drm/i915/icl: Set graphics mode register for gen11
[linux-block.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1 133 */
27af5eea 134#include <linux/interrupt.h>
b20385f1
OM
135
136#include <drm/drmP.h>
137#include <drm/i915_drm.h>
138#include "i915_drv.h"
7c2fa7fa 139#include "i915_gem_render_state.h"
578f1ac6 140#include "intel_lrc_reg.h"
3bbaba0c 141#include "intel_mocs.h"
127f1003 142
e981e7b1
TD
143#define RING_EXECLIST_QFULL (1 << 0x2)
144#define RING_EXECLIST1_VALID (1 << 0x3)
145#define RING_EXECLIST0_VALID (1 << 0x4)
146#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
147#define RING_EXECLIST1_ACTIVE (1 << 0x11)
148#define RING_EXECLIST0_ACTIVE (1 << 0x12)
149
150#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
151#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
152#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
153#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
154#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
155#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9 156
70c2a24d 157#define GEN8_CTX_STATUS_COMPLETED_MASK \
d8747afb 158 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
70c2a24d 159
0e93cdd4
CW
160/* Typical size of the average request (2 pipecontrols and a MI_BB) */
161#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
a3aabe86 162#define WA_TAIL_DWORDS 2
7e4992ac 163#define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
beecec90 164#define PREEMPT_ID 0x1
a3aabe86 165
e2efd130 166static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 167 struct intel_engine_cs *engine);
a3aabe86
CW
168static void execlists_init_reg_state(u32 *reg_state,
169 struct i915_gem_context *ctx,
170 struct intel_engine_cs *engine,
171 struct intel_ring *ring);
7ba717cf 172
73e4d07f 173/**
ca82580c
TU
174 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
175 * descriptor for a pinned context
ca82580c 176 * @ctx: Context to work on
9021ad03 177 * @engine: Engine the descriptor will be used with
73e4d07f 178 *
ca82580c
TU
179 * The context descriptor encodes various attributes of a context,
180 * including its GTT address and some flags. Because it's fairly
181 * expensive to calculate, we'll just do it once and cache the result,
182 * which remains valid until the context is unpinned.
183 *
6e5248b5
DV
184 * This is what a descriptor looks like, from LSB to MSB::
185 *
2355cf08 186 * bits 0-11: flags, GEN8_CTX_* (cached in ctx->desc_template)
6e5248b5
DV
187 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
188 * bits 32-52: ctx ID, a globally unique tag
189 * bits 53-54: mbz, reserved for use by hardware
190 * bits 55-63: group ID, currently unused and set to 0
73e4d07f 191 */
ca82580c 192static void
e2efd130 193intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
0bc40be8 194 struct intel_engine_cs *engine)
84b790f8 195{
9021ad03 196 struct intel_context *ce = &ctx->engine[engine->id];
7069b144 197 u64 desc;
84b790f8 198
7069b144 199 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
84b790f8 200
2355cf08 201 desc = ctx->desc_template; /* bits 0-11 */
0b29c75a 202 desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
9021ad03 203 /* bits 12-31 */
7069b144 204 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
5af05fef 205
9021ad03 206 ce->lrc_desc = desc;
5af05fef
MT
207}
208
27606fd8
CW
209static struct i915_priolist *
210lookup_priolist(struct intel_engine_cs *engine,
211 struct i915_priotree *pt,
212 int prio)
08dd3e1a 213{
b620e870 214 struct intel_engine_execlists * const execlists = &engine->execlists;
08dd3e1a
CW
215 struct i915_priolist *p;
216 struct rb_node **parent, *rb;
217 bool first = true;
218
b620e870 219 if (unlikely(execlists->no_priolist))
08dd3e1a
CW
220 prio = I915_PRIORITY_NORMAL;
221
222find_priolist:
223 /* most positive priority is scheduled first, equal priorities fifo */
224 rb = NULL;
b620e870 225 parent = &execlists->queue.rb_node;
08dd3e1a
CW
226 while (*parent) {
227 rb = *parent;
228 p = rb_entry(rb, typeof(*p), node);
229 if (prio > p->priority) {
230 parent = &rb->rb_left;
231 } else if (prio < p->priority) {
232 parent = &rb->rb_right;
233 first = false;
234 } else {
27606fd8 235 return p;
08dd3e1a
CW
236 }
237 }
238
239 if (prio == I915_PRIORITY_NORMAL) {
b620e870 240 p = &execlists->default_priolist;
08dd3e1a
CW
241 } else {
242 p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
243 /* Convert an allocation failure to a priority bump */
244 if (unlikely(!p)) {
245 prio = I915_PRIORITY_NORMAL; /* recurses just once */
246
247 /* To maintain ordering with all rendering, after an
248 * allocation failure we have to disable all scheduling.
249 * Requests will then be executed in fifo, and schedule
250 * will ensure that dependencies are emitted in fifo.
251 * There will be still some reordering with existing
252 * requests, so if userspace lied about their
253 * dependencies that reordering may be visible.
254 */
b620e870 255 execlists->no_priolist = true;
08dd3e1a
CW
256 goto find_priolist;
257 }
258 }
259
260 p->priority = prio;
27606fd8 261 INIT_LIST_HEAD(&p->requests);
08dd3e1a 262 rb_link_node(&p->node, rb, parent);
b620e870 263 rb_insert_color(&p->node, &execlists->queue);
08dd3e1a 264
08dd3e1a 265 if (first)
b620e870 266 execlists->first = &p->node;
08dd3e1a 267
27606fd8 268 return ptr_pack_bits(p, first, 1);
08dd3e1a
CW
269}
270
7e4992ac
CW
271static void unwind_wa_tail(struct drm_i915_gem_request *rq)
272{
273 rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
274 assert_ring_tail_valid(rq->ring, rq->tail);
275}
276
a4598d17 277static void __unwind_incomplete_requests(struct intel_engine_cs *engine)
7e4992ac
CW
278{
279 struct drm_i915_gem_request *rq, *rn;
097a9481
MW
280 struct i915_priolist *uninitialized_var(p);
281 int last_prio = I915_PRIORITY_INVALID;
7e4992ac
CW
282
283 lockdep_assert_held(&engine->timeline->lock);
284
285 list_for_each_entry_safe_reverse(rq, rn,
286 &engine->timeline->requests,
287 link) {
7e4992ac
CW
288 if (i915_gem_request_completed(rq))
289 return;
290
291 __i915_gem_request_unsubmit(rq);
292 unwind_wa_tail(rq);
293
097a9481
MW
294 GEM_BUG_ON(rq->priotree.priority == I915_PRIORITY_INVALID);
295 if (rq->priotree.priority != last_prio) {
296 p = lookup_priolist(engine,
297 &rq->priotree,
298 rq->priotree.priority);
299 p = ptr_mask_bits(p, 1);
300
301 last_prio = rq->priotree.priority;
302 }
303
304 list_add(&rq->priotree.link, &p->requests);
7e4992ac
CW
305 }
306}
307
c41937fd 308void
a4598d17
MW
309execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
310{
311 struct intel_engine_cs *engine =
312 container_of(execlists, typeof(*engine), execlists);
313
314 spin_lock_irq(&engine->timeline->lock);
315 __unwind_incomplete_requests(engine);
316 spin_unlock_irq(&engine->timeline->lock);
317}
318
bbd6c47e
CW
319static inline void
320execlists_context_status_change(struct drm_i915_gem_request *rq,
321 unsigned long status)
84b790f8 322{
bbd6c47e
CW
323 /*
324 * Only used when GVT-g is enabled now. When GVT-g is disabled,
325 * The compiler should eliminate this function as dead-code.
326 */
327 if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
328 return;
6daccb0b 329
3fc03069
CD
330 atomic_notifier_call_chain(&rq->engine->context_status_notifier,
331 status, rq);
84b790f8
BW
332}
333
73fd9d38
TU
334static inline void
335execlists_context_schedule_in(struct drm_i915_gem_request *rq)
336{
337 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
30e17b78 338 intel_engine_context_in(rq->engine);
73fd9d38
TU
339}
340
341static inline void
342execlists_context_schedule_out(struct drm_i915_gem_request *rq)
343{
30e17b78 344 intel_engine_context_out(rq->engine);
73fd9d38
TU
345 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
346}
347
c6a2ac71
TU
348static void
349execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
350{
351 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
352 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
353 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
354 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
355}
356
70c2a24d 357static u64 execlists_update_context(struct drm_i915_gem_request *rq)
ae1250b9 358{
70c2a24d 359 struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
04da811b
ZW
360 struct i915_hw_ppgtt *ppgtt =
361 rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
70c2a24d 362 u32 *reg_state = ce->lrc_reg_state;
ae1250b9 363
e6ba9992 364 reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
ae1250b9 365
c6a2ac71
TU
366 /* True 32b PPGTT with dynamic page allocation: update PDP
367 * registers and point the unallocated PDPs to scratch page.
368 * PML4 is allocated during ppgtt init, so this is not needed
369 * in 48-bit mode.
370 */
949e8ab3 371 if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
c6a2ac71 372 execlists_update_context_pdps(ppgtt, reg_state);
70c2a24d
CW
373
374 return ce->lrc_desc;
ae1250b9
OM
375}
376
beecec90
CW
377static inline void elsp_write(u64 desc, u32 __iomem *elsp)
378{
379 writel(upper_32_bits(desc), elsp);
380 writel(lower_32_bits(desc), elsp);
381}
382
70c2a24d 383static void execlists_submit_ports(struct intel_engine_cs *engine)
bbd6c47e 384{
b620e870 385 struct execlist_port *port = engine->execlists.port;
77f0d0e9 386 unsigned int n;
bbd6c47e 387
76e70087 388 for (n = execlists_num_ports(&engine->execlists); n--; ) {
77f0d0e9
CW
389 struct drm_i915_gem_request *rq;
390 unsigned int count;
391 u64 desc;
392
393 rq = port_unpack(&port[n], &count);
394 if (rq) {
395 GEM_BUG_ON(count > !n);
396 if (!count++)
73fd9d38 397 execlists_context_schedule_in(rq);
77f0d0e9
CW
398 port_set(&port[n], port_pack(rq, count));
399 desc = execlists_update_context(rq);
400 GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
bccd3b83
CW
401
402 GEM_TRACE("%s in[%d]: ctx=%d.%d, seqno=%x\n",
403 engine->name, n,
16c8619a 404 port[n].context_id, count,
bccd3b83 405 rq->global_seqno);
77f0d0e9
CW
406 } else {
407 GEM_BUG_ON(!n);
408 desc = 0;
409 }
bbd6c47e 410
2fc7a06a 411 elsp_write(desc, engine->execlists.elsp);
77f0d0e9 412 }
ba74cb10 413 execlists_clear_active(&engine->execlists, EXECLISTS_ACTIVE_HWACK);
bbd6c47e
CW
414}
415
70c2a24d 416static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
84b790f8 417{
70c2a24d 418 return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
6095868a 419 i915_gem_context_force_single_submission(ctx));
70c2a24d 420}
84b790f8 421
70c2a24d
CW
422static bool can_merge_ctx(const struct i915_gem_context *prev,
423 const struct i915_gem_context *next)
424{
425 if (prev != next)
426 return false;
26720ab9 427
70c2a24d
CW
428 if (ctx_single_port_submission(prev))
429 return false;
26720ab9 430
70c2a24d 431 return true;
84b790f8
BW
432}
433
77f0d0e9
CW
434static void port_assign(struct execlist_port *port,
435 struct drm_i915_gem_request *rq)
436{
437 GEM_BUG_ON(rq == port_request(port));
438
439 if (port_isset(port))
440 i915_gem_request_put(port_request(port));
441
442 port_set(port, port_pack(i915_gem_request_get(rq), port_count(port)));
443}
444
beecec90
CW
445static void inject_preempt_context(struct intel_engine_cs *engine)
446{
447 struct intel_context *ce =
448 &engine->i915->preempt_context->engine[engine->id];
beecec90
CW
449 unsigned int n;
450
451 GEM_BUG_ON(engine->i915->preempt_context->hw_id != PREEMPT_ID);
452 GEM_BUG_ON(!IS_ALIGNED(ce->ring->size, WA_TAIL_BYTES));
453
454 memset(ce->ring->vaddr + ce->ring->tail, 0, WA_TAIL_BYTES);
455 ce->ring->tail += WA_TAIL_BYTES;
456 ce->ring->tail &= (ce->ring->size - 1);
457 ce->lrc_reg_state[CTX_RING_TAIL+1] = ce->ring->tail;
458
09b1a4e4
CW
459 GEM_BUG_ON((ce->lrc_reg_state[CTX_CONTEXT_CONTROL + 1] &
460 _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
461 CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT)) !=
462 _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
463 CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT));
464
16a87394 465 GEM_TRACE("%s\n", engine->name);
beecec90 466 for (n = execlists_num_ports(&engine->execlists); --n; )
2fc7a06a 467 elsp_write(0, engine->execlists.elsp);
beecec90 468
2fc7a06a 469 elsp_write(ce->lrc_desc, engine->execlists.elsp);
ba74cb10 470 execlists_clear_active(&engine->execlists, EXECLISTS_ACTIVE_HWACK);
beecec90
CW
471}
472
70c2a24d 473static void execlists_dequeue(struct intel_engine_cs *engine)
acdd884a 474{
7a62cc61
MK
475 struct intel_engine_execlists * const execlists = &engine->execlists;
476 struct execlist_port *port = execlists->port;
76e70087
MK
477 const struct execlist_port * const last_port =
478 &execlists->port[execlists->port_mask];
beecec90 479 struct drm_i915_gem_request *last = port_request(port);
20311bd3 480 struct rb_node *rb;
70c2a24d
CW
481 bool submit = false;
482
70c2a24d
CW
483 /* Hardware submission is through 2 ports. Conceptually each port
484 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
485 * static for a context, and unique to each, so we only execute
486 * requests belonging to a single context from each ring. RING_HEAD
487 * is maintained by the CS in the context image, it marks the place
488 * where it got up to last time, and through RING_TAIL we tell the CS
489 * where we want to execute up to this time.
490 *
491 * In this list the requests are in order of execution. Consecutive
492 * requests from the same context are adjacent in the ringbuffer. We
493 * can combine these requests into a single RING_TAIL update:
494 *
495 * RING_HEAD...req1...req2
496 * ^- RING_TAIL
497 * since to execute req2 the CS must first execute req1.
498 *
499 * Our goal then is to point each port to the end of a consecutive
500 * sequence of requests as being the most optimal (fewest wake ups
501 * and context switches) submission.
779949f4 502 */
acdd884a 503
9f7886d0 504 spin_lock_irq(&engine->timeline->lock);
7a62cc61
MK
505 rb = execlists->first;
506 GEM_BUG_ON(rb_first(&execlists->queue) != rb);
beecec90
CW
507 if (!rb)
508 goto unlock;
509
510 if (last) {
511 /*
512 * Don't resubmit or switch until all outstanding
513 * preemptions (lite-restore) are seen. Then we
514 * know the next preemption status we see corresponds
515 * to this ELSP update.
516 */
ba74cb10 517 GEM_BUG_ON(!port_count(&port[0]));
beecec90
CW
518 if (port_count(&port[0]) > 1)
519 goto unlock;
520
ba74cb10
MT
521 /*
522 * If we write to ELSP a second time before the HW has had
523 * a chance to respond to the previous write, we can confuse
524 * the HW and hit "undefined behaviour". After writing to ELSP,
525 * we must then wait until we see a context-switch event from
526 * the HW to indicate that it has had a chance to respond.
527 */
528 if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
529 goto unlock;
530
a4598d17 531 if (HAS_LOGICAL_RING_PREEMPTION(engine->i915) &&
beecec90
CW
532 rb_entry(rb, struct i915_priolist, node)->priority >
533 max(last->priotree.priority, 0)) {
534 /*
535 * Switch to our empty preempt context so
536 * the state of the GPU is known (idle).
537 */
538 inject_preempt_context(engine);
4a118ecb
CW
539 execlists_set_active(execlists,
540 EXECLISTS_ACTIVE_PREEMPT);
beecec90
CW
541 goto unlock;
542 } else {
543 /*
544 * In theory, we could coalesce more requests onto
545 * the second port (the first port is active, with
546 * no preemptions pending). However, that means we
547 * then have to deal with the possible lite-restore
548 * of the second port (as we submit the ELSP, there
549 * may be a context-switch) but also we may complete
550 * the resubmission before the context-switch. Ergo,
551 * coalescing onto the second port will cause a
552 * preemption event, but we cannot predict whether
553 * that will affect port[0] or port[1].
554 *
555 * If the second port is already active, we can wait
556 * until the next context-switch before contemplating
557 * new requests. The GPU will be busy and we should be
558 * able to resubmit the new ELSP before it idles,
559 * avoiding pipeline bubbles (momentary pauses where
560 * the driver is unable to keep up the supply of new
561 * work).
562 */
563 if (port_count(&port[1]))
564 goto unlock;
565
566 /* WaIdleLiteRestore:bdw,skl
567 * Apply the wa NOOPs to prevent
568 * ring:HEAD == req:TAIL as we resubmit the
569 * request. See gen8_emit_breadcrumb() for
570 * where we prepare the padding after the
571 * end of the request.
572 */
573 last->tail = last->wa_tail;
574 }
575 }
576
577 do {
6c067579
CW
578 struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
579 struct drm_i915_gem_request *rq, *rn;
580
581 list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
582 /*
583 * Can we combine this request with the current port?
584 * It has to be the same context/ringbuffer and not
585 * have any exceptions (e.g. GVT saying never to
586 * combine contexts).
587 *
588 * If we can combine the requests, we can execute both
589 * by updating the RING_TAIL to point to the end of the
590 * second request, and so we never need to tell the
591 * hardware about the first.
70c2a24d 592 */
6c067579
CW
593 if (last && !can_merge_ctx(rq->ctx, last->ctx)) {
594 /*
595 * If we are on the second port and cannot
596 * combine this request with the last, then we
597 * are done.
598 */
76e70087 599 if (port == last_port) {
6c067579
CW
600 __list_del_many(&p->requests,
601 &rq->priotree.link);
602 goto done;
603 }
604
605 /*
606 * If GVT overrides us we only ever submit
607 * port[0], leaving port[1] empty. Note that we
608 * also have to be careful that we don't queue
609 * the same context (even though a different
610 * request) to the second port.
611 */
612 if (ctx_single_port_submission(last->ctx) ||
613 ctx_single_port_submission(rq->ctx)) {
614 __list_del_many(&p->requests,
615 &rq->priotree.link);
616 goto done;
617 }
618
619 GEM_BUG_ON(last->ctx == rq->ctx);
620
621 if (submit)
622 port_assign(port, last);
623 port++;
7a62cc61
MK
624
625 GEM_BUG_ON(port_isset(port));
6c067579 626 }
70c2a24d 627
6c067579 628 INIT_LIST_HEAD(&rq->priotree.link);
6c067579 629 __i915_gem_request_submit(rq);
7a62cc61 630 trace_i915_gem_request_in(rq, port_index(port, execlists));
6c067579
CW
631 last = rq;
632 submit = true;
70c2a24d 633 }
d55ac5bf 634
20311bd3 635 rb = rb_next(rb);
7a62cc61 636 rb_erase(&p->node, &execlists->queue);
6c067579
CW
637 INIT_LIST_HEAD(&p->requests);
638 if (p->priority != I915_PRIORITY_NORMAL)
c5cf9a91 639 kmem_cache_free(engine->i915->priorities, p);
beecec90 640 } while (rb);
6c067579 641done:
7a62cc61 642 execlists->first = rb;
6c067579 643 if (submit)
77f0d0e9 644 port_assign(port, last);
beecec90 645unlock:
9f7886d0 646 spin_unlock_irq(&engine->timeline->lock);
53292cdb 647
4a118ecb
CW
648 if (submit) {
649 execlists_set_active(execlists, EXECLISTS_ACTIVE_USER);
70c2a24d 650 execlists_submit_ports(engine);
4a118ecb 651 }
acdd884a
MT
652}
653
c41937fd 654void
a4598d17 655execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
cf4591d1 656{
3f9e6cd8 657 struct execlist_port *port = execlists->port;
dc2279e1 658 unsigned int num_ports = execlists_num_ports(execlists);
cf4591d1 659
3f9e6cd8 660 while (num_ports-- && port_isset(port)) {
7e44fc28
CW
661 struct drm_i915_gem_request *rq = port_request(port);
662
4a118ecb 663 GEM_BUG_ON(!execlists->active);
30e17b78 664 intel_engine_context_out(rq->engine);
d6c05113 665 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_PREEMPTED);
7e44fc28
CW
666 i915_gem_request_put(rq);
667
3f9e6cd8
CW
668 memset(port, 0, sizeof(*port));
669 port++;
670 }
cf4591d1
MK
671}
672
27a5f61b
CW
673static void execlists_cancel_requests(struct intel_engine_cs *engine)
674{
b620e870 675 struct intel_engine_execlists * const execlists = &engine->execlists;
27a5f61b
CW
676 struct drm_i915_gem_request *rq, *rn;
677 struct rb_node *rb;
678 unsigned long flags;
27a5f61b
CW
679
680 spin_lock_irqsave(&engine->timeline->lock, flags);
681
682 /* Cancel the requests on the HW and clear the ELSP tracker. */
a4598d17 683 execlists_cancel_port_requests(execlists);
27a5f61b
CW
684
685 /* Mark all executing requests as skipped. */
686 list_for_each_entry(rq, &engine->timeline->requests, link) {
687 GEM_BUG_ON(!rq->global_seqno);
688 if (!i915_gem_request_completed(rq))
689 dma_fence_set_error(&rq->fence, -EIO);
690 }
691
692 /* Flush the queued requests to the timeline list (for retiring). */
b620e870 693 rb = execlists->first;
27a5f61b
CW
694 while (rb) {
695 struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
696
697 list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
698 INIT_LIST_HEAD(&rq->priotree.link);
27a5f61b
CW
699
700 dma_fence_set_error(&rq->fence, -EIO);
701 __i915_gem_request_submit(rq);
702 }
703
704 rb = rb_next(rb);
b620e870 705 rb_erase(&p->node, &execlists->queue);
27a5f61b
CW
706 INIT_LIST_HEAD(&p->requests);
707 if (p->priority != I915_PRIORITY_NORMAL)
708 kmem_cache_free(engine->i915->priorities, p);
709 }
710
711 /* Remaining _unready_ requests will be nop'ed when submitted */
712
cf4591d1 713
b620e870
MK
714 execlists->queue = RB_ROOT;
715 execlists->first = NULL;
3f9e6cd8 716 GEM_BUG_ON(port_isset(execlists->port));
27a5f61b
CW
717
718 /*
719 * The port is checked prior to scheduling a tasklet, but
720 * just in case we have suspended the tasklet to do the
721 * wedging make sure that when it wakes, it decides there
722 * is no work to do by clearing the irq_posted bit.
723 */
724 clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
725
726 spin_unlock_irqrestore(&engine->timeline->lock, flags);
727}
728
6e5248b5 729/*
73e4d07f
OM
730 * Check the unread Context Status Buffers and manage the submission of new
731 * contexts to the ELSP accordingly.
732 */
c6dce8f1 733static void execlists_submission_tasklet(unsigned long data)
e981e7b1 734{
b620e870
MK
735 struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
736 struct intel_engine_execlists * const execlists = &engine->execlists;
beecec90 737 struct execlist_port * const port = execlists->port;
c033666a 738 struct drm_i915_private *dev_priv = engine->i915;
bb5db7e1 739 bool fw = false;
c6a2ac71 740
48921260
CW
741 /* We can skip acquiring intel_runtime_pm_get() here as it was taken
742 * on our behalf by the request (see i915_gem_mark_busy()) and it will
743 * not be relinquished until the device is idle (see
744 * i915_gem_idle_work_handler()). As a precaution, we make sure
745 * that all ELSP are drained i.e. we have processed the CSB,
746 * before allowing ourselves to idle and calling intel_runtime_pm_put().
747 */
748 GEM_BUG_ON(!dev_priv->gt.awake);
749
899f6204
CW
750 /* Prefer doing test_and_clear_bit() as a two stage operation to avoid
751 * imposing the cost of a locked atomic transaction when submitting a
752 * new request (outside of the context-switch interrupt).
753 */
754 while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
6d2cb5aa
CW
755 /* The HWSP contains a (cacheable) mirror of the CSB */
756 const u32 *buf =
757 &engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
4af0d727 758 unsigned int head, tail;
70c2a24d 759
b620e870 760 if (unlikely(execlists->csb_use_mmio)) {
6d2cb5aa
CW
761 buf = (u32 * __force)
762 (dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));
b620e870 763 execlists->csb_head = -1; /* force mmio read of CSB ptrs */
6d2cb5aa
CW
764 }
765
2e70b8c6
CW
766 /* The write will be ordered by the uncached read (itself
767 * a memory barrier), so we do not need another in the form
768 * of a locked instruction. The race between the interrupt
769 * handler and the split test/clear is harmless as we order
770 * our clear before the CSB read. If the interrupt arrived
771 * first between the test and the clear, we read the updated
772 * CSB and clear the bit. If the interrupt arrives as we read
773 * the CSB or later (i.e. after we had cleared the bit) the bit
774 * is set and we do a new loop.
775 */
776 __clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
b620e870 777 if (unlikely(execlists->csb_head == -1)) { /* following a reset */
bb5db7e1
CW
778 if (!fw) {
779 intel_uncore_forcewake_get(dev_priv,
780 execlists->fw_domains);
781 fw = true;
782 }
783
767a983a
CW
784 head = readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
785 tail = GEN8_CSB_WRITE_PTR(head);
786 head = GEN8_CSB_READ_PTR(head);
b620e870 787 execlists->csb_head = head;
767a983a
CW
788 } else {
789 const int write_idx =
790 intel_hws_csb_write_index(dev_priv) -
791 I915_HWS_CSB_BUF0_INDEX;
792
b620e870 793 head = execlists->csb_head;
767a983a
CW
794 tail = READ_ONCE(buf[write_idx]);
795 }
bb5db7e1 796 GEM_TRACE("%s cs-irq head=%d [%d%s], tail=%d [%d%s]\n",
bccd3b83 797 engine->name,
bb5db7e1
CW
798 head, GEN8_CSB_READ_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?",
799 tail, GEN8_CSB_WRITE_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?");
b620e870 800
4af0d727 801 while (head != tail) {
77f0d0e9 802 struct drm_i915_gem_request *rq;
4af0d727 803 unsigned int status;
77f0d0e9 804 unsigned int count;
4af0d727
CW
805
806 if (++head == GEN8_CSB_ENTRIES)
807 head = 0;
70c2a24d 808
2ffe80aa
CW
809 /* We are flying near dragons again.
810 *
811 * We hold a reference to the request in execlist_port[]
812 * but no more than that. We are operating in softirq
813 * context and so cannot hold any mutex or sleep. That
814 * prevents us stopping the requests we are processing
815 * in port[] from being retired simultaneously (the
816 * breadcrumb will be complete before we see the
817 * context-switch). As we only hold the reference to the
818 * request, any pointer chasing underneath the request
819 * is subject to a potential use-after-free. Thus we
820 * store all of the bookkeeping within port[] as
821 * required, and avoid using unguarded pointers beneath
822 * request itself. The same applies to the atomic
823 * status notifier.
824 */
825
6d2cb5aa 826 status = READ_ONCE(buf[2 * head]); /* maybe mmio! */
193a98dc 827 GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
bccd3b83 828 engine->name, head,
193a98dc
CW
829 status, buf[2*head + 1],
830 execlists->active);
ba74cb10
MT
831
832 if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
833 GEN8_CTX_STATUS_PREEMPTED))
834 execlists_set_active(execlists,
835 EXECLISTS_ACTIVE_HWACK);
836 if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
837 execlists_clear_active(execlists,
838 EXECLISTS_ACTIVE_HWACK);
839
70c2a24d
CW
840 if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
841 continue;
842
1f5f9edb
CW
843 /* We should never get a COMPLETED | IDLE_ACTIVE! */
844 GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);
845
e40dd226 846 if (status & GEN8_CTX_STATUS_COMPLETE &&
beecec90 847 buf[2*head + 1] == PREEMPT_ID) {
193a98dc
CW
848 GEM_TRACE("%s preempt-idle\n", engine->name);
849
a4598d17
MW
850 execlists_cancel_port_requests(execlists);
851 execlists_unwind_incomplete_requests(execlists);
beecec90 852
4a118ecb
CW
853 GEM_BUG_ON(!execlists_is_active(execlists,
854 EXECLISTS_ACTIVE_PREEMPT));
855 execlists_clear_active(execlists,
856 EXECLISTS_ACTIVE_PREEMPT);
beecec90
CW
857 continue;
858 }
859
860 if (status & GEN8_CTX_STATUS_PREEMPTED &&
4a118ecb
CW
861 execlists_is_active(execlists,
862 EXECLISTS_ACTIVE_PREEMPT))
beecec90
CW
863 continue;
864
4a118ecb
CW
865 GEM_BUG_ON(!execlists_is_active(execlists,
866 EXECLISTS_ACTIVE_USER));
867
86aa7e76 868 /* Check the context/desc id for this event matches */
6d2cb5aa 869 GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);
86aa7e76 870
77f0d0e9 871 rq = port_unpack(port, &count);
bccd3b83
CW
872 GEM_TRACE("%s out[0]: ctx=%d.%d, seqno=%x\n",
873 engine->name,
16c8619a 874 port->context_id, count,
16a87394 875 rq ? rq->global_seqno : 0);
77f0d0e9
CW
876 GEM_BUG_ON(count == 0);
877 if (--count == 0) {
70c2a24d 878 GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
d8747afb
CW
879 GEM_BUG_ON(port_isset(&port[1]) &&
880 !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
77f0d0e9 881 GEM_BUG_ON(!i915_gem_request_completed(rq));
73fd9d38 882 execlists_context_schedule_out(rq);
77f0d0e9
CW
883 trace_i915_gem_request_out(rq);
884 i915_gem_request_put(rq);
70c2a24d 885
7a62cc61 886 execlists_port_complete(execlists, port);
77f0d0e9
CW
887 } else {
888 port_set(port, port_pack(rq, count));
70c2a24d 889 }
26720ab9 890
77f0d0e9
CW
891 /* After the final element, the hw should be idle */
892 GEM_BUG_ON(port_count(port) == 0 &&
70c2a24d 893 !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
4a118ecb
CW
894 if (port_count(port) == 0)
895 execlists_clear_active(execlists,
896 EXECLISTS_ACTIVE_USER);
4af0d727 897 }
e1fee72c 898
b620e870
MK
899 if (head != execlists->csb_head) {
900 execlists->csb_head = head;
767a983a
CW
901 writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
902 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
903 }
e981e7b1
TD
904 }
905
4a118ecb 906 if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT))
70c2a24d 907 execlists_dequeue(engine);
c6a2ac71 908
bb5db7e1
CW
909 if (fw)
910 intel_uncore_forcewake_put(dev_priv, execlists->fw_domains);
e981e7b1
TD
911}
912
27606fd8
CW
913static void insert_request(struct intel_engine_cs *engine,
914 struct i915_priotree *pt,
915 int prio)
916{
917 struct i915_priolist *p = lookup_priolist(engine, pt, prio);
918
919 list_add_tail(&pt->link, &ptr_mask_bits(p, 1)->requests);
beecec90 920 if (ptr_unmask_bits(p, 1))
c6dce8f1 921 tasklet_hi_schedule(&engine->execlists.tasklet);
27606fd8
CW
922}
923
f4ea6bdd 924static void execlists_submit_request(struct drm_i915_gem_request *request)
acdd884a 925{
4a570db5 926 struct intel_engine_cs *engine = request->engine;
5590af3e 927 unsigned long flags;
acdd884a 928
663f71e7
CW
929 /* Will be called from irq-context when using foreign fences. */
930 spin_lock_irqsave(&engine->timeline->lock, flags);
acdd884a 931
27606fd8 932 insert_request(engine, &request->priotree, request->priotree.priority);
acdd884a 933
b620e870 934 GEM_BUG_ON(!engine->execlists.first);
6c067579
CW
935 GEM_BUG_ON(list_empty(&request->priotree.link));
936
663f71e7 937 spin_unlock_irqrestore(&engine->timeline->lock, flags);
acdd884a
MT
938}
939
1f181225
CW
940static struct drm_i915_gem_request *pt_to_request(struct i915_priotree *pt)
941{
942 return container_of(pt, struct drm_i915_gem_request, priotree);
943}
944
20311bd3
CW
945static struct intel_engine_cs *
946pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
947{
1f181225 948 struct intel_engine_cs *engine = pt_to_request(pt)->engine;
a79a524e
CW
949
950 GEM_BUG_ON(!locked);
20311bd3 951
20311bd3 952 if (engine != locked) {
a79a524e
CW
953 spin_unlock(&locked->timeline->lock);
954 spin_lock(&engine->timeline->lock);
20311bd3
CW
955 }
956
957 return engine;
958}
959
960static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
961{
a79a524e 962 struct intel_engine_cs *engine;
20311bd3
CW
963 struct i915_dependency *dep, *p;
964 struct i915_dependency stack;
965 LIST_HEAD(dfs);
966
7d1ea609
CW
967 GEM_BUG_ON(prio == I915_PRIORITY_INVALID);
968
c218ee03
CW
969 if (i915_gem_request_completed(request))
970 return;
971
20311bd3
CW
972 if (prio <= READ_ONCE(request->priotree.priority))
973 return;
974
70cd1476
CW
975 /* Need BKL in order to use the temporary link inside i915_dependency */
976 lockdep_assert_held(&request->i915->drm.struct_mutex);
20311bd3
CW
977
978 stack.signaler = &request->priotree;
979 list_add(&stack.dfs_link, &dfs);
980
ce01b173
CW
981 /*
982 * Recursively bump all dependent priorities to match the new request.
20311bd3
CW
983 *
984 * A naive approach would be to use recursion:
985 * static void update_priorities(struct i915_priotree *pt, prio) {
986 * list_for_each_entry(dep, &pt->signalers_list, signal_link)
987 * update_priorities(dep->signal, prio)
988 * insert_request(pt);
989 * }
990 * but that may have unlimited recursion depth and so runs a very
991 * real risk of overunning the kernel stack. Instead, we build
992 * a flat list of all dependencies starting with the current request.
993 * As we walk the list of dependencies, we add all of its dependencies
994 * to the end of the list (this may include an already visited
995 * request) and continue to walk onwards onto the new dependencies. The
996 * end result is a topological list of requests in reverse order, the
997 * last element in the list is the request we must execute first.
998 */
2221c5b7 999 list_for_each_entry(dep, &dfs, dfs_link) {
20311bd3
CW
1000 struct i915_priotree *pt = dep->signaler;
1001
ce01b173
CW
1002 /*
1003 * Within an engine, there can be no cycle, but we may
a79a524e
CW
1004 * refer to the same dependency chain multiple times
1005 * (redundant dependencies are not eliminated) and across
1006 * engines.
1007 */
1008 list_for_each_entry(p, &pt->signalers_list, signal_link) {
ce01b173
CW
1009 GEM_BUG_ON(p == dep); /* no cycles! */
1010
83cc84c5 1011 if (i915_priotree_signaled(p->signaler))
1f181225
CW
1012 continue;
1013
a79a524e 1014 GEM_BUG_ON(p->signaler->priority < pt->priority);
20311bd3
CW
1015 if (prio > READ_ONCE(p->signaler->priority))
1016 list_move_tail(&p->dfs_link, &dfs);
a79a524e 1017 }
20311bd3
CW
1018 }
1019
ce01b173
CW
1020 /*
1021 * If we didn't need to bump any existing priorities, and we haven't
349bdb68
CW
1022 * yet submitted this request (i.e. there is no potential race with
1023 * execlists_submit_request()), we can set our own priority and skip
1024 * acquiring the engine locks.
1025 */
7d1ea609 1026 if (request->priotree.priority == I915_PRIORITY_INVALID) {
349bdb68
CW
1027 GEM_BUG_ON(!list_empty(&request->priotree.link));
1028 request->priotree.priority = prio;
1029 if (stack.dfs_link.next == stack.dfs_link.prev)
1030 return;
1031 __list_del_entry(&stack.dfs_link);
1032 }
1033
a79a524e
CW
1034 engine = request->engine;
1035 spin_lock_irq(&engine->timeline->lock);
1036
20311bd3
CW
1037 /* Fifo and depth-first replacement ensure our deps execute before us */
1038 list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
1039 struct i915_priotree *pt = dep->signaler;
1040
1041 INIT_LIST_HEAD(&dep->dfs_link);
1042
1043 engine = pt_lock_engine(pt, engine);
1044
1045 if (prio <= pt->priority)
1046 continue;
1047
20311bd3 1048 pt->priority = prio;
6c067579
CW
1049 if (!list_empty(&pt->link)) {
1050 __list_del_entry(&pt->link);
1051 insert_request(engine, pt, prio);
a79a524e 1052 }
20311bd3
CW
1053 }
1054
a79a524e 1055 spin_unlock_irq(&engine->timeline->lock);
20311bd3
CW
1056}
1057
f4e15af7
CW
1058static int __context_pin(struct i915_gem_context *ctx, struct i915_vma *vma)
1059{
1060 unsigned int flags;
1061 int err;
1062
1063 /*
1064 * Clear this page out of any CPU caches for coherent swap-in/out.
1065 * We only want to do this on the first bind so that we do not stall
1066 * on an active context (which by nature is already on the GPU).
1067 */
1068 if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1069 err = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1070 if (err)
1071 return err;
1072 }
1073
1074 flags = PIN_GLOBAL | PIN_HIGH;
1075 if (ctx->ggtt_offset_bias)
1076 flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
1077
1078 return i915_vma_pin(vma, 0, GEN8_LR_CONTEXT_ALIGN, flags);
1079}
1080
266a240b
CW
1081static struct intel_ring *
1082execlists_context_pin(struct intel_engine_cs *engine,
1083 struct i915_gem_context *ctx)
dcb4c12a 1084{
9021ad03 1085 struct intel_context *ce = &ctx->engine[engine->id];
7d774cac 1086 void *vaddr;
ca82580c 1087 int ret;
dcb4c12a 1088
91c8a326 1089 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
ca82580c 1090
266a240b
CW
1091 if (likely(ce->pin_count++))
1092 goto out;
a533b4ba 1093 GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
24f1d3cc 1094
1d2a19c2
CW
1095 ret = execlists_context_deferred_alloc(ctx, engine);
1096 if (ret)
1097 goto err;
56f6e0a7 1098 GEM_BUG_ON(!ce->state);
e8a9c58f 1099
f4e15af7 1100 ret = __context_pin(ctx, ce->state);
e84fe803 1101 if (ret)
24f1d3cc 1102 goto err;
7ba717cf 1103
bf3783e5 1104 vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
7d774cac
TU
1105 if (IS_ERR(vaddr)) {
1106 ret = PTR_ERR(vaddr);
bf3783e5 1107 goto unpin_vma;
82352e90
TU
1108 }
1109
d822bb18 1110 ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
e84fe803 1111 if (ret)
7d774cac 1112 goto unpin_map;
d1675198 1113
0bc40be8 1114 intel_lr_context_descriptor_update(ctx, engine);
9021ad03 1115
a3aabe86
CW
1116 ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1117 ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
bde13ebd 1118 i915_ggtt_offset(ce->ring->vma);
a3aabe86 1119
3d574a6b 1120 ce->state->obj->pin_global++;
9a6feaf0 1121 i915_gem_context_get(ctx);
266a240b
CW
1122out:
1123 return ce->ring;
7ba717cf 1124
7d774cac 1125unpin_map:
bf3783e5
CW
1126 i915_gem_object_unpin_map(ce->state->obj);
1127unpin_vma:
1128 __i915_vma_unpin(ce->state);
24f1d3cc 1129err:
9021ad03 1130 ce->pin_count = 0;
266a240b 1131 return ERR_PTR(ret);
e84fe803
NH
1132}
1133
e8a9c58f
CW
1134static void execlists_context_unpin(struct intel_engine_cs *engine,
1135 struct i915_gem_context *ctx)
e84fe803 1136{
9021ad03 1137 struct intel_context *ce = &ctx->engine[engine->id];
e84fe803 1138
91c8a326 1139 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
9021ad03 1140 GEM_BUG_ON(ce->pin_count == 0);
321fe304 1141
9021ad03 1142 if (--ce->pin_count)
24f1d3cc 1143 return;
e84fe803 1144
aad29fbb 1145 intel_ring_unpin(ce->ring);
dcb4c12a 1146
3d574a6b 1147 ce->state->obj->pin_global--;
bf3783e5
CW
1148 i915_gem_object_unpin_map(ce->state->obj);
1149 i915_vma_unpin(ce->state);
321fe304 1150
9a6feaf0 1151 i915_gem_context_put(ctx);
dcb4c12a
OM
1152}
1153
f73e7399 1154static int execlists_request_alloc(struct drm_i915_gem_request *request)
ef11c01d
CW
1155{
1156 struct intel_engine_cs *engine = request->engine;
1157 struct intel_context *ce = &request->ctx->engine[engine->id];
fd138212 1158 int ret;
ef11c01d 1159
e8a9c58f
CW
1160 GEM_BUG_ON(!ce->pin_count);
1161
ef11c01d
CW
1162 /* Flush enough space to reduce the likelihood of waiting after
1163 * we start building the request - in which case we will just
1164 * have to repeat work.
1165 */
1166 request->reserved_space += EXECLISTS_REQUEST_SIZE;
1167
fd138212
CW
1168 ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
1169 if (ret)
1170 return ret;
ef11c01d 1171
ef11c01d
CW
1172 /* Note that after this point, we have committed to using
1173 * this request as it is being used to both track the
1174 * state of engine initialisation and liveness of the
1175 * golden renderstate above. Think twice before you try
1176 * to cancel/unwind this request now.
1177 */
1178
1179 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
1180 return 0;
ef11c01d
CW
1181}
1182
9e000847
AS
1183/*
1184 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1185 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1186 * but there is a slight complication as this is applied in WA batch where the
1187 * values are only initialized once so we cannot take register value at the
1188 * beginning and reuse it further; hence we save its value to memory, upload a
1189 * constant value with bit21 set and then we restore it back with the saved value.
1190 * To simplify the WA, a constant value is formed by using the default value
1191 * of this register. This shouldn't be a problem because we are only modifying
1192 * it for a short period and this batch in non-premptible. We can ofcourse
1193 * use additional instructions that read the actual value of the register
1194 * at that time and set our bit of interest but it makes the WA complicated.
1195 *
1196 * This WA is also required for Gen9 so extracting as a function avoids
1197 * code duplication.
1198 */
097d4f1c
TU
1199static u32 *
1200gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
17ee950d 1201{
097d4f1c
TU
1202 *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1203 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1204 *batch++ = i915_ggtt_offset(engine->scratch) + 256;
1205 *batch++ = 0;
1206
1207 *batch++ = MI_LOAD_REGISTER_IMM(1);
1208 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1209 *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
1210
9f235dfa
TU
1211 batch = gen8_emit_pipe_control(batch,
1212 PIPE_CONTROL_CS_STALL |
1213 PIPE_CONTROL_DC_FLUSH_ENABLE,
1214 0);
097d4f1c
TU
1215
1216 *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1217 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1218 *batch++ = i915_ggtt_offset(engine->scratch) + 256;
1219 *batch++ = 0;
1220
1221 return batch;
17ee950d
AS
1222}
1223
6e5248b5
DV
1224/*
1225 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1226 * initialized at the beginning and shared across all contexts but this field
1227 * helps us to have multiple batches at different offsets and select them based
1228 * on a criteria. At the moment this batch always start at the beginning of the page
1229 * and at this point we don't have multiple wa_ctx batch buffers.
4d78c8dc 1230 *
6e5248b5
DV
1231 * The number of WA applied are not known at the beginning; we use this field
1232 * to return the no of DWORDS written.
17ee950d 1233 *
6e5248b5
DV
1234 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1235 * so it adds NOOPs as padding to make it cacheline aligned.
1236 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1237 * makes a complete batch buffer.
17ee950d 1238 */
097d4f1c 1239static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
17ee950d 1240{
7ad00d1a 1241 /* WaDisableCtxRestoreArbitration:bdw,chv */
097d4f1c 1242 *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
17ee950d 1243
c82435bb 1244 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
097d4f1c
TU
1245 if (IS_BROADWELL(engine->i915))
1246 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
c82435bb 1247
0160f055
AS
1248 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1249 /* Actual scratch location is at 128 bytes offset */
9f235dfa
TU
1250 batch = gen8_emit_pipe_control(batch,
1251 PIPE_CONTROL_FLUSH_L3 |
1252 PIPE_CONTROL_GLOBAL_GTT_IVB |
1253 PIPE_CONTROL_CS_STALL |
1254 PIPE_CONTROL_QW_WRITE,
1255 i915_ggtt_offset(engine->scratch) +
1256 2 * CACHELINE_BYTES);
0160f055 1257
beecec90
CW
1258 *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1259
17ee950d 1260 /* Pad to end of cacheline */
097d4f1c
TU
1261 while ((unsigned long)batch % CACHELINE_BYTES)
1262 *batch++ = MI_NOOP;
17ee950d
AS
1263
1264 /*
1265 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1266 * execution depends on the length specified in terms of cache lines
1267 * in the register CTX_RCS_INDIRECT_CTX
1268 */
1269
097d4f1c 1270 return batch;
17ee950d
AS
1271}
1272
097d4f1c 1273static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
0504cffc 1274{
beecec90
CW
1275 *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1276
9fb5026f 1277 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
097d4f1c 1278 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
a4106a78 1279
9fb5026f 1280 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
097d4f1c
TU
1281 *batch++ = MI_LOAD_REGISTER_IMM(1);
1282 *batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
1283 *batch++ = _MASKED_BIT_DISABLE(
1284 GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
1285 *batch++ = MI_NOOP;
873e8171 1286
066d4628
MK
1287 /* WaClearSlmSpaceAtContextSwitch:kbl */
1288 /* Actual scratch location is at 128 bytes offset */
097d4f1c 1289 if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
9f235dfa
TU
1290 batch = gen8_emit_pipe_control(batch,
1291 PIPE_CONTROL_FLUSH_L3 |
1292 PIPE_CONTROL_GLOBAL_GTT_IVB |
1293 PIPE_CONTROL_CS_STALL |
1294 PIPE_CONTROL_QW_WRITE,
1295 i915_ggtt_offset(engine->scratch)
1296 + 2 * CACHELINE_BYTES);
066d4628 1297 }
3485d99e 1298
9fb5026f 1299 /* WaMediaPoolStateCmdInWABB:bxt,glk */
3485d99e
TG
1300 if (HAS_POOLED_EU(engine->i915)) {
1301 /*
1302 * EU pool configuration is setup along with golden context
1303 * during context initialization. This value depends on
1304 * device type (2x6 or 3x6) and needs to be updated based
1305 * on which subslice is disabled especially for 2x6
1306 * devices, however it is safe to load default
1307 * configuration of 3x6 device instead of masking off
1308 * corresponding bits because HW ignores bits of a disabled
1309 * subslice and drops down to appropriate config. Please
1310 * see render_state_setup() in i915_gem_render_state.c for
1311 * possible configurations, to avoid duplication they are
1312 * not shown here again.
1313 */
097d4f1c
TU
1314 *batch++ = GEN9_MEDIA_POOL_STATE;
1315 *batch++ = GEN9_MEDIA_POOL_ENABLE;
1316 *batch++ = 0x00777000;
1317 *batch++ = 0;
1318 *batch++ = 0;
1319 *batch++ = 0;
3485d99e
TG
1320 }
1321
beecec90
CW
1322 *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1323
0504cffc 1324 /* Pad to end of cacheline */
097d4f1c
TU
1325 while ((unsigned long)batch % CACHELINE_BYTES)
1326 *batch++ = MI_NOOP;
0504cffc 1327
097d4f1c 1328 return batch;
0504cffc
AS
1329}
1330
097d4f1c
TU
1331#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
1332
1333static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
17ee950d 1334{
48bb74e4
CW
1335 struct drm_i915_gem_object *obj;
1336 struct i915_vma *vma;
1337 int err;
17ee950d 1338
097d4f1c 1339 obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
48bb74e4
CW
1340 if (IS_ERR(obj))
1341 return PTR_ERR(obj);
17ee950d 1342
a01cb37a 1343 vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
48bb74e4
CW
1344 if (IS_ERR(vma)) {
1345 err = PTR_ERR(vma);
1346 goto err;
17ee950d
AS
1347 }
1348
48bb74e4
CW
1349 err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1350 if (err)
1351 goto err;
1352
1353 engine->wa_ctx.vma = vma;
17ee950d 1354 return 0;
48bb74e4
CW
1355
1356err:
1357 i915_gem_object_put(obj);
1358 return err;
17ee950d
AS
1359}
1360
097d4f1c 1361static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
17ee950d 1362{
19880c4a 1363 i915_vma_unpin_and_release(&engine->wa_ctx.vma);
17ee950d
AS
1364}
1365
097d4f1c
TU
1366typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1367
0bc40be8 1368static int intel_init_workaround_bb(struct intel_engine_cs *engine)
17ee950d 1369{
48bb74e4 1370 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
097d4f1c
TU
1371 struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
1372 &wa_ctx->per_ctx };
1373 wa_bb_func_t wa_bb_fn[2];
17ee950d 1374 struct page *page;
097d4f1c
TU
1375 void *batch, *batch_ptr;
1376 unsigned int i;
48bb74e4 1377 int ret;
17ee950d 1378
10bde236 1379 if (GEM_WARN_ON(engine->id != RCS))
097d4f1c 1380 return -EINVAL;
17ee950d 1381
097d4f1c 1382 switch (INTEL_GEN(engine->i915)) {
90007bca
RV
1383 case 10:
1384 return 0;
097d4f1c
TU
1385 case 9:
1386 wa_bb_fn[0] = gen9_init_indirectctx_bb;
b8aa2233 1387 wa_bb_fn[1] = NULL;
097d4f1c
TU
1388 break;
1389 case 8:
1390 wa_bb_fn[0] = gen8_init_indirectctx_bb;
3ad7b52d 1391 wa_bb_fn[1] = NULL;
097d4f1c
TU
1392 break;
1393 default:
1394 MISSING_CASE(INTEL_GEN(engine->i915));
5e60d790 1395 return 0;
0504cffc 1396 }
5e60d790 1397
097d4f1c 1398 ret = lrc_setup_wa_ctx(engine);
17ee950d
AS
1399 if (ret) {
1400 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1401 return ret;
1402 }
1403
48bb74e4 1404 page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
097d4f1c 1405 batch = batch_ptr = kmap_atomic(page);
17ee950d 1406
097d4f1c
TU
1407 /*
1408 * Emit the two workaround batch buffers, recording the offset from the
1409 * start of the workaround batch buffer object for each and their
1410 * respective sizes.
1411 */
1412 for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1413 wa_bb[i]->offset = batch_ptr - batch;
1d2a19c2
CW
1414 if (GEM_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
1415 CACHELINE_BYTES))) {
097d4f1c
TU
1416 ret = -EINVAL;
1417 break;
1418 }
604a8f6f
CW
1419 if (wa_bb_fn[i])
1420 batch_ptr = wa_bb_fn[i](engine, batch_ptr);
097d4f1c 1421 wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
17ee950d
AS
1422 }
1423
097d4f1c
TU
1424 BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
1425
17ee950d
AS
1426 kunmap_atomic(batch);
1427 if (ret)
097d4f1c 1428 lrc_destroy_wa_ctx(engine);
17ee950d
AS
1429
1430 return ret;
1431}
1432
64f09f00
CW
1433static u8 gtiir[] = {
1434 [RCS] = 0,
1435 [BCS] = 0,
1436 [VCS] = 1,
1437 [VCS2] = 1,
1438 [VECS] = 3,
1439};
1440
f3c9d407 1441static void enable_execlists(struct intel_engine_cs *engine)
9b1136d5 1442{
c033666a 1443 struct drm_i915_private *dev_priv = engine->i915;
f3c9d407
CW
1444
1445 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
225701fc
KG
1446
1447 /*
1448 * Make sure we're not enabling the new 12-deep CSB
1449 * FIFO as that requires a slightly updated handling
1450 * in the ctx switch irq. Since we're currently only
1451 * using only 2 elements of the enhanced execlists the
1452 * deeper FIFO it's not needed and it's not worth adding
1453 * more statements to the irq handler to support it.
1454 */
1455 if (INTEL_GEN(dev_priv) >= 11)
1456 I915_WRITE(RING_MODE_GEN7(engine),
1457 _MASKED_BIT_DISABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
1458 else
1459 I915_WRITE(RING_MODE_GEN7(engine),
1460 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1461
f3c9d407
CW
1462 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1463 engine->status_page.ggtt_offset);
1464 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1465}
1466
1467static int gen8_init_common_ring(struct intel_engine_cs *engine)
1468{
b620e870 1469 struct intel_engine_execlists * const execlists = &engine->execlists;
821ed7df
CW
1470 int ret;
1471
1472 ret = intel_mocs_init_engine(engine);
1473 if (ret)
1474 return ret;
9b1136d5 1475
ad07dfcd 1476 intel_engine_reset_breadcrumbs(engine);
f3b8f912 1477 intel_engine_init_hangcheck(engine);
821ed7df 1478
f3c9d407 1479 enable_execlists(engine);
0bc40be8 1480 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
9b1136d5 1481
64f09f00
CW
1482 GEM_BUG_ON(engine->id >= ARRAY_SIZE(gtiir));
1483
b620e870 1484 execlists->csb_head = -1;
4a118ecb 1485 execlists->active = 0;
6b764a59 1486
64f09f00 1487 /* After a GPU reset, we may have requests to replay */
9bdc3573 1488 if (execlists->first)
c6dce8f1 1489 tasklet_schedule(&execlists->tasklet);
6b764a59 1490
821ed7df 1491 return 0;
9b1136d5
OM
1492}
1493
0bc40be8 1494static int gen8_init_render_ring(struct intel_engine_cs *engine)
9b1136d5 1495{
c033666a 1496 struct drm_i915_private *dev_priv = engine->i915;
9b1136d5
OM
1497 int ret;
1498
0bc40be8 1499 ret = gen8_init_common_ring(engine);
9b1136d5
OM
1500 if (ret)
1501 return ret;
1502
1503 /* We need to disable the AsyncFlip performance optimisations in order
1504 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1505 * programmed to '1' on all products.
1506 *
1507 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1508 */
1509 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1510
9b1136d5
OM
1511 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1512
0bc40be8 1513 return init_workarounds_ring(engine);
9b1136d5
OM
1514}
1515
0bc40be8 1516static int gen9_init_render_ring(struct intel_engine_cs *engine)
82ef822e
DL
1517{
1518 int ret;
1519
0bc40be8 1520 ret = gen8_init_common_ring(engine);
82ef822e
DL
1521 if (ret)
1522 return ret;
1523
0bc40be8 1524 return init_workarounds_ring(engine);
82ef822e
DL
1525}
1526
42232213
CW
1527static void reset_irq(struct intel_engine_cs *engine)
1528{
1529 struct drm_i915_private *dev_priv = engine->i915;
1530
1531 /*
1532 * Clear any pending interrupt state.
1533 *
1534 * We do it twice out of paranoia that some of the IIR are double
1535 * buffered, and if we only reset it once there may still be
1536 * an interrupt pending.
1537 */
1538 I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
1539 GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
1540 I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
1541 GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
1542 clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1543}
1544
821ed7df
CW
1545static void reset_common_ring(struct intel_engine_cs *engine,
1546 struct drm_i915_gem_request *request)
1547{
b620e870 1548 struct intel_engine_execlists * const execlists = &engine->execlists;
c0dcb203 1549 struct intel_context *ce;
221ab971 1550 unsigned long flags;
cdb6ded4 1551
16a87394
CW
1552 GEM_TRACE("%s seqno=%x\n",
1553 engine->name, request ? request->global_seqno : 0);
42232213
CW
1554
1555 reset_irq(engine);
1556
221ab971
CW
1557 spin_lock_irqsave(&engine->timeline->lock, flags);
1558
cdb6ded4
CW
1559 /*
1560 * Catch up with any missed context-switch interrupts.
1561 *
1562 * Ideally we would just read the remaining CSB entries now that we
1563 * know the gpu is idle. However, the CSB registers are sometimes^W
1564 * often trashed across a GPU reset! Instead we have to rely on
1565 * guessing the missed context-switch events by looking at what
1566 * requests were completed.
1567 */
a4598d17 1568 execlists_cancel_port_requests(execlists);
cdb6ded4 1569
221ab971 1570 /* Push back any incomplete requests for replay after the reset. */
a4598d17 1571 __unwind_incomplete_requests(engine);
cdb6ded4 1572
221ab971 1573 spin_unlock_irqrestore(&engine->timeline->lock, flags);
c0dcb203
CW
1574
1575 /* If the request was innocent, we leave the request in the ELSP
1576 * and will try to replay it on restarting. The context image may
1577 * have been corrupted by the reset, in which case we may have
1578 * to service a new GPU hang, but more likely we can continue on
1579 * without impact.
1580 *
1581 * If the request was guilty, we presume the context is corrupt
1582 * and have to at least restore the RING register in the context
1583 * image back to the expected values to skip over the guilty request.
1584 */
221ab971 1585 if (!request || request->fence.error != -EIO)
c0dcb203 1586 return;
821ed7df 1587
a3aabe86
CW
1588 /* We want a simple context + ring to execute the breadcrumb update.
1589 * We cannot rely on the context being intact across the GPU hang,
1590 * so clear it and rebuild just what we need for the breadcrumb.
1591 * All pending requests for this context will be zapped, and any
1592 * future request will be after userspace has had the opportunity
1593 * to recreate its own state.
1594 */
c0dcb203 1595 ce = &request->ctx->engine[engine->id];
a3aabe86
CW
1596 execlists_init_reg_state(ce->lrc_reg_state,
1597 request->ctx, engine, ce->ring);
1598
821ed7df 1599 /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
a3aabe86
CW
1600 ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1601 i915_ggtt_offset(ce->ring->vma);
821ed7df 1602 ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
a3aabe86 1603
821ed7df 1604 request->ring->head = request->postfix;
821ed7df
CW
1605 intel_ring_update_space(request->ring);
1606
a3aabe86 1607 /* Reset WaIdleLiteRestore:bdw,skl as well */
7e4992ac 1608 unwind_wa_tail(request);
821ed7df
CW
1609}
1610
7a01a0a2
MT
1611static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1612{
1613 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
4a570db5 1614 struct intel_engine_cs *engine = req->engine;
e7167769 1615 const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
73dec95e
TU
1616 u32 *cs;
1617 int i;
7a01a0a2 1618
73dec95e
TU
1619 cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1620 if (IS_ERR(cs))
1621 return PTR_ERR(cs);
7a01a0a2 1622
73dec95e 1623 *cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
e7167769 1624 for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
7a01a0a2
MT
1625 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1626
73dec95e
TU
1627 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
1628 *cs++ = upper_32_bits(pd_daddr);
1629 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
1630 *cs++ = lower_32_bits(pd_daddr);
7a01a0a2
MT
1631 }
1632
73dec95e
TU
1633 *cs++ = MI_NOOP;
1634 intel_ring_advance(req, cs);
7a01a0a2
MT
1635
1636 return 0;
1637}
1638
be795fc1 1639static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
803688ba 1640 u64 offset, u32 len,
54af56db 1641 const unsigned int flags)
15648585 1642{
73dec95e 1643 u32 *cs;
15648585
OM
1644 int ret;
1645
7a01a0a2
MT
1646 /* Don't rely in hw updating PDPs, specially in lite-restore.
1647 * Ideally, we should set Force PD Restore in ctx descriptor,
1648 * but we can't. Force Restore would be a second option, but
1649 * it is unsafe in case of lite-restore (because the ctx is
2dba3239
MT
1650 * not idle). PML4 is allocated during ppgtt init so this is
1651 * not needed in 48-bit.*/
7a01a0a2 1652 if (req->ctx->ppgtt &&
54af56db
MK
1653 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings) &&
1654 !i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
1655 !intel_vgpu_active(req->i915)) {
1656 ret = intel_logical_ring_emit_pdps(req);
1657 if (ret)
1658 return ret;
7a01a0a2 1659
666796da 1660 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
7a01a0a2
MT
1661 }
1662
73dec95e
TU
1663 cs = intel_ring_begin(req, 4);
1664 if (IS_ERR(cs))
1665 return PTR_ERR(cs);
15648585 1666
279f5a00
CW
1667 /*
1668 * WaDisableCtxRestoreArbitration:bdw,chv
1669 *
1670 * We don't need to perform MI_ARB_ENABLE as often as we do (in
1671 * particular all the gen that do not need the w/a at all!), if we
1672 * took care to make sure that on every switch into this context
1673 * (both ordinary and for preemption) that arbitrartion was enabled
1674 * we would be fine. However, there doesn't seem to be a downside to
1675 * being paranoid and making sure it is set before each batch and
1676 * every context-switch.
1677 *
1678 * Note that if we fail to enable arbitration before the request
1679 * is complete, then we do not see the context-switch interrupt and
1680 * the engine hangs (with RING_HEAD == RING_TAIL).
1681 *
1682 * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
1683 */
3ad7b52d
CW
1684 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1685
15648585 1686 /* FIXME(BDW): Address space and security selectors. */
54af56db
MK
1687 *cs++ = MI_BATCH_BUFFER_START_GEN8 |
1688 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
1689 (flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
73dec95e
TU
1690 *cs++ = lower_32_bits(offset);
1691 *cs++ = upper_32_bits(offset);
73dec95e 1692 intel_ring_advance(req, cs);
15648585
OM
1693
1694 return 0;
1695}
1696
31bb59cc 1697static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
73d477f6 1698{
c033666a 1699 struct drm_i915_private *dev_priv = engine->i915;
31bb59cc
CW
1700 I915_WRITE_IMR(engine,
1701 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1702 POSTING_READ_FW(RING_IMR(engine->mmio_base));
73d477f6
OM
1703}
1704
31bb59cc 1705static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
73d477f6 1706{
c033666a 1707 struct drm_i915_private *dev_priv = engine->i915;
31bb59cc 1708 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
73d477f6
OM
1709}
1710
7c9cf4e3 1711static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
4712274c 1712{
73dec95e 1713 u32 cmd, *cs;
4712274c 1714
73dec95e
TU
1715 cs = intel_ring_begin(request, 4);
1716 if (IS_ERR(cs))
1717 return PTR_ERR(cs);
4712274c
OM
1718
1719 cmd = MI_FLUSH_DW + 1;
1720
f0a1fb10
CW
1721 /* We always require a command barrier so that subsequent
1722 * commands, such as breadcrumb interrupts, are strictly ordered
1723 * wrt the contents of the write cache being flushed to memory
1724 * (and thus being coherent from the CPU).
1725 */
1726 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1727
7c9cf4e3 1728 if (mode & EMIT_INVALIDATE) {
f0a1fb10 1729 cmd |= MI_INVALIDATE_TLB;
1dae2dfb 1730 if (request->engine->id == VCS)
f0a1fb10 1731 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1732 }
1733
73dec95e
TU
1734 *cs++ = cmd;
1735 *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1736 *cs++ = 0; /* upper addr */
1737 *cs++ = 0; /* value */
1738 intel_ring_advance(request, cs);
4712274c
OM
1739
1740 return 0;
1741}
1742
7deb4d39 1743static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
7c9cf4e3 1744 u32 mode)
4712274c 1745{
b5321f30 1746 struct intel_engine_cs *engine = request->engine;
bde13ebd
CW
1747 u32 scratch_addr =
1748 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
0b2d0934 1749 bool vf_flush_wa = false, dc_flush_wa = false;
73dec95e 1750 u32 *cs, flags = 0;
0b2d0934 1751 int len;
4712274c
OM
1752
1753 flags |= PIPE_CONTROL_CS_STALL;
1754
7c9cf4e3 1755 if (mode & EMIT_FLUSH) {
4712274c
OM
1756 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1757 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
965fd602 1758 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
40a24488 1759 flags |= PIPE_CONTROL_FLUSH_ENABLE;
4712274c
OM
1760 }
1761
7c9cf4e3 1762 if (mode & EMIT_INVALIDATE) {
4712274c
OM
1763 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1764 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1765 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1766 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1767 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1768 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1769 flags |= PIPE_CONTROL_QW_WRITE;
1770 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
4712274c 1771
1a5a9ce7
BW
1772 /*
1773 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1774 * pipe control.
1775 */
c033666a 1776 if (IS_GEN9(request->i915))
1a5a9ce7 1777 vf_flush_wa = true;
0b2d0934
MK
1778
1779 /* WaForGAMHang:kbl */
1780 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1781 dc_flush_wa = true;
1a5a9ce7 1782 }
9647ff36 1783
0b2d0934
MK
1784 len = 6;
1785
1786 if (vf_flush_wa)
1787 len += 6;
1788
1789 if (dc_flush_wa)
1790 len += 12;
1791
73dec95e
TU
1792 cs = intel_ring_begin(request, len);
1793 if (IS_ERR(cs))
1794 return PTR_ERR(cs);
4712274c 1795
9f235dfa
TU
1796 if (vf_flush_wa)
1797 cs = gen8_emit_pipe_control(cs, 0, 0);
9647ff36 1798
9f235dfa
TU
1799 if (dc_flush_wa)
1800 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
1801 0);
0b2d0934 1802
9f235dfa 1803 cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
0b2d0934 1804
9f235dfa
TU
1805 if (dc_flush_wa)
1806 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
0b2d0934 1807
73dec95e 1808 intel_ring_advance(request, cs);
4712274c
OM
1809
1810 return 0;
1811}
1812
7c17d377
CW
1813/*
1814 * Reserve space for 2 NOOPs at the end of each request to be
1815 * used as a workaround for not being allowed to do lite
1816 * restore with HEAD==TAIL (WaIdleLiteRestore).
1817 */
73dec95e 1818static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
4da46e1e 1819{
beecec90
CW
1820 /* Ensure there's always at least one preemption point per-request. */
1821 *cs++ = MI_ARB_CHECK;
73dec95e
TU
1822 *cs++ = MI_NOOP;
1823 request->wa_tail = intel_ring_offset(request, cs);
caddfe71 1824}
4da46e1e 1825
73dec95e 1826static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
caddfe71 1827{
7c17d377
CW
1828 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1829 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
4da46e1e 1830
df77cd83
MW
1831 cs = gen8_emit_ggtt_write(cs, request->global_seqno,
1832 intel_hws_seqno_address(request->engine));
73dec95e
TU
1833 *cs++ = MI_USER_INTERRUPT;
1834 *cs++ = MI_NOOP;
1835 request->tail = intel_ring_offset(request, cs);
ed1501d4 1836 assert_ring_tail_valid(request->ring, request->tail);
caddfe71 1837
73dec95e 1838 gen8_emit_wa_tail(request, cs);
7c17d377 1839}
98f29e8d
CW
1840static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
1841
df77cd83 1842static void gen8_emit_breadcrumb_rcs(struct drm_i915_gem_request *request,
73dec95e 1843 u32 *cs)
7c17d377 1844{
ce81a65c
MW
1845 /* We're using qword write, seqno should be aligned to 8 bytes. */
1846 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1847
df77cd83
MW
1848 cs = gen8_emit_ggtt_write_rcs(cs, request->global_seqno,
1849 intel_hws_seqno_address(request->engine));
73dec95e
TU
1850 *cs++ = MI_USER_INTERRUPT;
1851 *cs++ = MI_NOOP;
1852 request->tail = intel_ring_offset(request, cs);
ed1501d4 1853 assert_ring_tail_valid(request->ring, request->tail);
caddfe71 1854
73dec95e 1855 gen8_emit_wa_tail(request, cs);
4da46e1e 1856}
df77cd83 1857static const int gen8_emit_breadcrumb_rcs_sz = 8 + WA_TAIL_DWORDS;
98f29e8d 1858
8753181e 1859static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
e7778be1
TD
1860{
1861 int ret;
1862
4ac9659e 1863 ret = intel_ring_workarounds_emit(req);
e7778be1
TD
1864 if (ret)
1865 return ret;
1866
3bbaba0c
PA
1867 ret = intel_rcs_context_init_mocs(req);
1868 /*
1869 * Failing to program the MOCS is non-fatal.The system will not
1870 * run at peak performance. So generate an error and carry on.
1871 */
1872 if (ret)
1873 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1874
4e50f082 1875 return i915_gem_render_state_emit(req);
e7778be1
TD
1876}
1877
73e4d07f
OM
1878/**
1879 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
14bb2c11 1880 * @engine: Engine Command Streamer.
73e4d07f 1881 */
0bc40be8 1882void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
454afebd 1883{
6402c330 1884 struct drm_i915_private *dev_priv;
9832b9da 1885
27af5eea
TU
1886 /*
1887 * Tasklet cannot be active at this point due intel_mark_active/idle
1888 * so this is just for documentation.
1889 */
c6dce8f1
SAK
1890 if (WARN_ON(test_bit(TASKLET_STATE_SCHED,
1891 &engine->execlists.tasklet.state)))
1892 tasklet_kill(&engine->execlists.tasklet);
27af5eea 1893
c033666a 1894 dev_priv = engine->i915;
6402c330 1895
0bc40be8 1896 if (engine->buffer) {
0bc40be8 1897 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
b0366a54 1898 }
48d82387 1899
0bc40be8
TU
1900 if (engine->cleanup)
1901 engine->cleanup(engine);
48d82387 1902
e8a9c58f 1903 intel_engine_cleanup_common(engine);
17ee950d 1904
097d4f1c 1905 lrc_destroy_wa_ctx(engine);
f3c9d407 1906
c033666a 1907 engine->i915 = NULL;
3b3f1650
AG
1908 dev_priv->engine[engine->id] = NULL;
1909 kfree(engine);
454afebd
OM
1910}
1911
ff44ad51 1912static void execlists_set_default_submission(struct intel_engine_cs *engine)
ddd66c51 1913{
ff44ad51 1914 engine->submit_request = execlists_submit_request;
27a5f61b 1915 engine->cancel_requests = execlists_cancel_requests;
ff44ad51 1916 engine->schedule = execlists_schedule;
c6dce8f1 1917 engine->execlists.tasklet.func = execlists_submission_tasklet;
aba5e278
CW
1918
1919 engine->park = NULL;
1920 engine->unpark = NULL;
cf669b4e
TU
1921
1922 engine->flags |= I915_ENGINE_SUPPORTS_STATS;
ddd66c51
CW
1923}
1924
c9cacf93 1925static void
e1382efb 1926logical_ring_default_vfuncs(struct intel_engine_cs *engine)
c9cacf93
TU
1927{
1928 /* Default vfuncs which can be overriden by each engine. */
0bc40be8 1929 engine->init_hw = gen8_init_common_ring;
821ed7df 1930 engine->reset_hw = reset_common_ring;
e8a9c58f
CW
1931
1932 engine->context_pin = execlists_context_pin;
1933 engine->context_unpin = execlists_context_unpin;
1934
f73e7399
CW
1935 engine->request_alloc = execlists_request_alloc;
1936
0bc40be8 1937 engine->emit_flush = gen8_emit_flush;
9b81d556 1938 engine->emit_breadcrumb = gen8_emit_breadcrumb;
98f29e8d 1939 engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
ff44ad51
CW
1940
1941 engine->set_default_submission = execlists_set_default_submission;
ddd66c51 1942
31bb59cc
CW
1943 engine->irq_enable = gen8_logical_ring_enable_irq;
1944 engine->irq_disable = gen8_logical_ring_disable_irq;
0bc40be8 1945 engine->emit_bb_start = gen8_emit_bb_start;
c9cacf93
TU
1946}
1947
d9f3af96 1948static inline void
c2c7f240 1949logical_ring_default_irqs(struct intel_engine_cs *engine)
d9f3af96 1950{
c2c7f240 1951 unsigned shift = engine->irq_shift;
0bc40be8
TU
1952 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1953 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
d9f3af96
TU
1954}
1955
bb45438f
TU
1956static void
1957logical_ring_setup(struct intel_engine_cs *engine)
1958{
1959 struct drm_i915_private *dev_priv = engine->i915;
1960 enum forcewake_domains fw_domains;
1961
019bf277
TU
1962 intel_engine_setup_common(engine);
1963
bb45438f
TU
1964 /* Intentionally left blank. */
1965 engine->buffer = NULL;
1966
1967 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1968 RING_ELSP(engine),
1969 FW_REG_WRITE);
1970
1971 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1972 RING_CONTEXT_STATUS_PTR(engine),
1973 FW_REG_READ | FW_REG_WRITE);
1974
1975 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1976 RING_CONTEXT_STATUS_BUF_BASE(engine),
1977 FW_REG_READ);
1978
b620e870 1979 engine->execlists.fw_domains = fw_domains;
bb45438f 1980
c6dce8f1
SAK
1981 tasklet_init(&engine->execlists.tasklet,
1982 execlists_submission_tasklet, (unsigned long)engine);
bb45438f 1983
bb45438f
TU
1984 logical_ring_default_vfuncs(engine);
1985 logical_ring_default_irqs(engine);
bb45438f
TU
1986}
1987
486e93f7 1988static int logical_ring_init(struct intel_engine_cs *engine)
a19d6ff2 1989{
a19d6ff2
TU
1990 int ret;
1991
019bf277 1992 ret = intel_engine_init_common(engine);
a19d6ff2
TU
1993 if (ret)
1994 goto error;
1995
693cfbf0
CW
1996 engine->execlists.elsp =
1997 engine->i915->regs + i915_mmio_reg_offset(RING_ELSP(engine));
1998
a19d6ff2
TU
1999 return 0;
2000
2001error:
2002 intel_logical_ring_cleanup(engine);
2003 return ret;
2004}
2005
88d2ba2e 2006int logical_render_ring_init(struct intel_engine_cs *engine)
a19d6ff2
TU
2007{
2008 struct drm_i915_private *dev_priv = engine->i915;
2009 int ret;
2010
bb45438f
TU
2011 logical_ring_setup(engine);
2012
a19d6ff2
TU
2013 if (HAS_L3_DPF(dev_priv))
2014 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2015
2016 /* Override some for render ring. */
2017 if (INTEL_GEN(dev_priv) >= 9)
2018 engine->init_hw = gen9_init_render_ring;
2019 else
2020 engine->init_hw = gen8_init_render_ring;
2021 engine->init_context = gen8_init_rcs_context;
a19d6ff2 2022 engine->emit_flush = gen8_emit_flush_render;
df77cd83
MW
2023 engine->emit_breadcrumb = gen8_emit_breadcrumb_rcs;
2024 engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_rcs_sz;
a19d6ff2 2025
f51455d4 2026 ret = intel_engine_create_scratch(engine, PAGE_SIZE);
a19d6ff2
TU
2027 if (ret)
2028 return ret;
2029
2030 ret = intel_init_workaround_bb(engine);
2031 if (ret) {
2032 /*
2033 * We continue even if we fail to initialize WA batch
2034 * because we only expect rare glitches but nothing
2035 * critical to prevent us from using GPU
2036 */
2037 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2038 ret);
2039 }
2040
d038fc7e 2041 return logical_ring_init(engine);
a19d6ff2
TU
2042}
2043
88d2ba2e 2044int logical_xcs_ring_init(struct intel_engine_cs *engine)
bb45438f
TU
2045{
2046 logical_ring_setup(engine);
2047
2048 return logical_ring_init(engine);
454afebd
OM
2049}
2050
0cea6502 2051static u32
c033666a 2052make_rpcs(struct drm_i915_private *dev_priv)
0cea6502
JM
2053{
2054 u32 rpcs = 0;
2055
2056 /*
2057 * No explicit RPCS request is needed to ensure full
2058 * slice/subslice/EU enablement prior to Gen9.
2059 */
c033666a 2060 if (INTEL_GEN(dev_priv) < 9)
0cea6502
JM
2061 return 0;
2062
2063 /*
2064 * Starting in Gen9, render power gating can leave
2065 * slice/subslice/EU in a partially enabled state. We
2066 * must make an explicit request through RPCS for full
2067 * enablement.
2068 */
43b67998 2069 if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
0cea6502 2070 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
f08a0c92 2071 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
0cea6502
JM
2072 GEN8_RPCS_S_CNT_SHIFT;
2073 rpcs |= GEN8_RPCS_ENABLE;
2074 }
2075
43b67998 2076 if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
0cea6502 2077 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
57ec171e 2078 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
0cea6502
JM
2079 GEN8_RPCS_SS_CNT_SHIFT;
2080 rpcs |= GEN8_RPCS_ENABLE;
2081 }
2082
43b67998
ID
2083 if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
2084 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
0cea6502 2085 GEN8_RPCS_EU_MIN_SHIFT;
43b67998 2086 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
0cea6502
JM
2087 GEN8_RPCS_EU_MAX_SHIFT;
2088 rpcs |= GEN8_RPCS_ENABLE;
2089 }
2090
2091 return rpcs;
2092}
2093
0bc40be8 2094static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
71562919
MT
2095{
2096 u32 indirect_ctx_offset;
2097
c033666a 2098 switch (INTEL_GEN(engine->i915)) {
71562919 2099 default:
c033666a 2100 MISSING_CASE(INTEL_GEN(engine->i915));
71562919 2101 /* fall through */
7bd0a2c6
MT
2102 case 10:
2103 indirect_ctx_offset =
2104 GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2105 break;
71562919
MT
2106 case 9:
2107 indirect_ctx_offset =
2108 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2109 break;
2110 case 8:
2111 indirect_ctx_offset =
2112 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2113 break;
2114 }
2115
2116 return indirect_ctx_offset;
2117}
2118
56e51bf0 2119static void execlists_init_reg_state(u32 *regs,
a3aabe86
CW
2120 struct i915_gem_context *ctx,
2121 struct intel_engine_cs *engine,
2122 struct intel_ring *ring)
8670d6f9 2123{
a3aabe86
CW
2124 struct drm_i915_private *dev_priv = engine->i915;
2125 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
56e51bf0
TU
2126 u32 base = engine->mmio_base;
2127 bool rcs = engine->id == RCS;
2128
2129 /* A context is actually a big batch buffer with several
2130 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
2131 * values we are setting here are only for the first context restore:
2132 * on a subsequent save, the GPU will recreate this batchbuffer with new
2133 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
2134 * we are not initializing here).
2135 */
2136 regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
2137 MI_LRI_FORCE_POSTED;
2138
2139 CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
09b1a4e4
CW
2140 _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2141 CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT) |
56e51bf0 2142 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
56e51bf0
TU
2143 (HAS_RESOURCE_STREAMER(dev_priv) ?
2144 CTX_CTRL_RS_CTX_ENABLE : 0)));
2145 CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
2146 CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
2147 CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
2148 CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
2149 RING_CTL_SIZE(ring->size) | RING_VALID);
2150 CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
2151 CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
2152 CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
2153 CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
2154 CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
2155 CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
2156 if (rcs) {
604a8f6f
CW
2157 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2158
56e51bf0
TU
2159 CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
2160 CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
2161 RING_INDIRECT_CTX_OFFSET(base), 0);
604a8f6f 2162 if (wa_ctx->indirect_ctx.size) {
bde13ebd 2163 u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
17ee950d 2164
56e51bf0 2165 regs[CTX_RCS_INDIRECT_CTX + 1] =
097d4f1c
TU
2166 (ggtt_offset + wa_ctx->indirect_ctx.offset) |
2167 (wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
17ee950d 2168
56e51bf0 2169 regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
0bc40be8 2170 intel_lr_indirect_ctx_offset(engine) << 6;
604a8f6f
CW
2171 }
2172
2173 CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
2174 if (wa_ctx->per_ctx.size) {
2175 u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
17ee950d 2176
56e51bf0 2177 regs[CTX_BB_PER_CTX_PTR + 1] =
097d4f1c 2178 (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
17ee950d 2179 }
8670d6f9 2180 }
56e51bf0
TU
2181
2182 regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2183
2184 CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
0d925ea0 2185 /* PDP values well be assigned later if needed */
56e51bf0
TU
2186 CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
2187 CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
2188 CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
2189 CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
2190 CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
2191 CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
2192 CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
2193 CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
d7b2633d 2194
949e8ab3 2195 if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
2dba3239
MT
2196 /* 64b PPGTT (48bit canonical)
2197 * PDP0_DESCRIPTOR contains the base address to PML4 and
2198 * other PDP Descriptors are ignored.
2199 */
56e51bf0 2200 ASSIGN_CTX_PML4(ppgtt, regs);
2dba3239
MT
2201 }
2202
56e51bf0
TU
2203 if (rcs) {
2204 regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2205 CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2206 make_rpcs(dev_priv));
19f81df2
RB
2207
2208 i915_oa_init_reg_state(engine, ctx, regs);
8670d6f9 2209 }
a3aabe86
CW
2210}
2211
2212static int
2213populate_lr_context(struct i915_gem_context *ctx,
2214 struct drm_i915_gem_object *ctx_obj,
2215 struct intel_engine_cs *engine,
2216 struct intel_ring *ring)
2217{
2218 void *vaddr;
d2b4b979 2219 u32 *regs;
a3aabe86
CW
2220 int ret;
2221
2222 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2223 if (ret) {
2224 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2225 return ret;
2226 }
2227
2228 vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2229 if (IS_ERR(vaddr)) {
2230 ret = PTR_ERR(vaddr);
2231 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2232 return ret;
2233 }
a4f5ea64 2234 ctx_obj->mm.dirty = true;
a3aabe86 2235
d2b4b979
CW
2236 if (engine->default_state) {
2237 /*
2238 * We only want to copy over the template context state;
2239 * skipping over the headers reserved for GuC communication,
2240 * leaving those as zero.
2241 */
2242 const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
2243 void *defaults;
2244
2245 defaults = i915_gem_object_pin_map(engine->default_state,
2246 I915_MAP_WB);
2247 if (IS_ERR(defaults))
2248 return PTR_ERR(defaults);
2249
2250 memcpy(vaddr + start, defaults + start, engine->context_size);
2251 i915_gem_object_unpin_map(engine->default_state);
2252 }
2253
a3aabe86
CW
2254 /* The second page of the context object contains some fields which must
2255 * be set up prior to the first execution. */
d2b4b979
CW
2256 regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
2257 execlists_init_reg_state(regs, ctx, engine, ring);
2258 if (!engine->default_state)
2259 regs[CTX_CONTEXT_CONTROL + 1] |=
2260 _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
517aaffe
CW
2261 if (ctx->hw_id == PREEMPT_ID)
2262 regs[CTX_CONTEXT_CONTROL + 1] |=
2263 _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2264 CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
8670d6f9 2265
7d774cac 2266 i915_gem_object_unpin_map(ctx_obj);
8670d6f9
OM
2267
2268 return 0;
2269}
2270
e2efd130 2271static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 2272 struct intel_engine_cs *engine)
ede7d42b 2273{
8c857917 2274 struct drm_i915_gem_object *ctx_obj;
9021ad03 2275 struct intel_context *ce = &ctx->engine[engine->id];
bf3783e5 2276 struct i915_vma *vma;
8c857917 2277 uint32_t context_size;
7e37f889 2278 struct intel_ring *ring;
8c857917
OM
2279 int ret;
2280
1d2a19c2
CW
2281 if (ce->state)
2282 return 0;
ede7d42b 2283
63ffbcda 2284 context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
8c857917 2285
0b29c75a
MT
2286 /*
2287 * Before the actual start of the context image, we insert a few pages
2288 * for our own use and for sharing with the GuC.
2289 */
2290 context_size += LRC_HEADER_PAGES * PAGE_SIZE;
d1675198 2291
12d79d78 2292 ctx_obj = i915_gem_object_create(ctx->i915, context_size);
fe3db79b 2293 if (IS_ERR(ctx_obj)) {
3126a660 2294 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
fe3db79b 2295 return PTR_ERR(ctx_obj);
8c857917
OM
2296 }
2297
a01cb37a 2298 vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
bf3783e5
CW
2299 if (IS_ERR(vma)) {
2300 ret = PTR_ERR(vma);
2301 goto error_deref_obj;
2302 }
2303
7e37f889 2304 ring = intel_engine_create_ring(engine, ctx->ring_size);
dca33ecc
CW
2305 if (IS_ERR(ring)) {
2306 ret = PTR_ERR(ring);
e84fe803 2307 goto error_deref_obj;
8670d6f9
OM
2308 }
2309
dca33ecc 2310 ret = populate_lr_context(ctx, ctx_obj, engine, ring);
8670d6f9
OM
2311 if (ret) {
2312 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
dca33ecc 2313 goto error_ring_free;
84c2377f
OM
2314 }
2315
dca33ecc 2316 ce->ring = ring;
bf3783e5 2317 ce->state = vma;
ede7d42b
OM
2318
2319 return 0;
8670d6f9 2320
dca33ecc 2321error_ring_free:
7e37f889 2322 intel_ring_free(ring);
e84fe803 2323error_deref_obj:
f8c417cd 2324 i915_gem_object_put(ctx_obj);
8670d6f9 2325 return ret;
ede7d42b 2326}
3e5b6f05 2327
821ed7df 2328void intel_lr_context_resume(struct drm_i915_private *dev_priv)
3e5b6f05 2329{
e2f80391 2330 struct intel_engine_cs *engine;
bafb2f7d 2331 struct i915_gem_context *ctx;
3b3f1650 2332 enum intel_engine_id id;
bafb2f7d
CW
2333
2334 /* Because we emit WA_TAIL_DWORDS there may be a disparity
2335 * between our bookkeeping in ce->ring->head and ce->ring->tail and
2336 * that stored in context. As we only write new commands from
2337 * ce->ring->tail onwards, everything before that is junk. If the GPU
2338 * starts reading from its RING_HEAD from the context, it may try to
2339 * execute that junk and die.
2340 *
2341 * So to avoid that we reset the context images upon resume. For
2342 * simplicity, we just zero everything out.
2343 */
829a0af2 2344 list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
3b3f1650 2345 for_each_engine(engine, dev_priv, id) {
bafb2f7d
CW
2346 struct intel_context *ce = &ctx->engine[engine->id];
2347 u32 *reg;
3e5b6f05 2348
bafb2f7d
CW
2349 if (!ce->state)
2350 continue;
7d774cac 2351
bafb2f7d
CW
2352 reg = i915_gem_object_pin_map(ce->state->obj,
2353 I915_MAP_WB);
2354 if (WARN_ON(IS_ERR(reg)))
2355 continue;
3e5b6f05 2356
bafb2f7d
CW
2357 reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2358 reg[CTX_RING_HEAD+1] = 0;
2359 reg[CTX_RING_TAIL+1] = 0;
3e5b6f05 2360
a4f5ea64 2361 ce->state->obj->mm.dirty = true;
bafb2f7d 2362 i915_gem_object_unpin_map(ce->state->obj);
3e5b6f05 2363
e6ba9992 2364 intel_ring_reset(ce->ring, 0);
bafb2f7d 2365 }
3e5b6f05
TD
2366 }
2367}