drm/i915: Get correct display clock on 945gm
[linux-block.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1 133 */
27af5eea 134#include <linux/interrupt.h>
b20385f1
OM
135
136#include <drm/drmP.h>
137#include <drm/i915_drm.h>
138#include "i915_drv.h"
3bbaba0c 139#include "intel_mocs.h"
127f1003 140
468c6816 141#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
142#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
e981e7b1
TD
145#define RING_EXECLIST_QFULL (1 << 0x2)
146#define RING_EXECLIST1_VALID (1 << 0x3)
147#define RING_EXECLIST0_VALID (1 << 0x4)
148#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149#define RING_EXECLIST1_ACTIVE (1 << 0x11)
150#define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9 158
70c2a24d
CW
159#define GEN8_CTX_STATUS_COMPLETED_MASK \
160 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
161 GEN8_CTX_STATUS_PREEMPTED | \
162 GEN8_CTX_STATUS_ELEMENT_SWITCH)
163
8670d6f9
OM
164#define CTX_LRI_HEADER_0 0x01
165#define CTX_CONTEXT_CONTROL 0x02
166#define CTX_RING_HEAD 0x04
167#define CTX_RING_TAIL 0x06
168#define CTX_RING_BUFFER_START 0x08
169#define CTX_RING_BUFFER_CONTROL 0x0a
170#define CTX_BB_HEAD_U 0x0c
171#define CTX_BB_HEAD_L 0x0e
172#define CTX_BB_STATE 0x10
173#define CTX_SECOND_BB_HEAD_U 0x12
174#define CTX_SECOND_BB_HEAD_L 0x14
175#define CTX_SECOND_BB_STATE 0x16
176#define CTX_BB_PER_CTX_PTR 0x18
177#define CTX_RCS_INDIRECT_CTX 0x1a
178#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
179#define CTX_LRI_HEADER_1 0x21
180#define CTX_CTX_TIMESTAMP 0x22
181#define CTX_PDP3_UDW 0x24
182#define CTX_PDP3_LDW 0x26
183#define CTX_PDP2_UDW 0x28
184#define CTX_PDP2_LDW 0x2a
185#define CTX_PDP1_UDW 0x2c
186#define CTX_PDP1_LDW 0x2e
187#define CTX_PDP0_UDW 0x30
188#define CTX_PDP0_LDW 0x32
189#define CTX_LRI_HEADER_2 0x41
190#define CTX_R_PWR_CLK_STATE 0x42
191#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
192
0d925ea0 193#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
f0f59a00 194 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
0d925ea0
VS
195 (reg_state)[(pos)+1] = (val); \
196} while (0)
197
198#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
d852c7bf 199 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
e5815a2e
MT
200 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
201 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
9244a817 202} while (0)
e5815a2e 203
9244a817 204#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
2dba3239
MT
205 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
206 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
9244a817 207} while (0)
2dba3239 208
71562919
MT
209#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
210#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
84b790f8 211
0e93cdd4
CW
212/* Typical size of the average request (2 pipecontrols and a MI_BB) */
213#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
214
a3aabe86
CW
215#define WA_TAIL_DWORDS 2
216
e2efd130 217static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 218 struct intel_engine_cs *engine);
a3aabe86
CW
219static void execlists_init_reg_state(u32 *reg_state,
220 struct i915_gem_context *ctx,
221 struct intel_engine_cs *engine,
222 struct intel_ring *ring);
7ba717cf 223
73e4d07f
OM
224/**
225 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
14bb2c11 226 * @dev_priv: i915 device private
73e4d07f
OM
227 * @enable_execlists: value of i915.enable_execlists module parameter.
228 *
229 * Only certain platforms support Execlists (the prerequisites being
27401d12 230 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
231 *
232 * Return: 1 if Execlists is supported and has to be enabled.
233 */
c033666a 234int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
127f1003 235{
a0bd6c31
ZL
236 /* On platforms with execlist available, vGPU will only
237 * support execlist mode, no ring buffer mode.
238 */
c033666a 239 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
a0bd6c31
ZL
240 return 1;
241
c033666a 242 if (INTEL_GEN(dev_priv) >= 9)
70ee45e1
DL
243 return 1;
244
127f1003
OM
245 if (enable_execlists == 0)
246 return 0;
247
5a21b665
DV
248 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
249 USES_PPGTT(dev_priv) &&
250 i915.use_mmio_flip >= 0)
127f1003
OM
251 return 1;
252
253 return 0;
254}
ede7d42b 255
73e4d07f 256/**
ca82580c
TU
257 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
258 * descriptor for a pinned context
ca82580c 259 * @ctx: Context to work on
9021ad03 260 * @engine: Engine the descriptor will be used with
73e4d07f 261 *
ca82580c
TU
262 * The context descriptor encodes various attributes of a context,
263 * including its GTT address and some flags. Because it's fairly
264 * expensive to calculate, we'll just do it once and cache the result,
265 * which remains valid until the context is unpinned.
266 *
6e5248b5
DV
267 * This is what a descriptor looks like, from LSB to MSB::
268 *
2355cf08 269 * bits 0-11: flags, GEN8_CTX_* (cached in ctx->desc_template)
6e5248b5
DV
270 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
271 * bits 32-52: ctx ID, a globally unique tag
272 * bits 53-54: mbz, reserved for use by hardware
273 * bits 55-63: group ID, currently unused and set to 0
73e4d07f 274 */
ca82580c 275static void
e2efd130 276intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
0bc40be8 277 struct intel_engine_cs *engine)
84b790f8 278{
9021ad03 279 struct intel_context *ce = &ctx->engine[engine->id];
7069b144 280 u64 desc;
84b790f8 281
7069b144 282 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
84b790f8 283
2355cf08 284 desc = ctx->desc_template; /* bits 0-11 */
bde13ebd 285 desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
9021ad03 286 /* bits 12-31 */
7069b144 287 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
5af05fef 288
9021ad03 289 ce->lrc_desc = desc;
5af05fef
MT
290}
291
e2efd130 292uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
0bc40be8 293 struct intel_engine_cs *engine)
84b790f8 294{
0bc40be8 295 return ctx->engine[engine->id].lrc_desc;
ca82580c 296}
203a571b 297
bbd6c47e
CW
298static inline void
299execlists_context_status_change(struct drm_i915_gem_request *rq,
300 unsigned long status)
84b790f8 301{
bbd6c47e
CW
302 /*
303 * Only used when GVT-g is enabled now. When GVT-g is disabled,
304 * The compiler should eliminate this function as dead-code.
305 */
306 if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
307 return;
6daccb0b 308
bbd6c47e 309 atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
84b790f8
BW
310}
311
c6a2ac71
TU
312static void
313execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
314{
315 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
316 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
317 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
318 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
319}
320
70c2a24d 321static u64 execlists_update_context(struct drm_i915_gem_request *rq)
ae1250b9 322{
70c2a24d 323 struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
04da811b
ZW
324 struct i915_hw_ppgtt *ppgtt =
325 rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
70c2a24d 326 u32 *reg_state = ce->lrc_reg_state;
ae1250b9 327
caddfe71 328 reg_state[CTX_RING_TAIL+1] = rq->tail;
ae1250b9 329
c6a2ac71
TU
330 /* True 32b PPGTT with dynamic page allocation: update PDP
331 * registers and point the unallocated PDPs to scratch page.
332 * PML4 is allocated during ppgtt init, so this is not needed
333 * in 48-bit mode.
334 */
335 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
336 execlists_update_context_pdps(ppgtt, reg_state);
70c2a24d
CW
337
338 return ce->lrc_desc;
ae1250b9
OM
339}
340
70c2a24d 341static void execlists_submit_ports(struct intel_engine_cs *engine)
bbd6c47e 342{
70c2a24d
CW
343 struct drm_i915_private *dev_priv = engine->i915;
344 struct execlist_port *port = engine->execlist_port;
bbd6c47e
CW
345 u32 __iomem *elsp =
346 dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
347 u64 desc[2];
348
c816e605 349 GEM_BUG_ON(port[0].count > 1);
70c2a24d
CW
350 if (!port[0].count)
351 execlists_context_status_change(port[0].request,
352 INTEL_CONTEXT_SCHEDULE_IN);
353 desc[0] = execlists_update_context(port[0].request);
2ffe80aa 354 GEM_BUG_ONLY(port[0].context_id = upper_32_bits(desc[0]));
816ee798 355 port[0].count++;
70c2a24d
CW
356
357 if (port[1].request) {
358 GEM_BUG_ON(port[1].count);
359 execlists_context_status_change(port[1].request,
360 INTEL_CONTEXT_SCHEDULE_IN);
361 desc[1] = execlists_update_context(port[1].request);
2ffe80aa 362 GEM_BUG_ONLY(port[1].context_id = upper_32_bits(desc[1]));
70c2a24d 363 port[1].count = 1;
bbd6c47e
CW
364 } else {
365 desc[1] = 0;
366 }
70c2a24d 367 GEM_BUG_ON(desc[0] == desc[1]);
bbd6c47e
CW
368
369 /* You must always write both descriptors in the order below. */
370 writel(upper_32_bits(desc[1]), elsp);
371 writel(lower_32_bits(desc[1]), elsp);
372
373 writel(upper_32_bits(desc[0]), elsp);
374 /* The context is automatically loaded after the following */
375 writel(lower_32_bits(desc[0]), elsp);
376}
377
70c2a24d 378static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
84b790f8 379{
70c2a24d 380 return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
6095868a 381 i915_gem_context_force_single_submission(ctx));
70c2a24d 382}
84b790f8 383
70c2a24d
CW
384static bool can_merge_ctx(const struct i915_gem_context *prev,
385 const struct i915_gem_context *next)
386{
387 if (prev != next)
388 return false;
26720ab9 389
70c2a24d
CW
390 if (ctx_single_port_submission(prev))
391 return false;
26720ab9 392
70c2a24d 393 return true;
84b790f8
BW
394}
395
70c2a24d 396static void execlists_dequeue(struct intel_engine_cs *engine)
acdd884a 397{
20311bd3 398 struct drm_i915_gem_request *last;
70c2a24d 399 struct execlist_port *port = engine->execlist_port;
d55ac5bf 400 unsigned long flags;
20311bd3 401 struct rb_node *rb;
70c2a24d
CW
402 bool submit = false;
403
404 last = port->request;
405 if (last)
406 /* WaIdleLiteRestore:bdw,skl
407 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
9b81d556 408 * as we resubmit the request. See gen8_emit_breadcrumb()
70c2a24d
CW
409 * for where we prepare the padding after the end of the
410 * request.
411 */
412 last->tail = last->wa_tail;
e981e7b1 413
70c2a24d 414 GEM_BUG_ON(port[1].request);
acdd884a 415
70c2a24d
CW
416 /* Hardware submission is through 2 ports. Conceptually each port
417 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
418 * static for a context, and unique to each, so we only execute
419 * requests belonging to a single context from each ring. RING_HEAD
420 * is maintained by the CS in the context image, it marks the place
421 * where it got up to last time, and through RING_TAIL we tell the CS
422 * where we want to execute up to this time.
423 *
424 * In this list the requests are in order of execution. Consecutive
425 * requests from the same context are adjacent in the ringbuffer. We
426 * can combine these requests into a single RING_TAIL update:
427 *
428 * RING_HEAD...req1...req2
429 * ^- RING_TAIL
430 * since to execute req2 the CS must first execute req1.
431 *
432 * Our goal then is to point each port to the end of a consecutive
433 * sequence of requests as being the most optimal (fewest wake ups
434 * and context switches) submission.
779949f4 435 */
acdd884a 436
d55ac5bf 437 spin_lock_irqsave(&engine->timeline->lock, flags);
20311bd3
CW
438 rb = engine->execlist_first;
439 while (rb) {
440 struct drm_i915_gem_request *cursor =
441 rb_entry(rb, typeof(*cursor), priotree.node);
442
70c2a24d
CW
443 /* Can we combine this request with the current port? It has to
444 * be the same context/ringbuffer and not have any exceptions
445 * (e.g. GVT saying never to combine contexts).
c6a2ac71 446 *
70c2a24d
CW
447 * If we can combine the requests, we can execute both by
448 * updating the RING_TAIL to point to the end of the second
449 * request, and so we never need to tell the hardware about
450 * the first.
53292cdb 451 */
70c2a24d
CW
452 if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
453 /* If we are on the second port and cannot combine
454 * this request with the last, then we are done.
455 */
456 if (port != engine->execlist_port)
457 break;
458
459 /* If GVT overrides us we only ever submit port[0],
460 * leaving port[1] empty. Note that we also have
461 * to be careful that we don't queue the same
462 * context (even though a different request) to
463 * the second port.
464 */
d7ab992c
MH
465 if (ctx_single_port_submission(last->ctx) ||
466 ctx_single_port_submission(cursor->ctx))
70c2a24d
CW
467 break;
468
469 GEM_BUG_ON(last->ctx == cursor->ctx);
470
471 i915_gem_request_assign(&port->request, last);
472 port++;
473 }
d55ac5bf 474
20311bd3
CW
475 rb = rb_next(rb);
476 rb_erase(&cursor->priotree.node, &engine->execlist_queue);
477 RB_CLEAR_NODE(&cursor->priotree.node);
478 cursor->priotree.priority = INT_MAX;
479
d55ac5bf 480 __i915_gem_request_submit(cursor);
70c2a24d
CW
481 last = cursor;
482 submit = true;
483 }
484 if (submit) {
70c2a24d 485 i915_gem_request_assign(&port->request, last);
20311bd3 486 engine->execlist_first = rb;
53292cdb 487 }
d55ac5bf 488 spin_unlock_irqrestore(&engine->timeline->lock, flags);
53292cdb 489
70c2a24d
CW
490 if (submit)
491 execlists_submit_ports(engine);
acdd884a
MT
492}
493
70c2a24d 494static bool execlists_elsp_idle(struct intel_engine_cs *engine)
e981e7b1 495{
70c2a24d 496 return !engine->execlist_port[0].request;
e981e7b1
TD
497}
498
0cb5670b
ID
499/**
500 * intel_execlists_idle() - Determine if all engine submission ports are idle
501 * @dev_priv: i915 device private
502 *
503 * Return true if there are no requests pending on any of the submission ports
504 * of any engines.
505 */
506bool intel_execlists_idle(struct drm_i915_private *dev_priv)
507{
508 struct intel_engine_cs *engine;
509 enum intel_engine_id id;
510
511 if (!i915.enable_execlists)
512 return true;
513
453cfe21
CW
514 for_each_engine(engine, dev_priv, id) {
515 /* Interrupt/tasklet pending? */
516 if (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted))
517 return false;
518
519 /* Both ports drained, no more ELSP submission? */
0cb5670b
ID
520 if (!execlists_elsp_idle(engine))
521 return false;
453cfe21 522 }
0cb5670b
ID
523
524 return true;
525}
526
816ee798 527static bool execlists_elsp_ready(const struct intel_engine_cs *engine)
91a41032 528{
816ee798 529 const struct execlist_port *port = engine->execlist_port;
91a41032 530
816ee798 531 return port[0].count + port[1].count < 2;
91a41032
BW
532}
533
6e5248b5 534/*
73e4d07f
OM
535 * Check the unread Context Status Buffers and manage the submission of new
536 * contexts to the ELSP accordingly.
537 */
27af5eea 538static void intel_lrc_irq_handler(unsigned long data)
e981e7b1 539{
27af5eea 540 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
70c2a24d 541 struct execlist_port *port = engine->execlist_port;
c033666a 542 struct drm_i915_private *dev_priv = engine->i915;
c6a2ac71 543
3756685a 544 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
c6a2ac71 545
f747026c 546 while (test_and_clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
70c2a24d
CW
547 u32 __iomem *csb_mmio =
548 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
549 u32 __iomem *buf =
550 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
551 unsigned int csb, head, tail;
552
553 csb = readl(csb_mmio);
554 head = GEN8_CSB_READ_PTR(csb);
555 tail = GEN8_CSB_WRITE_PTR(csb);
a37951ac
CW
556 if (head == tail)
557 break;
558
70c2a24d
CW
559 if (tail < head)
560 tail += GEN8_CSB_ENTRIES;
a37951ac 561 do {
70c2a24d
CW
562 unsigned int idx = ++head % GEN8_CSB_ENTRIES;
563 unsigned int status = readl(buf + 2 * idx);
564
2ffe80aa
CW
565 /* We are flying near dragons again.
566 *
567 * We hold a reference to the request in execlist_port[]
568 * but no more than that. We are operating in softirq
569 * context and so cannot hold any mutex or sleep. That
570 * prevents us stopping the requests we are processing
571 * in port[] from being retired simultaneously (the
572 * breadcrumb will be complete before we see the
573 * context-switch). As we only hold the reference to the
574 * request, any pointer chasing underneath the request
575 * is subject to a potential use-after-free. Thus we
576 * store all of the bookkeeping within port[] as
577 * required, and avoid using unguarded pointers beneath
578 * request itself. The same applies to the atomic
579 * status notifier.
580 */
581
70c2a24d
CW
582 if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
583 continue;
584
86aa7e76 585 /* Check the context/desc id for this event matches */
2ffe80aa
CW
586 GEM_BUG_ONLY_ON(readl(buf + 2 * idx + 1) !=
587 port[0].context_id);
86aa7e76 588
70c2a24d
CW
589 GEM_BUG_ON(port[0].count == 0);
590 if (--port[0].count == 0) {
591 GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
592 execlists_context_status_change(port[0].request,
593 INTEL_CONTEXT_SCHEDULE_OUT);
594
595 i915_gem_request_put(port[0].request);
596 port[0] = port[1];
597 memset(&port[1], 0, sizeof(port[1]));
70c2a24d 598 }
26720ab9 599
70c2a24d
CW
600 GEM_BUG_ON(port[0].count == 0 &&
601 !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
a37951ac 602 } while (head < tail);
e1fee72c 603
70c2a24d
CW
604 writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
605 GEN8_CSB_WRITE_PTR(csb) << 8),
606 csb_mmio);
e981e7b1
TD
607 }
608
70c2a24d
CW
609 if (execlists_elsp_ready(engine))
610 execlists_dequeue(engine);
c6a2ac71 611
70c2a24d 612 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
e981e7b1
TD
613}
614
20311bd3
CW
615static bool insert_request(struct i915_priotree *pt, struct rb_root *root)
616{
617 struct rb_node **p, *rb;
618 bool first = true;
619
620 /* most positive priority is scheduled first, equal priorities fifo */
621 rb = NULL;
622 p = &root->rb_node;
623 while (*p) {
624 struct i915_priotree *pos;
625
626 rb = *p;
627 pos = rb_entry(rb, typeof(*pos), node);
628 if (pt->priority > pos->priority) {
629 p = &rb->rb_left;
630 } else {
631 p = &rb->rb_right;
632 first = false;
633 }
634 }
635 rb_link_node(&pt->node, rb, p);
636 rb_insert_color(&pt->node, root);
637
638 return first;
639}
640
f4ea6bdd 641static void execlists_submit_request(struct drm_i915_gem_request *request)
acdd884a 642{
4a570db5 643 struct intel_engine_cs *engine = request->engine;
5590af3e 644 unsigned long flags;
acdd884a 645
663f71e7
CW
646 /* Will be called from irq-context when using foreign fences. */
647 spin_lock_irqsave(&engine->timeline->lock, flags);
acdd884a 648
3833281a 649 if (insert_request(&request->priotree, &engine->execlist_queue)) {
20311bd3 650 engine->execlist_first = &request->priotree.node;
48ea2554 651 if (execlists_elsp_ready(engine))
3833281a
CW
652 tasklet_hi_schedule(&engine->irq_tasklet);
653 }
acdd884a 654
663f71e7 655 spin_unlock_irqrestore(&engine->timeline->lock, flags);
acdd884a
MT
656}
657
20311bd3
CW
658static struct intel_engine_cs *
659pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
660{
661 struct intel_engine_cs *engine;
662
663 engine = container_of(pt,
664 struct drm_i915_gem_request,
665 priotree)->engine;
666 if (engine != locked) {
667 if (locked)
668 spin_unlock_irq(&locked->timeline->lock);
669 spin_lock_irq(&engine->timeline->lock);
670 }
671
672 return engine;
673}
674
675static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
676{
677 struct intel_engine_cs *engine = NULL;
678 struct i915_dependency *dep, *p;
679 struct i915_dependency stack;
680 LIST_HEAD(dfs);
681
682 if (prio <= READ_ONCE(request->priotree.priority))
683 return;
684
70cd1476
CW
685 /* Need BKL in order to use the temporary link inside i915_dependency */
686 lockdep_assert_held(&request->i915->drm.struct_mutex);
20311bd3
CW
687
688 stack.signaler = &request->priotree;
689 list_add(&stack.dfs_link, &dfs);
690
691 /* Recursively bump all dependent priorities to match the new request.
692 *
693 * A naive approach would be to use recursion:
694 * static void update_priorities(struct i915_priotree *pt, prio) {
695 * list_for_each_entry(dep, &pt->signalers_list, signal_link)
696 * update_priorities(dep->signal, prio)
697 * insert_request(pt);
698 * }
699 * but that may have unlimited recursion depth and so runs a very
700 * real risk of overunning the kernel stack. Instead, we build
701 * a flat list of all dependencies starting with the current request.
702 * As we walk the list of dependencies, we add all of its dependencies
703 * to the end of the list (this may include an already visited
704 * request) and continue to walk onwards onto the new dependencies. The
705 * end result is a topological list of requests in reverse order, the
706 * last element in the list is the request we must execute first.
707 */
708 list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
709 struct i915_priotree *pt = dep->signaler;
710
711 list_for_each_entry(p, &pt->signalers_list, signal_link)
712 if (prio > READ_ONCE(p->signaler->priority))
713 list_move_tail(&p->dfs_link, &dfs);
714
0798cff4 715 list_safe_reset_next(dep, p, dfs_link);
20311bd3
CW
716 if (!RB_EMPTY_NODE(&pt->node))
717 continue;
718
719 engine = pt_lock_engine(pt, engine);
720
721 /* If it is not already in the rbtree, we can update the
722 * priority inplace and skip over it (and its dependencies)
723 * if it is referenced *again* as we descend the dfs.
724 */
725 if (prio > pt->priority && RB_EMPTY_NODE(&pt->node)) {
726 pt->priority = prio;
727 list_del_init(&dep->dfs_link);
728 }
729 }
730
731 /* Fifo and depth-first replacement ensure our deps execute before us */
732 list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
733 struct i915_priotree *pt = dep->signaler;
734
735 INIT_LIST_HEAD(&dep->dfs_link);
736
737 engine = pt_lock_engine(pt, engine);
738
739 if (prio <= pt->priority)
740 continue;
741
742 GEM_BUG_ON(RB_EMPTY_NODE(&pt->node));
743
744 pt->priority = prio;
745 rb_erase(&pt->node, &engine->execlist_queue);
746 if (insert_request(pt, &engine->execlist_queue))
747 engine->execlist_first = &pt->node;
748 }
749
750 if (engine)
751 spin_unlock_irq(&engine->timeline->lock);
752
753 /* XXX Do we need to preempt to make room for us and our deps? */
754}
755
e8a9c58f
CW
756static int execlists_context_pin(struct intel_engine_cs *engine,
757 struct i915_gem_context *ctx)
dcb4c12a 758{
9021ad03 759 struct intel_context *ce = &ctx->engine[engine->id];
2947e408 760 unsigned int flags;
7d774cac 761 void *vaddr;
ca82580c 762 int ret;
dcb4c12a 763
91c8a326 764 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
ca82580c 765
9021ad03 766 if (ce->pin_count++)
24f1d3cc
CW
767 return 0;
768
e8a9c58f
CW
769 if (!ce->state) {
770 ret = execlists_context_deferred_alloc(ctx, engine);
771 if (ret)
772 goto err;
773 }
56f6e0a7 774 GEM_BUG_ON(!ce->state);
e8a9c58f 775
feef2a7c
DCS
776 flags = PIN_GLOBAL;
777 if (ctx->ggtt_offset_bias)
778 flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
984ff29f 779 if (i915_gem_context_is_kernel(ctx))
2947e408
CW
780 flags |= PIN_HIGH;
781
782 ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN, flags);
e84fe803 783 if (ret)
24f1d3cc 784 goto err;
7ba717cf 785
bf3783e5 786 vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
7d774cac
TU
787 if (IS_ERR(vaddr)) {
788 ret = PTR_ERR(vaddr);
bf3783e5 789 goto unpin_vma;
82352e90
TU
790 }
791
d3ef1af6 792 ret = intel_ring_pin(ce->ring, ctx->ggtt_offset_bias);
e84fe803 793 if (ret)
7d774cac 794 goto unpin_map;
d1675198 795
0bc40be8 796 intel_lr_context_descriptor_update(ctx, engine);
9021ad03 797
a3aabe86
CW
798 ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
799 ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
bde13ebd 800 i915_ggtt_offset(ce->ring->vma);
a3aabe86 801
a4f5ea64 802 ce->state->obj->mm.dirty = true;
e93c28f3 803
9a6feaf0 804 i915_gem_context_get(ctx);
24f1d3cc 805 return 0;
7ba717cf 806
7d774cac 807unpin_map:
bf3783e5
CW
808 i915_gem_object_unpin_map(ce->state->obj);
809unpin_vma:
810 __i915_vma_unpin(ce->state);
24f1d3cc 811err:
9021ad03 812 ce->pin_count = 0;
e84fe803
NH
813 return ret;
814}
815
e8a9c58f
CW
816static void execlists_context_unpin(struct intel_engine_cs *engine,
817 struct i915_gem_context *ctx)
e84fe803 818{
9021ad03 819 struct intel_context *ce = &ctx->engine[engine->id];
e84fe803 820
91c8a326 821 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
9021ad03 822 GEM_BUG_ON(ce->pin_count == 0);
321fe304 823
9021ad03 824 if (--ce->pin_count)
24f1d3cc 825 return;
e84fe803 826
aad29fbb 827 intel_ring_unpin(ce->ring);
dcb4c12a 828
bf3783e5
CW
829 i915_gem_object_unpin_map(ce->state->obj);
830 i915_vma_unpin(ce->state);
321fe304 831
9a6feaf0 832 i915_gem_context_put(ctx);
dcb4c12a
OM
833}
834
f73e7399 835static int execlists_request_alloc(struct drm_i915_gem_request *request)
ef11c01d
CW
836{
837 struct intel_engine_cs *engine = request->engine;
838 struct intel_context *ce = &request->ctx->engine[engine->id];
839 int ret;
840
e8a9c58f
CW
841 GEM_BUG_ON(!ce->pin_count);
842
ef11c01d
CW
843 /* Flush enough space to reduce the likelihood of waiting after
844 * we start building the request - in which case we will just
845 * have to repeat work.
846 */
847 request->reserved_space += EXECLISTS_REQUEST_SIZE;
848
e8a9c58f 849 GEM_BUG_ON(!ce->ring);
ef11c01d
CW
850 request->ring = ce->ring;
851
ef11c01d
CW
852 if (i915.enable_guc_submission) {
853 /*
854 * Check that the GuC has space for the request before
855 * going any further, as the i915_add_request() call
856 * later on mustn't fail ...
857 */
858 ret = i915_guc_wq_reserve(request);
859 if (ret)
e8a9c58f 860 goto err;
ef11c01d
CW
861 }
862
863 ret = intel_ring_begin(request, 0);
864 if (ret)
865 goto err_unreserve;
866
867 if (!ce->initialised) {
868 ret = engine->init_context(request);
869 if (ret)
870 goto err_unreserve;
871
872 ce->initialised = true;
873 }
874
875 /* Note that after this point, we have committed to using
876 * this request as it is being used to both track the
877 * state of engine initialisation and liveness of the
878 * golden renderstate above. Think twice before you try
879 * to cancel/unwind this request now.
880 */
881
882 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
883 return 0;
884
885err_unreserve:
886 if (i915.enable_guc_submission)
887 i915_guc_wq_unreserve(request);
e8a9c58f 888err:
ef11c01d
CW
889 return ret;
890}
891
e2be4faf 892static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
771b9a53
MT
893{
894 int ret, i;
7e37f889 895 struct intel_ring *ring = req->ring;
c033666a 896 struct i915_workarounds *w = &req->i915->workarounds;
771b9a53 897
cd7feaaa 898 if (w->count == 0)
771b9a53
MT
899 return 0;
900
7c9cf4e3 901 ret = req->engine->emit_flush(req, EMIT_BARRIER);
771b9a53
MT
902 if (ret)
903 return ret;
904
987046ad 905 ret = intel_ring_begin(req, w->count * 2 + 2);
771b9a53
MT
906 if (ret)
907 return ret;
908
1dae2dfb 909 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
771b9a53 910 for (i = 0; i < w->count; i++) {
1dae2dfb
CW
911 intel_ring_emit_reg(ring, w->reg[i].addr);
912 intel_ring_emit(ring, w->reg[i].value);
771b9a53 913 }
1dae2dfb 914 intel_ring_emit(ring, MI_NOOP);
771b9a53 915
1dae2dfb 916 intel_ring_advance(ring);
771b9a53 917
7c9cf4e3 918 ret = req->engine->emit_flush(req, EMIT_BARRIER);
771b9a53
MT
919 if (ret)
920 return ret;
921
922 return 0;
923}
924
83b8a982 925#define wa_ctx_emit(batch, index, cmd) \
17ee950d 926 do { \
83b8a982
AS
927 int __index = (index)++; \
928 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
17ee950d
AS
929 return -ENOSPC; \
930 } \
83b8a982 931 batch[__index] = (cmd); \
17ee950d
AS
932 } while (0)
933
8f40db77 934#define wa_ctx_emit_reg(batch, index, reg) \
f0f59a00 935 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
9e000847
AS
936
937/*
938 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
939 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
940 * but there is a slight complication as this is applied in WA batch where the
941 * values are only initialized once so we cannot take register value at the
942 * beginning and reuse it further; hence we save its value to memory, upload a
943 * constant value with bit21 set and then we restore it back with the saved value.
944 * To simplify the WA, a constant value is formed by using the default value
945 * of this register. This shouldn't be a problem because we are only modifying
946 * it for a short period and this batch in non-premptible. We can ofcourse
947 * use additional instructions that read the actual value of the register
948 * at that time and set our bit of interest but it makes the WA complicated.
949 *
950 * This WA is also required for Gen9 so extracting as a function avoids
951 * code duplication.
952 */
0bc40be8 953static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
6e5248b5 954 uint32_t *batch,
9e000847
AS
955 uint32_t index)
956{
957 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
958
f1afe24f 959 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
83b8a982 960 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 961 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
bde13ebd 962 wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
83b8a982
AS
963 wa_ctx_emit(batch, index, 0);
964
965 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 966 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
83b8a982
AS
967 wa_ctx_emit(batch, index, l3sqc4_flush);
968
969 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
970 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
971 PIPE_CONTROL_DC_FLUSH_ENABLE));
972 wa_ctx_emit(batch, index, 0);
973 wa_ctx_emit(batch, index, 0);
974 wa_ctx_emit(batch, index, 0);
975 wa_ctx_emit(batch, index, 0);
976
f1afe24f 977 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
83b8a982 978 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 979 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
bde13ebd 980 wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
83b8a982 981 wa_ctx_emit(batch, index, 0);
9e000847
AS
982
983 return index;
984}
985
17ee950d
AS
986static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
987 uint32_t offset,
988 uint32_t start_alignment)
989{
990 return wa_ctx->offset = ALIGN(offset, start_alignment);
991}
992
993static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
994 uint32_t offset,
995 uint32_t size_alignment)
996{
997 wa_ctx->size = offset - wa_ctx->offset;
998
999 WARN(wa_ctx->size % size_alignment,
1000 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1001 wa_ctx->size, size_alignment);
1002 return 0;
1003}
1004
6e5248b5
DV
1005/*
1006 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1007 * initialized at the beginning and shared across all contexts but this field
1008 * helps us to have multiple batches at different offsets and select them based
1009 * on a criteria. At the moment this batch always start at the beginning of the page
1010 * and at this point we don't have multiple wa_ctx batch buffers.
4d78c8dc 1011 *
6e5248b5
DV
1012 * The number of WA applied are not known at the beginning; we use this field
1013 * to return the no of DWORDS written.
17ee950d 1014 *
6e5248b5
DV
1015 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1016 * so it adds NOOPs as padding to make it cacheline aligned.
1017 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1018 * makes a complete batch buffer.
17ee950d 1019 */
0bc40be8 1020static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
17ee950d 1021 struct i915_wa_ctx_bb *wa_ctx,
6e5248b5 1022 uint32_t *batch,
17ee950d
AS
1023 uint32_t *offset)
1024{
0160f055 1025 uint32_t scratch_addr;
17ee950d
AS
1026 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1027
7ad00d1a 1028 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1029 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
17ee950d 1030
c82435bb 1031 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
c033666a 1032 if (IS_BROADWELL(engine->i915)) {
0bc40be8 1033 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
604ef734
AH
1034 if (rc < 0)
1035 return rc;
1036 index = rc;
c82435bb
AS
1037 }
1038
0160f055
AS
1039 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1040 /* Actual scratch location is at 128 bytes offset */
bde13ebd 1041 scratch_addr = i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
0160f055 1042
83b8a982
AS
1043 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1044 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1045 PIPE_CONTROL_GLOBAL_GTT_IVB |
1046 PIPE_CONTROL_CS_STALL |
1047 PIPE_CONTROL_QW_WRITE));
1048 wa_ctx_emit(batch, index, scratch_addr);
1049 wa_ctx_emit(batch, index, 0);
1050 wa_ctx_emit(batch, index, 0);
1051 wa_ctx_emit(batch, index, 0);
0160f055 1052
17ee950d
AS
1053 /* Pad to end of cacheline */
1054 while (index % CACHELINE_DWORDS)
83b8a982 1055 wa_ctx_emit(batch, index, MI_NOOP);
17ee950d
AS
1056
1057 /*
1058 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1059 * execution depends on the length specified in terms of cache lines
1060 * in the register CTX_RCS_INDIRECT_CTX
1061 */
1062
1063 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1064}
1065
6e5248b5
DV
1066/*
1067 * This batch is started immediately after indirect_ctx batch. Since we ensure
1068 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
17ee950d 1069 *
6e5248b5 1070 * The number of DWORDS written are returned using this field.
17ee950d
AS
1071 *
1072 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1073 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1074 */
0bc40be8 1075static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
17ee950d 1076 struct i915_wa_ctx_bb *wa_ctx,
6e5248b5 1077 uint32_t *batch,
17ee950d
AS
1078 uint32_t *offset)
1079{
1080 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1081
7ad00d1a 1082 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1083 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
7ad00d1a 1084
83b8a982 1085 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
17ee950d
AS
1086
1087 return wa_ctx_end(wa_ctx, *offset = index, 1);
1088}
1089
0bc40be8 1090static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
0504cffc 1091 struct i915_wa_ctx_bb *wa_ctx,
6e5248b5 1092 uint32_t *batch,
0504cffc
AS
1093 uint32_t *offset)
1094{
a4106a78 1095 int ret;
5e580523 1096 struct drm_i915_private *dev_priv = engine->i915;
0504cffc
AS
1097 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1098
9fb5026f 1099 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
0bc40be8 1100 ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
a4106a78
AS
1101 if (ret < 0)
1102 return ret;
1103 index = ret;
1104
9fb5026f 1105 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
873e8171
MK
1106 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1107 wa_ctx_emit_reg(batch, index, COMMON_SLICE_CHICKEN2);
1108 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(
1109 GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE));
1110 wa_ctx_emit(batch, index, MI_NOOP);
1111
066d4628
MK
1112 /* WaClearSlmSpaceAtContextSwitch:kbl */
1113 /* Actual scratch location is at 128 bytes offset */
703d1282 1114 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0)) {
56c0f1a7 1115 u32 scratch_addr =
bde13ebd 1116 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
066d4628
MK
1117
1118 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1119 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1120 PIPE_CONTROL_GLOBAL_GTT_IVB |
1121 PIPE_CONTROL_CS_STALL |
1122 PIPE_CONTROL_QW_WRITE));
1123 wa_ctx_emit(batch, index, scratch_addr);
1124 wa_ctx_emit(batch, index, 0);
1125 wa_ctx_emit(batch, index, 0);
1126 wa_ctx_emit(batch, index, 0);
1127 }
3485d99e 1128
9fb5026f 1129 /* WaMediaPoolStateCmdInWABB:bxt,glk */
3485d99e
TG
1130 if (HAS_POOLED_EU(engine->i915)) {
1131 /*
1132 * EU pool configuration is setup along with golden context
1133 * during context initialization. This value depends on
1134 * device type (2x6 or 3x6) and needs to be updated based
1135 * on which subslice is disabled especially for 2x6
1136 * devices, however it is safe to load default
1137 * configuration of 3x6 device instead of masking off
1138 * corresponding bits because HW ignores bits of a disabled
1139 * subslice and drops down to appropriate config. Please
1140 * see render_state_setup() in i915_gem_render_state.c for
1141 * possible configurations, to avoid duplication they are
1142 * not shown here again.
1143 */
1144 u32 eu_pool_config = 0x00777000;
1145 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
1146 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
1147 wa_ctx_emit(batch, index, eu_pool_config);
1148 wa_ctx_emit(batch, index, 0);
1149 wa_ctx_emit(batch, index, 0);
1150 wa_ctx_emit(batch, index, 0);
1151 }
1152
0504cffc
AS
1153 /* Pad to end of cacheline */
1154 while (index % CACHELINE_DWORDS)
1155 wa_ctx_emit(batch, index, MI_NOOP);
1156
1157 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1158}
1159
0bc40be8 1160static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
0504cffc 1161 struct i915_wa_ctx_bb *wa_ctx,
6e5248b5 1162 uint32_t *batch,
0504cffc
AS
1163 uint32_t *offset)
1164{
1165 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1166
1167 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1168
1169 return wa_ctx_end(wa_ctx, *offset = index, 1);
1170}
1171
0bc40be8 1172static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
17ee950d 1173{
48bb74e4
CW
1174 struct drm_i915_gem_object *obj;
1175 struct i915_vma *vma;
1176 int err;
17ee950d 1177
12d79d78 1178 obj = i915_gem_object_create(engine->i915, PAGE_ALIGN(size));
48bb74e4
CW
1179 if (IS_ERR(obj))
1180 return PTR_ERR(obj);
17ee950d 1181
a01cb37a 1182 vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
48bb74e4
CW
1183 if (IS_ERR(vma)) {
1184 err = PTR_ERR(vma);
1185 goto err;
17ee950d
AS
1186 }
1187
48bb74e4
CW
1188 err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1189 if (err)
1190 goto err;
1191
1192 engine->wa_ctx.vma = vma;
17ee950d 1193 return 0;
48bb74e4
CW
1194
1195err:
1196 i915_gem_object_put(obj);
1197 return err;
17ee950d
AS
1198}
1199
0bc40be8 1200static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
17ee950d 1201{
19880c4a 1202 i915_vma_unpin_and_release(&engine->wa_ctx.vma);
17ee950d
AS
1203}
1204
0bc40be8 1205static int intel_init_workaround_bb(struct intel_engine_cs *engine)
17ee950d 1206{
48bb74e4 1207 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
17ee950d
AS
1208 uint32_t *batch;
1209 uint32_t offset;
1210 struct page *page;
48bb74e4 1211 int ret;
17ee950d 1212
0bc40be8 1213 WARN_ON(engine->id != RCS);
17ee950d 1214
5e60d790 1215 /* update this when WA for higher Gen are added */
c033666a 1216 if (INTEL_GEN(engine->i915) > 9) {
0504cffc 1217 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
c033666a 1218 INTEL_GEN(engine->i915));
5e60d790 1219 return 0;
0504cffc 1220 }
5e60d790 1221
c4db7599 1222 /* some WA perform writes to scratch page, ensure it is valid */
56c0f1a7 1223 if (!engine->scratch) {
0bc40be8 1224 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
c4db7599
AS
1225 return -EINVAL;
1226 }
1227
0bc40be8 1228 ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
17ee950d
AS
1229 if (ret) {
1230 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1231 return ret;
1232 }
1233
48bb74e4 1234 page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
17ee950d
AS
1235 batch = kmap_atomic(page);
1236 offset = 0;
1237
c033666a 1238 if (IS_GEN8(engine->i915)) {
0bc40be8 1239 ret = gen8_init_indirectctx_bb(engine,
17ee950d
AS
1240 &wa_ctx->indirect_ctx,
1241 batch,
1242 &offset);
1243 if (ret)
1244 goto out;
1245
0bc40be8 1246 ret = gen8_init_perctx_bb(engine,
17ee950d
AS
1247 &wa_ctx->per_ctx,
1248 batch,
1249 &offset);
1250 if (ret)
1251 goto out;
c033666a 1252 } else if (IS_GEN9(engine->i915)) {
0bc40be8 1253 ret = gen9_init_indirectctx_bb(engine,
0504cffc
AS
1254 &wa_ctx->indirect_ctx,
1255 batch,
1256 &offset);
1257 if (ret)
1258 goto out;
1259
0bc40be8 1260 ret = gen9_init_perctx_bb(engine,
0504cffc
AS
1261 &wa_ctx->per_ctx,
1262 batch,
1263 &offset);
1264 if (ret)
1265 goto out;
17ee950d
AS
1266 }
1267
1268out:
1269 kunmap_atomic(batch);
1270 if (ret)
0bc40be8 1271 lrc_destroy_wa_ctx_obj(engine);
17ee950d
AS
1272
1273 return ret;
1274}
1275
22cc440e
CW
1276static u32 port_seqno(struct execlist_port *port)
1277{
1278 return port->request ? port->request->global_seqno : 0;
1279}
1280
0bc40be8 1281static int gen8_init_common_ring(struct intel_engine_cs *engine)
9b1136d5 1282{
c033666a 1283 struct drm_i915_private *dev_priv = engine->i915;
821ed7df
CW
1284 int ret;
1285
1286 ret = intel_mocs_init_engine(engine);
1287 if (ret)
1288 return ret;
9b1136d5 1289
ad07dfcd 1290 intel_engine_reset_breadcrumbs(engine);
f3b8f912 1291 intel_engine_init_hangcheck(engine);
821ed7df 1292
0bc40be8 1293 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
0bc40be8 1294 I915_WRITE(RING_MODE_GEN7(engine),
9b1136d5
OM
1295 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1296 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
f3b8f912
CW
1297 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1298 engine->status_page.ggtt_offset);
1299 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
dfc53c5e 1300
0bc40be8 1301 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
9b1136d5 1302
c87d50cc 1303 /* After a GPU reset, we may have requests to replay */
f747026c 1304 clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
c87d50cc 1305 if (!execlists_elsp_idle(engine)) {
22cc440e
CW
1306 DRM_DEBUG_DRIVER("Restarting %s from requests [0x%x, 0x%x]\n",
1307 engine->name,
1308 port_seqno(&engine->execlist_port[0]),
1309 port_seqno(&engine->execlist_port[1]));
c87d50cc
CW
1310 engine->execlist_port[0].count = 0;
1311 engine->execlist_port[1].count = 0;
821ed7df 1312 execlists_submit_ports(engine);
c87d50cc 1313 }
821ed7df
CW
1314
1315 return 0;
9b1136d5
OM
1316}
1317
0bc40be8 1318static int gen8_init_render_ring(struct intel_engine_cs *engine)
9b1136d5 1319{
c033666a 1320 struct drm_i915_private *dev_priv = engine->i915;
9b1136d5
OM
1321 int ret;
1322
0bc40be8 1323 ret = gen8_init_common_ring(engine);
9b1136d5
OM
1324 if (ret)
1325 return ret;
1326
1327 /* We need to disable the AsyncFlip performance optimisations in order
1328 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1329 * programmed to '1' on all products.
1330 *
1331 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1332 */
1333 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1334
9b1136d5
OM
1335 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1336
0bc40be8 1337 return init_workarounds_ring(engine);
9b1136d5
OM
1338}
1339
0bc40be8 1340static int gen9_init_render_ring(struct intel_engine_cs *engine)
82ef822e
DL
1341{
1342 int ret;
1343
0bc40be8 1344 ret = gen8_init_common_ring(engine);
82ef822e
DL
1345 if (ret)
1346 return ret;
1347
0bc40be8 1348 return init_workarounds_ring(engine);
82ef822e
DL
1349}
1350
821ed7df
CW
1351static void reset_common_ring(struct intel_engine_cs *engine,
1352 struct drm_i915_gem_request *request)
1353{
821ed7df
CW
1354 struct execlist_port *port = engine->execlist_port;
1355 struct intel_context *ce = &request->ctx->engine[engine->id];
1356
a3aabe86
CW
1357 /* We want a simple context + ring to execute the breadcrumb update.
1358 * We cannot rely on the context being intact across the GPU hang,
1359 * so clear it and rebuild just what we need for the breadcrumb.
1360 * All pending requests for this context will be zapped, and any
1361 * future request will be after userspace has had the opportunity
1362 * to recreate its own state.
1363 */
1364 execlists_init_reg_state(ce->lrc_reg_state,
1365 request->ctx, engine, ce->ring);
1366
821ed7df 1367 /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
a3aabe86
CW
1368 ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1369 i915_ggtt_offset(ce->ring->vma);
821ed7df 1370 ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
a3aabe86 1371
821ed7df
CW
1372 request->ring->head = request->postfix;
1373 request->ring->last_retired_head = -1;
1374 intel_ring_update_space(request->ring);
1375
1376 if (i915.enable_guc_submission)
1377 return;
1378
1379 /* Catch up with any missed context-switch interrupts */
821ed7df
CW
1380 if (request->ctx != port[0].request->ctx) {
1381 i915_gem_request_put(port[0].request);
1382 port[0] = port[1];
1383 memset(&port[1], 0, sizeof(port[1]));
1384 }
1385
821ed7df 1386 GEM_BUG_ON(request->ctx != port[0].request->ctx);
a3aabe86
CW
1387
1388 /* Reset WaIdleLiteRestore:bdw,skl as well */
1389 request->tail = request->wa_tail - WA_TAIL_DWORDS * sizeof(u32);
821ed7df
CW
1390}
1391
7a01a0a2
MT
1392static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1393{
1394 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
7e37f889 1395 struct intel_ring *ring = req->ring;
4a570db5 1396 struct intel_engine_cs *engine = req->engine;
7a01a0a2
MT
1397 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1398 int i, ret;
1399
987046ad 1400 ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
7a01a0a2
MT
1401 if (ret)
1402 return ret;
1403
b5321f30 1404 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_lri_cmds));
7a01a0a2
MT
1405 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1406 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1407
b5321f30
CW
1408 intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, i));
1409 intel_ring_emit(ring, upper_32_bits(pd_daddr));
1410 intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, i));
1411 intel_ring_emit(ring, lower_32_bits(pd_daddr));
7a01a0a2
MT
1412 }
1413
b5321f30
CW
1414 intel_ring_emit(ring, MI_NOOP);
1415 intel_ring_advance(ring);
7a01a0a2
MT
1416
1417 return 0;
1418}
1419
be795fc1 1420static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
803688ba
CW
1421 u64 offset, u32 len,
1422 unsigned int dispatch_flags)
15648585 1423{
7e37f889 1424 struct intel_ring *ring = req->ring;
8e004efc 1425 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
15648585
OM
1426 int ret;
1427
7a01a0a2
MT
1428 /* Don't rely in hw updating PDPs, specially in lite-restore.
1429 * Ideally, we should set Force PD Restore in ctx descriptor,
1430 * but we can't. Force Restore would be a second option, but
1431 * it is unsafe in case of lite-restore (because the ctx is
2dba3239
MT
1432 * not idle). PML4 is allocated during ppgtt init so this is
1433 * not needed in 48-bit.*/
7a01a0a2 1434 if (req->ctx->ppgtt &&
666796da 1435 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
331f38e7 1436 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
c033666a 1437 !intel_vgpu_active(req->i915)) {
2dba3239
MT
1438 ret = intel_logical_ring_emit_pdps(req);
1439 if (ret)
1440 return ret;
1441 }
7a01a0a2 1442
666796da 1443 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
7a01a0a2
MT
1444 }
1445
987046ad 1446 ret = intel_ring_begin(req, 4);
15648585
OM
1447 if (ret)
1448 return ret;
1449
1450 /* FIXME(BDW): Address space and security selectors. */
b5321f30
CW
1451 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 |
1452 (ppgtt<<8) |
1453 (dispatch_flags & I915_DISPATCH_RS ?
1454 MI_BATCH_RESOURCE_STREAMER : 0));
1455 intel_ring_emit(ring, lower_32_bits(offset));
1456 intel_ring_emit(ring, upper_32_bits(offset));
1457 intel_ring_emit(ring, MI_NOOP);
1458 intel_ring_advance(ring);
15648585
OM
1459
1460 return 0;
1461}
1462
31bb59cc 1463static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
73d477f6 1464{
c033666a 1465 struct drm_i915_private *dev_priv = engine->i915;
31bb59cc
CW
1466 I915_WRITE_IMR(engine,
1467 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1468 POSTING_READ_FW(RING_IMR(engine->mmio_base));
73d477f6
OM
1469}
1470
31bb59cc 1471static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
73d477f6 1472{
c033666a 1473 struct drm_i915_private *dev_priv = engine->i915;
31bb59cc 1474 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
73d477f6
OM
1475}
1476
7c9cf4e3 1477static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
4712274c 1478{
7e37f889
CW
1479 struct intel_ring *ring = request->ring;
1480 u32 cmd;
4712274c
OM
1481 int ret;
1482
987046ad 1483 ret = intel_ring_begin(request, 4);
4712274c
OM
1484 if (ret)
1485 return ret;
1486
1487 cmd = MI_FLUSH_DW + 1;
1488
f0a1fb10
CW
1489 /* We always require a command barrier so that subsequent
1490 * commands, such as breadcrumb interrupts, are strictly ordered
1491 * wrt the contents of the write cache being flushed to memory
1492 * (and thus being coherent from the CPU).
1493 */
1494 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1495
7c9cf4e3 1496 if (mode & EMIT_INVALIDATE) {
f0a1fb10 1497 cmd |= MI_INVALIDATE_TLB;
1dae2dfb 1498 if (request->engine->id == VCS)
f0a1fb10 1499 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1500 }
1501
b5321f30
CW
1502 intel_ring_emit(ring, cmd);
1503 intel_ring_emit(ring,
1504 I915_GEM_HWS_SCRATCH_ADDR |
1505 MI_FLUSH_DW_USE_GTT);
1506 intel_ring_emit(ring, 0); /* upper addr */
1507 intel_ring_emit(ring, 0); /* value */
1508 intel_ring_advance(ring);
4712274c
OM
1509
1510 return 0;
1511}
1512
7deb4d39 1513static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
7c9cf4e3 1514 u32 mode)
4712274c 1515{
7e37f889 1516 struct intel_ring *ring = request->ring;
b5321f30 1517 struct intel_engine_cs *engine = request->engine;
bde13ebd
CW
1518 u32 scratch_addr =
1519 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
0b2d0934 1520 bool vf_flush_wa = false, dc_flush_wa = false;
4712274c
OM
1521 u32 flags = 0;
1522 int ret;
0b2d0934 1523 int len;
4712274c
OM
1524
1525 flags |= PIPE_CONTROL_CS_STALL;
1526
7c9cf4e3 1527 if (mode & EMIT_FLUSH) {
4712274c
OM
1528 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1529 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
965fd602 1530 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
40a24488 1531 flags |= PIPE_CONTROL_FLUSH_ENABLE;
4712274c
OM
1532 }
1533
7c9cf4e3 1534 if (mode & EMIT_INVALIDATE) {
4712274c
OM
1535 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1536 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1537 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1538 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1539 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1540 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1541 flags |= PIPE_CONTROL_QW_WRITE;
1542 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
4712274c 1543
1a5a9ce7
BW
1544 /*
1545 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1546 * pipe control.
1547 */
c033666a 1548 if (IS_GEN9(request->i915))
1a5a9ce7 1549 vf_flush_wa = true;
0b2d0934
MK
1550
1551 /* WaForGAMHang:kbl */
1552 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1553 dc_flush_wa = true;
1a5a9ce7 1554 }
9647ff36 1555
0b2d0934
MK
1556 len = 6;
1557
1558 if (vf_flush_wa)
1559 len += 6;
1560
1561 if (dc_flush_wa)
1562 len += 12;
1563
1564 ret = intel_ring_begin(request, len);
4712274c
OM
1565 if (ret)
1566 return ret;
1567
9647ff36 1568 if (vf_flush_wa) {
b5321f30
CW
1569 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1570 intel_ring_emit(ring, 0);
1571 intel_ring_emit(ring, 0);
1572 intel_ring_emit(ring, 0);
1573 intel_ring_emit(ring, 0);
1574 intel_ring_emit(ring, 0);
9647ff36
ID
1575 }
1576
0b2d0934 1577 if (dc_flush_wa) {
b5321f30
CW
1578 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1579 intel_ring_emit(ring, PIPE_CONTROL_DC_FLUSH_ENABLE);
1580 intel_ring_emit(ring, 0);
1581 intel_ring_emit(ring, 0);
1582 intel_ring_emit(ring, 0);
1583 intel_ring_emit(ring, 0);
0b2d0934
MK
1584 }
1585
b5321f30
CW
1586 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1587 intel_ring_emit(ring, flags);
1588 intel_ring_emit(ring, scratch_addr);
1589 intel_ring_emit(ring, 0);
1590 intel_ring_emit(ring, 0);
1591 intel_ring_emit(ring, 0);
0b2d0934
MK
1592
1593 if (dc_flush_wa) {
b5321f30
CW
1594 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1595 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL);
1596 intel_ring_emit(ring, 0);
1597 intel_ring_emit(ring, 0);
1598 intel_ring_emit(ring, 0);
1599 intel_ring_emit(ring, 0);
0b2d0934
MK
1600 }
1601
b5321f30 1602 intel_ring_advance(ring);
4712274c
OM
1603
1604 return 0;
1605}
1606
7c17d377
CW
1607/*
1608 * Reserve space for 2 NOOPs at the end of each request to be
1609 * used as a workaround for not being allowed to do lite
1610 * restore with HEAD==TAIL (WaIdleLiteRestore).
1611 */
caddfe71 1612static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *out)
4da46e1e 1613{
caddfe71
CW
1614 *out++ = MI_NOOP;
1615 *out++ = MI_NOOP;
1616 request->wa_tail = intel_ring_offset(request->ring, out);
1617}
4da46e1e 1618
caddfe71
CW
1619static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request,
1620 u32 *out)
1621{
7c17d377
CW
1622 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1623 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
4da46e1e 1624
caddfe71
CW
1625 *out++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
1626 *out++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
1627 *out++ = 0;
1628 *out++ = request->global_seqno;
1629 *out++ = MI_USER_INTERRUPT;
1630 *out++ = MI_NOOP;
1631 request->tail = intel_ring_offset(request->ring, out);
1632
1633 gen8_emit_wa_tail(request, out);
7c17d377 1634}
4da46e1e 1635
98f29e8d
CW
1636static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
1637
caddfe71
CW
1638static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
1639 u32 *out)
7c17d377 1640{
ce81a65c
MW
1641 /* We're using qword write, seqno should be aligned to 8 bytes. */
1642 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1643
7c17d377
CW
1644 /* w/a for post sync ops following a GPGPU operation we
1645 * need a prior CS_STALL, which is emitted by the flush
1646 * following the batch.
1647 */
caddfe71
CW
1648 *out++ = GFX_OP_PIPE_CONTROL(6);
1649 *out++ = (PIPE_CONTROL_GLOBAL_GTT_IVB |
1650 PIPE_CONTROL_CS_STALL |
1651 PIPE_CONTROL_QW_WRITE);
1652 *out++ = intel_hws_seqno_address(request->engine);
1653 *out++ = 0;
1654 *out++ = request->global_seqno;
ce81a65c 1655 /* We're thrashing one dword of HWS. */
caddfe71
CW
1656 *out++ = 0;
1657 *out++ = MI_USER_INTERRUPT;
1658 *out++ = MI_NOOP;
1659 request->tail = intel_ring_offset(request->ring, out);
1660
1661 gen8_emit_wa_tail(request, out);
4da46e1e
OM
1662}
1663
98f29e8d
CW
1664static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;
1665
8753181e 1666static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
e7778be1
TD
1667{
1668 int ret;
1669
e2be4faf 1670 ret = intel_logical_ring_workarounds_emit(req);
e7778be1
TD
1671 if (ret)
1672 return ret;
1673
3bbaba0c
PA
1674 ret = intel_rcs_context_init_mocs(req);
1675 /*
1676 * Failing to program the MOCS is non-fatal.The system will not
1677 * run at peak performance. So generate an error and carry on.
1678 */
1679 if (ret)
1680 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1681
4e50f082 1682 return i915_gem_render_state_emit(req);
e7778be1
TD
1683}
1684
73e4d07f
OM
1685/**
1686 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
14bb2c11 1687 * @engine: Engine Command Streamer.
73e4d07f 1688 */
0bc40be8 1689void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
454afebd 1690{
6402c330 1691 struct drm_i915_private *dev_priv;
9832b9da 1692
27af5eea
TU
1693 /*
1694 * Tasklet cannot be active at this point due intel_mark_active/idle
1695 * so this is just for documentation.
1696 */
1697 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1698 tasklet_kill(&engine->irq_tasklet);
1699
c033666a 1700 dev_priv = engine->i915;
6402c330 1701
0bc40be8 1702 if (engine->buffer) {
0bc40be8 1703 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
b0366a54 1704 }
48d82387 1705
0bc40be8
TU
1706 if (engine->cleanup)
1707 engine->cleanup(engine);
48d82387 1708
57e88531
CW
1709 if (engine->status_page.vma) {
1710 i915_gem_object_unpin_map(engine->status_page.vma->obj);
1711 engine->status_page.vma = NULL;
48d82387 1712 }
e8a9c58f
CW
1713
1714 intel_engine_cleanup_common(engine);
17ee950d 1715
0bc40be8 1716 lrc_destroy_wa_ctx_obj(engine);
c033666a 1717 engine->i915 = NULL;
3b3f1650
AG
1718 dev_priv->engine[engine->id] = NULL;
1719 kfree(engine);
454afebd
OM
1720}
1721
ddd66c51
CW
1722void intel_execlists_enable_submission(struct drm_i915_private *dev_priv)
1723{
1724 struct intel_engine_cs *engine;
3b3f1650 1725 enum intel_engine_id id;
ddd66c51 1726
20311bd3 1727 for_each_engine(engine, dev_priv, id) {
f4ea6bdd 1728 engine->submit_request = execlists_submit_request;
20311bd3
CW
1729 engine->schedule = execlists_schedule;
1730 }
ddd66c51
CW
1731}
1732
c9cacf93 1733static void
e1382efb 1734logical_ring_default_vfuncs(struct intel_engine_cs *engine)
c9cacf93
TU
1735{
1736 /* Default vfuncs which can be overriden by each engine. */
0bc40be8 1737 engine->init_hw = gen8_init_common_ring;
821ed7df 1738 engine->reset_hw = reset_common_ring;
e8a9c58f
CW
1739
1740 engine->context_pin = execlists_context_pin;
1741 engine->context_unpin = execlists_context_unpin;
1742
f73e7399
CW
1743 engine->request_alloc = execlists_request_alloc;
1744
0bc40be8 1745 engine->emit_flush = gen8_emit_flush;
9b81d556 1746 engine->emit_breadcrumb = gen8_emit_breadcrumb;
98f29e8d 1747 engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
f4ea6bdd 1748 engine->submit_request = execlists_submit_request;
20311bd3 1749 engine->schedule = execlists_schedule;
ddd66c51 1750
31bb59cc
CW
1751 engine->irq_enable = gen8_logical_ring_enable_irq;
1752 engine->irq_disable = gen8_logical_ring_disable_irq;
0bc40be8 1753 engine->emit_bb_start = gen8_emit_bb_start;
c9cacf93
TU
1754}
1755
d9f3af96 1756static inline void
c2c7f240 1757logical_ring_default_irqs(struct intel_engine_cs *engine)
d9f3af96 1758{
c2c7f240 1759 unsigned shift = engine->irq_shift;
0bc40be8
TU
1760 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1761 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
d9f3af96
TU
1762}
1763
7d774cac 1764static int
bf3783e5 1765lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
04794adb 1766{
57e88531 1767 const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
7d774cac 1768 void *hws;
04794adb
TU
1769
1770 /* The HWSP is part of the default context object in LRC mode. */
bf3783e5 1771 hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
7d774cac
TU
1772 if (IS_ERR(hws))
1773 return PTR_ERR(hws);
57e88531
CW
1774
1775 engine->status_page.page_addr = hws + hws_offset;
bde13ebd 1776 engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
57e88531 1777 engine->status_page.vma = vma;
7d774cac
TU
1778
1779 return 0;
04794adb
TU
1780}
1781
bb45438f
TU
1782static void
1783logical_ring_setup(struct intel_engine_cs *engine)
1784{
1785 struct drm_i915_private *dev_priv = engine->i915;
1786 enum forcewake_domains fw_domains;
1787
019bf277
TU
1788 intel_engine_setup_common(engine);
1789
bb45438f
TU
1790 /* Intentionally left blank. */
1791 engine->buffer = NULL;
1792
1793 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1794 RING_ELSP(engine),
1795 FW_REG_WRITE);
1796
1797 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1798 RING_CONTEXT_STATUS_PTR(engine),
1799 FW_REG_READ | FW_REG_WRITE);
1800
1801 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1802 RING_CONTEXT_STATUS_BUF_BASE(engine),
1803 FW_REG_READ);
1804
1805 engine->fw_domains = fw_domains;
1806
bb45438f
TU
1807 tasklet_init(&engine->irq_tasklet,
1808 intel_lrc_irq_handler, (unsigned long)engine);
1809
bb45438f
TU
1810 logical_ring_default_vfuncs(engine);
1811 logical_ring_default_irqs(engine);
bb45438f
TU
1812}
1813
a19d6ff2
TU
1814static int
1815logical_ring_init(struct intel_engine_cs *engine)
1816{
1817 struct i915_gem_context *dctx = engine->i915->kernel_context;
1818 int ret;
1819
019bf277 1820 ret = intel_engine_init_common(engine);
a19d6ff2
TU
1821 if (ret)
1822 goto error;
1823
a19d6ff2
TU
1824 /* And setup the hardware status page. */
1825 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
1826 if (ret) {
1827 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
1828 goto error;
1829 }
1830
1831 return 0;
1832
1833error:
1834 intel_logical_ring_cleanup(engine);
1835 return ret;
1836}
1837
88d2ba2e 1838int logical_render_ring_init(struct intel_engine_cs *engine)
a19d6ff2
TU
1839{
1840 struct drm_i915_private *dev_priv = engine->i915;
1841 int ret;
1842
bb45438f
TU
1843 logical_ring_setup(engine);
1844
a19d6ff2
TU
1845 if (HAS_L3_DPF(dev_priv))
1846 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1847
1848 /* Override some for render ring. */
1849 if (INTEL_GEN(dev_priv) >= 9)
1850 engine->init_hw = gen9_init_render_ring;
1851 else
1852 engine->init_hw = gen8_init_render_ring;
1853 engine->init_context = gen8_init_rcs_context;
a19d6ff2 1854 engine->emit_flush = gen8_emit_flush_render;
9b81d556 1855 engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
98f29e8d 1856 engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
a19d6ff2 1857
f51455d4 1858 ret = intel_engine_create_scratch(engine, PAGE_SIZE);
a19d6ff2
TU
1859 if (ret)
1860 return ret;
1861
1862 ret = intel_init_workaround_bb(engine);
1863 if (ret) {
1864 /*
1865 * We continue even if we fail to initialize WA batch
1866 * because we only expect rare glitches but nothing
1867 * critical to prevent us from using GPU
1868 */
1869 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1870 ret);
1871 }
1872
d038fc7e 1873 return logical_ring_init(engine);
a19d6ff2
TU
1874}
1875
88d2ba2e 1876int logical_xcs_ring_init(struct intel_engine_cs *engine)
bb45438f
TU
1877{
1878 logical_ring_setup(engine);
1879
1880 return logical_ring_init(engine);
454afebd
OM
1881}
1882
0cea6502 1883static u32
c033666a 1884make_rpcs(struct drm_i915_private *dev_priv)
0cea6502
JM
1885{
1886 u32 rpcs = 0;
1887
1888 /*
1889 * No explicit RPCS request is needed to ensure full
1890 * slice/subslice/EU enablement prior to Gen9.
1891 */
c033666a 1892 if (INTEL_GEN(dev_priv) < 9)
0cea6502
JM
1893 return 0;
1894
1895 /*
1896 * Starting in Gen9, render power gating can leave
1897 * slice/subslice/EU in a partially enabled state. We
1898 * must make an explicit request through RPCS for full
1899 * enablement.
1900 */
43b67998 1901 if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
0cea6502 1902 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
f08a0c92 1903 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
0cea6502
JM
1904 GEN8_RPCS_S_CNT_SHIFT;
1905 rpcs |= GEN8_RPCS_ENABLE;
1906 }
1907
43b67998 1908 if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
0cea6502 1909 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
57ec171e 1910 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
0cea6502
JM
1911 GEN8_RPCS_SS_CNT_SHIFT;
1912 rpcs |= GEN8_RPCS_ENABLE;
1913 }
1914
43b67998
ID
1915 if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
1916 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
0cea6502 1917 GEN8_RPCS_EU_MIN_SHIFT;
43b67998 1918 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
0cea6502
JM
1919 GEN8_RPCS_EU_MAX_SHIFT;
1920 rpcs |= GEN8_RPCS_ENABLE;
1921 }
1922
1923 return rpcs;
1924}
1925
0bc40be8 1926static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
71562919
MT
1927{
1928 u32 indirect_ctx_offset;
1929
c033666a 1930 switch (INTEL_GEN(engine->i915)) {
71562919 1931 default:
c033666a 1932 MISSING_CASE(INTEL_GEN(engine->i915));
71562919
MT
1933 /* fall through */
1934 case 9:
1935 indirect_ctx_offset =
1936 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1937 break;
1938 case 8:
1939 indirect_ctx_offset =
1940 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1941 break;
1942 }
1943
1944 return indirect_ctx_offset;
1945}
1946
a3aabe86
CW
1947static void execlists_init_reg_state(u32 *reg_state,
1948 struct i915_gem_context *ctx,
1949 struct intel_engine_cs *engine,
1950 struct intel_ring *ring)
8670d6f9 1951{
a3aabe86
CW
1952 struct drm_i915_private *dev_priv = engine->i915;
1953 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
8670d6f9
OM
1954
1955 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1956 * commands followed by (reg, value) pairs. The values we are setting here are
1957 * only for the first context restore: on a subsequent save, the GPU will
1958 * recreate this batchbuffer with new values (including all the missing
1959 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
0d925ea0 1960 reg_state[CTX_LRI_HEADER_0] =
0bc40be8
TU
1961 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
1962 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
1963 RING_CONTEXT_CONTROL(engine),
0d925ea0
VS
1964 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1965 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
c033666a 1966 (HAS_RESOURCE_STREAMER(dev_priv) ?
a3aabe86 1967 CTX_CTRL_RS_CTX_ENABLE : 0)));
0bc40be8
TU
1968 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
1969 0);
1970 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
1971 0);
0bc40be8
TU
1972 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
1973 RING_START(engine->mmio_base), 0);
1974 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
1975 RING_CTL(engine->mmio_base),
62ae14b1 1976 RING_CTL_SIZE(ring->size) | RING_VALID);
0bc40be8
TU
1977 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
1978 RING_BBADDR_UDW(engine->mmio_base), 0);
1979 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
1980 RING_BBADDR(engine->mmio_base), 0);
1981 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
1982 RING_BBSTATE(engine->mmio_base),
0d925ea0 1983 RING_BB_PPGTT);
0bc40be8
TU
1984 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
1985 RING_SBBADDR_UDW(engine->mmio_base), 0);
1986 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
1987 RING_SBBADDR(engine->mmio_base), 0);
1988 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
1989 RING_SBBSTATE(engine->mmio_base), 0);
1990 if (engine->id == RCS) {
1991 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
1992 RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
1993 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
1994 RING_INDIRECT_CTX(engine->mmio_base), 0);
1995 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
1996 RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
48bb74e4 1997 if (engine->wa_ctx.vma) {
0bc40be8 1998 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
bde13ebd 1999 u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
17ee950d
AS
2000
2001 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2002 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2003 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2004
2005 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
0bc40be8 2006 intel_lr_indirect_ctx_offset(engine) << 6;
17ee950d
AS
2007
2008 reg_state[CTX_BB_PER_CTX_PTR+1] =
2009 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2010 0x01;
2011 }
8670d6f9 2012 }
0d925ea0 2013 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
0bc40be8
TU
2014 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2015 RING_CTX_TIMESTAMP(engine->mmio_base), 0);
0d925ea0 2016 /* PDP values well be assigned later if needed */
0bc40be8
TU
2017 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2018 0);
2019 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2020 0);
2021 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2022 0);
2023 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2024 0);
2025 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2026 0);
2027 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2028 0);
2029 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2030 0);
2031 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2032 0);
d7b2633d 2033
34869776 2034 if (ppgtt && USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2dba3239
MT
2035 /* 64b PPGTT (48bit canonical)
2036 * PDP0_DESCRIPTOR contains the base address to PML4 and
2037 * other PDP Descriptors are ignored.
2038 */
2039 ASSIGN_CTX_PML4(ppgtt, reg_state);
2dba3239
MT
2040 }
2041
0bc40be8 2042 if (engine->id == RCS) {
8670d6f9 2043 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
0d925ea0 2044 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
c033666a 2045 make_rpcs(dev_priv));
8670d6f9 2046 }
a3aabe86
CW
2047}
2048
2049static int
2050populate_lr_context(struct i915_gem_context *ctx,
2051 struct drm_i915_gem_object *ctx_obj,
2052 struct intel_engine_cs *engine,
2053 struct intel_ring *ring)
2054{
2055 void *vaddr;
2056 int ret;
2057
2058 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2059 if (ret) {
2060 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2061 return ret;
2062 }
2063
2064 vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2065 if (IS_ERR(vaddr)) {
2066 ret = PTR_ERR(vaddr);
2067 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2068 return ret;
2069 }
a4f5ea64 2070 ctx_obj->mm.dirty = true;
a3aabe86
CW
2071
2072 /* The second page of the context object contains some fields which must
2073 * be set up prior to the first execution. */
2074
2075 execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
2076 ctx, engine, ring);
8670d6f9 2077
7d774cac 2078 i915_gem_object_unpin_map(ctx_obj);
8670d6f9
OM
2079
2080 return 0;
2081}
2082
c5d46ee2
DG
2083/**
2084 * intel_lr_context_size() - return the size of the context for an engine
14bb2c11 2085 * @engine: which engine to find the context size for
c5d46ee2
DG
2086 *
2087 * Each engine may require a different amount of space for a context image,
2088 * so when allocating (or copying) an image, this function can be used to
2089 * find the right size for the specific engine.
2090 *
2091 * Return: size (in bytes) of an engine-specific context image
2092 *
2093 * Note: this size includes the HWSP, which is part of the context image
2094 * in LRC mode, but does not include the "shared data page" used with
2095 * GuC submission. The caller should account for this if using the GuC.
2096 */
0bc40be8 2097uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
8c857917
OM
2098{
2099 int ret = 0;
2100
c033666a 2101 WARN_ON(INTEL_GEN(engine->i915) < 8);
8c857917 2102
0bc40be8 2103 switch (engine->id) {
8c857917 2104 case RCS:
c033666a 2105 if (INTEL_GEN(engine->i915) >= 9)
468c6816
MN
2106 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2107 else
2108 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
2109 break;
2110 case VCS:
2111 case BCS:
2112 case VECS:
2113 case VCS2:
2114 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2115 break;
2116 }
2117
2118 return ret;
ede7d42b
OM
2119}
2120
e2efd130 2121static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 2122 struct intel_engine_cs *engine)
ede7d42b 2123{
8c857917 2124 struct drm_i915_gem_object *ctx_obj;
9021ad03 2125 struct intel_context *ce = &ctx->engine[engine->id];
bf3783e5 2126 struct i915_vma *vma;
8c857917 2127 uint32_t context_size;
7e37f889 2128 struct intel_ring *ring;
8c857917
OM
2129 int ret;
2130
9021ad03 2131 WARN_ON(ce->state);
ede7d42b 2132
f51455d4
CW
2133 context_size = round_up(intel_lr_context_size(engine),
2134 I915_GTT_PAGE_SIZE);
8c857917 2135
d1675198
AD
2136 /* One extra page as the sharing data between driver and GuC */
2137 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2138
12d79d78 2139 ctx_obj = i915_gem_object_create(ctx->i915, context_size);
fe3db79b 2140 if (IS_ERR(ctx_obj)) {
3126a660 2141 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
fe3db79b 2142 return PTR_ERR(ctx_obj);
8c857917
OM
2143 }
2144
a01cb37a 2145 vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
bf3783e5
CW
2146 if (IS_ERR(vma)) {
2147 ret = PTR_ERR(vma);
2148 goto error_deref_obj;
2149 }
2150
7e37f889 2151 ring = intel_engine_create_ring(engine, ctx->ring_size);
dca33ecc
CW
2152 if (IS_ERR(ring)) {
2153 ret = PTR_ERR(ring);
e84fe803 2154 goto error_deref_obj;
8670d6f9
OM
2155 }
2156
dca33ecc 2157 ret = populate_lr_context(ctx, ctx_obj, engine, ring);
8670d6f9
OM
2158 if (ret) {
2159 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
dca33ecc 2160 goto error_ring_free;
84c2377f
OM
2161 }
2162
dca33ecc 2163 ce->ring = ring;
bf3783e5 2164 ce->state = vma;
9021ad03 2165 ce->initialised = engine->init_context == NULL;
ede7d42b
OM
2166
2167 return 0;
8670d6f9 2168
dca33ecc 2169error_ring_free:
7e37f889 2170 intel_ring_free(ring);
e84fe803 2171error_deref_obj:
f8c417cd 2172 i915_gem_object_put(ctx_obj);
8670d6f9 2173 return ret;
ede7d42b 2174}
3e5b6f05 2175
821ed7df 2176void intel_lr_context_resume(struct drm_i915_private *dev_priv)
3e5b6f05 2177{
e2f80391 2178 struct intel_engine_cs *engine;
bafb2f7d 2179 struct i915_gem_context *ctx;
3b3f1650 2180 enum intel_engine_id id;
bafb2f7d
CW
2181
2182 /* Because we emit WA_TAIL_DWORDS there may be a disparity
2183 * between our bookkeeping in ce->ring->head and ce->ring->tail and
2184 * that stored in context. As we only write new commands from
2185 * ce->ring->tail onwards, everything before that is junk. If the GPU
2186 * starts reading from its RING_HEAD from the context, it may try to
2187 * execute that junk and die.
2188 *
2189 * So to avoid that we reset the context images upon resume. For
2190 * simplicity, we just zero everything out.
2191 */
2192 list_for_each_entry(ctx, &dev_priv->context_list, link) {
3b3f1650 2193 for_each_engine(engine, dev_priv, id) {
bafb2f7d
CW
2194 struct intel_context *ce = &ctx->engine[engine->id];
2195 u32 *reg;
3e5b6f05 2196
bafb2f7d
CW
2197 if (!ce->state)
2198 continue;
7d774cac 2199
bafb2f7d
CW
2200 reg = i915_gem_object_pin_map(ce->state->obj,
2201 I915_MAP_WB);
2202 if (WARN_ON(IS_ERR(reg)))
2203 continue;
3e5b6f05 2204
bafb2f7d
CW
2205 reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2206 reg[CTX_RING_HEAD+1] = 0;
2207 reg[CTX_RING_TAIL+1] = 0;
3e5b6f05 2208
a4f5ea64 2209 ce->state->obj->mm.dirty = true;
bafb2f7d 2210 i915_gem_object_unpin_map(ce->state->obj);
3e5b6f05 2211
bafb2f7d
CW
2212 ce->ring->head = ce->ring->tail = 0;
2213 ce->ring->last_retired_head = -1;
2214 intel_ring_update_space(ce->ring);
2215 }
3e5b6f05
TD
2216 }
2217}