drm/i915/execlists: Reduce completed event mask to COMPLETE | PREEMPTED
[linux-block.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1 133 */
27af5eea 134#include <linux/interrupt.h>
b20385f1
OM
135
136#include <drm/drmP.h>
137#include <drm/i915_drm.h>
138#include "i915_drv.h"
7c2fa7fa 139#include "i915_gem_render_state.h"
3bbaba0c 140#include "intel_mocs.h"
127f1003 141
e981e7b1
TD
142#define RING_EXECLIST_QFULL (1 << 0x2)
143#define RING_EXECLIST1_VALID (1 << 0x3)
144#define RING_EXECLIST0_VALID (1 << 0x4)
145#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
146#define RING_EXECLIST1_ACTIVE (1 << 0x11)
147#define RING_EXECLIST0_ACTIVE (1 << 0x12)
148
149#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
150#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
151#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
152#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
153#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
154#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9 155
70c2a24d 156#define GEN8_CTX_STATUS_COMPLETED_MASK \
d8747afb 157 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
70c2a24d 158
8670d6f9
OM
159#define CTX_LRI_HEADER_0 0x01
160#define CTX_CONTEXT_CONTROL 0x02
161#define CTX_RING_HEAD 0x04
162#define CTX_RING_TAIL 0x06
163#define CTX_RING_BUFFER_START 0x08
164#define CTX_RING_BUFFER_CONTROL 0x0a
165#define CTX_BB_HEAD_U 0x0c
166#define CTX_BB_HEAD_L 0x0e
167#define CTX_BB_STATE 0x10
168#define CTX_SECOND_BB_HEAD_U 0x12
169#define CTX_SECOND_BB_HEAD_L 0x14
170#define CTX_SECOND_BB_STATE 0x16
171#define CTX_BB_PER_CTX_PTR 0x18
172#define CTX_RCS_INDIRECT_CTX 0x1a
173#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
174#define CTX_LRI_HEADER_1 0x21
175#define CTX_CTX_TIMESTAMP 0x22
176#define CTX_PDP3_UDW 0x24
177#define CTX_PDP3_LDW 0x26
178#define CTX_PDP2_UDW 0x28
179#define CTX_PDP2_LDW 0x2a
180#define CTX_PDP1_UDW 0x2c
181#define CTX_PDP1_LDW 0x2e
182#define CTX_PDP0_UDW 0x30
183#define CTX_PDP0_LDW 0x32
184#define CTX_LRI_HEADER_2 0x41
185#define CTX_R_PWR_CLK_STATE 0x42
186#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
187
56e51bf0 188#define CTX_REG(reg_state, pos, reg, val) do { \
f0f59a00 189 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
0d925ea0
VS
190 (reg_state)[(pos)+1] = (val); \
191} while (0)
192
193#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
d852c7bf 194 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
e5815a2e
MT
195 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
196 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
9244a817 197} while (0)
e5815a2e 198
9244a817 199#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
2dba3239
MT
200 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
201 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
9244a817 202} while (0)
2dba3239 203
71562919
MT
204#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
205#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
7bd0a2c6 206#define GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x19
84b790f8 207
0e93cdd4
CW
208/* Typical size of the average request (2 pipecontrols and a MI_BB) */
209#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
a3aabe86 210#define WA_TAIL_DWORDS 2
7e4992ac 211#define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
beecec90 212#define PREEMPT_ID 0x1
a3aabe86 213
e2efd130 214static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 215 struct intel_engine_cs *engine);
a3aabe86
CW
216static void execlists_init_reg_state(u32 *reg_state,
217 struct i915_gem_context *ctx,
218 struct intel_engine_cs *engine,
219 struct intel_ring *ring);
7ba717cf 220
73e4d07f
OM
221/**
222 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
14bb2c11 223 * @dev_priv: i915 device private
73e4d07f
OM
224 * @enable_execlists: value of i915.enable_execlists module parameter.
225 *
226 * Only certain platforms support Execlists (the prerequisites being
27401d12 227 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
228 *
229 * Return: 1 if Execlists is supported and has to be enabled.
230 */
c033666a 231int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
127f1003 232{
a0bd6c31
ZL
233 /* On platforms with execlist available, vGPU will only
234 * support execlist mode, no ring buffer mode.
235 */
c033666a 236 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
a0bd6c31
ZL
237 return 1;
238
c033666a 239 if (INTEL_GEN(dev_priv) >= 9)
70ee45e1
DL
240 return 1;
241
127f1003
OM
242 if (enable_execlists == 0)
243 return 0;
244
5a21b665 245 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
8279aaf5 246 USES_PPGTT(dev_priv))
127f1003
OM
247 return 1;
248
249 return 0;
250}
ede7d42b 251
73e4d07f 252/**
ca82580c
TU
253 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
254 * descriptor for a pinned context
ca82580c 255 * @ctx: Context to work on
9021ad03 256 * @engine: Engine the descriptor will be used with
73e4d07f 257 *
ca82580c
TU
258 * The context descriptor encodes various attributes of a context,
259 * including its GTT address and some flags. Because it's fairly
260 * expensive to calculate, we'll just do it once and cache the result,
261 * which remains valid until the context is unpinned.
262 *
6e5248b5
DV
263 * This is what a descriptor looks like, from LSB to MSB::
264 *
2355cf08 265 * bits 0-11: flags, GEN8_CTX_* (cached in ctx->desc_template)
6e5248b5
DV
266 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
267 * bits 32-52: ctx ID, a globally unique tag
268 * bits 53-54: mbz, reserved for use by hardware
269 * bits 55-63: group ID, currently unused and set to 0
73e4d07f 270 */
ca82580c 271static void
e2efd130 272intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
0bc40be8 273 struct intel_engine_cs *engine)
84b790f8 274{
9021ad03 275 struct intel_context *ce = &ctx->engine[engine->id];
7069b144 276 u64 desc;
84b790f8 277
7069b144 278 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
84b790f8 279
2355cf08 280 desc = ctx->desc_template; /* bits 0-11 */
0b29c75a 281 desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
9021ad03 282 /* bits 12-31 */
7069b144 283 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
5af05fef 284
9021ad03 285 ce->lrc_desc = desc;
5af05fef
MT
286}
287
27606fd8
CW
288static struct i915_priolist *
289lookup_priolist(struct intel_engine_cs *engine,
290 struct i915_priotree *pt,
291 int prio)
08dd3e1a 292{
b620e870 293 struct intel_engine_execlists * const execlists = &engine->execlists;
08dd3e1a
CW
294 struct i915_priolist *p;
295 struct rb_node **parent, *rb;
296 bool first = true;
297
b620e870 298 if (unlikely(execlists->no_priolist))
08dd3e1a
CW
299 prio = I915_PRIORITY_NORMAL;
300
301find_priolist:
302 /* most positive priority is scheduled first, equal priorities fifo */
303 rb = NULL;
b620e870 304 parent = &execlists->queue.rb_node;
08dd3e1a
CW
305 while (*parent) {
306 rb = *parent;
307 p = rb_entry(rb, typeof(*p), node);
308 if (prio > p->priority) {
309 parent = &rb->rb_left;
310 } else if (prio < p->priority) {
311 parent = &rb->rb_right;
312 first = false;
313 } else {
27606fd8 314 return p;
08dd3e1a
CW
315 }
316 }
317
318 if (prio == I915_PRIORITY_NORMAL) {
b620e870 319 p = &execlists->default_priolist;
08dd3e1a
CW
320 } else {
321 p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
322 /* Convert an allocation failure to a priority bump */
323 if (unlikely(!p)) {
324 prio = I915_PRIORITY_NORMAL; /* recurses just once */
325
326 /* To maintain ordering with all rendering, after an
327 * allocation failure we have to disable all scheduling.
328 * Requests will then be executed in fifo, and schedule
329 * will ensure that dependencies are emitted in fifo.
330 * There will be still some reordering with existing
331 * requests, so if userspace lied about their
332 * dependencies that reordering may be visible.
333 */
b620e870 334 execlists->no_priolist = true;
08dd3e1a
CW
335 goto find_priolist;
336 }
337 }
338
339 p->priority = prio;
27606fd8 340 INIT_LIST_HEAD(&p->requests);
08dd3e1a 341 rb_link_node(&p->node, rb, parent);
b620e870 342 rb_insert_color(&p->node, &execlists->queue);
08dd3e1a 343
08dd3e1a 344 if (first)
b620e870 345 execlists->first = &p->node;
08dd3e1a 346
27606fd8 347 return ptr_pack_bits(p, first, 1);
08dd3e1a
CW
348}
349
7e4992ac
CW
350static void unwind_wa_tail(struct drm_i915_gem_request *rq)
351{
352 rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
353 assert_ring_tail_valid(rq->ring, rq->tail);
354}
355
a4598d17 356static void __unwind_incomplete_requests(struct intel_engine_cs *engine)
7e4992ac
CW
357{
358 struct drm_i915_gem_request *rq, *rn;
097a9481
MW
359 struct i915_priolist *uninitialized_var(p);
360 int last_prio = I915_PRIORITY_INVALID;
7e4992ac
CW
361
362 lockdep_assert_held(&engine->timeline->lock);
363
364 list_for_each_entry_safe_reverse(rq, rn,
365 &engine->timeline->requests,
366 link) {
7e4992ac
CW
367 if (i915_gem_request_completed(rq))
368 return;
369
370 __i915_gem_request_unsubmit(rq);
371 unwind_wa_tail(rq);
372
097a9481
MW
373 GEM_BUG_ON(rq->priotree.priority == I915_PRIORITY_INVALID);
374 if (rq->priotree.priority != last_prio) {
375 p = lookup_priolist(engine,
376 &rq->priotree,
377 rq->priotree.priority);
378 p = ptr_mask_bits(p, 1);
379
380 last_prio = rq->priotree.priority;
381 }
382
383 list_add(&rq->priotree.link, &p->requests);
7e4992ac
CW
384 }
385}
386
c41937fd 387void
a4598d17
MW
388execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
389{
390 struct intel_engine_cs *engine =
391 container_of(execlists, typeof(*engine), execlists);
392
393 spin_lock_irq(&engine->timeline->lock);
394 __unwind_incomplete_requests(engine);
395 spin_unlock_irq(&engine->timeline->lock);
396}
397
bbd6c47e
CW
398static inline void
399execlists_context_status_change(struct drm_i915_gem_request *rq,
400 unsigned long status)
84b790f8 401{
bbd6c47e
CW
402 /*
403 * Only used when GVT-g is enabled now. When GVT-g is disabled,
404 * The compiler should eliminate this function as dead-code.
405 */
406 if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
407 return;
6daccb0b 408
3fc03069
CD
409 atomic_notifier_call_chain(&rq->engine->context_status_notifier,
410 status, rq);
84b790f8
BW
411}
412
c6a2ac71
TU
413static void
414execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
415{
416 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
417 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
418 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
419 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
420}
421
70c2a24d 422static u64 execlists_update_context(struct drm_i915_gem_request *rq)
ae1250b9 423{
70c2a24d 424 struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
04da811b
ZW
425 struct i915_hw_ppgtt *ppgtt =
426 rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
70c2a24d 427 u32 *reg_state = ce->lrc_reg_state;
ae1250b9 428
e6ba9992 429 reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
ae1250b9 430
c6a2ac71
TU
431 /* True 32b PPGTT with dynamic page allocation: update PDP
432 * registers and point the unallocated PDPs to scratch page.
433 * PML4 is allocated during ppgtt init, so this is not needed
434 * in 48-bit mode.
435 */
949e8ab3 436 if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
c6a2ac71 437 execlists_update_context_pdps(ppgtt, reg_state);
70c2a24d
CW
438
439 return ce->lrc_desc;
ae1250b9
OM
440}
441
beecec90
CW
442static inline void elsp_write(u64 desc, u32 __iomem *elsp)
443{
444 writel(upper_32_bits(desc), elsp);
445 writel(lower_32_bits(desc), elsp);
446}
447
70c2a24d 448static void execlists_submit_ports(struct intel_engine_cs *engine)
bbd6c47e 449{
b620e870 450 struct execlist_port *port = engine->execlists.port;
bbd6c47e 451 u32 __iomem *elsp =
77f0d0e9
CW
452 engine->i915->regs + i915_mmio_reg_offset(RING_ELSP(engine));
453 unsigned int n;
bbd6c47e 454
76e70087 455 for (n = execlists_num_ports(&engine->execlists); n--; ) {
77f0d0e9
CW
456 struct drm_i915_gem_request *rq;
457 unsigned int count;
458 u64 desc;
459
460 rq = port_unpack(&port[n], &count);
461 if (rq) {
462 GEM_BUG_ON(count > !n);
463 if (!count++)
464 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
465 port_set(&port[n], port_pack(rq, count));
466 desc = execlists_update_context(rq);
467 GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
bccd3b83
CW
468
469 GEM_TRACE("%s in[%d]: ctx=%d.%d, seqno=%x\n",
470 engine->name, n,
471 rq->ctx->hw_id, count,
472 rq->global_seqno);
77f0d0e9
CW
473 } else {
474 GEM_BUG_ON(!n);
475 desc = 0;
476 }
bbd6c47e 477
beecec90 478 elsp_write(desc, elsp);
77f0d0e9 479 }
bbd6c47e
CW
480}
481
70c2a24d 482static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
84b790f8 483{
70c2a24d 484 return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
6095868a 485 i915_gem_context_force_single_submission(ctx));
70c2a24d 486}
84b790f8 487
70c2a24d
CW
488static bool can_merge_ctx(const struct i915_gem_context *prev,
489 const struct i915_gem_context *next)
490{
491 if (prev != next)
492 return false;
26720ab9 493
70c2a24d
CW
494 if (ctx_single_port_submission(prev))
495 return false;
26720ab9 496
70c2a24d 497 return true;
84b790f8
BW
498}
499
77f0d0e9
CW
500static void port_assign(struct execlist_port *port,
501 struct drm_i915_gem_request *rq)
502{
503 GEM_BUG_ON(rq == port_request(port));
504
505 if (port_isset(port))
506 i915_gem_request_put(port_request(port));
507
508 port_set(port, port_pack(i915_gem_request_get(rq), port_count(port)));
509}
510
beecec90
CW
511static void inject_preempt_context(struct intel_engine_cs *engine)
512{
513 struct intel_context *ce =
514 &engine->i915->preempt_context->engine[engine->id];
515 u32 __iomem *elsp =
516 engine->i915->regs + i915_mmio_reg_offset(RING_ELSP(engine));
517 unsigned int n;
518
519 GEM_BUG_ON(engine->i915->preempt_context->hw_id != PREEMPT_ID);
520 GEM_BUG_ON(!IS_ALIGNED(ce->ring->size, WA_TAIL_BYTES));
521
522 memset(ce->ring->vaddr + ce->ring->tail, 0, WA_TAIL_BYTES);
523 ce->ring->tail += WA_TAIL_BYTES;
524 ce->ring->tail &= (ce->ring->size - 1);
525 ce->lrc_reg_state[CTX_RING_TAIL+1] = ce->ring->tail;
526
bccd3b83 527 GEM_TRACE("\n");
beecec90
CW
528 for (n = execlists_num_ports(&engine->execlists); --n; )
529 elsp_write(0, elsp);
530
531 elsp_write(ce->lrc_desc, elsp);
532}
533
70c2a24d 534static void execlists_dequeue(struct intel_engine_cs *engine)
acdd884a 535{
7a62cc61
MK
536 struct intel_engine_execlists * const execlists = &engine->execlists;
537 struct execlist_port *port = execlists->port;
76e70087
MK
538 const struct execlist_port * const last_port =
539 &execlists->port[execlists->port_mask];
beecec90 540 struct drm_i915_gem_request *last = port_request(port);
20311bd3 541 struct rb_node *rb;
70c2a24d
CW
542 bool submit = false;
543
70c2a24d
CW
544 /* Hardware submission is through 2 ports. Conceptually each port
545 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
546 * static for a context, and unique to each, so we only execute
547 * requests belonging to a single context from each ring. RING_HEAD
548 * is maintained by the CS in the context image, it marks the place
549 * where it got up to last time, and through RING_TAIL we tell the CS
550 * where we want to execute up to this time.
551 *
552 * In this list the requests are in order of execution. Consecutive
553 * requests from the same context are adjacent in the ringbuffer. We
554 * can combine these requests into a single RING_TAIL update:
555 *
556 * RING_HEAD...req1...req2
557 * ^- RING_TAIL
558 * since to execute req2 the CS must first execute req1.
559 *
560 * Our goal then is to point each port to the end of a consecutive
561 * sequence of requests as being the most optimal (fewest wake ups
562 * and context switches) submission.
779949f4 563 */
acdd884a 564
9f7886d0 565 spin_lock_irq(&engine->timeline->lock);
7a62cc61
MK
566 rb = execlists->first;
567 GEM_BUG_ON(rb_first(&execlists->queue) != rb);
beecec90
CW
568 if (!rb)
569 goto unlock;
570
571 if (last) {
572 /*
573 * Don't resubmit or switch until all outstanding
574 * preemptions (lite-restore) are seen. Then we
575 * know the next preemption status we see corresponds
576 * to this ELSP update.
577 */
578 if (port_count(&port[0]) > 1)
579 goto unlock;
580
a4598d17 581 if (HAS_LOGICAL_RING_PREEMPTION(engine->i915) &&
beecec90
CW
582 rb_entry(rb, struct i915_priolist, node)->priority >
583 max(last->priotree.priority, 0)) {
584 /*
585 * Switch to our empty preempt context so
586 * the state of the GPU is known (idle).
587 */
588 inject_preempt_context(engine);
4a118ecb
CW
589 execlists_set_active(execlists,
590 EXECLISTS_ACTIVE_PREEMPT);
beecec90
CW
591 goto unlock;
592 } else {
593 /*
594 * In theory, we could coalesce more requests onto
595 * the second port (the first port is active, with
596 * no preemptions pending). However, that means we
597 * then have to deal with the possible lite-restore
598 * of the second port (as we submit the ELSP, there
599 * may be a context-switch) but also we may complete
600 * the resubmission before the context-switch. Ergo,
601 * coalescing onto the second port will cause a
602 * preemption event, but we cannot predict whether
603 * that will affect port[0] or port[1].
604 *
605 * If the second port is already active, we can wait
606 * until the next context-switch before contemplating
607 * new requests. The GPU will be busy and we should be
608 * able to resubmit the new ELSP before it idles,
609 * avoiding pipeline bubbles (momentary pauses where
610 * the driver is unable to keep up the supply of new
611 * work).
612 */
613 if (port_count(&port[1]))
614 goto unlock;
615
616 /* WaIdleLiteRestore:bdw,skl
617 * Apply the wa NOOPs to prevent
618 * ring:HEAD == req:TAIL as we resubmit the
619 * request. See gen8_emit_breadcrumb() for
620 * where we prepare the padding after the
621 * end of the request.
622 */
623 last->tail = last->wa_tail;
624 }
625 }
626
627 do {
6c067579
CW
628 struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
629 struct drm_i915_gem_request *rq, *rn;
630
631 list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
632 /*
633 * Can we combine this request with the current port?
634 * It has to be the same context/ringbuffer and not
635 * have any exceptions (e.g. GVT saying never to
636 * combine contexts).
637 *
638 * If we can combine the requests, we can execute both
639 * by updating the RING_TAIL to point to the end of the
640 * second request, and so we never need to tell the
641 * hardware about the first.
70c2a24d 642 */
6c067579
CW
643 if (last && !can_merge_ctx(rq->ctx, last->ctx)) {
644 /*
645 * If we are on the second port and cannot
646 * combine this request with the last, then we
647 * are done.
648 */
76e70087 649 if (port == last_port) {
6c067579
CW
650 __list_del_many(&p->requests,
651 &rq->priotree.link);
652 goto done;
653 }
654
655 /*
656 * If GVT overrides us we only ever submit
657 * port[0], leaving port[1] empty. Note that we
658 * also have to be careful that we don't queue
659 * the same context (even though a different
660 * request) to the second port.
661 */
662 if (ctx_single_port_submission(last->ctx) ||
663 ctx_single_port_submission(rq->ctx)) {
664 __list_del_many(&p->requests,
665 &rq->priotree.link);
666 goto done;
667 }
668
669 GEM_BUG_ON(last->ctx == rq->ctx);
670
671 if (submit)
672 port_assign(port, last);
673 port++;
7a62cc61
MK
674
675 GEM_BUG_ON(port_isset(port));
6c067579 676 }
70c2a24d 677
6c067579 678 INIT_LIST_HEAD(&rq->priotree.link);
6c067579 679 __i915_gem_request_submit(rq);
7a62cc61 680 trace_i915_gem_request_in(rq, port_index(port, execlists));
6c067579
CW
681 last = rq;
682 submit = true;
70c2a24d 683 }
d55ac5bf 684
20311bd3 685 rb = rb_next(rb);
7a62cc61 686 rb_erase(&p->node, &execlists->queue);
6c067579
CW
687 INIT_LIST_HEAD(&p->requests);
688 if (p->priority != I915_PRIORITY_NORMAL)
c5cf9a91 689 kmem_cache_free(engine->i915->priorities, p);
beecec90 690 } while (rb);
6c067579 691done:
7a62cc61 692 execlists->first = rb;
6c067579 693 if (submit)
77f0d0e9 694 port_assign(port, last);
beecec90 695unlock:
9f7886d0 696 spin_unlock_irq(&engine->timeline->lock);
53292cdb 697
4a118ecb
CW
698 if (submit) {
699 execlists_set_active(execlists, EXECLISTS_ACTIVE_USER);
70c2a24d 700 execlists_submit_ports(engine);
4a118ecb 701 }
acdd884a
MT
702}
703
c41937fd 704void
a4598d17 705execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
cf4591d1 706{
3f9e6cd8 707 struct execlist_port *port = execlists->port;
dc2279e1 708 unsigned int num_ports = execlists_num_ports(execlists);
cf4591d1 709
3f9e6cd8 710 while (num_ports-- && port_isset(port)) {
7e44fc28
CW
711 struct drm_i915_gem_request *rq = port_request(port);
712
4a118ecb 713 GEM_BUG_ON(!execlists->active);
d6c05113 714 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_PREEMPTED);
7e44fc28
CW
715 i915_gem_request_put(rq);
716
3f9e6cd8
CW
717 memset(port, 0, sizeof(*port));
718 port++;
719 }
cf4591d1
MK
720}
721
27a5f61b
CW
722static void execlists_cancel_requests(struct intel_engine_cs *engine)
723{
b620e870 724 struct intel_engine_execlists * const execlists = &engine->execlists;
27a5f61b
CW
725 struct drm_i915_gem_request *rq, *rn;
726 struct rb_node *rb;
727 unsigned long flags;
27a5f61b
CW
728
729 spin_lock_irqsave(&engine->timeline->lock, flags);
730
731 /* Cancel the requests on the HW and clear the ELSP tracker. */
a4598d17 732 execlists_cancel_port_requests(execlists);
27a5f61b
CW
733
734 /* Mark all executing requests as skipped. */
735 list_for_each_entry(rq, &engine->timeline->requests, link) {
736 GEM_BUG_ON(!rq->global_seqno);
737 if (!i915_gem_request_completed(rq))
738 dma_fence_set_error(&rq->fence, -EIO);
739 }
740
741 /* Flush the queued requests to the timeline list (for retiring). */
b620e870 742 rb = execlists->first;
27a5f61b
CW
743 while (rb) {
744 struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
745
746 list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
747 INIT_LIST_HEAD(&rq->priotree.link);
27a5f61b
CW
748
749 dma_fence_set_error(&rq->fence, -EIO);
750 __i915_gem_request_submit(rq);
751 }
752
753 rb = rb_next(rb);
b620e870 754 rb_erase(&p->node, &execlists->queue);
27a5f61b
CW
755 INIT_LIST_HEAD(&p->requests);
756 if (p->priority != I915_PRIORITY_NORMAL)
757 kmem_cache_free(engine->i915->priorities, p);
758 }
759
760 /* Remaining _unready_ requests will be nop'ed when submitted */
761
cf4591d1 762
b620e870
MK
763 execlists->queue = RB_ROOT;
764 execlists->first = NULL;
3f9e6cd8 765 GEM_BUG_ON(port_isset(execlists->port));
27a5f61b
CW
766
767 /*
768 * The port is checked prior to scheduling a tasklet, but
769 * just in case we have suspended the tasklet to do the
770 * wedging make sure that when it wakes, it decides there
771 * is no work to do by clearing the irq_posted bit.
772 */
773 clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
774
775 spin_unlock_irqrestore(&engine->timeline->lock, flags);
776}
777
6e5248b5 778/*
73e4d07f
OM
779 * Check the unread Context Status Buffers and manage the submission of new
780 * contexts to the ELSP accordingly.
781 */
c6dce8f1 782static void execlists_submission_tasklet(unsigned long data)
e981e7b1 783{
b620e870
MK
784 struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
785 struct intel_engine_execlists * const execlists = &engine->execlists;
beecec90 786 struct execlist_port * const port = execlists->port;
c033666a 787 struct drm_i915_private *dev_priv = engine->i915;
c6a2ac71 788
48921260
CW
789 /* We can skip acquiring intel_runtime_pm_get() here as it was taken
790 * on our behalf by the request (see i915_gem_mark_busy()) and it will
791 * not be relinquished until the device is idle (see
792 * i915_gem_idle_work_handler()). As a precaution, we make sure
793 * that all ELSP are drained i.e. we have processed the CSB,
794 * before allowing ourselves to idle and calling intel_runtime_pm_put().
795 */
796 GEM_BUG_ON(!dev_priv->gt.awake);
797
b620e870 798 intel_uncore_forcewake_get(dev_priv, execlists->fw_domains);
c6a2ac71 799
899f6204
CW
800 /* Prefer doing test_and_clear_bit() as a two stage operation to avoid
801 * imposing the cost of a locked atomic transaction when submitting a
802 * new request (outside of the context-switch interrupt).
803 */
804 while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
6d2cb5aa
CW
805 /* The HWSP contains a (cacheable) mirror of the CSB */
806 const u32 *buf =
807 &engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
4af0d727 808 unsigned int head, tail;
70c2a24d 809
b620e870 810 if (unlikely(execlists->csb_use_mmio)) {
6d2cb5aa
CW
811 buf = (u32 * __force)
812 (dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));
b620e870 813 execlists->csb_head = -1; /* force mmio read of CSB ptrs */
6d2cb5aa
CW
814 }
815
2e70b8c6
CW
816 /* The write will be ordered by the uncached read (itself
817 * a memory barrier), so we do not need another in the form
818 * of a locked instruction. The race between the interrupt
819 * handler and the split test/clear is harmless as we order
820 * our clear before the CSB read. If the interrupt arrived
821 * first between the test and the clear, we read the updated
822 * CSB and clear the bit. If the interrupt arrives as we read
823 * the CSB or later (i.e. after we had cleared the bit) the bit
824 * is set and we do a new loop.
825 */
826 __clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
b620e870 827 if (unlikely(execlists->csb_head == -1)) { /* following a reset */
767a983a
CW
828 head = readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
829 tail = GEN8_CSB_WRITE_PTR(head);
830 head = GEN8_CSB_READ_PTR(head);
b620e870 831 execlists->csb_head = head;
767a983a
CW
832 } else {
833 const int write_idx =
834 intel_hws_csb_write_index(dev_priv) -
835 I915_HWS_CSB_BUF0_INDEX;
836
b620e870 837 head = execlists->csb_head;
767a983a
CW
838 tail = READ_ONCE(buf[write_idx]);
839 }
bccd3b83
CW
840 GEM_TRACE("%s cs-irq head=%d [%d], tail=%d [%d]\n",
841 engine->name,
842 head, GEN8_CSB_READ_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))),
843 tail, GEN8_CSB_WRITE_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))));
b620e870 844
4af0d727 845 while (head != tail) {
77f0d0e9 846 struct drm_i915_gem_request *rq;
4af0d727 847 unsigned int status;
77f0d0e9 848 unsigned int count;
4af0d727
CW
849
850 if (++head == GEN8_CSB_ENTRIES)
851 head = 0;
70c2a24d 852
2ffe80aa
CW
853 /* We are flying near dragons again.
854 *
855 * We hold a reference to the request in execlist_port[]
856 * but no more than that. We are operating in softirq
857 * context and so cannot hold any mutex or sleep. That
858 * prevents us stopping the requests we are processing
859 * in port[] from being retired simultaneously (the
860 * breadcrumb will be complete before we see the
861 * context-switch). As we only hold the reference to the
862 * request, any pointer chasing underneath the request
863 * is subject to a potential use-after-free. Thus we
864 * store all of the bookkeeping within port[] as
865 * required, and avoid using unguarded pointers beneath
866 * request itself. The same applies to the atomic
867 * status notifier.
868 */
869
6d2cb5aa 870 status = READ_ONCE(buf[2 * head]); /* maybe mmio! */
bccd3b83
CW
871 GEM_TRACE("%s csb[%dd]: status=0x%08x:0x%08x\n",
872 engine->name, head,
873 status, buf[2*head + 1]);
70c2a24d
CW
874 if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
875 continue;
876
e40dd226 877 if (status & GEN8_CTX_STATUS_COMPLETE &&
beecec90 878 buf[2*head + 1] == PREEMPT_ID) {
a4598d17
MW
879 execlists_cancel_port_requests(execlists);
880 execlists_unwind_incomplete_requests(execlists);
beecec90 881
4a118ecb
CW
882 GEM_BUG_ON(!execlists_is_active(execlists,
883 EXECLISTS_ACTIVE_PREEMPT));
884 execlists_clear_active(execlists,
885 EXECLISTS_ACTIVE_PREEMPT);
beecec90
CW
886 continue;
887 }
888
889 if (status & GEN8_CTX_STATUS_PREEMPTED &&
4a118ecb
CW
890 execlists_is_active(execlists,
891 EXECLISTS_ACTIVE_PREEMPT))
beecec90
CW
892 continue;
893
4a118ecb
CW
894 GEM_BUG_ON(!execlists_is_active(execlists,
895 EXECLISTS_ACTIVE_USER));
896
86aa7e76 897 /* Check the context/desc id for this event matches */
6d2cb5aa 898 GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);
86aa7e76 899
77f0d0e9 900 rq = port_unpack(port, &count);
bccd3b83
CW
901 GEM_TRACE("%s out[0]: ctx=%d.%d, seqno=%x\n",
902 engine->name,
903 rq->ctx->hw_id, count,
904 rq->global_seqno);
77f0d0e9
CW
905 GEM_BUG_ON(count == 0);
906 if (--count == 0) {
70c2a24d 907 GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
d8747afb
CW
908 GEM_BUG_ON(port_isset(&port[1]) &&
909 !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
77f0d0e9
CW
910 GEM_BUG_ON(!i915_gem_request_completed(rq));
911 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
912
913 trace_i915_gem_request_out(rq);
914 i915_gem_request_put(rq);
70c2a24d 915
7a62cc61 916 execlists_port_complete(execlists, port);
77f0d0e9
CW
917 } else {
918 port_set(port, port_pack(rq, count));
70c2a24d 919 }
26720ab9 920
77f0d0e9
CW
921 /* After the final element, the hw should be idle */
922 GEM_BUG_ON(port_count(port) == 0 &&
70c2a24d 923 !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
4a118ecb
CW
924 if (port_count(port) == 0)
925 execlists_clear_active(execlists,
926 EXECLISTS_ACTIVE_USER);
4af0d727 927 }
e1fee72c 928
b620e870
MK
929 if (head != execlists->csb_head) {
930 execlists->csb_head = head;
767a983a
CW
931 writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
932 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
933 }
e981e7b1
TD
934 }
935
4a118ecb 936 if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT))
70c2a24d 937 execlists_dequeue(engine);
c6a2ac71 938
b620e870 939 intel_uncore_forcewake_put(dev_priv, execlists->fw_domains);
e981e7b1
TD
940}
941
27606fd8
CW
942static void insert_request(struct intel_engine_cs *engine,
943 struct i915_priotree *pt,
944 int prio)
945{
946 struct i915_priolist *p = lookup_priolist(engine, pt, prio);
947
948 list_add_tail(&pt->link, &ptr_mask_bits(p, 1)->requests);
beecec90 949 if (ptr_unmask_bits(p, 1))
c6dce8f1 950 tasklet_hi_schedule(&engine->execlists.tasklet);
27606fd8
CW
951}
952
f4ea6bdd 953static void execlists_submit_request(struct drm_i915_gem_request *request)
acdd884a 954{
4a570db5 955 struct intel_engine_cs *engine = request->engine;
5590af3e 956 unsigned long flags;
acdd884a 957
663f71e7
CW
958 /* Will be called from irq-context when using foreign fences. */
959 spin_lock_irqsave(&engine->timeline->lock, flags);
acdd884a 960
27606fd8 961 insert_request(engine, &request->priotree, request->priotree.priority);
acdd884a 962
b620e870 963 GEM_BUG_ON(!engine->execlists.first);
6c067579
CW
964 GEM_BUG_ON(list_empty(&request->priotree.link));
965
663f71e7 966 spin_unlock_irqrestore(&engine->timeline->lock, flags);
acdd884a
MT
967}
968
1f181225
CW
969static struct drm_i915_gem_request *pt_to_request(struct i915_priotree *pt)
970{
971 return container_of(pt, struct drm_i915_gem_request, priotree);
972}
973
20311bd3
CW
974static struct intel_engine_cs *
975pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
976{
1f181225 977 struct intel_engine_cs *engine = pt_to_request(pt)->engine;
a79a524e
CW
978
979 GEM_BUG_ON(!locked);
20311bd3 980
20311bd3 981 if (engine != locked) {
a79a524e
CW
982 spin_unlock(&locked->timeline->lock);
983 spin_lock(&engine->timeline->lock);
20311bd3
CW
984 }
985
986 return engine;
987}
988
989static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
990{
a79a524e 991 struct intel_engine_cs *engine;
20311bd3
CW
992 struct i915_dependency *dep, *p;
993 struct i915_dependency stack;
994 LIST_HEAD(dfs);
995
7d1ea609
CW
996 GEM_BUG_ON(prio == I915_PRIORITY_INVALID);
997
20311bd3
CW
998 if (prio <= READ_ONCE(request->priotree.priority))
999 return;
1000
70cd1476
CW
1001 /* Need BKL in order to use the temporary link inside i915_dependency */
1002 lockdep_assert_held(&request->i915->drm.struct_mutex);
20311bd3
CW
1003
1004 stack.signaler = &request->priotree;
1005 list_add(&stack.dfs_link, &dfs);
1006
1007 /* Recursively bump all dependent priorities to match the new request.
1008 *
1009 * A naive approach would be to use recursion:
1010 * static void update_priorities(struct i915_priotree *pt, prio) {
1011 * list_for_each_entry(dep, &pt->signalers_list, signal_link)
1012 * update_priorities(dep->signal, prio)
1013 * insert_request(pt);
1014 * }
1015 * but that may have unlimited recursion depth and so runs a very
1016 * real risk of overunning the kernel stack. Instead, we build
1017 * a flat list of all dependencies starting with the current request.
1018 * As we walk the list of dependencies, we add all of its dependencies
1019 * to the end of the list (this may include an already visited
1020 * request) and continue to walk onwards onto the new dependencies. The
1021 * end result is a topological list of requests in reverse order, the
1022 * last element in the list is the request we must execute first.
1023 */
1024 list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
1025 struct i915_priotree *pt = dep->signaler;
1026
a79a524e
CW
1027 /* Within an engine, there can be no cycle, but we may
1028 * refer to the same dependency chain multiple times
1029 * (redundant dependencies are not eliminated) and across
1030 * engines.
1031 */
1032 list_for_each_entry(p, &pt->signalers_list, signal_link) {
1f181225
CW
1033 if (i915_gem_request_completed(pt_to_request(p->signaler)))
1034 continue;
1035
a79a524e 1036 GEM_BUG_ON(p->signaler->priority < pt->priority);
20311bd3
CW
1037 if (prio > READ_ONCE(p->signaler->priority))
1038 list_move_tail(&p->dfs_link, &dfs);
a79a524e 1039 }
20311bd3 1040
0798cff4 1041 list_safe_reset_next(dep, p, dfs_link);
20311bd3
CW
1042 }
1043
349bdb68
CW
1044 /* If we didn't need to bump any existing priorities, and we haven't
1045 * yet submitted this request (i.e. there is no potential race with
1046 * execlists_submit_request()), we can set our own priority and skip
1047 * acquiring the engine locks.
1048 */
7d1ea609 1049 if (request->priotree.priority == I915_PRIORITY_INVALID) {
349bdb68
CW
1050 GEM_BUG_ON(!list_empty(&request->priotree.link));
1051 request->priotree.priority = prio;
1052 if (stack.dfs_link.next == stack.dfs_link.prev)
1053 return;
1054 __list_del_entry(&stack.dfs_link);
1055 }
1056
a79a524e
CW
1057 engine = request->engine;
1058 spin_lock_irq(&engine->timeline->lock);
1059
20311bd3
CW
1060 /* Fifo and depth-first replacement ensure our deps execute before us */
1061 list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
1062 struct i915_priotree *pt = dep->signaler;
1063
1064 INIT_LIST_HEAD(&dep->dfs_link);
1065
1066 engine = pt_lock_engine(pt, engine);
1067
1068 if (prio <= pt->priority)
1069 continue;
1070
20311bd3 1071 pt->priority = prio;
6c067579
CW
1072 if (!list_empty(&pt->link)) {
1073 __list_del_entry(&pt->link);
1074 insert_request(engine, pt, prio);
a79a524e 1075 }
20311bd3
CW
1076 }
1077
a79a524e 1078 spin_unlock_irq(&engine->timeline->lock);
20311bd3
CW
1079}
1080
f4e15af7
CW
1081static int __context_pin(struct i915_gem_context *ctx, struct i915_vma *vma)
1082{
1083 unsigned int flags;
1084 int err;
1085
1086 /*
1087 * Clear this page out of any CPU caches for coherent swap-in/out.
1088 * We only want to do this on the first bind so that we do not stall
1089 * on an active context (which by nature is already on the GPU).
1090 */
1091 if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1092 err = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1093 if (err)
1094 return err;
1095 }
1096
1097 flags = PIN_GLOBAL | PIN_HIGH;
1098 if (ctx->ggtt_offset_bias)
1099 flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
1100
1101 return i915_vma_pin(vma, 0, GEN8_LR_CONTEXT_ALIGN, flags);
1102}
1103
266a240b
CW
1104static struct intel_ring *
1105execlists_context_pin(struct intel_engine_cs *engine,
1106 struct i915_gem_context *ctx)
dcb4c12a 1107{
9021ad03 1108 struct intel_context *ce = &ctx->engine[engine->id];
7d774cac 1109 void *vaddr;
ca82580c 1110 int ret;
dcb4c12a 1111
91c8a326 1112 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
ca82580c 1113
266a240b
CW
1114 if (likely(ce->pin_count++))
1115 goto out;
a533b4ba 1116 GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
24f1d3cc 1117
e8a9c58f
CW
1118 if (!ce->state) {
1119 ret = execlists_context_deferred_alloc(ctx, engine);
1120 if (ret)
1121 goto err;
1122 }
56f6e0a7 1123 GEM_BUG_ON(!ce->state);
e8a9c58f 1124
f4e15af7 1125 ret = __context_pin(ctx, ce->state);
e84fe803 1126 if (ret)
24f1d3cc 1127 goto err;
7ba717cf 1128
bf3783e5 1129 vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
7d774cac
TU
1130 if (IS_ERR(vaddr)) {
1131 ret = PTR_ERR(vaddr);
bf3783e5 1132 goto unpin_vma;
82352e90
TU
1133 }
1134
d822bb18 1135 ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
e84fe803 1136 if (ret)
7d774cac 1137 goto unpin_map;
d1675198 1138
0bc40be8 1139 intel_lr_context_descriptor_update(ctx, engine);
9021ad03 1140
a3aabe86
CW
1141 ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1142 ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
bde13ebd 1143 i915_ggtt_offset(ce->ring->vma);
a3aabe86 1144
3d574a6b 1145 ce->state->obj->pin_global++;
9a6feaf0 1146 i915_gem_context_get(ctx);
266a240b
CW
1147out:
1148 return ce->ring;
7ba717cf 1149
7d774cac 1150unpin_map:
bf3783e5
CW
1151 i915_gem_object_unpin_map(ce->state->obj);
1152unpin_vma:
1153 __i915_vma_unpin(ce->state);
24f1d3cc 1154err:
9021ad03 1155 ce->pin_count = 0;
266a240b 1156 return ERR_PTR(ret);
e84fe803
NH
1157}
1158
e8a9c58f
CW
1159static void execlists_context_unpin(struct intel_engine_cs *engine,
1160 struct i915_gem_context *ctx)
e84fe803 1161{
9021ad03 1162 struct intel_context *ce = &ctx->engine[engine->id];
e84fe803 1163
91c8a326 1164 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
9021ad03 1165 GEM_BUG_ON(ce->pin_count == 0);
321fe304 1166
9021ad03 1167 if (--ce->pin_count)
24f1d3cc 1168 return;
e84fe803 1169
aad29fbb 1170 intel_ring_unpin(ce->ring);
dcb4c12a 1171
3d574a6b 1172 ce->state->obj->pin_global--;
bf3783e5
CW
1173 i915_gem_object_unpin_map(ce->state->obj);
1174 i915_vma_unpin(ce->state);
321fe304 1175
9a6feaf0 1176 i915_gem_context_put(ctx);
dcb4c12a
OM
1177}
1178
f73e7399 1179static int execlists_request_alloc(struct drm_i915_gem_request *request)
ef11c01d
CW
1180{
1181 struct intel_engine_cs *engine = request->engine;
1182 struct intel_context *ce = &request->ctx->engine[engine->id];
fd138212 1183 int ret;
ef11c01d 1184
e8a9c58f
CW
1185 GEM_BUG_ON(!ce->pin_count);
1186
ef11c01d
CW
1187 /* Flush enough space to reduce the likelihood of waiting after
1188 * we start building the request - in which case we will just
1189 * have to repeat work.
1190 */
1191 request->reserved_space += EXECLISTS_REQUEST_SIZE;
1192
fd138212
CW
1193 ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
1194 if (ret)
1195 return ret;
ef11c01d 1196
ef11c01d
CW
1197 /* Note that after this point, we have committed to using
1198 * this request as it is being used to both track the
1199 * state of engine initialisation and liveness of the
1200 * golden renderstate above. Think twice before you try
1201 * to cancel/unwind this request now.
1202 */
1203
1204 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
1205 return 0;
ef11c01d
CW
1206}
1207
9e000847
AS
1208/*
1209 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1210 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1211 * but there is a slight complication as this is applied in WA batch where the
1212 * values are only initialized once so we cannot take register value at the
1213 * beginning and reuse it further; hence we save its value to memory, upload a
1214 * constant value with bit21 set and then we restore it back with the saved value.
1215 * To simplify the WA, a constant value is formed by using the default value
1216 * of this register. This shouldn't be a problem because we are only modifying
1217 * it for a short period and this batch in non-premptible. We can ofcourse
1218 * use additional instructions that read the actual value of the register
1219 * at that time and set our bit of interest but it makes the WA complicated.
1220 *
1221 * This WA is also required for Gen9 so extracting as a function avoids
1222 * code duplication.
1223 */
097d4f1c
TU
1224static u32 *
1225gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
17ee950d 1226{
097d4f1c
TU
1227 *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1228 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1229 *batch++ = i915_ggtt_offset(engine->scratch) + 256;
1230 *batch++ = 0;
1231
1232 *batch++ = MI_LOAD_REGISTER_IMM(1);
1233 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1234 *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
1235
9f235dfa
TU
1236 batch = gen8_emit_pipe_control(batch,
1237 PIPE_CONTROL_CS_STALL |
1238 PIPE_CONTROL_DC_FLUSH_ENABLE,
1239 0);
097d4f1c
TU
1240
1241 *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1242 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1243 *batch++ = i915_ggtt_offset(engine->scratch) + 256;
1244 *batch++ = 0;
1245
1246 return batch;
17ee950d
AS
1247}
1248
6e5248b5
DV
1249/*
1250 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1251 * initialized at the beginning and shared across all contexts but this field
1252 * helps us to have multiple batches at different offsets and select them based
1253 * on a criteria. At the moment this batch always start at the beginning of the page
1254 * and at this point we don't have multiple wa_ctx batch buffers.
4d78c8dc 1255 *
6e5248b5
DV
1256 * The number of WA applied are not known at the beginning; we use this field
1257 * to return the no of DWORDS written.
17ee950d 1258 *
6e5248b5
DV
1259 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1260 * so it adds NOOPs as padding to make it cacheline aligned.
1261 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1262 * makes a complete batch buffer.
17ee950d 1263 */
097d4f1c 1264static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
17ee950d 1265{
7ad00d1a 1266 /* WaDisableCtxRestoreArbitration:bdw,chv */
097d4f1c 1267 *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
17ee950d 1268
c82435bb 1269 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
097d4f1c
TU
1270 if (IS_BROADWELL(engine->i915))
1271 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
c82435bb 1272
0160f055
AS
1273 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1274 /* Actual scratch location is at 128 bytes offset */
9f235dfa
TU
1275 batch = gen8_emit_pipe_control(batch,
1276 PIPE_CONTROL_FLUSH_L3 |
1277 PIPE_CONTROL_GLOBAL_GTT_IVB |
1278 PIPE_CONTROL_CS_STALL |
1279 PIPE_CONTROL_QW_WRITE,
1280 i915_ggtt_offset(engine->scratch) +
1281 2 * CACHELINE_BYTES);
0160f055 1282
beecec90
CW
1283 *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1284
17ee950d 1285 /* Pad to end of cacheline */
097d4f1c
TU
1286 while ((unsigned long)batch % CACHELINE_BYTES)
1287 *batch++ = MI_NOOP;
17ee950d
AS
1288
1289 /*
1290 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1291 * execution depends on the length specified in terms of cache lines
1292 * in the register CTX_RCS_INDIRECT_CTX
1293 */
1294
097d4f1c 1295 return batch;
17ee950d
AS
1296}
1297
097d4f1c 1298static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
0504cffc 1299{
beecec90
CW
1300 *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1301
9fb5026f 1302 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
097d4f1c 1303 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
a4106a78 1304
9fb5026f 1305 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
097d4f1c
TU
1306 *batch++ = MI_LOAD_REGISTER_IMM(1);
1307 *batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
1308 *batch++ = _MASKED_BIT_DISABLE(
1309 GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
1310 *batch++ = MI_NOOP;
873e8171 1311
066d4628
MK
1312 /* WaClearSlmSpaceAtContextSwitch:kbl */
1313 /* Actual scratch location is at 128 bytes offset */
097d4f1c 1314 if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
9f235dfa
TU
1315 batch = gen8_emit_pipe_control(batch,
1316 PIPE_CONTROL_FLUSH_L3 |
1317 PIPE_CONTROL_GLOBAL_GTT_IVB |
1318 PIPE_CONTROL_CS_STALL |
1319 PIPE_CONTROL_QW_WRITE,
1320 i915_ggtt_offset(engine->scratch)
1321 + 2 * CACHELINE_BYTES);
066d4628 1322 }
3485d99e 1323
9fb5026f 1324 /* WaMediaPoolStateCmdInWABB:bxt,glk */
3485d99e
TG
1325 if (HAS_POOLED_EU(engine->i915)) {
1326 /*
1327 * EU pool configuration is setup along with golden context
1328 * during context initialization. This value depends on
1329 * device type (2x6 or 3x6) and needs to be updated based
1330 * on which subslice is disabled especially for 2x6
1331 * devices, however it is safe to load default
1332 * configuration of 3x6 device instead of masking off
1333 * corresponding bits because HW ignores bits of a disabled
1334 * subslice and drops down to appropriate config. Please
1335 * see render_state_setup() in i915_gem_render_state.c for
1336 * possible configurations, to avoid duplication they are
1337 * not shown here again.
1338 */
097d4f1c
TU
1339 *batch++ = GEN9_MEDIA_POOL_STATE;
1340 *batch++ = GEN9_MEDIA_POOL_ENABLE;
1341 *batch++ = 0x00777000;
1342 *batch++ = 0;
1343 *batch++ = 0;
1344 *batch++ = 0;
3485d99e
TG
1345 }
1346
beecec90
CW
1347 *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1348
0504cffc 1349 /* Pad to end of cacheline */
097d4f1c
TU
1350 while ((unsigned long)batch % CACHELINE_BYTES)
1351 *batch++ = MI_NOOP;
0504cffc 1352
097d4f1c 1353 return batch;
0504cffc
AS
1354}
1355
097d4f1c
TU
1356#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
1357
1358static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
17ee950d 1359{
48bb74e4
CW
1360 struct drm_i915_gem_object *obj;
1361 struct i915_vma *vma;
1362 int err;
17ee950d 1363
097d4f1c 1364 obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
48bb74e4
CW
1365 if (IS_ERR(obj))
1366 return PTR_ERR(obj);
17ee950d 1367
a01cb37a 1368 vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
48bb74e4
CW
1369 if (IS_ERR(vma)) {
1370 err = PTR_ERR(vma);
1371 goto err;
17ee950d
AS
1372 }
1373
48bb74e4
CW
1374 err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1375 if (err)
1376 goto err;
1377
1378 engine->wa_ctx.vma = vma;
17ee950d 1379 return 0;
48bb74e4
CW
1380
1381err:
1382 i915_gem_object_put(obj);
1383 return err;
17ee950d
AS
1384}
1385
097d4f1c 1386static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
17ee950d 1387{
19880c4a 1388 i915_vma_unpin_and_release(&engine->wa_ctx.vma);
17ee950d
AS
1389}
1390
097d4f1c
TU
1391typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1392
0bc40be8 1393static int intel_init_workaround_bb(struct intel_engine_cs *engine)
17ee950d 1394{
48bb74e4 1395 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
097d4f1c
TU
1396 struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
1397 &wa_ctx->per_ctx };
1398 wa_bb_func_t wa_bb_fn[2];
17ee950d 1399 struct page *page;
097d4f1c
TU
1400 void *batch, *batch_ptr;
1401 unsigned int i;
48bb74e4 1402 int ret;
17ee950d 1403
097d4f1c
TU
1404 if (WARN_ON(engine->id != RCS || !engine->scratch))
1405 return -EINVAL;
17ee950d 1406
097d4f1c 1407 switch (INTEL_GEN(engine->i915)) {
90007bca
RV
1408 case 10:
1409 return 0;
097d4f1c
TU
1410 case 9:
1411 wa_bb_fn[0] = gen9_init_indirectctx_bb;
b8aa2233 1412 wa_bb_fn[1] = NULL;
097d4f1c
TU
1413 break;
1414 case 8:
1415 wa_bb_fn[0] = gen8_init_indirectctx_bb;
3ad7b52d 1416 wa_bb_fn[1] = NULL;
097d4f1c
TU
1417 break;
1418 default:
1419 MISSING_CASE(INTEL_GEN(engine->i915));
5e60d790 1420 return 0;
0504cffc 1421 }
5e60d790 1422
097d4f1c 1423 ret = lrc_setup_wa_ctx(engine);
17ee950d
AS
1424 if (ret) {
1425 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1426 return ret;
1427 }
1428
48bb74e4 1429 page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
097d4f1c 1430 batch = batch_ptr = kmap_atomic(page);
17ee950d 1431
097d4f1c
TU
1432 /*
1433 * Emit the two workaround batch buffers, recording the offset from the
1434 * start of the workaround batch buffer object for each and their
1435 * respective sizes.
1436 */
1437 for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1438 wa_bb[i]->offset = batch_ptr - batch;
1439 if (WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, CACHELINE_BYTES))) {
1440 ret = -EINVAL;
1441 break;
1442 }
604a8f6f
CW
1443 if (wa_bb_fn[i])
1444 batch_ptr = wa_bb_fn[i](engine, batch_ptr);
097d4f1c 1445 wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
17ee950d
AS
1446 }
1447
097d4f1c
TU
1448 BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
1449
17ee950d
AS
1450 kunmap_atomic(batch);
1451 if (ret)
097d4f1c 1452 lrc_destroy_wa_ctx(engine);
17ee950d
AS
1453
1454 return ret;
1455}
1456
64f09f00
CW
1457static u8 gtiir[] = {
1458 [RCS] = 0,
1459 [BCS] = 0,
1460 [VCS] = 1,
1461 [VCS2] = 1,
1462 [VECS] = 3,
1463};
1464
0bc40be8 1465static int gen8_init_common_ring(struct intel_engine_cs *engine)
9b1136d5 1466{
c033666a 1467 struct drm_i915_private *dev_priv = engine->i915;
b620e870 1468 struct intel_engine_execlists * const execlists = &engine->execlists;
821ed7df
CW
1469 int ret;
1470
1471 ret = intel_mocs_init_engine(engine);
1472 if (ret)
1473 return ret;
9b1136d5 1474
ad07dfcd 1475 intel_engine_reset_breadcrumbs(engine);
f3b8f912 1476 intel_engine_init_hangcheck(engine);
821ed7df 1477
0bc40be8 1478 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
0bc40be8 1479 I915_WRITE(RING_MODE_GEN7(engine),
9b1136d5 1480 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
f3b8f912
CW
1481 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1482 engine->status_page.ggtt_offset);
1483 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
dfc53c5e 1484
0bc40be8 1485 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
9b1136d5 1486
64f09f00
CW
1487 GEM_BUG_ON(engine->id >= ARRAY_SIZE(gtiir));
1488
1489 /*
1490 * Clear any pending interrupt state.
1491 *
1492 * We do it twice out of paranoia that some of the IIR are double
1493 * buffered, and if we only reset it once there may still be
1494 * an interrupt pending.
1495 */
1496 I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
1497 GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
1498 I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
1499 GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
f747026c 1500 clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
b620e870 1501 execlists->csb_head = -1;
4a118ecb 1502 execlists->active = 0;
6b764a59 1503
64f09f00 1504 /* After a GPU reset, we may have requests to replay */
9bdc3573 1505 if (execlists->first)
c6dce8f1 1506 tasklet_schedule(&execlists->tasklet);
6b764a59 1507
821ed7df 1508 return 0;
9b1136d5
OM
1509}
1510
0bc40be8 1511static int gen8_init_render_ring(struct intel_engine_cs *engine)
9b1136d5 1512{
c033666a 1513 struct drm_i915_private *dev_priv = engine->i915;
9b1136d5
OM
1514 int ret;
1515
0bc40be8 1516 ret = gen8_init_common_ring(engine);
9b1136d5
OM
1517 if (ret)
1518 return ret;
1519
1520 /* We need to disable the AsyncFlip performance optimisations in order
1521 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1522 * programmed to '1' on all products.
1523 *
1524 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1525 */
1526 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1527
9b1136d5
OM
1528 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1529
0bc40be8 1530 return init_workarounds_ring(engine);
9b1136d5
OM
1531}
1532
0bc40be8 1533static int gen9_init_render_ring(struct intel_engine_cs *engine)
82ef822e
DL
1534{
1535 int ret;
1536
0bc40be8 1537 ret = gen8_init_common_ring(engine);
82ef822e
DL
1538 if (ret)
1539 return ret;
1540
0bc40be8 1541 return init_workarounds_ring(engine);
82ef822e
DL
1542}
1543
821ed7df
CW
1544static void reset_common_ring(struct intel_engine_cs *engine,
1545 struct drm_i915_gem_request *request)
1546{
b620e870 1547 struct intel_engine_execlists * const execlists = &engine->execlists;
c0dcb203 1548 struct intel_context *ce;
221ab971 1549 unsigned long flags;
cdb6ded4 1550
221ab971
CW
1551 spin_lock_irqsave(&engine->timeline->lock, flags);
1552
cdb6ded4
CW
1553 /*
1554 * Catch up with any missed context-switch interrupts.
1555 *
1556 * Ideally we would just read the remaining CSB entries now that we
1557 * know the gpu is idle. However, the CSB registers are sometimes^W
1558 * often trashed across a GPU reset! Instead we have to rely on
1559 * guessing the missed context-switch events by looking at what
1560 * requests were completed.
1561 */
a4598d17 1562 execlists_cancel_port_requests(execlists);
cdb6ded4 1563
221ab971 1564 /* Push back any incomplete requests for replay after the reset. */
a4598d17 1565 __unwind_incomplete_requests(engine);
cdb6ded4 1566
221ab971 1567 spin_unlock_irqrestore(&engine->timeline->lock, flags);
c0dcb203
CW
1568
1569 /* If the request was innocent, we leave the request in the ELSP
1570 * and will try to replay it on restarting. The context image may
1571 * have been corrupted by the reset, in which case we may have
1572 * to service a new GPU hang, but more likely we can continue on
1573 * without impact.
1574 *
1575 * If the request was guilty, we presume the context is corrupt
1576 * and have to at least restore the RING register in the context
1577 * image back to the expected values to skip over the guilty request.
1578 */
221ab971 1579 if (!request || request->fence.error != -EIO)
c0dcb203 1580 return;
821ed7df 1581
a3aabe86
CW
1582 /* We want a simple context + ring to execute the breadcrumb update.
1583 * We cannot rely on the context being intact across the GPU hang,
1584 * so clear it and rebuild just what we need for the breadcrumb.
1585 * All pending requests for this context will be zapped, and any
1586 * future request will be after userspace has had the opportunity
1587 * to recreate its own state.
1588 */
c0dcb203 1589 ce = &request->ctx->engine[engine->id];
a3aabe86
CW
1590 execlists_init_reg_state(ce->lrc_reg_state,
1591 request->ctx, engine, ce->ring);
1592
821ed7df 1593 /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
a3aabe86
CW
1594 ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1595 i915_ggtt_offset(ce->ring->vma);
821ed7df 1596 ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
a3aabe86 1597
821ed7df 1598 request->ring->head = request->postfix;
821ed7df
CW
1599 intel_ring_update_space(request->ring);
1600
a3aabe86 1601 /* Reset WaIdleLiteRestore:bdw,skl as well */
7e4992ac 1602 unwind_wa_tail(request);
821ed7df
CW
1603}
1604
7a01a0a2
MT
1605static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1606{
1607 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
4a570db5 1608 struct intel_engine_cs *engine = req->engine;
e7167769 1609 const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
73dec95e
TU
1610 u32 *cs;
1611 int i;
7a01a0a2 1612
73dec95e
TU
1613 cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1614 if (IS_ERR(cs))
1615 return PTR_ERR(cs);
7a01a0a2 1616
73dec95e 1617 *cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
e7167769 1618 for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
7a01a0a2
MT
1619 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1620
73dec95e
TU
1621 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
1622 *cs++ = upper_32_bits(pd_daddr);
1623 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
1624 *cs++ = lower_32_bits(pd_daddr);
7a01a0a2
MT
1625 }
1626
73dec95e
TU
1627 *cs++ = MI_NOOP;
1628 intel_ring_advance(req, cs);
7a01a0a2
MT
1629
1630 return 0;
1631}
1632
be795fc1 1633static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
803688ba 1634 u64 offset, u32 len,
54af56db 1635 const unsigned int flags)
15648585 1636{
73dec95e 1637 u32 *cs;
15648585
OM
1638 int ret;
1639
7a01a0a2
MT
1640 /* Don't rely in hw updating PDPs, specially in lite-restore.
1641 * Ideally, we should set Force PD Restore in ctx descriptor,
1642 * but we can't. Force Restore would be a second option, but
1643 * it is unsafe in case of lite-restore (because the ctx is
2dba3239
MT
1644 * not idle). PML4 is allocated during ppgtt init so this is
1645 * not needed in 48-bit.*/
7a01a0a2 1646 if (req->ctx->ppgtt &&
54af56db
MK
1647 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings) &&
1648 !i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
1649 !intel_vgpu_active(req->i915)) {
1650 ret = intel_logical_ring_emit_pdps(req);
1651 if (ret)
1652 return ret;
7a01a0a2 1653
666796da 1654 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
7a01a0a2
MT
1655 }
1656
73dec95e
TU
1657 cs = intel_ring_begin(req, 4);
1658 if (IS_ERR(cs))
1659 return PTR_ERR(cs);
15648585 1660
279f5a00
CW
1661 /*
1662 * WaDisableCtxRestoreArbitration:bdw,chv
1663 *
1664 * We don't need to perform MI_ARB_ENABLE as often as we do (in
1665 * particular all the gen that do not need the w/a at all!), if we
1666 * took care to make sure that on every switch into this context
1667 * (both ordinary and for preemption) that arbitrartion was enabled
1668 * we would be fine. However, there doesn't seem to be a downside to
1669 * being paranoid and making sure it is set before each batch and
1670 * every context-switch.
1671 *
1672 * Note that if we fail to enable arbitration before the request
1673 * is complete, then we do not see the context-switch interrupt and
1674 * the engine hangs (with RING_HEAD == RING_TAIL).
1675 *
1676 * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
1677 */
3ad7b52d
CW
1678 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1679
15648585 1680 /* FIXME(BDW): Address space and security selectors. */
54af56db
MK
1681 *cs++ = MI_BATCH_BUFFER_START_GEN8 |
1682 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
1683 (flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
73dec95e
TU
1684 *cs++ = lower_32_bits(offset);
1685 *cs++ = upper_32_bits(offset);
73dec95e 1686 intel_ring_advance(req, cs);
15648585
OM
1687
1688 return 0;
1689}
1690
31bb59cc 1691static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
73d477f6 1692{
c033666a 1693 struct drm_i915_private *dev_priv = engine->i915;
31bb59cc
CW
1694 I915_WRITE_IMR(engine,
1695 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1696 POSTING_READ_FW(RING_IMR(engine->mmio_base));
73d477f6
OM
1697}
1698
31bb59cc 1699static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
73d477f6 1700{
c033666a 1701 struct drm_i915_private *dev_priv = engine->i915;
31bb59cc 1702 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
73d477f6
OM
1703}
1704
7c9cf4e3 1705static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
4712274c 1706{
73dec95e 1707 u32 cmd, *cs;
4712274c 1708
73dec95e
TU
1709 cs = intel_ring_begin(request, 4);
1710 if (IS_ERR(cs))
1711 return PTR_ERR(cs);
4712274c
OM
1712
1713 cmd = MI_FLUSH_DW + 1;
1714
f0a1fb10
CW
1715 /* We always require a command barrier so that subsequent
1716 * commands, such as breadcrumb interrupts, are strictly ordered
1717 * wrt the contents of the write cache being flushed to memory
1718 * (and thus being coherent from the CPU).
1719 */
1720 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1721
7c9cf4e3 1722 if (mode & EMIT_INVALIDATE) {
f0a1fb10 1723 cmd |= MI_INVALIDATE_TLB;
1dae2dfb 1724 if (request->engine->id == VCS)
f0a1fb10 1725 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1726 }
1727
73dec95e
TU
1728 *cs++ = cmd;
1729 *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1730 *cs++ = 0; /* upper addr */
1731 *cs++ = 0; /* value */
1732 intel_ring_advance(request, cs);
4712274c
OM
1733
1734 return 0;
1735}
1736
7deb4d39 1737static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
7c9cf4e3 1738 u32 mode)
4712274c 1739{
b5321f30 1740 struct intel_engine_cs *engine = request->engine;
bde13ebd
CW
1741 u32 scratch_addr =
1742 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
0b2d0934 1743 bool vf_flush_wa = false, dc_flush_wa = false;
73dec95e 1744 u32 *cs, flags = 0;
0b2d0934 1745 int len;
4712274c
OM
1746
1747 flags |= PIPE_CONTROL_CS_STALL;
1748
7c9cf4e3 1749 if (mode & EMIT_FLUSH) {
4712274c
OM
1750 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1751 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
965fd602 1752 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
40a24488 1753 flags |= PIPE_CONTROL_FLUSH_ENABLE;
4712274c
OM
1754 }
1755
7c9cf4e3 1756 if (mode & EMIT_INVALIDATE) {
4712274c
OM
1757 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1758 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1759 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1760 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1761 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1762 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1763 flags |= PIPE_CONTROL_QW_WRITE;
1764 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
4712274c 1765
1a5a9ce7
BW
1766 /*
1767 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1768 * pipe control.
1769 */
c033666a 1770 if (IS_GEN9(request->i915))
1a5a9ce7 1771 vf_flush_wa = true;
0b2d0934
MK
1772
1773 /* WaForGAMHang:kbl */
1774 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1775 dc_flush_wa = true;
1a5a9ce7 1776 }
9647ff36 1777
0b2d0934
MK
1778 len = 6;
1779
1780 if (vf_flush_wa)
1781 len += 6;
1782
1783 if (dc_flush_wa)
1784 len += 12;
1785
73dec95e
TU
1786 cs = intel_ring_begin(request, len);
1787 if (IS_ERR(cs))
1788 return PTR_ERR(cs);
4712274c 1789
9f235dfa
TU
1790 if (vf_flush_wa)
1791 cs = gen8_emit_pipe_control(cs, 0, 0);
9647ff36 1792
9f235dfa
TU
1793 if (dc_flush_wa)
1794 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
1795 0);
0b2d0934 1796
9f235dfa 1797 cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
0b2d0934 1798
9f235dfa
TU
1799 if (dc_flush_wa)
1800 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
0b2d0934 1801
73dec95e 1802 intel_ring_advance(request, cs);
4712274c
OM
1803
1804 return 0;
1805}
1806
7c17d377
CW
1807/*
1808 * Reserve space for 2 NOOPs at the end of each request to be
1809 * used as a workaround for not being allowed to do lite
1810 * restore with HEAD==TAIL (WaIdleLiteRestore).
1811 */
73dec95e 1812static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
4da46e1e 1813{
beecec90
CW
1814 /* Ensure there's always at least one preemption point per-request. */
1815 *cs++ = MI_ARB_CHECK;
73dec95e
TU
1816 *cs++ = MI_NOOP;
1817 request->wa_tail = intel_ring_offset(request, cs);
caddfe71 1818}
4da46e1e 1819
73dec95e 1820static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
caddfe71 1821{
7c17d377
CW
1822 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1823 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
4da46e1e 1824
df77cd83
MW
1825 cs = gen8_emit_ggtt_write(cs, request->global_seqno,
1826 intel_hws_seqno_address(request->engine));
73dec95e
TU
1827 *cs++ = MI_USER_INTERRUPT;
1828 *cs++ = MI_NOOP;
1829 request->tail = intel_ring_offset(request, cs);
ed1501d4 1830 assert_ring_tail_valid(request->ring, request->tail);
caddfe71 1831
73dec95e 1832 gen8_emit_wa_tail(request, cs);
7c17d377 1833}
98f29e8d
CW
1834static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
1835
df77cd83 1836static void gen8_emit_breadcrumb_rcs(struct drm_i915_gem_request *request,
73dec95e 1837 u32 *cs)
7c17d377 1838{
ce81a65c
MW
1839 /* We're using qword write, seqno should be aligned to 8 bytes. */
1840 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1841
df77cd83
MW
1842 cs = gen8_emit_ggtt_write_rcs(cs, request->global_seqno,
1843 intel_hws_seqno_address(request->engine));
73dec95e
TU
1844 *cs++ = MI_USER_INTERRUPT;
1845 *cs++ = MI_NOOP;
1846 request->tail = intel_ring_offset(request, cs);
ed1501d4 1847 assert_ring_tail_valid(request->ring, request->tail);
caddfe71 1848
73dec95e 1849 gen8_emit_wa_tail(request, cs);
4da46e1e 1850}
df77cd83 1851static const int gen8_emit_breadcrumb_rcs_sz = 8 + WA_TAIL_DWORDS;
98f29e8d 1852
8753181e 1853static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
e7778be1
TD
1854{
1855 int ret;
1856
4ac9659e 1857 ret = intel_ring_workarounds_emit(req);
e7778be1
TD
1858 if (ret)
1859 return ret;
1860
3bbaba0c
PA
1861 ret = intel_rcs_context_init_mocs(req);
1862 /*
1863 * Failing to program the MOCS is non-fatal.The system will not
1864 * run at peak performance. So generate an error and carry on.
1865 */
1866 if (ret)
1867 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1868
4e50f082 1869 return i915_gem_render_state_emit(req);
e7778be1
TD
1870}
1871
73e4d07f
OM
1872/**
1873 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
14bb2c11 1874 * @engine: Engine Command Streamer.
73e4d07f 1875 */
0bc40be8 1876void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
454afebd 1877{
6402c330 1878 struct drm_i915_private *dev_priv;
9832b9da 1879
27af5eea
TU
1880 /*
1881 * Tasklet cannot be active at this point due intel_mark_active/idle
1882 * so this is just for documentation.
1883 */
c6dce8f1
SAK
1884 if (WARN_ON(test_bit(TASKLET_STATE_SCHED,
1885 &engine->execlists.tasklet.state)))
1886 tasklet_kill(&engine->execlists.tasklet);
27af5eea 1887
c033666a 1888 dev_priv = engine->i915;
6402c330 1889
0bc40be8 1890 if (engine->buffer) {
0bc40be8 1891 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
b0366a54 1892 }
48d82387 1893
0bc40be8
TU
1894 if (engine->cleanup)
1895 engine->cleanup(engine);
48d82387 1896
e8a9c58f 1897 intel_engine_cleanup_common(engine);
17ee950d 1898
097d4f1c 1899 lrc_destroy_wa_ctx(engine);
c033666a 1900 engine->i915 = NULL;
3b3f1650
AG
1901 dev_priv->engine[engine->id] = NULL;
1902 kfree(engine);
454afebd
OM
1903}
1904
ff44ad51 1905static void execlists_set_default_submission(struct intel_engine_cs *engine)
ddd66c51 1906{
ff44ad51 1907 engine->submit_request = execlists_submit_request;
27a5f61b 1908 engine->cancel_requests = execlists_cancel_requests;
ff44ad51 1909 engine->schedule = execlists_schedule;
c6dce8f1 1910 engine->execlists.tasklet.func = execlists_submission_tasklet;
aba5e278
CW
1911
1912 engine->park = NULL;
1913 engine->unpark = NULL;
ddd66c51
CW
1914}
1915
c9cacf93 1916static void
e1382efb 1917logical_ring_default_vfuncs(struct intel_engine_cs *engine)
c9cacf93
TU
1918{
1919 /* Default vfuncs which can be overriden by each engine. */
0bc40be8 1920 engine->init_hw = gen8_init_common_ring;
821ed7df 1921 engine->reset_hw = reset_common_ring;
e8a9c58f
CW
1922
1923 engine->context_pin = execlists_context_pin;
1924 engine->context_unpin = execlists_context_unpin;
1925
f73e7399
CW
1926 engine->request_alloc = execlists_request_alloc;
1927
0bc40be8 1928 engine->emit_flush = gen8_emit_flush;
9b81d556 1929 engine->emit_breadcrumb = gen8_emit_breadcrumb;
98f29e8d 1930 engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
ff44ad51
CW
1931
1932 engine->set_default_submission = execlists_set_default_submission;
ddd66c51 1933
31bb59cc
CW
1934 engine->irq_enable = gen8_logical_ring_enable_irq;
1935 engine->irq_disable = gen8_logical_ring_disable_irq;
0bc40be8 1936 engine->emit_bb_start = gen8_emit_bb_start;
c9cacf93
TU
1937}
1938
d9f3af96 1939static inline void
c2c7f240 1940logical_ring_default_irqs(struct intel_engine_cs *engine)
d9f3af96 1941{
c2c7f240 1942 unsigned shift = engine->irq_shift;
0bc40be8
TU
1943 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1944 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
d9f3af96
TU
1945}
1946
bb45438f
TU
1947static void
1948logical_ring_setup(struct intel_engine_cs *engine)
1949{
1950 struct drm_i915_private *dev_priv = engine->i915;
1951 enum forcewake_domains fw_domains;
1952
019bf277
TU
1953 intel_engine_setup_common(engine);
1954
bb45438f
TU
1955 /* Intentionally left blank. */
1956 engine->buffer = NULL;
1957
1958 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1959 RING_ELSP(engine),
1960 FW_REG_WRITE);
1961
1962 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1963 RING_CONTEXT_STATUS_PTR(engine),
1964 FW_REG_READ | FW_REG_WRITE);
1965
1966 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1967 RING_CONTEXT_STATUS_BUF_BASE(engine),
1968 FW_REG_READ);
1969
b620e870 1970 engine->execlists.fw_domains = fw_domains;
bb45438f 1971
c6dce8f1
SAK
1972 tasklet_init(&engine->execlists.tasklet,
1973 execlists_submission_tasklet, (unsigned long)engine);
bb45438f 1974
bb45438f
TU
1975 logical_ring_default_vfuncs(engine);
1976 logical_ring_default_irqs(engine);
bb45438f
TU
1977}
1978
486e93f7 1979static int logical_ring_init(struct intel_engine_cs *engine)
a19d6ff2 1980{
a19d6ff2
TU
1981 int ret;
1982
019bf277 1983 ret = intel_engine_init_common(engine);
a19d6ff2
TU
1984 if (ret)
1985 goto error;
1986
a19d6ff2
TU
1987 return 0;
1988
1989error:
1990 intel_logical_ring_cleanup(engine);
1991 return ret;
1992}
1993
88d2ba2e 1994int logical_render_ring_init(struct intel_engine_cs *engine)
a19d6ff2
TU
1995{
1996 struct drm_i915_private *dev_priv = engine->i915;
1997 int ret;
1998
bb45438f
TU
1999 logical_ring_setup(engine);
2000
a19d6ff2
TU
2001 if (HAS_L3_DPF(dev_priv))
2002 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2003
2004 /* Override some for render ring. */
2005 if (INTEL_GEN(dev_priv) >= 9)
2006 engine->init_hw = gen9_init_render_ring;
2007 else
2008 engine->init_hw = gen8_init_render_ring;
2009 engine->init_context = gen8_init_rcs_context;
a19d6ff2 2010 engine->emit_flush = gen8_emit_flush_render;
df77cd83
MW
2011 engine->emit_breadcrumb = gen8_emit_breadcrumb_rcs;
2012 engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_rcs_sz;
a19d6ff2 2013
f51455d4 2014 ret = intel_engine_create_scratch(engine, PAGE_SIZE);
a19d6ff2
TU
2015 if (ret)
2016 return ret;
2017
2018 ret = intel_init_workaround_bb(engine);
2019 if (ret) {
2020 /*
2021 * We continue even if we fail to initialize WA batch
2022 * because we only expect rare glitches but nothing
2023 * critical to prevent us from using GPU
2024 */
2025 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2026 ret);
2027 }
2028
d038fc7e 2029 return logical_ring_init(engine);
a19d6ff2
TU
2030}
2031
88d2ba2e 2032int logical_xcs_ring_init(struct intel_engine_cs *engine)
bb45438f
TU
2033{
2034 logical_ring_setup(engine);
2035
2036 return logical_ring_init(engine);
454afebd
OM
2037}
2038
0cea6502 2039static u32
c033666a 2040make_rpcs(struct drm_i915_private *dev_priv)
0cea6502
JM
2041{
2042 u32 rpcs = 0;
2043
2044 /*
2045 * No explicit RPCS request is needed to ensure full
2046 * slice/subslice/EU enablement prior to Gen9.
2047 */
c033666a 2048 if (INTEL_GEN(dev_priv) < 9)
0cea6502
JM
2049 return 0;
2050
2051 /*
2052 * Starting in Gen9, render power gating can leave
2053 * slice/subslice/EU in a partially enabled state. We
2054 * must make an explicit request through RPCS for full
2055 * enablement.
2056 */
43b67998 2057 if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
0cea6502 2058 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
f08a0c92 2059 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
0cea6502
JM
2060 GEN8_RPCS_S_CNT_SHIFT;
2061 rpcs |= GEN8_RPCS_ENABLE;
2062 }
2063
43b67998 2064 if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
0cea6502 2065 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
57ec171e 2066 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
0cea6502
JM
2067 GEN8_RPCS_SS_CNT_SHIFT;
2068 rpcs |= GEN8_RPCS_ENABLE;
2069 }
2070
43b67998
ID
2071 if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
2072 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
0cea6502 2073 GEN8_RPCS_EU_MIN_SHIFT;
43b67998 2074 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
0cea6502
JM
2075 GEN8_RPCS_EU_MAX_SHIFT;
2076 rpcs |= GEN8_RPCS_ENABLE;
2077 }
2078
2079 return rpcs;
2080}
2081
0bc40be8 2082static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
71562919
MT
2083{
2084 u32 indirect_ctx_offset;
2085
c033666a 2086 switch (INTEL_GEN(engine->i915)) {
71562919 2087 default:
c033666a 2088 MISSING_CASE(INTEL_GEN(engine->i915));
71562919 2089 /* fall through */
7bd0a2c6
MT
2090 case 10:
2091 indirect_ctx_offset =
2092 GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2093 break;
71562919
MT
2094 case 9:
2095 indirect_ctx_offset =
2096 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2097 break;
2098 case 8:
2099 indirect_ctx_offset =
2100 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2101 break;
2102 }
2103
2104 return indirect_ctx_offset;
2105}
2106
56e51bf0 2107static void execlists_init_reg_state(u32 *regs,
a3aabe86
CW
2108 struct i915_gem_context *ctx,
2109 struct intel_engine_cs *engine,
2110 struct intel_ring *ring)
8670d6f9 2111{
a3aabe86
CW
2112 struct drm_i915_private *dev_priv = engine->i915;
2113 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
56e51bf0
TU
2114 u32 base = engine->mmio_base;
2115 bool rcs = engine->id == RCS;
2116
2117 /* A context is actually a big batch buffer with several
2118 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
2119 * values we are setting here are only for the first context restore:
2120 * on a subsequent save, the GPU will recreate this batchbuffer with new
2121 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
2122 * we are not initializing here).
2123 */
2124 regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
2125 MI_LRI_FORCE_POSTED;
2126
2127 CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
2128 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
56e51bf0
TU
2129 (HAS_RESOURCE_STREAMER(dev_priv) ?
2130 CTX_CTRL_RS_CTX_ENABLE : 0)));
2131 CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
2132 CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
2133 CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
2134 CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
2135 RING_CTL_SIZE(ring->size) | RING_VALID);
2136 CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
2137 CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
2138 CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
2139 CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
2140 CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
2141 CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
2142 if (rcs) {
604a8f6f
CW
2143 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2144
56e51bf0
TU
2145 CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
2146 CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
2147 RING_INDIRECT_CTX_OFFSET(base), 0);
604a8f6f 2148 if (wa_ctx->indirect_ctx.size) {
bde13ebd 2149 u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
17ee950d 2150
56e51bf0 2151 regs[CTX_RCS_INDIRECT_CTX + 1] =
097d4f1c
TU
2152 (ggtt_offset + wa_ctx->indirect_ctx.offset) |
2153 (wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
17ee950d 2154
56e51bf0 2155 regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
0bc40be8 2156 intel_lr_indirect_ctx_offset(engine) << 6;
604a8f6f
CW
2157 }
2158
2159 CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
2160 if (wa_ctx->per_ctx.size) {
2161 u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
17ee950d 2162
56e51bf0 2163 regs[CTX_BB_PER_CTX_PTR + 1] =
097d4f1c 2164 (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
17ee950d 2165 }
8670d6f9 2166 }
56e51bf0
TU
2167
2168 regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2169
2170 CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
0d925ea0 2171 /* PDP values well be assigned later if needed */
56e51bf0
TU
2172 CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
2173 CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
2174 CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
2175 CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
2176 CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
2177 CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
2178 CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
2179 CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
d7b2633d 2180
949e8ab3 2181 if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
2dba3239
MT
2182 /* 64b PPGTT (48bit canonical)
2183 * PDP0_DESCRIPTOR contains the base address to PML4 and
2184 * other PDP Descriptors are ignored.
2185 */
56e51bf0 2186 ASSIGN_CTX_PML4(ppgtt, regs);
2dba3239
MT
2187 }
2188
56e51bf0
TU
2189 if (rcs) {
2190 regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2191 CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2192 make_rpcs(dev_priv));
19f81df2
RB
2193
2194 i915_oa_init_reg_state(engine, ctx, regs);
8670d6f9 2195 }
a3aabe86
CW
2196}
2197
2198static int
2199populate_lr_context(struct i915_gem_context *ctx,
2200 struct drm_i915_gem_object *ctx_obj,
2201 struct intel_engine_cs *engine,
2202 struct intel_ring *ring)
2203{
2204 void *vaddr;
d2b4b979 2205 u32 *regs;
a3aabe86
CW
2206 int ret;
2207
2208 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2209 if (ret) {
2210 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2211 return ret;
2212 }
2213
2214 vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2215 if (IS_ERR(vaddr)) {
2216 ret = PTR_ERR(vaddr);
2217 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2218 return ret;
2219 }
a4f5ea64 2220 ctx_obj->mm.dirty = true;
a3aabe86 2221
d2b4b979
CW
2222 if (engine->default_state) {
2223 /*
2224 * We only want to copy over the template context state;
2225 * skipping over the headers reserved for GuC communication,
2226 * leaving those as zero.
2227 */
2228 const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
2229 void *defaults;
2230
2231 defaults = i915_gem_object_pin_map(engine->default_state,
2232 I915_MAP_WB);
2233 if (IS_ERR(defaults))
2234 return PTR_ERR(defaults);
2235
2236 memcpy(vaddr + start, defaults + start, engine->context_size);
2237 i915_gem_object_unpin_map(engine->default_state);
2238 }
2239
a3aabe86
CW
2240 /* The second page of the context object contains some fields which must
2241 * be set up prior to the first execution. */
d2b4b979
CW
2242 regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
2243 execlists_init_reg_state(regs, ctx, engine, ring);
2244 if (!engine->default_state)
2245 regs[CTX_CONTEXT_CONTROL + 1] |=
2246 _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
8670d6f9 2247
7d774cac 2248 i915_gem_object_unpin_map(ctx_obj);
8670d6f9
OM
2249
2250 return 0;
2251}
2252
e2efd130 2253static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 2254 struct intel_engine_cs *engine)
ede7d42b 2255{
8c857917 2256 struct drm_i915_gem_object *ctx_obj;
9021ad03 2257 struct intel_context *ce = &ctx->engine[engine->id];
bf3783e5 2258 struct i915_vma *vma;
8c857917 2259 uint32_t context_size;
7e37f889 2260 struct intel_ring *ring;
8c857917
OM
2261 int ret;
2262
9021ad03 2263 WARN_ON(ce->state);
ede7d42b 2264
63ffbcda 2265 context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
8c857917 2266
0b29c75a
MT
2267 /*
2268 * Before the actual start of the context image, we insert a few pages
2269 * for our own use and for sharing with the GuC.
2270 */
2271 context_size += LRC_HEADER_PAGES * PAGE_SIZE;
d1675198 2272
12d79d78 2273 ctx_obj = i915_gem_object_create(ctx->i915, context_size);
fe3db79b 2274 if (IS_ERR(ctx_obj)) {
3126a660 2275 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
fe3db79b 2276 return PTR_ERR(ctx_obj);
8c857917
OM
2277 }
2278
a01cb37a 2279 vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
bf3783e5
CW
2280 if (IS_ERR(vma)) {
2281 ret = PTR_ERR(vma);
2282 goto error_deref_obj;
2283 }
2284
7e37f889 2285 ring = intel_engine_create_ring(engine, ctx->ring_size);
dca33ecc
CW
2286 if (IS_ERR(ring)) {
2287 ret = PTR_ERR(ring);
e84fe803 2288 goto error_deref_obj;
8670d6f9
OM
2289 }
2290
dca33ecc 2291 ret = populate_lr_context(ctx, ctx_obj, engine, ring);
8670d6f9
OM
2292 if (ret) {
2293 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
dca33ecc 2294 goto error_ring_free;
84c2377f
OM
2295 }
2296
dca33ecc 2297 ce->ring = ring;
bf3783e5 2298 ce->state = vma;
ede7d42b
OM
2299
2300 return 0;
8670d6f9 2301
dca33ecc 2302error_ring_free:
7e37f889 2303 intel_ring_free(ring);
e84fe803 2304error_deref_obj:
f8c417cd 2305 i915_gem_object_put(ctx_obj);
8670d6f9 2306 return ret;
ede7d42b 2307}
3e5b6f05 2308
821ed7df 2309void intel_lr_context_resume(struct drm_i915_private *dev_priv)
3e5b6f05 2310{
e2f80391 2311 struct intel_engine_cs *engine;
bafb2f7d 2312 struct i915_gem_context *ctx;
3b3f1650 2313 enum intel_engine_id id;
bafb2f7d
CW
2314
2315 /* Because we emit WA_TAIL_DWORDS there may be a disparity
2316 * between our bookkeeping in ce->ring->head and ce->ring->tail and
2317 * that stored in context. As we only write new commands from
2318 * ce->ring->tail onwards, everything before that is junk. If the GPU
2319 * starts reading from its RING_HEAD from the context, it may try to
2320 * execute that junk and die.
2321 *
2322 * So to avoid that we reset the context images upon resume. For
2323 * simplicity, we just zero everything out.
2324 */
829a0af2 2325 list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
3b3f1650 2326 for_each_engine(engine, dev_priv, id) {
bafb2f7d
CW
2327 struct intel_context *ce = &ctx->engine[engine->id];
2328 u32 *reg;
3e5b6f05 2329
bafb2f7d
CW
2330 if (!ce->state)
2331 continue;
7d774cac 2332
bafb2f7d
CW
2333 reg = i915_gem_object_pin_map(ce->state->obj,
2334 I915_MAP_WB);
2335 if (WARN_ON(IS_ERR(reg)))
2336 continue;
3e5b6f05 2337
bafb2f7d
CW
2338 reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2339 reg[CTX_RING_HEAD+1] = 0;
2340 reg[CTX_RING_TAIL+1] = 0;
3e5b6f05 2341
a4f5ea64 2342 ce->state->obj->mm.dirty = true;
bafb2f7d 2343 i915_gem_object_unpin_map(ce->state->obj);
3e5b6f05 2344
e6ba9992 2345 intel_ring_reset(ce->ring, 0);
bafb2f7d 2346 }
3e5b6f05
TD
2347 }
2348}