drm/i915: Update DRIVER_DATE to 20170818
[linux-block.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1 133 */
27af5eea 134#include <linux/interrupt.h>
b20385f1
OM
135
136#include <drm/drmP.h>
137#include <drm/i915_drm.h>
138#include "i915_drv.h"
3bbaba0c 139#include "intel_mocs.h"
127f1003 140
e981e7b1
TD
141#define RING_EXECLIST_QFULL (1 << 0x2)
142#define RING_EXECLIST1_VALID (1 << 0x3)
143#define RING_EXECLIST0_VALID (1 << 0x4)
144#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
145#define RING_EXECLIST1_ACTIVE (1 << 0x11)
146#define RING_EXECLIST0_ACTIVE (1 << 0x12)
147
148#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
149#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
150#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
151#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
152#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
153#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9 154
70c2a24d
CW
155#define GEN8_CTX_STATUS_COMPLETED_MASK \
156 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
157 GEN8_CTX_STATUS_PREEMPTED | \
158 GEN8_CTX_STATUS_ELEMENT_SWITCH)
159
8670d6f9
OM
160#define CTX_LRI_HEADER_0 0x01
161#define CTX_CONTEXT_CONTROL 0x02
162#define CTX_RING_HEAD 0x04
163#define CTX_RING_TAIL 0x06
164#define CTX_RING_BUFFER_START 0x08
165#define CTX_RING_BUFFER_CONTROL 0x0a
166#define CTX_BB_HEAD_U 0x0c
167#define CTX_BB_HEAD_L 0x0e
168#define CTX_BB_STATE 0x10
169#define CTX_SECOND_BB_HEAD_U 0x12
170#define CTX_SECOND_BB_HEAD_L 0x14
171#define CTX_SECOND_BB_STATE 0x16
172#define CTX_BB_PER_CTX_PTR 0x18
173#define CTX_RCS_INDIRECT_CTX 0x1a
174#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
175#define CTX_LRI_HEADER_1 0x21
176#define CTX_CTX_TIMESTAMP 0x22
177#define CTX_PDP3_UDW 0x24
178#define CTX_PDP3_LDW 0x26
179#define CTX_PDP2_UDW 0x28
180#define CTX_PDP2_LDW 0x2a
181#define CTX_PDP1_UDW 0x2c
182#define CTX_PDP1_LDW 0x2e
183#define CTX_PDP0_UDW 0x30
184#define CTX_PDP0_LDW 0x32
185#define CTX_LRI_HEADER_2 0x41
186#define CTX_R_PWR_CLK_STATE 0x42
187#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
188
56e51bf0 189#define CTX_REG(reg_state, pos, reg, val) do { \
f0f59a00 190 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
0d925ea0
VS
191 (reg_state)[(pos)+1] = (val); \
192} while (0)
193
194#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
d852c7bf 195 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
e5815a2e
MT
196 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
197 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
9244a817 198} while (0)
e5815a2e 199
9244a817 200#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
2dba3239
MT
201 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
202 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
9244a817 203} while (0)
2dba3239 204
71562919
MT
205#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
206#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
7bd0a2c6 207#define GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x19
84b790f8 208
0e93cdd4
CW
209/* Typical size of the average request (2 pipecontrols and a MI_BB) */
210#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
211
a3aabe86
CW
212#define WA_TAIL_DWORDS 2
213
e2efd130 214static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 215 struct intel_engine_cs *engine);
a3aabe86
CW
216static void execlists_init_reg_state(u32 *reg_state,
217 struct i915_gem_context *ctx,
218 struct intel_engine_cs *engine,
219 struct intel_ring *ring);
7ba717cf 220
73e4d07f
OM
221/**
222 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
14bb2c11 223 * @dev_priv: i915 device private
73e4d07f
OM
224 * @enable_execlists: value of i915.enable_execlists module parameter.
225 *
226 * Only certain platforms support Execlists (the prerequisites being
27401d12 227 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
228 *
229 * Return: 1 if Execlists is supported and has to be enabled.
230 */
c033666a 231int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
127f1003 232{
a0bd6c31
ZL
233 /* On platforms with execlist available, vGPU will only
234 * support execlist mode, no ring buffer mode.
235 */
c033666a 236 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
a0bd6c31
ZL
237 return 1;
238
c033666a 239 if (INTEL_GEN(dev_priv) >= 9)
70ee45e1
DL
240 return 1;
241
127f1003
OM
242 if (enable_execlists == 0)
243 return 0;
244
5a21b665
DV
245 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
246 USES_PPGTT(dev_priv) &&
247 i915.use_mmio_flip >= 0)
127f1003
OM
248 return 1;
249
250 return 0;
251}
ede7d42b 252
73e4d07f 253/**
ca82580c
TU
254 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
255 * descriptor for a pinned context
ca82580c 256 * @ctx: Context to work on
9021ad03 257 * @engine: Engine the descriptor will be used with
73e4d07f 258 *
ca82580c
TU
259 * The context descriptor encodes various attributes of a context,
260 * including its GTT address and some flags. Because it's fairly
261 * expensive to calculate, we'll just do it once and cache the result,
262 * which remains valid until the context is unpinned.
263 *
6e5248b5
DV
264 * This is what a descriptor looks like, from LSB to MSB::
265 *
2355cf08 266 * bits 0-11: flags, GEN8_CTX_* (cached in ctx->desc_template)
6e5248b5
DV
267 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
268 * bits 32-52: ctx ID, a globally unique tag
269 * bits 53-54: mbz, reserved for use by hardware
270 * bits 55-63: group ID, currently unused and set to 0
73e4d07f 271 */
ca82580c 272static void
e2efd130 273intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
0bc40be8 274 struct intel_engine_cs *engine)
84b790f8 275{
9021ad03 276 struct intel_context *ce = &ctx->engine[engine->id];
7069b144 277 u64 desc;
84b790f8 278
7069b144 279 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
84b790f8 280
2355cf08 281 desc = ctx->desc_template; /* bits 0-11 */
bde13ebd 282 desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
9021ad03 283 /* bits 12-31 */
7069b144 284 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
5af05fef 285
9021ad03 286 ce->lrc_desc = desc;
5af05fef
MT
287}
288
e2efd130 289uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
0bc40be8 290 struct intel_engine_cs *engine)
84b790f8 291{
0bc40be8 292 return ctx->engine[engine->id].lrc_desc;
ca82580c 293}
203a571b 294
bbd6c47e
CW
295static inline void
296execlists_context_status_change(struct drm_i915_gem_request *rq,
297 unsigned long status)
84b790f8 298{
bbd6c47e
CW
299 /*
300 * Only used when GVT-g is enabled now. When GVT-g is disabled,
301 * The compiler should eliminate this function as dead-code.
302 */
303 if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
304 return;
6daccb0b 305
3fc03069
CD
306 atomic_notifier_call_chain(&rq->engine->context_status_notifier,
307 status, rq);
84b790f8
BW
308}
309
c6a2ac71
TU
310static void
311execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
312{
313 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
314 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
315 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
316 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
317}
318
70c2a24d 319static u64 execlists_update_context(struct drm_i915_gem_request *rq)
ae1250b9 320{
70c2a24d 321 struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
04da811b
ZW
322 struct i915_hw_ppgtt *ppgtt =
323 rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
70c2a24d 324 u32 *reg_state = ce->lrc_reg_state;
ae1250b9 325
e6ba9992 326 reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
ae1250b9 327
c6a2ac71
TU
328 /* True 32b PPGTT with dynamic page allocation: update PDP
329 * registers and point the unallocated PDPs to scratch page.
330 * PML4 is allocated during ppgtt init, so this is not needed
331 * in 48-bit mode.
332 */
949e8ab3 333 if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
c6a2ac71 334 execlists_update_context_pdps(ppgtt, reg_state);
70c2a24d
CW
335
336 return ce->lrc_desc;
ae1250b9
OM
337}
338
70c2a24d 339static void execlists_submit_ports(struct intel_engine_cs *engine)
bbd6c47e 340{
70c2a24d 341 struct execlist_port *port = engine->execlist_port;
bbd6c47e 342 u32 __iomem *elsp =
77f0d0e9
CW
343 engine->i915->regs + i915_mmio_reg_offset(RING_ELSP(engine));
344 unsigned int n;
bbd6c47e 345
77f0d0e9
CW
346 for (n = ARRAY_SIZE(engine->execlist_port); n--; ) {
347 struct drm_i915_gem_request *rq;
348 unsigned int count;
349 u64 desc;
350
351 rq = port_unpack(&port[n], &count);
352 if (rq) {
353 GEM_BUG_ON(count > !n);
354 if (!count++)
355 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
356 port_set(&port[n], port_pack(rq, count));
357 desc = execlists_update_context(rq);
358 GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
359 } else {
360 GEM_BUG_ON(!n);
361 desc = 0;
362 }
bbd6c47e 363
77f0d0e9
CW
364 writel(upper_32_bits(desc), elsp);
365 writel(lower_32_bits(desc), elsp);
366 }
bbd6c47e
CW
367}
368
70c2a24d 369static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
84b790f8 370{
70c2a24d 371 return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
6095868a 372 i915_gem_context_force_single_submission(ctx));
70c2a24d 373}
84b790f8 374
70c2a24d
CW
375static bool can_merge_ctx(const struct i915_gem_context *prev,
376 const struct i915_gem_context *next)
377{
378 if (prev != next)
379 return false;
26720ab9 380
70c2a24d
CW
381 if (ctx_single_port_submission(prev))
382 return false;
26720ab9 383
70c2a24d 384 return true;
84b790f8
BW
385}
386
77f0d0e9
CW
387static void port_assign(struct execlist_port *port,
388 struct drm_i915_gem_request *rq)
389{
390 GEM_BUG_ON(rq == port_request(port));
391
392 if (port_isset(port))
393 i915_gem_request_put(port_request(port));
394
395 port_set(port, port_pack(i915_gem_request_get(rq), port_count(port)));
396}
397
70c2a24d 398static void execlists_dequeue(struct intel_engine_cs *engine)
acdd884a 399{
20311bd3 400 struct drm_i915_gem_request *last;
70c2a24d 401 struct execlist_port *port = engine->execlist_port;
20311bd3 402 struct rb_node *rb;
70c2a24d
CW
403 bool submit = false;
404
77f0d0e9 405 last = port_request(port);
70c2a24d
CW
406 if (last)
407 /* WaIdleLiteRestore:bdw,skl
408 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
9b81d556 409 * as we resubmit the request. See gen8_emit_breadcrumb()
70c2a24d
CW
410 * for where we prepare the padding after the end of the
411 * request.
412 */
413 last->tail = last->wa_tail;
e981e7b1 414
77f0d0e9 415 GEM_BUG_ON(port_isset(&port[1]));
acdd884a 416
70c2a24d
CW
417 /* Hardware submission is through 2 ports. Conceptually each port
418 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
419 * static for a context, and unique to each, so we only execute
420 * requests belonging to a single context from each ring. RING_HEAD
421 * is maintained by the CS in the context image, it marks the place
422 * where it got up to last time, and through RING_TAIL we tell the CS
423 * where we want to execute up to this time.
424 *
425 * In this list the requests are in order of execution. Consecutive
426 * requests from the same context are adjacent in the ringbuffer. We
427 * can combine these requests into a single RING_TAIL update:
428 *
429 * RING_HEAD...req1...req2
430 * ^- RING_TAIL
431 * since to execute req2 the CS must first execute req1.
432 *
433 * Our goal then is to point each port to the end of a consecutive
434 * sequence of requests as being the most optimal (fewest wake ups
435 * and context switches) submission.
779949f4 436 */
acdd884a 437
9f7886d0 438 spin_lock_irq(&engine->timeline->lock);
20311bd3 439 rb = engine->execlist_first;
6c067579 440 GEM_BUG_ON(rb_first(&engine->execlist_queue) != rb);
20311bd3 441 while (rb) {
6c067579
CW
442 struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
443 struct drm_i915_gem_request *rq, *rn;
444
445 list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
446 /*
447 * Can we combine this request with the current port?
448 * It has to be the same context/ringbuffer and not
449 * have any exceptions (e.g. GVT saying never to
450 * combine contexts).
451 *
452 * If we can combine the requests, we can execute both
453 * by updating the RING_TAIL to point to the end of the
454 * second request, and so we never need to tell the
455 * hardware about the first.
70c2a24d 456 */
6c067579
CW
457 if (last && !can_merge_ctx(rq->ctx, last->ctx)) {
458 /*
459 * If we are on the second port and cannot
460 * combine this request with the last, then we
461 * are done.
462 */
463 if (port != engine->execlist_port) {
464 __list_del_many(&p->requests,
465 &rq->priotree.link);
466 goto done;
467 }
468
469 /*
470 * If GVT overrides us we only ever submit
471 * port[0], leaving port[1] empty. Note that we
472 * also have to be careful that we don't queue
473 * the same context (even though a different
474 * request) to the second port.
475 */
476 if (ctx_single_port_submission(last->ctx) ||
477 ctx_single_port_submission(rq->ctx)) {
478 __list_del_many(&p->requests,
479 &rq->priotree.link);
480 goto done;
481 }
482
483 GEM_BUG_ON(last->ctx == rq->ctx);
484
485 if (submit)
486 port_assign(port, last);
487 port++;
488 }
70c2a24d 489
6c067579
CW
490 INIT_LIST_HEAD(&rq->priotree.link);
491 rq->priotree.priority = INT_MAX;
70c2a24d 492
6c067579
CW
493 __i915_gem_request_submit(rq);
494 trace_i915_gem_request_in(rq, port_index(port, engine));
495 last = rq;
496 submit = true;
70c2a24d 497 }
d55ac5bf 498
20311bd3 499 rb = rb_next(rb);
6c067579
CW
500 rb_erase(&p->node, &engine->execlist_queue);
501 INIT_LIST_HEAD(&p->requests);
502 if (p->priority != I915_PRIORITY_NORMAL)
c5cf9a91 503 kmem_cache_free(engine->i915->priorities, p);
70c2a24d 504 }
6c067579
CW
505done:
506 engine->execlist_first = rb;
507 if (submit)
77f0d0e9 508 port_assign(port, last);
9f7886d0 509 spin_unlock_irq(&engine->timeline->lock);
53292cdb 510
70c2a24d
CW
511 if (submit)
512 execlists_submit_ports(engine);
acdd884a
MT
513}
514
816ee798 515static bool execlists_elsp_ready(const struct intel_engine_cs *engine)
91a41032 516{
816ee798 517 const struct execlist_port *port = engine->execlist_port;
91a41032 518
77f0d0e9 519 return port_count(&port[0]) + port_count(&port[1]) < 2;
91a41032
BW
520}
521
6e5248b5 522/*
73e4d07f
OM
523 * Check the unread Context Status Buffers and manage the submission of new
524 * contexts to the ELSP accordingly.
525 */
27af5eea 526static void intel_lrc_irq_handler(unsigned long data)
e981e7b1 527{
27af5eea 528 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
70c2a24d 529 struct execlist_port *port = engine->execlist_port;
c033666a 530 struct drm_i915_private *dev_priv = engine->i915;
c6a2ac71 531
48921260
CW
532 /* We can skip acquiring intel_runtime_pm_get() here as it was taken
533 * on our behalf by the request (see i915_gem_mark_busy()) and it will
534 * not be relinquished until the device is idle (see
535 * i915_gem_idle_work_handler()). As a precaution, we make sure
536 * that all ELSP are drained i.e. we have processed the CSB,
537 * before allowing ourselves to idle and calling intel_runtime_pm_put().
538 */
539 GEM_BUG_ON(!dev_priv->gt.awake);
540
3756685a 541 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
c6a2ac71 542
899f6204
CW
543 /* Prefer doing test_and_clear_bit() as a two stage operation to avoid
544 * imposing the cost of a locked atomic transaction when submitting a
545 * new request (outside of the context-switch interrupt).
546 */
547 while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
70c2a24d
CW
548 u32 __iomem *csb_mmio =
549 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
550 u32 __iomem *buf =
551 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
4af0d727 552 unsigned int head, tail;
70c2a24d 553
2e70b8c6
CW
554 /* The write will be ordered by the uncached read (itself
555 * a memory barrier), so we do not need another in the form
556 * of a locked instruction. The race between the interrupt
557 * handler and the split test/clear is harmless as we order
558 * our clear before the CSB read. If the interrupt arrived
559 * first between the test and the clear, we read the updated
560 * CSB and clear the bit. If the interrupt arrives as we read
561 * the CSB or later (i.e. after we had cleared the bit) the bit
562 * is set and we do a new loop.
563 */
564 __clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
4af0d727
CW
565 head = readl(csb_mmio);
566 tail = GEN8_CSB_WRITE_PTR(head);
567 head = GEN8_CSB_READ_PTR(head);
568 while (head != tail) {
77f0d0e9 569 struct drm_i915_gem_request *rq;
4af0d727 570 unsigned int status;
77f0d0e9 571 unsigned int count;
4af0d727
CW
572
573 if (++head == GEN8_CSB_ENTRIES)
574 head = 0;
70c2a24d 575
2ffe80aa
CW
576 /* We are flying near dragons again.
577 *
578 * We hold a reference to the request in execlist_port[]
579 * but no more than that. We are operating in softirq
580 * context and so cannot hold any mutex or sleep. That
581 * prevents us stopping the requests we are processing
582 * in port[] from being retired simultaneously (the
583 * breadcrumb will be complete before we see the
584 * context-switch). As we only hold the reference to the
585 * request, any pointer chasing underneath the request
586 * is subject to a potential use-after-free. Thus we
587 * store all of the bookkeeping within port[] as
588 * required, and avoid using unguarded pointers beneath
589 * request itself. The same applies to the atomic
590 * status notifier.
591 */
592
4af0d727 593 status = readl(buf + 2 * head);
70c2a24d
CW
594 if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
595 continue;
596
86aa7e76 597 /* Check the context/desc id for this event matches */
4af0d727 598 GEM_DEBUG_BUG_ON(readl(buf + 2 * head + 1) !=
77f0d0e9 599 port->context_id);
86aa7e76 600
77f0d0e9
CW
601 rq = port_unpack(port, &count);
602 GEM_BUG_ON(count == 0);
603 if (--count == 0) {
70c2a24d 604 GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
77f0d0e9
CW
605 GEM_BUG_ON(!i915_gem_request_completed(rq));
606 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
607
608 trace_i915_gem_request_out(rq);
609 i915_gem_request_put(rq);
70c2a24d 610
70c2a24d
CW
611 port[0] = port[1];
612 memset(&port[1], 0, sizeof(port[1]));
77f0d0e9
CW
613 } else {
614 port_set(port, port_pack(rq, count));
70c2a24d 615 }
26720ab9 616
77f0d0e9
CW
617 /* After the final element, the hw should be idle */
618 GEM_BUG_ON(port_count(port) == 0 &&
70c2a24d 619 !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
4af0d727 620 }
e1fee72c 621
4af0d727 622 writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
70c2a24d 623 csb_mmio);
e981e7b1
TD
624 }
625
70c2a24d
CW
626 if (execlists_elsp_ready(engine))
627 execlists_dequeue(engine);
c6a2ac71 628
70c2a24d 629 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
e981e7b1
TD
630}
631
6c067579
CW
632static bool
633insert_request(struct intel_engine_cs *engine,
634 struct i915_priotree *pt,
635 int prio)
20311bd3 636{
6c067579
CW
637 struct i915_priolist *p;
638 struct rb_node **parent, *rb;
20311bd3
CW
639 bool first = true;
640
6c067579
CW
641 if (unlikely(engine->no_priolist))
642 prio = I915_PRIORITY_NORMAL;
643
644find_priolist:
20311bd3
CW
645 /* most positive priority is scheduled first, equal priorities fifo */
646 rb = NULL;
6c067579
CW
647 parent = &engine->execlist_queue.rb_node;
648 while (*parent) {
649 rb = *parent;
650 p = rb_entry(rb, typeof(*p), node);
651 if (prio > p->priority) {
652 parent = &rb->rb_left;
653 } else if (prio < p->priority) {
654 parent = &rb->rb_right;
20311bd3 655 first = false;
6c067579
CW
656 } else {
657 list_add_tail(&pt->link, &p->requests);
658 return false;
20311bd3
CW
659 }
660 }
6c067579
CW
661
662 if (prio == I915_PRIORITY_NORMAL) {
663 p = &engine->default_priolist;
664 } else {
c5cf9a91 665 p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
6c067579
CW
666 /* Convert an allocation failure to a priority bump */
667 if (unlikely(!p)) {
668 prio = I915_PRIORITY_NORMAL; /* recurses just once */
669
670 /* To maintain ordering with all rendering, after an
671 * allocation failure we have to disable all scheduling.
672 * Requests will then be executed in fifo, and schedule
673 * will ensure that dependencies are emitted in fifo.
674 * There will be still some reordering with existing
675 * requests, so if userspace lied about their
676 * dependencies that reordering may be visible.
677 */
678 engine->no_priolist = true;
679 goto find_priolist;
680 }
681 }
682
683 p->priority = prio;
684 rb_link_node(&p->node, rb, parent);
685 rb_insert_color(&p->node, &engine->execlist_queue);
686
687 INIT_LIST_HEAD(&p->requests);
688 list_add_tail(&pt->link, &p->requests);
689
690 if (first)
691 engine->execlist_first = &p->node;
20311bd3
CW
692
693 return first;
694}
695
f4ea6bdd 696static void execlists_submit_request(struct drm_i915_gem_request *request)
acdd884a 697{
4a570db5 698 struct intel_engine_cs *engine = request->engine;
5590af3e 699 unsigned long flags;
acdd884a 700
663f71e7
CW
701 /* Will be called from irq-context when using foreign fences. */
702 spin_lock_irqsave(&engine->timeline->lock, flags);
acdd884a 703
6c067579
CW
704 if (insert_request(engine,
705 &request->priotree,
706 request->priotree.priority)) {
48ea2554 707 if (execlists_elsp_ready(engine))
3833281a
CW
708 tasklet_hi_schedule(&engine->irq_tasklet);
709 }
acdd884a 710
6c067579
CW
711 GEM_BUG_ON(!engine->execlist_first);
712 GEM_BUG_ON(list_empty(&request->priotree.link));
713
663f71e7 714 spin_unlock_irqrestore(&engine->timeline->lock, flags);
acdd884a
MT
715}
716
20311bd3
CW
717static struct intel_engine_cs *
718pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
719{
a79a524e
CW
720 struct intel_engine_cs *engine =
721 container_of(pt, struct drm_i915_gem_request, priotree)->engine;
722
723 GEM_BUG_ON(!locked);
20311bd3 724
20311bd3 725 if (engine != locked) {
a79a524e
CW
726 spin_unlock(&locked->timeline->lock);
727 spin_lock(&engine->timeline->lock);
20311bd3
CW
728 }
729
730 return engine;
731}
732
733static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
734{
a79a524e 735 struct intel_engine_cs *engine;
20311bd3
CW
736 struct i915_dependency *dep, *p;
737 struct i915_dependency stack;
738 LIST_HEAD(dfs);
739
740 if (prio <= READ_ONCE(request->priotree.priority))
741 return;
742
70cd1476
CW
743 /* Need BKL in order to use the temporary link inside i915_dependency */
744 lockdep_assert_held(&request->i915->drm.struct_mutex);
20311bd3
CW
745
746 stack.signaler = &request->priotree;
747 list_add(&stack.dfs_link, &dfs);
748
749 /* Recursively bump all dependent priorities to match the new request.
750 *
751 * A naive approach would be to use recursion:
752 * static void update_priorities(struct i915_priotree *pt, prio) {
753 * list_for_each_entry(dep, &pt->signalers_list, signal_link)
754 * update_priorities(dep->signal, prio)
755 * insert_request(pt);
756 * }
757 * but that may have unlimited recursion depth and so runs a very
758 * real risk of overunning the kernel stack. Instead, we build
759 * a flat list of all dependencies starting with the current request.
760 * As we walk the list of dependencies, we add all of its dependencies
761 * to the end of the list (this may include an already visited
762 * request) and continue to walk onwards onto the new dependencies. The
763 * end result is a topological list of requests in reverse order, the
764 * last element in the list is the request we must execute first.
765 */
766 list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
767 struct i915_priotree *pt = dep->signaler;
768
a79a524e
CW
769 /* Within an engine, there can be no cycle, but we may
770 * refer to the same dependency chain multiple times
771 * (redundant dependencies are not eliminated) and across
772 * engines.
773 */
774 list_for_each_entry(p, &pt->signalers_list, signal_link) {
775 GEM_BUG_ON(p->signaler->priority < pt->priority);
20311bd3
CW
776 if (prio > READ_ONCE(p->signaler->priority))
777 list_move_tail(&p->dfs_link, &dfs);
a79a524e 778 }
20311bd3 779
0798cff4 780 list_safe_reset_next(dep, p, dfs_link);
20311bd3
CW
781 }
782
349bdb68
CW
783 /* If we didn't need to bump any existing priorities, and we haven't
784 * yet submitted this request (i.e. there is no potential race with
785 * execlists_submit_request()), we can set our own priority and skip
786 * acquiring the engine locks.
787 */
788 if (request->priotree.priority == INT_MIN) {
789 GEM_BUG_ON(!list_empty(&request->priotree.link));
790 request->priotree.priority = prio;
791 if (stack.dfs_link.next == stack.dfs_link.prev)
792 return;
793 __list_del_entry(&stack.dfs_link);
794 }
795
a79a524e
CW
796 engine = request->engine;
797 spin_lock_irq(&engine->timeline->lock);
798
20311bd3
CW
799 /* Fifo and depth-first replacement ensure our deps execute before us */
800 list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
801 struct i915_priotree *pt = dep->signaler;
802
803 INIT_LIST_HEAD(&dep->dfs_link);
804
805 engine = pt_lock_engine(pt, engine);
806
807 if (prio <= pt->priority)
808 continue;
809
20311bd3 810 pt->priority = prio;
6c067579
CW
811 if (!list_empty(&pt->link)) {
812 __list_del_entry(&pt->link);
813 insert_request(engine, pt, prio);
a79a524e 814 }
20311bd3
CW
815 }
816
a79a524e 817 spin_unlock_irq(&engine->timeline->lock);
20311bd3
CW
818
819 /* XXX Do we need to preempt to make room for us and our deps? */
820}
821
266a240b
CW
822static struct intel_ring *
823execlists_context_pin(struct intel_engine_cs *engine,
824 struct i915_gem_context *ctx)
dcb4c12a 825{
9021ad03 826 struct intel_context *ce = &ctx->engine[engine->id];
2947e408 827 unsigned int flags;
7d774cac 828 void *vaddr;
ca82580c 829 int ret;
dcb4c12a 830
91c8a326 831 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
ca82580c 832
266a240b
CW
833 if (likely(ce->pin_count++))
834 goto out;
a533b4ba 835 GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
24f1d3cc 836
e8a9c58f
CW
837 if (!ce->state) {
838 ret = execlists_context_deferred_alloc(ctx, engine);
839 if (ret)
840 goto err;
841 }
56f6e0a7 842 GEM_BUG_ON(!ce->state);
e8a9c58f 843
72b72ae4 844 flags = PIN_GLOBAL | PIN_HIGH;
feef2a7c
DCS
845 if (ctx->ggtt_offset_bias)
846 flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
2947e408
CW
847
848 ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN, flags);
e84fe803 849 if (ret)
24f1d3cc 850 goto err;
7ba717cf 851
bf3783e5 852 vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
7d774cac
TU
853 if (IS_ERR(vaddr)) {
854 ret = PTR_ERR(vaddr);
bf3783e5 855 goto unpin_vma;
82352e90
TU
856 }
857
d822bb18 858 ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
e84fe803 859 if (ret)
7d774cac 860 goto unpin_map;
d1675198 861
0bc40be8 862 intel_lr_context_descriptor_update(ctx, engine);
9021ad03 863
a3aabe86
CW
864 ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
865 ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
bde13ebd 866 i915_ggtt_offset(ce->ring->vma);
a3aabe86 867
a4f5ea64 868 ce->state->obj->mm.dirty = true;
e93c28f3 869
9a6feaf0 870 i915_gem_context_get(ctx);
266a240b
CW
871out:
872 return ce->ring;
7ba717cf 873
7d774cac 874unpin_map:
bf3783e5
CW
875 i915_gem_object_unpin_map(ce->state->obj);
876unpin_vma:
877 __i915_vma_unpin(ce->state);
24f1d3cc 878err:
9021ad03 879 ce->pin_count = 0;
266a240b 880 return ERR_PTR(ret);
e84fe803
NH
881}
882
e8a9c58f
CW
883static void execlists_context_unpin(struct intel_engine_cs *engine,
884 struct i915_gem_context *ctx)
e84fe803 885{
9021ad03 886 struct intel_context *ce = &ctx->engine[engine->id];
e84fe803 887
91c8a326 888 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
9021ad03 889 GEM_BUG_ON(ce->pin_count == 0);
321fe304 890
9021ad03 891 if (--ce->pin_count)
24f1d3cc 892 return;
e84fe803 893
aad29fbb 894 intel_ring_unpin(ce->ring);
dcb4c12a 895
bf3783e5
CW
896 i915_gem_object_unpin_map(ce->state->obj);
897 i915_vma_unpin(ce->state);
321fe304 898
9a6feaf0 899 i915_gem_context_put(ctx);
dcb4c12a
OM
900}
901
f73e7399 902static int execlists_request_alloc(struct drm_i915_gem_request *request)
ef11c01d
CW
903{
904 struct intel_engine_cs *engine = request->engine;
905 struct intel_context *ce = &request->ctx->engine[engine->id];
73dec95e 906 u32 *cs;
ef11c01d
CW
907 int ret;
908
e8a9c58f
CW
909 GEM_BUG_ON(!ce->pin_count);
910
ef11c01d
CW
911 /* Flush enough space to reduce the likelihood of waiting after
912 * we start building the request - in which case we will just
913 * have to repeat work.
914 */
915 request->reserved_space += EXECLISTS_REQUEST_SIZE;
916
ef11c01d
CW
917 if (i915.enable_guc_submission) {
918 /*
919 * Check that the GuC has space for the request before
920 * going any further, as the i915_add_request() call
921 * later on mustn't fail ...
922 */
923 ret = i915_guc_wq_reserve(request);
924 if (ret)
e8a9c58f 925 goto err;
ef11c01d
CW
926 }
927
73dec95e
TU
928 cs = intel_ring_begin(request, 0);
929 if (IS_ERR(cs)) {
930 ret = PTR_ERR(cs);
ef11c01d 931 goto err_unreserve;
73dec95e 932 }
ef11c01d
CW
933
934 if (!ce->initialised) {
935 ret = engine->init_context(request);
936 if (ret)
937 goto err_unreserve;
938
939 ce->initialised = true;
940 }
941
942 /* Note that after this point, we have committed to using
943 * this request as it is being used to both track the
944 * state of engine initialisation and liveness of the
945 * golden renderstate above. Think twice before you try
946 * to cancel/unwind this request now.
947 */
948
949 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
950 return 0;
951
952err_unreserve:
953 if (i915.enable_guc_submission)
954 i915_guc_wq_unreserve(request);
e8a9c58f 955err:
ef11c01d
CW
956 return ret;
957}
958
9e000847
AS
959/*
960 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
961 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
962 * but there is a slight complication as this is applied in WA batch where the
963 * values are only initialized once so we cannot take register value at the
964 * beginning and reuse it further; hence we save its value to memory, upload a
965 * constant value with bit21 set and then we restore it back with the saved value.
966 * To simplify the WA, a constant value is formed by using the default value
967 * of this register. This shouldn't be a problem because we are only modifying
968 * it for a short period and this batch in non-premptible. We can ofcourse
969 * use additional instructions that read the actual value of the register
970 * at that time and set our bit of interest but it makes the WA complicated.
971 *
972 * This WA is also required for Gen9 so extracting as a function avoids
973 * code duplication.
974 */
097d4f1c
TU
975static u32 *
976gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
17ee950d 977{
097d4f1c
TU
978 *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
979 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
980 *batch++ = i915_ggtt_offset(engine->scratch) + 256;
981 *batch++ = 0;
982
983 *batch++ = MI_LOAD_REGISTER_IMM(1);
984 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
985 *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
986
9f235dfa
TU
987 batch = gen8_emit_pipe_control(batch,
988 PIPE_CONTROL_CS_STALL |
989 PIPE_CONTROL_DC_FLUSH_ENABLE,
990 0);
097d4f1c
TU
991
992 *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
993 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
994 *batch++ = i915_ggtt_offset(engine->scratch) + 256;
995 *batch++ = 0;
996
997 return batch;
17ee950d
AS
998}
999
6e5248b5
DV
1000/*
1001 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1002 * initialized at the beginning and shared across all contexts but this field
1003 * helps us to have multiple batches at different offsets and select them based
1004 * on a criteria. At the moment this batch always start at the beginning of the page
1005 * and at this point we don't have multiple wa_ctx batch buffers.
4d78c8dc 1006 *
6e5248b5
DV
1007 * The number of WA applied are not known at the beginning; we use this field
1008 * to return the no of DWORDS written.
17ee950d 1009 *
6e5248b5
DV
1010 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1011 * so it adds NOOPs as padding to make it cacheline aligned.
1012 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1013 * makes a complete batch buffer.
17ee950d 1014 */
097d4f1c 1015static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
17ee950d 1016{
7ad00d1a 1017 /* WaDisableCtxRestoreArbitration:bdw,chv */
097d4f1c 1018 *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
17ee950d 1019
c82435bb 1020 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
097d4f1c
TU
1021 if (IS_BROADWELL(engine->i915))
1022 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
c82435bb 1023
0160f055
AS
1024 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1025 /* Actual scratch location is at 128 bytes offset */
9f235dfa
TU
1026 batch = gen8_emit_pipe_control(batch,
1027 PIPE_CONTROL_FLUSH_L3 |
1028 PIPE_CONTROL_GLOBAL_GTT_IVB |
1029 PIPE_CONTROL_CS_STALL |
1030 PIPE_CONTROL_QW_WRITE,
1031 i915_ggtt_offset(engine->scratch) +
1032 2 * CACHELINE_BYTES);
0160f055 1033
17ee950d 1034 /* Pad to end of cacheline */
097d4f1c
TU
1035 while ((unsigned long)batch % CACHELINE_BYTES)
1036 *batch++ = MI_NOOP;
17ee950d
AS
1037
1038 /*
1039 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1040 * execution depends on the length specified in terms of cache lines
1041 * in the register CTX_RCS_INDIRECT_CTX
1042 */
1043
097d4f1c 1044 return batch;
17ee950d
AS
1045}
1046
6e5248b5
DV
1047/*
1048 * This batch is started immediately after indirect_ctx batch. Since we ensure
1049 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
17ee950d 1050 *
6e5248b5 1051 * The number of DWORDS written are returned using this field.
17ee950d
AS
1052 *
1053 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1054 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1055 */
097d4f1c 1056static u32 *gen8_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
17ee950d 1057{
7ad00d1a 1058 /* WaDisableCtxRestoreArbitration:bdw,chv */
097d4f1c
TU
1059 *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1060 *batch++ = MI_BATCH_BUFFER_END;
17ee950d 1061
097d4f1c 1062 return batch;
17ee950d
AS
1063}
1064
097d4f1c 1065static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
0504cffc 1066{
9fb5026f 1067 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
097d4f1c 1068 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
a4106a78 1069
9fb5026f 1070 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
097d4f1c
TU
1071 *batch++ = MI_LOAD_REGISTER_IMM(1);
1072 *batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
1073 *batch++ = _MASKED_BIT_DISABLE(
1074 GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
1075 *batch++ = MI_NOOP;
873e8171 1076
066d4628
MK
1077 /* WaClearSlmSpaceAtContextSwitch:kbl */
1078 /* Actual scratch location is at 128 bytes offset */
097d4f1c 1079 if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
9f235dfa
TU
1080 batch = gen8_emit_pipe_control(batch,
1081 PIPE_CONTROL_FLUSH_L3 |
1082 PIPE_CONTROL_GLOBAL_GTT_IVB |
1083 PIPE_CONTROL_CS_STALL |
1084 PIPE_CONTROL_QW_WRITE,
1085 i915_ggtt_offset(engine->scratch)
1086 + 2 * CACHELINE_BYTES);
066d4628 1087 }
3485d99e 1088
9fb5026f 1089 /* WaMediaPoolStateCmdInWABB:bxt,glk */
3485d99e
TG
1090 if (HAS_POOLED_EU(engine->i915)) {
1091 /*
1092 * EU pool configuration is setup along with golden context
1093 * during context initialization. This value depends on
1094 * device type (2x6 or 3x6) and needs to be updated based
1095 * on which subslice is disabled especially for 2x6
1096 * devices, however it is safe to load default
1097 * configuration of 3x6 device instead of masking off
1098 * corresponding bits because HW ignores bits of a disabled
1099 * subslice and drops down to appropriate config. Please
1100 * see render_state_setup() in i915_gem_render_state.c for
1101 * possible configurations, to avoid duplication they are
1102 * not shown here again.
1103 */
097d4f1c
TU
1104 *batch++ = GEN9_MEDIA_POOL_STATE;
1105 *batch++ = GEN9_MEDIA_POOL_ENABLE;
1106 *batch++ = 0x00777000;
1107 *batch++ = 0;
1108 *batch++ = 0;
1109 *batch++ = 0;
3485d99e
TG
1110 }
1111
0504cffc 1112 /* Pad to end of cacheline */
097d4f1c
TU
1113 while ((unsigned long)batch % CACHELINE_BYTES)
1114 *batch++ = MI_NOOP;
0504cffc 1115
097d4f1c 1116 return batch;
0504cffc
AS
1117}
1118
097d4f1c 1119static u32 *gen9_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
0504cffc 1120{
097d4f1c 1121 *batch++ = MI_BATCH_BUFFER_END;
0504cffc 1122
097d4f1c 1123 return batch;
0504cffc
AS
1124}
1125
097d4f1c
TU
1126#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
1127
1128static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
17ee950d 1129{
48bb74e4
CW
1130 struct drm_i915_gem_object *obj;
1131 struct i915_vma *vma;
1132 int err;
17ee950d 1133
097d4f1c 1134 obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
48bb74e4
CW
1135 if (IS_ERR(obj))
1136 return PTR_ERR(obj);
17ee950d 1137
a01cb37a 1138 vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
48bb74e4
CW
1139 if (IS_ERR(vma)) {
1140 err = PTR_ERR(vma);
1141 goto err;
17ee950d
AS
1142 }
1143
48bb74e4
CW
1144 err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1145 if (err)
1146 goto err;
1147
1148 engine->wa_ctx.vma = vma;
17ee950d 1149 return 0;
48bb74e4
CW
1150
1151err:
1152 i915_gem_object_put(obj);
1153 return err;
17ee950d
AS
1154}
1155
097d4f1c 1156static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
17ee950d 1157{
19880c4a 1158 i915_vma_unpin_and_release(&engine->wa_ctx.vma);
17ee950d
AS
1159}
1160
097d4f1c
TU
1161typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1162
0bc40be8 1163static int intel_init_workaround_bb(struct intel_engine_cs *engine)
17ee950d 1164{
48bb74e4 1165 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
097d4f1c
TU
1166 struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
1167 &wa_ctx->per_ctx };
1168 wa_bb_func_t wa_bb_fn[2];
17ee950d 1169 struct page *page;
097d4f1c
TU
1170 void *batch, *batch_ptr;
1171 unsigned int i;
48bb74e4 1172 int ret;
17ee950d 1173
097d4f1c
TU
1174 if (WARN_ON(engine->id != RCS || !engine->scratch))
1175 return -EINVAL;
17ee950d 1176
097d4f1c
TU
1177 switch (INTEL_GEN(engine->i915)) {
1178 case 9:
1179 wa_bb_fn[0] = gen9_init_indirectctx_bb;
1180 wa_bb_fn[1] = gen9_init_perctx_bb;
1181 break;
1182 case 8:
1183 wa_bb_fn[0] = gen8_init_indirectctx_bb;
1184 wa_bb_fn[1] = gen8_init_perctx_bb;
1185 break;
1186 default:
1187 MISSING_CASE(INTEL_GEN(engine->i915));
5e60d790 1188 return 0;
0504cffc 1189 }
5e60d790 1190
097d4f1c 1191 ret = lrc_setup_wa_ctx(engine);
17ee950d
AS
1192 if (ret) {
1193 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1194 return ret;
1195 }
1196
48bb74e4 1197 page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
097d4f1c 1198 batch = batch_ptr = kmap_atomic(page);
17ee950d 1199
097d4f1c
TU
1200 /*
1201 * Emit the two workaround batch buffers, recording the offset from the
1202 * start of the workaround batch buffer object for each and their
1203 * respective sizes.
1204 */
1205 for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1206 wa_bb[i]->offset = batch_ptr - batch;
1207 if (WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, CACHELINE_BYTES))) {
1208 ret = -EINVAL;
1209 break;
1210 }
1211 batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1212 wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
17ee950d
AS
1213 }
1214
097d4f1c
TU
1215 BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
1216
17ee950d
AS
1217 kunmap_atomic(batch);
1218 if (ret)
097d4f1c 1219 lrc_destroy_wa_ctx(engine);
17ee950d
AS
1220
1221 return ret;
1222}
1223
0bc40be8 1224static int gen8_init_common_ring(struct intel_engine_cs *engine)
9b1136d5 1225{
c033666a 1226 struct drm_i915_private *dev_priv = engine->i915;
6b764a59
CW
1227 struct execlist_port *port = engine->execlist_port;
1228 unsigned int n;
77f0d0e9 1229 bool submit;
821ed7df
CW
1230 int ret;
1231
1232 ret = intel_mocs_init_engine(engine);
1233 if (ret)
1234 return ret;
9b1136d5 1235
ad07dfcd 1236 intel_engine_reset_breadcrumbs(engine);
f3b8f912 1237 intel_engine_init_hangcheck(engine);
821ed7df 1238
0bc40be8 1239 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
0bc40be8 1240 I915_WRITE(RING_MODE_GEN7(engine),
9b1136d5 1241 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
f3b8f912
CW
1242 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1243 engine->status_page.ggtt_offset);
1244 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
dfc53c5e 1245
0bc40be8 1246 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
9b1136d5 1247
c87d50cc 1248 /* After a GPU reset, we may have requests to replay */
f747026c 1249 clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
6b764a59 1250
77f0d0e9 1251 submit = false;
6b764a59 1252 for (n = 0; n < ARRAY_SIZE(engine->execlist_port); n++) {
77f0d0e9 1253 if (!port_isset(&port[n]))
6b764a59
CW
1254 break;
1255
1256 DRM_DEBUG_DRIVER("Restarting %s:%d from 0x%x\n",
1257 engine->name, n,
77f0d0e9 1258 port_request(&port[n])->global_seqno);
6b764a59
CW
1259
1260 /* Discard the current inflight count */
77f0d0e9
CW
1261 port_set(&port[n], port_request(&port[n]));
1262 submit = true;
c87d50cc 1263 }
821ed7df 1264
77f0d0e9 1265 if (submit && !i915.enable_guc_submission)
6b764a59
CW
1266 execlists_submit_ports(engine);
1267
821ed7df 1268 return 0;
9b1136d5
OM
1269}
1270
0bc40be8 1271static int gen8_init_render_ring(struct intel_engine_cs *engine)
9b1136d5 1272{
c033666a 1273 struct drm_i915_private *dev_priv = engine->i915;
9b1136d5
OM
1274 int ret;
1275
0bc40be8 1276 ret = gen8_init_common_ring(engine);
9b1136d5
OM
1277 if (ret)
1278 return ret;
1279
1280 /* We need to disable the AsyncFlip performance optimisations in order
1281 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1282 * programmed to '1' on all products.
1283 *
1284 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1285 */
1286 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1287
9b1136d5
OM
1288 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1289
0bc40be8 1290 return init_workarounds_ring(engine);
9b1136d5
OM
1291}
1292
0bc40be8 1293static int gen9_init_render_ring(struct intel_engine_cs *engine)
82ef822e
DL
1294{
1295 int ret;
1296
0bc40be8 1297 ret = gen8_init_common_ring(engine);
82ef822e
DL
1298 if (ret)
1299 return ret;
1300
0bc40be8 1301 return init_workarounds_ring(engine);
82ef822e
DL
1302}
1303
821ed7df
CW
1304static void reset_common_ring(struct intel_engine_cs *engine,
1305 struct drm_i915_gem_request *request)
1306{
821ed7df 1307 struct execlist_port *port = engine->execlist_port;
c0dcb203 1308 struct intel_context *ce;
cdb6ded4
CW
1309 unsigned int n;
1310
1311 /*
1312 * Catch up with any missed context-switch interrupts.
1313 *
1314 * Ideally we would just read the remaining CSB entries now that we
1315 * know the gpu is idle. However, the CSB registers are sometimes^W
1316 * often trashed across a GPU reset! Instead we have to rely on
1317 * guessing the missed context-switch events by looking at what
1318 * requests were completed.
1319 */
1320 if (!request) {
1321 for (n = 0; n < ARRAY_SIZE(engine->execlist_port); n++)
1322 i915_gem_request_put(port_request(&port[n]));
1323 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
1324 return;
1325 }
1326
1327 if (request->ctx != port_request(port)->ctx) {
1328 i915_gem_request_put(port_request(port));
1329 port[0] = port[1];
1330 memset(&port[1], 0, sizeof(port[1]));
1331 }
1332
1333 GEM_BUG_ON(request->ctx != port_request(port)->ctx);
c0dcb203
CW
1334
1335 /* If the request was innocent, we leave the request in the ELSP
1336 * and will try to replay it on restarting. The context image may
1337 * have been corrupted by the reset, in which case we may have
1338 * to service a new GPU hang, but more likely we can continue on
1339 * without impact.
1340 *
1341 * If the request was guilty, we presume the context is corrupt
1342 * and have to at least restore the RING register in the context
1343 * image back to the expected values to skip over the guilty request.
1344 */
cdb6ded4 1345 if (request->fence.error != -EIO)
c0dcb203 1346 return;
821ed7df 1347
a3aabe86
CW
1348 /* We want a simple context + ring to execute the breadcrumb update.
1349 * We cannot rely on the context being intact across the GPU hang,
1350 * so clear it and rebuild just what we need for the breadcrumb.
1351 * All pending requests for this context will be zapped, and any
1352 * future request will be after userspace has had the opportunity
1353 * to recreate its own state.
1354 */
c0dcb203 1355 ce = &request->ctx->engine[engine->id];
a3aabe86
CW
1356 execlists_init_reg_state(ce->lrc_reg_state,
1357 request->ctx, engine, ce->ring);
1358
821ed7df 1359 /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
a3aabe86
CW
1360 ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1361 i915_ggtt_offset(ce->ring->vma);
821ed7df 1362 ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
a3aabe86 1363
821ed7df 1364 request->ring->head = request->postfix;
821ed7df
CW
1365 intel_ring_update_space(request->ring);
1366
a3aabe86 1367 /* Reset WaIdleLiteRestore:bdw,skl as well */
450362d3
CW
1368 request->tail =
1369 intel_ring_wrap(request->ring,
1370 request->wa_tail - WA_TAIL_DWORDS*sizeof(u32));
ed1501d4 1371 assert_ring_tail_valid(request->ring, request->tail);
821ed7df
CW
1372}
1373
7a01a0a2
MT
1374static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1375{
1376 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
4a570db5 1377 struct intel_engine_cs *engine = req->engine;
e7167769 1378 const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
73dec95e
TU
1379 u32 *cs;
1380 int i;
7a01a0a2 1381
73dec95e
TU
1382 cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1383 if (IS_ERR(cs))
1384 return PTR_ERR(cs);
7a01a0a2 1385
73dec95e 1386 *cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
e7167769 1387 for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
7a01a0a2
MT
1388 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1389
73dec95e
TU
1390 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
1391 *cs++ = upper_32_bits(pd_daddr);
1392 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
1393 *cs++ = lower_32_bits(pd_daddr);
7a01a0a2
MT
1394 }
1395
73dec95e
TU
1396 *cs++ = MI_NOOP;
1397 intel_ring_advance(req, cs);
7a01a0a2
MT
1398
1399 return 0;
1400}
1401
be795fc1 1402static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
803688ba 1403 u64 offset, u32 len,
54af56db 1404 const unsigned int flags)
15648585 1405{
73dec95e 1406 u32 *cs;
15648585
OM
1407 int ret;
1408
7a01a0a2
MT
1409 /* Don't rely in hw updating PDPs, specially in lite-restore.
1410 * Ideally, we should set Force PD Restore in ctx descriptor,
1411 * but we can't. Force Restore would be a second option, but
1412 * it is unsafe in case of lite-restore (because the ctx is
2dba3239
MT
1413 * not idle). PML4 is allocated during ppgtt init so this is
1414 * not needed in 48-bit.*/
7a01a0a2 1415 if (req->ctx->ppgtt &&
54af56db
MK
1416 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings) &&
1417 !i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
1418 !intel_vgpu_active(req->i915)) {
1419 ret = intel_logical_ring_emit_pdps(req);
1420 if (ret)
1421 return ret;
7a01a0a2 1422
666796da 1423 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
7a01a0a2
MT
1424 }
1425
73dec95e
TU
1426 cs = intel_ring_begin(req, 4);
1427 if (IS_ERR(cs))
1428 return PTR_ERR(cs);
15648585
OM
1429
1430 /* FIXME(BDW): Address space and security selectors. */
54af56db
MK
1431 *cs++ = MI_BATCH_BUFFER_START_GEN8 |
1432 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
1433 (flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
73dec95e
TU
1434 *cs++ = lower_32_bits(offset);
1435 *cs++ = upper_32_bits(offset);
1436 *cs++ = MI_NOOP;
1437 intel_ring_advance(req, cs);
15648585
OM
1438
1439 return 0;
1440}
1441
31bb59cc 1442static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
73d477f6 1443{
c033666a 1444 struct drm_i915_private *dev_priv = engine->i915;
31bb59cc
CW
1445 I915_WRITE_IMR(engine,
1446 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1447 POSTING_READ_FW(RING_IMR(engine->mmio_base));
73d477f6
OM
1448}
1449
31bb59cc 1450static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
73d477f6 1451{
c033666a 1452 struct drm_i915_private *dev_priv = engine->i915;
31bb59cc 1453 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
73d477f6
OM
1454}
1455
7c9cf4e3 1456static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
4712274c 1457{
73dec95e 1458 u32 cmd, *cs;
4712274c 1459
73dec95e
TU
1460 cs = intel_ring_begin(request, 4);
1461 if (IS_ERR(cs))
1462 return PTR_ERR(cs);
4712274c
OM
1463
1464 cmd = MI_FLUSH_DW + 1;
1465
f0a1fb10
CW
1466 /* We always require a command barrier so that subsequent
1467 * commands, such as breadcrumb interrupts, are strictly ordered
1468 * wrt the contents of the write cache being flushed to memory
1469 * (and thus being coherent from the CPU).
1470 */
1471 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1472
7c9cf4e3 1473 if (mode & EMIT_INVALIDATE) {
f0a1fb10 1474 cmd |= MI_INVALIDATE_TLB;
1dae2dfb 1475 if (request->engine->id == VCS)
f0a1fb10 1476 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1477 }
1478
73dec95e
TU
1479 *cs++ = cmd;
1480 *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1481 *cs++ = 0; /* upper addr */
1482 *cs++ = 0; /* value */
1483 intel_ring_advance(request, cs);
4712274c
OM
1484
1485 return 0;
1486}
1487
7deb4d39 1488static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
7c9cf4e3 1489 u32 mode)
4712274c 1490{
b5321f30 1491 struct intel_engine_cs *engine = request->engine;
bde13ebd
CW
1492 u32 scratch_addr =
1493 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
0b2d0934 1494 bool vf_flush_wa = false, dc_flush_wa = false;
73dec95e 1495 u32 *cs, flags = 0;
0b2d0934 1496 int len;
4712274c
OM
1497
1498 flags |= PIPE_CONTROL_CS_STALL;
1499
7c9cf4e3 1500 if (mode & EMIT_FLUSH) {
4712274c
OM
1501 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1502 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
965fd602 1503 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
40a24488 1504 flags |= PIPE_CONTROL_FLUSH_ENABLE;
4712274c
OM
1505 }
1506
7c9cf4e3 1507 if (mode & EMIT_INVALIDATE) {
4712274c
OM
1508 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1509 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1510 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1511 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1512 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1513 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1514 flags |= PIPE_CONTROL_QW_WRITE;
1515 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
4712274c 1516
1a5a9ce7
BW
1517 /*
1518 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1519 * pipe control.
1520 */
c033666a 1521 if (IS_GEN9(request->i915))
1a5a9ce7 1522 vf_flush_wa = true;
0b2d0934
MK
1523
1524 /* WaForGAMHang:kbl */
1525 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1526 dc_flush_wa = true;
1a5a9ce7 1527 }
9647ff36 1528
0b2d0934
MK
1529 len = 6;
1530
1531 if (vf_flush_wa)
1532 len += 6;
1533
1534 if (dc_flush_wa)
1535 len += 12;
1536
73dec95e
TU
1537 cs = intel_ring_begin(request, len);
1538 if (IS_ERR(cs))
1539 return PTR_ERR(cs);
4712274c 1540
9f235dfa
TU
1541 if (vf_flush_wa)
1542 cs = gen8_emit_pipe_control(cs, 0, 0);
9647ff36 1543
9f235dfa
TU
1544 if (dc_flush_wa)
1545 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
1546 0);
0b2d0934 1547
9f235dfa 1548 cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
0b2d0934 1549
9f235dfa
TU
1550 if (dc_flush_wa)
1551 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
0b2d0934 1552
73dec95e 1553 intel_ring_advance(request, cs);
4712274c
OM
1554
1555 return 0;
1556}
1557
7c17d377
CW
1558/*
1559 * Reserve space for 2 NOOPs at the end of each request to be
1560 * used as a workaround for not being allowed to do lite
1561 * restore with HEAD==TAIL (WaIdleLiteRestore).
1562 */
73dec95e 1563static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
4da46e1e 1564{
73dec95e
TU
1565 *cs++ = MI_NOOP;
1566 *cs++ = MI_NOOP;
1567 request->wa_tail = intel_ring_offset(request, cs);
caddfe71 1568}
4da46e1e 1569
73dec95e 1570static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
caddfe71 1571{
7c17d377
CW
1572 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1573 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
4da46e1e 1574
73dec95e
TU
1575 *cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
1576 *cs++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
1577 *cs++ = 0;
1578 *cs++ = request->global_seqno;
1579 *cs++ = MI_USER_INTERRUPT;
1580 *cs++ = MI_NOOP;
1581 request->tail = intel_ring_offset(request, cs);
ed1501d4 1582 assert_ring_tail_valid(request->ring, request->tail);
caddfe71 1583
73dec95e 1584 gen8_emit_wa_tail(request, cs);
7c17d377 1585}
4da46e1e 1586
98f29e8d
CW
1587static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
1588
caddfe71 1589static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
73dec95e 1590 u32 *cs)
7c17d377 1591{
ce81a65c
MW
1592 /* We're using qword write, seqno should be aligned to 8 bytes. */
1593 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1594
7c17d377
CW
1595 /* w/a for post sync ops following a GPGPU operation we
1596 * need a prior CS_STALL, which is emitted by the flush
1597 * following the batch.
1598 */
73dec95e
TU
1599 *cs++ = GFX_OP_PIPE_CONTROL(6);
1600 *cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
1601 PIPE_CONTROL_QW_WRITE;
1602 *cs++ = intel_hws_seqno_address(request->engine);
1603 *cs++ = 0;
1604 *cs++ = request->global_seqno;
ce81a65c 1605 /* We're thrashing one dword of HWS. */
73dec95e
TU
1606 *cs++ = 0;
1607 *cs++ = MI_USER_INTERRUPT;
1608 *cs++ = MI_NOOP;
1609 request->tail = intel_ring_offset(request, cs);
ed1501d4 1610 assert_ring_tail_valid(request->ring, request->tail);
caddfe71 1611
73dec95e 1612 gen8_emit_wa_tail(request, cs);
4da46e1e
OM
1613}
1614
98f29e8d
CW
1615static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;
1616
8753181e 1617static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
e7778be1
TD
1618{
1619 int ret;
1620
4ac9659e 1621 ret = intel_ring_workarounds_emit(req);
e7778be1
TD
1622 if (ret)
1623 return ret;
1624
3bbaba0c
PA
1625 ret = intel_rcs_context_init_mocs(req);
1626 /*
1627 * Failing to program the MOCS is non-fatal.The system will not
1628 * run at peak performance. So generate an error and carry on.
1629 */
1630 if (ret)
1631 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1632
4e50f082 1633 return i915_gem_render_state_emit(req);
e7778be1
TD
1634}
1635
73e4d07f
OM
1636/**
1637 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
14bb2c11 1638 * @engine: Engine Command Streamer.
73e4d07f 1639 */
0bc40be8 1640void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
454afebd 1641{
6402c330 1642 struct drm_i915_private *dev_priv;
9832b9da 1643
27af5eea
TU
1644 /*
1645 * Tasklet cannot be active at this point due intel_mark_active/idle
1646 * so this is just for documentation.
1647 */
1648 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1649 tasklet_kill(&engine->irq_tasklet);
1650
c033666a 1651 dev_priv = engine->i915;
6402c330 1652
0bc40be8 1653 if (engine->buffer) {
0bc40be8 1654 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
b0366a54 1655 }
48d82387 1656
0bc40be8
TU
1657 if (engine->cleanup)
1658 engine->cleanup(engine);
48d82387 1659
57e88531
CW
1660 if (engine->status_page.vma) {
1661 i915_gem_object_unpin_map(engine->status_page.vma->obj);
1662 engine->status_page.vma = NULL;
48d82387 1663 }
e8a9c58f
CW
1664
1665 intel_engine_cleanup_common(engine);
17ee950d 1666
097d4f1c 1667 lrc_destroy_wa_ctx(engine);
c033666a 1668 engine->i915 = NULL;
3b3f1650
AG
1669 dev_priv->engine[engine->id] = NULL;
1670 kfree(engine);
454afebd
OM
1671}
1672
ff44ad51 1673static void execlists_set_default_submission(struct intel_engine_cs *engine)
ddd66c51 1674{
ff44ad51
CW
1675 engine->submit_request = execlists_submit_request;
1676 engine->schedule = execlists_schedule;
c9203e82 1677 engine->irq_tasklet.func = intel_lrc_irq_handler;
ddd66c51
CW
1678}
1679
c9cacf93 1680static void
e1382efb 1681logical_ring_default_vfuncs(struct intel_engine_cs *engine)
c9cacf93
TU
1682{
1683 /* Default vfuncs which can be overriden by each engine. */
0bc40be8 1684 engine->init_hw = gen8_init_common_ring;
821ed7df 1685 engine->reset_hw = reset_common_ring;
e8a9c58f
CW
1686
1687 engine->context_pin = execlists_context_pin;
1688 engine->context_unpin = execlists_context_unpin;
1689
f73e7399
CW
1690 engine->request_alloc = execlists_request_alloc;
1691
0bc40be8 1692 engine->emit_flush = gen8_emit_flush;
9b81d556 1693 engine->emit_breadcrumb = gen8_emit_breadcrumb;
98f29e8d 1694 engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
ff44ad51
CW
1695
1696 engine->set_default_submission = execlists_set_default_submission;
ddd66c51 1697
31bb59cc
CW
1698 engine->irq_enable = gen8_logical_ring_enable_irq;
1699 engine->irq_disable = gen8_logical_ring_disable_irq;
0bc40be8 1700 engine->emit_bb_start = gen8_emit_bb_start;
c9cacf93
TU
1701}
1702
d9f3af96 1703static inline void
c2c7f240 1704logical_ring_default_irqs(struct intel_engine_cs *engine)
d9f3af96 1705{
c2c7f240 1706 unsigned shift = engine->irq_shift;
0bc40be8
TU
1707 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1708 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
d9f3af96
TU
1709}
1710
7d774cac 1711static int
bf3783e5 1712lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
04794adb 1713{
57e88531 1714 const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
7d774cac 1715 void *hws;
04794adb
TU
1716
1717 /* The HWSP is part of the default context object in LRC mode. */
bf3783e5 1718 hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
7d774cac
TU
1719 if (IS_ERR(hws))
1720 return PTR_ERR(hws);
57e88531
CW
1721
1722 engine->status_page.page_addr = hws + hws_offset;
bde13ebd 1723 engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
57e88531 1724 engine->status_page.vma = vma;
7d774cac
TU
1725
1726 return 0;
04794adb
TU
1727}
1728
bb45438f
TU
1729static void
1730logical_ring_setup(struct intel_engine_cs *engine)
1731{
1732 struct drm_i915_private *dev_priv = engine->i915;
1733 enum forcewake_domains fw_domains;
1734
019bf277
TU
1735 intel_engine_setup_common(engine);
1736
bb45438f
TU
1737 /* Intentionally left blank. */
1738 engine->buffer = NULL;
1739
1740 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1741 RING_ELSP(engine),
1742 FW_REG_WRITE);
1743
1744 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1745 RING_CONTEXT_STATUS_PTR(engine),
1746 FW_REG_READ | FW_REG_WRITE);
1747
1748 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1749 RING_CONTEXT_STATUS_BUF_BASE(engine),
1750 FW_REG_READ);
1751
1752 engine->fw_domains = fw_domains;
1753
bb45438f
TU
1754 tasklet_init(&engine->irq_tasklet,
1755 intel_lrc_irq_handler, (unsigned long)engine);
1756
bb45438f
TU
1757 logical_ring_default_vfuncs(engine);
1758 logical_ring_default_irqs(engine);
bb45438f
TU
1759}
1760
a19d6ff2
TU
1761static int
1762logical_ring_init(struct intel_engine_cs *engine)
1763{
1764 struct i915_gem_context *dctx = engine->i915->kernel_context;
1765 int ret;
1766
019bf277 1767 ret = intel_engine_init_common(engine);
a19d6ff2
TU
1768 if (ret)
1769 goto error;
1770
a19d6ff2
TU
1771 /* And setup the hardware status page. */
1772 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
1773 if (ret) {
1774 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
1775 goto error;
1776 }
1777
1778 return 0;
1779
1780error:
1781 intel_logical_ring_cleanup(engine);
1782 return ret;
1783}
1784
88d2ba2e 1785int logical_render_ring_init(struct intel_engine_cs *engine)
a19d6ff2
TU
1786{
1787 struct drm_i915_private *dev_priv = engine->i915;
1788 int ret;
1789
bb45438f
TU
1790 logical_ring_setup(engine);
1791
a19d6ff2
TU
1792 if (HAS_L3_DPF(dev_priv))
1793 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1794
1795 /* Override some for render ring. */
1796 if (INTEL_GEN(dev_priv) >= 9)
1797 engine->init_hw = gen9_init_render_ring;
1798 else
1799 engine->init_hw = gen8_init_render_ring;
1800 engine->init_context = gen8_init_rcs_context;
a19d6ff2 1801 engine->emit_flush = gen8_emit_flush_render;
9b81d556 1802 engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
98f29e8d 1803 engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
a19d6ff2 1804
f51455d4 1805 ret = intel_engine_create_scratch(engine, PAGE_SIZE);
a19d6ff2
TU
1806 if (ret)
1807 return ret;
1808
1809 ret = intel_init_workaround_bb(engine);
1810 if (ret) {
1811 /*
1812 * We continue even if we fail to initialize WA batch
1813 * because we only expect rare glitches but nothing
1814 * critical to prevent us from using GPU
1815 */
1816 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1817 ret);
1818 }
1819
d038fc7e 1820 return logical_ring_init(engine);
a19d6ff2
TU
1821}
1822
88d2ba2e 1823int logical_xcs_ring_init(struct intel_engine_cs *engine)
bb45438f
TU
1824{
1825 logical_ring_setup(engine);
1826
1827 return logical_ring_init(engine);
454afebd
OM
1828}
1829
0cea6502 1830static u32
c033666a 1831make_rpcs(struct drm_i915_private *dev_priv)
0cea6502
JM
1832{
1833 u32 rpcs = 0;
1834
1835 /*
1836 * No explicit RPCS request is needed to ensure full
1837 * slice/subslice/EU enablement prior to Gen9.
1838 */
c033666a 1839 if (INTEL_GEN(dev_priv) < 9)
0cea6502
JM
1840 return 0;
1841
1842 /*
1843 * Starting in Gen9, render power gating can leave
1844 * slice/subslice/EU in a partially enabled state. We
1845 * must make an explicit request through RPCS for full
1846 * enablement.
1847 */
43b67998 1848 if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
0cea6502 1849 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
f08a0c92 1850 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
0cea6502
JM
1851 GEN8_RPCS_S_CNT_SHIFT;
1852 rpcs |= GEN8_RPCS_ENABLE;
1853 }
1854
43b67998 1855 if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
0cea6502 1856 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
57ec171e 1857 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
0cea6502
JM
1858 GEN8_RPCS_SS_CNT_SHIFT;
1859 rpcs |= GEN8_RPCS_ENABLE;
1860 }
1861
43b67998
ID
1862 if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
1863 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
0cea6502 1864 GEN8_RPCS_EU_MIN_SHIFT;
43b67998 1865 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
0cea6502
JM
1866 GEN8_RPCS_EU_MAX_SHIFT;
1867 rpcs |= GEN8_RPCS_ENABLE;
1868 }
1869
1870 return rpcs;
1871}
1872
0bc40be8 1873static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
71562919
MT
1874{
1875 u32 indirect_ctx_offset;
1876
c033666a 1877 switch (INTEL_GEN(engine->i915)) {
71562919 1878 default:
c033666a 1879 MISSING_CASE(INTEL_GEN(engine->i915));
71562919 1880 /* fall through */
7bd0a2c6
MT
1881 case 10:
1882 indirect_ctx_offset =
1883 GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1884 break;
71562919
MT
1885 case 9:
1886 indirect_ctx_offset =
1887 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1888 break;
1889 case 8:
1890 indirect_ctx_offset =
1891 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1892 break;
1893 }
1894
1895 return indirect_ctx_offset;
1896}
1897
56e51bf0 1898static void execlists_init_reg_state(u32 *regs,
a3aabe86
CW
1899 struct i915_gem_context *ctx,
1900 struct intel_engine_cs *engine,
1901 struct intel_ring *ring)
8670d6f9 1902{
a3aabe86
CW
1903 struct drm_i915_private *dev_priv = engine->i915;
1904 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
56e51bf0
TU
1905 u32 base = engine->mmio_base;
1906 bool rcs = engine->id == RCS;
1907
1908 /* A context is actually a big batch buffer with several
1909 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
1910 * values we are setting here are only for the first context restore:
1911 * on a subsequent save, the GPU will recreate this batchbuffer with new
1912 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
1913 * we are not initializing here).
1914 */
1915 regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
1916 MI_LRI_FORCE_POSTED;
1917
1918 CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
1919 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1920 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
1921 (HAS_RESOURCE_STREAMER(dev_priv) ?
1922 CTX_CTRL_RS_CTX_ENABLE : 0)));
1923 CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
1924 CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
1925 CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
1926 CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
1927 RING_CTL_SIZE(ring->size) | RING_VALID);
1928 CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
1929 CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
1930 CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
1931 CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
1932 CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
1933 CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
1934 if (rcs) {
1935 CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
1936 CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
1937 CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
1938 RING_INDIRECT_CTX_OFFSET(base), 0);
8670d6f9 1939
48bb74e4 1940 if (engine->wa_ctx.vma) {
0bc40be8 1941 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
bde13ebd 1942 u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
17ee950d 1943
56e51bf0 1944 regs[CTX_RCS_INDIRECT_CTX + 1] =
097d4f1c
TU
1945 (ggtt_offset + wa_ctx->indirect_ctx.offset) |
1946 (wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
17ee950d 1947
56e51bf0 1948 regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
0bc40be8 1949 intel_lr_indirect_ctx_offset(engine) << 6;
17ee950d 1950
56e51bf0 1951 regs[CTX_BB_PER_CTX_PTR + 1] =
097d4f1c 1952 (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
17ee950d 1953 }
8670d6f9 1954 }
56e51bf0
TU
1955
1956 regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
1957
1958 CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
0d925ea0 1959 /* PDP values well be assigned later if needed */
56e51bf0
TU
1960 CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
1961 CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
1962 CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
1963 CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
1964 CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
1965 CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
1966 CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
1967 CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
d7b2633d 1968
949e8ab3 1969 if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
2dba3239
MT
1970 /* 64b PPGTT (48bit canonical)
1971 * PDP0_DESCRIPTOR contains the base address to PML4 and
1972 * other PDP Descriptors are ignored.
1973 */
56e51bf0 1974 ASSIGN_CTX_PML4(ppgtt, regs);
2dba3239
MT
1975 }
1976
56e51bf0
TU
1977 if (rcs) {
1978 regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1979 CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
1980 make_rpcs(dev_priv));
19f81df2
RB
1981
1982 i915_oa_init_reg_state(engine, ctx, regs);
8670d6f9 1983 }
a3aabe86
CW
1984}
1985
1986static int
1987populate_lr_context(struct i915_gem_context *ctx,
1988 struct drm_i915_gem_object *ctx_obj,
1989 struct intel_engine_cs *engine,
1990 struct intel_ring *ring)
1991{
1992 void *vaddr;
1993 int ret;
1994
1995 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1996 if (ret) {
1997 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1998 return ret;
1999 }
2000
2001 vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2002 if (IS_ERR(vaddr)) {
2003 ret = PTR_ERR(vaddr);
2004 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2005 return ret;
2006 }
a4f5ea64 2007 ctx_obj->mm.dirty = true;
a3aabe86
CW
2008
2009 /* The second page of the context object contains some fields which must
2010 * be set up prior to the first execution. */
2011
2012 execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
2013 ctx, engine, ring);
8670d6f9 2014
7d774cac 2015 i915_gem_object_unpin_map(ctx_obj);
8670d6f9
OM
2016
2017 return 0;
2018}
2019
e2efd130 2020static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 2021 struct intel_engine_cs *engine)
ede7d42b 2022{
8c857917 2023 struct drm_i915_gem_object *ctx_obj;
9021ad03 2024 struct intel_context *ce = &ctx->engine[engine->id];
bf3783e5 2025 struct i915_vma *vma;
8c857917 2026 uint32_t context_size;
7e37f889 2027 struct intel_ring *ring;
8c857917
OM
2028 int ret;
2029
9021ad03 2030 WARN_ON(ce->state);
ede7d42b 2031
63ffbcda 2032 context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
8c857917 2033
d1675198
AD
2034 /* One extra page as the sharing data between driver and GuC */
2035 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2036
12d79d78 2037 ctx_obj = i915_gem_object_create(ctx->i915, context_size);
fe3db79b 2038 if (IS_ERR(ctx_obj)) {
3126a660 2039 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
fe3db79b 2040 return PTR_ERR(ctx_obj);
8c857917
OM
2041 }
2042
a01cb37a 2043 vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
bf3783e5
CW
2044 if (IS_ERR(vma)) {
2045 ret = PTR_ERR(vma);
2046 goto error_deref_obj;
2047 }
2048
7e37f889 2049 ring = intel_engine_create_ring(engine, ctx->ring_size);
dca33ecc
CW
2050 if (IS_ERR(ring)) {
2051 ret = PTR_ERR(ring);
e84fe803 2052 goto error_deref_obj;
8670d6f9
OM
2053 }
2054
dca33ecc 2055 ret = populate_lr_context(ctx, ctx_obj, engine, ring);
8670d6f9
OM
2056 if (ret) {
2057 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
dca33ecc 2058 goto error_ring_free;
84c2377f
OM
2059 }
2060
dca33ecc 2061 ce->ring = ring;
bf3783e5 2062 ce->state = vma;
0d402a24 2063 ce->initialised |= engine->init_context == NULL;
ede7d42b
OM
2064
2065 return 0;
8670d6f9 2066
dca33ecc 2067error_ring_free:
7e37f889 2068 intel_ring_free(ring);
e84fe803 2069error_deref_obj:
f8c417cd 2070 i915_gem_object_put(ctx_obj);
8670d6f9 2071 return ret;
ede7d42b 2072}
3e5b6f05 2073
821ed7df 2074void intel_lr_context_resume(struct drm_i915_private *dev_priv)
3e5b6f05 2075{
e2f80391 2076 struct intel_engine_cs *engine;
bafb2f7d 2077 struct i915_gem_context *ctx;
3b3f1650 2078 enum intel_engine_id id;
bafb2f7d
CW
2079
2080 /* Because we emit WA_TAIL_DWORDS there may be a disparity
2081 * between our bookkeeping in ce->ring->head and ce->ring->tail and
2082 * that stored in context. As we only write new commands from
2083 * ce->ring->tail onwards, everything before that is junk. If the GPU
2084 * starts reading from its RING_HEAD from the context, it may try to
2085 * execute that junk and die.
2086 *
2087 * So to avoid that we reset the context images upon resume. For
2088 * simplicity, we just zero everything out.
2089 */
829a0af2 2090 list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
3b3f1650 2091 for_each_engine(engine, dev_priv, id) {
bafb2f7d
CW
2092 struct intel_context *ce = &ctx->engine[engine->id];
2093 u32 *reg;
3e5b6f05 2094
bafb2f7d
CW
2095 if (!ce->state)
2096 continue;
7d774cac 2097
bafb2f7d
CW
2098 reg = i915_gem_object_pin_map(ce->state->obj,
2099 I915_MAP_WB);
2100 if (WARN_ON(IS_ERR(reg)))
2101 continue;
3e5b6f05 2102
bafb2f7d
CW
2103 reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2104 reg[CTX_RING_HEAD+1] = 0;
2105 reg[CTX_RING_TAIL+1] = 0;
3e5b6f05 2106
a4f5ea64 2107 ce->state->obj->mm.dirty = true;
bafb2f7d 2108 i915_gem_object_unpin_map(ce->state->obj);
3e5b6f05 2109
e6ba9992 2110 intel_ring_reset(ce->ring, 0);
bafb2f7d 2111 }
3e5b6f05
TD
2112 }
2113}