Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/klassert/ipsec...
[linux-2.6-block.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1 133 */
27af5eea 134#include <linux/interrupt.h>
b20385f1
OM
135
136#include <drm/drmP.h>
137#include <drm/i915_drm.h>
138#include "i915_drv.h"
3bbaba0c 139#include "intel_mocs.h"
127f1003 140
468c6816 141#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
142#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
e981e7b1
TD
145#define RING_EXECLIST_QFULL (1 << 0x2)
146#define RING_EXECLIST1_VALID (1 << 0x3)
147#define RING_EXECLIST0_VALID (1 << 0x4)
148#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149#define RING_EXECLIST1_ACTIVE (1 << 0x11)
150#define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9 158
70c2a24d
CW
159#define GEN8_CTX_STATUS_COMPLETED_MASK \
160 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
161 GEN8_CTX_STATUS_PREEMPTED | \
162 GEN8_CTX_STATUS_ELEMENT_SWITCH)
163
8670d6f9
OM
164#define CTX_LRI_HEADER_0 0x01
165#define CTX_CONTEXT_CONTROL 0x02
166#define CTX_RING_HEAD 0x04
167#define CTX_RING_TAIL 0x06
168#define CTX_RING_BUFFER_START 0x08
169#define CTX_RING_BUFFER_CONTROL 0x0a
170#define CTX_BB_HEAD_U 0x0c
171#define CTX_BB_HEAD_L 0x0e
172#define CTX_BB_STATE 0x10
173#define CTX_SECOND_BB_HEAD_U 0x12
174#define CTX_SECOND_BB_HEAD_L 0x14
175#define CTX_SECOND_BB_STATE 0x16
176#define CTX_BB_PER_CTX_PTR 0x18
177#define CTX_RCS_INDIRECT_CTX 0x1a
178#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
179#define CTX_LRI_HEADER_1 0x21
180#define CTX_CTX_TIMESTAMP 0x22
181#define CTX_PDP3_UDW 0x24
182#define CTX_PDP3_LDW 0x26
183#define CTX_PDP2_UDW 0x28
184#define CTX_PDP2_LDW 0x2a
185#define CTX_PDP1_UDW 0x2c
186#define CTX_PDP1_LDW 0x2e
187#define CTX_PDP0_UDW 0x30
188#define CTX_PDP0_LDW 0x32
189#define CTX_LRI_HEADER_2 0x41
190#define CTX_R_PWR_CLK_STATE 0x42
191#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
192
84b790f8
BW
193#define GEN8_CTX_VALID (1<<0)
194#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
195#define GEN8_CTX_FORCE_RESTORE (1<<2)
196#define GEN8_CTX_L3LLC_COHERENT (1<<5)
197#define GEN8_CTX_PRIVILEGE (1<<8)
e5815a2e 198
0d925ea0 199#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
f0f59a00 200 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
0d925ea0
VS
201 (reg_state)[(pos)+1] = (val); \
202} while (0)
203
204#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
d852c7bf 205 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
e5815a2e
MT
206 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
207 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
9244a817 208} while (0)
e5815a2e 209
9244a817 210#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
2dba3239
MT
211 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
212 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
9244a817 213} while (0)
2dba3239 214
84b790f8
BW
215enum {
216 FAULT_AND_HANG = 0,
217 FAULT_AND_HALT, /* Debug only */
218 FAULT_AND_STREAM,
219 FAULT_AND_CONTINUE /* Unsupported */
220};
221#define GEN8_CTX_ID_SHIFT 32
7069b144 222#define GEN8_CTX_ID_WIDTH 21
71562919
MT
223#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
224#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
84b790f8 225
0e93cdd4
CW
226/* Typical size of the average request (2 pipecontrols and a MI_BB) */
227#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
228
a3aabe86
CW
229#define WA_TAIL_DWORDS 2
230
e2efd130 231static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 232 struct intel_engine_cs *engine);
e2efd130 233static int intel_lr_context_pin(struct i915_gem_context *ctx,
e5292823 234 struct intel_engine_cs *engine);
a3aabe86
CW
235static void execlists_init_reg_state(u32 *reg_state,
236 struct i915_gem_context *ctx,
237 struct intel_engine_cs *engine,
238 struct intel_ring *ring);
7ba717cf 239
73e4d07f
OM
240/**
241 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
14bb2c11 242 * @dev_priv: i915 device private
73e4d07f
OM
243 * @enable_execlists: value of i915.enable_execlists module parameter.
244 *
245 * Only certain platforms support Execlists (the prerequisites being
27401d12 246 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
247 *
248 * Return: 1 if Execlists is supported and has to be enabled.
249 */
c033666a 250int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
127f1003 251{
a0bd6c31
ZL
252 /* On platforms with execlist available, vGPU will only
253 * support execlist mode, no ring buffer mode.
254 */
c033666a 255 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
a0bd6c31
ZL
256 return 1;
257
c033666a 258 if (INTEL_GEN(dev_priv) >= 9)
70ee45e1
DL
259 return 1;
260
127f1003
OM
261 if (enable_execlists == 0)
262 return 0;
263
5a21b665
DV
264 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
265 USES_PPGTT(dev_priv) &&
266 i915.use_mmio_flip >= 0)
127f1003
OM
267 return 1;
268
269 return 0;
270}
ede7d42b 271
ca82580c 272static void
0bc40be8 273logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
ca82580c 274{
c033666a 275 struct drm_i915_private *dev_priv = engine->i915;
ca82580c 276
70c2a24d 277 engine->disable_lite_restore_wa =
a117f378 278 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1) &&
70c2a24d 279 (engine->id == VCS || engine->id == VCS2);
ca82580c 280
0bc40be8 281 engine->ctx_desc_template = GEN8_CTX_VALID;
c033666a 282 if (IS_GEN8(dev_priv))
0bc40be8
TU
283 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
284 engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
ca82580c
TU
285
286 /* TODO: WaDisableLiteRestore when we start using semaphore
287 * signalling between Command Streamers */
288 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
289
290 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
291 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
0bc40be8
TU
292 if (engine->disable_lite_restore_wa)
293 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
ca82580c
TU
294}
295
73e4d07f 296/**
ca82580c
TU
297 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
298 * descriptor for a pinned context
ca82580c 299 * @ctx: Context to work on
9021ad03 300 * @engine: Engine the descriptor will be used with
73e4d07f 301 *
ca82580c
TU
302 * The context descriptor encodes various attributes of a context,
303 * including its GTT address and some flags. Because it's fairly
304 * expensive to calculate, we'll just do it once and cache the result,
305 * which remains valid until the context is unpinned.
306 *
6e5248b5
DV
307 * This is what a descriptor looks like, from LSB to MSB::
308 *
309 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
310 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
311 * bits 32-52: ctx ID, a globally unique tag
312 * bits 53-54: mbz, reserved for use by hardware
313 * bits 55-63: group ID, currently unused and set to 0
73e4d07f 314 */
ca82580c 315static void
e2efd130 316intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
0bc40be8 317 struct intel_engine_cs *engine)
84b790f8 318{
9021ad03 319 struct intel_context *ce = &ctx->engine[engine->id];
7069b144 320 u64 desc;
84b790f8 321
7069b144 322 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
84b790f8 323
c01fc532
ZW
324 desc = ctx->desc_template; /* bits 3-4 */
325 desc |= engine->ctx_desc_template; /* bits 0-11 */
bde13ebd 326 desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
9021ad03 327 /* bits 12-31 */
7069b144 328 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
5af05fef 329
9021ad03 330 ce->lrc_desc = desc;
5af05fef
MT
331}
332
e2efd130 333uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
0bc40be8 334 struct intel_engine_cs *engine)
84b790f8 335{
0bc40be8 336 return ctx->engine[engine->id].lrc_desc;
ca82580c 337}
203a571b 338
bbd6c47e
CW
339static inline void
340execlists_context_status_change(struct drm_i915_gem_request *rq,
341 unsigned long status)
84b790f8 342{
bbd6c47e
CW
343 /*
344 * Only used when GVT-g is enabled now. When GVT-g is disabled,
345 * The compiler should eliminate this function as dead-code.
346 */
347 if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
348 return;
6daccb0b 349
bbd6c47e 350 atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
84b790f8
BW
351}
352
c6a2ac71
TU
353static void
354execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
355{
356 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
357 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
358 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
359 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
360}
361
70c2a24d 362static u64 execlists_update_context(struct drm_i915_gem_request *rq)
ae1250b9 363{
70c2a24d 364 struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
05d9824b 365 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
70c2a24d 366 u32 *reg_state = ce->lrc_reg_state;
ae1250b9 367
caddfe71 368 reg_state[CTX_RING_TAIL+1] = rq->tail;
ae1250b9 369
c6a2ac71
TU
370 /* True 32b PPGTT with dynamic page allocation: update PDP
371 * registers and point the unallocated PDPs to scratch page.
372 * PML4 is allocated during ppgtt init, so this is not needed
373 * in 48-bit mode.
374 */
375 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
376 execlists_update_context_pdps(ppgtt, reg_state);
70c2a24d
CW
377
378 return ce->lrc_desc;
ae1250b9
OM
379}
380
70c2a24d 381static void execlists_submit_ports(struct intel_engine_cs *engine)
bbd6c47e 382{
70c2a24d
CW
383 struct drm_i915_private *dev_priv = engine->i915;
384 struct execlist_port *port = engine->execlist_port;
bbd6c47e
CW
385 u32 __iomem *elsp =
386 dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
387 u64 desc[2];
388
70c2a24d
CW
389 if (!port[0].count)
390 execlists_context_status_change(port[0].request,
391 INTEL_CONTEXT_SCHEDULE_IN);
392 desc[0] = execlists_update_context(port[0].request);
393 engine->preempt_wa = port[0].count++; /* bdw only? fixed on skl? */
394
395 if (port[1].request) {
396 GEM_BUG_ON(port[1].count);
397 execlists_context_status_change(port[1].request,
398 INTEL_CONTEXT_SCHEDULE_IN);
399 desc[1] = execlists_update_context(port[1].request);
400 port[1].count = 1;
bbd6c47e
CW
401 } else {
402 desc[1] = 0;
403 }
70c2a24d 404 GEM_BUG_ON(desc[0] == desc[1]);
bbd6c47e
CW
405
406 /* You must always write both descriptors in the order below. */
407 writel(upper_32_bits(desc[1]), elsp);
408 writel(lower_32_bits(desc[1]), elsp);
409
410 writel(upper_32_bits(desc[0]), elsp);
411 /* The context is automatically loaded after the following */
412 writel(lower_32_bits(desc[0]), elsp);
413}
414
70c2a24d 415static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
84b790f8 416{
70c2a24d
CW
417 return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
418 ctx->execlists_force_single_submission);
419}
84b790f8 420
70c2a24d
CW
421static bool can_merge_ctx(const struct i915_gem_context *prev,
422 const struct i915_gem_context *next)
423{
424 if (prev != next)
425 return false;
26720ab9 426
70c2a24d
CW
427 if (ctx_single_port_submission(prev))
428 return false;
26720ab9 429
70c2a24d 430 return true;
84b790f8
BW
431}
432
70c2a24d 433static void execlists_dequeue(struct intel_engine_cs *engine)
acdd884a 434{
20311bd3 435 struct drm_i915_gem_request *last;
70c2a24d 436 struct execlist_port *port = engine->execlist_port;
d55ac5bf 437 unsigned long flags;
20311bd3 438 struct rb_node *rb;
70c2a24d
CW
439 bool submit = false;
440
441 last = port->request;
442 if (last)
443 /* WaIdleLiteRestore:bdw,skl
444 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
9b81d556 445 * as we resubmit the request. See gen8_emit_breadcrumb()
70c2a24d
CW
446 * for where we prepare the padding after the end of the
447 * request.
448 */
449 last->tail = last->wa_tail;
e981e7b1 450
70c2a24d 451 GEM_BUG_ON(port[1].request);
acdd884a 452
70c2a24d
CW
453 /* Hardware submission is through 2 ports. Conceptually each port
454 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
455 * static for a context, and unique to each, so we only execute
456 * requests belonging to a single context from each ring. RING_HEAD
457 * is maintained by the CS in the context image, it marks the place
458 * where it got up to last time, and through RING_TAIL we tell the CS
459 * where we want to execute up to this time.
460 *
461 * In this list the requests are in order of execution. Consecutive
462 * requests from the same context are adjacent in the ringbuffer. We
463 * can combine these requests into a single RING_TAIL update:
464 *
465 * RING_HEAD...req1...req2
466 * ^- RING_TAIL
467 * since to execute req2 the CS must first execute req1.
468 *
469 * Our goal then is to point each port to the end of a consecutive
470 * sequence of requests as being the most optimal (fewest wake ups
471 * and context switches) submission.
779949f4 472 */
acdd884a 473
d55ac5bf 474 spin_lock_irqsave(&engine->timeline->lock, flags);
20311bd3
CW
475 rb = engine->execlist_first;
476 while (rb) {
477 struct drm_i915_gem_request *cursor =
478 rb_entry(rb, typeof(*cursor), priotree.node);
479
70c2a24d
CW
480 /* Can we combine this request with the current port? It has to
481 * be the same context/ringbuffer and not have any exceptions
482 * (e.g. GVT saying never to combine contexts).
c6a2ac71 483 *
70c2a24d
CW
484 * If we can combine the requests, we can execute both by
485 * updating the RING_TAIL to point to the end of the second
486 * request, and so we never need to tell the hardware about
487 * the first.
53292cdb 488 */
70c2a24d
CW
489 if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
490 /* If we are on the second port and cannot combine
491 * this request with the last, then we are done.
492 */
493 if (port != engine->execlist_port)
494 break;
495
496 /* If GVT overrides us we only ever submit port[0],
497 * leaving port[1] empty. Note that we also have
498 * to be careful that we don't queue the same
499 * context (even though a different request) to
500 * the second port.
501 */
d7ab992c
MH
502 if (ctx_single_port_submission(last->ctx) ||
503 ctx_single_port_submission(cursor->ctx))
70c2a24d
CW
504 break;
505
506 GEM_BUG_ON(last->ctx == cursor->ctx);
507
508 i915_gem_request_assign(&port->request, last);
509 port++;
510 }
d55ac5bf 511
20311bd3
CW
512 rb = rb_next(rb);
513 rb_erase(&cursor->priotree.node, &engine->execlist_queue);
514 RB_CLEAR_NODE(&cursor->priotree.node);
515 cursor->priotree.priority = INT_MAX;
516
d55ac5bf
CW
517 /* We keep the previous context alive until we retire the
518 * following request. This ensures that any the context object
519 * is still pinned for any residual writes the HW makes into it
520 * on the context switch into the next object following the
521 * breadcrumb. Otherwise, we may retire the context too early.
522 */
523 cursor->previous_context = engine->last_context;
524 engine->last_context = cursor->ctx;
525
526 __i915_gem_request_submit(cursor);
70c2a24d
CW
527 last = cursor;
528 submit = true;
529 }
530 if (submit) {
70c2a24d 531 i915_gem_request_assign(&port->request, last);
20311bd3 532 engine->execlist_first = rb;
53292cdb 533 }
d55ac5bf 534 spin_unlock_irqrestore(&engine->timeline->lock, flags);
53292cdb 535
70c2a24d
CW
536 if (submit)
537 execlists_submit_ports(engine);
acdd884a
MT
538}
539
70c2a24d 540static bool execlists_elsp_idle(struct intel_engine_cs *engine)
e981e7b1 541{
70c2a24d 542 return !engine->execlist_port[0].request;
e981e7b1
TD
543}
544
0cb5670b
ID
545/**
546 * intel_execlists_idle() - Determine if all engine submission ports are idle
547 * @dev_priv: i915 device private
548 *
549 * Return true if there are no requests pending on any of the submission ports
550 * of any engines.
551 */
552bool intel_execlists_idle(struct drm_i915_private *dev_priv)
553{
554 struct intel_engine_cs *engine;
555 enum intel_engine_id id;
556
557 if (!i915.enable_execlists)
558 return true;
559
560 for_each_engine(engine, dev_priv, id)
561 if (!execlists_elsp_idle(engine))
562 return false;
563
564 return true;
565}
566
70c2a24d 567static bool execlists_elsp_ready(struct intel_engine_cs *engine)
91a41032 568{
70c2a24d 569 int port;
91a41032 570
70c2a24d
CW
571 port = 1; /* wait for a free slot */
572 if (engine->disable_lite_restore_wa || engine->preempt_wa)
573 port = 0; /* wait for GPU to be idle before continuing */
c6a2ac71 574
70c2a24d 575 return !engine->execlist_port[port].request;
91a41032
BW
576}
577
6e5248b5 578/*
73e4d07f
OM
579 * Check the unread Context Status Buffers and manage the submission of new
580 * contexts to the ELSP accordingly.
581 */
27af5eea 582static void intel_lrc_irq_handler(unsigned long data)
e981e7b1 583{
27af5eea 584 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
70c2a24d 585 struct execlist_port *port = engine->execlist_port;
c033666a 586 struct drm_i915_private *dev_priv = engine->i915;
c6a2ac71 587
3756685a 588 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
c6a2ac71 589
70c2a24d
CW
590 if (!execlists_elsp_idle(engine)) {
591 u32 __iomem *csb_mmio =
592 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
593 u32 __iomem *buf =
594 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
595 unsigned int csb, head, tail;
596
597 csb = readl(csb_mmio);
598 head = GEN8_CSB_READ_PTR(csb);
599 tail = GEN8_CSB_WRITE_PTR(csb);
600 if (tail < head)
601 tail += GEN8_CSB_ENTRIES;
602 while (head < tail) {
603 unsigned int idx = ++head % GEN8_CSB_ENTRIES;
604 unsigned int status = readl(buf + 2 * idx);
605
606 if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
607 continue;
608
609 GEM_BUG_ON(port[0].count == 0);
610 if (--port[0].count == 0) {
611 GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
612 execlists_context_status_change(port[0].request,
613 INTEL_CONTEXT_SCHEDULE_OUT);
614
615 i915_gem_request_put(port[0].request);
616 port[0] = port[1];
617 memset(&port[1], 0, sizeof(port[1]));
618
619 engine->preempt_wa = false;
620 }
26720ab9 621
70c2a24d
CW
622 GEM_BUG_ON(port[0].count == 0 &&
623 !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
e1fee72c
OM
624 }
625
70c2a24d
CW
626 writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
627 GEN8_CSB_WRITE_PTR(csb) << 8),
628 csb_mmio);
e981e7b1
TD
629 }
630
70c2a24d
CW
631 if (execlists_elsp_ready(engine))
632 execlists_dequeue(engine);
c6a2ac71 633
70c2a24d 634 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
e981e7b1
TD
635}
636
20311bd3
CW
637static bool insert_request(struct i915_priotree *pt, struct rb_root *root)
638{
639 struct rb_node **p, *rb;
640 bool first = true;
641
642 /* most positive priority is scheduled first, equal priorities fifo */
643 rb = NULL;
644 p = &root->rb_node;
645 while (*p) {
646 struct i915_priotree *pos;
647
648 rb = *p;
649 pos = rb_entry(rb, typeof(*pos), node);
650 if (pt->priority > pos->priority) {
651 p = &rb->rb_left;
652 } else {
653 p = &rb->rb_right;
654 first = false;
655 }
656 }
657 rb_link_node(&pt->node, rb, p);
658 rb_insert_color(&pt->node, root);
659
660 return first;
661}
662
f4ea6bdd 663static void execlists_submit_request(struct drm_i915_gem_request *request)
acdd884a 664{
4a570db5 665 struct intel_engine_cs *engine = request->engine;
5590af3e 666 unsigned long flags;
acdd884a 667
663f71e7
CW
668 /* Will be called from irq-context when using foreign fences. */
669 spin_lock_irqsave(&engine->timeline->lock, flags);
acdd884a 670
20311bd3
CW
671 if (insert_request(&request->priotree, &engine->execlist_queue))
672 engine->execlist_first = &request->priotree.node;
70c2a24d
CW
673 if (execlists_elsp_idle(engine))
674 tasklet_hi_schedule(&engine->irq_tasklet);
acdd884a 675
663f71e7 676 spin_unlock_irqrestore(&engine->timeline->lock, flags);
acdd884a
MT
677}
678
20311bd3
CW
679static struct intel_engine_cs *
680pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
681{
682 struct intel_engine_cs *engine;
683
684 engine = container_of(pt,
685 struct drm_i915_gem_request,
686 priotree)->engine;
687 if (engine != locked) {
688 if (locked)
689 spin_unlock_irq(&locked->timeline->lock);
690 spin_lock_irq(&engine->timeline->lock);
691 }
692
693 return engine;
694}
695
696static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
697{
27745e82 698 static DEFINE_MUTEX(lock);
20311bd3
CW
699 struct intel_engine_cs *engine = NULL;
700 struct i915_dependency *dep, *p;
701 struct i915_dependency stack;
702 LIST_HEAD(dfs);
703
704 if (prio <= READ_ONCE(request->priotree.priority))
705 return;
706
27745e82
CW
707 /* Need global lock to use the temporary link inside i915_dependency */
708 mutex_lock(&lock);
20311bd3
CW
709
710 stack.signaler = &request->priotree;
711 list_add(&stack.dfs_link, &dfs);
712
713 /* Recursively bump all dependent priorities to match the new request.
714 *
715 * A naive approach would be to use recursion:
716 * static void update_priorities(struct i915_priotree *pt, prio) {
717 * list_for_each_entry(dep, &pt->signalers_list, signal_link)
718 * update_priorities(dep->signal, prio)
719 * insert_request(pt);
720 * }
721 * but that may have unlimited recursion depth and so runs a very
722 * real risk of overunning the kernel stack. Instead, we build
723 * a flat list of all dependencies starting with the current request.
724 * As we walk the list of dependencies, we add all of its dependencies
725 * to the end of the list (this may include an already visited
726 * request) and continue to walk onwards onto the new dependencies. The
727 * end result is a topological list of requests in reverse order, the
728 * last element in the list is the request we must execute first.
729 */
730 list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
731 struct i915_priotree *pt = dep->signaler;
732
733 list_for_each_entry(p, &pt->signalers_list, signal_link)
734 if (prio > READ_ONCE(p->signaler->priority))
735 list_move_tail(&p->dfs_link, &dfs);
736
737 p = list_next_entry(dep, dfs_link);
738 if (!RB_EMPTY_NODE(&pt->node))
739 continue;
740
741 engine = pt_lock_engine(pt, engine);
742
743 /* If it is not already in the rbtree, we can update the
744 * priority inplace and skip over it (and its dependencies)
745 * if it is referenced *again* as we descend the dfs.
746 */
747 if (prio > pt->priority && RB_EMPTY_NODE(&pt->node)) {
748 pt->priority = prio;
749 list_del_init(&dep->dfs_link);
750 }
751 }
752
753 /* Fifo and depth-first replacement ensure our deps execute before us */
754 list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
755 struct i915_priotree *pt = dep->signaler;
756
757 INIT_LIST_HEAD(&dep->dfs_link);
758
759 engine = pt_lock_engine(pt, engine);
760
761 if (prio <= pt->priority)
762 continue;
763
764 GEM_BUG_ON(RB_EMPTY_NODE(&pt->node));
765
766 pt->priority = prio;
767 rb_erase(&pt->node, &engine->execlist_queue);
768 if (insert_request(pt, &engine->execlist_queue))
769 engine->execlist_first = &pt->node;
770 }
771
772 if (engine)
773 spin_unlock_irq(&engine->timeline->lock);
774
27745e82
CW
775 mutex_unlock(&lock);
776
20311bd3
CW
777 /* XXX Do we need to preempt to make room for us and our deps? */
778}
779
40e895ce 780int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
bc0dce3f 781{
24f1d3cc 782 struct intel_engine_cs *engine = request->engine;
9021ad03 783 struct intel_context *ce = &request->ctx->engine[engine->id];
bfa01200 784 int ret;
bc0dce3f 785
6310346e
CW
786 /* Flush enough space to reduce the likelihood of waiting after
787 * we start building the request - in which case we will just
788 * have to repeat work.
789 */
0e93cdd4 790 request->reserved_space += EXECLISTS_REQUEST_SIZE;
6310346e 791
9021ad03 792 if (!ce->state) {
978f1e09
CW
793 ret = execlists_context_deferred_alloc(request->ctx, engine);
794 if (ret)
795 return ret;
796 }
797
dca33ecc 798 request->ring = ce->ring;
f3cc01f0 799
5ba89908
CW
800 ret = intel_lr_context_pin(request->ctx, engine);
801 if (ret)
802 return ret;
803
a7e02199
AD
804 if (i915.enable_guc_submission) {
805 /*
806 * Check that the GuC has space for the request before
807 * going any further, as the i915_add_request() call
808 * later on mustn't fail ...
809 */
7a9347f9 810 ret = i915_guc_wq_reserve(request);
a7e02199 811 if (ret)
5ba89908 812 goto err_unpin;
a7e02199
AD
813 }
814
bfa01200
CW
815 ret = intel_ring_begin(request, 0);
816 if (ret)
5ba89908 817 goto err_unreserve;
bfa01200 818
9021ad03 819 if (!ce->initialised) {
24f1d3cc
CW
820 ret = engine->init_context(request);
821 if (ret)
5ba89908 822 goto err_unreserve;
24f1d3cc 823
9021ad03 824 ce->initialised = true;
24f1d3cc
CW
825 }
826
827 /* Note that after this point, we have committed to using
828 * this request as it is being used to both track the
829 * state of engine initialisation and liveness of the
830 * golden renderstate above. Think twice before you try
831 * to cancel/unwind this request now.
832 */
833
0e93cdd4 834 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
bfa01200
CW
835 return 0;
836
5ba89908
CW
837err_unreserve:
838 if (i915.enable_guc_submission)
839 i915_guc_wq_unreserve(request);
bfa01200 840err_unpin:
24f1d3cc 841 intel_lr_context_unpin(request->ctx, engine);
e28e404c 842 return ret;
bc0dce3f
JH
843}
844
e2efd130 845static int intel_lr_context_pin(struct i915_gem_context *ctx,
24f1d3cc 846 struct intel_engine_cs *engine)
dcb4c12a 847{
9021ad03 848 struct intel_context *ce = &ctx->engine[engine->id];
7d774cac 849 void *vaddr;
ca82580c 850 int ret;
dcb4c12a 851
91c8a326 852 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
ca82580c 853
9021ad03 854 if (ce->pin_count++)
24f1d3cc
CW
855 return 0;
856
bf3783e5
CW
857 ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN,
858 PIN_OFFSET_BIAS | GUC_WOPCM_TOP | PIN_GLOBAL);
e84fe803 859 if (ret)
24f1d3cc 860 goto err;
7ba717cf 861
bf3783e5 862 vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
7d774cac
TU
863 if (IS_ERR(vaddr)) {
864 ret = PTR_ERR(vaddr);
bf3783e5 865 goto unpin_vma;
82352e90
TU
866 }
867
aad29fbb 868 ret = intel_ring_pin(ce->ring);
e84fe803 869 if (ret)
7d774cac 870 goto unpin_map;
d1675198 871
0bc40be8 872 intel_lr_context_descriptor_update(ctx, engine);
9021ad03 873
a3aabe86
CW
874 ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
875 ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
bde13ebd 876 i915_ggtt_offset(ce->ring->vma);
a3aabe86 877
a4f5ea64 878 ce->state->obj->mm.dirty = true;
e93c28f3 879
e84fe803 880 /* Invalidate GuC TLB. */
bf3783e5
CW
881 if (i915.enable_guc_submission) {
882 struct drm_i915_private *dev_priv = ctx->i915;
e84fe803 883 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
bf3783e5 884 }
dcb4c12a 885
9a6feaf0 886 i915_gem_context_get(ctx);
24f1d3cc 887 return 0;
7ba717cf 888
7d774cac 889unpin_map:
bf3783e5
CW
890 i915_gem_object_unpin_map(ce->state->obj);
891unpin_vma:
892 __i915_vma_unpin(ce->state);
24f1d3cc 893err:
9021ad03 894 ce->pin_count = 0;
e84fe803
NH
895 return ret;
896}
897
e2efd130 898void intel_lr_context_unpin(struct i915_gem_context *ctx,
24f1d3cc 899 struct intel_engine_cs *engine)
e84fe803 900{
9021ad03 901 struct intel_context *ce = &ctx->engine[engine->id];
e84fe803 902
91c8a326 903 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
9021ad03 904 GEM_BUG_ON(ce->pin_count == 0);
321fe304 905
9021ad03 906 if (--ce->pin_count)
24f1d3cc 907 return;
e84fe803 908
aad29fbb 909 intel_ring_unpin(ce->ring);
dcb4c12a 910
bf3783e5
CW
911 i915_gem_object_unpin_map(ce->state->obj);
912 i915_vma_unpin(ce->state);
321fe304 913
9a6feaf0 914 i915_gem_context_put(ctx);
dcb4c12a
OM
915}
916
e2be4faf 917static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
771b9a53
MT
918{
919 int ret, i;
7e37f889 920 struct intel_ring *ring = req->ring;
c033666a 921 struct i915_workarounds *w = &req->i915->workarounds;
771b9a53 922
cd7feaaa 923 if (w->count == 0)
771b9a53
MT
924 return 0;
925
7c9cf4e3 926 ret = req->engine->emit_flush(req, EMIT_BARRIER);
771b9a53
MT
927 if (ret)
928 return ret;
929
987046ad 930 ret = intel_ring_begin(req, w->count * 2 + 2);
771b9a53
MT
931 if (ret)
932 return ret;
933
1dae2dfb 934 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
771b9a53 935 for (i = 0; i < w->count; i++) {
1dae2dfb
CW
936 intel_ring_emit_reg(ring, w->reg[i].addr);
937 intel_ring_emit(ring, w->reg[i].value);
771b9a53 938 }
1dae2dfb 939 intel_ring_emit(ring, MI_NOOP);
771b9a53 940
1dae2dfb 941 intel_ring_advance(ring);
771b9a53 942
7c9cf4e3 943 ret = req->engine->emit_flush(req, EMIT_BARRIER);
771b9a53
MT
944 if (ret)
945 return ret;
946
947 return 0;
948}
949
83b8a982 950#define wa_ctx_emit(batch, index, cmd) \
17ee950d 951 do { \
83b8a982
AS
952 int __index = (index)++; \
953 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
17ee950d
AS
954 return -ENOSPC; \
955 } \
83b8a982 956 batch[__index] = (cmd); \
17ee950d
AS
957 } while (0)
958
8f40db77 959#define wa_ctx_emit_reg(batch, index, reg) \
f0f59a00 960 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
9e000847
AS
961
962/*
963 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
964 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
965 * but there is a slight complication as this is applied in WA batch where the
966 * values are only initialized once so we cannot take register value at the
967 * beginning and reuse it further; hence we save its value to memory, upload a
968 * constant value with bit21 set and then we restore it back with the saved value.
969 * To simplify the WA, a constant value is formed by using the default value
970 * of this register. This shouldn't be a problem because we are only modifying
971 * it for a short period and this batch in non-premptible. We can ofcourse
972 * use additional instructions that read the actual value of the register
973 * at that time and set our bit of interest but it makes the WA complicated.
974 *
975 * This WA is also required for Gen9 so extracting as a function avoids
976 * code duplication.
977 */
0bc40be8 978static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
6e5248b5 979 uint32_t *batch,
9e000847
AS
980 uint32_t index)
981{
982 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
983
f1afe24f 984 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
83b8a982 985 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 986 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
bde13ebd 987 wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
83b8a982
AS
988 wa_ctx_emit(batch, index, 0);
989
990 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 991 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
83b8a982
AS
992 wa_ctx_emit(batch, index, l3sqc4_flush);
993
994 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
995 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
996 PIPE_CONTROL_DC_FLUSH_ENABLE));
997 wa_ctx_emit(batch, index, 0);
998 wa_ctx_emit(batch, index, 0);
999 wa_ctx_emit(batch, index, 0);
1000 wa_ctx_emit(batch, index, 0);
1001
f1afe24f 1002 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
83b8a982 1003 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 1004 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
bde13ebd 1005 wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
83b8a982 1006 wa_ctx_emit(batch, index, 0);
9e000847
AS
1007
1008 return index;
1009}
1010
17ee950d
AS
1011static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1012 uint32_t offset,
1013 uint32_t start_alignment)
1014{
1015 return wa_ctx->offset = ALIGN(offset, start_alignment);
1016}
1017
1018static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1019 uint32_t offset,
1020 uint32_t size_alignment)
1021{
1022 wa_ctx->size = offset - wa_ctx->offset;
1023
1024 WARN(wa_ctx->size % size_alignment,
1025 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1026 wa_ctx->size, size_alignment);
1027 return 0;
1028}
1029
6e5248b5
DV
1030/*
1031 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1032 * initialized at the beginning and shared across all contexts but this field
1033 * helps us to have multiple batches at different offsets and select them based
1034 * on a criteria. At the moment this batch always start at the beginning of the page
1035 * and at this point we don't have multiple wa_ctx batch buffers.
4d78c8dc 1036 *
6e5248b5
DV
1037 * The number of WA applied are not known at the beginning; we use this field
1038 * to return the no of DWORDS written.
17ee950d 1039 *
6e5248b5
DV
1040 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1041 * so it adds NOOPs as padding to make it cacheline aligned.
1042 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1043 * makes a complete batch buffer.
17ee950d 1044 */
0bc40be8 1045static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
17ee950d 1046 struct i915_wa_ctx_bb *wa_ctx,
6e5248b5 1047 uint32_t *batch,
17ee950d
AS
1048 uint32_t *offset)
1049{
0160f055 1050 uint32_t scratch_addr;
17ee950d
AS
1051 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1052
7ad00d1a 1053 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1054 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
17ee950d 1055
c82435bb 1056 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
c033666a 1057 if (IS_BROADWELL(engine->i915)) {
0bc40be8 1058 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
604ef734
AH
1059 if (rc < 0)
1060 return rc;
1061 index = rc;
c82435bb
AS
1062 }
1063
0160f055
AS
1064 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1065 /* Actual scratch location is at 128 bytes offset */
bde13ebd 1066 scratch_addr = i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
0160f055 1067
83b8a982
AS
1068 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1069 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1070 PIPE_CONTROL_GLOBAL_GTT_IVB |
1071 PIPE_CONTROL_CS_STALL |
1072 PIPE_CONTROL_QW_WRITE));
1073 wa_ctx_emit(batch, index, scratch_addr);
1074 wa_ctx_emit(batch, index, 0);
1075 wa_ctx_emit(batch, index, 0);
1076 wa_ctx_emit(batch, index, 0);
0160f055 1077
17ee950d
AS
1078 /* Pad to end of cacheline */
1079 while (index % CACHELINE_DWORDS)
83b8a982 1080 wa_ctx_emit(batch, index, MI_NOOP);
17ee950d
AS
1081
1082 /*
1083 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1084 * execution depends on the length specified in terms of cache lines
1085 * in the register CTX_RCS_INDIRECT_CTX
1086 */
1087
1088 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1089}
1090
6e5248b5
DV
1091/*
1092 * This batch is started immediately after indirect_ctx batch. Since we ensure
1093 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
17ee950d 1094 *
6e5248b5 1095 * The number of DWORDS written are returned using this field.
17ee950d
AS
1096 *
1097 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1098 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1099 */
0bc40be8 1100static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
17ee950d 1101 struct i915_wa_ctx_bb *wa_ctx,
6e5248b5 1102 uint32_t *batch,
17ee950d
AS
1103 uint32_t *offset)
1104{
1105 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1106
7ad00d1a 1107 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1108 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
7ad00d1a 1109
83b8a982 1110 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
17ee950d
AS
1111
1112 return wa_ctx_end(wa_ctx, *offset = index, 1);
1113}
1114
0bc40be8 1115static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
0504cffc 1116 struct i915_wa_ctx_bb *wa_ctx,
6e5248b5 1117 uint32_t *batch,
0504cffc
AS
1118 uint32_t *offset)
1119{
a4106a78 1120 int ret;
5e580523 1121 struct drm_i915_private *dev_priv = engine->i915;
0504cffc
AS
1122 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1123
9fc736e8
JN
1124 /* WaDisableCtxRestoreArbitration:bxt */
1125 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
0907c8f7 1126 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
0504cffc 1127
a4106a78 1128 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
0bc40be8 1129 ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
a4106a78
AS
1130 if (ret < 0)
1131 return ret;
1132 index = ret;
1133
873e8171
MK
1134 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl */
1135 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1136 wa_ctx_emit_reg(batch, index, COMMON_SLICE_CHICKEN2);
1137 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(
1138 GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE));
1139 wa_ctx_emit(batch, index, MI_NOOP);
1140
066d4628
MK
1141 /* WaClearSlmSpaceAtContextSwitch:kbl */
1142 /* Actual scratch location is at 128 bytes offset */
703d1282 1143 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0)) {
56c0f1a7 1144 u32 scratch_addr =
bde13ebd 1145 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
066d4628
MK
1146
1147 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1148 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1149 PIPE_CONTROL_GLOBAL_GTT_IVB |
1150 PIPE_CONTROL_CS_STALL |
1151 PIPE_CONTROL_QW_WRITE));
1152 wa_ctx_emit(batch, index, scratch_addr);
1153 wa_ctx_emit(batch, index, 0);
1154 wa_ctx_emit(batch, index, 0);
1155 wa_ctx_emit(batch, index, 0);
1156 }
3485d99e
TG
1157
1158 /* WaMediaPoolStateCmdInWABB:bxt */
1159 if (HAS_POOLED_EU(engine->i915)) {
1160 /*
1161 * EU pool configuration is setup along with golden context
1162 * during context initialization. This value depends on
1163 * device type (2x6 or 3x6) and needs to be updated based
1164 * on which subslice is disabled especially for 2x6
1165 * devices, however it is safe to load default
1166 * configuration of 3x6 device instead of masking off
1167 * corresponding bits because HW ignores bits of a disabled
1168 * subslice and drops down to appropriate config. Please
1169 * see render_state_setup() in i915_gem_render_state.c for
1170 * possible configurations, to avoid duplication they are
1171 * not shown here again.
1172 */
1173 u32 eu_pool_config = 0x00777000;
1174 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
1175 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
1176 wa_ctx_emit(batch, index, eu_pool_config);
1177 wa_ctx_emit(batch, index, 0);
1178 wa_ctx_emit(batch, index, 0);
1179 wa_ctx_emit(batch, index, 0);
1180 }
1181
0504cffc
AS
1182 /* Pad to end of cacheline */
1183 while (index % CACHELINE_DWORDS)
1184 wa_ctx_emit(batch, index, MI_NOOP);
1185
1186 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1187}
1188
0bc40be8 1189static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
0504cffc 1190 struct i915_wa_ctx_bb *wa_ctx,
6e5248b5 1191 uint32_t *batch,
0504cffc
AS
1192 uint32_t *offset)
1193{
1194 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1195
a117f378
JN
1196 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:bxt */
1197 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
9b01435d 1198 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1199 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
9b01435d
AS
1200 wa_ctx_emit(batch, index,
1201 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1202 wa_ctx_emit(batch, index, MI_NOOP);
1203 }
1204
b1e429fe 1205 /* WaClearTdlStateAckDirtyBits:bxt */
c033666a 1206 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
b1e429fe
TG
1207 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1208
1209 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1210 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1211
1212 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1213 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1214
1215 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1216 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1217
1218 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1219 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1220 wa_ctx_emit(batch, index, 0x0);
1221 wa_ctx_emit(batch, index, MI_NOOP);
1222 }
1223
9fc736e8
JN
1224 /* WaDisableCtxRestoreArbitration:bxt */
1225 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
0907c8f7
AS
1226 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1227
0504cffc
AS
1228 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1229
1230 return wa_ctx_end(wa_ctx, *offset = index, 1);
1231}
1232
0bc40be8 1233static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
17ee950d 1234{
48bb74e4
CW
1235 struct drm_i915_gem_object *obj;
1236 struct i915_vma *vma;
1237 int err;
17ee950d 1238
48bb74e4
CW
1239 obj = i915_gem_object_create(&engine->i915->drm, PAGE_ALIGN(size));
1240 if (IS_ERR(obj))
1241 return PTR_ERR(obj);
17ee950d 1242
48bb74e4
CW
1243 vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
1244 if (IS_ERR(vma)) {
1245 err = PTR_ERR(vma);
1246 goto err;
17ee950d
AS
1247 }
1248
48bb74e4
CW
1249 err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1250 if (err)
1251 goto err;
1252
1253 engine->wa_ctx.vma = vma;
17ee950d 1254 return 0;
48bb74e4
CW
1255
1256err:
1257 i915_gem_object_put(obj);
1258 return err;
17ee950d
AS
1259}
1260
0bc40be8 1261static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
17ee950d 1262{
19880c4a 1263 i915_vma_unpin_and_release(&engine->wa_ctx.vma);
17ee950d
AS
1264}
1265
0bc40be8 1266static int intel_init_workaround_bb(struct intel_engine_cs *engine)
17ee950d 1267{
48bb74e4 1268 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
17ee950d
AS
1269 uint32_t *batch;
1270 uint32_t offset;
1271 struct page *page;
48bb74e4 1272 int ret;
17ee950d 1273
0bc40be8 1274 WARN_ON(engine->id != RCS);
17ee950d 1275
5e60d790 1276 /* update this when WA for higher Gen are added */
c033666a 1277 if (INTEL_GEN(engine->i915) > 9) {
0504cffc 1278 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
c033666a 1279 INTEL_GEN(engine->i915));
5e60d790 1280 return 0;
0504cffc 1281 }
5e60d790 1282
c4db7599 1283 /* some WA perform writes to scratch page, ensure it is valid */
56c0f1a7 1284 if (!engine->scratch) {
0bc40be8 1285 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
c4db7599
AS
1286 return -EINVAL;
1287 }
1288
0bc40be8 1289 ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
17ee950d
AS
1290 if (ret) {
1291 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1292 return ret;
1293 }
1294
48bb74e4 1295 page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
17ee950d
AS
1296 batch = kmap_atomic(page);
1297 offset = 0;
1298
c033666a 1299 if (IS_GEN8(engine->i915)) {
0bc40be8 1300 ret = gen8_init_indirectctx_bb(engine,
17ee950d
AS
1301 &wa_ctx->indirect_ctx,
1302 batch,
1303 &offset);
1304 if (ret)
1305 goto out;
1306
0bc40be8 1307 ret = gen8_init_perctx_bb(engine,
17ee950d
AS
1308 &wa_ctx->per_ctx,
1309 batch,
1310 &offset);
1311 if (ret)
1312 goto out;
c033666a 1313 } else if (IS_GEN9(engine->i915)) {
0bc40be8 1314 ret = gen9_init_indirectctx_bb(engine,
0504cffc
AS
1315 &wa_ctx->indirect_ctx,
1316 batch,
1317 &offset);
1318 if (ret)
1319 goto out;
1320
0bc40be8 1321 ret = gen9_init_perctx_bb(engine,
0504cffc
AS
1322 &wa_ctx->per_ctx,
1323 batch,
1324 &offset);
1325 if (ret)
1326 goto out;
17ee950d
AS
1327 }
1328
1329out:
1330 kunmap_atomic(batch);
1331 if (ret)
0bc40be8 1332 lrc_destroy_wa_ctx_obj(engine);
17ee950d
AS
1333
1334 return ret;
1335}
1336
04794adb
TU
1337static void lrc_init_hws(struct intel_engine_cs *engine)
1338{
c033666a 1339 struct drm_i915_private *dev_priv = engine->i915;
04794adb
TU
1340
1341 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
57e88531 1342 engine->status_page.ggtt_offset);
04794adb
TU
1343 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1344}
1345
0bc40be8 1346static int gen8_init_common_ring(struct intel_engine_cs *engine)
9b1136d5 1347{
c033666a 1348 struct drm_i915_private *dev_priv = engine->i915;
821ed7df
CW
1349 int ret;
1350
1351 ret = intel_mocs_init_engine(engine);
1352 if (ret)
1353 return ret;
9b1136d5 1354
04794adb 1355 lrc_init_hws(engine);
e84fe803 1356
ad07dfcd 1357 intel_engine_reset_breadcrumbs(engine);
821ed7df 1358
0bc40be8 1359 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
73d477f6 1360
0bc40be8 1361 I915_WRITE(RING_MODE_GEN7(engine),
9b1136d5
OM
1362 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1363 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
dfc53c5e 1364
0bc40be8 1365 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
9b1136d5 1366
fc0768ce 1367 intel_engine_init_hangcheck(engine);
9b1136d5 1368
c87d50cc
CW
1369 /* After a GPU reset, we may have requests to replay */
1370 if (!execlists_elsp_idle(engine)) {
1371 engine->execlist_port[0].count = 0;
1372 engine->execlist_port[1].count = 0;
821ed7df 1373 execlists_submit_ports(engine);
c87d50cc 1374 }
821ed7df
CW
1375
1376 return 0;
9b1136d5
OM
1377}
1378
0bc40be8 1379static int gen8_init_render_ring(struct intel_engine_cs *engine)
9b1136d5 1380{
c033666a 1381 struct drm_i915_private *dev_priv = engine->i915;
9b1136d5
OM
1382 int ret;
1383
0bc40be8 1384 ret = gen8_init_common_ring(engine);
9b1136d5
OM
1385 if (ret)
1386 return ret;
1387
1388 /* We need to disable the AsyncFlip performance optimisations in order
1389 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1390 * programmed to '1' on all products.
1391 *
1392 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1393 */
1394 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1395
9b1136d5
OM
1396 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1397
0bc40be8 1398 return init_workarounds_ring(engine);
9b1136d5
OM
1399}
1400
0bc40be8 1401static int gen9_init_render_ring(struct intel_engine_cs *engine)
82ef822e
DL
1402{
1403 int ret;
1404
0bc40be8 1405 ret = gen8_init_common_ring(engine);
82ef822e
DL
1406 if (ret)
1407 return ret;
1408
0bc40be8 1409 return init_workarounds_ring(engine);
82ef822e
DL
1410}
1411
821ed7df
CW
1412static void reset_common_ring(struct intel_engine_cs *engine,
1413 struct drm_i915_gem_request *request)
1414{
1415 struct drm_i915_private *dev_priv = engine->i915;
1416 struct execlist_port *port = engine->execlist_port;
1417 struct intel_context *ce = &request->ctx->engine[engine->id];
1418
a3aabe86
CW
1419 /* We want a simple context + ring to execute the breadcrumb update.
1420 * We cannot rely on the context being intact across the GPU hang,
1421 * so clear it and rebuild just what we need for the breadcrumb.
1422 * All pending requests for this context will be zapped, and any
1423 * future request will be after userspace has had the opportunity
1424 * to recreate its own state.
1425 */
1426 execlists_init_reg_state(ce->lrc_reg_state,
1427 request->ctx, engine, ce->ring);
1428
821ed7df 1429 /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
a3aabe86
CW
1430 ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1431 i915_ggtt_offset(ce->ring->vma);
821ed7df 1432 ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
a3aabe86 1433
821ed7df
CW
1434 request->ring->head = request->postfix;
1435 request->ring->last_retired_head = -1;
1436 intel_ring_update_space(request->ring);
1437
1438 if (i915.enable_guc_submission)
1439 return;
1440
1441 /* Catch up with any missed context-switch interrupts */
1442 I915_WRITE(RING_CONTEXT_STATUS_PTR(engine), _MASKED_FIELD(0xffff, 0));
1443 if (request->ctx != port[0].request->ctx) {
1444 i915_gem_request_put(port[0].request);
1445 port[0] = port[1];
1446 memset(&port[1], 0, sizeof(port[1]));
1447 }
1448
821ed7df 1449 GEM_BUG_ON(request->ctx != port[0].request->ctx);
a3aabe86
CW
1450
1451 /* Reset WaIdleLiteRestore:bdw,skl as well */
1452 request->tail = request->wa_tail - WA_TAIL_DWORDS * sizeof(u32);
821ed7df
CW
1453}
1454
7a01a0a2
MT
1455static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1456{
1457 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
7e37f889 1458 struct intel_ring *ring = req->ring;
4a570db5 1459 struct intel_engine_cs *engine = req->engine;
7a01a0a2
MT
1460 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1461 int i, ret;
1462
987046ad 1463 ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
7a01a0a2
MT
1464 if (ret)
1465 return ret;
1466
b5321f30 1467 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_lri_cmds));
7a01a0a2
MT
1468 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1469 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1470
b5321f30
CW
1471 intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, i));
1472 intel_ring_emit(ring, upper_32_bits(pd_daddr));
1473 intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, i));
1474 intel_ring_emit(ring, lower_32_bits(pd_daddr));
7a01a0a2
MT
1475 }
1476
b5321f30
CW
1477 intel_ring_emit(ring, MI_NOOP);
1478 intel_ring_advance(ring);
7a01a0a2
MT
1479
1480 return 0;
1481}
1482
be795fc1 1483static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
803688ba
CW
1484 u64 offset, u32 len,
1485 unsigned int dispatch_flags)
15648585 1486{
7e37f889 1487 struct intel_ring *ring = req->ring;
8e004efc 1488 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
15648585
OM
1489 int ret;
1490
7a01a0a2
MT
1491 /* Don't rely in hw updating PDPs, specially in lite-restore.
1492 * Ideally, we should set Force PD Restore in ctx descriptor,
1493 * but we can't. Force Restore would be a second option, but
1494 * it is unsafe in case of lite-restore (because the ctx is
2dba3239
MT
1495 * not idle). PML4 is allocated during ppgtt init so this is
1496 * not needed in 48-bit.*/
7a01a0a2 1497 if (req->ctx->ppgtt &&
666796da 1498 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
331f38e7 1499 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
c033666a 1500 !intel_vgpu_active(req->i915)) {
2dba3239
MT
1501 ret = intel_logical_ring_emit_pdps(req);
1502 if (ret)
1503 return ret;
1504 }
7a01a0a2 1505
666796da 1506 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
7a01a0a2
MT
1507 }
1508
987046ad 1509 ret = intel_ring_begin(req, 4);
15648585
OM
1510 if (ret)
1511 return ret;
1512
1513 /* FIXME(BDW): Address space and security selectors. */
b5321f30
CW
1514 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 |
1515 (ppgtt<<8) |
1516 (dispatch_flags & I915_DISPATCH_RS ?
1517 MI_BATCH_RESOURCE_STREAMER : 0));
1518 intel_ring_emit(ring, lower_32_bits(offset));
1519 intel_ring_emit(ring, upper_32_bits(offset));
1520 intel_ring_emit(ring, MI_NOOP);
1521 intel_ring_advance(ring);
15648585
OM
1522
1523 return 0;
1524}
1525
31bb59cc 1526static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
73d477f6 1527{
c033666a 1528 struct drm_i915_private *dev_priv = engine->i915;
31bb59cc
CW
1529 I915_WRITE_IMR(engine,
1530 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1531 POSTING_READ_FW(RING_IMR(engine->mmio_base));
73d477f6
OM
1532}
1533
31bb59cc 1534static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
73d477f6 1535{
c033666a 1536 struct drm_i915_private *dev_priv = engine->i915;
31bb59cc 1537 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
73d477f6
OM
1538}
1539
7c9cf4e3 1540static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
4712274c 1541{
7e37f889
CW
1542 struct intel_ring *ring = request->ring;
1543 u32 cmd;
4712274c
OM
1544 int ret;
1545
987046ad 1546 ret = intel_ring_begin(request, 4);
4712274c
OM
1547 if (ret)
1548 return ret;
1549
1550 cmd = MI_FLUSH_DW + 1;
1551
f0a1fb10
CW
1552 /* We always require a command barrier so that subsequent
1553 * commands, such as breadcrumb interrupts, are strictly ordered
1554 * wrt the contents of the write cache being flushed to memory
1555 * (and thus being coherent from the CPU).
1556 */
1557 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1558
7c9cf4e3 1559 if (mode & EMIT_INVALIDATE) {
f0a1fb10 1560 cmd |= MI_INVALIDATE_TLB;
1dae2dfb 1561 if (request->engine->id == VCS)
f0a1fb10 1562 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1563 }
1564
b5321f30
CW
1565 intel_ring_emit(ring, cmd);
1566 intel_ring_emit(ring,
1567 I915_GEM_HWS_SCRATCH_ADDR |
1568 MI_FLUSH_DW_USE_GTT);
1569 intel_ring_emit(ring, 0); /* upper addr */
1570 intel_ring_emit(ring, 0); /* value */
1571 intel_ring_advance(ring);
4712274c
OM
1572
1573 return 0;
1574}
1575
7deb4d39 1576static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
7c9cf4e3 1577 u32 mode)
4712274c 1578{
7e37f889 1579 struct intel_ring *ring = request->ring;
b5321f30 1580 struct intel_engine_cs *engine = request->engine;
bde13ebd
CW
1581 u32 scratch_addr =
1582 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
0b2d0934 1583 bool vf_flush_wa = false, dc_flush_wa = false;
4712274c
OM
1584 u32 flags = 0;
1585 int ret;
0b2d0934 1586 int len;
4712274c
OM
1587
1588 flags |= PIPE_CONTROL_CS_STALL;
1589
7c9cf4e3 1590 if (mode & EMIT_FLUSH) {
4712274c
OM
1591 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1592 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
965fd602 1593 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
40a24488 1594 flags |= PIPE_CONTROL_FLUSH_ENABLE;
4712274c
OM
1595 }
1596
7c9cf4e3 1597 if (mode & EMIT_INVALIDATE) {
4712274c
OM
1598 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1599 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1600 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1601 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1602 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1603 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1604 flags |= PIPE_CONTROL_QW_WRITE;
1605 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
4712274c 1606
1a5a9ce7
BW
1607 /*
1608 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1609 * pipe control.
1610 */
c033666a 1611 if (IS_GEN9(request->i915))
1a5a9ce7 1612 vf_flush_wa = true;
0b2d0934
MK
1613
1614 /* WaForGAMHang:kbl */
1615 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1616 dc_flush_wa = true;
1a5a9ce7 1617 }
9647ff36 1618
0b2d0934
MK
1619 len = 6;
1620
1621 if (vf_flush_wa)
1622 len += 6;
1623
1624 if (dc_flush_wa)
1625 len += 12;
1626
1627 ret = intel_ring_begin(request, len);
4712274c
OM
1628 if (ret)
1629 return ret;
1630
9647ff36 1631 if (vf_flush_wa) {
b5321f30
CW
1632 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1633 intel_ring_emit(ring, 0);
1634 intel_ring_emit(ring, 0);
1635 intel_ring_emit(ring, 0);
1636 intel_ring_emit(ring, 0);
1637 intel_ring_emit(ring, 0);
9647ff36
ID
1638 }
1639
0b2d0934 1640 if (dc_flush_wa) {
b5321f30
CW
1641 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1642 intel_ring_emit(ring, PIPE_CONTROL_DC_FLUSH_ENABLE);
1643 intel_ring_emit(ring, 0);
1644 intel_ring_emit(ring, 0);
1645 intel_ring_emit(ring, 0);
1646 intel_ring_emit(ring, 0);
0b2d0934
MK
1647 }
1648
b5321f30
CW
1649 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1650 intel_ring_emit(ring, flags);
1651 intel_ring_emit(ring, scratch_addr);
1652 intel_ring_emit(ring, 0);
1653 intel_ring_emit(ring, 0);
1654 intel_ring_emit(ring, 0);
0b2d0934
MK
1655
1656 if (dc_flush_wa) {
b5321f30
CW
1657 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1658 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL);
1659 intel_ring_emit(ring, 0);
1660 intel_ring_emit(ring, 0);
1661 intel_ring_emit(ring, 0);
1662 intel_ring_emit(ring, 0);
0b2d0934
MK
1663 }
1664
b5321f30 1665 intel_ring_advance(ring);
4712274c
OM
1666
1667 return 0;
1668}
1669
c04e0f3b 1670static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
319404df 1671{
319404df
ID
1672 /*
1673 * On BXT A steppings there is a HW coherency issue whereby the
1674 * MI_STORE_DATA_IMM storing the completed request's seqno
1675 * occasionally doesn't invalidate the CPU cache. Work around this by
1676 * clflushing the corresponding cacheline whenever the caller wants
1677 * the coherency to be guaranteed. Note that this cacheline is known
1678 * to be clean at this point, since we only write it in
1679 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1680 * this clflush in practice becomes an invalidate operation.
1681 */
c04e0f3b 1682 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
319404df
ID
1683}
1684
7c17d377
CW
1685/*
1686 * Reserve space for 2 NOOPs at the end of each request to be
1687 * used as a workaround for not being allowed to do lite
1688 * restore with HEAD==TAIL (WaIdleLiteRestore).
1689 */
caddfe71 1690static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *out)
4da46e1e 1691{
caddfe71
CW
1692 *out++ = MI_NOOP;
1693 *out++ = MI_NOOP;
1694 request->wa_tail = intel_ring_offset(request->ring, out);
1695}
4da46e1e 1696
caddfe71
CW
1697static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request,
1698 u32 *out)
1699{
7c17d377
CW
1700 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1701 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
4da46e1e 1702
caddfe71
CW
1703 *out++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
1704 *out++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
1705 *out++ = 0;
1706 *out++ = request->global_seqno;
1707 *out++ = MI_USER_INTERRUPT;
1708 *out++ = MI_NOOP;
1709 request->tail = intel_ring_offset(request->ring, out);
1710
1711 gen8_emit_wa_tail(request, out);
7c17d377 1712}
4da46e1e 1713
98f29e8d
CW
1714static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
1715
caddfe71
CW
1716static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
1717 u32 *out)
7c17d377 1718{
ce81a65c
MW
1719 /* We're using qword write, seqno should be aligned to 8 bytes. */
1720 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1721
7c17d377
CW
1722 /* w/a for post sync ops following a GPGPU operation we
1723 * need a prior CS_STALL, which is emitted by the flush
1724 * following the batch.
1725 */
caddfe71
CW
1726 *out++ = GFX_OP_PIPE_CONTROL(6);
1727 *out++ = (PIPE_CONTROL_GLOBAL_GTT_IVB |
1728 PIPE_CONTROL_CS_STALL |
1729 PIPE_CONTROL_QW_WRITE);
1730 *out++ = intel_hws_seqno_address(request->engine);
1731 *out++ = 0;
1732 *out++ = request->global_seqno;
ce81a65c 1733 /* We're thrashing one dword of HWS. */
caddfe71
CW
1734 *out++ = 0;
1735 *out++ = MI_USER_INTERRUPT;
1736 *out++ = MI_NOOP;
1737 request->tail = intel_ring_offset(request->ring, out);
1738
1739 gen8_emit_wa_tail(request, out);
4da46e1e
OM
1740}
1741
98f29e8d
CW
1742static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;
1743
8753181e 1744static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
e7778be1
TD
1745{
1746 int ret;
1747
e2be4faf 1748 ret = intel_logical_ring_workarounds_emit(req);
e7778be1
TD
1749 if (ret)
1750 return ret;
1751
3bbaba0c
PA
1752 ret = intel_rcs_context_init_mocs(req);
1753 /*
1754 * Failing to program the MOCS is non-fatal.The system will not
1755 * run at peak performance. So generate an error and carry on.
1756 */
1757 if (ret)
1758 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1759
4e50f082 1760 return i915_gem_render_state_emit(req);
e7778be1
TD
1761}
1762
73e4d07f
OM
1763/**
1764 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
14bb2c11 1765 * @engine: Engine Command Streamer.
73e4d07f 1766 */
0bc40be8 1767void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
454afebd 1768{
6402c330 1769 struct drm_i915_private *dev_priv;
9832b9da 1770
27af5eea
TU
1771 /*
1772 * Tasklet cannot be active at this point due intel_mark_active/idle
1773 * so this is just for documentation.
1774 */
1775 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1776 tasklet_kill(&engine->irq_tasklet);
1777
c033666a 1778 dev_priv = engine->i915;
6402c330 1779
0bc40be8 1780 if (engine->buffer) {
0bc40be8 1781 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
b0366a54 1782 }
48d82387 1783
0bc40be8
TU
1784 if (engine->cleanup)
1785 engine->cleanup(engine);
48d82387 1786
96a945aa 1787 intel_engine_cleanup_common(engine);
688e6c72 1788
57e88531
CW
1789 if (engine->status_page.vma) {
1790 i915_gem_object_unpin_map(engine->status_page.vma->obj);
1791 engine->status_page.vma = NULL;
48d82387 1792 }
24f1d3cc 1793 intel_lr_context_unpin(dev_priv->kernel_context, engine);
17ee950d 1794
0bc40be8 1795 lrc_destroy_wa_ctx_obj(engine);
c033666a 1796 engine->i915 = NULL;
3b3f1650
AG
1797 dev_priv->engine[engine->id] = NULL;
1798 kfree(engine);
454afebd
OM
1799}
1800
ddd66c51
CW
1801void intel_execlists_enable_submission(struct drm_i915_private *dev_priv)
1802{
1803 struct intel_engine_cs *engine;
3b3f1650 1804 enum intel_engine_id id;
ddd66c51 1805
20311bd3 1806 for_each_engine(engine, dev_priv, id) {
f4ea6bdd 1807 engine->submit_request = execlists_submit_request;
20311bd3
CW
1808 engine->schedule = execlists_schedule;
1809 }
ddd66c51
CW
1810}
1811
c9cacf93 1812static void
e1382efb 1813logical_ring_default_vfuncs(struct intel_engine_cs *engine)
c9cacf93
TU
1814{
1815 /* Default vfuncs which can be overriden by each engine. */
0bc40be8 1816 engine->init_hw = gen8_init_common_ring;
821ed7df 1817 engine->reset_hw = reset_common_ring;
0bc40be8 1818 engine->emit_flush = gen8_emit_flush;
9b81d556 1819 engine->emit_breadcrumb = gen8_emit_breadcrumb;
98f29e8d 1820 engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
f4ea6bdd 1821 engine->submit_request = execlists_submit_request;
20311bd3 1822 engine->schedule = execlists_schedule;
ddd66c51 1823
31bb59cc
CW
1824 engine->irq_enable = gen8_logical_ring_enable_irq;
1825 engine->irq_disable = gen8_logical_ring_disable_irq;
0bc40be8 1826 engine->emit_bb_start = gen8_emit_bb_start;
1b7744e7 1827 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
c04e0f3b 1828 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
c9cacf93
TU
1829}
1830
d9f3af96 1831static inline void
c2c7f240 1832logical_ring_default_irqs(struct intel_engine_cs *engine)
d9f3af96 1833{
c2c7f240 1834 unsigned shift = engine->irq_shift;
0bc40be8
TU
1835 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1836 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
d9f3af96
TU
1837}
1838
7d774cac 1839static int
bf3783e5 1840lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
04794adb 1841{
57e88531 1842 const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
7d774cac 1843 void *hws;
04794adb
TU
1844
1845 /* The HWSP is part of the default context object in LRC mode. */
bf3783e5 1846 hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
7d774cac
TU
1847 if (IS_ERR(hws))
1848 return PTR_ERR(hws);
57e88531
CW
1849
1850 engine->status_page.page_addr = hws + hws_offset;
bde13ebd 1851 engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
57e88531 1852 engine->status_page.vma = vma;
7d774cac
TU
1853
1854 return 0;
04794adb
TU
1855}
1856
bb45438f
TU
1857static void
1858logical_ring_setup(struct intel_engine_cs *engine)
1859{
1860 struct drm_i915_private *dev_priv = engine->i915;
1861 enum forcewake_domains fw_domains;
1862
019bf277
TU
1863 intel_engine_setup_common(engine);
1864
bb45438f
TU
1865 /* Intentionally left blank. */
1866 engine->buffer = NULL;
1867
1868 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1869 RING_ELSP(engine),
1870 FW_REG_WRITE);
1871
1872 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1873 RING_CONTEXT_STATUS_PTR(engine),
1874 FW_REG_READ | FW_REG_WRITE);
1875
1876 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1877 RING_CONTEXT_STATUS_BUF_BASE(engine),
1878 FW_REG_READ);
1879
1880 engine->fw_domains = fw_domains;
1881
bb45438f
TU
1882 tasklet_init(&engine->irq_tasklet,
1883 intel_lrc_irq_handler, (unsigned long)engine);
1884
1885 logical_ring_init_platform_invariants(engine);
1886 logical_ring_default_vfuncs(engine);
1887 logical_ring_default_irqs(engine);
bb45438f
TU
1888}
1889
a19d6ff2
TU
1890static int
1891logical_ring_init(struct intel_engine_cs *engine)
1892{
1893 struct i915_gem_context *dctx = engine->i915->kernel_context;
1894 int ret;
1895
019bf277 1896 ret = intel_engine_init_common(engine);
a19d6ff2
TU
1897 if (ret)
1898 goto error;
1899
1900 ret = execlists_context_deferred_alloc(dctx, engine);
1901 if (ret)
1902 goto error;
1903
1904 /* As this is the default context, always pin it */
1905 ret = intel_lr_context_pin(dctx, engine);
1906 if (ret) {
1907 DRM_ERROR("Failed to pin context for %s: %d\n",
1908 engine->name, ret);
1909 goto error;
1910 }
1911
1912 /* And setup the hardware status page. */
1913 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
1914 if (ret) {
1915 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
1916 goto error;
1917 }
1918
1919 return 0;
1920
1921error:
1922 intel_logical_ring_cleanup(engine);
1923 return ret;
1924}
1925
88d2ba2e 1926int logical_render_ring_init(struct intel_engine_cs *engine)
a19d6ff2
TU
1927{
1928 struct drm_i915_private *dev_priv = engine->i915;
1929 int ret;
1930
bb45438f
TU
1931 logical_ring_setup(engine);
1932
a19d6ff2
TU
1933 if (HAS_L3_DPF(dev_priv))
1934 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1935
1936 /* Override some for render ring. */
1937 if (INTEL_GEN(dev_priv) >= 9)
1938 engine->init_hw = gen9_init_render_ring;
1939 else
1940 engine->init_hw = gen8_init_render_ring;
1941 engine->init_context = gen8_init_rcs_context;
a19d6ff2 1942 engine->emit_flush = gen8_emit_flush_render;
9b81d556 1943 engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
98f29e8d 1944 engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
a19d6ff2 1945
56c0f1a7 1946 ret = intel_engine_create_scratch(engine, 4096);
a19d6ff2
TU
1947 if (ret)
1948 return ret;
1949
1950 ret = intel_init_workaround_bb(engine);
1951 if (ret) {
1952 /*
1953 * We continue even if we fail to initialize WA batch
1954 * because we only expect rare glitches but nothing
1955 * critical to prevent us from using GPU
1956 */
1957 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1958 ret);
1959 }
1960
d8953c83 1961 return logical_ring_init(engine);
a19d6ff2
TU
1962}
1963
88d2ba2e 1964int logical_xcs_ring_init(struct intel_engine_cs *engine)
bb45438f
TU
1965{
1966 logical_ring_setup(engine);
1967
1968 return logical_ring_init(engine);
454afebd
OM
1969}
1970
0cea6502 1971static u32
c033666a 1972make_rpcs(struct drm_i915_private *dev_priv)
0cea6502
JM
1973{
1974 u32 rpcs = 0;
1975
1976 /*
1977 * No explicit RPCS request is needed to ensure full
1978 * slice/subslice/EU enablement prior to Gen9.
1979 */
c033666a 1980 if (INTEL_GEN(dev_priv) < 9)
0cea6502
JM
1981 return 0;
1982
1983 /*
1984 * Starting in Gen9, render power gating can leave
1985 * slice/subslice/EU in a partially enabled state. We
1986 * must make an explicit request through RPCS for full
1987 * enablement.
1988 */
43b67998 1989 if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
0cea6502 1990 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
f08a0c92 1991 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
0cea6502
JM
1992 GEN8_RPCS_S_CNT_SHIFT;
1993 rpcs |= GEN8_RPCS_ENABLE;
1994 }
1995
43b67998 1996 if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
0cea6502 1997 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
57ec171e 1998 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
0cea6502
JM
1999 GEN8_RPCS_SS_CNT_SHIFT;
2000 rpcs |= GEN8_RPCS_ENABLE;
2001 }
2002
43b67998
ID
2003 if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
2004 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
0cea6502 2005 GEN8_RPCS_EU_MIN_SHIFT;
43b67998 2006 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
0cea6502
JM
2007 GEN8_RPCS_EU_MAX_SHIFT;
2008 rpcs |= GEN8_RPCS_ENABLE;
2009 }
2010
2011 return rpcs;
2012}
2013
0bc40be8 2014static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
71562919
MT
2015{
2016 u32 indirect_ctx_offset;
2017
c033666a 2018 switch (INTEL_GEN(engine->i915)) {
71562919 2019 default:
c033666a 2020 MISSING_CASE(INTEL_GEN(engine->i915));
71562919
MT
2021 /* fall through */
2022 case 9:
2023 indirect_ctx_offset =
2024 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2025 break;
2026 case 8:
2027 indirect_ctx_offset =
2028 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2029 break;
2030 }
2031
2032 return indirect_ctx_offset;
2033}
2034
a3aabe86
CW
2035static void execlists_init_reg_state(u32 *reg_state,
2036 struct i915_gem_context *ctx,
2037 struct intel_engine_cs *engine,
2038 struct intel_ring *ring)
8670d6f9 2039{
a3aabe86
CW
2040 struct drm_i915_private *dev_priv = engine->i915;
2041 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
8670d6f9
OM
2042
2043 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2044 * commands followed by (reg, value) pairs. The values we are setting here are
2045 * only for the first context restore: on a subsequent save, the GPU will
2046 * recreate this batchbuffer with new values (including all the missing
2047 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
0d925ea0 2048 reg_state[CTX_LRI_HEADER_0] =
0bc40be8
TU
2049 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2050 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2051 RING_CONTEXT_CONTROL(engine),
0d925ea0
VS
2052 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2053 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
c033666a 2054 (HAS_RESOURCE_STREAMER(dev_priv) ?
a3aabe86 2055 CTX_CTRL_RS_CTX_ENABLE : 0)));
0bc40be8
TU
2056 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2057 0);
2058 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2059 0);
0bc40be8
TU
2060 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2061 RING_START(engine->mmio_base), 0);
2062 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2063 RING_CTL(engine->mmio_base),
62ae14b1 2064 RING_CTL_SIZE(ring->size) | RING_VALID);
0bc40be8
TU
2065 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2066 RING_BBADDR_UDW(engine->mmio_base), 0);
2067 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2068 RING_BBADDR(engine->mmio_base), 0);
2069 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2070 RING_BBSTATE(engine->mmio_base),
0d925ea0 2071 RING_BB_PPGTT);
0bc40be8
TU
2072 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2073 RING_SBBADDR_UDW(engine->mmio_base), 0);
2074 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2075 RING_SBBADDR(engine->mmio_base), 0);
2076 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2077 RING_SBBSTATE(engine->mmio_base), 0);
2078 if (engine->id == RCS) {
2079 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2080 RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2081 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2082 RING_INDIRECT_CTX(engine->mmio_base), 0);
2083 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2084 RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
48bb74e4 2085 if (engine->wa_ctx.vma) {
0bc40be8 2086 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
bde13ebd 2087 u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
17ee950d
AS
2088
2089 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2090 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2091 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2092
2093 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
0bc40be8 2094 intel_lr_indirect_ctx_offset(engine) << 6;
17ee950d
AS
2095
2096 reg_state[CTX_BB_PER_CTX_PTR+1] =
2097 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2098 0x01;
2099 }
8670d6f9 2100 }
0d925ea0 2101 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
0bc40be8
TU
2102 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2103 RING_CTX_TIMESTAMP(engine->mmio_base), 0);
0d925ea0 2104 /* PDP values well be assigned later if needed */
0bc40be8
TU
2105 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2106 0);
2107 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2108 0);
2109 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2110 0);
2111 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2112 0);
2113 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2114 0);
2115 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2116 0);
2117 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2118 0);
2119 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2120 0);
d7b2633d 2121
2dba3239
MT
2122 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2123 /* 64b PPGTT (48bit canonical)
2124 * PDP0_DESCRIPTOR contains the base address to PML4 and
2125 * other PDP Descriptors are ignored.
2126 */
2127 ASSIGN_CTX_PML4(ppgtt, reg_state);
2128 } else {
2129 /* 32b PPGTT
2130 * PDP*_DESCRIPTOR contains the base address of space supported.
2131 * With dynamic page allocation, PDPs may not be allocated at
2132 * this point. Point the unallocated PDPs to the scratch page
2133 */
c6a2ac71 2134 execlists_update_context_pdps(ppgtt, reg_state);
2dba3239
MT
2135 }
2136
0bc40be8 2137 if (engine->id == RCS) {
8670d6f9 2138 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
0d925ea0 2139 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
c033666a 2140 make_rpcs(dev_priv));
8670d6f9 2141 }
a3aabe86
CW
2142}
2143
2144static int
2145populate_lr_context(struct i915_gem_context *ctx,
2146 struct drm_i915_gem_object *ctx_obj,
2147 struct intel_engine_cs *engine,
2148 struct intel_ring *ring)
2149{
2150 void *vaddr;
2151 int ret;
2152
2153 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2154 if (ret) {
2155 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2156 return ret;
2157 }
2158
2159 vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2160 if (IS_ERR(vaddr)) {
2161 ret = PTR_ERR(vaddr);
2162 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2163 return ret;
2164 }
a4f5ea64 2165 ctx_obj->mm.dirty = true;
a3aabe86
CW
2166
2167 /* The second page of the context object contains some fields which must
2168 * be set up prior to the first execution. */
2169
2170 execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
2171 ctx, engine, ring);
8670d6f9 2172
7d774cac 2173 i915_gem_object_unpin_map(ctx_obj);
8670d6f9
OM
2174
2175 return 0;
2176}
2177
c5d46ee2
DG
2178/**
2179 * intel_lr_context_size() - return the size of the context for an engine
14bb2c11 2180 * @engine: which engine to find the context size for
c5d46ee2
DG
2181 *
2182 * Each engine may require a different amount of space for a context image,
2183 * so when allocating (or copying) an image, this function can be used to
2184 * find the right size for the specific engine.
2185 *
2186 * Return: size (in bytes) of an engine-specific context image
2187 *
2188 * Note: this size includes the HWSP, which is part of the context image
2189 * in LRC mode, but does not include the "shared data page" used with
2190 * GuC submission. The caller should account for this if using the GuC.
2191 */
0bc40be8 2192uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
8c857917
OM
2193{
2194 int ret = 0;
2195
c033666a 2196 WARN_ON(INTEL_GEN(engine->i915) < 8);
8c857917 2197
0bc40be8 2198 switch (engine->id) {
8c857917 2199 case RCS:
c033666a 2200 if (INTEL_GEN(engine->i915) >= 9)
468c6816
MN
2201 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2202 else
2203 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
2204 break;
2205 case VCS:
2206 case BCS:
2207 case VECS:
2208 case VCS2:
2209 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2210 break;
2211 }
2212
2213 return ret;
ede7d42b
OM
2214}
2215
e2efd130 2216static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 2217 struct intel_engine_cs *engine)
ede7d42b 2218{
8c857917 2219 struct drm_i915_gem_object *ctx_obj;
9021ad03 2220 struct intel_context *ce = &ctx->engine[engine->id];
bf3783e5 2221 struct i915_vma *vma;
8c857917 2222 uint32_t context_size;
7e37f889 2223 struct intel_ring *ring;
8c857917
OM
2224 int ret;
2225
9021ad03 2226 WARN_ON(ce->state);
ede7d42b 2227
0bc40be8 2228 context_size = round_up(intel_lr_context_size(engine), 4096);
8c857917 2229
d1675198
AD
2230 /* One extra page as the sharing data between driver and GuC */
2231 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2232
91c8a326 2233 ctx_obj = i915_gem_object_create(&ctx->i915->drm, context_size);
fe3db79b 2234 if (IS_ERR(ctx_obj)) {
3126a660 2235 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
fe3db79b 2236 return PTR_ERR(ctx_obj);
8c857917
OM
2237 }
2238
bf3783e5
CW
2239 vma = i915_vma_create(ctx_obj, &ctx->i915->ggtt.base, NULL);
2240 if (IS_ERR(vma)) {
2241 ret = PTR_ERR(vma);
2242 goto error_deref_obj;
2243 }
2244
7e37f889 2245 ring = intel_engine_create_ring(engine, ctx->ring_size);
dca33ecc
CW
2246 if (IS_ERR(ring)) {
2247 ret = PTR_ERR(ring);
e84fe803 2248 goto error_deref_obj;
8670d6f9
OM
2249 }
2250
dca33ecc 2251 ret = populate_lr_context(ctx, ctx_obj, engine, ring);
8670d6f9
OM
2252 if (ret) {
2253 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
dca33ecc 2254 goto error_ring_free;
84c2377f
OM
2255 }
2256
dca33ecc 2257 ce->ring = ring;
bf3783e5 2258 ce->state = vma;
9021ad03 2259 ce->initialised = engine->init_context == NULL;
ede7d42b
OM
2260
2261 return 0;
8670d6f9 2262
dca33ecc 2263error_ring_free:
7e37f889 2264 intel_ring_free(ring);
e84fe803 2265error_deref_obj:
f8c417cd 2266 i915_gem_object_put(ctx_obj);
8670d6f9 2267 return ret;
ede7d42b 2268}
3e5b6f05 2269
821ed7df 2270void intel_lr_context_resume(struct drm_i915_private *dev_priv)
3e5b6f05 2271{
e2f80391 2272 struct intel_engine_cs *engine;
bafb2f7d 2273 struct i915_gem_context *ctx;
3b3f1650 2274 enum intel_engine_id id;
bafb2f7d
CW
2275
2276 /* Because we emit WA_TAIL_DWORDS there may be a disparity
2277 * between our bookkeeping in ce->ring->head and ce->ring->tail and
2278 * that stored in context. As we only write new commands from
2279 * ce->ring->tail onwards, everything before that is junk. If the GPU
2280 * starts reading from its RING_HEAD from the context, it may try to
2281 * execute that junk and die.
2282 *
2283 * So to avoid that we reset the context images upon resume. For
2284 * simplicity, we just zero everything out.
2285 */
2286 list_for_each_entry(ctx, &dev_priv->context_list, link) {
3b3f1650 2287 for_each_engine(engine, dev_priv, id) {
bafb2f7d
CW
2288 struct intel_context *ce = &ctx->engine[engine->id];
2289 u32 *reg;
3e5b6f05 2290
bafb2f7d
CW
2291 if (!ce->state)
2292 continue;
7d774cac 2293
bafb2f7d
CW
2294 reg = i915_gem_object_pin_map(ce->state->obj,
2295 I915_MAP_WB);
2296 if (WARN_ON(IS_ERR(reg)))
2297 continue;
3e5b6f05 2298
bafb2f7d
CW
2299 reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2300 reg[CTX_RING_HEAD+1] = 0;
2301 reg[CTX_RING_TAIL+1] = 0;
3e5b6f05 2302
a4f5ea64 2303 ce->state->obj->mm.dirty = true;
bafb2f7d 2304 i915_gem_object_unpin_map(ce->state->obj);
3e5b6f05 2305
bafb2f7d
CW
2306 ce->ring->head = ce->ring->tail = 0;
2307 ce->ring->last_retired_head = -1;
2308 intel_ring_update_space(ce->ring);
2309 }
3e5b6f05
TD
2310 }
2311}