW
395}
396
70c2a24d 397static void execlists_dequeue(struct intel_engine_cs *engine)
acdd884a 398{
20311bd3 399 struct drm_i915_gem_request *last;
70c2a24d 400 struct execlist_port *port = engine->execlist_port;
d55ac5bf 401 unsigned long flags;
20311bd3 402 struct rb_node *rb;
70c2a24d
CW
403 bool submit = false;
404
405 last = port->request;
406 if (last)
407 /* WaIdleLiteRestore:bdw,skl
408 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
9b81d556 409 * as we resubmit the request. See gen8_emit_breadcrumb()
70c2a24d
CW
410 * for where we prepare the padding after the end of the
411 * request.
412 */
413 last->tail = last->wa_tail;
e981e7b1 414
70c2a24d 415 GEM_BUG_ON(port[1].request);
acdd884a 416
70c2a24d
CW
417 /* Hardware submission is through 2 ports. Conceptually each port
418 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
419 * static for a context, and unique to each, so we only execute
420 * requests belonging to a single context from each ring. RING_HEAD
421 * is maintained by the CS in the context image, it marks the place
422 * where it got up to last time, and through RING_TAIL we tell the CS
423 * where we want to execute up to this time.
424 *
425 * In this list the requests are in order of execution. Consecutive
426 * requests from the same context are adjacent in the ringbuffer. We
427 * can combine these requests into a single RING_TAIL update:
428 *
429 * RING_HEAD...req1...req2
430 * ^- RING_TAIL
431 * since to execute req2 the CS must first execute req1.
432 *
433 * Our goal then is to point each port to the end of a consecutive
434 * sequence of requests as being the most optimal (fewest wake ups
435 * and context switches) submission.
779949f4 436 */
acdd884a 437
d55ac5bf 438 spin_lock_irqsave(&engine->timeline->lock, flags);
20311bd3
CW
439 rb = engine->execlist_first;
440 while (rb) {
441 struct drm_i915_gem_request *cursor =
442 rb_entry(rb, typeof(*cursor), priotree.node);
443
70c2a24d
CW
444 /* Can we combine this request with the current port? It has to
445 * be the same context/ringbuffer and not have any exceptions
446 * (e.g. GVT saying never to combine contexts).
c6a2ac71 447 *
70c2a24d
CW
448 * If we can combine the requests, we can execute both by
449 * updating the RING_TAIL to point to the end of the second
450 * request, and so we never need to tell the hardware about
451 * the first.
53292cdb 452 */
70c2a24d
CW
453 if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
454 /* If we are on the second port and cannot combine
455 * this request with the last, then we are done.
456 */
457 if (port != engine->execlist_port)
458 break;
459
460 /* If GVT overrides us we only ever submit port[0],
461 * leaving port[1] empty. Note that we also have
462 * to be careful that we don't queue the same
463 * context (even though a different request) to
464 * the second port.
465 */
d7ab992c
MH
466 if (ctx_single_port_submission(last->ctx) ||
467 ctx_single_port_submission(cursor->ctx))
70c2a24d
CW
468 break;
469
470 GEM_BUG_ON(last->ctx == cursor->ctx);
471
472 i915_gem_request_assign(&port->request, last);
473 port++;
474 }
d55ac5bf 475
20311bd3
CW
476 rb = rb_next(rb);
477 rb_erase(&cursor->priotree.node, &engine->execlist_queue);
478 RB_CLEAR_NODE(&cursor->priotree.node);
479 cursor->priotree.priority = INT_MAX;
480
d55ac5bf 481 __i915_gem_request_submit(cursor);
70c2a24d
CW
482 last = cursor;
483 submit = true;
484 }
485 if (submit) {
70c2a24d 486 i915_gem_request_assign(&port->request, last);
20311bd3 487 engine->execlist_first = rb;
53292cdb 488 }
d55ac5bf 489 spin_unlock_irqrestore(&engine->timeline->lock, flags);
53292cdb 490
70c2a24d
CW
491 if (submit)
492 execlists_submit_ports(engine);
acdd884a
MT
493}
494
70c2a24d 495static bool execlists_elsp_idle(struct intel_engine_cs *engine)
e981e7b1 496{
70c2a24d 497 return !engine->execlist_port[0].request;
e981e7b1
TD
498}
499
0cb5670b
ID
500/**
501 * intel_execlists_idle() - Determine if all engine submission ports are idle
502 * @dev_priv: i915 device private
503 *
504 * Return true if there are no requests pending on any of the submission ports
505 * of any engines.
506 */
507bool intel_execlists_idle(struct drm_i915_private *dev_priv)
508{
509 struct intel_engine_cs *engine;
510 enum intel_engine_id id;
511
512 if (!i915.enable_execlists)
513 return true;
514
453cfe21
CW
515 for_each_engine(engine, dev_priv, id) {
516 /* Interrupt/tasklet pending? */
517 if (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted))
518 return false;
519
520 /* Both ports drained, no more ELSP submission? */
0cb5670b
ID
521 if (!execlists_elsp_idle(engine))
522 return false;
453cfe21 523 }
0cb5670b
ID
524
525 return true;
526}
527
816ee798 528static bool execlists_elsp_ready(const struct intel_engine_cs *engine)
91a41032 529{
816ee798 530 const struct execlist_port *port = engine->execlist_port;
91a41032 531
816ee798 532 return port[0].count + port[1].count < 2;
91a41032
BW
533}
534
6e5248b5 535/*
73e4d07f
OM
536 * Check the unread Context Status Buffers and manage the submission of new
537 * contexts to the ELSP accordingly.
538 */
27af5eea 539static void intel_lrc_irq_handler(unsigned long data)
e981e7b1 540{
27af5eea 541 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
70c2a24d 542 struct execlist_port *port = engine->execlist_port;
c033666a 543 struct drm_i915_private *dev_priv = engine->i915;
c6a2ac71 544
3756685a 545 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
c6a2ac71 546
f747026c 547 while (test_and_clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
70c2a24d
CW
548 u32 __iomem *csb_mmio =
549 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
550 u32 __iomem *buf =
551 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
552 unsigned int csb, head, tail;
553
554 csb = readl(csb_mmio);
555 head = GEN8_CSB_READ_PTR(csb);
556 tail = GEN8_CSB_WRITE_PTR(csb);
a37951ac
CW
557 if (head == tail)
558 break;
559
70c2a24d
CW
560 if (tail < head)
561 tail += GEN8_CSB_ENTRIES;
a37951ac 562 do {
70c2a24d
CW
563 unsigned int idx = ++head % GEN8_CSB_ENTRIES;
564 unsigned int status = readl(buf + 2 * idx);
565
2ffe80aa
CW
566 /* We are flying near dragons again.
567 *
568 * We hold a reference to the request in execlist_port[]
569 * but no more than that. We are operating in softirq
570 * context and so cannot hold any mutex or sleep. That
571 * prevents us stopping the requests we are processing
572 * in port[] from being retired simultaneously (the
573 * breadcrumb will be complete before we see the
574 * context-switch). As we only hold the reference to the
575 * request, any pointer chasing underneath the request
576 * is subject to a potential use-after-free. Thus we
577 * store all of the bookkeeping within port[] as
578 * required, and avoid using unguarded pointers beneath
579 * request itself. The same applies to the atomic
580 * status notifier.
581 */
582
70c2a24d
CW
583 if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
584 continue;
585
86aa7e76 586 /* Check the context/desc id for this event matches */
ae9a043b
CW
587 GEM_DEBUG_BUG_ON(readl(buf + 2 * idx + 1) !=
588 port[0].context_id);
86aa7e76 589
70c2a24d
CW
590 GEM_BUG_ON(port[0].count == 0);
591 if (--port[0].count == 0) {
592 GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
593 execlists_context_status_change(port[0].request,
594 INTEL_CONTEXT_SCHEDULE_OUT);
595
596 i915_gem_request_put(port[0].request);
597 port[0] = port[1];
598 memset(&port[1], 0, sizeof(port[1]));
70c2a24d 599 }
26720ab9 600
70c2a24d
CW
601 GEM_BUG_ON(port[0].count == 0 &&
602 !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
a37951ac 603 } while (head < tail);
e1fee72c 604
70c2a24d
CW
605 writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
606 GEN8_CSB_WRITE_PTR(csb) << 8),
607 csb_mmio);
e981e7b1
TD
608 }
609
70c2a24d
CW
610 if (execlists_elsp_ready(engine))
611 execlists_dequeue(engine);
c6a2ac71 612
70c2a24d 613 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
e981e7b1
TD
614}
615
20311bd3
CW
616static bool insert_request(struct i915_priotree *pt, struct rb_root *root)
617{
618 struct rb_node **p, *rb;
619 bool first = true;
620
621 /* most positive priority is scheduled first, equal priorities fifo */
622 rb = NULL;
623 p = &root->rb_node;
624 while (*p) {
625 struct i915_priotree *pos;
626
627 rb = *p;
628 pos = rb_entry(rb, typeof(*pos), node);
629 if (pt->priority > pos->priority) {
630 p = &rb->rb_left;
631 } else {
632 p = &rb->rb_right;
633 first = false;
634 }
635 }
636 rb_link_node(&pt->node, rb, p);
637 rb_insert_color(&pt->node, root);
638
639 return first;
640}
641
f4ea6bdd 642static void execlists_submit_request(struct drm_i915_gem_request *request)
acdd884a 643{
4a570db5 644 struct intel_engine_cs *engine = request->engine;
5590af3e 645 unsigned long flags;
acdd884a 646
663f71e7
CW
647 /* Will be called from irq-context when using foreign fences. */
648 spin_lock_irqsave(&engine->timeline->lock, flags);
acdd884a 649
3833281a 650 if (insert_request(&request->priotree, &engine->execlist_queue)) {
20311bd3 651 engine->execlist_first = &request->priotree.node;
48ea2554 652 if (execlists_elsp_ready(engine))
3833281a
CW
653 tasklet_hi_schedule(&engine->irq_tasklet);
654 }
acdd884a 655
663f71e7 656 spin_unlock_irqrestore(&engine->timeline->lock, flags);
acdd884a
MT
657}
658
20311bd3
CW
659static struct intel_engine_cs *
660pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
661{
662 struct intel_engine_cs *engine;
663
664 engine = container_of(pt,
665 struct drm_i915_gem_request,
666 priotree)->engine;
667 if (engine != locked) {
668 if (locked)
669 spin_unlock_irq(&locked->timeline->lock);
670 spin_lock_irq(&engine->timeline->lock);
671 }
672
673 return engine;
674}
675
676static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
677{
678 struct intel_engine_cs *engine = NULL;
679 struct i915_dependency *dep, *p;
680 struct i915_dependency stack;
681 LIST_HEAD(dfs);
682
683 if (prio <= READ_ONCE(request->priotree.priority))
684 return;
685
70cd1476
CW
686 /* Need BKL in order to use the temporary link inside i915_dependency */
687 lockdep_assert_held(&request->i915->drm.struct_mutex);
20311bd3
CW
688
689 stack.signaler = &request->priotree;
690 list_add(&stack.dfs_link, &dfs);
691
692 /* Recursively bump all dependent priorities to match the new request.
693 *
694 * A naive approach would be to use recursion:
695 * static void update_priorities(struct i915_priotree *pt, prio) {
696 * list_for_each_entry(dep, &pt->signalers_list, signal_link)
697 * update_priorities(dep->signal, prio)
698 * insert_request(pt);
699 * }
700 * but that may have unlimited recursion depth and so runs a very
701 * real risk of overunning the kernel stack. Instead, we build
702 * a flat list of all dependencies starting with the current request.
703 * As we walk the list of dependencies, we add all of its dependencies
704 * to the end of the list (this may include an already visited
705 * request) and continue to walk onwards onto the new dependencies. The
706 * end result is a topological list of requests in reverse order, the
707 * last element in the list is the request we must execute first.
708 */
709 list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
710 struct i915_priotree *pt = dep->signaler;
711
712 list_for_each_entry(p, &pt->signalers_list, signal_link)
713 if (prio > READ_ONCE(p->signaler->priority))
714 list_move_tail(&p->dfs_link, &dfs);
715
0798cff4 716 list_safe_reset_next(dep, p, dfs_link);
20311bd3
CW
717 if (!RB_EMPTY_NODE(&pt->node))
718 continue;
719
720 engine = pt_lock_engine(pt, engine);
721
722 /* If it is not already in the rbtree, we can update the
723 * priority inplace and skip over it (and its dependencies)
724 * if it is referenced *again* as we descend the dfs.
725 */
726 if (prio > pt->priority && RB_EMPTY_NODE(&pt->node)) {
727 pt->priority = prio;
728 list_del_init(&dep->dfs_link);
729 }
730 }
731
732 /* Fifo and depth-first replacement ensure our deps execute before us */
733 list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
734 struct i915_priotree *pt = dep->signaler;
735
736 INIT_LIST_HEAD(&dep->dfs_link);
737
738 engine = pt_lock_engine(pt, engine);
739
740 if (prio <= pt->priority)
741 continue;
742
743 GEM_BUG_ON(RB_EMPTY_NODE(&pt->node));
744
745 pt->priority = prio;
746 rb_erase(&pt->node, &engine->execlist_queue);
747 if (insert_request(pt, &engine->execlist_queue))
748 engine->execlist_first = &pt->node;
749 }
750
751 if (engine)
752 spin_unlock_irq(&engine->timeline->lock);
753
754 /* XXX Do we need to preempt to make room for us and our deps? */
755}
756
e8a9c58f
CW
757static int execlists_context_pin(struct intel_engine_cs *engine,
758 struct i915_gem_context *ctx)
dcb4c12a 759{
9021ad03 760 struct intel_context *ce = &ctx->engine[engine->id];
2947e408 761 unsigned int flags;
7d774cac 762 void *vaddr;
ca82580c 763 int ret;
dcb4c12a 764
91c8a326 765 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
ca82580c 766
9021ad03 767 if (ce->pin_count++)
24f1d3cc
CW
768 return 0;
769
e8a9c58f
CW
770 if (!ce->state) {
771 ret = execlists_context_deferred_alloc(ctx, engine);
772 if (ret)
773 goto err;
774 }
56f6e0a7 775 GEM_BUG_ON(!ce->state);
e8a9c58f 776
72b72ae4 777 flags = PIN_GLOBAL | PIN_HIGH;
feef2a7c
DCS
778 if (ctx->ggtt_offset_bias)
779 flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
2947e408
CW
780
781 ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN, flags);
e84fe803 782 if (ret)
24f1d3cc 783 goto err;
7ba717cf 784
bf3783e5 785 vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
7d774cac
TU
786 if (IS_ERR(vaddr)) {
787 ret = PTR_ERR(vaddr);
bf3783e5 788 goto unpin_vma;
82352e90
TU
789 }
790
d3ef1af6 791 ret = intel_ring_pin(ce->ring, ctx->ggtt_offset_bias);
e84fe803 792 if (ret)
7d774cac 793 goto unpin_map;
d1675198 794
0bc40be8 795 intel_lr_context_descriptor_update(ctx, engine);
9021ad03 796
a3aabe86
CW
797 ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
798 ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
bde13ebd 799 i915_ggtt_offset(ce->ring->vma);
a3aabe86 800
a4f5ea64 801 ce->state->obj->mm.dirty = true;
e93c28f3 802
9a6feaf0 803 i915_gem_context_get(ctx);
24f1d3cc 804 return 0;
7ba717cf 805
7d774cac 806unpin_map:
bf3783e5
CW
807 i915_gem_object_unpin_map(ce->state->obj);
808unpin_vma:
809 __i915_vma_unpin(ce->state);
24f1d3cc 810err:
9021ad03 811 ce->pin_count = 0;
e84fe803
NH
812 return ret;
813}
814
e8a9c58f
CW
815static void execlists_context_unpin(struct intel_engine_cs *engine,
816 struct i915_gem_context *ctx)
e84fe803 817{
9021ad03 818 struct intel_context *ce = &ctx->engine[engine->id];
e84fe803 819
91c8a326 820 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
9021ad03 821 GEM_BUG_ON(ce->pin_count == 0);
321fe304 822
9021ad03 823 if (--ce->pin_count)
24f1d3cc 824 return;
e84fe803 825
aad29fbb 826 intel_ring_unpin(ce->ring);
dcb4c12a 827
bf3783e5
CW
828 i915_gem_object_unpin_map(ce->state->obj);
829 i915_vma_unpin(ce->state);
321fe304 830
9a6feaf0 831 i915_gem_context_put(ctx);
dcb4c12a
OM
832}
833
f73e7399 834static int execlists_request_alloc(struct drm_i915_gem_request *request)
ef11c01d
CW
835{
836 struct intel_engine_cs *engine = request->engine;
837 struct intel_context *ce = &request->ctx->engine[engine->id];
73dec95e 838 u32 *cs;
ef11c01d
CW
839 int ret;
840
e8a9c58f
CW
841 GEM_BUG_ON(!ce->pin_count);
842
ef11c01d
CW
843 /* Flush enough space to reduce the likelihood of waiting after
844 * we start building the request - in which case we will just
845 * have to repeat work.
846 */
847 request->reserved_space += EXECLISTS_REQUEST_SIZE;
848
e8a9c58f 849 GEM_BUG_ON(!ce->ring);
ef11c01d
CW
850 request->ring = ce->ring;
851
ef11c01d
CW
852 if (i915.enable_guc_submission) {
853 /*
854 * Check that the GuC has space for the request before
855 * going any further, as the i915_add_request() call
856 * later on mustn't fail ...
857 */
858 ret = i915_guc_wq_reserve(request);
859 if (ret)
e8a9c58f 860 goto err;
ef11c01d
CW
861 }
862
73dec95e
TU
863 cs = intel_ring_begin(request, 0);
864 if (IS_ERR(cs)) {
865 ret = PTR_ERR(cs);
ef11c01d 866 goto err_unreserve;
73dec95e 867 }
ef11c01d
CW
868
869 if (!ce->initialised) {
870 ret = engine->init_context(request);
871 if (ret)
872 goto err_unreserve;
873
874 ce->initialised = true;
875 }
876
877 /* Note that after this point, we have committed to using
878 * this request as it is being used to both track the
879 * state of engine initialisation and liveness of the
880 * golden renderstate above. Think twice before you try
881 * to cancel/unwind this request now.
882 */
883
884 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
885 return 0;
886
887err_unreserve:
888 if (i915.enable_guc_submission)
889 i915_guc_wq_unreserve(request);
e8a9c58f 890err:
ef11c01d
CW
891 return ret;
892}
893
9e000847
AS
894/*
895 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
896 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
897 * but there is a slight complication as this is applied in WA batch where the
898 * values are only initialized once so we cannot take register value at the
899 * beginning and reuse it further; hence we save its value to memory, upload a
900 * constant value with bit21 set and then we restore it back with the saved value.
901 * To simplify the WA, a constant value is formed by using the default value
902 * of this register. This shouldn't be a problem because we are only modifying
903 * it for a short period and this batch in non-premptible. We can ofcourse
904 * use additional instructions that read the actual value of the register
905 * at that time and set our bit of interest but it makes the WA complicated.
906 *
907 * This WA is also required for Gen9 so extracting as a function avoids
908 * code duplication.
909 */
097d4f1c
TU
910static u32 *
911gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
17ee950d 912{
097d4f1c
TU
913 *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
914 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
915 *batch++ = i915_ggtt_offset(engine->scratch) + 256;
916 *batch++ = 0;
917
918 *batch++ = MI_LOAD_REGISTER_IMM(1);
919 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
920 *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
921
9f235dfa
TU
922 batch = gen8_emit_pipe_control(batch,
923 PIPE_CONTROL_CS_STALL |
924 PIPE_CONTROL_DC_FLUSH_ENABLE,
925 0);
097d4f1c
TU
926
927 *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
928 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
929 *batch++ = i915_ggtt_offset(engine->scratch) + 256;
930 *batch++ = 0;
931
932 return batch;
17ee950d
AS
933}
934
6e5248b5
DV
935/*
936 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
937 * initialized at the beginning and shared across all contexts but this field
938 * helps us to have multiple batches at different offsets and select them based
939 * on a criteria. At the moment this batch always start at the beginning of the page
940 * and at this point we don't have multiple wa_ctx batch buffers.
4d78c8dc 941 *
6e5248b5
DV
942 * The number of WA applied are not known at the beginning; we use this field
943 * to return the no of DWORDS written.
17ee950d 944 *
6e5248b5
DV
945 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
946 * so it adds NOOPs as padding to make it cacheline aligned.
947 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
948 * makes a complete batch buffer.
17ee950d 949 */
097d4f1c 950static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
17ee950d 951{
7ad00d1a 952 /* WaDisableCtxRestoreArbitration:bdw,chv */
097d4f1c 953 *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
17ee950d 954
c82435bb 955 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
097d4f1c
TU
956 if (IS_BROADWELL(engine->i915))
957 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
c82435bb 958
0160f055
AS
959 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
960 /* Actual scratch location is at 128 bytes offset */
9f235dfa
TU
961 batch = gen8_emit_pipe_control(batch,
962 PIPE_CONTROL_FLUSH_L3 |
963 PIPE_CONTROL_GLOBAL_GTT_IVB |
964 PIPE_CONTROL_CS_STALL |
965 PIPE_CONTROL_QW_WRITE,
966 i915_ggtt_offset(engine->scratch) +
967 2 * CACHELINE_BYTES);
0160f055 968
17ee950d 969 /* Pad to end of cacheline */
097d4f1c
TU
970 while ((unsigned long)batch % CACHELINE_BYTES)
971 *batch++ = MI_NOOP;
17ee950d
AS
972
973 /*
974 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
975 * execution depends on the length specified in terms of cache lines
976 * in the register CTX_RCS_INDIRECT_CTX
977 */
978
097d4f1c 979 return batch;
17ee950d
AS
980}
981
6e5248b5
DV
982/*
983 * This batch is started immediately after indirect_ctx batch. Since we ensure
984 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
17ee950d 985 *
6e5248b5 986 * The number of DWORDS written are returned using this field.
17ee950d
AS
987 *
988 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
989 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
990 */
097d4f1c 991static u32 *gen8_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
17ee950d 992{
7ad00d1a 993 /* WaDisableCtxRestoreArbitration:bdw,chv */
097d4f1c
TU
994 *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
995 *batch++ = MI_BATCH_BUFFER_END;
17ee950d 996
097d4f1c 997 return batch;
17ee950d
AS
998}
999
097d4f1c 1000static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
0504cffc 1001{
9fb5026f 1002 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
097d4f1c 1003 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
a4106a78 1004
9fb5026f 1005 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
097d4f1c
TU
1006 *batch++ = MI_LOAD_REGISTER_IMM(1);
1007 *batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
1008 *batch++ = _MASKED_BIT_DISABLE(
1009 GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
1010 *batch++ = MI_NOOP;
873e8171 1011
066d4628
MK
1012 /* WaClearSlmSpaceAtContextSwitch:kbl */
1013 /* Actual scratch location is at 128 bytes offset */
097d4f1c 1014 if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
9f235dfa
TU
1015 batch = gen8_emit_pipe_control(batch,
1016 PIPE_CONTROL_FLUSH_L3 |
1017 PIPE_CONTROL_GLOBAL_GTT_IVB |
1018 PIPE_CONTROL_CS_STALL |
1019 PIPE_CONTROL_QW_WRITE,
1020 i915_ggtt_offset(engine->scratch)
1021 + 2 * CACHELINE_BYTES);
066d4628 1022 }
3485d99e 1023
9fb5026f 1024 /* WaMediaPoolStateCmdInWABB:bxt,glk */
3485d99e
TG
1025 if (HAS_POOLED_EU(engine->i915)) {
1026 /*
1027 * EU pool configuration is setup along with golden context
1028 * during context initialization. This value depends on
1029 * device type (2x6 or 3x6) and needs to be updated based
1030 * on which subslice is disabled especially for 2x6
1031 * devices, however it is safe to load default
1032 * configuration of 3x6 device instead of masking off
1033 * corresponding bits because HW ignores bits of a disabled
1034 * subslice and drops down to appropriate config. Please
1035 * see render_state_setup() in i915_gem_render_state.c for
1036 * possible configurations, to avoid duplication they are
1037 * not shown here again.
1038 */
097d4f1c
TU
1039 *batch++ = GEN9_MEDIA_POOL_STATE;
1040 *batch++ = GEN9_MEDIA_POOL_ENABLE;
1041 *batch++ = 0x00777000;
1042 *batch++ = 0;
1043 *batch++ = 0;
1044 *batch++ = 0;
3485d99e
TG
1045 }
1046
0504cffc 1047 /* Pad to end of cacheline */
097d4f1c
TU
1048 while ((unsigned long)batch % CACHELINE_BYTES)
1049 *batch++ = MI_NOOP;
0504cffc 1050
097d4f1c 1051 return batch;
0504cffc
AS
1052}
1053
097d4f1c 1054static u32 *gen9_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
0504cffc 1055{
097d4f1c 1056 *batch++ = MI_BATCH_BUFFER_END;
0504cffc 1057
097d4f1c 1058 return batch;
0504cffc
AS
1059}
1060
097d4f1c
TU
1061#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
1062
1063static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
17ee950d 1064{
48bb74e4
CW
1065 struct drm_i915_gem_object *obj;
1066 struct i915_vma *vma;
1067 int err;
17ee950d 1068
097d4f1c 1069 obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
48bb74e4
CW
1070 if (IS_ERR(obj))
1071 return PTR_ERR(obj);
17ee950d 1072
a01cb37a 1073 vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
48bb74e4
CW
1074 if (IS_ERR(vma)) {
1075 err = PTR_ERR(vma);
1076 goto err;
17ee950d
AS
1077 }
1078
48bb74e4
CW
1079 err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1080 if (err)
1081 goto err;
1082
1083 engine->wa_ctx.vma = vma;
17ee950d 1084 return 0;
48bb74e4
CW
1085
1086err:
1087 i915_gem_object_put(obj);
1088 return err;
17ee950d
AS
1089}
1090
097d4f1c 1091static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
17ee950d 1092{
19880c4a 1093 i915_vma_unpin_and_release(&engine->wa_ctx.vma);
17ee950d
AS
1094}
1095
097d4f1c
TU
1096typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1097
0bc40be8 1098static int intel_init_workaround_bb(struct intel_engine_cs *engine)
17ee950d 1099{
48bb74e4 1100 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
097d4f1c
TU
1101 struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
1102 &wa_ctx->per_ctx };
1103 wa_bb_func_t wa_bb_fn[2];
17ee950d 1104 struct page *page;
097d4f1c
TU
1105 void *batch, *batch_ptr;
1106 unsigned int i;
48bb74e4 1107 int ret;
17ee950d 1108
097d4f1c
TU
1109 if (WARN_ON(engine->id != RCS || !engine->scratch))
1110 return -EINVAL;
17ee950d 1111
097d4f1c
TU
1112 switch (INTEL_GEN(engine->i915)) {
1113 case 9:
1114 wa_bb_fn[0] = gen9_init_indirectctx_bb;
1115 wa_bb_fn[1] = gen9_init_perctx_bb;
1116 break;
1117 case 8:
1118 wa_bb_fn[0] = gen8_init_indirectctx_bb;
1119 wa_bb_fn[1] = gen8_init_perctx_bb;
1120 break;
1121 default:
1122 MISSING_CASE(INTEL_GEN(engine->i915));
5e60d790 1123 return 0;
0504cffc 1124 }
5e60d790 1125
097d4f1c 1126 ret = lrc_setup_wa_ctx(engine);
17ee950d
AS
1127 if (ret) {
1128 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1129 return ret;
1130 }
1131
48bb74e4 1132 page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
097d4f1c 1133 batch = batch_ptr = kmap_atomic(page);
17ee950d 1134
097d4f1c
TU
1135 /*
1136 * Emit the two workaround batch buffers, recording the offset from the
1137 * start of the workaround batch buffer object for each and their
1138 * respective sizes.
1139 */
1140 for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1141 wa_bb[i]->offset = batch_ptr - batch;
1142 if (WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, CACHELINE_BYTES))) {
1143 ret = -EINVAL;
1144 break;
1145 }
1146 batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1147 wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
17ee950d
AS
1148 }
1149
097d4f1c
TU
1150 BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
1151
17ee950d
AS
1152 kunmap_atomic(batch);
1153 if (ret)
097d4f1c 1154 lrc_destroy_wa_ctx(engine);
17ee950d
AS
1155
1156 return ret;
1157}
1158
22cc440e
CW
1159static u32 port_seqno(struct execlist_port *port)
1160{
1161 return port->request ? port->request->global_seqno : 0;
1162}
1163
0bc40be8 1164static int gen8_init_common_ring(struct intel_engine_cs *engine)
9b1136d5 1165{
c033666a 1166 struct drm_i915_private *dev_priv = engine->i915;
821ed7df
CW
1167 int ret;
1168
1169 ret = intel_mocs_init_engine(engine);
1170 if (ret)
1171 return ret;
9b1136d5 1172
ad07dfcd 1173 intel_engine_reset_breadcrumbs(engine);
f3b8f912 1174 intel_engine_init_hangcheck(engine);
821ed7df 1175
0bc40be8 1176 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
0bc40be8 1177 I915_WRITE(RING_MODE_GEN7(engine),
9b1136d5
OM
1178 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1179 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
f3b8f912
CW
1180 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1181 engine->status_page.ggtt_offset);
1182 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
dfc53c5e 1183
0bc40be8 1184 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
9b1136d5 1185
c87d50cc 1186 /* After a GPU reset, we may have requests to replay */
f747026c 1187 clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
c87d50cc 1188 if (!execlists_elsp_idle(engine)) {
22cc440e
CW
1189 DRM_DEBUG_DRIVER("Restarting %s from requests [0x%x, 0x%x]\n",
1190 engine->name,
1191 port_seqno(&engine->execlist_port[0]),
1192 port_seqno(&engine->execlist_port[1]));
c87d50cc
CW
1193 engine->execlist_port[0].count = 0;
1194 engine->execlist_port[1].count = 0;
821ed7df 1195 execlists_submit_ports(engine);
c87d50cc 1196 }
821ed7df
CW
1197
1198 return 0;
9b1136d5
OM
1199}
1200
0bc40be8 1201static int gen8_init_render_ring(struct intel_engine_cs *engine)
9b1136d5 1202{
c033666a 1203 struct drm_i915_private *dev_priv = engine->i915;
9b1136d5
OM
1204 int ret;
1205
0bc40be8 1206 ret = gen8_init_common_ring(engine);
9b1136d5
OM
1207 if (ret)
1208 return ret;
1209
1210 /* We need to disable the AsyncFlip performance optimisations in order
1211 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1212 * programmed to '1' on all products.
1213 *
1214 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1215 */
1216 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1217
9b1136d5
OM
1218 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1219
0bc40be8 1220 return init_workarounds_ring(engine);
9b1136d5
OM
1221}
1222
0bc40be8 1223static int gen9_init_render_ring(struct intel_engine_cs *engine)
82ef822e
DL
1224{
1225 int ret;
1226
0bc40be8 1227 ret = gen8_init_common_ring(engine);
82ef822e
DL
1228 if (ret)
1229 return ret;
1230
0bc40be8 1231 return init_workarounds_ring(engine);
82ef822e
DL
1232}
1233
821ed7df
CW
1234static void reset_common_ring(struct intel_engine_cs *engine,
1235 struct drm_i915_gem_request *request)
1236{
821ed7df 1237 struct execlist_port *port = engine->execlist_port;
c0dcb203
CW
1238 struct intel_context *ce;
1239
1240 /* If the request was innocent, we leave the request in the ELSP
1241 * and will try to replay it on restarting. The context image may
1242 * have been corrupted by the reset, in which case we may have
1243 * to service a new GPU hang, but more likely we can continue on
1244 * without impact.
1245 *
1246 * If the request was guilty, we presume the context is corrupt
1247 * and have to at least restore the RING register in the context
1248 * image back to the expected values to skip over the guilty request.
1249 */
1250 if (!request || request->fence.error != -EIO)
1251 return;
821ed7df 1252
a3aabe86
CW
1253 /* We want a simple context + ring to execute the breadcrumb update.
1254 * We cannot rely on the context being intact across the GPU hang,
1255 * so clear it and rebuild just what we need for the breadcrumb.
1256 * All pending requests for this context will be zapped, and any
1257 * future request will be after userspace has had the opportunity
1258 * to recreate its own state.
1259 */
c0dcb203 1260 ce = &request->ctx->engine[engine->id];
a3aabe86
CW
1261 execlists_init_reg_state(ce->lrc_reg_state,
1262 request->ctx, engine, ce->ring);
1263
821ed7df 1264 /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
a3aabe86
CW
1265 ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1266 i915_ggtt_offset(ce->ring->vma);
821ed7df 1267 ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
a3aabe86 1268
821ed7df
CW
1269 request->ring->head = request->postfix;
1270 request->ring->last_retired_head = -1;
1271 intel_ring_update_space(request->ring);
1272
1273 if (i915.enable_guc_submission)
1274 return;
1275
1276 /* Catch up with any missed context-switch interrupts */
821ed7df
CW
1277 if (request->ctx != port[0].request->ctx) {
1278 i915_gem_request_put(port[0].request);
1279 port[0] = port[1];
1280 memset(&port[1], 0, sizeof(port[1]));
1281 }
1282
821ed7df 1283 GEM_BUG_ON(request->ctx != port[0].request->ctx);
a3aabe86
CW
1284
1285 /* Reset WaIdleLiteRestore:bdw,skl as well */
1286 request->tail = request->wa_tail - WA_TAIL_DWORDS * sizeof(u32);
944a36d4 1287 GEM_BUG_ON(!IS_ALIGNED(request->tail, 8));
821ed7df
CW
1288}
1289
7a01a0a2
MT
1290static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1291{
1292 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
4a570db5 1293 struct intel_engine_cs *engine = req->engine;
7a01a0a2 1294 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
73dec95e
TU
1295 u32 *cs;
1296 int i;
7a01a0a2 1297
73dec95e
TU
1298 cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1299 if (IS_ERR(cs))
1300 return PTR_ERR(cs);
7a01a0a2 1301
73dec95e 1302 *cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
7a01a0a2
MT
1303 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1304 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1305
73dec95e
TU
1306 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
1307 *cs++ = upper_32_bits(pd_daddr);
1308 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
1309 *cs++ = lower_32_bits(pd_daddr);
7a01a0a2
MT
1310 }
1311
73dec95e
TU
1312 *cs++ = MI_NOOP;
1313 intel_ring_advance(req, cs);
7a01a0a2
MT
1314
1315 return 0;
1316}
1317
be795fc1 1318static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
803688ba
CW
1319 u64 offset, u32 len,
1320 unsigned int dispatch_flags)
15648585 1321{
8e004efc 1322 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
73dec95e 1323 u32 *cs;
15648585
OM
1324 int ret;
1325
7a01a0a2
MT
1326 /* Don't rely in hw updating PDPs, specially in lite-restore.
1327 * Ideally, we should set Force PD Restore in ctx descriptor,
1328 * but we can't. Force Restore would be a second option, but
1329 * it is unsafe in case of lite-restore (because the ctx is
2dba3239
MT
1330 * not idle). PML4 is allocated during ppgtt init so this is
1331 * not needed in 48-bit.*/
7a01a0a2 1332 if (req->ctx->ppgtt &&
666796da 1333 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
949e8ab3 1334 if (!i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
c033666a 1335 !intel_vgpu_active(req->i915)) {
2dba3239
MT
1336 ret = intel_logical_ring_emit_pdps(req);
1337 if (ret)
1338 return ret;
1339 }
7a01a0a2 1340
666796da 1341 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
7a01a0a2
MT
1342 }
1343
73dec95e
TU
1344 cs = intel_ring_begin(req, 4);
1345 if (IS_ERR(cs))
1346 return PTR_ERR(cs);
15648585
OM
1347
1348 /* FIXME(BDW): Address space and security selectors. */
73dec95e
TU
1349 *cs++ = MI_BATCH_BUFFER_START_GEN8 | (ppgtt << 8) | (dispatch_flags &
1350 I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1351 *cs++ = lower_32_bits(offset);
1352 *cs++ = upper_32_bits(offset);
1353 *cs++ = MI_NOOP;
1354 intel_ring_advance(req, cs);
15648585
OM
1355
1356 return 0;
1357}
1358
31bb59cc 1359static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
73d477f6 1360{
c033666a 1361 struct drm_i915_private *dev_priv = engine->i915;
31bb59cc
CW
1362 I915_WRITE_IMR(engine,
1363 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1364 POSTING_READ_FW(RING_IMR(engine->mmio_base));
73d477f6
OM
1365}
1366
31bb59cc 1367static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
73d477f6 1368{
c033666a 1369 struct drm_i915_private *dev_priv = engine->i915;
31bb59cc 1370 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
73d477f6
OM
1371}
1372
7c9cf4e3 1373static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
4712274c 1374{
73dec95e 1375 u32 cmd, *cs;
4712274c 1376
73dec95e
TU
1377 cs = intel_ring_begin(request, 4);
1378 if (IS_ERR(cs))
1379 return PTR_ERR(cs);
4712274c
OM
1380
1381 cmd = MI_FLUSH_DW + 1;
1382
f0a1fb10
CW
1383 /* We always require a command barrier so that subsequent
1384 * commands, such as breadcrumb interrupts, are strictly ordered
1385 * wrt the contents of the write cache being flushed to memory
1386 * (and thus being coherent from the CPU).
1387 */
1388 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1389
7c9cf4e3 1390 if (mode & EMIT_INVALIDATE) {
f0a1fb10 1391 cmd |= MI_INVALIDATE_TLB;
1dae2dfb 1392 if (request->engine->id == VCS)
f0a1fb10 1393 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1394 }
1395
73dec95e
TU
1396 *cs++ = cmd;
1397 *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1398 *cs++ = 0; /* upper addr */
1399 *cs++ = 0; /* value */
1400 intel_ring_advance(request, cs);
4712274c
OM
1401
1402 return 0;
1403}
1404
7deb4d39 1405static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
7c9cf4e3 1406 u32 mode)
4712274c 1407{
b5321f30 1408 struct intel_engine_cs *engine = request->engine;
bde13ebd
CW
1409 u32 scratch_addr =
1410 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
0b2d0934 1411 bool vf_flush_wa = false, dc_flush_wa = false;
73dec95e 1412 u32 *cs, flags = 0;
0b2d0934 1413 int len;
4712274c
OM
1414
1415 flags |= PIPE_CONTROL_CS_STALL;
1416
7c9cf4e3 1417 if (mode & EMIT_FLUSH) {
4712274c
OM
1418 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1419 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
965fd602 1420 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
40a24488 1421 flags |= PIPE_CONTROL_FLUSH_ENABLE;
4712274c
OM
1422 }
1423
7c9cf4e3 1424 if (mode & EMIT_INVALIDATE) {
4712274c
OM
1425 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1426 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1427 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1428 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1429 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1430 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1431 flags |= PIPE_CONTROL_QW_WRITE;
1432 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
4712274c 1433
1a5a9ce7
BW
1434 /*
1435 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1436 * pipe control.
1437 */
c033666a 1438 if (IS_GEN9(request->i915))
1a5a9ce7 1439 vf_flush_wa = true;
0b2d0934
MK
1440
1441 /* WaForGAMHang:kbl */
1442 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1443 dc_flush_wa = true;
1a5a9ce7 1444 }
9647ff36 1445
0b2d0934
MK
1446 len = 6;
1447
1448 if (vf_flush_wa)
1449 len += 6;
1450
1451 if (dc_flush_wa)
1452 len += 12;
1453
73dec95e
TU
1454 cs = intel_ring_begin(request, len);
1455 if (IS_ERR(cs))
1456 return PTR_ERR(cs);
4712274c 1457
9f235dfa
TU
1458 if (vf_flush_wa)
1459 cs = gen8_emit_pipe_control(cs, 0, 0);
9647ff36 1460
9f235dfa
TU
1461 if (dc_flush_wa)
1462 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
1463 0);
0b2d0934 1464
9f235dfa 1465 cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
0b2d0934 1466
9f235dfa
TU
1467 if (dc_flush_wa)
1468 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
0b2d0934 1469
73dec95e 1470 intel_ring_advance(request, cs);
4712274c
OM
1471
1472 return 0;
1473}
1474
7c17d377
CW
1475/*
1476 * Reserve space for 2 NOOPs at the end of each request to be
1477 * used as a workaround for not being allowed to do lite
1478 * restore with HEAD==TAIL (WaIdleLiteRestore).
1479 */
73dec95e 1480static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
4da46e1e 1481{
73dec95e
TU
1482 *cs++ = MI_NOOP;
1483 *cs++ = MI_NOOP;
1484 request->wa_tail = intel_ring_offset(request, cs);
caddfe71 1485}
4da46e1e 1486
73dec95e 1487static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
caddfe71 1488{
7c17d377
CW
1489 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1490 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
4da46e1e 1491
73dec95e
TU
1492 *cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
1493 *cs++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
1494 *cs++ = 0;
1495 *cs++ = request->global_seqno;
1496 *cs++ = MI_USER_INTERRUPT;
1497 *cs++ = MI_NOOP;
1498 request->tail = intel_ring_offset(request, cs);
944a36d4 1499 GEM_BUG_ON(!IS_ALIGNED(request->tail, 8));
caddfe71 1500
73dec95e 1501 gen8_emit_wa_tail(request, cs);
7c17d377 1502}
4da46e1e 1503
98f29e8d
CW
1504static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
1505
caddfe71 1506static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
73dec95e 1507 u32 *cs)
7c17d377 1508{
ce81a65c
MW
1509 /* We're using qword write, seqno should be aligned to 8 bytes. */
1510 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1511
7c17d377
CW
1512 /* w/a for post sync ops following a GPGPU operation we
1513 * need a prior CS_STALL, which is emitted by the flush
1514 * following the batch.
1515 */
73dec95e
TU
1516 *cs++ = GFX_OP_PIPE_CONTROL(6);
1517 *cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
1518 PIPE_CONTROL_QW_WRITE;
1519 *cs++ = intel_hws_seqno_address(request->engine);
1520 *cs++ = 0;
1521 *cs++ = request->global_seqno;
ce81a65c 1522 /* We're thrashing one dword of HWS. */
73dec95e
TU
1523 *cs++ = 0;
1524 *cs++ = MI_USER_INTERRUPT;
1525 *cs++ = MI_NOOP;
1526 request->tail = intel_ring_offset(request, cs);
944a36d4 1527 GEM_BUG_ON(!IS_ALIGNED(request->tail, 8));
caddfe71 1528
73dec95e 1529 gen8_emit_wa_tail(request, cs);
4da46e1e
OM
1530}
1531
98f29e8d
CW
1532static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;
1533
8753181e 1534static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
e7778be1
TD
1535{
1536 int ret;
1537
4ac9659e 1538 ret = intel_ring_workarounds_emit(req);
e7778be1
TD
1539 if (ret)
1540 return ret;
1541
3bbaba0c
PA
1542 ret = intel_rcs_context_init_mocs(req);
1543 /*
1544 * Failing to program the MOCS is non-fatal.The system will not
1545 * run at peak performance. So generate an error and carry on.
1546 */
1547 if (ret)
1548 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1549
4e50f082 1550 return i915_gem_render_state_emit(req);
e7778be1
TD
1551}
1552
73e4d07f
OM
1553/**
1554 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
14bb2c11 1555 * @engine: Engine Command Streamer.
73e4d07f 1556 */
0bc40be8 1557void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
454afebd 1558{
6402c330 1559 struct drm_i915_private *dev_priv;
9832b9da 1560
27af5eea
TU
1561 /*
1562 * Tasklet cannot be active at this point due intel_mark_active/idle
1563 * so this is just for documentation.
1564 */
1565 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1566 tasklet_kill(&engine->irq_tasklet);
1567
c033666a 1568 dev_priv = engine->i915;
6402c330 1569
0bc40be8 1570 if (engine->buffer) {
0bc40be8 1571 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
b0366a54 1572 }
48d82387 1573
0bc40be8
TU
1574 if (engine->cleanup)
1575 engine->cleanup(engine);
48d82387 1576
57e88531
CW
1577 if (engine->status_page.vma) {
1578 i915_gem_object_unpin_map(engine->status_page.vma->obj);
1579 engine->status_page.vma = NULL;
48d82387 1580 }
e8a9c58f
CW
1581
1582 intel_engine_cleanup_common(engine);
17ee950d 1583
097d4f1c 1584 lrc_destroy_wa_ctx(engine);
c033666a 1585 engine->i915 = NULL;
3b3f1650
AG
1586 dev_priv->engine[engine->id] = NULL;
1587 kfree(engine);
454afebd
OM
1588}
1589
ddd66c51
CW
1590void intel_execlists_enable_submission(struct drm_i915_private *dev_priv)
1591{
1592 struct intel_engine_cs *engine;
3b3f1650 1593 enum intel_engine_id id;
ddd66c51 1594
20311bd3 1595 for_each_engine(engine, dev_priv, id) {
f4ea6bdd 1596 engine->submit_request = execlists_submit_request;
20311bd3
CW
1597 engine->schedule = execlists_schedule;
1598 }
ddd66c51
CW
1599}
1600
c9cacf93 1601static void
e1382efb 1602logical_ring_default_vfuncs(struct intel_engine_cs *engine)
c9cacf93
TU
1603{
1604 /* Default vfuncs which can be overriden by each engine. */
0bc40be8 1605 engine->init_hw = gen8_init_common_ring;
821ed7df 1606 engine->reset_hw = reset_common_ring;
e8a9c58f
CW
1607
1608 engine->context_pin = execlists_context_pin;
1609 engine->context_unpin = execlists_context_unpin;
1610
f73e7399
CW
1611 engine->request_alloc = execlists_request_alloc;
1612
0bc40be8 1613 engine->emit_flush = gen8_emit_flush;
9b81d556 1614 engine->emit_breadcrumb = gen8_emit_breadcrumb;
98f29e8d 1615 engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
f4ea6bdd 1616 engine->submit_request = execlists_submit_request;
20311bd3 1617 engine->schedule = execlists_schedule;
ddd66c51 1618
31bb59cc
CW
1619 engine->irq_enable = gen8_logical_ring_enable_irq;
1620 engine->irq_disable = gen8_logical_ring_disable_irq;
0bc40be8 1621 engine->emit_bb_start = gen8_emit_bb_start;
c9cacf93
TU
1622}
1623
d9f3af96 1624static inline void
c2c7f240 1625logical_ring_default_irqs(struct intel_engine_cs *engine)
d9f3af96 1626{
c2c7f240 1627 unsigned shift = engine->irq_shift;
0bc40be8
TU
1628 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1629 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
d9f3af96
TU
1630}
1631
7d774cac 1632static int
bf3783e5 1633lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
04794adb 1634{
57e88531 1635 const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
7d774cac 1636 void *hws;
04794adb
TU
1637
1638 /* The HWSP is part of the default context object in LRC mode. */
bf3783e5 1639 hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
7d774cac
TU
1640 if (IS_ERR(hws))
1641 return PTR_ERR(hws);
57e88531
CW
1642
1643 engine->status_page.page_addr = hws + hws_offset;
bde13ebd 1644 engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
57e88531 1645 engine->status_page.vma = vma;
7d774cac
TU
1646
1647 return 0;
04794adb
TU
1648}
1649
bb45438f
TU
1650static void
1651logical_ring_setup(struct intel_engine_cs *engine)
1652{
1653 struct drm_i915_private *dev_priv = engine->i915;
1654 enum forcewake_domains fw_domains;
1655
019bf277
TU
1656 intel_engine_setup_common(engine);
1657
bb45438f
TU
1658 /* Intentionally left blank. */
1659 engine->buffer = NULL;
1660
1661 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1662 RING_ELSP(engine),
1663 FW_REG_WRITE);
1664
1665 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1666 RING_CONTEXT_STATUS_PTR(engine),
1667 FW_REG_READ | FW_REG_WRITE);
1668
1669 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1670 RING_CONTEXT_STATUS_BUF_BASE(engine),
1671 FW_REG_READ);
1672
1673 engine->fw_domains = fw_domains;
1674
bb45438f
TU
1675 tasklet_init(&engine->irq_tasklet,
1676 intel_lrc_irq_handler, (unsigned long)engine);
1677
bb45438f
TU
1678 logical_ring_default_vfuncs(engine);
1679 logical_ring_default_irqs(engine);
bb45438f
TU
1680}
1681
a19d6ff2
TU
1682static int
1683logical_ring_init(struct intel_engine_cs *engine)
1684{
1685 struct i915_gem_context *dctx = engine->i915->kernel_context;
1686 int ret;
1687
019bf277 1688 ret = intel_engine_init_common(engine);
a19d6ff2
TU
1689 if (ret)
1690 goto error;
1691
a19d6ff2
TU
1692 /* And setup the hardware status page. */
1693 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
1694 if (ret) {
1695 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
1696 goto error;
1697 }
1698
1699 return 0;
1700
1701error:
1702 intel_logical_ring_cleanup(engine);
1703 return ret;
1704}
1705
88d2ba2e 1706int logical_render_ring_init(struct intel_engine_cs *engine)
a19d6ff2
TU
1707{
1708 struct drm_i915_private *dev_priv = engine->i915;
1709 int ret;
1710
bb45438f
TU
1711 logical_ring_setup(engine);
1712
a19d6ff2
TU
1713 if (HAS_L3_DPF(dev_priv))
1714 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1715
1716 /* Override some for render ring. */
1717 if (INTEL_GEN(dev_priv) >= 9)
1718 engine->init_hw = gen9_init_render_ring;
1719 else
1720 engine->init_hw = gen8_init_render_ring;
1721 engine->init_context = gen8_init_rcs_context;
a19d6ff2 1722 engine->emit_flush = gen8_emit_flush_render;
9b81d556 1723 engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
98f29e8d 1724 engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
a19d6ff2 1725
f51455d4 1726 ret = intel_engine_create_scratch(engine, PAGE_SIZE);
a19d6ff2
TU
1727 if (ret)
1728 return ret;
1729
1730 ret = intel_init_workaround_bb(engine);
1731 if (ret) {
1732 /*
1733 * We continue even if we fail to initialize WA batch
1734 * because we only expect rare glitches but nothing
1735 * critical to prevent us from using GPU
1736 */
1737 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1738 ret);
1739 }
1740
d038fc7e 1741 return logical_ring_init(engine);
a19d6ff2
TU
1742}
1743
88d2ba2e 1744int logical_xcs_ring_init(struct intel_engine_cs *engine)
bb45438f
TU
1745{
1746 logical_ring_setup(engine);
1747
1748 return logical_ring_init(engine);
454afebd
OM
1749}
1750
0cea6502 1751static u32
c033666a 1752make_rpcs(struct drm_i915_private *dev_priv)
0cea6502
JM
1753{
1754 u32 rpcs = 0;
1755
1756 /*
1757 * No explicit RPCS request is needed to ensure full
1758 * slice/subslice/EU enablement prior to Gen9.
1759 */
c033666a 1760 if (INTEL_GEN(dev_priv) < 9)
0cea6502
JM
1761 return 0;
1762
1763 /*
1764 * Starting in Gen9, render power gating can leave
1765 * slice/subslice/EU in a partially enabled state. We
1766 * must make an explicit request through RPCS for full
1767 * enablement.
1768 */
43b67998 1769 if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
0cea6502 1770 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
f08a0c92 1771 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
0cea6502
JM
1772 GEN8_RPCS_S_CNT_SHIFT;
1773 rpcs |= GEN8_RPCS_ENABLE;
1774 }
1775
43b67998 1776 if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
0cea6502 1777 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
57ec171e 1778 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
0cea6502
JM
1779 GEN8_RPCS_SS_CNT_SHIFT;
1780 rpcs |= GEN8_RPCS_ENABLE;
1781 }
1782
43b67998
ID
1783 if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
1784 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
0cea6502 1785 GEN8_RPCS_EU_MIN_SHIFT;
43b67998 1786 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
0cea6502
JM
1787 GEN8_RPCS_EU_MAX_SHIFT;
1788 rpcs |= GEN8_RPCS_ENABLE;
1789 }
1790
1791 return rpcs;
1792}
1793
0bc40be8 1794static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
71562919
MT
1795{
1796 u32 indirect_ctx_offset;
1797
c033666a 1798 switch (INTEL_GEN(engine->i915)) {
71562919 1799 default:
c033666a 1800 MISSING_CASE(INTEL_GEN(engine->i915));
71562919
MT
1801 /* fall through */
1802 case 9:
1803 indirect_ctx_offset =
1804 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1805 break;
1806 case 8:
1807 indirect_ctx_offset =
1808 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1809 break;
1810 }
1811
1812 return indirect_ctx_offset;
1813}
1814
a3aabe86
CW
1815static void execlists_init_reg_state(u32 *reg_state,
1816 struct i915_gem_context *ctx,
1817 struct intel_engine_cs *engine,
1818 struct intel_ring *ring)
8670d6f9 1819{
a3aabe86
CW
1820 struct drm_i915_private *dev_priv = engine->i915;
1821 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
8670d6f9
OM
1822
1823 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1824 * commands followed by (reg, value) pairs. The values we are setting here are
1825 * only for the first context restore: on a subsequent save, the GPU will
1826 * recreate this batchbuffer with new values (including all the missing
1827 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
0d925ea0 1828 reg_state[CTX_LRI_HEADER_0] =
0bc40be8
TU
1829 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
1830 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
1831 RING_CONTEXT_CONTROL(engine),
0d925ea0
VS
1832 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1833 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
c033666a 1834 (HAS_RESOURCE_STREAMER(dev_priv) ?
a3aabe86 1835 CTX_CTRL_RS_CTX_ENABLE : 0)));
0bc40be8
TU
1836 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
1837 0);
1838 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
1839 0);
0bc40be8
TU
1840 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
1841 RING_START(engine->mmio_base), 0);
1842 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
1843 RING_CTL(engine->mmio_base),
62ae14b1 1844 RING_CTL_SIZE(ring->size) | RING_VALID);
0bc40be8
TU
1845 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
1846 RING_BBADDR_UDW(engine->mmio_base), 0);
1847 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
1848 RING_BBADDR(engine->mmio_base), 0);
1849 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
1850 RING_BBSTATE(engine->mmio_base),
0d925ea0 1851 RING_BB_PPGTT);
0bc40be8
TU
1852 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
1853 RING_SBBADDR_UDW(engine->mmio_base), 0);
1854 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
1855 RING_SBBADDR(engine->mmio_base), 0);
1856 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
1857 RING_SBBSTATE(engine->mmio_base), 0);
1858 if (engine->id == RCS) {
1859 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
1860 RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
1861 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
1862 RING_INDIRECT_CTX(engine->mmio_base), 0);
1863 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
1864 RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
48bb74e4 1865 if (engine->wa_ctx.vma) {
0bc40be8 1866 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
bde13ebd 1867 u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
17ee950d
AS
1868
1869 reg_state[CTX_RCS_INDIRECT_CTX+1] =
097d4f1c
TU
1870 (ggtt_offset + wa_ctx->indirect_ctx.offset) |
1871 (wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
17ee950d
AS
1872
1873 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
0bc40be8 1874 intel_lr_indirect_ctx_offset(engine) << 6;
17ee950d
AS
1875
1876 reg_state[CTX_BB_PER_CTX_PTR+1] =
097d4f1c 1877 (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
17ee950d 1878 }
8670d6f9 1879 }
0d925ea0 1880 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
0bc40be8
TU
1881 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
1882 RING_CTX_TIMESTAMP(engine->mmio_base), 0);
0d925ea0 1883 /* PDP values well be assigned later if needed */
0bc40be8
TU
1884 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
1885 0);
1886 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
1887 0);
1888 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
1889 0);
1890 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
1891 0);
1892 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
1893 0);
1894 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
1895 0);
1896 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
1897 0);
1898 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
1899 0);
d7b2633d 1900
949e8ab3 1901 if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
2dba3239
MT
1902 /* 64b PPGTT (48bit canonical)
1903 * PDP0_DESCRIPTOR contains the base address to PML4 and
1904 * other PDP Descriptors are ignored.
1905 */
1906 ASSIGN_CTX_PML4(ppgtt, reg_state);
2dba3239
MT
1907 }
1908
0bc40be8 1909 if (engine->id == RCS) {
8670d6f9 1910 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
0d925ea0 1911 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
c033666a 1912 make_rpcs(dev_priv));
8670d6f9 1913 }
a3aabe86
CW
1914}
1915
1916static int
1917populate_lr_context(struct i915_gem_context *ctx,
1918 struct drm_i915_gem_object *ctx_obj,
1919 struct intel_engine_cs *engine,
1920 struct intel_ring *ring)
1921{
1922 void *vaddr;
1923 int ret;
1924
1925 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1926 if (ret) {
1927 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1928 return ret;
1929 }
1930
1931 vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
1932 if (IS_ERR(vaddr)) {
1933 ret = PTR_ERR(vaddr);
1934 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
1935 return ret;
1936 }
a4f5ea64 1937 ctx_obj->mm.dirty = true;
a3aabe86
CW
1938
1939 /* The second page of the context object contains some fields which must
1940 * be set up prior to the first execution. */
1941
1942 execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
1943 ctx, engine, ring);
8670d6f9 1944
7d774cac 1945 i915_gem_object_unpin_map(ctx_obj);
8670d6f9
OM
1946
1947 return 0;
1948}
1949
c5d46ee2
DG
1950/**
1951 * intel_lr_context_size() - return the size of the context for an engine
14bb2c11 1952 * @engine: which engine to find the context size for
c5d46ee2
DG
1953 *
1954 * Each engine may require a different amount of space for a context image,
1955 * so when allocating (or copying) an image, this function can be used to
1956 * find the right size for the specific engine.
1957 *
1958 * Return: size (in bytes) of an engine-specific context image
1959 *
1960 * Note: this size includes the HWSP, which is part of the context image
1961 * in LRC mode, but does not include the "shared data page" used with
1962 * GuC submission. The caller should account for this if using the GuC.
1963 */
0bc40be8 1964uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
8c857917
OM
1965{
1966 int ret = 0;
1967
c033666a 1968 WARN_ON(INTEL_GEN(engine->i915) < 8);
8c857917 1969
0bc40be8 1970 switch (engine->id) {
8c857917 1971 case RCS:
c033666a 1972 if (INTEL_GEN(engine->i915) >= 9)
468c6816
MN
1973 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
1974 else
1975 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
1976 break;
1977 case VCS:
1978 case BCS:
1979 case VECS:
1980 case VCS2:
1981 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
1982 break;
1983 }
1984
1985 return ret;
ede7d42b
OM
1986}
1987
e2efd130 1988static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 1989 struct intel_engine_cs *engine)
ede7d42b 1990{
8c857917 1991 struct drm_i915_gem_object *ctx_obj;
9021ad03 1992 struct intel_context *ce = &ctx->engine[engine->id];
bf3783e5 1993 struct i915_vma *vma;
8c857917 1994 uint32_t context_size;
7e37f889 1995 struct intel_ring *ring;
8c857917
OM
1996 int ret;
1997
9021ad03 1998 WARN_ON(ce->state);
ede7d42b 1999
f51455d4
CW
2000 context_size = round_up(intel_lr_context_size(engine),
2001 I915_GTT_PAGE_SIZE);
8c857917 2002
d1675198
AD
2003 /* One extra page as the sharing data between driver and GuC */
2004 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2005
12d79d78 2006 ctx_obj = i915_gem_object_create(ctx->i915, context_size);
fe3db79b 2007 if (IS_ERR(ctx_obj)) {
3126a660 2008 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
fe3db79b 2009 return PTR_ERR(ctx_obj);
8c857917
OM
2010 }
2011
a01cb37a 2012 vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
bf3783e5
CW
2013 if (IS_ERR(vma)) {
2014 ret = PTR_ERR(vma);
2015 goto error_deref_obj;
2016 }
2017
7e37f889 2018 ring = intel_engine_create_ring(engine, ctx->ring_size);
dca33ecc
CW
2019 if (IS_ERR(ring)) {
2020 ret = PTR_ERR(ring);
e84fe803 2021 goto error_deref_obj;
8670d6f9
OM
2022 }
2023
dca33ecc 2024 ret = populate_lr_context(ctx, ctx_obj, engine, ring);
8670d6f9
OM
2025 if (ret) {
2026 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
dca33ecc 2027 goto error_ring_free;
84c2377f
OM
2028 }
2029
dca33ecc 2030 ce->ring = ring;
bf3783e5 2031 ce->state = vma;
9021ad03 2032 ce->initialised = engine->init_context == NULL;
ede7d42b
OM
2033
2034 return 0;
8670d6f9 2035
dca33ecc 2036error_ring_free:
7e37f889 2037 intel_ring_free(ring);
e84fe803 2038error_deref_obj:
f8c417cd 2039 i915_gem_object_put(ctx_obj);
8670d6f9 2040 return ret;
ede7d42b 2041}
3e5b6f05 2042
821ed7df 2043void intel_lr_context_resume(struct drm_i915_private *dev_priv)
3e5b6f05 2044{
e2f80391 2045 struct intel_engine_cs *engine;
bafb2f7d 2046 struct i915_gem_context *ctx;
3b3f1650 2047 enum intel_engine_id id;
bafb2f7d
CW
2048
2049 /* Because we emit WA_TAIL_DWORDS there may be a disparity
2050 * between our bookkeeping in ce->ring->head and ce->ring->tail and
2051 * that stored in context. As we only write new commands from
2052 * ce->ring->tail onwards, everything before that is junk. If the GPU
2053 * starts reading from its RING_HEAD from the context, it may try to
2054 * execute that junk and die.
2055 *
2056 * So to avoid that we reset the context images upon resume. For
2057 * simplicity, we just zero everything out.
2058 */
2059 list_for_each_entry(ctx, &dev_priv->context_list, link) {
3b3f1650 2060 for_each_engine(engine, dev_priv, id) {
bafb2f7d
CW
2061 struct intel_context *ce = &ctx->engine[engine->id];
2062 u32 *reg;
3e5b6f05 2063
bafb2f7d
CW
2064 if (!ce->state)
2065 continue;
7d774cac 2066
bafb2f7d
CW
2067 reg = i915_gem_object_pin_map(ce->state->obj,
2068 I915_MAP_WB);
2069 if (WARN_ON(IS_ERR(reg)))
2070 continue;
3e5b6f05 2071
bafb2f7d
CW
2072 reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2073 reg[CTX_RING_HEAD+1] = 0;
2074 reg[CTX_RING_TAIL+1] = 0;
3e5b6f05 2075
a4f5ea64 2076 ce->state->obj->mm.dirty = true;
bafb2f7d 2077 i915_gem_object_unpin_map(ce->state->obj);
3e5b6f05 2078
bafb2f7d
CW
2079 ce->ring->head = ce->ring->tail = 0;
2080 ce->ring->last_retired_head = -1;
2081 intel_ring_update_space(ce->ring);
2082 }
3e5b6f05
TD
2083 }
2084}