drm/i915/execlists: Avoid putting the error pointer
[linux-block.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1 133 */
27af5eea 134#include <linux/interrupt.h>
b20385f1
OM
135
136#include <drm/drmP.h>
137#include <drm/i915_drm.h>
138#include "i915_drv.h"
7c2fa7fa 139#include "i915_gem_render_state.h"
578f1ac6 140#include "intel_lrc_reg.h"
3bbaba0c 141#include "intel_mocs.h"
7d3c425f 142#include "intel_workarounds.h"
127f1003 143
e981e7b1
TD
144#define RING_EXECLIST_QFULL (1 << 0x2)
145#define RING_EXECLIST1_VALID (1 << 0x3)
146#define RING_EXECLIST0_VALID (1 << 0x4)
147#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
148#define RING_EXECLIST1_ACTIVE (1 << 0x11)
149#define RING_EXECLIST0_ACTIVE (1 << 0x12)
150
151#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
152#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
153#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
154#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
155#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
156#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9 157
70c2a24d 158#define GEN8_CTX_STATUS_COMPLETED_MASK \
d8747afb 159 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
70c2a24d 160
0e93cdd4
CW
161/* Typical size of the average request (2 pipecontrols and a MI_BB) */
162#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
a3aabe86 163#define WA_TAIL_DWORDS 2
7e4992ac 164#define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
a3aabe86 165
e2efd130 166static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 167 struct intel_engine_cs *engine);
a3aabe86
CW
168static void execlists_init_reg_state(u32 *reg_state,
169 struct i915_gem_context *ctx,
170 struct intel_engine_cs *engine,
171 struct intel_ring *ring);
7ba717cf 172
f6322edd
CW
173static inline struct i915_priolist *to_priolist(struct rb_node *rb)
174{
175 return rb_entry(rb, struct i915_priolist, node);
176}
177
178static inline int rq_prio(const struct i915_request *rq)
179{
b7268c5e 180 return rq->sched.attr.priority;
f6322edd
CW
181}
182
183static inline bool need_preempt(const struct intel_engine_cs *engine,
184 const struct i915_request *last,
185 int prio)
186{
2a694feb 187 return (intel_engine_has_preemption(engine) &&
c5ce3b8d
CW
188 __execlists_need_preempt(prio, rq_prio(last)) &&
189 !i915_request_completed(last));
f6322edd
CW
190}
191
73e4d07f 192/**
ca82580c
TU
193 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
194 * descriptor for a pinned context
ca82580c 195 * @ctx: Context to work on
9021ad03 196 * @engine: Engine the descriptor will be used with
73e4d07f 197 *
ca82580c
TU
198 * The context descriptor encodes various attributes of a context,
199 * including its GTT address and some flags. Because it's fairly
200 * expensive to calculate, we'll just do it once and cache the result,
201 * which remains valid until the context is unpinned.
202 *
6e5248b5
DV
203 * This is what a descriptor looks like, from LSB to MSB::
204 *
2355cf08 205 * bits 0-11: flags, GEN8_CTX_* (cached in ctx->desc_template)
6e5248b5
DV
206 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
207 * bits 32-52: ctx ID, a globally unique tag
208 * bits 53-54: mbz, reserved for use by hardware
209 * bits 55-63: group ID, currently unused and set to 0
ac52da6a
DCS
210 *
211 * Starting from Gen11, the upper dword of the descriptor has a new format:
212 *
213 * bits 32-36: reserved
214 * bits 37-47: SW context ID
215 * bits 48:53: engine instance
216 * bit 54: mbz, reserved for use by hardware
217 * bits 55-60: SW counter
218 * bits 61-63: engine class
219 *
220 * engine info, SW context ID and SW counter need to form a unique number
221 * (Context ID) per lrc.
73e4d07f 222 */
ca82580c 223static void
e2efd130 224intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
0bc40be8 225 struct intel_engine_cs *engine)
84b790f8 226{
ab82a063 227 struct intel_context *ce = to_intel_context(ctx, engine);
7069b144 228 u64 desc;
84b790f8 229
ac52da6a
DCS
230 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
231 BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
84b790f8 232
2355cf08 233 desc = ctx->desc_template; /* bits 0-11 */
ac52da6a
DCS
234 GEM_BUG_ON(desc & GENMASK_ULL(63, 12));
235
0b29c75a 236 desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
9021ad03 237 /* bits 12-31 */
ac52da6a
DCS
238 GEM_BUG_ON(desc & GENMASK_ULL(63, 32));
239
240 if (INTEL_GEN(ctx->i915) >= 11) {
241 GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
242 desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
243 /* bits 37-47 */
244
245 desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
246 /* bits 48-53 */
247
248 /* TODO: decide what to do with SW counter (bits 55-60) */
249
250 desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
251 /* bits 61-63 */
252 } else {
253 GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
254 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
255 }
5af05fef 256
9021ad03 257 ce->lrc_desc = desc;
5af05fef
MT
258}
259
27606fd8 260static struct i915_priolist *
87c7acf8 261lookup_priolist(struct intel_engine_cs *engine, int prio)
08dd3e1a 262{
b620e870 263 struct intel_engine_execlists * const execlists = &engine->execlists;
08dd3e1a
CW
264 struct i915_priolist *p;
265 struct rb_node **parent, *rb;
266 bool first = true;
267
b620e870 268 if (unlikely(execlists->no_priolist))
08dd3e1a
CW
269 prio = I915_PRIORITY_NORMAL;
270
271find_priolist:
272 /* most positive priority is scheduled first, equal priorities fifo */
273 rb = NULL;
b620e870 274 parent = &execlists->queue.rb_node;
08dd3e1a
CW
275 while (*parent) {
276 rb = *parent;
f6322edd 277 p = to_priolist(rb);
08dd3e1a
CW
278 if (prio > p->priority) {
279 parent = &rb->rb_left;
280 } else if (prio < p->priority) {
281 parent = &rb->rb_right;
282 first = false;
283 } else {
27606fd8 284 return p;
08dd3e1a
CW
285 }
286 }
287
288 if (prio == I915_PRIORITY_NORMAL) {
b620e870 289 p = &execlists->default_priolist;
08dd3e1a
CW
290 } else {
291 p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
292 /* Convert an allocation failure to a priority bump */
293 if (unlikely(!p)) {
294 prio = I915_PRIORITY_NORMAL; /* recurses just once */
295
296 /* To maintain ordering with all rendering, after an
297 * allocation failure we have to disable all scheduling.
298 * Requests will then be executed in fifo, and schedule
299 * will ensure that dependencies are emitted in fifo.
300 * There will be still some reordering with existing
301 * requests, so if userspace lied about their
302 * dependencies that reordering may be visible.
303 */
b620e870 304 execlists->no_priolist = true;
08dd3e1a
CW
305 goto find_priolist;
306 }
307 }
308
309 p->priority = prio;
27606fd8 310 INIT_LIST_HEAD(&p->requests);
08dd3e1a 311 rb_link_node(&p->node, rb, parent);
b620e870 312 rb_insert_color(&p->node, &execlists->queue);
08dd3e1a 313
08dd3e1a 314 if (first)
b620e870 315 execlists->first = &p->node;
08dd3e1a 316
f6322edd 317 return p;
08dd3e1a
CW
318}
319
e61e0f51 320static void unwind_wa_tail(struct i915_request *rq)
7e4992ac
CW
321{
322 rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
323 assert_ring_tail_valid(rq->ring, rq->tail);
324}
325
a4598d17 326static void __unwind_incomplete_requests(struct intel_engine_cs *engine)
7e4992ac 327{
e61e0f51 328 struct i915_request *rq, *rn;
097a9481
MW
329 struct i915_priolist *uninitialized_var(p);
330 int last_prio = I915_PRIORITY_INVALID;
7e4992ac 331
a89d1f92 332 lockdep_assert_held(&engine->timeline.lock);
7e4992ac
CW
333
334 list_for_each_entry_safe_reverse(rq, rn,
a89d1f92 335 &engine->timeline.requests,
7e4992ac 336 link) {
e61e0f51 337 if (i915_request_completed(rq))
7e4992ac
CW
338 return;
339
e61e0f51 340 __i915_request_unsubmit(rq);
7e4992ac
CW
341 unwind_wa_tail(rq);
342
f6322edd
CW
343 GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
344 if (rq_prio(rq) != last_prio) {
345 last_prio = rq_prio(rq);
87c7acf8 346 p = lookup_priolist(engine, last_prio);
097a9481
MW
347 }
348
a02eb975 349 GEM_BUG_ON(p->priority != rq_prio(rq));
0c7112a0 350 list_add(&rq->sched.link, &p->requests);
7e4992ac
CW
351 }
352}
353
c41937fd 354void
a4598d17
MW
355execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
356{
357 struct intel_engine_cs *engine =
358 container_of(execlists, typeof(*engine), execlists);
4413c474
CW
359 unsigned long flags;
360
361 spin_lock_irqsave(&engine->timeline.lock, flags);
a4598d17 362
a4598d17 363 __unwind_incomplete_requests(engine);
4413c474
CW
364
365 spin_unlock_irqrestore(&engine->timeline.lock, flags);
a4598d17
MW
366}
367
bbd6c47e 368static inline void
e61e0f51 369execlists_context_status_change(struct i915_request *rq, unsigned long status)
84b790f8 370{
bbd6c47e
CW
371 /*
372 * Only used when GVT-g is enabled now. When GVT-g is disabled,
373 * The compiler should eliminate this function as dead-code.
374 */
375 if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
376 return;
6daccb0b 377
3fc03069
CD
378 atomic_notifier_call_chain(&rq->engine->context_status_notifier,
379 status, rq);
84b790f8
BW
380}
381
f2605207
CW
382inline void
383execlists_user_begin(struct intel_engine_execlists *execlists,
384 const struct execlist_port *port)
385{
386 execlists_set_active_once(execlists, EXECLISTS_ACTIVE_USER);
387}
388
389inline void
390execlists_user_end(struct intel_engine_execlists *execlists)
391{
392 execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER);
393}
394
73fd9d38 395static inline void
e61e0f51 396execlists_context_schedule_in(struct i915_request *rq)
73fd9d38
TU
397{
398 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
30e17b78 399 intel_engine_context_in(rq->engine);
73fd9d38
TU
400}
401
402static inline void
b9b77426 403execlists_context_schedule_out(struct i915_request *rq, unsigned long status)
73fd9d38 404{
30e17b78 405 intel_engine_context_out(rq->engine);
b9b77426
CW
406 execlists_context_status_change(rq, status);
407 trace_i915_request_out(rq);
73fd9d38
TU
408}
409
c6a2ac71
TU
410static void
411execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
412{
413 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
414 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
415 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
416 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
417}
418
e61e0f51 419static u64 execlists_update_context(struct i915_request *rq)
ae1250b9 420{
ab82a063 421 struct intel_context *ce = to_intel_context(rq->ctx, rq->engine);
04da811b
ZW
422 struct i915_hw_ppgtt *ppgtt =
423 rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
70c2a24d 424 u32 *reg_state = ce->lrc_reg_state;
ae1250b9 425
e6ba9992 426 reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
ae1250b9 427
c6a2ac71
TU
428 /* True 32b PPGTT with dynamic page allocation: update PDP
429 * registers and point the unallocated PDPs to scratch page.
430 * PML4 is allocated during ppgtt init, so this is not needed
431 * in 48-bit mode.
432 */
949e8ab3 433 if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
c6a2ac71 434 execlists_update_context_pdps(ppgtt, reg_state);
70c2a24d
CW
435
436 return ce->lrc_desc;
ae1250b9
OM
437}
438
05f0addd 439static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
beecec90 440{
05f0addd
TD
441 if (execlists->ctrl_reg) {
442 writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
443 writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
444 } else {
445 writel(upper_32_bits(desc), execlists->submit_reg);
446 writel(lower_32_bits(desc), execlists->submit_reg);
447 }
beecec90
CW
448}
449
70c2a24d 450static void execlists_submit_ports(struct intel_engine_cs *engine)
bbd6c47e 451{
05f0addd
TD
452 struct intel_engine_execlists *execlists = &engine->execlists;
453 struct execlist_port *port = execlists->port;
77f0d0e9 454 unsigned int n;
bbd6c47e 455
05f0addd
TD
456 /*
457 * ELSQ note: the submit queue is not cleared after being submitted
458 * to the HW so we need to make sure we always clean it up. This is
459 * currently ensured by the fact that we always write the same number
460 * of elsq entries, keep this in mind before changing the loop below.
461 */
462 for (n = execlists_num_ports(execlists); n--; ) {
e61e0f51 463 struct i915_request *rq;
77f0d0e9
CW
464 unsigned int count;
465 u64 desc;
466
467 rq = port_unpack(&port[n], &count);
468 if (rq) {
469 GEM_BUG_ON(count > !n);
470 if (!count++)
73fd9d38 471 execlists_context_schedule_in(rq);
77f0d0e9
CW
472 port_set(&port[n], port_pack(rq, count));
473 desc = execlists_update_context(rq);
474 GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
bccd3b83 475
0c5c7df3 476 GEM_TRACE("%s in[%d]: ctx=%d.%d, global=%d (fence %llx:%d) (current %d), prio=%d\n",
bccd3b83 477 engine->name, n,
16c8619a 478 port[n].context_id, count,
f6322edd 479 rq->global_seqno,
0c5c7df3 480 rq->fence.context, rq->fence.seqno,
e7702760 481 intel_engine_get_seqno(engine),
f6322edd 482 rq_prio(rq));
77f0d0e9
CW
483 } else {
484 GEM_BUG_ON(!n);
485 desc = 0;
486 }
bbd6c47e 487
05f0addd 488 write_desc(execlists, desc, n);
77f0d0e9 489 }
05f0addd
TD
490
491 /* we need to manually load the submit queue */
492 if (execlists->ctrl_reg)
493 writel(EL_CTRL_LOAD, execlists->ctrl_reg);
494
495 execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
bbd6c47e
CW
496}
497
70c2a24d 498static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
84b790f8 499{
70c2a24d 500 return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
6095868a 501 i915_gem_context_force_single_submission(ctx));
70c2a24d 502}
84b790f8 503
70c2a24d
CW
504static bool can_merge_ctx(const struct i915_gem_context *prev,
505 const struct i915_gem_context *next)
506{
507 if (prev != next)
508 return false;
26720ab9 509
70c2a24d
CW
510 if (ctx_single_port_submission(prev))
511 return false;
26720ab9 512
70c2a24d 513 return true;
84b790f8
BW
514}
515
e61e0f51 516static void port_assign(struct execlist_port *port, struct i915_request *rq)
77f0d0e9
CW
517{
518 GEM_BUG_ON(rq == port_request(port));
519
520 if (port_isset(port))
e61e0f51 521 i915_request_put(port_request(port));
77f0d0e9 522
e61e0f51 523 port_set(port, port_pack(i915_request_get(rq), port_count(port)));
77f0d0e9
CW
524}
525
beecec90
CW
526static void inject_preempt_context(struct intel_engine_cs *engine)
527{
05f0addd 528 struct intel_engine_execlists *execlists = &engine->execlists;
beecec90 529 struct intel_context *ce =
ab82a063 530 to_intel_context(engine->i915->preempt_context, engine);
beecec90
CW
531 unsigned int n;
532
05f0addd 533 GEM_BUG_ON(execlists->preempt_complete_status !=
d6376374 534 upper_32_bits(ce->lrc_desc));
09b1a4e4
CW
535 GEM_BUG_ON((ce->lrc_reg_state[CTX_CONTEXT_CONTROL + 1] &
536 _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
537 CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT)) !=
538 _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
539 CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT));
540
f6322edd
CW
541 /*
542 * Switch to our empty preempt context so
543 * the state of the GPU is known (idle).
544 */
16a87394 545 GEM_TRACE("%s\n", engine->name);
05f0addd
TD
546 for (n = execlists_num_ports(execlists); --n; )
547 write_desc(execlists, 0, n);
548
549 write_desc(execlists, ce->lrc_desc, n);
550
551 /* we need to manually load the submit queue */
552 if (execlists->ctrl_reg)
553 writel(EL_CTRL_LOAD, execlists->ctrl_reg);
beecec90 554
ba74cb10 555 execlists_clear_active(&engine->execlists, EXECLISTS_ACTIVE_HWACK);
f6322edd 556 execlists_set_active(&engine->execlists, EXECLISTS_ACTIVE_PREEMPT);
beecec90
CW
557}
558
4413c474 559static bool __execlists_dequeue(struct intel_engine_cs *engine)
acdd884a 560{
7a62cc61
MK
561 struct intel_engine_execlists * const execlists = &engine->execlists;
562 struct execlist_port *port = execlists->port;
76e70087
MK
563 const struct execlist_port * const last_port =
564 &execlists->port[execlists->port_mask];
e61e0f51 565 struct i915_request *last = port_request(port);
20311bd3 566 struct rb_node *rb;
70c2a24d
CW
567 bool submit = false;
568
4413c474
CW
569 lockdep_assert_held(&engine->timeline.lock);
570
70c2a24d
CW
571 /* Hardware submission is through 2 ports. Conceptually each port
572 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
573 * static for a context, and unique to each, so we only execute
574 * requests belonging to a single context from each ring. RING_HEAD
575 * is maintained by the CS in the context image, it marks the place
576 * where it got up to last time, and through RING_TAIL we tell the CS
577 * where we want to execute up to this time.
578 *
579 * In this list the requests are in order of execution. Consecutive
580 * requests from the same context are adjacent in the ringbuffer. We
581 * can combine these requests into a single RING_TAIL update:
582 *
583 * RING_HEAD...req1...req2
584 * ^- RING_TAIL
585 * since to execute req2 the CS must first execute req1.
586 *
587 * Our goal then is to point each port to the end of a consecutive
588 * sequence of requests as being the most optimal (fewest wake ups
589 * and context switches) submission.
779949f4 590 */
acdd884a 591
7a62cc61
MK
592 rb = execlists->first;
593 GEM_BUG_ON(rb_first(&execlists->queue) != rb);
beecec90
CW
594
595 if (last) {
596 /*
597 * Don't resubmit or switch until all outstanding
598 * preemptions (lite-restore) are seen. Then we
599 * know the next preemption status we see corresponds
600 * to this ELSP update.
601 */
eed7ec52
CW
602 GEM_BUG_ON(!execlists_is_active(execlists,
603 EXECLISTS_ACTIVE_USER));
ba74cb10 604 GEM_BUG_ON(!port_count(&port[0]));
beecec90 605 if (port_count(&port[0]) > 1)
4413c474 606 return false;
beecec90 607
ba74cb10
MT
608 /*
609 * If we write to ELSP a second time before the HW has had
610 * a chance to respond to the previous write, we can confuse
611 * the HW and hit "undefined behaviour". After writing to ELSP,
612 * we must then wait until we see a context-switch event from
613 * the HW to indicate that it has had a chance to respond.
614 */
615 if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
4413c474 616 return false;
ba74cb10 617
f6322edd 618 if (need_preempt(engine, last, execlists->queue_priority)) {
beecec90 619 inject_preempt_context(engine);
4413c474 620 return false;
beecec90 621 }
f6322edd
CW
622
623 /*
624 * In theory, we could coalesce more requests onto
625 * the second port (the first port is active, with
626 * no preemptions pending). However, that means we
627 * then have to deal with the possible lite-restore
628 * of the second port (as we submit the ELSP, there
629 * may be a context-switch) but also we may complete
630 * the resubmission before the context-switch. Ergo,
631 * coalescing onto the second port will cause a
632 * preemption event, but we cannot predict whether
633 * that will affect port[0] or port[1].
634 *
635 * If the second port is already active, we can wait
636 * until the next context-switch before contemplating
637 * new requests. The GPU will be busy and we should be
638 * able to resubmit the new ELSP before it idles,
639 * avoiding pipeline bubbles (momentary pauses where
640 * the driver is unable to keep up the supply of new
641 * work). However, we have to double check that the
642 * priorities of the ports haven't been switch.
643 */
644 if (port_count(&port[1]))
4413c474 645 return false;
f6322edd
CW
646
647 /*
648 * WaIdleLiteRestore:bdw,skl
649 * Apply the wa NOOPs to prevent
650 * ring:HEAD == rq:TAIL as we resubmit the
651 * request. See gen8_emit_breadcrumb() for
652 * where we prepare the padding after the
653 * end of the request.
654 */
655 last->tail = last->wa_tail;
beecec90
CW
656 }
657
f6322edd
CW
658 while (rb) {
659 struct i915_priolist *p = to_priolist(rb);
e61e0f51 660 struct i915_request *rq, *rn;
6c067579 661
0c7112a0 662 list_for_each_entry_safe(rq, rn, &p->requests, sched.link) {
6c067579
CW
663 /*
664 * Can we combine this request with the current port?
665 * It has to be the same context/ringbuffer and not
666 * have any exceptions (e.g. GVT saying never to
667 * combine contexts).
668 *
669 * If we can combine the requests, we can execute both
670 * by updating the RING_TAIL to point to the end of the
671 * second request, and so we never need to tell the
672 * hardware about the first.
70c2a24d 673 */
6c067579
CW
674 if (last && !can_merge_ctx(rq->ctx, last->ctx)) {
675 /*
676 * If we are on the second port and cannot
677 * combine this request with the last, then we
678 * are done.
679 */
76e70087 680 if (port == last_port) {
6c067579 681 __list_del_many(&p->requests,
0c7112a0 682 &rq->sched.link);
6c067579
CW
683 goto done;
684 }
685
686 /*
687 * If GVT overrides us we only ever submit
688 * port[0], leaving port[1] empty. Note that we
689 * also have to be careful that we don't queue
690 * the same context (even though a different
691 * request) to the second port.
692 */
693 if (ctx_single_port_submission(last->ctx) ||
694 ctx_single_port_submission(rq->ctx)) {
695 __list_del_many(&p->requests,
0c7112a0 696 &rq->sched.link);
6c067579
CW
697 goto done;
698 }
699
700 GEM_BUG_ON(last->ctx == rq->ctx);
701
702 if (submit)
703 port_assign(port, last);
704 port++;
7a62cc61
MK
705
706 GEM_BUG_ON(port_isset(port));
6c067579 707 }
70c2a24d 708
0c7112a0 709 INIT_LIST_HEAD(&rq->sched.link);
e61e0f51
CW
710 __i915_request_submit(rq);
711 trace_i915_request_in(rq, port_index(port, execlists));
6c067579
CW
712 last = rq;
713 submit = true;
70c2a24d 714 }
d55ac5bf 715
20311bd3 716 rb = rb_next(rb);
7a62cc61 717 rb_erase(&p->node, &execlists->queue);
6c067579
CW
718 INIT_LIST_HEAD(&p->requests);
719 if (p->priority != I915_PRIORITY_NORMAL)
c5cf9a91 720 kmem_cache_free(engine->i915->priorities, p);
f6322edd 721 }
15c83c43 722
6c067579 723done:
15c83c43
CW
724 /*
725 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
726 *
727 * We choose queue_priority such that if we add a request of greater
728 * priority than this, we kick the submission tasklet to decide on
729 * the right order of submitting the requests to hardware. We must
730 * also be prepared to reorder requests as they are in-flight on the
731 * HW. We derive the queue_priority then as the first "hole" in
732 * the HW submission ports and if there are no available slots,
733 * the priority of the lowest executing request, i.e. last.
734 *
735 * When we do receive a higher priority request ready to run from the
736 * user, see queue_request(), the queue_priority is bumped to that
737 * request triggering preemption on the next dequeue (or subsequent
738 * interrupt for secondary ports).
739 */
740 execlists->queue_priority =
741 port != execlists->port ? rq_prio(last) : INT_MIN;
742
7a62cc61 743 execlists->first = rb;
6c067579 744 if (submit)
77f0d0e9 745 port_assign(port, last);
339ccd35
CW
746
747 /* We must always keep the beast fed if we have work piled up */
339ccd35
CW
748 GEM_BUG_ON(execlists->first && !port_isset(execlists->port));
749
4413c474
CW
750 /* Re-evaluate the executing context setup after each preemptive kick */
751 if (last)
f2605207 752 execlists_user_begin(execlists, execlists->port);
4413c474
CW
753
754 return submit;
755}
756
757static void execlists_dequeue(struct intel_engine_cs *engine)
758{
759 struct intel_engine_execlists * const execlists = &engine->execlists;
760 unsigned long flags;
761 bool submit;
762
763 spin_lock_irqsave(&engine->timeline.lock, flags);
764 submit = __execlists_dequeue(engine);
765 spin_unlock_irqrestore(&engine->timeline.lock, flags);
766
767 if (submit)
70c2a24d 768 execlists_submit_ports(engine);
d081e021
CW
769
770 GEM_BUG_ON(port_isset(execlists->port) &&
771 !execlists_is_active(execlists, EXECLISTS_ACTIVE_USER));
acdd884a
MT
772}
773
c41937fd 774void
a4598d17 775execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
cf4591d1 776{
3f9e6cd8 777 struct execlist_port *port = execlists->port;
dc2279e1 778 unsigned int num_ports = execlists_num_ports(execlists);
cf4591d1 779
3f9e6cd8 780 while (num_ports-- && port_isset(port)) {
e61e0f51 781 struct i915_request *rq = port_request(port);
7e44fc28 782
0c5c7df3
TU
783 GEM_TRACE("%s:port%u global=%d (fence %llx:%d), (current %d)\n",
784 rq->engine->name,
785 (unsigned int)(port - execlists->port),
786 rq->global_seqno,
787 rq->fence.context, rq->fence.seqno,
788 intel_engine_get_seqno(rq->engine));
789
4a118ecb 790 GEM_BUG_ON(!execlists->active);
b9b77426
CW
791 execlists_context_schedule_out(rq,
792 i915_request_completed(rq) ?
793 INTEL_CONTEXT_SCHEDULE_OUT :
794 INTEL_CONTEXT_SCHEDULE_PREEMPTED);
702791f7 795
e61e0f51 796 i915_request_put(rq);
7e44fc28 797
3f9e6cd8
CW
798 memset(port, 0, sizeof(*port));
799 port++;
800 }
eed7ec52 801
f2605207 802 execlists_user_end(execlists);
cf4591d1
MK
803}
804
46b3617d
CW
805static void clear_gtiir(struct intel_engine_cs *engine)
806{
46b3617d
CW
807 struct drm_i915_private *dev_priv = engine->i915;
808 int i;
809
46b3617d
CW
810 /*
811 * Clear any pending interrupt state.
812 *
813 * We do it twice out of paranoia that some of the IIR are
814 * double buffered, and so if we only reset it once there may
815 * still be an interrupt pending.
816 */
ff047a87
OM
817 if (INTEL_GEN(dev_priv) >= 11) {
818 static const struct {
819 u8 bank;
820 u8 bit;
821 } gen11_gtiir[] = {
822 [RCS] = {0, GEN11_RCS0},
823 [BCS] = {0, GEN11_BCS},
824 [_VCS(0)] = {1, GEN11_VCS(0)},
825 [_VCS(1)] = {1, GEN11_VCS(1)},
826 [_VCS(2)] = {1, GEN11_VCS(2)},
827 [_VCS(3)] = {1, GEN11_VCS(3)},
828 [_VECS(0)] = {1, GEN11_VECS(0)},
829 [_VECS(1)] = {1, GEN11_VECS(1)},
830 };
831 unsigned long irqflags;
832
833 GEM_BUG_ON(engine->id >= ARRAY_SIZE(gen11_gtiir));
834
835 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
836 for (i = 0; i < 2; i++) {
837 gen11_reset_one_iir(dev_priv,
838 gen11_gtiir[engine->id].bank,
839 gen11_gtiir[engine->id].bit);
840 }
841 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
842 } else {
843 static const u8 gtiir[] = {
844 [RCS] = 0,
845 [BCS] = 0,
846 [VCS] = 1,
847 [VCS2] = 1,
848 [VECS] = 3,
849 };
850
851 GEM_BUG_ON(engine->id >= ARRAY_SIZE(gtiir));
852
853 for (i = 0; i < 2; i++) {
854 I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
855 engine->irq_keep_mask);
856 POSTING_READ(GEN8_GT_IIR(gtiir[engine->id]));
857 }
858 GEM_BUG_ON(I915_READ(GEN8_GT_IIR(gtiir[engine->id])) &
46b3617d 859 engine->irq_keep_mask);
46b3617d 860 }
46b3617d
CW
861}
862
863static void reset_irq(struct intel_engine_cs *engine)
864{
865 /* Mark all CS interrupts as complete */
866 smp_store_mb(engine->execlists.active, 0);
867 synchronize_hardirq(engine->i915->drm.irq);
868
869 clear_gtiir(engine);
870
871 /*
872 * The port is checked prior to scheduling a tasklet, but
873 * just in case we have suspended the tasklet to do the
874 * wedging make sure that when it wakes, it decides there
875 * is no work to do by clearing the irq_posted bit.
876 */
877 clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
878}
879
27a5f61b
CW
880static void execlists_cancel_requests(struct intel_engine_cs *engine)
881{
b620e870 882 struct intel_engine_execlists * const execlists = &engine->execlists;
e61e0f51 883 struct i915_request *rq, *rn;
27a5f61b
CW
884 struct rb_node *rb;
885 unsigned long flags;
27a5f61b 886
0c5c7df3
TU
887 GEM_TRACE("%s current %d\n",
888 engine->name, intel_engine_get_seqno(engine));
963ddd63 889
a3e38836
CW
890 /*
891 * Before we call engine->cancel_requests(), we should have exclusive
892 * access to the submission state. This is arranged for us by the
893 * caller disabling the interrupt generation, the tasklet and other
894 * threads that may then access the same state, giving us a free hand
895 * to reset state. However, we still need to let lockdep be aware that
896 * we know this state may be accessed in hardirq context, so we
897 * disable the irq around this manipulation and we want to keep
898 * the spinlock focused on its duties and not accidentally conflate
899 * coverage to the submission's irq state. (Similarly, although we
900 * shouldn't need to disable irq around the manipulation of the
901 * submission's irq state, we also wish to remind ourselves that
902 * it is irq state.)
903 */
904 local_irq_save(flags);
27a5f61b
CW
905
906 /* Cancel the requests on the HW and clear the ELSP tracker. */
a4598d17 907 execlists_cancel_port_requests(execlists);
46b3617d 908 reset_irq(engine);
27a5f61b 909
a89d1f92 910 spin_lock(&engine->timeline.lock);
a3e38836 911
27a5f61b 912 /* Mark all executing requests as skipped. */
a89d1f92 913 list_for_each_entry(rq, &engine->timeline.requests, link) {
27a5f61b 914 GEM_BUG_ON(!rq->global_seqno);
e61e0f51 915 if (!i915_request_completed(rq))
27a5f61b
CW
916 dma_fence_set_error(&rq->fence, -EIO);
917 }
918
919 /* Flush the queued requests to the timeline list (for retiring). */
b620e870 920 rb = execlists->first;
27a5f61b 921 while (rb) {
f6322edd 922 struct i915_priolist *p = to_priolist(rb);
27a5f61b 923
0c7112a0
CW
924 list_for_each_entry_safe(rq, rn, &p->requests, sched.link) {
925 INIT_LIST_HEAD(&rq->sched.link);
27a5f61b
CW
926
927 dma_fence_set_error(&rq->fence, -EIO);
e61e0f51 928 __i915_request_submit(rq);
27a5f61b
CW
929 }
930
931 rb = rb_next(rb);
b620e870 932 rb_erase(&p->node, &execlists->queue);
27a5f61b
CW
933 INIT_LIST_HEAD(&p->requests);
934 if (p->priority != I915_PRIORITY_NORMAL)
935 kmem_cache_free(engine->i915->priorities, p);
936 }
937
938 /* Remaining _unready_ requests will be nop'ed when submitted */
939
f6322edd 940 execlists->queue_priority = INT_MIN;
b620e870
MK
941 execlists->queue = RB_ROOT;
942 execlists->first = NULL;
3f9e6cd8 943 GEM_BUG_ON(port_isset(execlists->port));
27a5f61b 944
a89d1f92 945 spin_unlock(&engine->timeline.lock);
a3e38836 946
a3e38836 947 local_irq_restore(flags);
27a5f61b
CW
948}
949
6e5248b5 950/*
73e4d07f
OM
951 * Check the unread Context Status Buffers and manage the submission of new
952 * contexts to the ELSP accordingly.
953 */
c6dce8f1 954static void execlists_submission_tasklet(unsigned long data)
e981e7b1 955{
b620e870
MK
956 struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
957 struct intel_engine_execlists * const execlists = &engine->execlists;
f2605207 958 struct execlist_port *port = execlists->port;
c033666a 959 struct drm_i915_private *dev_priv = engine->i915;
bb5db7e1 960 bool fw = false;
c6a2ac71 961
9153e6b7
CW
962 /*
963 * We can skip acquiring intel_runtime_pm_get() here as it was taken
48921260
CW
964 * on our behalf by the request (see i915_gem_mark_busy()) and it will
965 * not be relinquished until the device is idle (see
966 * i915_gem_idle_work_handler()). As a precaution, we make sure
967 * that all ELSP are drained i.e. we have processed the CSB,
968 * before allowing ourselves to idle and calling intel_runtime_pm_put().
969 */
970 GEM_BUG_ON(!dev_priv->gt.awake);
971
9153e6b7
CW
972 /*
973 * Prefer doing test_and_clear_bit() as a two stage operation to avoid
899f6204
CW
974 * imposing the cost of a locked atomic transaction when submitting a
975 * new request (outside of the context-switch interrupt).
976 */
977 while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
6d2cb5aa
CW
978 /* The HWSP contains a (cacheable) mirror of the CSB */
979 const u32 *buf =
980 &engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
4af0d727 981 unsigned int head, tail;
70c2a24d 982
b620e870 983 if (unlikely(execlists->csb_use_mmio)) {
6d2cb5aa
CW
984 buf = (u32 * __force)
985 (dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));
b620e870 986 execlists->csb_head = -1; /* force mmio read of CSB ptrs */
6d2cb5aa
CW
987 }
988
9153e6b7
CW
989 /* Clear before reading to catch new interrupts */
990 clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
991 smp_mb__after_atomic();
992
b620e870 993 if (unlikely(execlists->csb_head == -1)) { /* following a reset */
bb5db7e1
CW
994 if (!fw) {
995 intel_uncore_forcewake_get(dev_priv,
996 execlists->fw_domains);
997 fw = true;
998 }
999
767a983a
CW
1000 head = readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
1001 tail = GEN8_CSB_WRITE_PTR(head);
1002 head = GEN8_CSB_READ_PTR(head);
b620e870 1003 execlists->csb_head = head;
767a983a
CW
1004 } else {
1005 const int write_idx =
1006 intel_hws_csb_write_index(dev_priv) -
1007 I915_HWS_CSB_BUF0_INDEX;
1008
b620e870 1009 head = execlists->csb_head;
767a983a 1010 tail = READ_ONCE(buf[write_idx]);
77dfedb5 1011 rmb(); /* Hopefully paired with a wmb() in HW */
767a983a 1012 }
bb5db7e1 1013 GEM_TRACE("%s cs-irq head=%d [%d%s], tail=%d [%d%s]\n",
bccd3b83 1014 engine->name,
bb5db7e1
CW
1015 head, GEN8_CSB_READ_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?",
1016 tail, GEN8_CSB_WRITE_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?");
b620e870 1017
4af0d727 1018 while (head != tail) {
e61e0f51 1019 struct i915_request *rq;
4af0d727 1020 unsigned int status;
77f0d0e9 1021 unsigned int count;
4af0d727
CW
1022
1023 if (++head == GEN8_CSB_ENTRIES)
1024 head = 0;
70c2a24d 1025
2ffe80aa
CW
1026 /* We are flying near dragons again.
1027 *
1028 * We hold a reference to the request in execlist_port[]
1029 * but no more than that. We are operating in softirq
1030 * context and so cannot hold any mutex or sleep. That
1031 * prevents us stopping the requests we are processing
1032 * in port[] from being retired simultaneously (the
1033 * breadcrumb will be complete before we see the
1034 * context-switch). As we only hold the reference to the
1035 * request, any pointer chasing underneath the request
1036 * is subject to a potential use-after-free. Thus we
1037 * store all of the bookkeeping within port[] as
1038 * required, and avoid using unguarded pointers beneath
1039 * request itself. The same applies to the atomic
1040 * status notifier.
1041 */
1042
6d2cb5aa 1043 status = READ_ONCE(buf[2 * head]); /* maybe mmio! */
193a98dc 1044 GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
bccd3b83 1045 engine->name, head,
193a98dc
CW
1046 status, buf[2*head + 1],
1047 execlists->active);
ba74cb10
MT
1048
1049 if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
1050 GEN8_CTX_STATUS_PREEMPTED))
1051 execlists_set_active(execlists,
1052 EXECLISTS_ACTIVE_HWACK);
1053 if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
1054 execlists_clear_active(execlists,
1055 EXECLISTS_ACTIVE_HWACK);
1056
70c2a24d
CW
1057 if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
1058 continue;
1059
1f5f9edb
CW
1060 /* We should never get a COMPLETED | IDLE_ACTIVE! */
1061 GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);
1062
e40dd226 1063 if (status & GEN8_CTX_STATUS_COMPLETE &&
d6376374 1064 buf[2*head + 1] == execlists->preempt_complete_status) {
193a98dc
CW
1065 GEM_TRACE("%s preempt-idle\n", engine->name);
1066
a4598d17
MW
1067 execlists_cancel_port_requests(execlists);
1068 execlists_unwind_incomplete_requests(execlists);
beecec90 1069
4a118ecb
CW
1070 GEM_BUG_ON(!execlists_is_active(execlists,
1071 EXECLISTS_ACTIVE_PREEMPT));
1072 execlists_clear_active(execlists,
1073 EXECLISTS_ACTIVE_PREEMPT);
beecec90
CW
1074 continue;
1075 }
1076
1077 if (status & GEN8_CTX_STATUS_PREEMPTED &&
4a118ecb
CW
1078 execlists_is_active(execlists,
1079 EXECLISTS_ACTIVE_PREEMPT))
beecec90
CW
1080 continue;
1081
4a118ecb
CW
1082 GEM_BUG_ON(!execlists_is_active(execlists,
1083 EXECLISTS_ACTIVE_USER));
1084
77f0d0e9 1085 rq = port_unpack(port, &count);
0c5c7df3 1086 GEM_TRACE("%s out[0]: ctx=%d.%d, global=%d (fence %llx:%d) (current %d), prio=%d\n",
bccd3b83 1087 engine->name,
16c8619a 1088 port->context_id, count,
f6322edd 1089 rq ? rq->global_seqno : 0,
0c5c7df3
TU
1090 rq ? rq->fence.context : 0,
1091 rq ? rq->fence.seqno : 0,
e7702760 1092 intel_engine_get_seqno(engine),
f6322edd 1093 rq ? rq_prio(rq) : 0);
e084039b
CW
1094
1095 /* Check the context/desc id for this event matches */
1096 GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);
1097
77f0d0e9
CW
1098 GEM_BUG_ON(count == 0);
1099 if (--count == 0) {
f2605207
CW
1100 /*
1101 * On the final event corresponding to the
1102 * submission of this context, we expect either
1103 * an element-switch event or a completion
1104 * event (and on completion, the active-idle
1105 * marker). No more preemptions, lite-restore
1106 * or otherwise.
1107 */
70c2a24d 1108 GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
d8747afb
CW
1109 GEM_BUG_ON(port_isset(&port[1]) &&
1110 !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
f2605207
CW
1111 GEM_BUG_ON(!port_isset(&port[1]) &&
1112 !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
1113
1114 /*
1115 * We rely on the hardware being strongly
1116 * ordered, that the breadcrumb write is
1117 * coherent (visible from the CPU) before the
1118 * user interrupt and CSB is processed.
1119 */
e61e0f51 1120 GEM_BUG_ON(!i915_request_completed(rq));
f2605207 1121
b9b77426
CW
1122 execlists_context_schedule_out(rq,
1123 INTEL_CONTEXT_SCHEDULE_OUT);
e61e0f51 1124 i915_request_put(rq);
70c2a24d 1125
65cb8c0f
CW
1126 GEM_TRACE("%s completed ctx=%d\n",
1127 engine->name, port->context_id);
1128
f2605207
CW
1129 port = execlists_port_complete(execlists, port);
1130 if (port_isset(port))
1131 execlists_user_begin(execlists, port);
1132 else
1133 execlists_user_end(execlists);
77f0d0e9
CW
1134 } else {
1135 port_set(port, port_pack(rq, count));
70c2a24d 1136 }
4af0d727 1137 }
e1fee72c 1138
b620e870
MK
1139 if (head != execlists->csb_head) {
1140 execlists->csb_head = head;
767a983a
CW
1141 writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
1142 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
1143 }
e981e7b1
TD
1144 }
1145
4a118ecb 1146 if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT))
70c2a24d 1147 execlists_dequeue(engine);
c6a2ac71 1148
bb5db7e1
CW
1149 if (fw)
1150 intel_uncore_forcewake_put(dev_priv, execlists->fw_domains);
eed7ec52
CW
1151
1152 /* If the engine is now idle, so should be the flag; and vice versa. */
1153 GEM_BUG_ON(execlists_is_active(&engine->execlists,
1154 EXECLISTS_ACTIVE_USER) ==
1155 !port_isset(engine->execlists.port));
e981e7b1
TD
1156}
1157
f6322edd 1158static void queue_request(struct intel_engine_cs *engine,
0c7112a0 1159 struct i915_sched_node *node,
f6322edd 1160 int prio)
27606fd8 1161{
0c7112a0 1162 list_add_tail(&node->link,
87c7acf8 1163 &lookup_priolist(engine, prio)->requests);
f6322edd 1164}
27606fd8 1165
ae2f5c00
CW
1166static void __submit_queue(struct intel_engine_cs *engine, int prio)
1167{
1168 engine->execlists.queue_priority = prio;
1169 tasklet_hi_schedule(&engine->execlists.tasklet);
1170}
1171
f6322edd
CW
1172static void submit_queue(struct intel_engine_cs *engine, int prio)
1173{
ae2f5c00
CW
1174 if (prio > engine->execlists.queue_priority)
1175 __submit_queue(engine, prio);
27606fd8
CW
1176}
1177
e61e0f51 1178static void execlists_submit_request(struct i915_request *request)
acdd884a 1179{
4a570db5 1180 struct intel_engine_cs *engine = request->engine;
5590af3e 1181 unsigned long flags;
acdd884a 1182
663f71e7 1183 /* Will be called from irq-context when using foreign fences. */
a89d1f92 1184 spin_lock_irqsave(&engine->timeline.lock, flags);
acdd884a 1185
0c7112a0 1186 queue_request(engine, &request->sched, rq_prio(request));
f6322edd 1187 submit_queue(engine, rq_prio(request));
acdd884a 1188
b620e870 1189 GEM_BUG_ON(!engine->execlists.first);
0c7112a0 1190 GEM_BUG_ON(list_empty(&request->sched.link));
6c067579 1191
a89d1f92 1192 spin_unlock_irqrestore(&engine->timeline.lock, flags);
acdd884a
MT
1193}
1194
0c7112a0 1195static struct i915_request *sched_to_request(struct i915_sched_node *node)
1f181225 1196{
0c7112a0 1197 return container_of(node, struct i915_request, sched);
1f181225
CW
1198}
1199
20311bd3 1200static struct intel_engine_cs *
0c7112a0 1201sched_lock_engine(struct i915_sched_node *node, struct intel_engine_cs *locked)
20311bd3 1202{
0c7112a0 1203 struct intel_engine_cs *engine = sched_to_request(node)->engine;
a79a524e
CW
1204
1205 GEM_BUG_ON(!locked);
20311bd3 1206
20311bd3 1207 if (engine != locked) {
a89d1f92
CW
1208 spin_unlock(&locked->timeline.lock);
1209 spin_lock(&engine->timeline.lock);
20311bd3
CW
1210 }
1211
1212 return engine;
1213}
1214
b7268c5e
CW
1215static void execlists_schedule(struct i915_request *request,
1216 const struct i915_sched_attr *attr)
20311bd3 1217{
a02eb975
CW
1218 struct i915_priolist *uninitialized_var(pl);
1219 struct intel_engine_cs *engine, *last;
20311bd3
CW
1220 struct i915_dependency *dep, *p;
1221 struct i915_dependency stack;
b7268c5e 1222 const int prio = attr->priority;
20311bd3
CW
1223 LIST_HEAD(dfs);
1224
7d1ea609
CW
1225 GEM_BUG_ON(prio == I915_PRIORITY_INVALID);
1226
e61e0f51 1227 if (i915_request_completed(request))
c218ee03
CW
1228 return;
1229
b7268c5e 1230 if (prio <= READ_ONCE(request->sched.attr.priority))
20311bd3
CW
1231 return;
1232
70cd1476
CW
1233 /* Need BKL in order to use the temporary link inside i915_dependency */
1234 lockdep_assert_held(&request->i915->drm.struct_mutex);
20311bd3 1235
0c7112a0 1236 stack.signaler = &request->sched;
20311bd3
CW
1237 list_add(&stack.dfs_link, &dfs);
1238
ce01b173
CW
1239 /*
1240 * Recursively bump all dependent priorities to match the new request.
20311bd3
CW
1241 *
1242 * A naive approach would be to use recursion:
0c7112a0
CW
1243 * static void update_priorities(struct i915_sched_node *node, prio) {
1244 * list_for_each_entry(dep, &node->signalers_list, signal_link)
20311bd3 1245 * update_priorities(dep->signal, prio)
0c7112a0 1246 * queue_request(node);
20311bd3
CW
1247 * }
1248 * but that may have unlimited recursion depth and so runs a very
1249 * real risk of overunning the kernel stack. Instead, we build
1250 * a flat list of all dependencies starting with the current request.
1251 * As we walk the list of dependencies, we add all of its dependencies
1252 * to the end of the list (this may include an already visited
1253 * request) and continue to walk onwards onto the new dependencies. The
1254 * end result is a topological list of requests in reverse order, the
1255 * last element in the list is the request we must execute first.
1256 */
2221c5b7 1257 list_for_each_entry(dep, &dfs, dfs_link) {
0c7112a0 1258 struct i915_sched_node *node = dep->signaler;
20311bd3 1259
ce01b173
CW
1260 /*
1261 * Within an engine, there can be no cycle, but we may
a79a524e
CW
1262 * refer to the same dependency chain multiple times
1263 * (redundant dependencies are not eliminated) and across
1264 * engines.
1265 */
0c7112a0 1266 list_for_each_entry(p, &node->signalers_list, signal_link) {
ce01b173
CW
1267 GEM_BUG_ON(p == dep); /* no cycles! */
1268
0c7112a0 1269 if (i915_sched_node_signaled(p->signaler))
1f181225
CW
1270 continue;
1271
b7268c5e
CW
1272 GEM_BUG_ON(p->signaler->attr.priority < node->attr.priority);
1273 if (prio > READ_ONCE(p->signaler->attr.priority))
20311bd3 1274 list_move_tail(&p->dfs_link, &dfs);
a79a524e 1275 }
20311bd3
CW
1276 }
1277
ce01b173
CW
1278 /*
1279 * If we didn't need to bump any existing priorities, and we haven't
349bdb68
CW
1280 * yet submitted this request (i.e. there is no potential race with
1281 * execlists_submit_request()), we can set our own priority and skip
1282 * acquiring the engine locks.
1283 */
b7268c5e 1284 if (request->sched.attr.priority == I915_PRIORITY_INVALID) {
0c7112a0 1285 GEM_BUG_ON(!list_empty(&request->sched.link));
b7268c5e 1286 request->sched.attr = *attr;
349bdb68
CW
1287 if (stack.dfs_link.next == stack.dfs_link.prev)
1288 return;
1289 __list_del_entry(&stack.dfs_link);
1290 }
1291
a02eb975 1292 last = NULL;
a79a524e 1293 engine = request->engine;
a89d1f92 1294 spin_lock_irq(&engine->timeline.lock);
a79a524e 1295
20311bd3
CW
1296 /* Fifo and depth-first replacement ensure our deps execute before us */
1297 list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
0c7112a0 1298 struct i915_sched_node *node = dep->signaler;
20311bd3
CW
1299
1300 INIT_LIST_HEAD(&dep->dfs_link);
1301
0c7112a0 1302 engine = sched_lock_engine(node, engine);
20311bd3 1303
b7268c5e 1304 if (prio <= node->attr.priority)
20311bd3
CW
1305 continue;
1306
b7268c5e 1307 node->attr.priority = prio;
0c7112a0 1308 if (!list_empty(&node->link)) {
a02eb975
CW
1309 if (last != engine) {
1310 pl = lookup_priolist(engine, prio);
1311 last = engine;
1312 }
1313 GEM_BUG_ON(pl->priority != prio);
1314 list_move_tail(&node->link, &pl->requests);
a79a524e 1315 }
ae2f5c00
CW
1316
1317 if (prio > engine->execlists.queue_priority &&
0c7112a0 1318 i915_sw_fence_done(&sched_to_request(node)->submit))
ae2f5c00 1319 __submit_queue(engine, prio);
20311bd3
CW
1320 }
1321
a89d1f92 1322 spin_unlock_irq(&engine->timeline.lock);
20311bd3
CW
1323}
1324
f4e15af7
CW
1325static int __context_pin(struct i915_gem_context *ctx, struct i915_vma *vma)
1326{
1327 unsigned int flags;
1328 int err;
1329
1330 /*
1331 * Clear this page out of any CPU caches for coherent swap-in/out.
1332 * We only want to do this on the first bind so that we do not stall
1333 * on an active context (which by nature is already on the GPU).
1334 */
1335 if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1336 err = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1337 if (err)
1338 return err;
1339 }
1340
1341 flags = PIN_GLOBAL | PIN_HIGH;
1342 if (ctx->ggtt_offset_bias)
1343 flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
1344
1345 return i915_vma_pin(vma, 0, GEN8_LR_CONTEXT_ALIGN, flags);
1346}
1347
266a240b
CW
1348static struct intel_ring *
1349execlists_context_pin(struct intel_engine_cs *engine,
1350 struct i915_gem_context *ctx)
dcb4c12a 1351{
ab82a063 1352 struct intel_context *ce = to_intel_context(ctx, engine);
7d774cac 1353 void *vaddr;
ca82580c 1354 int ret;
dcb4c12a 1355
91c8a326 1356 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
ca82580c 1357
266a240b
CW
1358 if (likely(ce->pin_count++))
1359 goto out;
a533b4ba 1360 GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
24f1d3cc 1361
1d2a19c2
CW
1362 ret = execlists_context_deferred_alloc(ctx, engine);
1363 if (ret)
1364 goto err;
56f6e0a7 1365 GEM_BUG_ON(!ce->state);
e8a9c58f 1366
f4e15af7 1367 ret = __context_pin(ctx, ce->state);
e84fe803 1368 if (ret)
24f1d3cc 1369 goto err;
7ba717cf 1370
bf3783e5 1371 vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
7d774cac
TU
1372 if (IS_ERR(vaddr)) {
1373 ret = PTR_ERR(vaddr);
bf3783e5 1374 goto unpin_vma;
82352e90
TU
1375 }
1376
d822bb18 1377 ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
e84fe803 1378 if (ret)
7d774cac 1379 goto unpin_map;
d1675198 1380
0bc40be8 1381 intel_lr_context_descriptor_update(ctx, engine);
9021ad03 1382
a3aabe86
CW
1383 ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1384 ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
bde13ebd 1385 i915_ggtt_offset(ce->ring->vma);
c216e906 1386 ce->lrc_reg_state[CTX_RING_HEAD+1] = ce->ring->head;
a3aabe86 1387
3d574a6b 1388 ce->state->obj->pin_global++;
9a6feaf0 1389 i915_gem_context_get(ctx);
266a240b
CW
1390out:
1391 return ce->ring;
7ba717cf 1392
7d774cac 1393unpin_map:
bf3783e5
CW
1394 i915_gem_object_unpin_map(ce->state->obj);
1395unpin_vma:
1396 __i915_vma_unpin(ce->state);
24f1d3cc 1397err:
9021ad03 1398 ce->pin_count = 0;
266a240b 1399 return ERR_PTR(ret);
e84fe803
NH
1400}
1401
e8a9c58f
CW
1402static void execlists_context_unpin(struct intel_engine_cs *engine,
1403 struct i915_gem_context *ctx)
e84fe803 1404{
ab82a063 1405 struct intel_context *ce = to_intel_context(ctx, engine);
e84fe803 1406
91c8a326 1407 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
9021ad03 1408 GEM_BUG_ON(ce->pin_count == 0);
321fe304 1409
9021ad03 1410 if (--ce->pin_count)
24f1d3cc 1411 return;
e84fe803 1412
aad29fbb 1413 intel_ring_unpin(ce->ring);
dcb4c12a 1414
3d574a6b 1415 ce->state->obj->pin_global--;
bf3783e5
CW
1416 i915_gem_object_unpin_map(ce->state->obj);
1417 i915_vma_unpin(ce->state);
321fe304 1418
9a6feaf0 1419 i915_gem_context_put(ctx);
dcb4c12a
OM
1420}
1421
e61e0f51 1422static int execlists_request_alloc(struct i915_request *request)
ef11c01d 1423{
ab82a063
CW
1424 struct intel_context *ce =
1425 to_intel_context(request->ctx, request->engine);
fd138212 1426 int ret;
ef11c01d 1427
e8a9c58f
CW
1428 GEM_BUG_ON(!ce->pin_count);
1429
ef11c01d
CW
1430 /* Flush enough space to reduce the likelihood of waiting after
1431 * we start building the request - in which case we will just
1432 * have to repeat work.
1433 */
1434 request->reserved_space += EXECLISTS_REQUEST_SIZE;
1435
fd138212
CW
1436 ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
1437 if (ret)
1438 return ret;
ef11c01d 1439
ef11c01d
CW
1440 /* Note that after this point, we have committed to using
1441 * this request as it is being used to both track the
1442 * state of engine initialisation and liveness of the
1443 * golden renderstate above. Think twice before you try
1444 * to cancel/unwind this request now.
1445 */
1446
1447 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
1448 return 0;
ef11c01d
CW
1449}
1450
9e000847
AS
1451/*
1452 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1453 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1454 * but there is a slight complication as this is applied in WA batch where the
1455 * values are only initialized once so we cannot take register value at the
1456 * beginning and reuse it further; hence we save its value to memory, upload a
1457 * constant value with bit21 set and then we restore it back with the saved value.
1458 * To simplify the WA, a constant value is formed by using the default value
1459 * of this register. This shouldn't be a problem because we are only modifying
1460 * it for a short period and this batch in non-premptible. We can ofcourse
1461 * use additional instructions that read the actual value of the register
1462 * at that time and set our bit of interest but it makes the WA complicated.
1463 *
1464 * This WA is also required for Gen9 so extracting as a function avoids
1465 * code duplication.
1466 */
097d4f1c
TU
1467static u32 *
1468gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
17ee950d 1469{
097d4f1c
TU
1470 *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1471 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1472 *batch++ = i915_ggtt_offset(engine->scratch) + 256;
1473 *batch++ = 0;
1474
1475 *batch++ = MI_LOAD_REGISTER_IMM(1);
1476 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1477 *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
1478
9f235dfa
TU
1479 batch = gen8_emit_pipe_control(batch,
1480 PIPE_CONTROL_CS_STALL |
1481 PIPE_CONTROL_DC_FLUSH_ENABLE,
1482 0);
097d4f1c
TU
1483
1484 *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1485 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1486 *batch++ = i915_ggtt_offset(engine->scratch) + 256;
1487 *batch++ = 0;
1488
1489 return batch;
17ee950d
AS
1490}
1491
6e5248b5
DV
1492/*
1493 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1494 * initialized at the beginning and shared across all contexts but this field
1495 * helps us to have multiple batches at different offsets and select them based
1496 * on a criteria. At the moment this batch always start at the beginning of the page
1497 * and at this point we don't have multiple wa_ctx batch buffers.
4d78c8dc 1498 *
6e5248b5
DV
1499 * The number of WA applied are not known at the beginning; we use this field
1500 * to return the no of DWORDS written.
17ee950d 1501 *
6e5248b5
DV
1502 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1503 * so it adds NOOPs as padding to make it cacheline aligned.
1504 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1505 * makes a complete batch buffer.
17ee950d 1506 */
097d4f1c 1507static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
17ee950d 1508{
7ad00d1a 1509 /* WaDisableCtxRestoreArbitration:bdw,chv */
097d4f1c 1510 *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
17ee950d 1511
c82435bb 1512 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
097d4f1c
TU
1513 if (IS_BROADWELL(engine->i915))
1514 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
c82435bb 1515
0160f055
AS
1516 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1517 /* Actual scratch location is at 128 bytes offset */
9f235dfa
TU
1518 batch = gen8_emit_pipe_control(batch,
1519 PIPE_CONTROL_FLUSH_L3 |
1520 PIPE_CONTROL_GLOBAL_GTT_IVB |
1521 PIPE_CONTROL_CS_STALL |
1522 PIPE_CONTROL_QW_WRITE,
1523 i915_ggtt_offset(engine->scratch) +
1524 2 * CACHELINE_BYTES);
0160f055 1525
beecec90
CW
1526 *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1527
17ee950d 1528 /* Pad to end of cacheline */
097d4f1c
TU
1529 while ((unsigned long)batch % CACHELINE_BYTES)
1530 *batch++ = MI_NOOP;
17ee950d
AS
1531
1532 /*
1533 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1534 * execution depends on the length specified in terms of cache lines
1535 * in the register CTX_RCS_INDIRECT_CTX
1536 */
1537
097d4f1c 1538 return batch;
17ee950d
AS
1539}
1540
097d4f1c 1541static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
0504cffc 1542{
beecec90
CW
1543 *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1544
9fb5026f 1545 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
097d4f1c 1546 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
a4106a78 1547
9fb5026f 1548 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
097d4f1c
TU
1549 *batch++ = MI_LOAD_REGISTER_IMM(1);
1550 *batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
1551 *batch++ = _MASKED_BIT_DISABLE(
1552 GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
1553 *batch++ = MI_NOOP;
873e8171 1554
066d4628
MK
1555 /* WaClearSlmSpaceAtContextSwitch:kbl */
1556 /* Actual scratch location is at 128 bytes offset */
097d4f1c 1557 if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
9f235dfa
TU
1558 batch = gen8_emit_pipe_control(batch,
1559 PIPE_CONTROL_FLUSH_L3 |
1560 PIPE_CONTROL_GLOBAL_GTT_IVB |
1561 PIPE_CONTROL_CS_STALL |
1562 PIPE_CONTROL_QW_WRITE,
1563 i915_ggtt_offset(engine->scratch)
1564 + 2 * CACHELINE_BYTES);
066d4628 1565 }
3485d99e 1566
9fb5026f 1567 /* WaMediaPoolStateCmdInWABB:bxt,glk */
3485d99e
TG
1568 if (HAS_POOLED_EU(engine->i915)) {
1569 /*
1570 * EU pool configuration is setup along with golden context
1571 * during context initialization. This value depends on
1572 * device type (2x6 or 3x6) and needs to be updated based
1573 * on which subslice is disabled especially for 2x6
1574 * devices, however it is safe to load default
1575 * configuration of 3x6 device instead of masking off
1576 * corresponding bits because HW ignores bits of a disabled
1577 * subslice and drops down to appropriate config. Please
1578 * see render_state_setup() in i915_gem_render_state.c for
1579 * possible configurations, to avoid duplication they are
1580 * not shown here again.
1581 */
097d4f1c
TU
1582 *batch++ = GEN9_MEDIA_POOL_STATE;
1583 *batch++ = GEN9_MEDIA_POOL_ENABLE;
1584 *batch++ = 0x00777000;
1585 *batch++ = 0;
1586 *batch++ = 0;
1587 *batch++ = 0;
3485d99e
TG
1588 }
1589
beecec90
CW
1590 *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1591
0504cffc 1592 /* Pad to end of cacheline */
097d4f1c
TU
1593 while ((unsigned long)batch % CACHELINE_BYTES)
1594 *batch++ = MI_NOOP;
0504cffc 1595
097d4f1c 1596 return batch;
0504cffc
AS
1597}
1598
4b6ce681
RA
1599static u32 *
1600gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1601{
1602 int i;
1603
1604 /*
1605 * WaPipeControlBefore3DStateSamplePattern: cnl
1606 *
1607 * Ensure the engine is idle prior to programming a
1608 * 3DSTATE_SAMPLE_PATTERN during a context restore.
1609 */
1610 batch = gen8_emit_pipe_control(batch,
1611 PIPE_CONTROL_CS_STALL,
1612 0);
1613 /*
1614 * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
1615 * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
1616 * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
1617 * confusing. Since gen8_emit_pipe_control() already advances the
1618 * batch by 6 dwords, we advance the other 10 here, completing a
1619 * cacheline. It's not clear if the workaround requires this padding
1620 * before other commands, or if it's just the regular padding we would
1621 * already have for the workaround bb, so leave it here for now.
1622 */
1623 for (i = 0; i < 10; i++)
1624 *batch++ = MI_NOOP;
1625
1626 /* Pad to end of cacheline */
1627 while ((unsigned long)batch % CACHELINE_BYTES)
1628 *batch++ = MI_NOOP;
1629
1630 return batch;
1631}
1632
097d4f1c
TU
1633#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
1634
1635static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
17ee950d 1636{
48bb74e4
CW
1637 struct drm_i915_gem_object *obj;
1638 struct i915_vma *vma;
1639 int err;
17ee950d 1640
097d4f1c 1641 obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
48bb74e4
CW
1642 if (IS_ERR(obj))
1643 return PTR_ERR(obj);
17ee950d 1644
a01cb37a 1645 vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
48bb74e4
CW
1646 if (IS_ERR(vma)) {
1647 err = PTR_ERR(vma);
1648 goto err;
17ee950d
AS
1649 }
1650
48bb74e4
CW
1651 err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1652 if (err)
1653 goto err;
1654
1655 engine->wa_ctx.vma = vma;
17ee950d 1656 return 0;
48bb74e4
CW
1657
1658err:
1659 i915_gem_object_put(obj);
1660 return err;
17ee950d
AS
1661}
1662
097d4f1c 1663static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
17ee950d 1664{
19880c4a 1665 i915_vma_unpin_and_release(&engine->wa_ctx.vma);
17ee950d
AS
1666}
1667
097d4f1c
TU
1668typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1669
0bc40be8 1670static int intel_init_workaround_bb(struct intel_engine_cs *engine)
17ee950d 1671{
48bb74e4 1672 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
097d4f1c
TU
1673 struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
1674 &wa_ctx->per_ctx };
1675 wa_bb_func_t wa_bb_fn[2];
17ee950d 1676 struct page *page;
097d4f1c
TU
1677 void *batch, *batch_ptr;
1678 unsigned int i;
48bb74e4 1679 int ret;
17ee950d 1680
10bde236 1681 if (GEM_WARN_ON(engine->id != RCS))
097d4f1c 1682 return -EINVAL;
17ee950d 1683
097d4f1c 1684 switch (INTEL_GEN(engine->i915)) {
cc38cae7
OM
1685 case 11:
1686 return 0;
90007bca 1687 case 10:
4b6ce681
RA
1688 wa_bb_fn[0] = gen10_init_indirectctx_bb;
1689 wa_bb_fn[1] = NULL;
1690 break;
097d4f1c
TU
1691 case 9:
1692 wa_bb_fn[0] = gen9_init_indirectctx_bb;
b8aa2233 1693 wa_bb_fn[1] = NULL;
097d4f1c
TU
1694 break;
1695 case 8:
1696 wa_bb_fn[0] = gen8_init_indirectctx_bb;
3ad7b52d 1697 wa_bb_fn[1] = NULL;
097d4f1c
TU
1698 break;
1699 default:
1700 MISSING_CASE(INTEL_GEN(engine->i915));
5e60d790 1701 return 0;
0504cffc 1702 }
5e60d790 1703
097d4f1c 1704 ret = lrc_setup_wa_ctx(engine);
17ee950d
AS
1705 if (ret) {
1706 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1707 return ret;
1708 }
1709
48bb74e4 1710 page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
097d4f1c 1711 batch = batch_ptr = kmap_atomic(page);
17ee950d 1712
097d4f1c
TU
1713 /*
1714 * Emit the two workaround batch buffers, recording the offset from the
1715 * start of the workaround batch buffer object for each and their
1716 * respective sizes.
1717 */
1718 for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1719 wa_bb[i]->offset = batch_ptr - batch;
1d2a19c2
CW
1720 if (GEM_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
1721 CACHELINE_BYTES))) {
097d4f1c
TU
1722 ret = -EINVAL;
1723 break;
1724 }
604a8f6f
CW
1725 if (wa_bb_fn[i])
1726 batch_ptr = wa_bb_fn[i](engine, batch_ptr);
097d4f1c 1727 wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
17ee950d
AS
1728 }
1729
097d4f1c
TU
1730 BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
1731
17ee950d
AS
1732 kunmap_atomic(batch);
1733 if (ret)
097d4f1c 1734 lrc_destroy_wa_ctx(engine);
17ee950d
AS
1735
1736 return ret;
1737}
1738
f3c9d407 1739static void enable_execlists(struct intel_engine_cs *engine)
9b1136d5 1740{
c033666a 1741 struct drm_i915_private *dev_priv = engine->i915;
f3c9d407
CW
1742
1743 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
225701fc
KG
1744
1745 /*
1746 * Make sure we're not enabling the new 12-deep CSB
1747 * FIFO as that requires a slightly updated handling
1748 * in the ctx switch irq. Since we're currently only
1749 * using only 2 elements of the enhanced execlists the
1750 * deeper FIFO it's not needed and it's not worth adding
1751 * more statements to the irq handler to support it.
1752 */
1753 if (INTEL_GEN(dev_priv) >= 11)
1754 I915_WRITE(RING_MODE_GEN7(engine),
1755 _MASKED_BIT_DISABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
1756 else
1757 I915_WRITE(RING_MODE_GEN7(engine),
1758 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1759
f3c9d407
CW
1760 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1761 engine->status_page.ggtt_offset);
1762 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
e840130a
CW
1763
1764 /* Following the reset, we need to reload the CSB read/write pointers */
1765 engine->execlists.csb_head = -1;
f3c9d407
CW
1766}
1767
1768static int gen8_init_common_ring(struct intel_engine_cs *engine)
1769{
b620e870 1770 struct intel_engine_execlists * const execlists = &engine->execlists;
821ed7df
CW
1771 int ret;
1772
1773 ret = intel_mocs_init_engine(engine);
1774 if (ret)
1775 return ret;
9b1136d5 1776
ad07dfcd 1777 intel_engine_reset_breadcrumbs(engine);
f3b8f912 1778 intel_engine_init_hangcheck(engine);
821ed7df 1779
f3c9d407 1780 enable_execlists(engine);
9b1136d5 1781
64f09f00 1782 /* After a GPU reset, we may have requests to replay */
9bdc3573 1783 if (execlists->first)
c6dce8f1 1784 tasklet_schedule(&execlists->tasklet);
6b764a59 1785
821ed7df 1786 return 0;
9b1136d5
OM
1787}
1788
0bc40be8 1789static int gen8_init_render_ring(struct intel_engine_cs *engine)
9b1136d5 1790{
c033666a 1791 struct drm_i915_private *dev_priv = engine->i915;
9b1136d5
OM
1792 int ret;
1793
0bc40be8 1794 ret = gen8_init_common_ring(engine);
9b1136d5
OM
1795 if (ret)
1796 return ret;
1797
f4ecfbfc 1798 intel_whitelist_workarounds_apply(engine);
59b449d5 1799
9b1136d5
OM
1800 /* We need to disable the AsyncFlip performance optimisations in order
1801 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1802 * programmed to '1' on all products.
1803 *
1804 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1805 */
1806 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1807
9b1136d5
OM
1808 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1809
59b449d5 1810 return 0;
9b1136d5
OM
1811}
1812
0bc40be8 1813static int gen9_init_render_ring(struct intel_engine_cs *engine)
82ef822e
DL
1814{
1815 int ret;
1816
0bc40be8 1817 ret = gen8_init_common_ring(engine);
82ef822e
DL
1818 if (ret)
1819 return ret;
1820
f4ecfbfc 1821 intel_whitelist_workarounds_apply(engine);
59b449d5
OM
1822
1823 return 0;
82ef822e
DL
1824}
1825
821ed7df 1826static void reset_common_ring(struct intel_engine_cs *engine,
e61e0f51 1827 struct i915_request *request)
821ed7df 1828{
b620e870 1829 struct intel_engine_execlists * const execlists = &engine->execlists;
221ab971 1830 unsigned long flags;
5692251c 1831 u32 *regs;
cdb6ded4 1832
0c5c7df3
TU
1833 GEM_TRACE("%s request global=%x, current=%d\n",
1834 engine->name, request ? request->global_seqno : 0,
1835 intel_engine_get_seqno(engine));
42232213 1836
a3e38836
CW
1837 /* See execlists_cancel_requests() for the irq/spinlock split. */
1838 local_irq_save(flags);
221ab971 1839
cdb6ded4
CW
1840 /*
1841 * Catch up with any missed context-switch interrupts.
1842 *
1843 * Ideally we would just read the remaining CSB entries now that we
1844 * know the gpu is idle. However, the CSB registers are sometimes^W
1845 * often trashed across a GPU reset! Instead we have to rely on
1846 * guessing the missed context-switch events by looking at what
1847 * requests were completed.
1848 */
a4598d17 1849 execlists_cancel_port_requests(execlists);
46b3617d 1850 reset_irq(engine);
cdb6ded4 1851
221ab971 1852 /* Push back any incomplete requests for replay after the reset. */
a89d1f92 1853 spin_lock(&engine->timeline.lock);
a4598d17 1854 __unwind_incomplete_requests(engine);
a89d1f92 1855 spin_unlock(&engine->timeline.lock);
cdb6ded4 1856
a3e38836 1857 local_irq_restore(flags);
aebbc2d7 1858
a3e38836
CW
1859 /*
1860 * If the request was innocent, we leave the request in the ELSP
c0dcb203
CW
1861 * and will try to replay it on restarting. The context image may
1862 * have been corrupted by the reset, in which case we may have
1863 * to service a new GPU hang, but more likely we can continue on
1864 * without impact.
1865 *
1866 * If the request was guilty, we presume the context is corrupt
1867 * and have to at least restore the RING register in the context
1868 * image back to the expected values to skip over the guilty request.
1869 */
221ab971 1870 if (!request || request->fence.error != -EIO)
c0dcb203 1871 return;
821ed7df 1872
a3e38836
CW
1873 /*
1874 * We want a simple context + ring to execute the breadcrumb update.
a3aabe86
CW
1875 * We cannot rely on the context being intact across the GPU hang,
1876 * so clear it and rebuild just what we need for the breadcrumb.
1877 * All pending requests for this context will be zapped, and any
1878 * future request will be after userspace has had the opportunity
1879 * to recreate its own state.
1880 */
ab82a063 1881 regs = to_intel_context(request->ctx, engine)->lrc_reg_state;
5692251c
CW
1882 if (engine->default_state) {
1883 void *defaults;
1884
1885 defaults = i915_gem_object_pin_map(engine->default_state,
1886 I915_MAP_WB);
1887 if (!IS_ERR(defaults)) {
1888 memcpy(regs, /* skip restoring the vanilla PPHWSP */
1889 defaults + LRC_STATE_PN * PAGE_SIZE,
1890 engine->context_size - PAGE_SIZE);
1891 i915_gem_object_unpin_map(engine->default_state);
1892 }
1893 }
1894 execlists_init_reg_state(regs, request->ctx, engine, request->ring);
a3aabe86 1895
821ed7df 1896 /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
5692251c
CW
1897 regs[CTX_RING_BUFFER_START + 1] = i915_ggtt_offset(request->ring->vma);
1898 regs[CTX_RING_HEAD + 1] = request->postfix;
a3aabe86 1899
821ed7df 1900 request->ring->head = request->postfix;
821ed7df
CW
1901 intel_ring_update_space(request->ring);
1902
a3aabe86 1903 /* Reset WaIdleLiteRestore:bdw,skl as well */
7e4992ac 1904 unwind_wa_tail(request);
821ed7df
CW
1905}
1906
e61e0f51 1907static int intel_logical_ring_emit_pdps(struct i915_request *rq)
7a01a0a2 1908{
e61e0f51
CW
1909 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
1910 struct intel_engine_cs *engine = rq->engine;
e7167769 1911 const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
73dec95e
TU
1912 u32 *cs;
1913 int i;
7a01a0a2 1914
e61e0f51 1915 cs = intel_ring_begin(rq, num_lri_cmds * 2 + 2);
73dec95e
TU
1916 if (IS_ERR(cs))
1917 return PTR_ERR(cs);
7a01a0a2 1918
73dec95e 1919 *cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
e7167769 1920 for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
7a01a0a2
MT
1921 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1922
73dec95e
TU
1923 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
1924 *cs++ = upper_32_bits(pd_daddr);
1925 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
1926 *cs++ = lower_32_bits(pd_daddr);
7a01a0a2
MT
1927 }
1928
73dec95e 1929 *cs++ = MI_NOOP;
e61e0f51 1930 intel_ring_advance(rq, cs);
7a01a0a2
MT
1931
1932 return 0;
1933}
1934
e61e0f51 1935static int gen8_emit_bb_start(struct i915_request *rq,
803688ba 1936 u64 offset, u32 len,
54af56db 1937 const unsigned int flags)
15648585 1938{
73dec95e 1939 u32 *cs;
15648585
OM
1940 int ret;
1941
7a01a0a2
MT
1942 /* Don't rely in hw updating PDPs, specially in lite-restore.
1943 * Ideally, we should set Force PD Restore in ctx descriptor,
1944 * but we can't. Force Restore would be a second option, but
1945 * it is unsafe in case of lite-restore (because the ctx is
2dba3239
MT
1946 * not idle). PML4 is allocated during ppgtt init so this is
1947 * not needed in 48-bit.*/
e61e0f51
CW
1948 if (rq->ctx->ppgtt &&
1949 (intel_engine_flag(rq->engine) & rq->ctx->ppgtt->pd_dirty_rings) &&
1950 !i915_vm_is_48bit(&rq->ctx->ppgtt->base) &&
1951 !intel_vgpu_active(rq->i915)) {
1952 ret = intel_logical_ring_emit_pdps(rq);
54af56db
MK
1953 if (ret)
1954 return ret;
7a01a0a2 1955
e61e0f51 1956 rq->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(rq->engine);
7a01a0a2
MT
1957 }
1958
74f94741 1959 cs = intel_ring_begin(rq, 6);
73dec95e
TU
1960 if (IS_ERR(cs))
1961 return PTR_ERR(cs);
15648585 1962
279f5a00
CW
1963 /*
1964 * WaDisableCtxRestoreArbitration:bdw,chv
1965 *
1966 * We don't need to perform MI_ARB_ENABLE as often as we do (in
1967 * particular all the gen that do not need the w/a at all!), if we
1968 * took care to make sure that on every switch into this context
1969 * (both ordinary and for preemption) that arbitrartion was enabled
1970 * we would be fine. However, there doesn't seem to be a downside to
1971 * being paranoid and making sure it is set before each batch and
1972 * every context-switch.
1973 *
1974 * Note that if we fail to enable arbitration before the request
1975 * is complete, then we do not see the context-switch interrupt and
1976 * the engine hangs (with RING_HEAD == RING_TAIL).
1977 *
1978 * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
1979 */
3ad7b52d
CW
1980 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1981
15648585 1982 /* FIXME(BDW): Address space and security selectors. */
54af56db
MK
1983 *cs++ = MI_BATCH_BUFFER_START_GEN8 |
1984 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
1985 (flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
73dec95e
TU
1986 *cs++ = lower_32_bits(offset);
1987 *cs++ = upper_32_bits(offset);
74f94741
CW
1988
1989 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1990 *cs++ = MI_NOOP;
e61e0f51 1991 intel_ring_advance(rq, cs);
15648585
OM
1992
1993 return 0;
1994}
1995
31bb59cc 1996static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
73d477f6 1997{
c033666a 1998 struct drm_i915_private *dev_priv = engine->i915;
31bb59cc
CW
1999 I915_WRITE_IMR(engine,
2000 ~(engine->irq_enable_mask | engine->irq_keep_mask));
2001 POSTING_READ_FW(RING_IMR(engine->mmio_base));
73d477f6
OM
2002}
2003
31bb59cc 2004static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
73d477f6 2005{
c033666a 2006 struct drm_i915_private *dev_priv = engine->i915;
31bb59cc 2007 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
73d477f6
OM
2008}
2009
e61e0f51 2010static int gen8_emit_flush(struct i915_request *request, u32 mode)
4712274c 2011{
73dec95e 2012 u32 cmd, *cs;
4712274c 2013
73dec95e
TU
2014 cs = intel_ring_begin(request, 4);
2015 if (IS_ERR(cs))
2016 return PTR_ERR(cs);
4712274c
OM
2017
2018 cmd = MI_FLUSH_DW + 1;
2019
f0a1fb10
CW
2020 /* We always require a command barrier so that subsequent
2021 * commands, such as breadcrumb interrupts, are strictly ordered
2022 * wrt the contents of the write cache being flushed to memory
2023 * (and thus being coherent from the CPU).
2024 */
2025 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2026
7c9cf4e3 2027 if (mode & EMIT_INVALIDATE) {
f0a1fb10 2028 cmd |= MI_INVALIDATE_TLB;
1dae2dfb 2029 if (request->engine->id == VCS)
f0a1fb10 2030 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
2031 }
2032
73dec95e
TU
2033 *cs++ = cmd;
2034 *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
2035 *cs++ = 0; /* upper addr */
2036 *cs++ = 0; /* value */
2037 intel_ring_advance(request, cs);
4712274c
OM
2038
2039 return 0;
2040}
2041
e61e0f51 2042static int gen8_emit_flush_render(struct i915_request *request,
7c9cf4e3 2043 u32 mode)
4712274c 2044{
b5321f30 2045 struct intel_engine_cs *engine = request->engine;
bde13ebd
CW
2046 u32 scratch_addr =
2047 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
0b2d0934 2048 bool vf_flush_wa = false, dc_flush_wa = false;
73dec95e 2049 u32 *cs, flags = 0;
0b2d0934 2050 int len;
4712274c
OM
2051
2052 flags |= PIPE_CONTROL_CS_STALL;
2053
7c9cf4e3 2054 if (mode & EMIT_FLUSH) {
4712274c
OM
2055 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
2056 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
965fd602 2057 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
40a24488 2058 flags |= PIPE_CONTROL_FLUSH_ENABLE;
4712274c
OM
2059 }
2060
7c9cf4e3 2061 if (mode & EMIT_INVALIDATE) {
4712274c
OM
2062 flags |= PIPE_CONTROL_TLB_INVALIDATE;
2063 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
2064 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
2065 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
2066 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
2067 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
2068 flags |= PIPE_CONTROL_QW_WRITE;
2069 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
4712274c 2070
1a5a9ce7
BW
2071 /*
2072 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
2073 * pipe control.
2074 */
c033666a 2075 if (IS_GEN9(request->i915))
1a5a9ce7 2076 vf_flush_wa = true;
0b2d0934
MK
2077
2078 /* WaForGAMHang:kbl */
2079 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
2080 dc_flush_wa = true;
1a5a9ce7 2081 }
9647ff36 2082
0b2d0934
MK
2083 len = 6;
2084
2085 if (vf_flush_wa)
2086 len += 6;
2087
2088 if (dc_flush_wa)
2089 len += 12;
2090
73dec95e
TU
2091 cs = intel_ring_begin(request, len);
2092 if (IS_ERR(cs))
2093 return PTR_ERR(cs);
4712274c 2094
9f235dfa
TU
2095 if (vf_flush_wa)
2096 cs = gen8_emit_pipe_control(cs, 0, 0);
9647ff36 2097
9f235dfa
TU
2098 if (dc_flush_wa)
2099 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
2100 0);
0b2d0934 2101
9f235dfa 2102 cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
0b2d0934 2103
9f235dfa
TU
2104 if (dc_flush_wa)
2105 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
0b2d0934 2106
73dec95e 2107 intel_ring_advance(request, cs);
4712274c
OM
2108
2109 return 0;
2110}
2111
7c17d377
CW
2112/*
2113 * Reserve space for 2 NOOPs at the end of each request to be
2114 * used as a workaround for not being allowed to do lite
2115 * restore with HEAD==TAIL (WaIdleLiteRestore).
2116 */
e61e0f51 2117static void gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
4da46e1e 2118{
beecec90
CW
2119 /* Ensure there's always at least one preemption point per-request. */
2120 *cs++ = MI_ARB_CHECK;
73dec95e
TU
2121 *cs++ = MI_NOOP;
2122 request->wa_tail = intel_ring_offset(request, cs);
caddfe71 2123}
4da46e1e 2124
e61e0f51 2125static void gen8_emit_breadcrumb(struct i915_request *request, u32 *cs)
caddfe71 2126{
7c17d377
CW
2127 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
2128 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
4da46e1e 2129
df77cd83
MW
2130 cs = gen8_emit_ggtt_write(cs, request->global_seqno,
2131 intel_hws_seqno_address(request->engine));
73dec95e 2132 *cs++ = MI_USER_INTERRUPT;
74f94741 2133 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
73dec95e 2134 request->tail = intel_ring_offset(request, cs);
ed1501d4 2135 assert_ring_tail_valid(request->ring, request->tail);
caddfe71 2136
73dec95e 2137 gen8_emit_wa_tail(request, cs);
7c17d377 2138}
98f29e8d
CW
2139static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
2140
e61e0f51 2141static void gen8_emit_breadcrumb_rcs(struct i915_request *request, u32 *cs)
7c17d377 2142{
ce81a65c
MW
2143 /* We're using qword write, seqno should be aligned to 8 bytes. */
2144 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
2145
df77cd83
MW
2146 cs = gen8_emit_ggtt_write_rcs(cs, request->global_seqno,
2147 intel_hws_seqno_address(request->engine));
73dec95e 2148 *cs++ = MI_USER_INTERRUPT;
74f94741 2149 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
73dec95e 2150 request->tail = intel_ring_offset(request, cs);
ed1501d4 2151 assert_ring_tail_valid(request->ring, request->tail);
caddfe71 2152
73dec95e 2153 gen8_emit_wa_tail(request, cs);
4da46e1e 2154}
df77cd83 2155static const int gen8_emit_breadcrumb_rcs_sz = 8 + WA_TAIL_DWORDS;
98f29e8d 2156
e61e0f51 2157static int gen8_init_rcs_context(struct i915_request *rq)
e7778be1
TD
2158{
2159 int ret;
2160
59b449d5 2161 ret = intel_ctx_workarounds_emit(rq);
e7778be1
TD
2162 if (ret)
2163 return ret;
2164
e61e0f51 2165 ret = intel_rcs_context_init_mocs(rq);
3bbaba0c
PA
2166 /*
2167 * Failing to program the MOCS is non-fatal.The system will not
2168 * run at peak performance. So generate an error and carry on.
2169 */
2170 if (ret)
2171 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
2172
e61e0f51 2173 return i915_gem_render_state_emit(rq);
e7778be1
TD
2174}
2175
73e4d07f
OM
2176/**
2177 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
14bb2c11 2178 * @engine: Engine Command Streamer.
73e4d07f 2179 */
0bc40be8 2180void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
454afebd 2181{
6402c330 2182 struct drm_i915_private *dev_priv;
9832b9da 2183
27af5eea
TU
2184 /*
2185 * Tasklet cannot be active at this point due intel_mark_active/idle
2186 * so this is just for documentation.
2187 */
c6dce8f1
SAK
2188 if (WARN_ON(test_bit(TASKLET_STATE_SCHED,
2189 &engine->execlists.tasklet.state)))
2190 tasklet_kill(&engine->execlists.tasklet);
27af5eea 2191
c033666a 2192 dev_priv = engine->i915;
6402c330 2193
0bc40be8 2194 if (engine->buffer) {
0bc40be8 2195 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
b0366a54 2196 }
48d82387 2197
0bc40be8
TU
2198 if (engine->cleanup)
2199 engine->cleanup(engine);
48d82387 2200
e8a9c58f 2201 intel_engine_cleanup_common(engine);
17ee950d 2202
097d4f1c 2203 lrc_destroy_wa_ctx(engine);
f3c9d407 2204
c033666a 2205 engine->i915 = NULL;
3b3f1650
AG
2206 dev_priv->engine[engine->id] = NULL;
2207 kfree(engine);
454afebd
OM
2208}
2209
ff44ad51 2210static void execlists_set_default_submission(struct intel_engine_cs *engine)
ddd66c51 2211{
ff44ad51 2212 engine->submit_request = execlists_submit_request;
27a5f61b 2213 engine->cancel_requests = execlists_cancel_requests;
ff44ad51 2214 engine->schedule = execlists_schedule;
c6dce8f1 2215 engine->execlists.tasklet.func = execlists_submission_tasklet;
aba5e278
CW
2216
2217 engine->park = NULL;
2218 engine->unpark = NULL;
cf669b4e
TU
2219
2220 engine->flags |= I915_ENGINE_SUPPORTS_STATS;
2a694feb
CW
2221 if (engine->i915->preempt_context)
2222 engine->flags |= I915_ENGINE_HAS_PREEMPTION;
3fed1808
CW
2223
2224 engine->i915->caps.scheduler =
2225 I915_SCHEDULER_CAP_ENABLED |
2226 I915_SCHEDULER_CAP_PRIORITY;
2a694feb 2227 if (intel_engine_has_preemption(engine))
3fed1808 2228 engine->i915->caps.scheduler |= I915_SCHEDULER_CAP_PREEMPTION;
ddd66c51
CW
2229}
2230
c9cacf93 2231static void
e1382efb 2232logical_ring_default_vfuncs(struct intel_engine_cs *engine)
c9cacf93
TU
2233{
2234 /* Default vfuncs which can be overriden by each engine. */
0bc40be8 2235 engine->init_hw = gen8_init_common_ring;
821ed7df 2236 engine->reset_hw = reset_common_ring;
e8a9c58f
CW
2237
2238 engine->context_pin = execlists_context_pin;
2239 engine->context_unpin = execlists_context_unpin;
2240
f73e7399
CW
2241 engine->request_alloc = execlists_request_alloc;
2242
0bc40be8 2243 engine->emit_flush = gen8_emit_flush;
9b81d556 2244 engine->emit_breadcrumb = gen8_emit_breadcrumb;
98f29e8d 2245 engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
ff44ad51
CW
2246
2247 engine->set_default_submission = execlists_set_default_submission;
ddd66c51 2248
d4ccceb0
TU
2249 if (INTEL_GEN(engine->i915) < 11) {
2250 engine->irq_enable = gen8_logical_ring_enable_irq;
2251 engine->irq_disable = gen8_logical_ring_disable_irq;
2252 } else {
2253 /*
2254 * TODO: On Gen11 interrupt masks need to be clear
2255 * to allow C6 entry. Keep interrupts enabled at
2256 * and take the hit of generating extra interrupts
2257 * until a more refined solution exists.
2258 */
2259 }
0bc40be8 2260 engine->emit_bb_start = gen8_emit_bb_start;
c9cacf93
TU
2261}
2262
d9f3af96 2263static inline void
c2c7f240 2264logical_ring_default_irqs(struct intel_engine_cs *engine)
d9f3af96 2265{
fa6f071d
DCS
2266 unsigned int shift = 0;
2267
2268 if (INTEL_GEN(engine->i915) < 11) {
2269 const u8 irq_shifts[] = {
2270 [RCS] = GEN8_RCS_IRQ_SHIFT,
2271 [BCS] = GEN8_BCS_IRQ_SHIFT,
2272 [VCS] = GEN8_VCS1_IRQ_SHIFT,
2273 [VCS2] = GEN8_VCS2_IRQ_SHIFT,
2274 [VECS] = GEN8_VECS_IRQ_SHIFT,
2275 };
2276
2277 shift = irq_shifts[engine->id];
2278 }
2279
0bc40be8
TU
2280 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
2281 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
d9f3af96
TU
2282}
2283
bb45438f
TU
2284static void
2285logical_ring_setup(struct intel_engine_cs *engine)
2286{
2287 struct drm_i915_private *dev_priv = engine->i915;
2288 enum forcewake_domains fw_domains;
2289
019bf277
TU
2290 intel_engine_setup_common(engine);
2291
bb45438f
TU
2292 /* Intentionally left blank. */
2293 engine->buffer = NULL;
2294
2295 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
2296 RING_ELSP(engine),
2297 FW_REG_WRITE);
2298
2299 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2300 RING_CONTEXT_STATUS_PTR(engine),
2301 FW_REG_READ | FW_REG_WRITE);
2302
2303 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2304 RING_CONTEXT_STATUS_BUF_BASE(engine),
2305 FW_REG_READ);
2306
b620e870 2307 engine->execlists.fw_domains = fw_domains;
bb45438f 2308
c6dce8f1
SAK
2309 tasklet_init(&engine->execlists.tasklet,
2310 execlists_submission_tasklet, (unsigned long)engine);
bb45438f 2311
bb45438f
TU
2312 logical_ring_default_vfuncs(engine);
2313 logical_ring_default_irqs(engine);
bb45438f
TU
2314}
2315
486e93f7 2316static int logical_ring_init(struct intel_engine_cs *engine)
a19d6ff2 2317{
a19d6ff2
TU
2318 int ret;
2319
019bf277 2320 ret = intel_engine_init_common(engine);
a19d6ff2
TU
2321 if (ret)
2322 goto error;
2323
05f0addd
TD
2324 if (HAS_LOGICAL_RING_ELSQ(engine->i915)) {
2325 engine->execlists.submit_reg = engine->i915->regs +
2326 i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(engine));
2327 engine->execlists.ctrl_reg = engine->i915->regs +
2328 i915_mmio_reg_offset(RING_EXECLIST_CONTROL(engine));
2329 } else {
2330 engine->execlists.submit_reg = engine->i915->regs +
2331 i915_mmio_reg_offset(RING_ELSP(engine));
2332 }
693cfbf0 2333
d6376374 2334 engine->execlists.preempt_complete_status = ~0u;
ab82a063
CW
2335 if (engine->i915->preempt_context) {
2336 struct intel_context *ce =
2337 to_intel_context(engine->i915->preempt_context, engine);
2338
d6376374 2339 engine->execlists.preempt_complete_status =
ab82a063
CW
2340 upper_32_bits(ce->lrc_desc);
2341 }
d6376374 2342
a19d6ff2
TU
2343 return 0;
2344
2345error:
2346 intel_logical_ring_cleanup(engine);
2347 return ret;
2348}
2349
88d2ba2e 2350int logical_render_ring_init(struct intel_engine_cs *engine)
a19d6ff2
TU
2351{
2352 struct drm_i915_private *dev_priv = engine->i915;
2353 int ret;
2354
bb45438f
TU
2355 logical_ring_setup(engine);
2356
a19d6ff2
TU
2357 if (HAS_L3_DPF(dev_priv))
2358 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2359
2360 /* Override some for render ring. */
2361 if (INTEL_GEN(dev_priv) >= 9)
2362 engine->init_hw = gen9_init_render_ring;
2363 else
2364 engine->init_hw = gen8_init_render_ring;
2365 engine->init_context = gen8_init_rcs_context;
a19d6ff2 2366 engine->emit_flush = gen8_emit_flush_render;
df77cd83
MW
2367 engine->emit_breadcrumb = gen8_emit_breadcrumb_rcs;
2368 engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_rcs_sz;
a19d6ff2 2369
f51455d4 2370 ret = intel_engine_create_scratch(engine, PAGE_SIZE);
a19d6ff2
TU
2371 if (ret)
2372 return ret;
2373
2374 ret = intel_init_workaround_bb(engine);
2375 if (ret) {
2376 /*
2377 * We continue even if we fail to initialize WA batch
2378 * because we only expect rare glitches but nothing
2379 * critical to prevent us from using GPU
2380 */
2381 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2382 ret);
2383 }
2384
d038fc7e 2385 return logical_ring_init(engine);
a19d6ff2
TU
2386}
2387
88d2ba2e 2388int logical_xcs_ring_init(struct intel_engine_cs *engine)
bb45438f
TU
2389{
2390 logical_ring_setup(engine);
2391
2392 return logical_ring_init(engine);
454afebd
OM
2393}
2394
0cea6502 2395static u32
c033666a 2396make_rpcs(struct drm_i915_private *dev_priv)
0cea6502
JM
2397{
2398 u32 rpcs = 0;
2399
2400 /*
2401 * No explicit RPCS request is needed to ensure full
2402 * slice/subslice/EU enablement prior to Gen9.
2403 */
c033666a 2404 if (INTEL_GEN(dev_priv) < 9)
0cea6502
JM
2405 return 0;
2406
2407 /*
2408 * Starting in Gen9, render power gating can leave
2409 * slice/subslice/EU in a partially enabled state. We
2410 * must make an explicit request through RPCS for full
2411 * enablement.
2412 */
43b67998 2413 if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
0cea6502 2414 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
f08a0c92 2415 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
0cea6502
JM
2416 GEN8_RPCS_S_CNT_SHIFT;
2417 rpcs |= GEN8_RPCS_ENABLE;
2418 }
2419
43b67998 2420 if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
0cea6502 2421 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
8cc76693 2422 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask[0]) <<
0cea6502
JM
2423 GEN8_RPCS_SS_CNT_SHIFT;
2424 rpcs |= GEN8_RPCS_ENABLE;
2425 }
2426
43b67998
ID
2427 if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
2428 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
0cea6502 2429 GEN8_RPCS_EU_MIN_SHIFT;
43b67998 2430 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
0cea6502
JM
2431 GEN8_RPCS_EU_MAX_SHIFT;
2432 rpcs |= GEN8_RPCS_ENABLE;
2433 }
2434
2435 return rpcs;
2436}
2437
0bc40be8 2438static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
71562919
MT
2439{
2440 u32 indirect_ctx_offset;
2441
c033666a 2442 switch (INTEL_GEN(engine->i915)) {
71562919 2443 default:
c033666a 2444 MISSING_CASE(INTEL_GEN(engine->i915));
71562919 2445 /* fall through */
fd034c77
MT
2446 case 11:
2447 indirect_ctx_offset =
2448 GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2449 break;
7bd0a2c6
MT
2450 case 10:
2451 indirect_ctx_offset =
2452 GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2453 break;
71562919
MT
2454 case 9:
2455 indirect_ctx_offset =
2456 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2457 break;
2458 case 8:
2459 indirect_ctx_offset =
2460 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2461 break;
2462 }
2463
2464 return indirect_ctx_offset;
2465}
2466
56e51bf0 2467static void execlists_init_reg_state(u32 *regs,
a3aabe86
CW
2468 struct i915_gem_context *ctx,
2469 struct intel_engine_cs *engine,
2470 struct intel_ring *ring)
8670d6f9 2471{
a3aabe86
CW
2472 struct drm_i915_private *dev_priv = engine->i915;
2473 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
56e51bf0
TU
2474 u32 base = engine->mmio_base;
2475 bool rcs = engine->id == RCS;
2476
2477 /* A context is actually a big batch buffer with several
2478 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
2479 * values we are setting here are only for the first context restore:
2480 * on a subsequent save, the GPU will recreate this batchbuffer with new
2481 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
2482 * we are not initializing here).
2483 */
2484 regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
2485 MI_LRI_FORCE_POSTED;
2486
2487 CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
09b1a4e4
CW
2488 _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2489 CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT) |
56e51bf0 2490 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
56e51bf0
TU
2491 (HAS_RESOURCE_STREAMER(dev_priv) ?
2492 CTX_CTRL_RS_CTX_ENABLE : 0)));
2493 CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
2494 CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
2495 CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
2496 CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
2497 RING_CTL_SIZE(ring->size) | RING_VALID);
2498 CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
2499 CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
2500 CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
2501 CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
2502 CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
2503 CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
2504 if (rcs) {
604a8f6f
CW
2505 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2506
56e51bf0
TU
2507 CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
2508 CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
2509 RING_INDIRECT_CTX_OFFSET(base), 0);
604a8f6f 2510 if (wa_ctx->indirect_ctx.size) {
bde13ebd 2511 u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
17ee950d 2512
56e51bf0 2513 regs[CTX_RCS_INDIRECT_CTX + 1] =
097d4f1c
TU
2514 (ggtt_offset + wa_ctx->indirect_ctx.offset) |
2515 (wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
17ee950d 2516
56e51bf0 2517 regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
0bc40be8 2518 intel_lr_indirect_ctx_offset(engine) << 6;
604a8f6f
CW
2519 }
2520
2521 CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
2522 if (wa_ctx->per_ctx.size) {
2523 u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
17ee950d 2524
56e51bf0 2525 regs[CTX_BB_PER_CTX_PTR + 1] =
097d4f1c 2526 (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
17ee950d 2527 }
8670d6f9 2528 }
56e51bf0
TU
2529
2530 regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2531
2532 CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
0d925ea0 2533 /* PDP values well be assigned later if needed */
56e51bf0
TU
2534 CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
2535 CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
2536 CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
2537 CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
2538 CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
2539 CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
2540 CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
2541 CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
d7b2633d 2542
949e8ab3 2543 if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
2dba3239
MT
2544 /* 64b PPGTT (48bit canonical)
2545 * PDP0_DESCRIPTOR contains the base address to PML4 and
2546 * other PDP Descriptors are ignored.
2547 */
56e51bf0 2548 ASSIGN_CTX_PML4(ppgtt, regs);
2dba3239
MT
2549 }
2550
56e51bf0
TU
2551 if (rcs) {
2552 regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2553 CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2554 make_rpcs(dev_priv));
19f81df2
RB
2555
2556 i915_oa_init_reg_state(engine, ctx, regs);
8670d6f9 2557 }
a3aabe86
CW
2558}
2559
2560static int
2561populate_lr_context(struct i915_gem_context *ctx,
2562 struct drm_i915_gem_object *ctx_obj,
2563 struct intel_engine_cs *engine,
2564 struct intel_ring *ring)
2565{
2566 void *vaddr;
d2b4b979 2567 u32 *regs;
a3aabe86
CW
2568 int ret;
2569
2570 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2571 if (ret) {
2572 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2573 return ret;
2574 }
2575
2576 vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2577 if (IS_ERR(vaddr)) {
2578 ret = PTR_ERR(vaddr);
2579 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2580 return ret;
2581 }
a4f5ea64 2582 ctx_obj->mm.dirty = true;
a3aabe86 2583
d2b4b979
CW
2584 if (engine->default_state) {
2585 /*
2586 * We only want to copy over the template context state;
2587 * skipping over the headers reserved for GuC communication,
2588 * leaving those as zero.
2589 */
2590 const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
2591 void *defaults;
2592
2593 defaults = i915_gem_object_pin_map(engine->default_state,
2594 I915_MAP_WB);
aaefa06a
MA
2595 if (IS_ERR(defaults)) {
2596 ret = PTR_ERR(defaults);
2597 goto err_unpin_ctx;
2598 }
d2b4b979
CW
2599
2600 memcpy(vaddr + start, defaults + start, engine->context_size);
2601 i915_gem_object_unpin_map(engine->default_state);
2602 }
2603
a3aabe86
CW
2604 /* The second page of the context object contains some fields which must
2605 * be set up prior to the first execution. */
d2b4b979
CW
2606 regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
2607 execlists_init_reg_state(regs, ctx, engine, ring);
2608 if (!engine->default_state)
2609 regs[CTX_CONTEXT_CONTROL + 1] |=
2610 _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
05f0addd 2611 if (ctx == ctx->i915->preempt_context && INTEL_GEN(engine->i915) < 11)
517aaffe
CW
2612 regs[CTX_CONTEXT_CONTROL + 1] |=
2613 _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2614 CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
8670d6f9 2615
aaefa06a 2616err_unpin_ctx:
7d774cac 2617 i915_gem_object_unpin_map(ctx_obj);
aaefa06a 2618 return ret;
8670d6f9
OM
2619}
2620
e2efd130 2621static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 2622 struct intel_engine_cs *engine)
ede7d42b 2623{
8c857917 2624 struct drm_i915_gem_object *ctx_obj;
ab82a063 2625 struct intel_context *ce = to_intel_context(ctx, engine);
bf3783e5 2626 struct i915_vma *vma;
8c857917 2627 uint32_t context_size;
7e37f889 2628 struct intel_ring *ring;
a89d1f92 2629 struct i915_timeline *timeline;
8c857917
OM
2630 int ret;
2631
1d2a19c2
CW
2632 if (ce->state)
2633 return 0;
ede7d42b 2634
63ffbcda 2635 context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
8c857917 2636
0b29c75a
MT
2637 /*
2638 * Before the actual start of the context image, we insert a few pages
2639 * for our own use and for sharing with the GuC.
2640 */
2641 context_size += LRC_HEADER_PAGES * PAGE_SIZE;
d1675198 2642
12d79d78 2643 ctx_obj = i915_gem_object_create(ctx->i915, context_size);
a5bfcdf0
CW
2644 if (IS_ERR(ctx_obj))
2645 return PTR_ERR(ctx_obj);
8c857917 2646
a01cb37a 2647 vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
bf3783e5
CW
2648 if (IS_ERR(vma)) {
2649 ret = PTR_ERR(vma);
2650 goto error_deref_obj;
2651 }
2652
a89d1f92
CW
2653 timeline = i915_timeline_create(ctx->i915, ctx->name);
2654 if (IS_ERR(timeline)) {
2655 ret = PTR_ERR(timeline);
2656 goto error_deref_obj;
2657 }
2658
2659 ring = intel_engine_create_ring(engine, timeline, ctx->ring_size);
2660 i915_timeline_put(timeline);
dca33ecc
CW
2661 if (IS_ERR(ring)) {
2662 ret = PTR_ERR(ring);
e84fe803 2663 goto error_deref_obj;
8670d6f9
OM
2664 }
2665
dca33ecc 2666 ret = populate_lr_context(ctx, ctx_obj, engine, ring);
8670d6f9
OM
2667 if (ret) {
2668 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
dca33ecc 2669 goto error_ring_free;
84c2377f
OM
2670 }
2671
dca33ecc 2672 ce->ring = ring;
bf3783e5 2673 ce->state = vma;
ede7d42b
OM
2674
2675 return 0;
8670d6f9 2676
dca33ecc 2677error_ring_free:
7e37f889 2678 intel_ring_free(ring);
e84fe803 2679error_deref_obj:
f8c417cd 2680 i915_gem_object_put(ctx_obj);
8670d6f9 2681 return ret;
ede7d42b 2682}
3e5b6f05 2683
821ed7df 2684void intel_lr_context_resume(struct drm_i915_private *dev_priv)
3e5b6f05 2685{
e2f80391 2686 struct intel_engine_cs *engine;
bafb2f7d 2687 struct i915_gem_context *ctx;
3b3f1650 2688 enum intel_engine_id id;
bafb2f7d
CW
2689
2690 /* Because we emit WA_TAIL_DWORDS there may be a disparity
2691 * between our bookkeeping in ce->ring->head and ce->ring->tail and
2692 * that stored in context. As we only write new commands from
2693 * ce->ring->tail onwards, everything before that is junk. If the GPU
2694 * starts reading from its RING_HEAD from the context, it may try to
2695 * execute that junk and die.
2696 *
2697 * So to avoid that we reset the context images upon resume. For
2698 * simplicity, we just zero everything out.
2699 */
829a0af2 2700 list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
3b3f1650 2701 for_each_engine(engine, dev_priv, id) {
ab82a063
CW
2702 struct intel_context *ce =
2703 to_intel_context(ctx, engine);
bafb2f7d 2704 u32 *reg;
3e5b6f05 2705
bafb2f7d
CW
2706 if (!ce->state)
2707 continue;
7d774cac 2708
bafb2f7d
CW
2709 reg = i915_gem_object_pin_map(ce->state->obj,
2710 I915_MAP_WB);
2711 if (WARN_ON(IS_ERR(reg)))
2712 continue;
3e5b6f05 2713
bafb2f7d
CW
2714 reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2715 reg[CTX_RING_HEAD+1] = 0;
2716 reg[CTX_RING_TAIL+1] = 0;
3e5b6f05 2717
a4f5ea64 2718 ce->state->obj->mm.dirty = true;
bafb2f7d 2719 i915_gem_object_unpin_map(ce->state->obj);
3e5b6f05 2720
e6ba9992 2721 intel_ring_reset(ce->ring, 0);
bafb2f7d 2722 }
3e5b6f05
TD
2723 }
2724}
2c66555e
CW
2725
2726#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2727#include "selftests/intel_lrc.c"
2728#endif