drm/i915: Implement plane-disabled assertion for PCH too
[linux-block.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
23b2f8bb 27#include <linux/cpufreq.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
79e53945
JB
35#include "drmP.h"
36#include "intel_drv.h"
37#include "i915_drm.h"
38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
ab2c0672 40#include "drm_dp_helper.h"
79e53945 41#include "drm_crtc_helper.h"
c0f372b3 42#include <linux/dma_remapping.h>
79e53945 43
32f9d658
ZW
44#define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45
0206e353 46bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
7662c8bd 47static void intel_update_watermarks(struct drm_device *dev);
3dec0095 48static void intel_increase_pllclock(struct drm_crtc *crtc);
6b383a7f 49static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945
JB
50
51typedef struct {
0206e353
AJ
52 /* given values */
53 int n;
54 int m1, m2;
55 int p1, p2;
56 /* derived values */
57 int dot;
58 int vco;
59 int m;
60 int p;
79e53945
JB
61} intel_clock_t;
62
63typedef struct {
0206e353 64 int min, max;
79e53945
JB
65} intel_range_t;
66
67typedef struct {
0206e353
AJ
68 int dot_limit;
69 int p2_slow, p2_fast;
79e53945
JB
70} intel_p2_t;
71
72#define INTEL_P2_NUM 2
d4906093
ML
73typedef struct intel_limit intel_limit_t;
74struct intel_limit {
0206e353
AJ
75 intel_range_t dot, vco, n, m, m1, m2, p, p1;
76 intel_p2_t p2;
77 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
cec2f356 78 int, int, intel_clock_t *, intel_clock_t *);
d4906093 79};
79e53945 80
2377b741
JB
81/* FDI */
82#define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
83
d4906093
ML
84static bool
85intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
86 int target, int refclk, intel_clock_t *match_clock,
87 intel_clock_t *best_clock);
d4906093
ML
88static bool
89intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
90 int target, int refclk, intel_clock_t *match_clock,
91 intel_clock_t *best_clock);
79e53945 92
a4fc5ed6
KP
93static bool
94intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
cec2f356
SP
95 int target, int refclk, intel_clock_t *match_clock,
96 intel_clock_t *best_clock);
5eb08b69 97static bool
f2b115e6 98intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
cec2f356
SP
99 int target, int refclk, intel_clock_t *match_clock,
100 intel_clock_t *best_clock);
a4fc5ed6 101
021357ac
CW
102static inline u32 /* units of 100MHz */
103intel_fdi_link_freq(struct drm_device *dev)
104{
8b99e68c
CW
105 if (IS_GEN5(dev)) {
106 struct drm_i915_private *dev_priv = dev->dev_private;
107 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
108 } else
109 return 27;
021357ac
CW
110}
111
e4b36699 112static const intel_limit_t intel_limits_i8xx_dvo = {
0206e353
AJ
113 .dot = { .min = 25000, .max = 350000 },
114 .vco = { .min = 930000, .max = 1400000 },
115 .n = { .min = 3, .max = 16 },
116 .m = { .min = 96, .max = 140 },
117 .m1 = { .min = 18, .max = 26 },
118 .m2 = { .min = 6, .max = 16 },
119 .p = { .min = 4, .max = 128 },
120 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
121 .p2 = { .dot_limit = 165000,
122 .p2_slow = 4, .p2_fast = 2 },
d4906093 123 .find_pll = intel_find_best_PLL,
e4b36699
KP
124};
125
126static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353
AJ
127 .dot = { .min = 25000, .max = 350000 },
128 .vco = { .min = 930000, .max = 1400000 },
129 .n = { .min = 3, .max = 16 },
130 .m = { .min = 96, .max = 140 },
131 .m1 = { .min = 18, .max = 26 },
132 .m2 = { .min = 6, .max = 16 },
133 .p = { .min = 4, .max = 128 },
134 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
135 .p2 = { .dot_limit = 165000,
136 .p2_slow = 14, .p2_fast = 7 },
d4906093 137 .find_pll = intel_find_best_PLL,
e4b36699 138};
273e27ca 139
e4b36699 140static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
141 .dot = { .min = 20000, .max = 400000 },
142 .vco = { .min = 1400000, .max = 2800000 },
143 .n = { .min = 1, .max = 6 },
144 .m = { .min = 70, .max = 120 },
145 .m1 = { .min = 10, .max = 22 },
146 .m2 = { .min = 5, .max = 9 },
147 .p = { .min = 5, .max = 80 },
148 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
149 .p2 = { .dot_limit = 200000,
150 .p2_slow = 10, .p2_fast = 5 },
d4906093 151 .find_pll = intel_find_best_PLL,
e4b36699
KP
152};
153
154static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
155 .dot = { .min = 20000, .max = 400000 },
156 .vco = { .min = 1400000, .max = 2800000 },
157 .n = { .min = 1, .max = 6 },
158 .m = { .min = 70, .max = 120 },
159 .m1 = { .min = 10, .max = 22 },
160 .m2 = { .min = 5, .max = 9 },
161 .p = { .min = 7, .max = 98 },
162 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
163 .p2 = { .dot_limit = 112000,
164 .p2_slow = 14, .p2_fast = 7 },
d4906093 165 .find_pll = intel_find_best_PLL,
e4b36699
KP
166};
167
273e27ca 168
e4b36699 169static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
170 .dot = { .min = 25000, .max = 270000 },
171 .vco = { .min = 1750000, .max = 3500000},
172 .n = { .min = 1, .max = 4 },
173 .m = { .min = 104, .max = 138 },
174 .m1 = { .min = 17, .max = 23 },
175 .m2 = { .min = 5, .max = 11 },
176 .p = { .min = 10, .max = 30 },
177 .p1 = { .min = 1, .max = 3},
178 .p2 = { .dot_limit = 270000,
179 .p2_slow = 10,
180 .p2_fast = 10
044c7c41 181 },
d4906093 182 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
183};
184
185static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
186 .dot = { .min = 22000, .max = 400000 },
187 .vco = { .min = 1750000, .max = 3500000},
188 .n = { .min = 1, .max = 4 },
189 .m = { .min = 104, .max = 138 },
190 .m1 = { .min = 16, .max = 23 },
191 .m2 = { .min = 5, .max = 11 },
192 .p = { .min = 5, .max = 80 },
193 .p1 = { .min = 1, .max = 8},
194 .p2 = { .dot_limit = 165000,
195 .p2_slow = 10, .p2_fast = 5 },
d4906093 196 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
197};
198
199static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
200 .dot = { .min = 20000, .max = 115000 },
201 .vco = { .min = 1750000, .max = 3500000 },
202 .n = { .min = 1, .max = 3 },
203 .m = { .min = 104, .max = 138 },
204 .m1 = { .min = 17, .max = 23 },
205 .m2 = { .min = 5, .max = 11 },
206 .p = { .min = 28, .max = 112 },
207 .p1 = { .min = 2, .max = 8 },
208 .p2 = { .dot_limit = 0,
209 .p2_slow = 14, .p2_fast = 14
044c7c41 210 },
d4906093 211 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
212};
213
214static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
215 .dot = { .min = 80000, .max = 224000 },
216 .vco = { .min = 1750000, .max = 3500000 },
217 .n = { .min = 1, .max = 3 },
218 .m = { .min = 104, .max = 138 },
219 .m1 = { .min = 17, .max = 23 },
220 .m2 = { .min = 5, .max = 11 },
221 .p = { .min = 14, .max = 42 },
222 .p1 = { .min = 2, .max = 6 },
223 .p2 = { .dot_limit = 0,
224 .p2_slow = 7, .p2_fast = 7
044c7c41 225 },
d4906093 226 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
227};
228
229static const intel_limit_t intel_limits_g4x_display_port = {
0206e353
AJ
230 .dot = { .min = 161670, .max = 227000 },
231 .vco = { .min = 1750000, .max = 3500000},
232 .n = { .min = 1, .max = 2 },
233 .m = { .min = 97, .max = 108 },
234 .m1 = { .min = 0x10, .max = 0x12 },
235 .m2 = { .min = 0x05, .max = 0x06 },
236 .p = { .min = 10, .max = 20 },
237 .p1 = { .min = 1, .max = 2},
238 .p2 = { .dot_limit = 0,
273e27ca 239 .p2_slow = 10, .p2_fast = 10 },
0206e353 240 .find_pll = intel_find_pll_g4x_dp,
e4b36699
KP
241};
242
f2b115e6 243static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
244 .dot = { .min = 20000, .max = 400000},
245 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 246 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
247 .n = { .min = 3, .max = 6 },
248 .m = { .min = 2, .max = 256 },
273e27ca 249 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
250 .m1 = { .min = 0, .max = 0 },
251 .m2 = { .min = 0, .max = 254 },
252 .p = { .min = 5, .max = 80 },
253 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
254 .p2 = { .dot_limit = 200000,
255 .p2_slow = 10, .p2_fast = 5 },
6115707b 256 .find_pll = intel_find_best_PLL,
e4b36699
KP
257};
258
f2b115e6 259static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
260 .dot = { .min = 20000, .max = 400000 },
261 .vco = { .min = 1700000, .max = 3500000 },
262 .n = { .min = 3, .max = 6 },
263 .m = { .min = 2, .max = 256 },
264 .m1 = { .min = 0, .max = 0 },
265 .m2 = { .min = 0, .max = 254 },
266 .p = { .min = 7, .max = 112 },
267 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
268 .p2 = { .dot_limit = 112000,
269 .p2_slow = 14, .p2_fast = 14 },
6115707b 270 .find_pll = intel_find_best_PLL,
e4b36699
KP
271};
272
273e27ca
EA
273/* Ironlake / Sandybridge
274 *
275 * We calculate clock using (register_value + 2) for N/M1/M2, so here
276 * the range value for them is (actual_value - 2).
277 */
b91ad0ec 278static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
279 .dot = { .min = 25000, .max = 350000 },
280 .vco = { .min = 1760000, .max = 3510000 },
281 .n = { .min = 1, .max = 5 },
282 .m = { .min = 79, .max = 127 },
283 .m1 = { .min = 12, .max = 22 },
284 .m2 = { .min = 5, .max = 9 },
285 .p = { .min = 5, .max = 80 },
286 .p1 = { .min = 1, .max = 8 },
287 .p2 = { .dot_limit = 225000,
288 .p2_slow = 10, .p2_fast = 5 },
4547668a 289 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
290};
291
b91ad0ec 292static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
293 .dot = { .min = 25000, .max = 350000 },
294 .vco = { .min = 1760000, .max = 3510000 },
295 .n = { .min = 1, .max = 3 },
296 .m = { .min = 79, .max = 118 },
297 .m1 = { .min = 12, .max = 22 },
298 .m2 = { .min = 5, .max = 9 },
299 .p = { .min = 28, .max = 112 },
300 .p1 = { .min = 2, .max = 8 },
301 .p2 = { .dot_limit = 225000,
302 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
303 .find_pll = intel_g4x_find_best_PLL,
304};
305
306static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
307 .dot = { .min = 25000, .max = 350000 },
308 .vco = { .min = 1760000, .max = 3510000 },
309 .n = { .min = 1, .max = 3 },
310 .m = { .min = 79, .max = 127 },
311 .m1 = { .min = 12, .max = 22 },
312 .m2 = { .min = 5, .max = 9 },
313 .p = { .min = 14, .max = 56 },
314 .p1 = { .min = 2, .max = 8 },
315 .p2 = { .dot_limit = 225000,
316 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
317 .find_pll = intel_g4x_find_best_PLL,
318};
319
273e27ca 320/* LVDS 100mhz refclk limits. */
b91ad0ec 321static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
322 .dot = { .min = 25000, .max = 350000 },
323 .vco = { .min = 1760000, .max = 3510000 },
324 .n = { .min = 1, .max = 2 },
325 .m = { .min = 79, .max = 126 },
326 .m1 = { .min = 12, .max = 22 },
327 .m2 = { .min = 5, .max = 9 },
328 .p = { .min = 28, .max = 112 },
0206e353 329 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
330 .p2 = { .dot_limit = 225000,
331 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
332 .find_pll = intel_g4x_find_best_PLL,
333};
334
335static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
336 .dot = { .min = 25000, .max = 350000 },
337 .vco = { .min = 1760000, .max = 3510000 },
338 .n = { .min = 1, .max = 3 },
339 .m = { .min = 79, .max = 126 },
340 .m1 = { .min = 12, .max = 22 },
341 .m2 = { .min = 5, .max = 9 },
342 .p = { .min = 14, .max = 42 },
0206e353 343 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
344 .p2 = { .dot_limit = 225000,
345 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
346 .find_pll = intel_g4x_find_best_PLL,
347};
348
349static const intel_limit_t intel_limits_ironlake_display_port = {
0206e353
AJ
350 .dot = { .min = 25000, .max = 350000 },
351 .vco = { .min = 1760000, .max = 3510000},
352 .n = { .min = 1, .max = 2 },
353 .m = { .min = 81, .max = 90 },
354 .m1 = { .min = 12, .max = 22 },
355 .m2 = { .min = 5, .max = 9 },
356 .p = { .min = 10, .max = 20 },
357 .p1 = { .min = 1, .max = 2},
358 .p2 = { .dot_limit = 0,
273e27ca 359 .p2_slow = 10, .p2_fast = 10 },
0206e353 360 .find_pll = intel_find_pll_ironlake_dp,
79e53945
JB
361};
362
1b894b59
CW
363static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
364 int refclk)
2c07245f 365{
b91ad0ec
ZW
366 struct drm_device *dev = crtc->dev;
367 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 368 const intel_limit_t *limit;
b91ad0ec
ZW
369
370 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
b91ad0ec
ZW
371 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
372 LVDS_CLKB_POWER_UP) {
373 /* LVDS dual channel */
1b894b59 374 if (refclk == 100000)
b91ad0ec
ZW
375 limit = &intel_limits_ironlake_dual_lvds_100m;
376 else
377 limit = &intel_limits_ironlake_dual_lvds;
378 } else {
1b894b59 379 if (refclk == 100000)
b91ad0ec
ZW
380 limit = &intel_limits_ironlake_single_lvds_100m;
381 else
382 limit = &intel_limits_ironlake_single_lvds;
383 }
384 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
4547668a
ZY
385 HAS_eDP)
386 limit = &intel_limits_ironlake_display_port;
2c07245f 387 else
b91ad0ec 388 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
389
390 return limit;
391}
392
044c7c41
ML
393static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
394{
395 struct drm_device *dev = crtc->dev;
396 struct drm_i915_private *dev_priv = dev->dev_private;
397 const intel_limit_t *limit;
398
399 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
400 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
401 LVDS_CLKB_POWER_UP)
402 /* LVDS with dual channel */
e4b36699 403 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41
ML
404 else
405 /* LVDS with dual channel */
e4b36699 406 limit = &intel_limits_g4x_single_channel_lvds;
044c7c41
ML
407 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
408 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
e4b36699 409 limit = &intel_limits_g4x_hdmi;
044c7c41 410 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
e4b36699 411 limit = &intel_limits_g4x_sdvo;
0206e353 412 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
e4b36699 413 limit = &intel_limits_g4x_display_port;
044c7c41 414 } else /* The option is for other outputs */
e4b36699 415 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
416
417 return limit;
418}
419
1b894b59 420static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
79e53945
JB
421{
422 struct drm_device *dev = crtc->dev;
423 const intel_limit_t *limit;
424
bad720ff 425 if (HAS_PCH_SPLIT(dev))
1b894b59 426 limit = intel_ironlake_limit(crtc, refclk);
2c07245f 427 else if (IS_G4X(dev)) {
044c7c41 428 limit = intel_g4x_limit(crtc);
f2b115e6 429 } else if (IS_PINEVIEW(dev)) {
2177832f 430 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
f2b115e6 431 limit = &intel_limits_pineview_lvds;
2177832f 432 else
f2b115e6 433 limit = &intel_limits_pineview_sdvo;
a6c45cf0
CW
434 } else if (!IS_GEN2(dev)) {
435 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
436 limit = &intel_limits_i9xx_lvds;
437 else
438 limit = &intel_limits_i9xx_sdvo;
79e53945
JB
439 } else {
440 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 441 limit = &intel_limits_i8xx_lvds;
79e53945 442 else
e4b36699 443 limit = &intel_limits_i8xx_dvo;
79e53945
JB
444 }
445 return limit;
446}
447
f2b115e6
AJ
448/* m1 is reserved as 0 in Pineview, n is a ring counter */
449static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 450{
2177832f
SL
451 clock->m = clock->m2 + 2;
452 clock->p = clock->p1 * clock->p2;
453 clock->vco = refclk * clock->m / clock->n;
454 clock->dot = clock->vco / clock->p;
455}
456
457static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
458{
f2b115e6
AJ
459 if (IS_PINEVIEW(dev)) {
460 pineview_clock(refclk, clock);
2177832f
SL
461 return;
462 }
79e53945
JB
463 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
464 clock->p = clock->p1 * clock->p2;
465 clock->vco = refclk * clock->m / (clock->n + 2);
466 clock->dot = clock->vco / clock->p;
467}
468
79e53945
JB
469/**
470 * Returns whether any output on the specified pipe is of the specified type
471 */
4ef69c7a 472bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
79e53945 473{
4ef69c7a
CW
474 struct drm_device *dev = crtc->dev;
475 struct drm_mode_config *mode_config = &dev->mode_config;
476 struct intel_encoder *encoder;
477
478 list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
479 if (encoder->base.crtc == crtc && encoder->type == type)
480 return true;
481
482 return false;
79e53945
JB
483}
484
7c04d1d9 485#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
486/**
487 * Returns whether the given set of divisors are valid for a given refclk with
488 * the given connectors.
489 */
490
1b894b59
CW
491static bool intel_PLL_is_valid(struct drm_device *dev,
492 const intel_limit_t *limit,
493 const intel_clock_t *clock)
79e53945 494{
79e53945 495 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 496 INTELPllInvalid("p1 out of range\n");
79e53945 497 if (clock->p < limit->p.min || limit->p.max < clock->p)
0206e353 498 INTELPllInvalid("p out of range\n");
79e53945 499 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 500 INTELPllInvalid("m2 out of range\n");
79e53945 501 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 502 INTELPllInvalid("m1 out of range\n");
f2b115e6 503 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
0206e353 504 INTELPllInvalid("m1 <= m2\n");
79e53945 505 if (clock->m < limit->m.min || limit->m.max < clock->m)
0206e353 506 INTELPllInvalid("m out of range\n");
79e53945 507 if (clock->n < limit->n.min || limit->n.max < clock->n)
0206e353 508 INTELPllInvalid("n out of range\n");
79e53945 509 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 510 INTELPllInvalid("vco out of range\n");
79e53945
JB
511 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
512 * connector, etc., rather than just a single range.
513 */
514 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 515 INTELPllInvalid("dot out of range\n");
79e53945
JB
516
517 return true;
518}
519
d4906093
ML
520static bool
521intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
522 int target, int refclk, intel_clock_t *match_clock,
523 intel_clock_t *best_clock)
d4906093 524
79e53945
JB
525{
526 struct drm_device *dev = crtc->dev;
527 struct drm_i915_private *dev_priv = dev->dev_private;
528 intel_clock_t clock;
79e53945
JB
529 int err = target;
530
bc5e5718 531 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
832cc28d 532 (I915_READ(LVDS)) != 0) {
79e53945
JB
533 /*
534 * For LVDS, if the panel is on, just rely on its current
535 * settings for dual-channel. We haven't figured out how to
536 * reliably set up different single/dual channel state, if we
537 * even can.
538 */
539 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
540 LVDS_CLKB_POWER_UP)
541 clock.p2 = limit->p2.p2_fast;
542 else
543 clock.p2 = limit->p2.p2_slow;
544 } else {
545 if (target < limit->p2.dot_limit)
546 clock.p2 = limit->p2.p2_slow;
547 else
548 clock.p2 = limit->p2.p2_fast;
549 }
550
0206e353 551 memset(best_clock, 0, sizeof(*best_clock));
79e53945 552
42158660
ZY
553 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
554 clock.m1++) {
555 for (clock.m2 = limit->m2.min;
556 clock.m2 <= limit->m2.max; clock.m2++) {
f2b115e6
AJ
557 /* m1 is always 0 in Pineview */
558 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
42158660
ZY
559 break;
560 for (clock.n = limit->n.min;
561 clock.n <= limit->n.max; clock.n++) {
562 for (clock.p1 = limit->p1.min;
563 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
564 int this_err;
565
2177832f 566 intel_clock(dev, refclk, &clock);
1b894b59
CW
567 if (!intel_PLL_is_valid(dev, limit,
568 &clock))
79e53945 569 continue;
cec2f356
SP
570 if (match_clock &&
571 clock.p != match_clock->p)
572 continue;
79e53945
JB
573
574 this_err = abs(clock.dot - target);
575 if (this_err < err) {
576 *best_clock = clock;
577 err = this_err;
578 }
579 }
580 }
581 }
582 }
583
584 return (err != target);
585}
586
d4906093
ML
587static bool
588intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
589 int target, int refclk, intel_clock_t *match_clock,
590 intel_clock_t *best_clock)
d4906093
ML
591{
592 struct drm_device *dev = crtc->dev;
593 struct drm_i915_private *dev_priv = dev->dev_private;
594 intel_clock_t clock;
595 int max_n;
596 bool found;
6ba770dc
AJ
597 /* approximately equals target * 0.00585 */
598 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
599 found = false;
600
601 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4547668a
ZY
602 int lvds_reg;
603
c619eed4 604 if (HAS_PCH_SPLIT(dev))
4547668a
ZY
605 lvds_reg = PCH_LVDS;
606 else
607 lvds_reg = LVDS;
608 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
d4906093
ML
609 LVDS_CLKB_POWER_UP)
610 clock.p2 = limit->p2.p2_fast;
611 else
612 clock.p2 = limit->p2.p2_slow;
613 } else {
614 if (target < limit->p2.dot_limit)
615 clock.p2 = limit->p2.p2_slow;
616 else
617 clock.p2 = limit->p2.p2_fast;
618 }
619
620 memset(best_clock, 0, sizeof(*best_clock));
621 max_n = limit->n.max;
f77f13e2 622 /* based on hardware requirement, prefer smaller n to precision */
d4906093 623 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 624 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
625 for (clock.m1 = limit->m1.max;
626 clock.m1 >= limit->m1.min; clock.m1--) {
627 for (clock.m2 = limit->m2.max;
628 clock.m2 >= limit->m2.min; clock.m2--) {
629 for (clock.p1 = limit->p1.max;
630 clock.p1 >= limit->p1.min; clock.p1--) {
631 int this_err;
632
2177832f 633 intel_clock(dev, refclk, &clock);
1b894b59
CW
634 if (!intel_PLL_is_valid(dev, limit,
635 &clock))
d4906093 636 continue;
cec2f356
SP
637 if (match_clock &&
638 clock.p != match_clock->p)
639 continue;
1b894b59
CW
640
641 this_err = abs(clock.dot - target);
d4906093
ML
642 if (this_err < err_most) {
643 *best_clock = clock;
644 err_most = this_err;
645 max_n = clock.n;
646 found = true;
647 }
648 }
649 }
650 }
651 }
2c07245f
ZW
652 return found;
653}
654
5eb08b69 655static bool
f2b115e6 656intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
657 int target, int refclk, intel_clock_t *match_clock,
658 intel_clock_t *best_clock)
5eb08b69
ZW
659{
660 struct drm_device *dev = crtc->dev;
661 intel_clock_t clock;
4547668a 662
5eb08b69
ZW
663 if (target < 200000) {
664 clock.n = 1;
665 clock.p1 = 2;
666 clock.p2 = 10;
667 clock.m1 = 12;
668 clock.m2 = 9;
669 } else {
670 clock.n = 2;
671 clock.p1 = 1;
672 clock.p2 = 10;
673 clock.m1 = 14;
674 clock.m2 = 8;
675 }
676 intel_clock(dev, refclk, &clock);
677 memcpy(best_clock, &clock, sizeof(intel_clock_t));
678 return true;
679}
680
a4fc5ed6
KP
681/* DisplayPort has only two frequencies, 162MHz and 270MHz */
682static bool
683intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
684 int target, int refclk, intel_clock_t *match_clock,
685 intel_clock_t *best_clock)
a4fc5ed6 686{
5eddb70b
CW
687 intel_clock_t clock;
688 if (target < 200000) {
689 clock.p1 = 2;
690 clock.p2 = 10;
691 clock.n = 2;
692 clock.m1 = 23;
693 clock.m2 = 8;
694 } else {
695 clock.p1 = 1;
696 clock.p2 = 10;
697 clock.n = 1;
698 clock.m1 = 14;
699 clock.m2 = 2;
700 }
701 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
702 clock.p = (clock.p1 * clock.p2);
703 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
704 clock.vco = 0;
705 memcpy(best_clock, &clock, sizeof(intel_clock_t));
706 return true;
a4fc5ed6
KP
707}
708
9d0498a2
JB
709/**
710 * intel_wait_for_vblank - wait for vblank on a given pipe
711 * @dev: drm device
712 * @pipe: pipe to wait for
713 *
714 * Wait for vblank to occur on a given pipe. Needed for various bits of
715 * mode setting code.
716 */
717void intel_wait_for_vblank(struct drm_device *dev, int pipe)
79e53945 718{
9d0498a2 719 struct drm_i915_private *dev_priv = dev->dev_private;
9db4a9c7 720 int pipestat_reg = PIPESTAT(pipe);
9d0498a2 721
300387c0
CW
722 /* Clear existing vblank status. Note this will clear any other
723 * sticky status fields as well.
724 *
725 * This races with i915_driver_irq_handler() with the result
726 * that either function could miss a vblank event. Here it is not
727 * fatal, as we will either wait upon the next vblank interrupt or
728 * timeout. Generally speaking intel_wait_for_vblank() is only
729 * called during modeset at which time the GPU should be idle and
730 * should *not* be performing page flips and thus not waiting on
731 * vblanks...
732 * Currently, the result of us stealing a vblank from the irq
733 * handler is that a single frame will be skipped during swapbuffers.
734 */
735 I915_WRITE(pipestat_reg,
736 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
737
9d0498a2 738 /* Wait for vblank interrupt bit to set */
481b6af3
CW
739 if (wait_for(I915_READ(pipestat_reg) &
740 PIPE_VBLANK_INTERRUPT_STATUS,
741 50))
9d0498a2
JB
742 DRM_DEBUG_KMS("vblank wait timed out\n");
743}
744
ab7ad7f6
KP
745/*
746 * intel_wait_for_pipe_off - wait for pipe to turn off
9d0498a2
JB
747 * @dev: drm device
748 * @pipe: pipe to wait for
749 *
750 * After disabling a pipe, we can't wait for vblank in the usual way,
751 * spinning on the vblank interrupt status bit, since we won't actually
752 * see an interrupt when the pipe is disabled.
753 *
ab7ad7f6
KP
754 * On Gen4 and above:
755 * wait for the pipe register state bit to turn off
756 *
757 * Otherwise:
758 * wait for the display line value to settle (it usually
759 * ends up stopping at the start of the next frame).
58e10eb9 760 *
9d0498a2 761 */
58e10eb9 762void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
9d0498a2
JB
763{
764 struct drm_i915_private *dev_priv = dev->dev_private;
ab7ad7f6
KP
765
766 if (INTEL_INFO(dev)->gen >= 4) {
58e10eb9 767 int reg = PIPECONF(pipe);
ab7ad7f6
KP
768
769 /* Wait for the Pipe State to go off */
58e10eb9
CW
770 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
771 100))
ab7ad7f6
KP
772 DRM_DEBUG_KMS("pipe_off wait timed out\n");
773 } else {
774 u32 last_line;
58e10eb9 775 int reg = PIPEDSL(pipe);
ab7ad7f6
KP
776 unsigned long timeout = jiffies + msecs_to_jiffies(100);
777
778 /* Wait for the display line to settle */
779 do {
58e10eb9 780 last_line = I915_READ(reg) & DSL_LINEMASK;
ab7ad7f6 781 mdelay(5);
58e10eb9 782 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
ab7ad7f6
KP
783 time_after(timeout, jiffies));
784 if (time_after(jiffies, timeout))
785 DRM_DEBUG_KMS("pipe_off wait timed out\n");
786 }
79e53945
JB
787}
788
b24e7179
JB
789static const char *state_string(bool enabled)
790{
791 return enabled ? "on" : "off";
792}
793
794/* Only for pre-ILK configs */
795static void assert_pll(struct drm_i915_private *dev_priv,
796 enum pipe pipe, bool state)
797{
798 int reg;
799 u32 val;
800 bool cur_state;
801
802 reg = DPLL(pipe);
803 val = I915_READ(reg);
804 cur_state = !!(val & DPLL_VCO_ENABLE);
805 WARN(cur_state != state,
806 "PLL state assertion failure (expected %s, current %s)\n",
807 state_string(state), state_string(cur_state));
808}
809#define assert_pll_enabled(d, p) assert_pll(d, p, true)
810#define assert_pll_disabled(d, p) assert_pll(d, p, false)
811
040484af
JB
812/* For ILK+ */
813static void assert_pch_pll(struct drm_i915_private *dev_priv,
814 enum pipe pipe, bool state)
815{
816 int reg;
817 u32 val;
818 bool cur_state;
819
d3ccbe86
JB
820 if (HAS_PCH_CPT(dev_priv->dev)) {
821 u32 pch_dpll;
822
823 pch_dpll = I915_READ(PCH_DPLL_SEL);
824
825 /* Make sure the selected PLL is enabled to the transcoder */
826 WARN(!((pch_dpll >> (4 * pipe)) & 8),
827 "transcoder %d PLL not enabled\n", pipe);
828
829 /* Convert the transcoder pipe number to a pll pipe number */
830 pipe = (pch_dpll >> (4 * pipe)) & 1;
831 }
832
040484af
JB
833 reg = PCH_DPLL(pipe);
834 val = I915_READ(reg);
835 cur_state = !!(val & DPLL_VCO_ENABLE);
836 WARN(cur_state != state,
837 "PCH PLL state assertion failure (expected %s, current %s)\n",
838 state_string(state), state_string(cur_state));
839}
840#define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
841#define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
842
843static void assert_fdi_tx(struct drm_i915_private *dev_priv,
844 enum pipe pipe, bool state)
845{
846 int reg;
847 u32 val;
848 bool cur_state;
849
850 reg = FDI_TX_CTL(pipe);
851 val = I915_READ(reg);
852 cur_state = !!(val & FDI_TX_ENABLE);
853 WARN(cur_state != state,
854 "FDI TX state assertion failure (expected %s, current %s)\n",
855 state_string(state), state_string(cur_state));
856}
857#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
858#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
859
860static void assert_fdi_rx(struct drm_i915_private *dev_priv,
861 enum pipe pipe, bool state)
862{
863 int reg;
864 u32 val;
865 bool cur_state;
866
867 reg = FDI_RX_CTL(pipe);
868 val = I915_READ(reg);
869 cur_state = !!(val & FDI_RX_ENABLE);
870 WARN(cur_state != state,
871 "FDI RX state assertion failure (expected %s, current %s)\n",
872 state_string(state), state_string(cur_state));
873}
874#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
875#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
876
877static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
878 enum pipe pipe)
879{
880 int reg;
881 u32 val;
882
883 /* ILK FDI PLL is always enabled */
884 if (dev_priv->info->gen == 5)
885 return;
886
887 reg = FDI_TX_CTL(pipe);
888 val = I915_READ(reg);
889 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
890}
891
892static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
893 enum pipe pipe)
894{
895 int reg;
896 u32 val;
897
898 reg = FDI_RX_CTL(pipe);
899 val = I915_READ(reg);
900 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
901}
902
ea0760cf
JB
903static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
904 enum pipe pipe)
905{
906 int pp_reg, lvds_reg;
907 u32 val;
908 enum pipe panel_pipe = PIPE_A;
0de3b485 909 bool locked = true;
ea0760cf
JB
910
911 if (HAS_PCH_SPLIT(dev_priv->dev)) {
912 pp_reg = PCH_PP_CONTROL;
913 lvds_reg = PCH_LVDS;
914 } else {
915 pp_reg = PP_CONTROL;
916 lvds_reg = LVDS;
917 }
918
919 val = I915_READ(pp_reg);
920 if (!(val & PANEL_POWER_ON) ||
921 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
922 locked = false;
923
924 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
925 panel_pipe = PIPE_B;
926
927 WARN(panel_pipe == pipe && locked,
928 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 929 pipe_name(pipe));
ea0760cf
JB
930}
931
b840d907
JB
932void assert_pipe(struct drm_i915_private *dev_priv,
933 enum pipe pipe, bool state)
b24e7179
JB
934{
935 int reg;
936 u32 val;
63d7bbe9 937 bool cur_state;
b24e7179
JB
938
939 reg = PIPECONF(pipe);
940 val = I915_READ(reg);
63d7bbe9
JB
941 cur_state = !!(val & PIPECONF_ENABLE);
942 WARN(cur_state != state,
943 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 944 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
945}
946
931872fc
CW
947static void assert_plane(struct drm_i915_private *dev_priv,
948 enum plane plane, bool state)
b24e7179
JB
949{
950 int reg;
951 u32 val;
931872fc 952 bool cur_state;
b24e7179
JB
953
954 reg = DSPCNTR(plane);
955 val = I915_READ(reg);
931872fc
CW
956 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
957 WARN(cur_state != state,
958 "plane %c assertion failure (expected %s, current %s)\n",
959 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
960}
961
931872fc
CW
962#define assert_plane_enabled(d, p) assert_plane(d, p, true)
963#define assert_plane_disabled(d, p) assert_plane(d, p, false)
964
b24e7179
JB
965static void assert_planes_disabled(struct drm_i915_private *dev_priv,
966 enum pipe pipe)
967{
968 int reg, i;
969 u32 val;
970 int cur_pipe;
971
19ec1358 972 /* Planes are fixed to pipes on ILK+ */
28c05794
AJ
973 if (HAS_PCH_SPLIT(dev_priv->dev)) {
974 reg = DSPCNTR(pipe);
975 val = I915_READ(reg);
976 WARN((val & DISPLAY_PLANE_ENABLE),
977 "plane %c assertion failure, should be disabled but not\n",
978 plane_name(pipe));
19ec1358 979 return;
28c05794 980 }
19ec1358 981
b24e7179
JB
982 /* Need to check both planes against the pipe */
983 for (i = 0; i < 2; i++) {
984 reg = DSPCNTR(i);
985 val = I915_READ(reg);
986 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
987 DISPPLANE_SEL_PIPE_SHIFT;
988 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
989 "plane %c assertion failure, should be off on pipe %c but is still active\n",
990 plane_name(i), pipe_name(pipe));
b24e7179
JB
991 }
992}
993
92f2584a
JB
994static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
995{
996 u32 val;
997 bool enabled;
998
999 val = I915_READ(PCH_DREF_CONTROL);
1000 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1001 DREF_SUPERSPREAD_SOURCE_MASK));
1002 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1003}
1004
1005static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1006 enum pipe pipe)
1007{
1008 int reg;
1009 u32 val;
1010 bool enabled;
1011
1012 reg = TRANSCONF(pipe);
1013 val = I915_READ(reg);
1014 enabled = !!(val & TRANS_ENABLE);
9db4a9c7
JB
1015 WARN(enabled,
1016 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1017 pipe_name(pipe));
92f2584a
JB
1018}
1019
4e634389
KP
1020static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1021 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1022{
1023 if ((val & DP_PORT_EN) == 0)
1024 return false;
1025
1026 if (HAS_PCH_CPT(dev_priv->dev)) {
1027 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1028 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1029 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1030 return false;
1031 } else {
1032 if ((val & DP_PIPE_MASK) != (pipe << 30))
1033 return false;
1034 }
1035 return true;
1036}
1037
1519b995
KP
1038static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1039 enum pipe pipe, u32 val)
1040{
1041 if ((val & PORT_ENABLE) == 0)
1042 return false;
1043
1044 if (HAS_PCH_CPT(dev_priv->dev)) {
1045 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1046 return false;
1047 } else {
1048 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1049 return false;
1050 }
1051 return true;
1052}
1053
1054static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1055 enum pipe pipe, u32 val)
1056{
1057 if ((val & LVDS_PORT_EN) == 0)
1058 return false;
1059
1060 if (HAS_PCH_CPT(dev_priv->dev)) {
1061 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1062 return false;
1063 } else {
1064 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1065 return false;
1066 }
1067 return true;
1068}
1069
1070static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1071 enum pipe pipe, u32 val)
1072{
1073 if ((val & ADPA_DAC_ENABLE) == 0)
1074 return false;
1075 if (HAS_PCH_CPT(dev_priv->dev)) {
1076 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1077 return false;
1078 } else {
1079 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1080 return false;
1081 }
1082 return true;
1083}
1084
291906f1 1085static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1086 enum pipe pipe, int reg, u32 port_sel)
291906f1 1087{
47a05eca 1088 u32 val = I915_READ(reg);
4e634389 1089 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1090 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1091 reg, pipe_name(pipe));
291906f1
JB
1092}
1093
1094static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1095 enum pipe pipe, int reg)
1096{
47a05eca 1097 u32 val = I915_READ(reg);
1519b995 1098 WARN(hdmi_pipe_enabled(dev_priv, val, pipe),
291906f1 1099 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1100 reg, pipe_name(pipe));
291906f1
JB
1101}
1102
1103static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1104 enum pipe pipe)
1105{
1106 int reg;
1107 u32 val;
291906f1 1108
f0575e92
KP
1109 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1110 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1111 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1112
1113 reg = PCH_ADPA;
1114 val = I915_READ(reg);
1519b995 1115 WARN(adpa_pipe_enabled(dev_priv, val, pipe),
291906f1 1116 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1117 pipe_name(pipe));
291906f1
JB
1118
1119 reg = PCH_LVDS;
1120 val = I915_READ(reg);
1519b995 1121 WARN(lvds_pipe_enabled(dev_priv, val, pipe),
291906f1 1122 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1123 pipe_name(pipe));
291906f1
JB
1124
1125 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1126 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1127 assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1128}
1129
63d7bbe9
JB
1130/**
1131 * intel_enable_pll - enable a PLL
1132 * @dev_priv: i915 private structure
1133 * @pipe: pipe PLL to enable
1134 *
1135 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1136 * make sure the PLL reg is writable first though, since the panel write
1137 * protect mechanism may be enabled.
1138 *
1139 * Note! This is for pre-ILK only.
1140 */
1141static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1142{
1143 int reg;
1144 u32 val;
1145
1146 /* No really, not for ILK+ */
1147 BUG_ON(dev_priv->info->gen >= 5);
1148
1149 /* PLL is protected by panel, make sure we can write it */
1150 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1151 assert_panel_unlocked(dev_priv, pipe);
1152
1153 reg = DPLL(pipe);
1154 val = I915_READ(reg);
1155 val |= DPLL_VCO_ENABLE;
1156
1157 /* We do this three times for luck */
1158 I915_WRITE(reg, val);
1159 POSTING_READ(reg);
1160 udelay(150); /* wait for warmup */
1161 I915_WRITE(reg, val);
1162 POSTING_READ(reg);
1163 udelay(150); /* wait for warmup */
1164 I915_WRITE(reg, val);
1165 POSTING_READ(reg);
1166 udelay(150); /* wait for warmup */
1167}
1168
1169/**
1170 * intel_disable_pll - disable a PLL
1171 * @dev_priv: i915 private structure
1172 * @pipe: pipe PLL to disable
1173 *
1174 * Disable the PLL for @pipe, making sure the pipe is off first.
1175 *
1176 * Note! This is for pre-ILK only.
1177 */
1178static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1179{
1180 int reg;
1181 u32 val;
1182
1183 /* Don't disable pipe A or pipe A PLLs if needed */
1184 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1185 return;
1186
1187 /* Make sure the pipe isn't still relying on us */
1188 assert_pipe_disabled(dev_priv, pipe);
1189
1190 reg = DPLL(pipe);
1191 val = I915_READ(reg);
1192 val &= ~DPLL_VCO_ENABLE;
1193 I915_WRITE(reg, val);
1194 POSTING_READ(reg);
1195}
1196
92f2584a
JB
1197/**
1198 * intel_enable_pch_pll - enable PCH PLL
1199 * @dev_priv: i915 private structure
1200 * @pipe: pipe PLL to enable
1201 *
1202 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1203 * drives the transcoder clock.
1204 */
1205static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
1206 enum pipe pipe)
1207{
1208 int reg;
1209 u32 val;
1210
4c609cb8
JB
1211 if (pipe > 1)
1212 return;
1213
92f2584a
JB
1214 /* PCH only available on ILK+ */
1215 BUG_ON(dev_priv->info->gen < 5);
1216
1217 /* PCH refclock must be enabled first */
1218 assert_pch_refclk_enabled(dev_priv);
1219
1220 reg = PCH_DPLL(pipe);
1221 val = I915_READ(reg);
1222 val |= DPLL_VCO_ENABLE;
1223 I915_WRITE(reg, val);
1224 POSTING_READ(reg);
1225 udelay(200);
1226}
1227
1228static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
1229 enum pipe pipe)
1230{
1231 int reg;
7a419866
JB
1232 u32 val, pll_mask = TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL,
1233 pll_sel = TRANSC_DPLL_ENABLE;
92f2584a 1234
4c609cb8
JB
1235 if (pipe > 1)
1236 return;
1237
92f2584a
JB
1238 /* PCH only available on ILK+ */
1239 BUG_ON(dev_priv->info->gen < 5);
1240
1241 /* Make sure transcoder isn't still depending on us */
1242 assert_transcoder_disabled(dev_priv, pipe);
1243
7a419866
JB
1244 if (pipe == 0)
1245 pll_sel |= TRANSC_DPLLA_SEL;
1246 else if (pipe == 1)
1247 pll_sel |= TRANSC_DPLLB_SEL;
1248
1249
1250 if ((I915_READ(PCH_DPLL_SEL) & pll_mask) == pll_sel)
1251 return;
1252
92f2584a
JB
1253 reg = PCH_DPLL(pipe);
1254 val = I915_READ(reg);
1255 val &= ~DPLL_VCO_ENABLE;
1256 I915_WRITE(reg, val);
1257 POSTING_READ(reg);
1258 udelay(200);
1259}
1260
040484af
JB
1261static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1262 enum pipe pipe)
1263{
1264 int reg;
1265 u32 val;
1266
1267 /* PCH only available on ILK+ */
1268 BUG_ON(dev_priv->info->gen < 5);
1269
1270 /* Make sure PCH DPLL is enabled */
1271 assert_pch_pll_enabled(dev_priv, pipe);
1272
1273 /* FDI must be feeding us bits for PCH ports */
1274 assert_fdi_tx_enabled(dev_priv, pipe);
1275 assert_fdi_rx_enabled(dev_priv, pipe);
1276
1277 reg = TRANSCONF(pipe);
1278 val = I915_READ(reg);
e9bcff5c
JB
1279
1280 if (HAS_PCH_IBX(dev_priv->dev)) {
1281 /*
1282 * make the BPC in transcoder be consistent with
1283 * that in pipeconf reg.
1284 */
1285 val &= ~PIPE_BPC_MASK;
1286 val |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
1287 }
040484af
JB
1288 I915_WRITE(reg, val | TRANS_ENABLE);
1289 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1290 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1291}
1292
1293static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1294 enum pipe pipe)
1295{
1296 int reg;
1297 u32 val;
1298
1299 /* FDI relies on the transcoder */
1300 assert_fdi_tx_disabled(dev_priv, pipe);
1301 assert_fdi_rx_disabled(dev_priv, pipe);
1302
291906f1
JB
1303 /* Ports must be off as well */
1304 assert_pch_ports_disabled(dev_priv, pipe);
1305
040484af
JB
1306 reg = TRANSCONF(pipe);
1307 val = I915_READ(reg);
1308 val &= ~TRANS_ENABLE;
1309 I915_WRITE(reg, val);
1310 /* wait for PCH transcoder off, transcoder state */
1311 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4c9c18c2 1312 DRM_ERROR("failed to disable transcoder %d\n", pipe);
040484af
JB
1313}
1314
b24e7179 1315/**
309cfea8 1316 * intel_enable_pipe - enable a pipe, asserting requirements
b24e7179
JB
1317 * @dev_priv: i915 private structure
1318 * @pipe: pipe to enable
040484af 1319 * @pch_port: on ILK+, is this pipe driving a PCH port or not
b24e7179
JB
1320 *
1321 * Enable @pipe, making sure that various hardware specific requirements
1322 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1323 *
1324 * @pipe should be %PIPE_A or %PIPE_B.
1325 *
1326 * Will wait until the pipe is actually running (i.e. first vblank) before
1327 * returning.
1328 */
040484af
JB
1329static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1330 bool pch_port)
b24e7179
JB
1331{
1332 int reg;
1333 u32 val;
1334
1335 /*
1336 * A pipe without a PLL won't actually be able to drive bits from
1337 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1338 * need the check.
1339 */
1340 if (!HAS_PCH_SPLIT(dev_priv->dev))
1341 assert_pll_enabled(dev_priv, pipe);
040484af
JB
1342 else {
1343 if (pch_port) {
1344 /* if driving the PCH, we need FDI enabled */
1345 assert_fdi_rx_pll_enabled(dev_priv, pipe);
1346 assert_fdi_tx_pll_enabled(dev_priv, pipe);
1347 }
1348 /* FIXME: assert CPU port conditions for SNB+ */
1349 }
b24e7179
JB
1350
1351 reg = PIPECONF(pipe);
1352 val = I915_READ(reg);
00d70b15
CW
1353 if (val & PIPECONF_ENABLE)
1354 return;
1355
1356 I915_WRITE(reg, val | PIPECONF_ENABLE);
b24e7179
JB
1357 intel_wait_for_vblank(dev_priv->dev, pipe);
1358}
1359
1360/**
309cfea8 1361 * intel_disable_pipe - disable a pipe, asserting requirements
b24e7179
JB
1362 * @dev_priv: i915 private structure
1363 * @pipe: pipe to disable
1364 *
1365 * Disable @pipe, making sure that various hardware specific requirements
1366 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1367 *
1368 * @pipe should be %PIPE_A or %PIPE_B.
1369 *
1370 * Will wait until the pipe has shut down before returning.
1371 */
1372static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1373 enum pipe pipe)
1374{
1375 int reg;
1376 u32 val;
1377
1378 /*
1379 * Make sure planes won't keep trying to pump pixels to us,
1380 * or we might hang the display.
1381 */
1382 assert_planes_disabled(dev_priv, pipe);
1383
1384 /* Don't disable pipe A or pipe A PLLs if needed */
1385 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1386 return;
1387
1388 reg = PIPECONF(pipe);
1389 val = I915_READ(reg);
00d70b15
CW
1390 if ((val & PIPECONF_ENABLE) == 0)
1391 return;
1392
1393 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
b24e7179
JB
1394 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1395}
1396
d74362c9
KP
1397/*
1398 * Plane regs are double buffered, going from enabled->disabled needs a
1399 * trigger in order to latch. The display address reg provides this.
1400 */
1401static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1402 enum plane plane)
1403{
1404 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1405 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1406}
1407
b24e7179
JB
1408/**
1409 * intel_enable_plane - enable a display plane on a given pipe
1410 * @dev_priv: i915 private structure
1411 * @plane: plane to enable
1412 * @pipe: pipe being fed
1413 *
1414 * Enable @plane on @pipe, making sure that @pipe is running first.
1415 */
1416static void intel_enable_plane(struct drm_i915_private *dev_priv,
1417 enum plane plane, enum pipe pipe)
1418{
1419 int reg;
1420 u32 val;
1421
1422 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1423 assert_pipe_enabled(dev_priv, pipe);
1424
1425 reg = DSPCNTR(plane);
1426 val = I915_READ(reg);
00d70b15
CW
1427 if (val & DISPLAY_PLANE_ENABLE)
1428 return;
1429
1430 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
d74362c9 1431 intel_flush_display_plane(dev_priv, plane);
b24e7179
JB
1432 intel_wait_for_vblank(dev_priv->dev, pipe);
1433}
1434
b24e7179
JB
1435/**
1436 * intel_disable_plane - disable a display plane
1437 * @dev_priv: i915 private structure
1438 * @plane: plane to disable
1439 * @pipe: pipe consuming the data
1440 *
1441 * Disable @plane; should be an independent operation.
1442 */
1443static void intel_disable_plane(struct drm_i915_private *dev_priv,
1444 enum plane plane, enum pipe pipe)
1445{
1446 int reg;
1447 u32 val;
1448
1449 reg = DSPCNTR(plane);
1450 val = I915_READ(reg);
00d70b15
CW
1451 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1452 return;
1453
1454 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
b24e7179
JB
1455 intel_flush_display_plane(dev_priv, plane);
1456 intel_wait_for_vblank(dev_priv->dev, pipe);
1457}
1458
47a05eca 1459static void disable_pch_dp(struct drm_i915_private *dev_priv,
f0575e92 1460 enum pipe pipe, int reg, u32 port_sel)
47a05eca
JB
1461{
1462 u32 val = I915_READ(reg);
4e634389 1463 if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
f0575e92 1464 DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
47a05eca 1465 I915_WRITE(reg, val & ~DP_PORT_EN);
f0575e92 1466 }
47a05eca
JB
1467}
1468
1469static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1470 enum pipe pipe, int reg)
1471{
1472 u32 val = I915_READ(reg);
1519b995 1473 if (hdmi_pipe_enabled(dev_priv, val, pipe)) {
f0575e92
KP
1474 DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
1475 reg, pipe);
47a05eca 1476 I915_WRITE(reg, val & ~PORT_ENABLE);
f0575e92 1477 }
47a05eca
JB
1478}
1479
1480/* Disable any ports connected to this transcoder */
1481static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1482 enum pipe pipe)
1483{
1484 u32 reg, val;
1485
1486 val = I915_READ(PCH_PP_CONTROL);
1487 I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1488
f0575e92
KP
1489 disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1490 disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1491 disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
47a05eca
JB
1492
1493 reg = PCH_ADPA;
1494 val = I915_READ(reg);
1519b995 1495 if (adpa_pipe_enabled(dev_priv, val, pipe))
47a05eca
JB
1496 I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1497
1498 reg = PCH_LVDS;
1499 val = I915_READ(reg);
1519b995
KP
1500 if (lvds_pipe_enabled(dev_priv, val, pipe)) {
1501 DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
47a05eca
JB
1502 I915_WRITE(reg, val & ~LVDS_PORT_EN);
1503 POSTING_READ(reg);
1504 udelay(100);
1505 }
1506
1507 disable_pch_hdmi(dev_priv, pipe, HDMIB);
1508 disable_pch_hdmi(dev_priv, pipe, HDMIC);
1509 disable_pch_hdmi(dev_priv, pipe, HDMID);
1510}
1511
43a9539f
CW
1512static void i8xx_disable_fbc(struct drm_device *dev)
1513{
1514 struct drm_i915_private *dev_priv = dev->dev_private;
1515 u32 fbc_ctl;
1516
1517 /* Disable compression */
1518 fbc_ctl = I915_READ(FBC_CONTROL);
1519 if ((fbc_ctl & FBC_CTL_EN) == 0)
1520 return;
1521
1522 fbc_ctl &= ~FBC_CTL_EN;
1523 I915_WRITE(FBC_CONTROL, fbc_ctl);
1524
1525 /* Wait for compressing bit to clear */
1526 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1527 DRM_DEBUG_KMS("FBC idle timed out\n");
1528 return;
1529 }
1530
1531 DRM_DEBUG_KMS("disabled FBC\n");
1532}
1533
80824003
JB
1534static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1535{
1536 struct drm_device *dev = crtc->dev;
1537 struct drm_i915_private *dev_priv = dev->dev_private;
1538 struct drm_framebuffer *fb = crtc->fb;
1539 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 1540 struct drm_i915_gem_object *obj = intel_fb->obj;
80824003 1541 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
016b9b61 1542 int cfb_pitch;
80824003
JB
1543 int plane, i;
1544 u32 fbc_ctl, fbc_ctl2;
1545
016b9b61 1546 cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
01f2c773
VS
1547 if (fb->pitches[0] < cfb_pitch)
1548 cfb_pitch = fb->pitches[0];
80824003
JB
1549
1550 /* FBC_CTL wants 64B units */
016b9b61
CW
1551 cfb_pitch = (cfb_pitch / 64) - 1;
1552 plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
80824003
JB
1553
1554 /* Clear old tags */
1555 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1556 I915_WRITE(FBC_TAG + (i * 4), 0);
1557
1558 /* Set it up... */
de568510
CW
1559 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
1560 fbc_ctl2 |= plane;
80824003
JB
1561 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1562 I915_WRITE(FBC_FENCE_OFF, crtc->y);
1563
1564 /* enable it... */
1565 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
ee25df2b 1566 if (IS_I945GM(dev))
49677901 1567 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
016b9b61 1568 fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
80824003 1569 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
016b9b61 1570 fbc_ctl |= obj->fence_reg;
80824003
JB
1571 I915_WRITE(FBC_CONTROL, fbc_ctl);
1572
016b9b61
CW
1573 DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
1574 cfb_pitch, crtc->y, intel_crtc->plane);
80824003
JB
1575}
1576
ee5382ae 1577static bool i8xx_fbc_enabled(struct drm_device *dev)
80824003 1578{
80824003
JB
1579 struct drm_i915_private *dev_priv = dev->dev_private;
1580
1581 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1582}
1583
74dff282
JB
1584static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1585{
1586 struct drm_device *dev = crtc->dev;
1587 struct drm_i915_private *dev_priv = dev->dev_private;
1588 struct drm_framebuffer *fb = crtc->fb;
1589 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 1590 struct drm_i915_gem_object *obj = intel_fb->obj;
74dff282 1591 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5eddb70b 1592 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
74dff282
JB
1593 unsigned long stall_watermark = 200;
1594 u32 dpfc_ctl;
1595
74dff282 1596 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
016b9b61 1597 dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
de568510 1598 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
74dff282 1599
74dff282
JB
1600 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1601 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1602 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1603 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1604
1605 /* enable it... */
1606 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1607
28c97730 1608 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
74dff282
JB
1609}
1610
43a9539f 1611static void g4x_disable_fbc(struct drm_device *dev)
74dff282
JB
1612{
1613 struct drm_i915_private *dev_priv = dev->dev_private;
1614 u32 dpfc_ctl;
1615
1616 /* Disable compression */
1617 dpfc_ctl = I915_READ(DPFC_CONTROL);
bed4a673
CW
1618 if (dpfc_ctl & DPFC_CTL_EN) {
1619 dpfc_ctl &= ~DPFC_CTL_EN;
1620 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
74dff282 1621
bed4a673
CW
1622 DRM_DEBUG_KMS("disabled FBC\n");
1623 }
74dff282
JB
1624}
1625
ee5382ae 1626static bool g4x_fbc_enabled(struct drm_device *dev)
74dff282 1627{
74dff282
JB
1628 struct drm_i915_private *dev_priv = dev->dev_private;
1629
1630 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1631}
1632
4efe0708
JB
1633static void sandybridge_blit_fbc_update(struct drm_device *dev)
1634{
1635 struct drm_i915_private *dev_priv = dev->dev_private;
1636 u32 blt_ecoskpd;
1637
1638 /* Make sure blitter notifies FBC of writes */
fcca7926 1639 gen6_gt_force_wake_get(dev_priv);
4efe0708
JB
1640 blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
1641 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
1642 GEN6_BLITTER_LOCK_SHIFT;
1643 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1644 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
1645 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1646 blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
1647 GEN6_BLITTER_LOCK_SHIFT);
1648 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1649 POSTING_READ(GEN6_BLITTER_ECOSKPD);
fcca7926 1650 gen6_gt_force_wake_put(dev_priv);
4efe0708
JB
1651}
1652
b52eb4dc
ZY
1653static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1654{
1655 struct drm_device *dev = crtc->dev;
1656 struct drm_i915_private *dev_priv = dev->dev_private;
1657 struct drm_framebuffer *fb = crtc->fb;
1658 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 1659 struct drm_i915_gem_object *obj = intel_fb->obj;
b52eb4dc 1660 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5eddb70b 1661 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
b52eb4dc
ZY
1662 unsigned long stall_watermark = 200;
1663 u32 dpfc_ctl;
1664
bed4a673 1665 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
b52eb4dc
ZY
1666 dpfc_ctl &= DPFC_RESERVED;
1667 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
9ce9d069
CW
1668 /* Set persistent mode for front-buffer rendering, ala X. */
1669 dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
016b9b61 1670 dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
de568510 1671 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
b52eb4dc 1672
b52eb4dc
ZY
1673 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1674 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1675 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1676 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
05394f39 1677 I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
b52eb4dc 1678 /* enable it... */
bed4a673 1679 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
b52eb4dc 1680
9c04f015
YL
1681 if (IS_GEN6(dev)) {
1682 I915_WRITE(SNB_DPFC_CTL_SA,
016b9b61 1683 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
9c04f015 1684 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
4efe0708 1685 sandybridge_blit_fbc_update(dev);
9c04f015
YL
1686 }
1687
b52eb4dc
ZY
1688 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1689}
1690
43a9539f 1691static void ironlake_disable_fbc(struct drm_device *dev)
b52eb4dc
ZY
1692{
1693 struct drm_i915_private *dev_priv = dev->dev_private;
1694 u32 dpfc_ctl;
1695
1696 /* Disable compression */
1697 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
bed4a673
CW
1698 if (dpfc_ctl & DPFC_CTL_EN) {
1699 dpfc_ctl &= ~DPFC_CTL_EN;
1700 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
b52eb4dc 1701
bed4a673
CW
1702 DRM_DEBUG_KMS("disabled FBC\n");
1703 }
b52eb4dc
ZY
1704}
1705
1706static bool ironlake_fbc_enabled(struct drm_device *dev)
1707{
1708 struct drm_i915_private *dev_priv = dev->dev_private;
1709
1710 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1711}
1712
ee5382ae
AJ
1713bool intel_fbc_enabled(struct drm_device *dev)
1714{
1715 struct drm_i915_private *dev_priv = dev->dev_private;
1716
1717 if (!dev_priv->display.fbc_enabled)
1718 return false;
1719
1720 return dev_priv->display.fbc_enabled(dev);
1721}
1722
1630fe75
CW
1723static void intel_fbc_work_fn(struct work_struct *__work)
1724{
1725 struct intel_fbc_work *work =
1726 container_of(to_delayed_work(__work),
1727 struct intel_fbc_work, work);
1728 struct drm_device *dev = work->crtc->dev;
1729 struct drm_i915_private *dev_priv = dev->dev_private;
1730
1731 mutex_lock(&dev->struct_mutex);
1732 if (work == dev_priv->fbc_work) {
1733 /* Double check that we haven't switched fb without cancelling
1734 * the prior work.
1735 */
016b9b61 1736 if (work->crtc->fb == work->fb) {
1630fe75
CW
1737 dev_priv->display.enable_fbc(work->crtc,
1738 work->interval);
1739
016b9b61
CW
1740 dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
1741 dev_priv->cfb_fb = work->crtc->fb->base.id;
1742 dev_priv->cfb_y = work->crtc->y;
1743 }
1744
1630fe75
CW
1745 dev_priv->fbc_work = NULL;
1746 }
1747 mutex_unlock(&dev->struct_mutex);
1748
1749 kfree(work);
1750}
1751
1752static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
1753{
1754 if (dev_priv->fbc_work == NULL)
1755 return;
1756
1757 DRM_DEBUG_KMS("cancelling pending FBC enable\n");
1758
1759 /* Synchronisation is provided by struct_mutex and checking of
1760 * dev_priv->fbc_work, so we can perform the cancellation
1761 * entirely asynchronously.
1762 */
1763 if (cancel_delayed_work(&dev_priv->fbc_work->work))
1764 /* tasklet was killed before being run, clean up */
1765 kfree(dev_priv->fbc_work);
1766
1767 /* Mark the work as no longer wanted so that if it does
1768 * wake-up (because the work was already running and waiting
1769 * for our mutex), it will discover that is no longer
1770 * necessary to run.
1771 */
1772 dev_priv->fbc_work = NULL;
1773}
1774
43a9539f 1775static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
ee5382ae 1776{
1630fe75
CW
1777 struct intel_fbc_work *work;
1778 struct drm_device *dev = crtc->dev;
1779 struct drm_i915_private *dev_priv = dev->dev_private;
ee5382ae
AJ
1780
1781 if (!dev_priv->display.enable_fbc)
1782 return;
1783
1630fe75
CW
1784 intel_cancel_fbc_work(dev_priv);
1785
1786 work = kzalloc(sizeof *work, GFP_KERNEL);
1787 if (work == NULL) {
1788 dev_priv->display.enable_fbc(crtc, interval);
1789 return;
1790 }
1791
1792 work->crtc = crtc;
1793 work->fb = crtc->fb;
1794 work->interval = interval;
1795 INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
1796
1797 dev_priv->fbc_work = work;
1798
1799 DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
1800
1801 /* Delay the actual enabling to let pageflipping cease and the
016b9b61
CW
1802 * display to settle before starting the compression. Note that
1803 * this delay also serves a second purpose: it allows for a
1804 * vblank to pass after disabling the FBC before we attempt
1805 * to modify the control registers.
1630fe75
CW
1806 *
1807 * A more complicated solution would involve tracking vblanks
1808 * following the termination of the page-flipping sequence
1809 * and indeed performing the enable as a co-routine and not
1810 * waiting synchronously upon the vblank.
1811 */
1812 schedule_delayed_work(&work->work, msecs_to_jiffies(50));
ee5382ae
AJ
1813}
1814
1815void intel_disable_fbc(struct drm_device *dev)
1816{
1817 struct drm_i915_private *dev_priv = dev->dev_private;
1818
1630fe75
CW
1819 intel_cancel_fbc_work(dev_priv);
1820
ee5382ae
AJ
1821 if (!dev_priv->display.disable_fbc)
1822 return;
1823
1824 dev_priv->display.disable_fbc(dev);
016b9b61 1825 dev_priv->cfb_plane = -1;
ee5382ae
AJ
1826}
1827
80824003
JB
1828/**
1829 * intel_update_fbc - enable/disable FBC as needed
bed4a673 1830 * @dev: the drm_device
80824003
JB
1831 *
1832 * Set up the framebuffer compression hardware at mode set time. We
1833 * enable it if possible:
1834 * - plane A only (on pre-965)
1835 * - no pixel mulitply/line duplication
1836 * - no alpha buffer discard
1837 * - no dual wide
1838 * - framebuffer <= 2048 in width, 1536 in height
1839 *
1840 * We can't assume that any compression will take place (worst case),
1841 * so the compressed buffer has to be the same size as the uncompressed
1842 * one. It also must reside (along with the line length buffer) in
1843 * stolen memory.
1844 *
1845 * We need to enable/disable FBC on a global basis.
1846 */
bed4a673 1847static void intel_update_fbc(struct drm_device *dev)
80824003 1848{
80824003 1849 struct drm_i915_private *dev_priv = dev->dev_private;
bed4a673
CW
1850 struct drm_crtc *crtc = NULL, *tmp_crtc;
1851 struct intel_crtc *intel_crtc;
1852 struct drm_framebuffer *fb;
80824003 1853 struct intel_framebuffer *intel_fb;
05394f39 1854 struct drm_i915_gem_object *obj;
cd0de039 1855 int enable_fbc;
9c928d16
JB
1856
1857 DRM_DEBUG_KMS("\n");
80824003
JB
1858
1859 if (!i915_powersave)
1860 return;
1861
ee5382ae 1862 if (!I915_HAS_FBC(dev))
e70236a8
JB
1863 return;
1864
80824003
JB
1865 /*
1866 * If FBC is already on, we just have to verify that we can
1867 * keep it that way...
1868 * Need to disable if:
9c928d16 1869 * - more than one pipe is active
80824003
JB
1870 * - changing FBC params (stride, fence, mode)
1871 * - new fb is too large to fit in compressed buffer
1872 * - going to an unsupported config (interlace, pixel multiply, etc.)
1873 */
9c928d16 1874 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
d210246a 1875 if (tmp_crtc->enabled && tmp_crtc->fb) {
bed4a673
CW
1876 if (crtc) {
1877 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1878 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1879 goto out_disable;
1880 }
1881 crtc = tmp_crtc;
1882 }
9c928d16 1883 }
bed4a673
CW
1884
1885 if (!crtc || crtc->fb == NULL) {
1886 DRM_DEBUG_KMS("no output, disabling\n");
1887 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
9c928d16
JB
1888 goto out_disable;
1889 }
bed4a673
CW
1890
1891 intel_crtc = to_intel_crtc(crtc);
1892 fb = crtc->fb;
1893 intel_fb = to_intel_framebuffer(fb);
05394f39 1894 obj = intel_fb->obj;
bed4a673 1895
cd0de039
KP
1896 enable_fbc = i915_enable_fbc;
1897 if (enable_fbc < 0) {
1898 DRM_DEBUG_KMS("fbc set to per-chip default\n");
1899 enable_fbc = 1;
1900 if (INTEL_INFO(dev)->gen <= 5)
1901 enable_fbc = 0;
1902 }
1903 if (!enable_fbc) {
1904 DRM_DEBUG_KMS("fbc disabled per module param\n");
c1a9f047
JB
1905 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
1906 goto out_disable;
1907 }
05394f39 1908 if (intel_fb->obj->base.size > dev_priv->cfb_size) {
28c97730 1909 DRM_DEBUG_KMS("framebuffer too large, disabling "
5eddb70b 1910 "compression\n");
b5e50c3f 1911 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
80824003
JB
1912 goto out_disable;
1913 }
bed4a673
CW
1914 if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
1915 (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
28c97730 1916 DRM_DEBUG_KMS("mode incompatible with compression, "
5eddb70b 1917 "disabling\n");
b5e50c3f 1918 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
80824003
JB
1919 goto out_disable;
1920 }
bed4a673
CW
1921 if ((crtc->mode.hdisplay > 2048) ||
1922 (crtc->mode.vdisplay > 1536)) {
28c97730 1923 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
b5e50c3f 1924 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
80824003
JB
1925 goto out_disable;
1926 }
bed4a673 1927 if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
28c97730 1928 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
b5e50c3f 1929 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
80824003
JB
1930 goto out_disable;
1931 }
de568510
CW
1932
1933 /* The use of a CPU fence is mandatory in order to detect writes
1934 * by the CPU to the scanout and trigger updates to the FBC.
1935 */
1936 if (obj->tiling_mode != I915_TILING_X ||
1937 obj->fence_reg == I915_FENCE_REG_NONE) {
1938 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
b5e50c3f 1939 dev_priv->no_fbc_reason = FBC_NOT_TILED;
80824003
JB
1940 goto out_disable;
1941 }
1942
c924b934
JW
1943 /* If the kernel debugger is active, always disable compression */
1944 if (in_dbg_master())
1945 goto out_disable;
1946
016b9b61
CW
1947 /* If the scanout has not changed, don't modify the FBC settings.
1948 * Note that we make the fundamental assumption that the fb->obj
1949 * cannot be unpinned (and have its GTT offset and fence revoked)
1950 * without first being decoupled from the scanout and FBC disabled.
1951 */
1952 if (dev_priv->cfb_plane == intel_crtc->plane &&
1953 dev_priv->cfb_fb == fb->base.id &&
1954 dev_priv->cfb_y == crtc->y)
1955 return;
1956
1957 if (intel_fbc_enabled(dev)) {
1958 /* We update FBC along two paths, after changing fb/crtc
1959 * configuration (modeswitching) and after page-flipping
1960 * finishes. For the latter, we know that not only did
1961 * we disable the FBC at the start of the page-flip
1962 * sequence, but also more than one vblank has passed.
1963 *
1964 * For the former case of modeswitching, it is possible
1965 * to switch between two FBC valid configurations
1966 * instantaneously so we do need to disable the FBC
1967 * before we can modify its control registers. We also
1968 * have to wait for the next vblank for that to take
1969 * effect. However, since we delay enabling FBC we can
1970 * assume that a vblank has passed since disabling and
1971 * that we can safely alter the registers in the deferred
1972 * callback.
1973 *
1974 * In the scenario that we go from a valid to invalid
1975 * and then back to valid FBC configuration we have
1976 * no strict enforcement that a vblank occurred since
1977 * disabling the FBC. However, along all current pipe
1978 * disabling paths we do need to wait for a vblank at
1979 * some point. And we wait before enabling FBC anyway.
1980 */
1981 DRM_DEBUG_KMS("disabling active FBC for update\n");
1982 intel_disable_fbc(dev);
1983 }
1984
bed4a673 1985 intel_enable_fbc(crtc, 500);
80824003
JB
1986 return;
1987
1988out_disable:
80824003 1989 /* Multiple disables should be harmless */
a939406f
CW
1990 if (intel_fbc_enabled(dev)) {
1991 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
ee5382ae 1992 intel_disable_fbc(dev);
a939406f 1993 }
80824003
JB
1994}
1995
127bd2ac 1996int
48b956c5 1997intel_pin_and_fence_fb_obj(struct drm_device *dev,
05394f39 1998 struct drm_i915_gem_object *obj,
919926ae 1999 struct intel_ring_buffer *pipelined)
6b95a207 2000{
ce453d81 2001 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
2002 u32 alignment;
2003 int ret;
2004
05394f39 2005 switch (obj->tiling_mode) {
6b95a207 2006 case I915_TILING_NONE:
534843da
CW
2007 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2008 alignment = 128 * 1024;
a6c45cf0 2009 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
2010 alignment = 4 * 1024;
2011 else
2012 alignment = 64 * 1024;
6b95a207
KH
2013 break;
2014 case I915_TILING_X:
2015 /* pin() will align the object as required by fence */
2016 alignment = 0;
2017 break;
2018 case I915_TILING_Y:
2019 /* FIXME: Is this true? */
2020 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
2021 return -EINVAL;
2022 default:
2023 BUG();
2024 }
2025
ce453d81 2026 dev_priv->mm.interruptible = false;
2da3b9b9 2027 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
48b956c5 2028 if (ret)
ce453d81 2029 goto err_interruptible;
6b95a207
KH
2030
2031 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2032 * fence, whereas 965+ only requires a fence if using
2033 * framebuffer compression. For simplicity, we always install
2034 * a fence as the cost is not that onerous.
2035 */
05394f39 2036 if (obj->tiling_mode != I915_TILING_NONE) {
ce453d81 2037 ret = i915_gem_object_get_fence(obj, pipelined);
48b956c5
CW
2038 if (ret)
2039 goto err_unpin;
6b95a207
KH
2040 }
2041
ce453d81 2042 dev_priv->mm.interruptible = true;
6b95a207 2043 return 0;
48b956c5
CW
2044
2045err_unpin:
2046 i915_gem_object_unpin(obj);
ce453d81
CW
2047err_interruptible:
2048 dev_priv->mm.interruptible = true;
48b956c5 2049 return ret;
6b95a207
KH
2050}
2051
17638cd6
JB
2052static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2053 int x, int y)
81255565
JB
2054{
2055 struct drm_device *dev = crtc->dev;
2056 struct drm_i915_private *dev_priv = dev->dev_private;
2057 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2058 struct intel_framebuffer *intel_fb;
05394f39 2059 struct drm_i915_gem_object *obj;
81255565
JB
2060 int plane = intel_crtc->plane;
2061 unsigned long Start, Offset;
81255565 2062 u32 dspcntr;
5eddb70b 2063 u32 reg;
81255565
JB
2064
2065 switch (plane) {
2066 case 0:
2067 case 1:
2068 break;
2069 default:
2070 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2071 return -EINVAL;
2072 }
2073
2074 intel_fb = to_intel_framebuffer(fb);
2075 obj = intel_fb->obj;
81255565 2076
5eddb70b
CW
2077 reg = DSPCNTR(plane);
2078 dspcntr = I915_READ(reg);
81255565
JB
2079 /* Mask out pixel format bits in case we change it */
2080 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2081 switch (fb->bits_per_pixel) {
2082 case 8:
2083 dspcntr |= DISPPLANE_8BPP;
2084 break;
2085 case 16:
2086 if (fb->depth == 15)
2087 dspcntr |= DISPPLANE_15_16BPP;
2088 else
2089 dspcntr |= DISPPLANE_16BPP;
2090 break;
2091 case 24:
2092 case 32:
2093 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2094 break;
2095 default:
17638cd6 2096 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
81255565
JB
2097 return -EINVAL;
2098 }
a6c45cf0 2099 if (INTEL_INFO(dev)->gen >= 4) {
05394f39 2100 if (obj->tiling_mode != I915_TILING_NONE)
81255565
JB
2101 dspcntr |= DISPPLANE_TILED;
2102 else
2103 dspcntr &= ~DISPPLANE_TILED;
2104 }
2105
5eddb70b 2106 I915_WRITE(reg, dspcntr);
81255565 2107
05394f39 2108 Start = obj->gtt_offset;
01f2c773 2109 Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
81255565 2110
4e6cfefc 2111 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
01f2c773
VS
2112 Start, Offset, x, y, fb->pitches[0]);
2113 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2114 if (INTEL_INFO(dev)->gen >= 4) {
5eddb70b
CW
2115 I915_WRITE(DSPSURF(plane), Start);
2116 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2117 I915_WRITE(DSPADDR(plane), Offset);
2118 } else
2119 I915_WRITE(DSPADDR(plane), Start + Offset);
2120 POSTING_READ(reg);
81255565 2121
17638cd6
JB
2122 return 0;
2123}
2124
2125static int ironlake_update_plane(struct drm_crtc *crtc,
2126 struct drm_framebuffer *fb, int x, int y)
2127{
2128 struct drm_device *dev = crtc->dev;
2129 struct drm_i915_private *dev_priv = dev->dev_private;
2130 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2131 struct intel_framebuffer *intel_fb;
2132 struct drm_i915_gem_object *obj;
2133 int plane = intel_crtc->plane;
2134 unsigned long Start, Offset;
2135 u32 dspcntr;
2136 u32 reg;
2137
2138 switch (plane) {
2139 case 0:
2140 case 1:
27f8227b 2141 case 2:
17638cd6
JB
2142 break;
2143 default:
2144 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2145 return -EINVAL;
2146 }
2147
2148 intel_fb = to_intel_framebuffer(fb);
2149 obj = intel_fb->obj;
2150
2151 reg = DSPCNTR(plane);
2152 dspcntr = I915_READ(reg);
2153 /* Mask out pixel format bits in case we change it */
2154 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2155 switch (fb->bits_per_pixel) {
2156 case 8:
2157 dspcntr |= DISPPLANE_8BPP;
2158 break;
2159 case 16:
2160 if (fb->depth != 16)
2161 return -EINVAL;
2162
2163 dspcntr |= DISPPLANE_16BPP;
2164 break;
2165 case 24:
2166 case 32:
2167 if (fb->depth == 24)
2168 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2169 else if (fb->depth == 30)
2170 dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2171 else
2172 return -EINVAL;
2173 break;
2174 default:
2175 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2176 return -EINVAL;
2177 }
2178
2179 if (obj->tiling_mode != I915_TILING_NONE)
2180 dspcntr |= DISPPLANE_TILED;
2181 else
2182 dspcntr &= ~DISPPLANE_TILED;
2183
2184 /* must disable */
2185 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2186
2187 I915_WRITE(reg, dspcntr);
2188
2189 Start = obj->gtt_offset;
01f2c773 2190 Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
17638cd6
JB
2191
2192 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
01f2c773
VS
2193 Start, Offset, x, y, fb->pitches[0]);
2194 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
17638cd6
JB
2195 I915_WRITE(DSPSURF(plane), Start);
2196 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2197 I915_WRITE(DSPADDR(plane), Offset);
2198 POSTING_READ(reg);
2199
2200 return 0;
2201}
2202
2203/* Assume fb object is pinned & idle & fenced and just update base pointers */
2204static int
2205intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2206 int x, int y, enum mode_set_atomic state)
2207{
2208 struct drm_device *dev = crtc->dev;
2209 struct drm_i915_private *dev_priv = dev->dev_private;
2210 int ret;
2211
2212 ret = dev_priv->display.update_plane(crtc, fb, x, y);
2213 if (ret)
2214 return ret;
2215
bed4a673 2216 intel_update_fbc(dev);
3dec0095 2217 intel_increase_pllclock(crtc);
81255565
JB
2218
2219 return 0;
2220}
2221
5c3b82e2 2222static int
3c4fdcfb
KH
2223intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2224 struct drm_framebuffer *old_fb)
79e53945
JB
2225{
2226 struct drm_device *dev = crtc->dev;
79e53945
JB
2227 struct drm_i915_master_private *master_priv;
2228 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5c3b82e2 2229 int ret;
79e53945
JB
2230
2231 /* no fb bound */
2232 if (!crtc->fb) {
a5071c2f 2233 DRM_ERROR("No FB bound\n");
5c3b82e2
CW
2234 return 0;
2235 }
2236
265db958 2237 switch (intel_crtc->plane) {
5c3b82e2
CW
2238 case 0:
2239 case 1:
2240 break;
27f8227b
JB
2241 case 2:
2242 if (IS_IVYBRIDGE(dev))
2243 break;
2244 /* fall through otherwise */
5c3b82e2 2245 default:
a5071c2f 2246 DRM_ERROR("no plane for crtc\n");
5c3b82e2 2247 return -EINVAL;
79e53945
JB
2248 }
2249
5c3b82e2 2250 mutex_lock(&dev->struct_mutex);
265db958
CW
2251 ret = intel_pin_and_fence_fb_obj(dev,
2252 to_intel_framebuffer(crtc->fb)->obj,
919926ae 2253 NULL);
5c3b82e2
CW
2254 if (ret != 0) {
2255 mutex_unlock(&dev->struct_mutex);
a5071c2f 2256 DRM_ERROR("pin & fence failed\n");
5c3b82e2
CW
2257 return ret;
2258 }
79e53945 2259
265db958 2260 if (old_fb) {
e6c3a2a6 2261 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 2262 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
265db958 2263
e6c3a2a6 2264 wait_event(dev_priv->pending_flip_queue,
01eec727 2265 atomic_read(&dev_priv->mm.wedged) ||
05394f39 2266 atomic_read(&obj->pending_flip) == 0);
85345517
CW
2267
2268 /* Big Hammer, we also need to ensure that any pending
2269 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2270 * current scanout is retired before unpinning the old
2271 * framebuffer.
01eec727
CW
2272 *
2273 * This should only fail upon a hung GPU, in which case we
2274 * can safely continue.
85345517 2275 */
a8198eea 2276 ret = i915_gem_object_finish_gpu(obj);
01eec727 2277 (void) ret;
265db958
CW
2278 }
2279
21c74a8e
JW
2280 ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
2281 LEAVE_ATOMIC_MODE_SET);
4e6cfefc 2282 if (ret) {
265db958 2283 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
5c3b82e2 2284 mutex_unlock(&dev->struct_mutex);
a5071c2f 2285 DRM_ERROR("failed to update base address\n");
4e6cfefc 2286 return ret;
79e53945 2287 }
3c4fdcfb 2288
b7f1de28
CW
2289 if (old_fb) {
2290 intel_wait_for_vblank(dev, intel_crtc->pipe);
265db958 2291 i915_gem_object_unpin(to_intel_framebuffer(old_fb)->obj);
b7f1de28 2292 }
652c393a 2293
5c3b82e2 2294 mutex_unlock(&dev->struct_mutex);
79e53945
JB
2295
2296 if (!dev->primary->master)
5c3b82e2 2297 return 0;
79e53945
JB
2298
2299 master_priv = dev->primary->master->driver_priv;
2300 if (!master_priv->sarea_priv)
5c3b82e2 2301 return 0;
79e53945 2302
265db958 2303 if (intel_crtc->pipe) {
79e53945
JB
2304 master_priv->sarea_priv->pipeB_x = x;
2305 master_priv->sarea_priv->pipeB_y = y;
5c3b82e2
CW
2306 } else {
2307 master_priv->sarea_priv->pipeA_x = x;
2308 master_priv->sarea_priv->pipeA_y = y;
79e53945 2309 }
5c3b82e2
CW
2310
2311 return 0;
79e53945
JB
2312}
2313
5eddb70b 2314static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
32f9d658
ZW
2315{
2316 struct drm_device *dev = crtc->dev;
2317 struct drm_i915_private *dev_priv = dev->dev_private;
2318 u32 dpa_ctl;
2319
28c97730 2320 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
32f9d658
ZW
2321 dpa_ctl = I915_READ(DP_A);
2322 dpa_ctl &= ~DP_PLL_FREQ_MASK;
2323
2324 if (clock < 200000) {
2325 u32 temp;
2326 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2327 /* workaround for 160Mhz:
2328 1) program 0x4600c bits 15:0 = 0x8124
2329 2) program 0x46010 bit 0 = 1
2330 3) program 0x46034 bit 24 = 1
2331 4) program 0x64000 bit 14 = 1
2332 */
2333 temp = I915_READ(0x4600c);
2334 temp &= 0xffff0000;
2335 I915_WRITE(0x4600c, temp | 0x8124);
2336
2337 temp = I915_READ(0x46010);
2338 I915_WRITE(0x46010, temp | 1);
2339
2340 temp = I915_READ(0x46034);
2341 I915_WRITE(0x46034, temp | (1 << 24));
2342 } else {
2343 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2344 }
2345 I915_WRITE(DP_A, dpa_ctl);
2346
5eddb70b 2347 POSTING_READ(DP_A);
32f9d658
ZW
2348 udelay(500);
2349}
2350
5e84e1a4
ZW
2351static void intel_fdi_normal_train(struct drm_crtc *crtc)
2352{
2353 struct drm_device *dev = crtc->dev;
2354 struct drm_i915_private *dev_priv = dev->dev_private;
2355 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2356 int pipe = intel_crtc->pipe;
2357 u32 reg, temp;
2358
2359 /* enable normal train */
2360 reg = FDI_TX_CTL(pipe);
2361 temp = I915_READ(reg);
61e499bf 2362 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
2363 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2364 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
2365 } else {
2366 temp &= ~FDI_LINK_TRAIN_NONE;
2367 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 2368 }
5e84e1a4
ZW
2369 I915_WRITE(reg, temp);
2370
2371 reg = FDI_RX_CTL(pipe);
2372 temp = I915_READ(reg);
2373 if (HAS_PCH_CPT(dev)) {
2374 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2375 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2376 } else {
2377 temp &= ~FDI_LINK_TRAIN_NONE;
2378 temp |= FDI_LINK_TRAIN_NONE;
2379 }
2380 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2381
2382 /* wait one idle pattern time */
2383 POSTING_READ(reg);
2384 udelay(1000);
357555c0
JB
2385
2386 /* IVB wants error correction enabled */
2387 if (IS_IVYBRIDGE(dev))
2388 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2389 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
2390}
2391
291427f5
JB
2392static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2393{
2394 struct drm_i915_private *dev_priv = dev->dev_private;
2395 u32 flags = I915_READ(SOUTH_CHICKEN1);
2396
2397 flags |= FDI_PHASE_SYNC_OVR(pipe);
2398 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2399 flags |= FDI_PHASE_SYNC_EN(pipe);
2400 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2401 POSTING_READ(SOUTH_CHICKEN1);
2402}
2403
8db9d77b
ZW
2404/* The FDI link training functions for ILK/Ibexpeak. */
2405static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2406{
2407 struct drm_device *dev = crtc->dev;
2408 struct drm_i915_private *dev_priv = dev->dev_private;
2409 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2410 int pipe = intel_crtc->pipe;
0fc932b8 2411 int plane = intel_crtc->plane;
5eddb70b 2412 u32 reg, temp, tries;
8db9d77b 2413
0fc932b8
JB
2414 /* FDI needs bits from pipe & plane first */
2415 assert_pipe_enabled(dev_priv, pipe);
2416 assert_plane_enabled(dev_priv, plane);
2417
e1a44743
AJ
2418 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2419 for train result */
5eddb70b
CW
2420 reg = FDI_RX_IMR(pipe);
2421 temp = I915_READ(reg);
e1a44743
AJ
2422 temp &= ~FDI_RX_SYMBOL_LOCK;
2423 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2424 I915_WRITE(reg, temp);
2425 I915_READ(reg);
e1a44743
AJ
2426 udelay(150);
2427
8db9d77b 2428 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2429 reg = FDI_TX_CTL(pipe);
2430 temp = I915_READ(reg);
77ffb597
AJ
2431 temp &= ~(7 << 19);
2432 temp |= (intel_crtc->fdi_lanes - 1) << 19;
8db9d77b
ZW
2433 temp &= ~FDI_LINK_TRAIN_NONE;
2434 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 2435 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2436
5eddb70b
CW
2437 reg = FDI_RX_CTL(pipe);
2438 temp = I915_READ(reg);
8db9d77b
ZW
2439 temp &= ~FDI_LINK_TRAIN_NONE;
2440 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
2441 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2442
2443 POSTING_READ(reg);
8db9d77b
ZW
2444 udelay(150);
2445
5b2adf89 2446 /* Ironlake workaround, enable clock pointer after FDI enable*/
6f06ce18
JB
2447 if (HAS_PCH_IBX(dev)) {
2448 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2449 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2450 FDI_RX_PHASE_SYNC_POINTER_EN);
2451 }
5b2adf89 2452
5eddb70b 2453 reg = FDI_RX_IIR(pipe);
e1a44743 2454 for (tries = 0; tries < 5; tries++) {
5eddb70b 2455 temp = I915_READ(reg);
8db9d77b
ZW
2456 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2457
2458 if ((temp & FDI_RX_BIT_LOCK)) {
2459 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 2460 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
2461 break;
2462 }
8db9d77b 2463 }
e1a44743 2464 if (tries == 5)
5eddb70b 2465 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2466
2467 /* Train 2 */
5eddb70b
CW
2468 reg = FDI_TX_CTL(pipe);
2469 temp = I915_READ(reg);
8db9d77b
ZW
2470 temp &= ~FDI_LINK_TRAIN_NONE;
2471 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2472 I915_WRITE(reg, temp);
8db9d77b 2473
5eddb70b
CW
2474 reg = FDI_RX_CTL(pipe);
2475 temp = I915_READ(reg);
8db9d77b
ZW
2476 temp &= ~FDI_LINK_TRAIN_NONE;
2477 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2478 I915_WRITE(reg, temp);
8db9d77b 2479
5eddb70b
CW
2480 POSTING_READ(reg);
2481 udelay(150);
8db9d77b 2482
5eddb70b 2483 reg = FDI_RX_IIR(pipe);
e1a44743 2484 for (tries = 0; tries < 5; tries++) {
5eddb70b 2485 temp = I915_READ(reg);
8db9d77b
ZW
2486 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2487
2488 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 2489 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
2490 DRM_DEBUG_KMS("FDI train 2 done.\n");
2491 break;
2492 }
8db9d77b 2493 }
e1a44743 2494 if (tries == 5)
5eddb70b 2495 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
2496
2497 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 2498
8db9d77b
ZW
2499}
2500
0206e353 2501static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
2502 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2503 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2504 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2505 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2506};
2507
2508/* The FDI link training functions for SNB/Cougarpoint. */
2509static void gen6_fdi_link_train(struct drm_crtc *crtc)
2510{
2511 struct drm_device *dev = crtc->dev;
2512 struct drm_i915_private *dev_priv = dev->dev_private;
2513 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2514 int pipe = intel_crtc->pipe;
5eddb70b 2515 u32 reg, temp, i;
8db9d77b 2516
e1a44743
AJ
2517 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2518 for train result */
5eddb70b
CW
2519 reg = FDI_RX_IMR(pipe);
2520 temp = I915_READ(reg);
e1a44743
AJ
2521 temp &= ~FDI_RX_SYMBOL_LOCK;
2522 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2523 I915_WRITE(reg, temp);
2524
2525 POSTING_READ(reg);
e1a44743
AJ
2526 udelay(150);
2527
8db9d77b 2528 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2529 reg = FDI_TX_CTL(pipe);
2530 temp = I915_READ(reg);
77ffb597
AJ
2531 temp &= ~(7 << 19);
2532 temp |= (intel_crtc->fdi_lanes - 1) << 19;
8db9d77b
ZW
2533 temp &= ~FDI_LINK_TRAIN_NONE;
2534 temp |= FDI_LINK_TRAIN_PATTERN_1;
2535 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2536 /* SNB-B */
2537 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 2538 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2539
5eddb70b
CW
2540 reg = FDI_RX_CTL(pipe);
2541 temp = I915_READ(reg);
8db9d77b
ZW
2542 if (HAS_PCH_CPT(dev)) {
2543 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2544 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2545 } else {
2546 temp &= ~FDI_LINK_TRAIN_NONE;
2547 temp |= FDI_LINK_TRAIN_PATTERN_1;
2548 }
5eddb70b
CW
2549 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2550
2551 POSTING_READ(reg);
8db9d77b
ZW
2552 udelay(150);
2553
291427f5
JB
2554 if (HAS_PCH_CPT(dev))
2555 cpt_phase_pointer_enable(dev, pipe);
2556
0206e353 2557 for (i = 0; i < 4; i++) {
5eddb70b
CW
2558 reg = FDI_TX_CTL(pipe);
2559 temp = I915_READ(reg);
8db9d77b
ZW
2560 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2561 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
2562 I915_WRITE(reg, temp);
2563
2564 POSTING_READ(reg);
8db9d77b
ZW
2565 udelay(500);
2566
5eddb70b
CW
2567 reg = FDI_RX_IIR(pipe);
2568 temp = I915_READ(reg);
8db9d77b
ZW
2569 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2570
2571 if (temp & FDI_RX_BIT_LOCK) {
5eddb70b 2572 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
2573 DRM_DEBUG_KMS("FDI train 1 done.\n");
2574 break;
2575 }
2576 }
2577 if (i == 4)
5eddb70b 2578 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2579
2580 /* Train 2 */
5eddb70b
CW
2581 reg = FDI_TX_CTL(pipe);
2582 temp = I915_READ(reg);
8db9d77b
ZW
2583 temp &= ~FDI_LINK_TRAIN_NONE;
2584 temp |= FDI_LINK_TRAIN_PATTERN_2;
2585 if (IS_GEN6(dev)) {
2586 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2587 /* SNB-B */
2588 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2589 }
5eddb70b 2590 I915_WRITE(reg, temp);
8db9d77b 2591
5eddb70b
CW
2592 reg = FDI_RX_CTL(pipe);
2593 temp = I915_READ(reg);
8db9d77b
ZW
2594 if (HAS_PCH_CPT(dev)) {
2595 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2596 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2597 } else {
2598 temp &= ~FDI_LINK_TRAIN_NONE;
2599 temp |= FDI_LINK_TRAIN_PATTERN_2;
2600 }
5eddb70b
CW
2601 I915_WRITE(reg, temp);
2602
2603 POSTING_READ(reg);
8db9d77b
ZW
2604 udelay(150);
2605
0206e353 2606 for (i = 0; i < 4; i++) {
5eddb70b
CW
2607 reg = FDI_TX_CTL(pipe);
2608 temp = I915_READ(reg);
8db9d77b
ZW
2609 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2610 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
2611 I915_WRITE(reg, temp);
2612
2613 POSTING_READ(reg);
8db9d77b
ZW
2614 udelay(500);
2615
5eddb70b
CW
2616 reg = FDI_RX_IIR(pipe);
2617 temp = I915_READ(reg);
8db9d77b
ZW
2618 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2619
2620 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 2621 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
2622 DRM_DEBUG_KMS("FDI train 2 done.\n");
2623 break;
2624 }
2625 }
2626 if (i == 4)
5eddb70b 2627 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
2628
2629 DRM_DEBUG_KMS("FDI train done.\n");
2630}
2631
357555c0
JB
2632/* Manual link training for Ivy Bridge A0 parts */
2633static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2634{
2635 struct drm_device *dev = crtc->dev;
2636 struct drm_i915_private *dev_priv = dev->dev_private;
2637 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2638 int pipe = intel_crtc->pipe;
2639 u32 reg, temp, i;
2640
2641 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2642 for train result */
2643 reg = FDI_RX_IMR(pipe);
2644 temp = I915_READ(reg);
2645 temp &= ~FDI_RX_SYMBOL_LOCK;
2646 temp &= ~FDI_RX_BIT_LOCK;
2647 I915_WRITE(reg, temp);
2648
2649 POSTING_READ(reg);
2650 udelay(150);
2651
2652 /* enable CPU FDI TX and PCH FDI RX */
2653 reg = FDI_TX_CTL(pipe);
2654 temp = I915_READ(reg);
2655 temp &= ~(7 << 19);
2656 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2657 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2658 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2659 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2660 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
c4f9c4c2 2661 temp |= FDI_COMPOSITE_SYNC;
357555c0
JB
2662 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2663
2664 reg = FDI_RX_CTL(pipe);
2665 temp = I915_READ(reg);
2666 temp &= ~FDI_LINK_TRAIN_AUTO;
2667 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2668 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
c4f9c4c2 2669 temp |= FDI_COMPOSITE_SYNC;
357555c0
JB
2670 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2671
2672 POSTING_READ(reg);
2673 udelay(150);
2674
291427f5
JB
2675 if (HAS_PCH_CPT(dev))
2676 cpt_phase_pointer_enable(dev, pipe);
2677
0206e353 2678 for (i = 0; i < 4; i++) {
357555c0
JB
2679 reg = FDI_TX_CTL(pipe);
2680 temp = I915_READ(reg);
2681 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2682 temp |= snb_b_fdi_train_param[i];
2683 I915_WRITE(reg, temp);
2684
2685 POSTING_READ(reg);
2686 udelay(500);
2687
2688 reg = FDI_RX_IIR(pipe);
2689 temp = I915_READ(reg);
2690 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2691
2692 if (temp & FDI_RX_BIT_LOCK ||
2693 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2694 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2695 DRM_DEBUG_KMS("FDI train 1 done.\n");
2696 break;
2697 }
2698 }
2699 if (i == 4)
2700 DRM_ERROR("FDI train 1 fail!\n");
2701
2702 /* Train 2 */
2703 reg = FDI_TX_CTL(pipe);
2704 temp = I915_READ(reg);
2705 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2706 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2707 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2708 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2709 I915_WRITE(reg, temp);
2710
2711 reg = FDI_RX_CTL(pipe);
2712 temp = I915_READ(reg);
2713 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2714 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2715 I915_WRITE(reg, temp);
2716
2717 POSTING_READ(reg);
2718 udelay(150);
2719
0206e353 2720 for (i = 0; i < 4; i++) {
357555c0
JB
2721 reg = FDI_TX_CTL(pipe);
2722 temp = I915_READ(reg);
2723 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2724 temp |= snb_b_fdi_train_param[i];
2725 I915_WRITE(reg, temp);
2726
2727 POSTING_READ(reg);
2728 udelay(500);
2729
2730 reg = FDI_RX_IIR(pipe);
2731 temp = I915_READ(reg);
2732 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2733
2734 if (temp & FDI_RX_SYMBOL_LOCK) {
2735 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2736 DRM_DEBUG_KMS("FDI train 2 done.\n");
2737 break;
2738 }
2739 }
2740 if (i == 4)
2741 DRM_ERROR("FDI train 2 fail!\n");
2742
2743 DRM_DEBUG_KMS("FDI train done.\n");
2744}
2745
2746static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
2c07245f
ZW
2747{
2748 struct drm_device *dev = crtc->dev;
2749 struct drm_i915_private *dev_priv = dev->dev_private;
2750 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2751 int pipe = intel_crtc->pipe;
5eddb70b 2752 u32 reg, temp;
79e53945 2753
c64e311e 2754 /* Write the TU size bits so error detection works */
5eddb70b
CW
2755 I915_WRITE(FDI_RX_TUSIZE1(pipe),
2756 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
c64e311e 2757
c98e9dcf 2758 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
2759 reg = FDI_RX_CTL(pipe);
2760 temp = I915_READ(reg);
2761 temp &= ~((0x7 << 19) | (0x7 << 16));
c98e9dcf 2762 temp |= (intel_crtc->fdi_lanes - 1) << 19;
5eddb70b
CW
2763 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2764 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2765
2766 POSTING_READ(reg);
c98e9dcf
JB
2767 udelay(200);
2768
2769 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
2770 temp = I915_READ(reg);
2771 I915_WRITE(reg, temp | FDI_PCDCLK);
2772
2773 POSTING_READ(reg);
c98e9dcf
JB
2774 udelay(200);
2775
2776 /* Enable CPU FDI TX PLL, always on for Ironlake */
5eddb70b
CW
2777 reg = FDI_TX_CTL(pipe);
2778 temp = I915_READ(reg);
c98e9dcf 2779 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
5eddb70b
CW
2780 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2781
2782 POSTING_READ(reg);
c98e9dcf 2783 udelay(100);
6be4a607 2784 }
0e23b99d
JB
2785}
2786
291427f5
JB
2787static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2788{
2789 struct drm_i915_private *dev_priv = dev->dev_private;
2790 u32 flags = I915_READ(SOUTH_CHICKEN1);
2791
2792 flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2793 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2794 flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2795 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2796 POSTING_READ(SOUTH_CHICKEN1);
2797}
0fc932b8
JB
2798static void ironlake_fdi_disable(struct drm_crtc *crtc)
2799{
2800 struct drm_device *dev = crtc->dev;
2801 struct drm_i915_private *dev_priv = dev->dev_private;
2802 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2803 int pipe = intel_crtc->pipe;
2804 u32 reg, temp;
2805
2806 /* disable CPU FDI tx and PCH FDI rx */
2807 reg = FDI_TX_CTL(pipe);
2808 temp = I915_READ(reg);
2809 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2810 POSTING_READ(reg);
2811
2812 reg = FDI_RX_CTL(pipe);
2813 temp = I915_READ(reg);
2814 temp &= ~(0x7 << 16);
2815 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2816 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2817
2818 POSTING_READ(reg);
2819 udelay(100);
2820
2821 /* Ironlake workaround, disable clock pointer after downing FDI */
6f06ce18
JB
2822 if (HAS_PCH_IBX(dev)) {
2823 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
2824 I915_WRITE(FDI_RX_CHICKEN(pipe),
2825 I915_READ(FDI_RX_CHICKEN(pipe) &
6f06ce18 2826 ~FDI_RX_PHASE_SYNC_POINTER_EN));
291427f5
JB
2827 } else if (HAS_PCH_CPT(dev)) {
2828 cpt_phase_pointer_disable(dev, pipe);
6f06ce18 2829 }
0fc932b8
JB
2830
2831 /* still set train pattern 1 */
2832 reg = FDI_TX_CTL(pipe);
2833 temp = I915_READ(reg);
2834 temp &= ~FDI_LINK_TRAIN_NONE;
2835 temp |= FDI_LINK_TRAIN_PATTERN_1;
2836 I915_WRITE(reg, temp);
2837
2838 reg = FDI_RX_CTL(pipe);
2839 temp = I915_READ(reg);
2840 if (HAS_PCH_CPT(dev)) {
2841 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2842 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2843 } else {
2844 temp &= ~FDI_LINK_TRAIN_NONE;
2845 temp |= FDI_LINK_TRAIN_PATTERN_1;
2846 }
2847 /* BPC in FDI rx is consistent with that in PIPECONF */
2848 temp &= ~(0x07 << 16);
2849 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2850 I915_WRITE(reg, temp);
2851
2852 POSTING_READ(reg);
2853 udelay(100);
2854}
2855
6b383a7f
CW
2856/*
2857 * When we disable a pipe, we need to clear any pending scanline wait events
2858 * to avoid hanging the ring, which we assume we are waiting on.
2859 */
2860static void intel_clear_scanline_wait(struct drm_device *dev)
2861{
2862 struct drm_i915_private *dev_priv = dev->dev_private;
8168bd48 2863 struct intel_ring_buffer *ring;
6b383a7f
CW
2864 u32 tmp;
2865
2866 if (IS_GEN2(dev))
2867 /* Can't break the hang on i8xx */
2868 return;
2869
1ec14ad3 2870 ring = LP_RING(dev_priv);
8168bd48
CW
2871 tmp = I915_READ_CTL(ring);
2872 if (tmp & RING_WAIT)
2873 I915_WRITE_CTL(ring, tmp);
6b383a7f
CW
2874}
2875
e6c3a2a6
CW
2876static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2877{
05394f39 2878 struct drm_i915_gem_object *obj;
e6c3a2a6
CW
2879 struct drm_i915_private *dev_priv;
2880
2881 if (crtc->fb == NULL)
2882 return;
2883
05394f39 2884 obj = to_intel_framebuffer(crtc->fb)->obj;
e6c3a2a6
CW
2885 dev_priv = crtc->dev->dev_private;
2886 wait_event(dev_priv->pending_flip_queue,
05394f39 2887 atomic_read(&obj->pending_flip) == 0);
e6c3a2a6
CW
2888}
2889
040484af
JB
2890static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2891{
2892 struct drm_device *dev = crtc->dev;
2893 struct drm_mode_config *mode_config = &dev->mode_config;
2894 struct intel_encoder *encoder;
2895
2896 /*
2897 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2898 * must be driven by its own crtc; no sharing is possible.
2899 */
2900 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
2901 if (encoder->base.crtc != crtc)
2902 continue;
2903
2904 switch (encoder->type) {
2905 case INTEL_OUTPUT_EDP:
2906 if (!intel_encoder_is_pch_edp(&encoder->base))
2907 return false;
2908 continue;
2909 }
2910 }
2911
2912 return true;
2913}
2914
f67a559d
JB
2915/*
2916 * Enable PCH resources required for PCH ports:
2917 * - PCH PLLs
2918 * - FDI training & RX/TX
2919 * - update transcoder timings
2920 * - DP transcoding bits
2921 * - transcoder
2922 */
2923static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
2924{
2925 struct drm_device *dev = crtc->dev;
2926 struct drm_i915_private *dev_priv = dev->dev_private;
2927 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2928 int pipe = intel_crtc->pipe;
4b645f14 2929 u32 reg, temp, transc_sel;
2c07245f 2930
c98e9dcf 2931 /* For PCH output, training FDI link */
674cf967 2932 dev_priv->display.fdi_link_train(crtc);
2c07245f 2933
92f2584a 2934 intel_enable_pch_pll(dev_priv, pipe);
8db9d77b 2935
c98e9dcf 2936 if (HAS_PCH_CPT(dev)) {
4b645f14
JB
2937 transc_sel = intel_crtc->use_pll_a ? TRANSC_DPLLA_SEL :
2938 TRANSC_DPLLB_SEL;
2939
c98e9dcf
JB
2940 /* Be sure PCH DPLL SEL is set */
2941 temp = I915_READ(PCH_DPLL_SEL);
d64311ab
JB
2942 if (pipe == 0) {
2943 temp &= ~(TRANSA_DPLLB_SEL);
c98e9dcf 2944 temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
d64311ab
JB
2945 } else if (pipe == 1) {
2946 temp &= ~(TRANSB_DPLLB_SEL);
c98e9dcf 2947 temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
d64311ab
JB
2948 } else if (pipe == 2) {
2949 temp &= ~(TRANSC_DPLLB_SEL);
4b645f14 2950 temp |= (TRANSC_DPLL_ENABLE | transc_sel);
d64311ab 2951 }
c98e9dcf 2952 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 2953 }
5eddb70b 2954
d9b6cb56
JB
2955 /* set transcoder timing, panel must allow it */
2956 assert_panel_unlocked(dev_priv, pipe);
5eddb70b
CW
2957 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2958 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2959 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
8db9d77b 2960
5eddb70b
CW
2961 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2962 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2963 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
8db9d77b 2964
5e84e1a4
ZW
2965 intel_fdi_normal_train(crtc);
2966
c98e9dcf
JB
2967 /* For PCH DP, enable TRANS_DP_CTL */
2968 if (HAS_PCH_CPT(dev) &&
417e822d
KP
2969 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
2970 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
9325c9f0 2971 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
5eddb70b
CW
2972 reg = TRANS_DP_CTL(pipe);
2973 temp = I915_READ(reg);
2974 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
2975 TRANS_DP_SYNC_MASK |
2976 TRANS_DP_BPC_MASK);
5eddb70b
CW
2977 temp |= (TRANS_DP_OUTPUT_ENABLE |
2978 TRANS_DP_ENH_FRAMING);
9325c9f0 2979 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
2980
2981 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 2982 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 2983 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 2984 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
2985
2986 switch (intel_trans_dp_port_sel(crtc)) {
2987 case PCH_DP_B:
5eddb70b 2988 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
2989 break;
2990 case PCH_DP_C:
5eddb70b 2991 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
2992 break;
2993 case PCH_DP_D:
5eddb70b 2994 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
2995 break;
2996 default:
2997 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
5eddb70b 2998 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf 2999 break;
32f9d658 3000 }
2c07245f 3001
5eddb70b 3002 I915_WRITE(reg, temp);
6be4a607 3003 }
b52eb4dc 3004
040484af 3005 intel_enable_transcoder(dev_priv, pipe);
f67a559d
JB
3006}
3007
d4270e57
JB
3008void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3009{
3010 struct drm_i915_private *dev_priv = dev->dev_private;
3011 int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
3012 u32 temp;
3013
3014 temp = I915_READ(dslreg);
3015 udelay(500);
3016 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3017 /* Without this, mode sets may fail silently on FDI */
3018 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
3019 udelay(250);
3020 I915_WRITE(tc2reg, 0);
3021 if (wait_for(I915_READ(dslreg) != temp, 5))
3022 DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3023 }
3024}
3025
f67a559d
JB
3026static void ironlake_crtc_enable(struct drm_crtc *crtc)
3027{
3028 struct drm_device *dev = crtc->dev;
3029 struct drm_i915_private *dev_priv = dev->dev_private;
3030 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3031 int pipe = intel_crtc->pipe;
3032 int plane = intel_crtc->plane;
3033 u32 temp;
3034 bool is_pch_port;
3035
3036 if (intel_crtc->active)
3037 return;
3038
3039 intel_crtc->active = true;
3040 intel_update_watermarks(dev);
3041
3042 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3043 temp = I915_READ(PCH_LVDS);
3044 if ((temp & LVDS_PORT_EN) == 0)
3045 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3046 }
3047
3048 is_pch_port = intel_crtc_driving_pch(crtc);
3049
3050 if (is_pch_port)
357555c0 3051 ironlake_fdi_pll_enable(crtc);
f67a559d
JB
3052 else
3053 ironlake_fdi_disable(crtc);
3054
3055 /* Enable panel fitting for LVDS */
3056 if (dev_priv->pch_pf_size &&
3057 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3058 /* Force use of hard-coded filter coefficients
3059 * as some pre-programmed values are broken,
3060 * e.g. x201.
3061 */
9db4a9c7
JB
3062 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3063 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3064 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
f67a559d
JB
3065 }
3066
9c54c0dd
JB
3067 /*
3068 * On ILK+ LUT must be loaded before the pipe is running but with
3069 * clocks enabled
3070 */
3071 intel_crtc_load_lut(crtc);
3072
f67a559d
JB
3073 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3074 intel_enable_plane(dev_priv, plane, pipe);
3075
3076 if (is_pch_port)
3077 ironlake_pch_enable(crtc);
c98e9dcf 3078
d1ebd816 3079 mutex_lock(&dev->struct_mutex);
bed4a673 3080 intel_update_fbc(dev);
d1ebd816
BW
3081 mutex_unlock(&dev->struct_mutex);
3082
6b383a7f 3083 intel_crtc_update_cursor(crtc, true);
6be4a607
JB
3084}
3085
3086static void ironlake_crtc_disable(struct drm_crtc *crtc)
3087{
3088 struct drm_device *dev = crtc->dev;
3089 struct drm_i915_private *dev_priv = dev->dev_private;
3090 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3091 int pipe = intel_crtc->pipe;
3092 int plane = intel_crtc->plane;
5eddb70b 3093 u32 reg, temp;
b52eb4dc 3094
f7abfe8b
CW
3095 if (!intel_crtc->active)
3096 return;
3097
e6c3a2a6 3098 intel_crtc_wait_for_pending_flips(crtc);
6be4a607 3099 drm_vblank_off(dev, pipe);
6b383a7f 3100 intel_crtc_update_cursor(crtc, false);
5eddb70b 3101
b24e7179 3102 intel_disable_plane(dev_priv, plane, pipe);
913d8d11 3103
973d04f9
CW
3104 if (dev_priv->cfb_plane == plane)
3105 intel_disable_fbc(dev);
2c07245f 3106
b24e7179 3107 intel_disable_pipe(dev_priv, pipe);
32f9d658 3108
6be4a607 3109 /* Disable PF */
9db4a9c7
JB
3110 I915_WRITE(PF_CTL(pipe), 0);
3111 I915_WRITE(PF_WIN_SZ(pipe), 0);
2c07245f 3112
0fc932b8 3113 ironlake_fdi_disable(crtc);
2c07245f 3114
47a05eca
JB
3115 /* This is a horrible layering violation; we should be doing this in
3116 * the connector/encoder ->prepare instead, but we don't always have
3117 * enough information there about the config to know whether it will
3118 * actually be necessary or just cause undesired flicker.
3119 */
3120 intel_disable_pch_ports(dev_priv, pipe);
249c0e64 3121
040484af 3122 intel_disable_transcoder(dev_priv, pipe);
913d8d11 3123
6be4a607
JB
3124 if (HAS_PCH_CPT(dev)) {
3125 /* disable TRANS_DP_CTL */
5eddb70b
CW
3126 reg = TRANS_DP_CTL(pipe);
3127 temp = I915_READ(reg);
3128 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
cb3543c6 3129 temp |= TRANS_DP_PORT_SEL_NONE;
5eddb70b 3130 I915_WRITE(reg, temp);
6be4a607
JB
3131
3132 /* disable DPLL_SEL */
3133 temp = I915_READ(PCH_DPLL_SEL);
9db4a9c7
JB
3134 switch (pipe) {
3135 case 0:
d64311ab 3136 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
9db4a9c7
JB
3137 break;
3138 case 1:
6be4a607 3139 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
9db4a9c7
JB
3140 break;
3141 case 2:
4b645f14 3142 /* C shares PLL A or B */
d64311ab 3143 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
9db4a9c7
JB
3144 break;
3145 default:
3146 BUG(); /* wtf */
3147 }
6be4a607 3148 I915_WRITE(PCH_DPLL_SEL, temp);
6be4a607 3149 }
e3421a18 3150
6be4a607 3151 /* disable PCH DPLL */
4b645f14
JB
3152 if (!intel_crtc->no_pll)
3153 intel_disable_pch_pll(dev_priv, pipe);
8db9d77b 3154
6be4a607 3155 /* Switch from PCDclk to Rawclk */
5eddb70b
CW
3156 reg = FDI_RX_CTL(pipe);
3157 temp = I915_READ(reg);
3158 I915_WRITE(reg, temp & ~FDI_PCDCLK);
8db9d77b 3159
6be4a607 3160 /* Disable CPU FDI TX PLL */
5eddb70b
CW
3161 reg = FDI_TX_CTL(pipe);
3162 temp = I915_READ(reg);
3163 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3164
3165 POSTING_READ(reg);
6be4a607 3166 udelay(100);
8db9d77b 3167
5eddb70b
CW
3168 reg = FDI_RX_CTL(pipe);
3169 temp = I915_READ(reg);
3170 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2c07245f 3171
6be4a607 3172 /* Wait for the clocks to turn off. */
5eddb70b 3173 POSTING_READ(reg);
6be4a607 3174 udelay(100);
6b383a7f 3175
f7abfe8b 3176 intel_crtc->active = false;
6b383a7f 3177 intel_update_watermarks(dev);
d1ebd816
BW
3178
3179 mutex_lock(&dev->struct_mutex);
6b383a7f
CW
3180 intel_update_fbc(dev);
3181 intel_clear_scanline_wait(dev);
d1ebd816 3182 mutex_unlock(&dev->struct_mutex);
6be4a607 3183}
1b3c7a47 3184
6be4a607
JB
3185static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
3186{
3187 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3188 int pipe = intel_crtc->pipe;
3189 int plane = intel_crtc->plane;
8db9d77b 3190
6be4a607
JB
3191 /* XXX: When our outputs are all unaware of DPMS modes other than off
3192 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3193 */
3194 switch (mode) {
3195 case DRM_MODE_DPMS_ON:
3196 case DRM_MODE_DPMS_STANDBY:
3197 case DRM_MODE_DPMS_SUSPEND:
3198 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
3199 ironlake_crtc_enable(crtc);
3200 break;
1b3c7a47 3201
6be4a607
JB
3202 case DRM_MODE_DPMS_OFF:
3203 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
3204 ironlake_crtc_disable(crtc);
2c07245f
ZW
3205 break;
3206 }
3207}
3208
02e792fb
DV
3209static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3210{
02e792fb 3211 if (!enable && intel_crtc->overlay) {
23f09ce3 3212 struct drm_device *dev = intel_crtc->base.dev;
ce453d81 3213 struct drm_i915_private *dev_priv = dev->dev_private;
03f77ea5 3214
23f09ce3 3215 mutex_lock(&dev->struct_mutex);
ce453d81
CW
3216 dev_priv->mm.interruptible = false;
3217 (void) intel_overlay_switch_off(intel_crtc->overlay);
3218 dev_priv->mm.interruptible = true;
23f09ce3 3219 mutex_unlock(&dev->struct_mutex);
02e792fb 3220 }
02e792fb 3221
5dcdbcb0
CW
3222 /* Let userspace switch the overlay on again. In most cases userspace
3223 * has to recompute where to put it anyway.
3224 */
02e792fb
DV
3225}
3226
0b8765c6 3227static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
3228{
3229 struct drm_device *dev = crtc->dev;
79e53945
JB
3230 struct drm_i915_private *dev_priv = dev->dev_private;
3231 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3232 int pipe = intel_crtc->pipe;
80824003 3233 int plane = intel_crtc->plane;
79e53945 3234
f7abfe8b
CW
3235 if (intel_crtc->active)
3236 return;
3237
3238 intel_crtc->active = true;
6b383a7f
CW
3239 intel_update_watermarks(dev);
3240
63d7bbe9 3241 intel_enable_pll(dev_priv, pipe);
040484af 3242 intel_enable_pipe(dev_priv, pipe, false);
b24e7179 3243 intel_enable_plane(dev_priv, plane, pipe);
79e53945 3244
0b8765c6 3245 intel_crtc_load_lut(crtc);
bed4a673 3246 intel_update_fbc(dev);
79e53945 3247
0b8765c6
JB
3248 /* Give the overlay scaler a chance to enable if it's on this pipe */
3249 intel_crtc_dpms_overlay(intel_crtc, true);
6b383a7f 3250 intel_crtc_update_cursor(crtc, true);
0b8765c6 3251}
79e53945 3252
0b8765c6
JB
3253static void i9xx_crtc_disable(struct drm_crtc *crtc)
3254{
3255 struct drm_device *dev = crtc->dev;
3256 struct drm_i915_private *dev_priv = dev->dev_private;
3257 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3258 int pipe = intel_crtc->pipe;
3259 int plane = intel_crtc->plane;
b690e96c 3260
f7abfe8b
CW
3261 if (!intel_crtc->active)
3262 return;
3263
0b8765c6 3264 /* Give the overlay scaler a chance to disable if it's on this pipe */
e6c3a2a6
CW
3265 intel_crtc_wait_for_pending_flips(crtc);
3266 drm_vblank_off(dev, pipe);
0b8765c6 3267 intel_crtc_dpms_overlay(intel_crtc, false);
6b383a7f 3268 intel_crtc_update_cursor(crtc, false);
0b8765c6 3269
973d04f9
CW
3270 if (dev_priv->cfb_plane == plane)
3271 intel_disable_fbc(dev);
79e53945 3272
b24e7179 3273 intel_disable_plane(dev_priv, plane, pipe);
b24e7179 3274 intel_disable_pipe(dev_priv, pipe);
63d7bbe9 3275 intel_disable_pll(dev_priv, pipe);
0b8765c6 3276
f7abfe8b 3277 intel_crtc->active = false;
6b383a7f
CW
3278 intel_update_fbc(dev);
3279 intel_update_watermarks(dev);
3280 intel_clear_scanline_wait(dev);
0b8765c6
JB
3281}
3282
3283static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
3284{
3285 /* XXX: When our outputs are all unaware of DPMS modes other than off
3286 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3287 */
3288 switch (mode) {
3289 case DRM_MODE_DPMS_ON:
3290 case DRM_MODE_DPMS_STANDBY:
3291 case DRM_MODE_DPMS_SUSPEND:
3292 i9xx_crtc_enable(crtc);
3293 break;
3294 case DRM_MODE_DPMS_OFF:
3295 i9xx_crtc_disable(crtc);
79e53945
JB
3296 break;
3297 }
2c07245f
ZW
3298}
3299
3300/**
3301 * Sets the power management mode of the pipe and plane.
2c07245f
ZW
3302 */
3303static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
3304{
3305 struct drm_device *dev = crtc->dev;
e70236a8 3306 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f
ZW
3307 struct drm_i915_master_private *master_priv;
3308 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3309 int pipe = intel_crtc->pipe;
3310 bool enabled;
3311
032d2a0d
CW
3312 if (intel_crtc->dpms_mode == mode)
3313 return;
3314
65655d4a 3315 intel_crtc->dpms_mode = mode;
debcaddc 3316
e70236a8 3317 dev_priv->display.dpms(crtc, mode);
79e53945
JB
3318
3319 if (!dev->primary->master)
3320 return;
3321
3322 master_priv = dev->primary->master->driver_priv;
3323 if (!master_priv->sarea_priv)
3324 return;
3325
3326 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
3327
3328 switch (pipe) {
3329 case 0:
3330 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3331 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3332 break;
3333 case 1:
3334 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3335 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3336 break;
3337 default:
9db4a9c7 3338 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
79e53945
JB
3339 break;
3340 }
79e53945
JB
3341}
3342
cdd59983
CW
3343static void intel_crtc_disable(struct drm_crtc *crtc)
3344{
3345 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3346 struct drm_device *dev = crtc->dev;
3347
3348 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
931872fc
CW
3349 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3350 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
cdd59983
CW
3351
3352 if (crtc->fb) {
3353 mutex_lock(&dev->struct_mutex);
3354 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
3355 mutex_unlock(&dev->struct_mutex);
3356 }
3357}
3358
7e7d76c3
JB
3359/* Prepare for a mode set.
3360 *
3361 * Note we could be a lot smarter here. We need to figure out which outputs
3362 * will be enabled, which disabled (in short, how the config will changes)
3363 * and perform the minimum necessary steps to accomplish that, e.g. updating
3364 * watermarks, FBC configuration, making sure PLLs are programmed correctly,
3365 * panel fitting is in the proper state, etc.
3366 */
3367static void i9xx_crtc_prepare(struct drm_crtc *crtc)
79e53945 3368{
7e7d76c3 3369 i9xx_crtc_disable(crtc);
79e53945
JB
3370}
3371
7e7d76c3 3372static void i9xx_crtc_commit(struct drm_crtc *crtc)
79e53945 3373{
7e7d76c3 3374 i9xx_crtc_enable(crtc);
7e7d76c3
JB
3375}
3376
3377static void ironlake_crtc_prepare(struct drm_crtc *crtc)
3378{
7e7d76c3 3379 ironlake_crtc_disable(crtc);
7e7d76c3
JB
3380}
3381
3382static void ironlake_crtc_commit(struct drm_crtc *crtc)
3383{
7e7d76c3 3384 ironlake_crtc_enable(crtc);
79e53945
JB
3385}
3386
0206e353 3387void intel_encoder_prepare(struct drm_encoder *encoder)
79e53945
JB
3388{
3389 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3390 /* lvds has its own version of prepare see intel_lvds_prepare */
3391 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
3392}
3393
0206e353 3394void intel_encoder_commit(struct drm_encoder *encoder)
79e53945
JB
3395{
3396 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
d4270e57
JB
3397 struct drm_device *dev = encoder->dev;
3398 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3399 struct intel_crtc *intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
3400
79e53945
JB
3401 /* lvds has its own version of commit see intel_lvds_commit */
3402 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
d4270e57
JB
3403
3404 if (HAS_PCH_CPT(dev))
3405 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
79e53945
JB
3406}
3407
ea5b213a
CW
3408void intel_encoder_destroy(struct drm_encoder *encoder)
3409{
4ef69c7a 3410 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 3411
ea5b213a
CW
3412 drm_encoder_cleanup(encoder);
3413 kfree(intel_encoder);
3414}
3415
79e53945
JB
3416static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3417 struct drm_display_mode *mode,
3418 struct drm_display_mode *adjusted_mode)
3419{
2c07245f 3420 struct drm_device *dev = crtc->dev;
89749350 3421
bad720ff 3422 if (HAS_PCH_SPLIT(dev)) {
2c07245f 3423 /* FDI link clock is fixed at 2.7G */
2377b741
JB
3424 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3425 return false;
2c07245f 3426 }
89749350
CW
3427
3428 /* XXX some encoders set the crtcinfo, others don't.
3429 * Obviously we need some form of conflict resolution here...
3430 */
3431 if (adjusted_mode->crtc_htotal == 0)
3432 drm_mode_set_crtcinfo(adjusted_mode, 0);
3433
79e53945
JB
3434 return true;
3435}
3436
e70236a8
JB
3437static int i945_get_display_clock_speed(struct drm_device *dev)
3438{
3439 return 400000;
3440}
79e53945 3441
e70236a8 3442static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 3443{
e70236a8
JB
3444 return 333000;
3445}
79e53945 3446
e70236a8
JB
3447static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3448{
3449 return 200000;
3450}
79e53945 3451
e70236a8
JB
3452static int i915gm_get_display_clock_speed(struct drm_device *dev)
3453{
3454 u16 gcfgc = 0;
79e53945 3455
e70236a8
JB
3456 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3457
3458 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3459 return 133000;
3460 else {
3461 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3462 case GC_DISPLAY_CLOCK_333_MHZ:
3463 return 333000;
3464 default:
3465 case GC_DISPLAY_CLOCK_190_200_MHZ:
3466 return 190000;
79e53945 3467 }
e70236a8
JB
3468 }
3469}
3470
3471static int i865_get_display_clock_speed(struct drm_device *dev)
3472{
3473 return 266000;
3474}
3475
3476static int i855_get_display_clock_speed(struct drm_device *dev)
3477{
3478 u16 hpllcc = 0;
3479 /* Assume that the hardware is in the high speed state. This
3480 * should be the default.
3481 */
3482 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3483 case GC_CLOCK_133_200:
3484 case GC_CLOCK_100_200:
3485 return 200000;
3486 case GC_CLOCK_166_250:
3487 return 250000;
3488 case GC_CLOCK_100_133:
79e53945 3489 return 133000;
e70236a8 3490 }
79e53945 3491
e70236a8
JB
3492 /* Shouldn't happen */
3493 return 0;
3494}
79e53945 3495
e70236a8
JB
3496static int i830_get_display_clock_speed(struct drm_device *dev)
3497{
3498 return 133000;
79e53945
JB
3499}
3500
2c07245f
ZW
3501struct fdi_m_n {
3502 u32 tu;
3503 u32 gmch_m;
3504 u32 gmch_n;
3505 u32 link_m;
3506 u32 link_n;
3507};
3508
3509static void
3510fdi_reduce_ratio(u32 *num, u32 *den)
3511{
3512 while (*num > 0xffffff || *den > 0xffffff) {
3513 *num >>= 1;
3514 *den >>= 1;
3515 }
3516}
3517
2c07245f 3518static void
f2b115e6
AJ
3519ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3520 int link_clock, struct fdi_m_n *m_n)
2c07245f 3521{
2c07245f
ZW
3522 m_n->tu = 64; /* default size */
3523
22ed1113
CW
3524 /* BUG_ON(pixel_clock > INT_MAX / 36); */
3525 m_n->gmch_m = bits_per_pixel * pixel_clock;
3526 m_n->gmch_n = link_clock * nlanes * 8;
2c07245f
ZW
3527 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3528
22ed1113
CW
3529 m_n->link_m = pixel_clock;
3530 m_n->link_n = link_clock;
2c07245f
ZW
3531 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3532}
3533
3534
7662c8bd
SL
3535struct intel_watermark_params {
3536 unsigned long fifo_size;
3537 unsigned long max_wm;
3538 unsigned long default_wm;
3539 unsigned long guard_size;
3540 unsigned long cacheline_size;
3541};
3542
f2b115e6 3543/* Pineview has different values for various configs */
d210246a 3544static const struct intel_watermark_params pineview_display_wm = {
f2b115e6
AJ
3545 PINEVIEW_DISPLAY_FIFO,
3546 PINEVIEW_MAX_WM,
3547 PINEVIEW_DFT_WM,
3548 PINEVIEW_GUARD_WM,
3549 PINEVIEW_FIFO_LINE_SIZE
7662c8bd 3550};
d210246a 3551static const struct intel_watermark_params pineview_display_hplloff_wm = {
f2b115e6
AJ
3552 PINEVIEW_DISPLAY_FIFO,
3553 PINEVIEW_MAX_WM,
3554 PINEVIEW_DFT_HPLLOFF_WM,
3555 PINEVIEW_GUARD_WM,
3556 PINEVIEW_FIFO_LINE_SIZE
7662c8bd 3557};
d210246a 3558static const struct intel_watermark_params pineview_cursor_wm = {
f2b115e6
AJ
3559 PINEVIEW_CURSOR_FIFO,
3560 PINEVIEW_CURSOR_MAX_WM,
3561 PINEVIEW_CURSOR_DFT_WM,
3562 PINEVIEW_CURSOR_GUARD_WM,
3563 PINEVIEW_FIFO_LINE_SIZE,
7662c8bd 3564};
d210246a 3565static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
f2b115e6
AJ
3566 PINEVIEW_CURSOR_FIFO,
3567 PINEVIEW_CURSOR_MAX_WM,
3568 PINEVIEW_CURSOR_DFT_WM,
3569 PINEVIEW_CURSOR_GUARD_WM,
3570 PINEVIEW_FIFO_LINE_SIZE
7662c8bd 3571};
d210246a 3572static const struct intel_watermark_params g4x_wm_info = {
0e442c60
JB
3573 G4X_FIFO_SIZE,
3574 G4X_MAX_WM,
3575 G4X_MAX_WM,
3576 2,
3577 G4X_FIFO_LINE_SIZE,
3578};
d210246a 3579static const struct intel_watermark_params g4x_cursor_wm_info = {
4fe5e611
ZY
3580 I965_CURSOR_FIFO,
3581 I965_CURSOR_MAX_WM,
3582 I965_CURSOR_DFT_WM,
3583 2,
3584 G4X_FIFO_LINE_SIZE,
3585};
d210246a 3586static const struct intel_watermark_params i965_cursor_wm_info = {
4fe5e611
ZY
3587 I965_CURSOR_FIFO,
3588 I965_CURSOR_MAX_WM,
3589 I965_CURSOR_DFT_WM,
3590 2,
3591 I915_FIFO_LINE_SIZE,
3592};
d210246a 3593static const struct intel_watermark_params i945_wm_info = {
dff33cfc 3594 I945_FIFO_SIZE,
7662c8bd
SL
3595 I915_MAX_WM,
3596 1,
dff33cfc
JB
3597 2,
3598 I915_FIFO_LINE_SIZE
7662c8bd 3599};
d210246a 3600static const struct intel_watermark_params i915_wm_info = {
dff33cfc 3601 I915_FIFO_SIZE,
7662c8bd
SL
3602 I915_MAX_WM,
3603 1,
dff33cfc 3604 2,
7662c8bd
SL
3605 I915_FIFO_LINE_SIZE
3606};
d210246a 3607static const struct intel_watermark_params i855_wm_info = {
7662c8bd
SL
3608 I855GM_FIFO_SIZE,
3609 I915_MAX_WM,
3610 1,
dff33cfc 3611 2,
7662c8bd
SL
3612 I830_FIFO_LINE_SIZE
3613};
d210246a 3614static const struct intel_watermark_params i830_wm_info = {
7662c8bd
SL
3615 I830_FIFO_SIZE,
3616 I915_MAX_WM,
3617 1,
dff33cfc 3618 2,
7662c8bd
SL
3619 I830_FIFO_LINE_SIZE
3620};
3621
d210246a 3622static const struct intel_watermark_params ironlake_display_wm_info = {
7f8a8569
ZW
3623 ILK_DISPLAY_FIFO,
3624 ILK_DISPLAY_MAXWM,
3625 ILK_DISPLAY_DFTWM,
3626 2,
3627 ILK_FIFO_LINE_SIZE
3628};
d210246a 3629static const struct intel_watermark_params ironlake_cursor_wm_info = {
c936f44d
ZY
3630 ILK_CURSOR_FIFO,
3631 ILK_CURSOR_MAXWM,
3632 ILK_CURSOR_DFTWM,
3633 2,
3634 ILK_FIFO_LINE_SIZE
3635};
d210246a 3636static const struct intel_watermark_params ironlake_display_srwm_info = {
7f8a8569
ZW
3637 ILK_DISPLAY_SR_FIFO,
3638 ILK_DISPLAY_MAX_SRWM,
3639 ILK_DISPLAY_DFT_SRWM,
3640 2,
3641 ILK_FIFO_LINE_SIZE
3642};
d210246a 3643static const struct intel_watermark_params ironlake_cursor_srwm_info = {
7f8a8569
ZW
3644 ILK_CURSOR_SR_FIFO,
3645 ILK_CURSOR_MAX_SRWM,
3646 ILK_CURSOR_DFT_SRWM,
3647 2,
3648 ILK_FIFO_LINE_SIZE
3649};
3650
d210246a 3651static const struct intel_watermark_params sandybridge_display_wm_info = {
1398261a
YL
3652 SNB_DISPLAY_FIFO,
3653 SNB_DISPLAY_MAXWM,
3654 SNB_DISPLAY_DFTWM,
3655 2,
3656 SNB_FIFO_LINE_SIZE
3657};
d210246a 3658static const struct intel_watermark_params sandybridge_cursor_wm_info = {
1398261a
YL
3659 SNB_CURSOR_FIFO,
3660 SNB_CURSOR_MAXWM,
3661 SNB_CURSOR_DFTWM,
3662 2,
3663 SNB_FIFO_LINE_SIZE
3664};
d210246a 3665static const struct intel_watermark_params sandybridge_display_srwm_info = {
1398261a
YL
3666 SNB_DISPLAY_SR_FIFO,
3667 SNB_DISPLAY_MAX_SRWM,
3668 SNB_DISPLAY_DFT_SRWM,
3669 2,
3670 SNB_FIFO_LINE_SIZE
3671};
d210246a 3672static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
1398261a
YL
3673 SNB_CURSOR_SR_FIFO,
3674 SNB_CURSOR_MAX_SRWM,
3675 SNB_CURSOR_DFT_SRWM,
3676 2,
3677 SNB_FIFO_LINE_SIZE
3678};
3679
3680
dff33cfc
JB
3681/**
3682 * intel_calculate_wm - calculate watermark level
3683 * @clock_in_khz: pixel clock
3684 * @wm: chip FIFO params
3685 * @pixel_size: display pixel size
3686 * @latency_ns: memory latency for the platform
3687 *
3688 * Calculate the watermark level (the level at which the display plane will
3689 * start fetching from memory again). Each chip has a different display
3690 * FIFO size and allocation, so the caller needs to figure that out and pass
3691 * in the correct intel_watermark_params structure.
3692 *
3693 * As the pixel clock runs, the FIFO will be drained at a rate that depends
3694 * on the pixel size. When it reaches the watermark level, it'll start
3695 * fetching FIFO line sized based chunks from memory until the FIFO fills
3696 * past the watermark point. If the FIFO drains completely, a FIFO underrun
3697 * will occur, and a display engine hang could result.
3698 */
7662c8bd 3699static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
d210246a
CW
3700 const struct intel_watermark_params *wm,
3701 int fifo_size,
7662c8bd
SL
3702 int pixel_size,
3703 unsigned long latency_ns)
3704{
390c4dd4 3705 long entries_required, wm_size;
dff33cfc 3706
d660467c
JB
3707 /*
3708 * Note: we need to make sure we don't overflow for various clock &
3709 * latency values.
3710 * clocks go from a few thousand to several hundred thousand.
3711 * latency is usually a few thousand
3712 */
3713 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
3714 1000;
8de9b311 3715 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
7662c8bd 3716
bbb0aef5 3717 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
dff33cfc 3718
d210246a 3719 wm_size = fifo_size - (entries_required + wm->guard_size);
dff33cfc 3720
bbb0aef5 3721 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
7662c8bd 3722
390c4dd4
JB
3723 /* Don't promote wm_size to unsigned... */
3724 if (wm_size > (long)wm->max_wm)
7662c8bd 3725 wm_size = wm->max_wm;
c3add4b6 3726 if (wm_size <= 0)
7662c8bd
SL
3727 wm_size = wm->default_wm;
3728 return wm_size;
3729}
3730
3731struct cxsr_latency {
3732 int is_desktop;
95534263 3733 int is_ddr3;
7662c8bd
SL
3734 unsigned long fsb_freq;
3735 unsigned long mem_freq;
3736 unsigned long display_sr;
3737 unsigned long display_hpll_disable;
3738 unsigned long cursor_sr;
3739 unsigned long cursor_hpll_disable;
3740};
3741
403c89ff 3742static const struct cxsr_latency cxsr_latency_table[] = {
95534263
LP
3743 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
3744 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
3745 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
3746 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
3747 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
3748
3749 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
3750 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
3751 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
3752 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
3753 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
3754
3755 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
3756 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
3757 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
3758 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
3759 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
3760
3761 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
3762 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
3763 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
3764 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
3765 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
3766
3767 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
3768 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
3769 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
3770 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
3771 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
3772
3773 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
3774 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
3775 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
3776 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
3777 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
7662c8bd
SL
3778};
3779
403c89ff
CW
3780static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
3781 int is_ddr3,
3782 int fsb,
3783 int mem)
7662c8bd 3784{
403c89ff 3785 const struct cxsr_latency *latency;
7662c8bd 3786 int i;
7662c8bd
SL
3787
3788 if (fsb == 0 || mem == 0)
3789 return NULL;
3790
3791 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
3792 latency = &cxsr_latency_table[i];
3793 if (is_desktop == latency->is_desktop &&
95534263 3794 is_ddr3 == latency->is_ddr3 &&
decbbcda
JSR
3795 fsb == latency->fsb_freq && mem == latency->mem_freq)
3796 return latency;
7662c8bd 3797 }
decbbcda 3798
28c97730 3799 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
decbbcda
JSR
3800
3801 return NULL;
7662c8bd
SL
3802}
3803
f2b115e6 3804static void pineview_disable_cxsr(struct drm_device *dev)
7662c8bd
SL
3805{
3806 struct drm_i915_private *dev_priv = dev->dev_private;
7662c8bd
SL
3807
3808 /* deactivate cxsr */
3e33d94d 3809 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
7662c8bd
SL
3810}
3811
bcc24fb4
JB
3812/*
3813 * Latency for FIFO fetches is dependent on several factors:
3814 * - memory configuration (speed, channels)
3815 * - chipset
3816 * - current MCH state
3817 * It can be fairly high in some situations, so here we assume a fairly
3818 * pessimal value. It's a tradeoff between extra memory fetches (if we
3819 * set this value too high, the FIFO will fetch frequently to stay full)
3820 * and power consumption (set it too low to save power and we might see
3821 * FIFO underruns and display "flicker").
3822 *
3823 * A value of 5us seems to be a good balance; safe for very low end
3824 * platforms but not overly aggressive on lower latency configs.
3825 */
69e302a9 3826static const int latency_ns = 5000;
7662c8bd 3827
e70236a8 3828static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
dff33cfc
JB
3829{
3830 struct drm_i915_private *dev_priv = dev->dev_private;
3831 uint32_t dsparb = I915_READ(DSPARB);
3832 int size;
3833
8de9b311
CW
3834 size = dsparb & 0x7f;
3835 if (plane)
3836 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
dff33cfc 3837
28c97730 3838 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
5eddb70b 3839 plane ? "B" : "A", size);
dff33cfc
JB
3840
3841 return size;
3842}
7662c8bd 3843
e70236a8
JB
3844static int i85x_get_fifo_size(struct drm_device *dev, int plane)
3845{
3846 struct drm_i915_private *dev_priv = dev->dev_private;
3847 uint32_t dsparb = I915_READ(DSPARB);
3848 int size;
3849
8de9b311
CW
3850 size = dsparb & 0x1ff;
3851 if (plane)
3852 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
e70236a8 3853 size >>= 1; /* Convert to cachelines */
dff33cfc 3854
28c97730 3855 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
5eddb70b 3856 plane ? "B" : "A", size);
dff33cfc
JB
3857
3858 return size;
3859}
7662c8bd 3860
e70236a8
JB
3861static int i845_get_fifo_size(struct drm_device *dev, int plane)
3862{
3863 struct drm_i915_private *dev_priv = dev->dev_private;
3864 uint32_t dsparb = I915_READ(DSPARB);
3865 int size;
3866
3867 size = dsparb & 0x7f;
3868 size >>= 2; /* Convert to cachelines */
3869
28c97730 3870 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
5eddb70b
CW
3871 plane ? "B" : "A",
3872 size);
e70236a8
JB
3873
3874 return size;
3875}
3876
3877static int i830_get_fifo_size(struct drm_device *dev, int plane)
3878{
3879 struct drm_i915_private *dev_priv = dev->dev_private;
3880 uint32_t dsparb = I915_READ(DSPARB);
3881 int size;
3882
3883 size = dsparb & 0x7f;
3884 size >>= 1; /* Convert to cachelines */
3885
28c97730 3886 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
5eddb70b 3887 plane ? "B" : "A", size);
e70236a8
JB
3888
3889 return size;
3890}
3891
d210246a
CW
3892static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
3893{
3894 struct drm_crtc *crtc, *enabled = NULL;
3895
3896 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3897 if (crtc->enabled && crtc->fb) {
3898 if (enabled)
3899 return NULL;
3900 enabled = crtc;
3901 }
3902 }
3903
3904 return enabled;
3905}
3906
3907static void pineview_update_wm(struct drm_device *dev)
d4294342
ZY
3908{
3909 struct drm_i915_private *dev_priv = dev->dev_private;
d210246a 3910 struct drm_crtc *crtc;
403c89ff 3911 const struct cxsr_latency *latency;
d4294342
ZY
3912 u32 reg;
3913 unsigned long wm;
d4294342 3914
403c89ff 3915 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
95534263 3916 dev_priv->fsb_freq, dev_priv->mem_freq);
d4294342
ZY
3917 if (!latency) {
3918 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3919 pineview_disable_cxsr(dev);
3920 return;
3921 }
3922
d210246a
CW
3923 crtc = single_enabled_crtc(dev);
3924 if (crtc) {
3925 int clock = crtc->mode.clock;
3926 int pixel_size = crtc->fb->bits_per_pixel / 8;
d4294342
ZY
3927
3928 /* Display SR */
d210246a
CW
3929 wm = intel_calculate_wm(clock, &pineview_display_wm,
3930 pineview_display_wm.fifo_size,
d4294342
ZY
3931 pixel_size, latency->display_sr);
3932 reg = I915_READ(DSPFW1);
3933 reg &= ~DSPFW_SR_MASK;
3934 reg |= wm << DSPFW_SR_SHIFT;
3935 I915_WRITE(DSPFW1, reg);
3936 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3937
3938 /* cursor SR */
d210246a
CW
3939 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
3940 pineview_display_wm.fifo_size,
d4294342
ZY
3941 pixel_size, latency->cursor_sr);
3942 reg = I915_READ(DSPFW3);
3943 reg &= ~DSPFW_CURSOR_SR_MASK;
3944 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3945 I915_WRITE(DSPFW3, reg);
3946
3947 /* Display HPLL off SR */
d210246a
CW
3948 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
3949 pineview_display_hplloff_wm.fifo_size,
d4294342
ZY
3950 pixel_size, latency->display_hpll_disable);
3951 reg = I915_READ(DSPFW3);
3952 reg &= ~DSPFW_HPLL_SR_MASK;
3953 reg |= wm & DSPFW_HPLL_SR_MASK;
3954 I915_WRITE(DSPFW3, reg);
3955
3956 /* cursor HPLL off SR */
d210246a
CW
3957 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
3958 pineview_display_hplloff_wm.fifo_size,
d4294342
ZY
3959 pixel_size, latency->cursor_hpll_disable);
3960 reg = I915_READ(DSPFW3);
3961 reg &= ~DSPFW_HPLL_CURSOR_MASK;
3962 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3963 I915_WRITE(DSPFW3, reg);
3964 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3965
3966 /* activate cxsr */
3e33d94d
CW
3967 I915_WRITE(DSPFW3,
3968 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
d4294342
ZY
3969 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3970 } else {
3971 pineview_disable_cxsr(dev);
3972 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3973 }
3974}
3975
417ae147
CW
3976static bool g4x_compute_wm0(struct drm_device *dev,
3977 int plane,
3978 const struct intel_watermark_params *display,
3979 int display_latency_ns,
3980 const struct intel_watermark_params *cursor,
3981 int cursor_latency_ns,
3982 int *plane_wm,
3983 int *cursor_wm)
3984{
3985 struct drm_crtc *crtc;
3986 int htotal, hdisplay, clock, pixel_size;
3987 int line_time_us, line_count;
3988 int entries, tlb_miss;
3989
3990 crtc = intel_get_crtc_for_plane(dev, plane);
5c72d064
CW
3991 if (crtc->fb == NULL || !crtc->enabled) {
3992 *cursor_wm = cursor->guard_size;
3993 *plane_wm = display->guard_size;
417ae147 3994 return false;
5c72d064 3995 }
417ae147
CW
3996
3997 htotal = crtc->mode.htotal;
3998 hdisplay = crtc->mode.hdisplay;
3999 clock = crtc->mode.clock;
4000 pixel_size = crtc->fb->bits_per_pixel / 8;
4001
4002 /* Use the small buffer method to calculate plane watermark */
4003 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
4004 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
4005 if (tlb_miss > 0)
4006 entries += tlb_miss;
4007 entries = DIV_ROUND_UP(entries, display->cacheline_size);
4008 *plane_wm = entries + display->guard_size;
4009 if (*plane_wm > (int)display->max_wm)
4010 *plane_wm = display->max_wm;
4011
4012 /* Use the large buffer method to calculate cursor watermark */
4013 line_time_us = ((htotal * 1000) / clock);
4014 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
4015 entries = line_count * 64 * pixel_size;
4016 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
4017 if (tlb_miss > 0)
4018 entries += tlb_miss;
4019 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4020 *cursor_wm = entries + cursor->guard_size;
4021 if (*cursor_wm > (int)cursor->max_wm)
4022 *cursor_wm = (int)cursor->max_wm;
4023
4024 return true;
4025}
4026
4027/*
4028 * Check the wm result.
4029 *
4030 * If any calculated watermark values is larger than the maximum value that
4031 * can be programmed into the associated watermark register, that watermark
4032 * must be disabled.
4033 */
4034static bool g4x_check_srwm(struct drm_device *dev,
4035 int display_wm, int cursor_wm,
4036 const struct intel_watermark_params *display,
4037 const struct intel_watermark_params *cursor)
652c393a 4038{
417ae147
CW
4039 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
4040 display_wm, cursor_wm);
652c393a 4041
417ae147 4042 if (display_wm > display->max_wm) {
bbb0aef5 4043 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
417ae147
CW
4044 display_wm, display->max_wm);
4045 return false;
4046 }
0e442c60 4047
417ae147 4048 if (cursor_wm > cursor->max_wm) {
bbb0aef5 4049 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
417ae147
CW
4050 cursor_wm, cursor->max_wm);
4051 return false;
4052 }
0e442c60 4053
417ae147
CW
4054 if (!(display_wm || cursor_wm)) {
4055 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
4056 return false;
4057 }
0e442c60 4058
417ae147
CW
4059 return true;
4060}
0e442c60 4061
417ae147 4062static bool g4x_compute_srwm(struct drm_device *dev,
d210246a
CW
4063 int plane,
4064 int latency_ns,
417ae147
CW
4065 const struct intel_watermark_params *display,
4066 const struct intel_watermark_params *cursor,
4067 int *display_wm, int *cursor_wm)
4068{
d210246a
CW
4069 struct drm_crtc *crtc;
4070 int hdisplay, htotal, pixel_size, clock;
417ae147
CW
4071 unsigned long line_time_us;
4072 int line_count, line_size;
4073 int small, large;
4074 int entries;
0e442c60 4075
417ae147
CW
4076 if (!latency_ns) {
4077 *display_wm = *cursor_wm = 0;
4078 return false;
4079 }
0e442c60 4080
d210246a
CW
4081 crtc = intel_get_crtc_for_plane(dev, plane);
4082 hdisplay = crtc->mode.hdisplay;
4083 htotal = crtc->mode.htotal;
4084 clock = crtc->mode.clock;
4085 pixel_size = crtc->fb->bits_per_pixel / 8;
4086
417ae147
CW
4087 line_time_us = (htotal * 1000) / clock;
4088 line_count = (latency_ns / line_time_us + 1000) / 1000;
4089 line_size = hdisplay * pixel_size;
0e442c60 4090
417ae147
CW
4091 /* Use the minimum of the small and large buffer method for primary */
4092 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4093 large = line_count * line_size;
0e442c60 4094
417ae147
CW
4095 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4096 *display_wm = entries + display->guard_size;
4fe5e611 4097
417ae147
CW
4098 /* calculate the self-refresh watermark for display cursor */
4099 entries = line_count * pixel_size * 64;
4100 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4101 *cursor_wm = entries + cursor->guard_size;
4fe5e611 4102
417ae147
CW
4103 return g4x_check_srwm(dev,
4104 *display_wm, *cursor_wm,
4105 display, cursor);
4106}
4fe5e611 4107
7ccb4a53 4108#define single_plane_enabled(mask) is_power_of_2(mask)
d210246a
CW
4109
4110static void g4x_update_wm(struct drm_device *dev)
417ae147
CW
4111{
4112 static const int sr_latency_ns = 12000;
4113 struct drm_i915_private *dev_priv = dev->dev_private;
4114 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
d210246a
CW
4115 int plane_sr, cursor_sr;
4116 unsigned int enabled = 0;
417ae147
CW
4117
4118 if (g4x_compute_wm0(dev, 0,
4119 &g4x_wm_info, latency_ns,
4120 &g4x_cursor_wm_info, latency_ns,
4121 &planea_wm, &cursora_wm))
d210246a 4122 enabled |= 1;
417ae147
CW
4123
4124 if (g4x_compute_wm0(dev, 1,
4125 &g4x_wm_info, latency_ns,
4126 &g4x_cursor_wm_info, latency_ns,
4127 &planeb_wm, &cursorb_wm))
d210246a 4128 enabled |= 2;
417ae147
CW
4129
4130 plane_sr = cursor_sr = 0;
d210246a
CW
4131 if (single_plane_enabled(enabled) &&
4132 g4x_compute_srwm(dev, ffs(enabled) - 1,
4133 sr_latency_ns,
417ae147
CW
4134 &g4x_wm_info,
4135 &g4x_cursor_wm_info,
4136 &plane_sr, &cursor_sr))
0e442c60 4137 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
417ae147
CW
4138 else
4139 I915_WRITE(FW_BLC_SELF,
4140 I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
0e442c60 4141
308977ac
CW
4142 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
4143 planea_wm, cursora_wm,
4144 planeb_wm, cursorb_wm,
4145 plane_sr, cursor_sr);
0e442c60 4146
417ae147
CW
4147 I915_WRITE(DSPFW1,
4148 (plane_sr << DSPFW_SR_SHIFT) |
0e442c60 4149 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
417ae147
CW
4150 (planeb_wm << DSPFW_PLANEB_SHIFT) |
4151 planea_wm);
4152 I915_WRITE(DSPFW2,
4153 (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
0e442c60
JB
4154 (cursora_wm << DSPFW_CURSORA_SHIFT));
4155 /* HPLL off in SR has some issues on G4x... disable it */
417ae147
CW
4156 I915_WRITE(DSPFW3,
4157 (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
0e442c60 4158 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
652c393a
JB
4159}
4160
d210246a 4161static void i965_update_wm(struct drm_device *dev)
7662c8bd
SL
4162{
4163 struct drm_i915_private *dev_priv = dev->dev_private;
d210246a
CW
4164 struct drm_crtc *crtc;
4165 int srwm = 1;
4fe5e611 4166 int cursor_sr = 16;
1dc7546d
JB
4167
4168 /* Calc sr entries for one plane configs */
d210246a
CW
4169 crtc = single_enabled_crtc(dev);
4170 if (crtc) {
1dc7546d 4171 /* self-refresh has much higher latency */
69e302a9 4172 static const int sr_latency_ns = 12000;
d210246a
CW
4173 int clock = crtc->mode.clock;
4174 int htotal = crtc->mode.htotal;
4175 int hdisplay = crtc->mode.hdisplay;
4176 int pixel_size = crtc->fb->bits_per_pixel / 8;
4177 unsigned long line_time_us;
4178 int entries;
1dc7546d 4179
d210246a 4180 line_time_us = ((htotal * 1000) / clock);
1dc7546d
JB
4181
4182 /* Use ns/us then divide to preserve precision */
d210246a
CW
4183 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4184 pixel_size * hdisplay;
4185 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
d210246a 4186 srwm = I965_FIFO_SIZE - entries;
1dc7546d
JB
4187 if (srwm < 0)
4188 srwm = 1;
1b07e04e 4189 srwm &= 0x1ff;
308977ac
CW
4190 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
4191 entries, srwm);
4fe5e611 4192
d210246a 4193 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
5eddb70b 4194 pixel_size * 64;
d210246a 4195 entries = DIV_ROUND_UP(entries,
8de9b311 4196 i965_cursor_wm_info.cacheline_size);
4fe5e611 4197 cursor_sr = i965_cursor_wm_info.fifo_size -
d210246a 4198 (entries + i965_cursor_wm_info.guard_size);
4fe5e611
ZY
4199
4200 if (cursor_sr > i965_cursor_wm_info.max_wm)
4201 cursor_sr = i965_cursor_wm_info.max_wm;
4202
4203 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
4204 "cursor %d\n", srwm, cursor_sr);
4205
a6c45cf0 4206 if (IS_CRESTLINE(dev))
adcdbc66 4207 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
33c5fd12
DJ
4208 } else {
4209 /* Turn off self refresh if both pipes are enabled */
a6c45cf0 4210 if (IS_CRESTLINE(dev))
adcdbc66
JB
4211 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
4212 & ~FW_BLC_SELF_EN);
1dc7546d 4213 }
7662c8bd 4214
1dc7546d
JB
4215 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
4216 srwm);
7662c8bd
SL
4217
4218 /* 965 has limitations... */
417ae147
CW
4219 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
4220 (8 << 16) | (8 << 8) | (8 << 0));
7662c8bd 4221 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
4fe5e611
ZY
4222 /* update cursor SR watermark */
4223 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
7662c8bd
SL
4224}
4225
d210246a 4226static void i9xx_update_wm(struct drm_device *dev)
7662c8bd
SL
4227{
4228 struct drm_i915_private *dev_priv = dev->dev_private;
d210246a 4229 const struct intel_watermark_params *wm_info;
dff33cfc
JB
4230 uint32_t fwater_lo;
4231 uint32_t fwater_hi;
d210246a
CW
4232 int cwm, srwm = 1;
4233 int fifo_size;
dff33cfc 4234 int planea_wm, planeb_wm;
d210246a 4235 struct drm_crtc *crtc, *enabled = NULL;
7662c8bd 4236
72557b4f 4237 if (IS_I945GM(dev))
d210246a 4238 wm_info = &i945_wm_info;
a6c45cf0 4239 else if (!IS_GEN2(dev))
d210246a 4240 wm_info = &i915_wm_info;
7662c8bd 4241 else
d210246a
CW
4242 wm_info = &i855_wm_info;
4243
4244 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
4245 crtc = intel_get_crtc_for_plane(dev, 0);
4246 if (crtc->enabled && crtc->fb) {
4247 planea_wm = intel_calculate_wm(crtc->mode.clock,
4248 wm_info, fifo_size,
4249 crtc->fb->bits_per_pixel / 8,
4250 latency_ns);
4251 enabled = crtc;
4252 } else
4253 planea_wm = fifo_size - wm_info->guard_size;
4254
4255 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
4256 crtc = intel_get_crtc_for_plane(dev, 1);
4257 if (crtc->enabled && crtc->fb) {
4258 planeb_wm = intel_calculate_wm(crtc->mode.clock,
4259 wm_info, fifo_size,
4260 crtc->fb->bits_per_pixel / 8,
4261 latency_ns);
4262 if (enabled == NULL)
4263 enabled = crtc;
4264 else
4265 enabled = NULL;
4266 } else
4267 planeb_wm = fifo_size - wm_info->guard_size;
7662c8bd 4268
28c97730 4269 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
7662c8bd
SL
4270
4271 /*
4272 * Overlay gets an aggressive default since video jitter is bad.
4273 */
4274 cwm = 2;
4275
18b2190c
AL
4276 /* Play safe and disable self-refresh before adjusting watermarks. */
4277 if (IS_I945G(dev) || IS_I945GM(dev))
4278 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
4279 else if (IS_I915GM(dev))
4280 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
4281
dff33cfc 4282 /* Calc sr entries for one plane configs */
d210246a 4283 if (HAS_FW_BLC(dev) && enabled) {
dff33cfc 4284 /* self-refresh has much higher latency */
69e302a9 4285 static const int sr_latency_ns = 6000;
d210246a
CW
4286 int clock = enabled->mode.clock;
4287 int htotal = enabled->mode.htotal;
4288 int hdisplay = enabled->mode.hdisplay;
4289 int pixel_size = enabled->fb->bits_per_pixel / 8;
4290 unsigned long line_time_us;
4291 int entries;
dff33cfc 4292
d210246a 4293 line_time_us = (htotal * 1000) / clock;
dff33cfc
JB
4294
4295 /* Use ns/us then divide to preserve precision */
d210246a
CW
4296 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4297 pixel_size * hdisplay;
4298 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
4299 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
4300 srwm = wm_info->fifo_size - entries;
dff33cfc
JB
4301 if (srwm < 0)
4302 srwm = 1;
ee980b80
LP
4303
4304 if (IS_I945G(dev) || IS_I945GM(dev))
18b2190c
AL
4305 I915_WRITE(FW_BLC_SELF,
4306 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
4307 else if (IS_I915GM(dev))
ee980b80 4308 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
7662c8bd
SL
4309 }
4310
28c97730 4311 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
5eddb70b 4312 planea_wm, planeb_wm, cwm, srwm);
7662c8bd 4313
dff33cfc
JB
4314 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
4315 fwater_hi = (cwm & 0x1f);
4316
4317 /* Set request length to 8 cachelines per fetch */
4318 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
4319 fwater_hi = fwater_hi | (1 << 8);
7662c8bd
SL
4320
4321 I915_WRITE(FW_BLC, fwater_lo);
4322 I915_WRITE(FW_BLC2, fwater_hi);
18b2190c 4323
d210246a
CW
4324 if (HAS_FW_BLC(dev)) {
4325 if (enabled) {
4326 if (IS_I945G(dev) || IS_I945GM(dev))
4327 I915_WRITE(FW_BLC_SELF,
4328 FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4329 else if (IS_I915GM(dev))
4330 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
4331 DRM_DEBUG_KMS("memory self refresh enabled\n");
4332 } else
4333 DRM_DEBUG_KMS("memory self refresh disabled\n");
4334 }
7662c8bd
SL
4335}
4336
d210246a 4337static void i830_update_wm(struct drm_device *dev)
7662c8bd
SL
4338{
4339 struct drm_i915_private *dev_priv = dev->dev_private;
d210246a
CW
4340 struct drm_crtc *crtc;
4341 uint32_t fwater_lo;
dff33cfc 4342 int planea_wm;
7662c8bd 4343
d210246a
CW
4344 crtc = single_enabled_crtc(dev);
4345 if (crtc == NULL)
4346 return;
7662c8bd 4347
d210246a
CW
4348 planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
4349 dev_priv->display.get_fifo_size(dev, 0),
4350 crtc->fb->bits_per_pixel / 8,
4351 latency_ns);
4352 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
f3601326
JB
4353 fwater_lo |= (3<<8) | planea_wm;
4354
28c97730 4355 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
7662c8bd
SL
4356
4357 I915_WRITE(FW_BLC, fwater_lo);
4358}
4359
7f8a8569 4360#define ILK_LP0_PLANE_LATENCY 700
c936f44d 4361#define ILK_LP0_CURSOR_LATENCY 1300
7f8a8569 4362
1398261a
YL
4363/*
4364 * Check the wm result.
4365 *
4366 * If any calculated watermark values is larger than the maximum value that
4367 * can be programmed into the associated watermark register, that watermark
4368 * must be disabled.
1398261a 4369 */
b79d4990
JB
4370static bool ironlake_check_srwm(struct drm_device *dev, int level,
4371 int fbc_wm, int display_wm, int cursor_wm,
4372 const struct intel_watermark_params *display,
4373 const struct intel_watermark_params *cursor)
1398261a
YL
4374{
4375 struct drm_i915_private *dev_priv = dev->dev_private;
4376
4377 DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
4378 " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
4379
4380 if (fbc_wm > SNB_FBC_MAX_SRWM) {
4381 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
b79d4990 4382 fbc_wm, SNB_FBC_MAX_SRWM, level);
1398261a
YL
4383
4384 /* fbc has it's own way to disable FBC WM */
4385 I915_WRITE(DISP_ARB_CTL,
4386 I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
4387 return false;
4388 }
4389
b79d4990 4390 if (display_wm > display->max_wm) {
1398261a 4391 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
b79d4990 4392 display_wm, SNB_DISPLAY_MAX_SRWM, level);
1398261a
YL
4393 return false;
4394 }
4395
b79d4990 4396 if (cursor_wm > cursor->max_wm) {
1398261a 4397 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
b79d4990 4398 cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1398261a
YL
4399 return false;
4400 }
4401
4402 if (!(fbc_wm || display_wm || cursor_wm)) {
4403 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
4404 return false;
4405 }
4406
4407 return true;
4408}
4409
4410/*
4411 * Compute watermark values of WM[1-3],
4412 */
d210246a
CW
4413static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
4414 int latency_ns,
b79d4990
JB
4415 const struct intel_watermark_params *display,
4416 const struct intel_watermark_params *cursor,
4417 int *fbc_wm, int *display_wm, int *cursor_wm)
1398261a 4418{
d210246a 4419 struct drm_crtc *crtc;
1398261a 4420 unsigned long line_time_us;
d210246a 4421 int hdisplay, htotal, pixel_size, clock;
b79d4990 4422 int line_count, line_size;
1398261a
YL
4423 int small, large;
4424 int entries;
1398261a
YL
4425
4426 if (!latency_ns) {
4427 *fbc_wm = *display_wm = *cursor_wm = 0;
4428 return false;
4429 }
4430
d210246a
CW
4431 crtc = intel_get_crtc_for_plane(dev, plane);
4432 hdisplay = crtc->mode.hdisplay;
4433 htotal = crtc->mode.htotal;
4434 clock = crtc->mode.clock;
4435 pixel_size = crtc->fb->bits_per_pixel / 8;
4436
1398261a
YL
4437 line_time_us = (htotal * 1000) / clock;
4438 line_count = (latency_ns / line_time_us + 1000) / 1000;
4439 line_size = hdisplay * pixel_size;
4440
4441 /* Use the minimum of the small and large buffer method for primary */
4442 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4443 large = line_count * line_size;
4444
b79d4990
JB
4445 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4446 *display_wm = entries + display->guard_size;
1398261a
YL
4447
4448 /*
b79d4990 4449 * Spec says:
1398261a
YL
4450 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
4451 */
4452 *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
4453
4454 /* calculate the self-refresh watermark for display cursor */
4455 entries = line_count * pixel_size * 64;
b79d4990
JB
4456 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4457 *cursor_wm = entries + cursor->guard_size;
1398261a 4458
b79d4990
JB
4459 return ironlake_check_srwm(dev, level,
4460 *fbc_wm, *display_wm, *cursor_wm,
4461 display, cursor);
4462}
4463
d210246a 4464static void ironlake_update_wm(struct drm_device *dev)
b79d4990
JB
4465{
4466 struct drm_i915_private *dev_priv = dev->dev_private;
d210246a
CW
4467 int fbc_wm, plane_wm, cursor_wm;
4468 unsigned int enabled;
b79d4990
JB
4469
4470 enabled = 0;
9f405100
CW
4471 if (g4x_compute_wm0(dev, 0,
4472 &ironlake_display_wm_info,
4473 ILK_LP0_PLANE_LATENCY,
4474 &ironlake_cursor_wm_info,
4475 ILK_LP0_CURSOR_LATENCY,
4476 &plane_wm, &cursor_wm)) {
b79d4990
JB
4477 I915_WRITE(WM0_PIPEA_ILK,
4478 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4479 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4480 " plane %d, " "cursor: %d\n",
4481 plane_wm, cursor_wm);
d210246a 4482 enabled |= 1;
b79d4990
JB
4483 }
4484
9f405100
CW
4485 if (g4x_compute_wm0(dev, 1,
4486 &ironlake_display_wm_info,
4487 ILK_LP0_PLANE_LATENCY,
4488 &ironlake_cursor_wm_info,
4489 ILK_LP0_CURSOR_LATENCY,
4490 &plane_wm, &cursor_wm)) {
b79d4990
JB
4491 I915_WRITE(WM0_PIPEB_ILK,
4492 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4493 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4494 " plane %d, cursor: %d\n",
4495 plane_wm, cursor_wm);
d210246a 4496 enabled |= 2;
b79d4990
JB
4497 }
4498
4499 /*
4500 * Calculate and update the self-refresh watermark only when one
4501 * display plane is used.
4502 */
4503 I915_WRITE(WM3_LP_ILK, 0);
4504 I915_WRITE(WM2_LP_ILK, 0);
4505 I915_WRITE(WM1_LP_ILK, 0);
4506
d210246a 4507 if (!single_plane_enabled(enabled))
b79d4990 4508 return;
d210246a 4509 enabled = ffs(enabled) - 1;
b79d4990
JB
4510
4511 /* WM1 */
d210246a
CW
4512 if (!ironlake_compute_srwm(dev, 1, enabled,
4513 ILK_READ_WM1_LATENCY() * 500,
b79d4990
JB
4514 &ironlake_display_srwm_info,
4515 &ironlake_cursor_srwm_info,
4516 &fbc_wm, &plane_wm, &cursor_wm))
4517 return;
4518
4519 I915_WRITE(WM1_LP_ILK,
4520 WM1_LP_SR_EN |
4521 (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4522 (fbc_wm << WM1_LP_FBC_SHIFT) |
4523 (plane_wm << WM1_LP_SR_SHIFT) |
4524 cursor_wm);
4525
4526 /* WM2 */
d210246a
CW
4527 if (!ironlake_compute_srwm(dev, 2, enabled,
4528 ILK_READ_WM2_LATENCY() * 500,
b79d4990
JB
4529 &ironlake_display_srwm_info,
4530 &ironlake_cursor_srwm_info,
4531 &fbc_wm, &plane_wm, &cursor_wm))
4532 return;
4533
4534 I915_WRITE(WM2_LP_ILK,
4535 WM2_LP_EN |
4536 (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4537 (fbc_wm << WM1_LP_FBC_SHIFT) |
4538 (plane_wm << WM1_LP_SR_SHIFT) |
4539 cursor_wm);
4540
4541 /*
4542 * WM3 is unsupported on ILK, probably because we don't have latency
4543 * data for that power state
4544 */
1398261a
YL
4545}
4546
b840d907 4547void sandybridge_update_wm(struct drm_device *dev)
1398261a
YL
4548{
4549 struct drm_i915_private *dev_priv = dev->dev_private;
a0fa62d3 4550 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
d210246a
CW
4551 int fbc_wm, plane_wm, cursor_wm;
4552 unsigned int enabled;
1398261a
YL
4553
4554 enabled = 0;
9f405100
CW
4555 if (g4x_compute_wm0(dev, 0,
4556 &sandybridge_display_wm_info, latency,
4557 &sandybridge_cursor_wm_info, latency,
4558 &plane_wm, &cursor_wm)) {
1398261a
YL
4559 I915_WRITE(WM0_PIPEA_ILK,
4560 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4561 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4562 " plane %d, " "cursor: %d\n",
4563 plane_wm, cursor_wm);
d210246a 4564 enabled |= 1;
1398261a
YL
4565 }
4566
9f405100
CW
4567 if (g4x_compute_wm0(dev, 1,
4568 &sandybridge_display_wm_info, latency,
4569 &sandybridge_cursor_wm_info, latency,
4570 &plane_wm, &cursor_wm)) {
1398261a
YL
4571 I915_WRITE(WM0_PIPEB_ILK,
4572 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4573 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4574 " plane %d, cursor: %d\n",
4575 plane_wm, cursor_wm);
d210246a 4576 enabled |= 2;
1398261a
YL
4577 }
4578
d6c892df
JB
4579 /* IVB has 3 pipes */
4580 if (IS_IVYBRIDGE(dev) &&
4581 g4x_compute_wm0(dev, 2,
4582 &sandybridge_display_wm_info, latency,
4583 &sandybridge_cursor_wm_info, latency,
4584 &plane_wm, &cursor_wm)) {
4585 I915_WRITE(WM0_PIPEC_IVB,
4586 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4587 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
4588 " plane %d, cursor: %d\n",
4589 plane_wm, cursor_wm);
4590 enabled |= 3;
4591 }
4592
1398261a
YL
4593 /*
4594 * Calculate and update the self-refresh watermark only when one
4595 * display plane is used.
4596 *
4597 * SNB support 3 levels of watermark.
4598 *
4599 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
4600 * and disabled in the descending order
4601 *
4602 */
4603 I915_WRITE(WM3_LP_ILK, 0);
4604 I915_WRITE(WM2_LP_ILK, 0);
4605 I915_WRITE(WM1_LP_ILK, 0);
4606
b840d907
JB
4607 if (!single_plane_enabled(enabled) ||
4608 dev_priv->sprite_scaling_enabled)
1398261a 4609 return;
d210246a 4610 enabled = ffs(enabled) - 1;
1398261a
YL
4611
4612 /* WM1 */
d210246a
CW
4613 if (!ironlake_compute_srwm(dev, 1, enabled,
4614 SNB_READ_WM1_LATENCY() * 500,
b79d4990
JB
4615 &sandybridge_display_srwm_info,
4616 &sandybridge_cursor_srwm_info,
4617 &fbc_wm, &plane_wm, &cursor_wm))
1398261a
YL
4618 return;
4619
4620 I915_WRITE(WM1_LP_ILK,
4621 WM1_LP_SR_EN |
4622 (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4623 (fbc_wm << WM1_LP_FBC_SHIFT) |
4624 (plane_wm << WM1_LP_SR_SHIFT) |
4625 cursor_wm);
4626
4627 /* WM2 */
d210246a
CW
4628 if (!ironlake_compute_srwm(dev, 2, enabled,
4629 SNB_READ_WM2_LATENCY() * 500,
b79d4990
JB
4630 &sandybridge_display_srwm_info,
4631 &sandybridge_cursor_srwm_info,
4632 &fbc_wm, &plane_wm, &cursor_wm))
1398261a
YL
4633 return;
4634
4635 I915_WRITE(WM2_LP_ILK,
4636 WM2_LP_EN |
4637 (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4638 (fbc_wm << WM1_LP_FBC_SHIFT) |
4639 (plane_wm << WM1_LP_SR_SHIFT) |
4640 cursor_wm);
4641
4642 /* WM3 */
d210246a
CW
4643 if (!ironlake_compute_srwm(dev, 3, enabled,
4644 SNB_READ_WM3_LATENCY() * 500,
b79d4990
JB
4645 &sandybridge_display_srwm_info,
4646 &sandybridge_cursor_srwm_info,
4647 &fbc_wm, &plane_wm, &cursor_wm))
1398261a
YL
4648 return;
4649
4650 I915_WRITE(WM3_LP_ILK,
4651 WM3_LP_EN |
4652 (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4653 (fbc_wm << WM1_LP_FBC_SHIFT) |
4654 (plane_wm << WM1_LP_SR_SHIFT) |
4655 cursor_wm);
4656}
4657
b840d907
JB
4658static bool
4659sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
4660 uint32_t sprite_width, int pixel_size,
4661 const struct intel_watermark_params *display,
4662 int display_latency_ns, int *sprite_wm)
4663{
4664 struct drm_crtc *crtc;
4665 int clock;
4666 int entries, tlb_miss;
4667
4668 crtc = intel_get_crtc_for_plane(dev, plane);
4669 if (crtc->fb == NULL || !crtc->enabled) {
4670 *sprite_wm = display->guard_size;
4671 return false;
4672 }
4673
4674 clock = crtc->mode.clock;
4675
4676 /* Use the small buffer method to calculate the sprite watermark */
4677 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
4678 tlb_miss = display->fifo_size*display->cacheline_size -
4679 sprite_width * 8;
4680 if (tlb_miss > 0)
4681 entries += tlb_miss;
4682 entries = DIV_ROUND_UP(entries, display->cacheline_size);
4683 *sprite_wm = entries + display->guard_size;
4684 if (*sprite_wm > (int)display->max_wm)
4685 *sprite_wm = display->max_wm;
4686
4687 return true;
4688}
4689
4690static bool
4691sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
4692 uint32_t sprite_width, int pixel_size,
4693 const struct intel_watermark_params *display,
4694 int latency_ns, int *sprite_wm)
4695{
4696 struct drm_crtc *crtc;
4697 unsigned long line_time_us;
4698 int clock;
4699 int line_count, line_size;
4700 int small, large;
4701 int entries;
4702
4703 if (!latency_ns) {
4704 *sprite_wm = 0;
4705 return false;
4706 }
4707
4708 crtc = intel_get_crtc_for_plane(dev, plane);
4709 clock = crtc->mode.clock;
4710
4711 line_time_us = (sprite_width * 1000) / clock;
4712 line_count = (latency_ns / line_time_us + 1000) / 1000;
4713 line_size = sprite_width * pixel_size;
4714
4715 /* Use the minimum of the small and large buffer method for primary */
4716 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4717 large = line_count * line_size;
4718
4719 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4720 *sprite_wm = entries + display->guard_size;
4721
4722 return *sprite_wm > 0x3ff ? false : true;
4723}
4724
4725static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
4726 uint32_t sprite_width, int pixel_size)
4727{
4728 struct drm_i915_private *dev_priv = dev->dev_private;
4729 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
4730 int sprite_wm, reg;
4731 int ret;
4732
4733 switch (pipe) {
4734 case 0:
4735 reg = WM0_PIPEA_ILK;
4736 break;
4737 case 1:
4738 reg = WM0_PIPEB_ILK;
4739 break;
4740 case 2:
4741 reg = WM0_PIPEC_IVB;
4742 break;
4743 default:
4744 return; /* bad pipe */
4745 }
4746
4747 ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
4748 &sandybridge_display_wm_info,
4749 latency, &sprite_wm);
4750 if (!ret) {
4751 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
4752 pipe);
4753 return;
4754 }
4755
4756 I915_WRITE(reg, I915_READ(reg) | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
4757 DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
4758
4759
4760 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
4761 pixel_size,
4762 &sandybridge_display_srwm_info,
4763 SNB_READ_WM1_LATENCY() * 500,
4764 &sprite_wm);
4765 if (!ret) {
4766 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
4767 pipe);
4768 return;
4769 }
4770 I915_WRITE(WM1S_LP_ILK, sprite_wm);
4771
4772 /* Only IVB has two more LP watermarks for sprite */
4773 if (!IS_IVYBRIDGE(dev))
4774 return;
4775
4776 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
4777 pixel_size,
4778 &sandybridge_display_srwm_info,
4779 SNB_READ_WM2_LATENCY() * 500,
4780 &sprite_wm);
4781 if (!ret) {
4782 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
4783 pipe);
4784 return;
4785 }
4786 I915_WRITE(WM2S_LP_IVB, sprite_wm);
4787
4788 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
4789 pixel_size,
4790 &sandybridge_display_srwm_info,
4791 SNB_READ_WM3_LATENCY() * 500,
4792 &sprite_wm);
4793 if (!ret) {
4794 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
4795 pipe);
4796 return;
4797 }
4798 I915_WRITE(WM3S_LP_IVB, sprite_wm);
4799}
4800
7662c8bd
SL
4801/**
4802 * intel_update_watermarks - update FIFO watermark values based on current modes
4803 *
4804 * Calculate watermark values for the various WM regs based on current mode
4805 * and plane configuration.
4806 *
4807 * There are several cases to deal with here:
4808 * - normal (i.e. non-self-refresh)
4809 * - self-refresh (SR) mode
4810 * - lines are large relative to FIFO size (buffer can hold up to 2)
4811 * - lines are small relative to FIFO size (buffer can hold more than 2
4812 * lines), so need to account for TLB latency
4813 *
4814 * The normal calculation is:
4815 * watermark = dotclock * bytes per pixel * latency
4816 * where latency is platform & configuration dependent (we assume pessimal
4817 * values here).
4818 *
4819 * The SR calculation is:
4820 * watermark = (trunc(latency/line time)+1) * surface width *
4821 * bytes per pixel
4822 * where
4823 * line time = htotal / dotclock
fa143215 4824 * surface width = hdisplay for normal plane and 64 for cursor
7662c8bd
SL
4825 * and latency is assumed to be high, as above.
4826 *
4827 * The final value programmed to the register should always be rounded up,
4828 * and include an extra 2 entries to account for clock crossings.
4829 *
4830 * We don't use the sprite, so we can ignore that. And on Crestline we have
4831 * to set the non-SR watermarks to 8.
5eddb70b 4832 */
7662c8bd
SL
4833static void intel_update_watermarks(struct drm_device *dev)
4834{
e70236a8 4835 struct drm_i915_private *dev_priv = dev->dev_private;
7662c8bd 4836
d210246a
CW
4837 if (dev_priv->display.update_wm)
4838 dev_priv->display.update_wm(dev);
7662c8bd
SL
4839}
4840
b840d907
JB
4841void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
4842 uint32_t sprite_width, int pixel_size)
4843{
4844 struct drm_i915_private *dev_priv = dev->dev_private;
4845
4846 if (dev_priv->display.update_sprite_wm)
4847 dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
4848 pixel_size);
4849}
4850
a7615030
CW
4851static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4852{
72bbe58c
KP
4853 if (i915_panel_use_ssc >= 0)
4854 return i915_panel_use_ssc != 0;
4855 return dev_priv->lvds_use_ssc
435793df 4856 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
4857}
4858
5a354204
JB
4859/**
4860 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4861 * @crtc: CRTC structure
3b5c78a3 4862 * @mode: requested mode
5a354204
JB
4863 *
4864 * A pipe may be connected to one or more outputs. Based on the depth of the
4865 * attached framebuffer, choose a good color depth to use on the pipe.
4866 *
4867 * If possible, match the pipe depth to the fb depth. In some cases, this
4868 * isn't ideal, because the connected output supports a lesser or restricted
4869 * set of depths. Resolve that here:
4870 * LVDS typically supports only 6bpc, so clamp down in that case
4871 * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4872 * Displays may support a restricted set as well, check EDID and clamp as
4873 * appropriate.
3b5c78a3 4874 * DP may want to dither down to 6bpc to fit larger modes
5a354204
JB
4875 *
4876 * RETURNS:
4877 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4878 * true if they don't match).
4879 */
4880static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
3b5c78a3
AJ
4881 unsigned int *pipe_bpp,
4882 struct drm_display_mode *mode)
5a354204
JB
4883{
4884 struct drm_device *dev = crtc->dev;
4885 struct drm_i915_private *dev_priv = dev->dev_private;
4886 struct drm_encoder *encoder;
4887 struct drm_connector *connector;
4888 unsigned int display_bpc = UINT_MAX, bpc;
4889
4890 /* Walk the encoders & connectors on this crtc, get min bpc */
4891 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
4892 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4893
4894 if (encoder->crtc != crtc)
4895 continue;
4896
4897 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4898 unsigned int lvds_bpc;
4899
4900 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4901 LVDS_A3_POWER_UP)
4902 lvds_bpc = 8;
4903 else
4904 lvds_bpc = 6;
4905
4906 if (lvds_bpc < display_bpc) {
82820490 4907 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
5a354204
JB
4908 display_bpc = lvds_bpc;
4909 }
4910 continue;
4911 }
4912
4913 if (intel_encoder->type == INTEL_OUTPUT_EDP) {
4914 /* Use VBT settings if we have an eDP panel */
4915 unsigned int edp_bpc = dev_priv->edp.bpp / 3;
4916
4917 if (edp_bpc < display_bpc) {
82820490 4918 DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
5a354204
JB
4919 display_bpc = edp_bpc;
4920 }
4921 continue;
4922 }
4923
4924 /* Not one of the known troublemakers, check the EDID */
4925 list_for_each_entry(connector, &dev->mode_config.connector_list,
4926 head) {
4927 if (connector->encoder != encoder)
4928 continue;
4929
62ac41a6
JB
4930 /* Don't use an invalid EDID bpc value */
4931 if (connector->display_info.bpc &&
4932 connector->display_info.bpc < display_bpc) {
82820490 4933 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
5a354204
JB
4934 display_bpc = connector->display_info.bpc;
4935 }
4936 }
4937
4938 /*
4939 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4940 * through, clamp it down. (Note: >12bpc will be caught below.)
4941 */
4942 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4943 if (display_bpc > 8 && display_bpc < 12) {
82820490 4944 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
5a354204
JB
4945 display_bpc = 12;
4946 } else {
82820490 4947 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
5a354204
JB
4948 display_bpc = 8;
4949 }
4950 }
4951 }
4952
3b5c78a3
AJ
4953 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4954 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
4955 display_bpc = 6;
4956 }
4957
5a354204
JB
4958 /*
4959 * We could just drive the pipe at the highest bpc all the time and
4960 * enable dithering as needed, but that costs bandwidth. So choose
4961 * the minimum value that expresses the full color range of the fb but
4962 * also stays within the max display bpc discovered above.
4963 */
4964
4965 switch (crtc->fb->depth) {
4966 case 8:
4967 bpc = 8; /* since we go through a colormap */
4968 break;
4969 case 15:
4970 case 16:
4971 bpc = 6; /* min is 18bpp */
4972 break;
4973 case 24:
578393cd 4974 bpc = 8;
5a354204
JB
4975 break;
4976 case 30:
578393cd 4977 bpc = 10;
5a354204
JB
4978 break;
4979 case 48:
578393cd 4980 bpc = 12;
5a354204
JB
4981 break;
4982 default:
4983 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4984 bpc = min((unsigned int)8, display_bpc);
4985 break;
4986 }
4987
578393cd
KP
4988 display_bpc = min(display_bpc, bpc);
4989
82820490
AJ
4990 DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
4991 bpc, display_bpc);
5a354204 4992
578393cd 4993 *pipe_bpp = display_bpc * 3;
5a354204
JB
4994
4995 return display_bpc != bpc;
4996}
4997
c65d77d8
JB
4998static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4999{
5000 struct drm_device *dev = crtc->dev;
5001 struct drm_i915_private *dev_priv = dev->dev_private;
5002 int refclk;
5003
5004 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5005 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5006 refclk = dev_priv->lvds_ssc_freq * 1000;
5007 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5008 refclk / 1000);
5009 } else if (!IS_GEN2(dev)) {
5010 refclk = 96000;
5011 } else {
5012 refclk = 48000;
5013 }
5014
5015 return refclk;
5016}
5017
5018static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
5019 intel_clock_t *clock)
5020{
5021 /* SDVO TV has fixed PLL values depend on its clock range,
5022 this mirrors vbios setting. */
5023 if (adjusted_mode->clock >= 100000
5024 && adjusted_mode->clock < 140500) {
5025 clock->p1 = 2;
5026 clock->p2 = 10;
5027 clock->n = 3;
5028 clock->m1 = 16;
5029 clock->m2 = 8;
5030 } else if (adjusted_mode->clock >= 140500
5031 && adjusted_mode->clock <= 200000) {
5032 clock->p1 = 1;
5033 clock->p2 = 10;
5034 clock->n = 6;
5035 clock->m1 = 12;
5036 clock->m2 = 8;
5037 }
5038}
5039
a7516a05
JB
5040static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
5041 intel_clock_t *clock,
5042 intel_clock_t *reduced_clock)
5043{
5044 struct drm_device *dev = crtc->dev;
5045 struct drm_i915_private *dev_priv = dev->dev_private;
5046 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5047 int pipe = intel_crtc->pipe;
5048 u32 fp, fp2 = 0;
5049
5050 if (IS_PINEVIEW(dev)) {
5051 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
5052 if (reduced_clock)
5053 fp2 = (1 << reduced_clock->n) << 16 |
5054 reduced_clock->m1 << 8 | reduced_clock->m2;
5055 } else {
5056 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
5057 if (reduced_clock)
5058 fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
5059 reduced_clock->m2;
5060 }
5061
5062 I915_WRITE(FP0(pipe), fp);
5063
5064 intel_crtc->lowfreq_avail = false;
5065 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5066 reduced_clock && i915_powersave) {
5067 I915_WRITE(FP1(pipe), fp2);
5068 intel_crtc->lowfreq_avail = true;
5069 } else {
5070 I915_WRITE(FP1(pipe), fp);
5071 }
5072}
5073
f564048e
EA
5074static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
5075 struct drm_display_mode *mode,
5076 struct drm_display_mode *adjusted_mode,
5077 int x, int y,
5078 struct drm_framebuffer *old_fb)
79e53945
JB
5079{
5080 struct drm_device *dev = crtc->dev;
5081 struct drm_i915_private *dev_priv = dev->dev_private;
5082 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5083 int pipe = intel_crtc->pipe;
80824003 5084 int plane = intel_crtc->plane;
c751ce4f 5085 int refclk, num_connectors = 0;
652c393a 5086 intel_clock_t clock, reduced_clock;
a7516a05 5087 u32 dpll, dspcntr, pipeconf;
652c393a 5088 bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
a4fc5ed6 5089 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
79e53945 5090 struct drm_mode_config *mode_config = &dev->mode_config;
5eddb70b 5091 struct intel_encoder *encoder;
d4906093 5092 const intel_limit_t *limit;
5c3b82e2 5093 int ret;
fae14981 5094 u32 temp;
aa9b500d 5095 u32 lvds_sync = 0;
79e53945 5096
5eddb70b
CW
5097 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5098 if (encoder->base.crtc != crtc)
79e53945
JB
5099 continue;
5100
5eddb70b 5101 switch (encoder->type) {
79e53945
JB
5102 case INTEL_OUTPUT_LVDS:
5103 is_lvds = true;
5104 break;
5105 case INTEL_OUTPUT_SDVO:
7d57382e 5106 case INTEL_OUTPUT_HDMI:
79e53945 5107 is_sdvo = true;
5eddb70b 5108 if (encoder->needs_tv_clock)
e2f0ba97 5109 is_tv = true;
79e53945
JB
5110 break;
5111 case INTEL_OUTPUT_DVO:
5112 is_dvo = true;
5113 break;
5114 case INTEL_OUTPUT_TVOUT:
5115 is_tv = true;
5116 break;
5117 case INTEL_OUTPUT_ANALOG:
5118 is_crt = true;
5119 break;
a4fc5ed6
KP
5120 case INTEL_OUTPUT_DISPLAYPORT:
5121 is_dp = true;
5122 break;
79e53945 5123 }
43565a06 5124
c751ce4f 5125 num_connectors++;
79e53945
JB
5126 }
5127
c65d77d8 5128 refclk = i9xx_get_refclk(crtc, num_connectors);
79e53945 5129
d4906093
ML
5130 /*
5131 * Returns a set of divisors for the desired target clock with the given
5132 * refclk, or FALSE. The returned values represent the clock equation:
5133 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5134 */
1b894b59 5135 limit = intel_limit(crtc, refclk);
cec2f356
SP
5136 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5137 &clock);
79e53945
JB
5138 if (!ok) {
5139 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5c3b82e2 5140 return -EINVAL;
79e53945
JB
5141 }
5142
cda4b7d3 5143 /* Ensure that the cursor is valid for the new mode before changing... */
6b383a7f 5144 intel_crtc_update_cursor(crtc, true);
cda4b7d3 5145
ddc9003c 5146 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
5147 /*
5148 * Ensure we match the reduced clock's P to the target clock.
5149 * If the clocks don't match, we can't switch the display clock
5150 * by using the FP0/FP1. In such case we will disable the LVDS
5151 * downclock feature.
5152 */
ddc9003c 5153 has_reduced_clock = limit->find_pll(limit, crtc,
5eddb70b
CW
5154 dev_priv->lvds_downclock,
5155 refclk,
cec2f356 5156 &clock,
5eddb70b 5157 &reduced_clock);
652c393a 5158 }
c65d77d8
JB
5159
5160 if (is_sdvo && is_tv)
5161 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
7026d4ac 5162
a7516a05
JB
5163 i9xx_update_pll_dividers(crtc, &clock, has_reduced_clock ?
5164 &reduced_clock : NULL);
79e53945 5165
929c77fb 5166 dpll = DPLL_VGA_MODE_DIS;
2c07245f 5167
a6c45cf0 5168 if (!IS_GEN2(dev)) {
79e53945
JB
5169 if (is_lvds)
5170 dpll |= DPLLB_MODE_LVDS;
5171 else
5172 dpll |= DPLLB_MODE_DAC_SERIAL;
5173 if (is_sdvo) {
6c9547ff
CW
5174 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5175 if (pixel_multiplier > 1) {
5176 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5177 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
6c9547ff 5178 }
79e53945 5179 dpll |= DPLL_DVO_HIGH_SPEED;
79e53945 5180 }
929c77fb 5181 if (is_dp)
a4fc5ed6 5182 dpll |= DPLL_DVO_HIGH_SPEED;
79e53945
JB
5183
5184 /* compute bitmask from p1 value */
f2b115e6
AJ
5185 if (IS_PINEVIEW(dev))
5186 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
2c07245f 5187 else {
2177832f 5188 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
652c393a
JB
5189 if (IS_G4X(dev) && has_reduced_clock)
5190 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
2c07245f 5191 }
79e53945
JB
5192 switch (clock.p2) {
5193 case 5:
5194 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5195 break;
5196 case 7:
5197 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5198 break;
5199 case 10:
5200 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5201 break;
5202 case 14:
5203 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5204 break;
5205 }
929c77fb 5206 if (INTEL_INFO(dev)->gen >= 4)
79e53945
JB
5207 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5208 } else {
5209 if (is_lvds) {
5210 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5211 } else {
5212 if (clock.p1 == 2)
5213 dpll |= PLL_P1_DIVIDE_BY_TWO;
5214 else
5215 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5216 if (clock.p2 == 4)
5217 dpll |= PLL_P2_DIVIDE_BY_4;
5218 }
5219 }
5220
43565a06
KH
5221 if (is_sdvo && is_tv)
5222 dpll |= PLL_REF_INPUT_TVCLKINBC;
5223 else if (is_tv)
79e53945 5224 /* XXX: just matching BIOS for now */
43565a06 5225 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
79e53945 5226 dpll |= 3;
a7615030 5227 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 5228 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
5229 else
5230 dpll |= PLL_REF_INPUT_DREFCLK;
5231
5232 /* setup pipeconf */
5eddb70b 5233 pipeconf = I915_READ(PIPECONF(pipe));
79e53945
JB
5234
5235 /* Set up the display plane register */
5236 dspcntr = DISPPLANE_GAMMA_ENABLE;
5237
f2b115e6 5238 /* Ironlake's plane is forced to pipe, bit 24 is to
2c07245f 5239 enable color space conversion */
929c77fb
EA
5240 if (pipe == 0)
5241 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
5242 else
5243 dspcntr |= DISPPLANE_SEL_PIPE_B;
79e53945 5244
a6c45cf0 5245 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
79e53945
JB
5246 /* Enable pixel doubling when the dot clock is > 90% of the (display)
5247 * core speed.
5248 *
5249 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
5250 * pipe == 0 check?
5251 */
e70236a8
JB
5252 if (mode->clock >
5253 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
5eddb70b 5254 pipeconf |= PIPECONF_DOUBLE_WIDE;
79e53945 5255 else
5eddb70b 5256 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
79e53945
JB
5257 }
5258
3b5c78a3
AJ
5259 /* default to 8bpc */
5260 pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
5261 if (is_dp) {
5262 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
5263 pipeconf |= PIPECONF_BPP_6 |
5264 PIPECONF_DITHER_EN |
5265 PIPECONF_DITHER_TYPE_SP;
5266 }
5267 }
5268
929c77fb 5269 dpll |= DPLL_VCO_ENABLE;
8d86dc6a 5270
28c97730 5271 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
79e53945
JB
5272 drm_mode_debug_printmodeline(mode);
5273
fae14981 5274 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5eddb70b 5275
fae14981 5276 POSTING_READ(DPLL(pipe));
c713bb08 5277 udelay(150);
8db9d77b 5278
79e53945
JB
5279 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5280 * This is an exception to the general rule that mode_set doesn't turn
5281 * things on.
5282 */
5283 if (is_lvds) {
fae14981 5284 temp = I915_READ(LVDS);
5eddb70b 5285 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
b3b095b3 5286 if (pipe == 1) {
929c77fb 5287 temp |= LVDS_PIPEB_SELECT;
b3b095b3 5288 } else {
929c77fb 5289 temp &= ~LVDS_PIPEB_SELECT;
b3b095b3 5290 }
a3e17eb8 5291 /* set the corresponsding LVDS_BORDER bit */
5eddb70b 5292 temp |= dev_priv->lvds_border_bits;
79e53945
JB
5293 /* Set the B0-B3 data pairs corresponding to whether we're going to
5294 * set the DPLLs for dual-channel mode or not.
5295 */
5296 if (clock.p2 == 7)
5eddb70b 5297 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
79e53945 5298 else
5eddb70b 5299 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
79e53945
JB
5300
5301 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5302 * appropriately here, but we need to look more thoroughly into how
5303 * panels behave in the two modes.
5304 */
929c77fb
EA
5305 /* set the dithering flag on LVDS as needed */
5306 if (INTEL_INFO(dev)->gen >= 4) {
434ed097 5307 if (dev_priv->lvds_dither)
5eddb70b 5308 temp |= LVDS_ENABLE_DITHER;
434ed097 5309 else
5eddb70b 5310 temp &= ~LVDS_ENABLE_DITHER;
898822ce 5311 }
aa9b500d
BF
5312 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5313 lvds_sync |= LVDS_HSYNC_POLARITY;
5314 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5315 lvds_sync |= LVDS_VSYNC_POLARITY;
5316 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5317 != lvds_sync) {
5318 char flags[2] = "-+";
5319 DRM_INFO("Changing LVDS panel from "
5320 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5321 flags[!(temp & LVDS_HSYNC_POLARITY)],
5322 flags[!(temp & LVDS_VSYNC_POLARITY)],
5323 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5324 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5325 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5326 temp |= lvds_sync;
5327 }
fae14981 5328 I915_WRITE(LVDS, temp);
79e53945 5329 }
434ed097 5330
929c77fb 5331 if (is_dp) {
a4fc5ed6 5332 intel_dp_set_m_n(crtc, mode, adjusted_mode);
434ed097
JB
5333 }
5334
fae14981 5335 I915_WRITE(DPLL(pipe), dpll);
5eddb70b 5336
c713bb08 5337 /* Wait for the clocks to stabilize. */
fae14981 5338 POSTING_READ(DPLL(pipe));
c713bb08 5339 udelay(150);
32f9d658 5340
c713bb08
EA
5341 if (INTEL_INFO(dev)->gen >= 4) {
5342 temp = 0;
5343 if (is_sdvo) {
5344 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
5345 if (temp > 1)
5346 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5347 else
5348 temp = 0;
32f9d658 5349 }
c713bb08
EA
5350 I915_WRITE(DPLL_MD(pipe), temp);
5351 } else {
5352 /* The pixel multiplier can only be updated once the
5353 * DPLL is enabled and the clocks are stable.
5354 *
5355 * So write it again.
5356 */
fae14981 5357 I915_WRITE(DPLL(pipe), dpll);
79e53945 5358 }
79e53945 5359
a7516a05
JB
5360 if (HAS_PIPE_CXSR(dev)) {
5361 if (intel_crtc->lowfreq_avail) {
28c97730 5362 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
652c393a 5363 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
a7516a05 5364 } else {
28c97730 5365 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
652c393a
JB
5366 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5367 }
5368 }
5369
734b4157
KH
5370 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5371 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5372 /* the chip adds 2 halflines automatically */
5373 adjusted_mode->crtc_vdisplay -= 1;
5374 adjusted_mode->crtc_vtotal -= 1;
5375 adjusted_mode->crtc_vblank_start -= 1;
5376 adjusted_mode->crtc_vblank_end -= 1;
5377 adjusted_mode->crtc_vsync_end -= 1;
5378 adjusted_mode->crtc_vsync_start -= 1;
5379 } else
59df7b17 5380 pipeconf &= ~PIPECONF_INTERLACE_MASK; /* progressive */
734b4157 5381
5eddb70b
CW
5382 I915_WRITE(HTOTAL(pipe),
5383 (adjusted_mode->crtc_hdisplay - 1) |
79e53945 5384 ((adjusted_mode->crtc_htotal - 1) << 16));
5eddb70b
CW
5385 I915_WRITE(HBLANK(pipe),
5386 (adjusted_mode->crtc_hblank_start - 1) |
79e53945 5387 ((adjusted_mode->crtc_hblank_end - 1) << 16));
5eddb70b
CW
5388 I915_WRITE(HSYNC(pipe),
5389 (adjusted_mode->crtc_hsync_start - 1) |
79e53945 5390 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5eddb70b
CW
5391
5392 I915_WRITE(VTOTAL(pipe),
5393 (adjusted_mode->crtc_vdisplay - 1) |
79e53945 5394 ((adjusted_mode->crtc_vtotal - 1) << 16));
5eddb70b
CW
5395 I915_WRITE(VBLANK(pipe),
5396 (adjusted_mode->crtc_vblank_start - 1) |
79e53945 5397 ((adjusted_mode->crtc_vblank_end - 1) << 16));
5eddb70b
CW
5398 I915_WRITE(VSYNC(pipe),
5399 (adjusted_mode->crtc_vsync_start - 1) |
79e53945 5400 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5eddb70b
CW
5401
5402 /* pipesrc and dspsize control the size that is scaled from,
5403 * which should always be the user's requested size.
79e53945 5404 */
929c77fb
EA
5405 I915_WRITE(DSPSIZE(plane),
5406 ((mode->vdisplay - 1) << 16) |
5407 (mode->hdisplay - 1));
5408 I915_WRITE(DSPPOS(plane), 0);
5eddb70b
CW
5409 I915_WRITE(PIPESRC(pipe),
5410 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
2c07245f 5411
f564048e
EA
5412 I915_WRITE(PIPECONF(pipe), pipeconf);
5413 POSTING_READ(PIPECONF(pipe));
929c77fb 5414 intel_enable_pipe(dev_priv, pipe, false);
f564048e
EA
5415
5416 intel_wait_for_vblank(dev, pipe);
5417
f564048e
EA
5418 I915_WRITE(DSPCNTR(plane), dspcntr);
5419 POSTING_READ(DSPCNTR(plane));
284d9529 5420 intel_enable_plane(dev_priv, plane, pipe);
f564048e
EA
5421
5422 ret = intel_pipe_set_base(crtc, x, y, old_fb);
5423
5424 intel_update_watermarks(dev);
5425
f564048e
EA
5426 return ret;
5427}
5428
9fb526db
KP
5429/*
5430 * Initialize reference clocks when the driver loads
5431 */
5432void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
5433{
5434 struct drm_i915_private *dev_priv = dev->dev_private;
5435 struct drm_mode_config *mode_config = &dev->mode_config;
13d83a67 5436 struct intel_encoder *encoder;
13d83a67
JB
5437 u32 temp;
5438 bool has_lvds = false;
199e5d79
KP
5439 bool has_cpu_edp = false;
5440 bool has_pch_edp = false;
5441 bool has_panel = false;
99eb6a01
KP
5442 bool has_ck505 = false;
5443 bool can_ssc = false;
13d83a67
JB
5444
5445 /* We need to take the global config into account */
199e5d79
KP
5446 list_for_each_entry(encoder, &mode_config->encoder_list,
5447 base.head) {
5448 switch (encoder->type) {
5449 case INTEL_OUTPUT_LVDS:
5450 has_panel = true;
5451 has_lvds = true;
5452 break;
5453 case INTEL_OUTPUT_EDP:
5454 has_panel = true;
5455 if (intel_encoder_is_pch_edp(&encoder->base))
5456 has_pch_edp = true;
5457 else
5458 has_cpu_edp = true;
5459 break;
13d83a67
JB
5460 }
5461 }
5462
99eb6a01
KP
5463 if (HAS_PCH_IBX(dev)) {
5464 has_ck505 = dev_priv->display_clock_mode;
5465 can_ssc = has_ck505;
5466 } else {
5467 has_ck505 = false;
5468 can_ssc = true;
5469 }
5470
5471 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
5472 has_panel, has_lvds, has_pch_edp, has_cpu_edp,
5473 has_ck505);
13d83a67
JB
5474
5475 /* Ironlake: try to setup display ref clock before DPLL
5476 * enabling. This is only under driver's control after
5477 * PCH B stepping, previous chipset stepping should be
5478 * ignoring this setting.
5479 */
5480 temp = I915_READ(PCH_DREF_CONTROL);
5481 /* Always enable nonspread source */
5482 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 5483
99eb6a01
KP
5484 if (has_ck505)
5485 temp |= DREF_NONSPREAD_CK505_ENABLE;
5486 else
5487 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 5488
199e5d79
KP
5489 if (has_panel) {
5490 temp &= ~DREF_SSC_SOURCE_MASK;
5491 temp |= DREF_SSC_SOURCE_ENABLE;
13d83a67 5492
199e5d79 5493 /* SSC must be turned on before enabling the CPU output */
99eb6a01 5494 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 5495 DRM_DEBUG_KMS("Using SSC on panel\n");
13d83a67 5496 temp |= DREF_SSC1_ENABLE;
13d83a67 5497 }
199e5d79
KP
5498
5499 /* Get SSC going before enabling the outputs */
5500 I915_WRITE(PCH_DREF_CONTROL, temp);
5501 POSTING_READ(PCH_DREF_CONTROL);
5502 udelay(200);
5503
13d83a67
JB
5504 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5505
5506 /* Enable CPU source on CPU attached eDP */
199e5d79 5507 if (has_cpu_edp) {
99eb6a01 5508 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 5509 DRM_DEBUG_KMS("Using SSC on eDP\n");
13d83a67 5510 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
199e5d79 5511 }
13d83a67
JB
5512 else
5513 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79
KP
5514 } else
5515 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5516
5517 I915_WRITE(PCH_DREF_CONTROL, temp);
5518 POSTING_READ(PCH_DREF_CONTROL);
5519 udelay(200);
5520 } else {
5521 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5522
5523 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5524
5525 /* Turn off CPU output */
5526 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5527
5528 I915_WRITE(PCH_DREF_CONTROL, temp);
5529 POSTING_READ(PCH_DREF_CONTROL);
5530 udelay(200);
5531
5532 /* Turn off the SSC source */
5533 temp &= ~DREF_SSC_SOURCE_MASK;
5534 temp |= DREF_SSC_SOURCE_DISABLE;
5535
5536 /* Turn off SSC1 */
5537 temp &= ~ DREF_SSC1_ENABLE;
5538
13d83a67
JB
5539 I915_WRITE(PCH_DREF_CONTROL, temp);
5540 POSTING_READ(PCH_DREF_CONTROL);
5541 udelay(200);
5542 }
5543}
5544
d9d444cb
JB
5545static int ironlake_get_refclk(struct drm_crtc *crtc)
5546{
5547 struct drm_device *dev = crtc->dev;
5548 struct drm_i915_private *dev_priv = dev->dev_private;
5549 struct intel_encoder *encoder;
5550 struct drm_mode_config *mode_config = &dev->mode_config;
5551 struct intel_encoder *edp_encoder = NULL;
5552 int num_connectors = 0;
5553 bool is_lvds = false;
5554
5555 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5556 if (encoder->base.crtc != crtc)
5557 continue;
5558
5559 switch (encoder->type) {
5560 case INTEL_OUTPUT_LVDS:
5561 is_lvds = true;
5562 break;
5563 case INTEL_OUTPUT_EDP:
5564 edp_encoder = encoder;
5565 break;
5566 }
5567 num_connectors++;
5568 }
5569
5570 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5571 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5572 dev_priv->lvds_ssc_freq);
5573 return dev_priv->lvds_ssc_freq * 1000;
5574 }
5575
5576 return 120000;
5577}
5578
f564048e
EA
5579static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5580 struct drm_display_mode *mode,
5581 struct drm_display_mode *adjusted_mode,
5582 int x, int y,
5583 struct drm_framebuffer *old_fb)
79e53945
JB
5584{
5585 struct drm_device *dev = crtc->dev;
5586 struct drm_i915_private *dev_priv = dev->dev_private;
5587 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5588 int pipe = intel_crtc->pipe;
80824003 5589 int plane = intel_crtc->plane;
c751ce4f 5590 int refclk, num_connectors = 0;
652c393a 5591 intel_clock_t clock, reduced_clock;
5eddb70b 5592 u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
a07d6787 5593 bool ok, has_reduced_clock = false, is_sdvo = false;
a4fc5ed6 5594 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
8e647a27 5595 struct intel_encoder *has_edp_encoder = NULL;
79e53945 5596 struct drm_mode_config *mode_config = &dev->mode_config;
5eddb70b 5597 struct intel_encoder *encoder;
d4906093 5598 const intel_limit_t *limit;
5c3b82e2 5599 int ret;
2c07245f 5600 struct fdi_m_n m_n = {0};
fae14981 5601 u32 temp;
aa9b500d 5602 u32 lvds_sync = 0;
5a354204
JB
5603 int target_clock, pixel_multiplier, lane, link_bw, factor;
5604 unsigned int pipe_bpp;
5605 bool dither;
79e53945 5606
5eddb70b
CW
5607 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5608 if (encoder->base.crtc != crtc)
79e53945
JB
5609 continue;
5610
5eddb70b 5611 switch (encoder->type) {
79e53945
JB
5612 case INTEL_OUTPUT_LVDS:
5613 is_lvds = true;
5614 break;
5615 case INTEL_OUTPUT_SDVO:
7d57382e 5616 case INTEL_OUTPUT_HDMI:
79e53945 5617 is_sdvo = true;
5eddb70b 5618 if (encoder->needs_tv_clock)
e2f0ba97 5619 is_tv = true;
79e53945 5620 break;
79e53945
JB
5621 case INTEL_OUTPUT_TVOUT:
5622 is_tv = true;
5623 break;
5624 case INTEL_OUTPUT_ANALOG:
5625 is_crt = true;
5626 break;
a4fc5ed6
KP
5627 case INTEL_OUTPUT_DISPLAYPORT:
5628 is_dp = true;
5629 break;
32f9d658 5630 case INTEL_OUTPUT_EDP:
5eddb70b 5631 has_edp_encoder = encoder;
32f9d658 5632 break;
79e53945 5633 }
43565a06 5634
c751ce4f 5635 num_connectors++;
79e53945
JB
5636 }
5637
d9d444cb 5638 refclk = ironlake_get_refclk(crtc);
79e53945 5639
d4906093
ML
5640 /*
5641 * Returns a set of divisors for the desired target clock with the given
5642 * refclk, or FALSE. The returned values represent the clock equation:
5643 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5644 */
1b894b59 5645 limit = intel_limit(crtc, refclk);
cec2f356
SP
5646 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5647 &clock);
79e53945
JB
5648 if (!ok) {
5649 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5c3b82e2 5650 return -EINVAL;
79e53945
JB
5651 }
5652
cda4b7d3 5653 /* Ensure that the cursor is valid for the new mode before changing... */
6b383a7f 5654 intel_crtc_update_cursor(crtc, true);
cda4b7d3 5655
ddc9003c 5656 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
5657 /*
5658 * Ensure we match the reduced clock's P to the target clock.
5659 * If the clocks don't match, we can't switch the display clock
5660 * by using the FP0/FP1. In such case we will disable the LVDS
5661 * downclock feature.
5662 */
ddc9003c 5663 has_reduced_clock = limit->find_pll(limit, crtc,
5eddb70b
CW
5664 dev_priv->lvds_downclock,
5665 refclk,
cec2f356 5666 &clock,
5eddb70b 5667 &reduced_clock);
652c393a 5668 }
7026d4ac
ZW
5669 /* SDVO TV has fixed PLL values depend on its clock range,
5670 this mirrors vbios setting. */
5671 if (is_sdvo && is_tv) {
5672 if (adjusted_mode->clock >= 100000
5eddb70b 5673 && adjusted_mode->clock < 140500) {
7026d4ac
ZW
5674 clock.p1 = 2;
5675 clock.p2 = 10;
5676 clock.n = 3;
5677 clock.m1 = 16;
5678 clock.m2 = 8;
5679 } else if (adjusted_mode->clock >= 140500
5eddb70b 5680 && adjusted_mode->clock <= 200000) {
7026d4ac
ZW
5681 clock.p1 = 1;
5682 clock.p2 = 10;
5683 clock.n = 6;
5684 clock.m1 = 12;
5685 clock.m2 = 8;
5686 }
5687 }
5688
2c07245f 5689 /* FDI link */
8febb297
EA
5690 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5691 lane = 0;
5692 /* CPU eDP doesn't require FDI link, so just set DP M/N
5693 according to current link config */
5694 if (has_edp_encoder &&
5695 !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5696 target_clock = mode->clock;
5697 intel_edp_link_config(has_edp_encoder,
5698 &lane, &link_bw);
5699 } else {
5700 /* [e]DP over FDI requires target mode clock
5701 instead of link clock */
5702 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5eb08b69 5703 target_clock = mode->clock;
8febb297
EA
5704 else
5705 target_clock = adjusted_mode->clock;
5706
5707 /* FDI is a binary signal running at ~2.7GHz, encoding
5708 * each output octet as 10 bits. The actual frequency
5709 * is stored as a divider into a 100MHz clock, and the
5710 * mode pixel clock is stored in units of 1KHz.
5711 * Hence the bw of each lane in terms of the mode signal
5712 * is:
5713 */
5714 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5715 }
58a27471 5716
8febb297
EA
5717 /* determine panel color depth */
5718 temp = I915_READ(PIPECONF(pipe));
5719 temp &= ~PIPE_BPC_MASK;
3b5c78a3 5720 dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp, mode);
5a354204
JB
5721 switch (pipe_bpp) {
5722 case 18:
5723 temp |= PIPE_6BPC;
8febb297 5724 break;
5a354204
JB
5725 case 24:
5726 temp |= PIPE_8BPC;
8febb297 5727 break;
5a354204
JB
5728 case 30:
5729 temp |= PIPE_10BPC;
8febb297 5730 break;
5a354204
JB
5731 case 36:
5732 temp |= PIPE_12BPC;
8febb297
EA
5733 break;
5734 default:
62ac41a6
JB
5735 WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
5736 pipe_bpp);
5a354204
JB
5737 temp |= PIPE_8BPC;
5738 pipe_bpp = 24;
5739 break;
8febb297 5740 }
77ffb597 5741
5a354204
JB
5742 intel_crtc->bpp = pipe_bpp;
5743 I915_WRITE(PIPECONF(pipe), temp);
5744
8febb297
EA
5745 if (!lane) {
5746 /*
5747 * Account for spread spectrum to avoid
5748 * oversubscribing the link. Max center spread
5749 * is 2.5%; use 5% for safety's sake.
5750 */
5a354204 5751 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
8febb297 5752 lane = bps / (link_bw * 8) + 1;
5eb08b69 5753 }
2c07245f 5754
8febb297
EA
5755 intel_crtc->fdi_lanes = lane;
5756
5757 if (pixel_multiplier > 1)
5758 link_bw *= pixel_multiplier;
5a354204
JB
5759 ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5760 &m_n);
8febb297 5761
a07d6787
EA
5762 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5763 if (has_reduced_clock)
5764 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5765 reduced_clock.m2;
79e53945 5766
c1858123 5767 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
5768 factor = 21;
5769 if (is_lvds) {
5770 if ((intel_panel_use_ssc(dev_priv) &&
5771 dev_priv->lvds_ssc_freq == 100) ||
5772 (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5773 factor = 25;
5774 } else if (is_sdvo && is_tv)
5775 factor = 20;
c1858123 5776
cb0e0931 5777 if (clock.m < factor * clock.n)
8febb297 5778 fp |= FP_CB_TUNE;
2c07245f 5779
5eddb70b 5780 dpll = 0;
2c07245f 5781
a07d6787
EA
5782 if (is_lvds)
5783 dpll |= DPLLB_MODE_LVDS;
5784 else
5785 dpll |= DPLLB_MODE_DAC_SERIAL;
5786 if (is_sdvo) {
5787 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5788 if (pixel_multiplier > 1) {
5789 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
79e53945 5790 }
a07d6787
EA
5791 dpll |= DPLL_DVO_HIGH_SPEED;
5792 }
5793 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5794 dpll |= DPLL_DVO_HIGH_SPEED;
79e53945 5795
a07d6787
EA
5796 /* compute bitmask from p1 value */
5797 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5798 /* also FPA1 */
5799 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5800
5801 switch (clock.p2) {
5802 case 5:
5803 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5804 break;
5805 case 7:
5806 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5807 break;
5808 case 10:
5809 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5810 break;
5811 case 14:
5812 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5813 break;
79e53945
JB
5814 }
5815
43565a06
KH
5816 if (is_sdvo && is_tv)
5817 dpll |= PLL_REF_INPUT_TVCLKINBC;
5818 else if (is_tv)
79e53945 5819 /* XXX: just matching BIOS for now */
43565a06 5820 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
79e53945 5821 dpll |= 3;
a7615030 5822 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 5823 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
5824 else
5825 dpll |= PLL_REF_INPUT_DREFCLK;
5826
5827 /* setup pipeconf */
5eddb70b 5828 pipeconf = I915_READ(PIPECONF(pipe));
79e53945
JB
5829
5830 /* Set up the display plane register */
5831 dspcntr = DISPPLANE_GAMMA_ENABLE;
5832
f7cb34d4 5833 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
79e53945
JB
5834 drm_mode_debug_printmodeline(mode);
5835
5c5313c8 5836 /* PCH eDP needs FDI, but CPU eDP does not */
4b645f14
JB
5837 if (!intel_crtc->no_pll) {
5838 if (!has_edp_encoder ||
5839 intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5840 I915_WRITE(PCH_FP0(pipe), fp);
5841 I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5842
5843 POSTING_READ(PCH_DPLL(pipe));
5844 udelay(150);
5845 }
5846 } else {
5847 if (dpll == (I915_READ(PCH_DPLL(0)) & 0x7fffffff) &&
5848 fp == I915_READ(PCH_FP0(0))) {
5849 intel_crtc->use_pll_a = true;
5850 DRM_DEBUG_KMS("using pipe a dpll\n");
5851 } else if (dpll == (I915_READ(PCH_DPLL(1)) & 0x7fffffff) &&
5852 fp == I915_READ(PCH_FP0(1))) {
5853 intel_crtc->use_pll_a = false;
5854 DRM_DEBUG_KMS("using pipe b dpll\n");
5855 } else {
5856 DRM_DEBUG_KMS("no matching PLL configuration for pipe 2\n");
5857 return -EINVAL;
5858 }
79e53945
JB
5859 }
5860
5861 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5862 * This is an exception to the general rule that mode_set doesn't turn
5863 * things on.
5864 */
5865 if (is_lvds) {
fae14981 5866 temp = I915_READ(PCH_LVDS);
5eddb70b 5867 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4b645f14
JB
5868 if (HAS_PCH_CPT(dev))
5869 temp |= PORT_TRANS_SEL_CPT(pipe);
5870 else if (pipe == 1)
5871 temp |= LVDS_PIPEB_SELECT;
5872 else
5873 temp &= ~LVDS_PIPEB_SELECT;
5874
a3e17eb8 5875 /* set the corresponsding LVDS_BORDER bit */
5eddb70b 5876 temp |= dev_priv->lvds_border_bits;
79e53945
JB
5877 /* Set the B0-B3 data pairs corresponding to whether we're going to
5878 * set the DPLLs for dual-channel mode or not.
5879 */
5880 if (clock.p2 == 7)
5eddb70b 5881 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
79e53945 5882 else
5eddb70b 5883 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
79e53945
JB
5884
5885 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5886 * appropriately here, but we need to look more thoroughly into how
5887 * panels behave in the two modes.
5888 */
aa9b500d
BF
5889 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5890 lvds_sync |= LVDS_HSYNC_POLARITY;
5891 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5892 lvds_sync |= LVDS_VSYNC_POLARITY;
5893 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5894 != lvds_sync) {
5895 char flags[2] = "-+";
5896 DRM_INFO("Changing LVDS panel from "
5897 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5898 flags[!(temp & LVDS_HSYNC_POLARITY)],
5899 flags[!(temp & LVDS_VSYNC_POLARITY)],
5900 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5901 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5902 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5903 temp |= lvds_sync;
5904 }
fae14981 5905 I915_WRITE(PCH_LVDS, temp);
79e53945 5906 }
434ed097 5907
8febb297
EA
5908 pipeconf &= ~PIPECONF_DITHER_EN;
5909 pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
5a354204 5910 if ((is_lvds && dev_priv->lvds_dither) || dither) {
8febb297 5911 pipeconf |= PIPECONF_DITHER_EN;
f74974c7 5912 pipeconf |= PIPECONF_DITHER_TYPE_SP;
434ed097 5913 }
5c5313c8 5914 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
a4fc5ed6 5915 intel_dp_set_m_n(crtc, mode, adjusted_mode);
8febb297 5916 } else {
8db9d77b 5917 /* For non-DP output, clear any trans DP clock recovery setting.*/
9db4a9c7
JB
5918 I915_WRITE(TRANSDATA_M1(pipe), 0);
5919 I915_WRITE(TRANSDATA_N1(pipe), 0);
5920 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5921 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
8db9d77b 5922 }
79e53945 5923
4b645f14
JB
5924 if (!intel_crtc->no_pll &&
5925 (!has_edp_encoder ||
5926 intel_encoder_is_pch_edp(&has_edp_encoder->base))) {
fae14981 5927 I915_WRITE(PCH_DPLL(pipe), dpll);
5eddb70b 5928
32f9d658 5929 /* Wait for the clocks to stabilize. */
fae14981 5930 POSTING_READ(PCH_DPLL(pipe));
32f9d658
ZW
5931 udelay(150);
5932
8febb297
EA
5933 /* The pixel multiplier can only be updated once the
5934 * DPLL is enabled and the clocks are stable.
5935 *
5936 * So write it again.
5937 */
fae14981 5938 I915_WRITE(PCH_DPLL(pipe), dpll);
79e53945 5939 }
79e53945 5940
5eddb70b 5941 intel_crtc->lowfreq_avail = false;
4b645f14
JB
5942 if (!intel_crtc->no_pll) {
5943 if (is_lvds && has_reduced_clock && i915_powersave) {
5944 I915_WRITE(PCH_FP1(pipe), fp2);
5945 intel_crtc->lowfreq_avail = true;
5946 if (HAS_PIPE_CXSR(dev)) {
5947 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5948 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5949 }
5950 } else {
5951 I915_WRITE(PCH_FP1(pipe), fp);
5952 if (HAS_PIPE_CXSR(dev)) {
5953 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5954 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5955 }
652c393a
JB
5956 }
5957 }
5958
734b4157
KH
5959 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5960 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5961 /* the chip adds 2 halflines automatically */
5962 adjusted_mode->crtc_vdisplay -= 1;
5963 adjusted_mode->crtc_vtotal -= 1;
5964 adjusted_mode->crtc_vblank_start -= 1;
5965 adjusted_mode->crtc_vblank_end -= 1;
5966 adjusted_mode->crtc_vsync_end -= 1;
5967 adjusted_mode->crtc_vsync_start -= 1;
5968 } else
5969 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
5970
5eddb70b
CW
5971 I915_WRITE(HTOTAL(pipe),
5972 (adjusted_mode->crtc_hdisplay - 1) |
79e53945 5973 ((adjusted_mode->crtc_htotal - 1) << 16));
5eddb70b
CW
5974 I915_WRITE(HBLANK(pipe),
5975 (adjusted_mode->crtc_hblank_start - 1) |
79e53945 5976 ((adjusted_mode->crtc_hblank_end - 1) << 16));
5eddb70b
CW
5977 I915_WRITE(HSYNC(pipe),
5978 (adjusted_mode->crtc_hsync_start - 1) |
79e53945 5979 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5eddb70b
CW
5980
5981 I915_WRITE(VTOTAL(pipe),
5982 (adjusted_mode->crtc_vdisplay - 1) |
79e53945 5983 ((adjusted_mode->crtc_vtotal - 1) << 16));
5eddb70b
CW
5984 I915_WRITE(VBLANK(pipe),
5985 (adjusted_mode->crtc_vblank_start - 1) |
79e53945 5986 ((adjusted_mode->crtc_vblank_end - 1) << 16));
5eddb70b
CW
5987 I915_WRITE(VSYNC(pipe),
5988 (adjusted_mode->crtc_vsync_start - 1) |
79e53945 5989 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5eddb70b 5990
8febb297
EA
5991 /* pipesrc controls the size that is scaled from, which should
5992 * always be the user's requested size.
79e53945 5993 */
5eddb70b
CW
5994 I915_WRITE(PIPESRC(pipe),
5995 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
2c07245f 5996
8febb297
EA
5997 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
5998 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
5999 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
6000 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
2c07245f 6001
8febb297
EA
6002 if (has_edp_encoder &&
6003 !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
6004 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
2c07245f
ZW
6005 }
6006
5eddb70b
CW
6007 I915_WRITE(PIPECONF(pipe), pipeconf);
6008 POSTING_READ(PIPECONF(pipe));
79e53945 6009
9d0498a2 6010 intel_wait_for_vblank(dev, pipe);
79e53945 6011
f00a3ddf 6012 if (IS_GEN5(dev)) {
553bd149
ZW
6013 /* enable address swizzle for tiling buffer */
6014 temp = I915_READ(DISP_ARB_CTL);
6015 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
6016 }
6017
5eddb70b 6018 I915_WRITE(DSPCNTR(plane), dspcntr);
b24e7179 6019 POSTING_READ(DSPCNTR(plane));
79e53945 6020
5c3b82e2 6021 ret = intel_pipe_set_base(crtc, x, y, old_fb);
7662c8bd
SL
6022
6023 intel_update_watermarks(dev);
6024
1f803ee5 6025 return ret;
79e53945
JB
6026}
6027
f564048e
EA
6028static int intel_crtc_mode_set(struct drm_crtc *crtc,
6029 struct drm_display_mode *mode,
6030 struct drm_display_mode *adjusted_mode,
6031 int x, int y,
6032 struct drm_framebuffer *old_fb)
6033{
6034 struct drm_device *dev = crtc->dev;
6035 struct drm_i915_private *dev_priv = dev->dev_private;
0b701d27
EA
6036 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6037 int pipe = intel_crtc->pipe;
f564048e
EA
6038 int ret;
6039
0b701d27 6040 drm_vblank_pre_modeset(dev, pipe);
7662c8bd 6041
f564048e
EA
6042 ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
6043 x, y, old_fb);
79e53945 6044 drm_vblank_post_modeset(dev, pipe);
5c3b82e2 6045
d8e70a25
JB
6046 if (ret)
6047 intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
6048 else
6049 intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
120eced9 6050
1f803ee5 6051 return ret;
79e53945
JB
6052}
6053
3a9627f4
WF
6054static bool intel_eld_uptodate(struct drm_connector *connector,
6055 int reg_eldv, uint32_t bits_eldv,
6056 int reg_elda, uint32_t bits_elda,
6057 int reg_edid)
6058{
6059 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6060 uint8_t *eld = connector->eld;
6061 uint32_t i;
6062
6063 i = I915_READ(reg_eldv);
6064 i &= bits_eldv;
6065
6066 if (!eld[0])
6067 return !i;
6068
6069 if (!i)
6070 return false;
6071
6072 i = I915_READ(reg_elda);
6073 i &= ~bits_elda;
6074 I915_WRITE(reg_elda, i);
6075
6076 for (i = 0; i < eld[2]; i++)
6077 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6078 return false;
6079
6080 return true;
6081}
6082
e0dac65e
WF
6083static void g4x_write_eld(struct drm_connector *connector,
6084 struct drm_crtc *crtc)
6085{
6086 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6087 uint8_t *eld = connector->eld;
6088 uint32_t eldv;
6089 uint32_t len;
6090 uint32_t i;
6091
6092 i = I915_READ(G4X_AUD_VID_DID);
6093
6094 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6095 eldv = G4X_ELDV_DEVCL_DEVBLC;
6096 else
6097 eldv = G4X_ELDV_DEVCTG;
6098
3a9627f4
WF
6099 if (intel_eld_uptodate(connector,
6100 G4X_AUD_CNTL_ST, eldv,
6101 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6102 G4X_HDMIW_HDMIEDID))
6103 return;
6104
e0dac65e
WF
6105 i = I915_READ(G4X_AUD_CNTL_ST);
6106 i &= ~(eldv | G4X_ELD_ADDR);
6107 len = (i >> 9) & 0x1f; /* ELD buffer size */
6108 I915_WRITE(G4X_AUD_CNTL_ST, i);
6109
6110 if (!eld[0])
6111 return;
6112
6113 len = min_t(uint8_t, eld[2], len);
6114 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6115 for (i = 0; i < len; i++)
6116 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6117
6118 i = I915_READ(G4X_AUD_CNTL_ST);
6119 i |= eldv;
6120 I915_WRITE(G4X_AUD_CNTL_ST, i);
6121}
6122
6123static void ironlake_write_eld(struct drm_connector *connector,
6124 struct drm_crtc *crtc)
6125{
6126 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6127 uint8_t *eld = connector->eld;
6128 uint32_t eldv;
6129 uint32_t i;
6130 int len;
6131 int hdmiw_hdmiedid;
6132 int aud_cntl_st;
6133 int aud_cntrl_st2;
6134
b3f33cbf 6135 if (HAS_PCH_IBX(connector->dev)) {
1202b4c6
WF
6136 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID_A;
6137 aud_cntl_st = IBX_AUD_CNTL_ST_A;
6138 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
e0dac65e 6139 } else {
1202b4c6
WF
6140 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID_A;
6141 aud_cntl_st = CPT_AUD_CNTL_ST_A;
6142 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
e0dac65e
WF
6143 }
6144
6145 i = to_intel_crtc(crtc)->pipe;
6146 hdmiw_hdmiedid += i * 0x100;
6147 aud_cntl_st += i * 0x100;
6148
6149 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(i));
6150
6151 i = I915_READ(aud_cntl_st);
6152 i = (i >> 29) & 0x3; /* DIP_Port_Select, 0x1 = PortB */
6153 if (!i) {
6154 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6155 /* operate blindly on all ports */
1202b4c6
WF
6156 eldv = IBX_ELD_VALIDB;
6157 eldv |= IBX_ELD_VALIDB << 4;
6158 eldv |= IBX_ELD_VALIDB << 8;
e0dac65e
WF
6159 } else {
6160 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
1202b4c6 6161 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
e0dac65e
WF
6162 }
6163
3a9627f4
WF
6164 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6165 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6166 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
e0dac65e
WF
6167 }
6168
3a9627f4
WF
6169 if (intel_eld_uptodate(connector,
6170 aud_cntrl_st2, eldv,
6171 aud_cntl_st, IBX_ELD_ADDRESS,
6172 hdmiw_hdmiedid))
6173 return;
6174
e0dac65e
WF
6175 i = I915_READ(aud_cntrl_st2);
6176 i &= ~eldv;
6177 I915_WRITE(aud_cntrl_st2, i);
6178
6179 if (!eld[0])
6180 return;
6181
e0dac65e 6182 i = I915_READ(aud_cntl_st);
1202b4c6 6183 i &= ~IBX_ELD_ADDRESS;
e0dac65e
WF
6184 I915_WRITE(aud_cntl_st, i);
6185
6186 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6187 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6188 for (i = 0; i < len; i++)
6189 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6190
6191 i = I915_READ(aud_cntrl_st2);
6192 i |= eldv;
6193 I915_WRITE(aud_cntrl_st2, i);
6194}
6195
6196void intel_write_eld(struct drm_encoder *encoder,
6197 struct drm_display_mode *mode)
6198{
6199 struct drm_crtc *crtc = encoder->crtc;
6200 struct drm_connector *connector;
6201 struct drm_device *dev = encoder->dev;
6202 struct drm_i915_private *dev_priv = dev->dev_private;
6203
6204 connector = drm_select_eld(encoder, mode);
6205 if (!connector)
6206 return;
6207
6208 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6209 connector->base.id,
6210 drm_get_connector_name(connector),
6211 connector->encoder->base.id,
6212 drm_get_encoder_name(connector->encoder));
6213
6214 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6215
6216 if (dev_priv->display.write_eld)
6217 dev_priv->display.write_eld(connector, crtc);
6218}
6219
79e53945
JB
6220/** Loads the palette/gamma unit for the CRTC with the prepared values */
6221void intel_crtc_load_lut(struct drm_crtc *crtc)
6222{
6223 struct drm_device *dev = crtc->dev;
6224 struct drm_i915_private *dev_priv = dev->dev_private;
6225 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9db4a9c7 6226 int palreg = PALETTE(intel_crtc->pipe);
79e53945
JB
6227 int i;
6228
6229 /* The clocks have to be on to load the palette. */
6230 if (!crtc->enabled)
6231 return;
6232
f2b115e6 6233 /* use legacy palette for Ironlake */
bad720ff 6234 if (HAS_PCH_SPLIT(dev))
9db4a9c7 6235 palreg = LGC_PALETTE(intel_crtc->pipe);
2c07245f 6236
79e53945
JB
6237 for (i = 0; i < 256; i++) {
6238 I915_WRITE(palreg + 4 * i,
6239 (intel_crtc->lut_r[i] << 16) |
6240 (intel_crtc->lut_g[i] << 8) |
6241 intel_crtc->lut_b[i]);
6242 }
6243}
6244
560b85bb
CW
6245static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6246{
6247 struct drm_device *dev = crtc->dev;
6248 struct drm_i915_private *dev_priv = dev->dev_private;
6249 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6250 bool visible = base != 0;
6251 u32 cntl;
6252
6253 if (intel_crtc->cursor_visible == visible)
6254 return;
6255
9db4a9c7 6256 cntl = I915_READ(_CURACNTR);
560b85bb
CW
6257 if (visible) {
6258 /* On these chipsets we can only modify the base whilst
6259 * the cursor is disabled.
6260 */
9db4a9c7 6261 I915_WRITE(_CURABASE, base);
560b85bb
CW
6262
6263 cntl &= ~(CURSOR_FORMAT_MASK);
6264 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6265 cntl |= CURSOR_ENABLE |
6266 CURSOR_GAMMA_ENABLE |
6267 CURSOR_FORMAT_ARGB;
6268 } else
6269 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
9db4a9c7 6270 I915_WRITE(_CURACNTR, cntl);
560b85bb
CW
6271
6272 intel_crtc->cursor_visible = visible;
6273}
6274
6275static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6276{
6277 struct drm_device *dev = crtc->dev;
6278 struct drm_i915_private *dev_priv = dev->dev_private;
6279 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6280 int pipe = intel_crtc->pipe;
6281 bool visible = base != 0;
6282
6283 if (intel_crtc->cursor_visible != visible) {
548f245b 6284 uint32_t cntl = I915_READ(CURCNTR(pipe));
560b85bb
CW
6285 if (base) {
6286 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6287 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6288 cntl |= pipe << 28; /* Connect to correct pipe */
6289 } else {
6290 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6291 cntl |= CURSOR_MODE_DISABLE;
6292 }
9db4a9c7 6293 I915_WRITE(CURCNTR(pipe), cntl);
560b85bb
CW
6294
6295 intel_crtc->cursor_visible = visible;
6296 }
6297 /* and commit changes on next vblank */
9db4a9c7 6298 I915_WRITE(CURBASE(pipe), base);
560b85bb
CW
6299}
6300
65a21cd6
JB
6301static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6302{
6303 struct drm_device *dev = crtc->dev;
6304 struct drm_i915_private *dev_priv = dev->dev_private;
6305 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6306 int pipe = intel_crtc->pipe;
6307 bool visible = base != 0;
6308
6309 if (intel_crtc->cursor_visible != visible) {
6310 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6311 if (base) {
6312 cntl &= ~CURSOR_MODE;
6313 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6314 } else {
6315 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6316 cntl |= CURSOR_MODE_DISABLE;
6317 }
6318 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6319
6320 intel_crtc->cursor_visible = visible;
6321 }
6322 /* and commit changes on next vblank */
6323 I915_WRITE(CURBASE_IVB(pipe), base);
6324}
6325
cda4b7d3 6326/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
6327static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6328 bool on)
cda4b7d3
CW
6329{
6330 struct drm_device *dev = crtc->dev;
6331 struct drm_i915_private *dev_priv = dev->dev_private;
6332 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6333 int pipe = intel_crtc->pipe;
6334 int x = intel_crtc->cursor_x;
6335 int y = intel_crtc->cursor_y;
560b85bb 6336 u32 base, pos;
cda4b7d3
CW
6337 bool visible;
6338
6339 pos = 0;
6340
6b383a7f 6341 if (on && crtc->enabled && crtc->fb) {
cda4b7d3
CW
6342 base = intel_crtc->cursor_addr;
6343 if (x > (int) crtc->fb->width)
6344 base = 0;
6345
6346 if (y > (int) crtc->fb->height)
6347 base = 0;
6348 } else
6349 base = 0;
6350
6351 if (x < 0) {
6352 if (x + intel_crtc->cursor_width < 0)
6353 base = 0;
6354
6355 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6356 x = -x;
6357 }
6358 pos |= x << CURSOR_X_SHIFT;
6359
6360 if (y < 0) {
6361 if (y + intel_crtc->cursor_height < 0)
6362 base = 0;
6363
6364 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6365 y = -y;
6366 }
6367 pos |= y << CURSOR_Y_SHIFT;
6368
6369 visible = base != 0;
560b85bb 6370 if (!visible && !intel_crtc->cursor_visible)
cda4b7d3
CW
6371 return;
6372
65a21cd6
JB
6373 if (IS_IVYBRIDGE(dev)) {
6374 I915_WRITE(CURPOS_IVB(pipe), pos);
6375 ivb_update_cursor(crtc, base);
6376 } else {
6377 I915_WRITE(CURPOS(pipe), pos);
6378 if (IS_845G(dev) || IS_I865G(dev))
6379 i845_update_cursor(crtc, base);
6380 else
6381 i9xx_update_cursor(crtc, base);
6382 }
cda4b7d3
CW
6383
6384 if (visible)
6385 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
6386}
6387
79e53945 6388static int intel_crtc_cursor_set(struct drm_crtc *crtc,
05394f39 6389 struct drm_file *file,
79e53945
JB
6390 uint32_t handle,
6391 uint32_t width, uint32_t height)
6392{
6393 struct drm_device *dev = crtc->dev;
6394 struct drm_i915_private *dev_priv = dev->dev_private;
6395 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
05394f39 6396 struct drm_i915_gem_object *obj;
cda4b7d3 6397 uint32_t addr;
3f8bc370 6398 int ret;
79e53945 6399
28c97730 6400 DRM_DEBUG_KMS("\n");
79e53945
JB
6401
6402 /* if we want to turn off the cursor ignore width and height */
6403 if (!handle) {
28c97730 6404 DRM_DEBUG_KMS("cursor off\n");
3f8bc370 6405 addr = 0;
05394f39 6406 obj = NULL;
5004417d 6407 mutex_lock(&dev->struct_mutex);
3f8bc370 6408 goto finish;
79e53945
JB
6409 }
6410
6411 /* Currently we only support 64x64 cursors */
6412 if (width != 64 || height != 64) {
6413 DRM_ERROR("we currently only support 64x64 cursors\n");
6414 return -EINVAL;
6415 }
6416
05394f39 6417 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 6418 if (&obj->base == NULL)
79e53945
JB
6419 return -ENOENT;
6420
05394f39 6421 if (obj->base.size < width * height * 4) {
79e53945 6422 DRM_ERROR("buffer is to small\n");
34b8686e
DA
6423 ret = -ENOMEM;
6424 goto fail;
79e53945
JB
6425 }
6426
71acb5eb 6427 /* we only need to pin inside GTT if cursor is non-phy */
7f9872e0 6428 mutex_lock(&dev->struct_mutex);
b295d1b6 6429 if (!dev_priv->info->cursor_needs_physical) {
d9e86c0e
CW
6430 if (obj->tiling_mode) {
6431 DRM_ERROR("cursor cannot be tiled\n");
6432 ret = -EINVAL;
6433 goto fail_locked;
6434 }
6435
2da3b9b9 6436 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
e7b526bb
CW
6437 if (ret) {
6438 DRM_ERROR("failed to move cursor bo into the GTT\n");
2da3b9b9 6439 goto fail_locked;
e7b526bb
CW
6440 }
6441
d9e86c0e
CW
6442 ret = i915_gem_object_put_fence(obj);
6443 if (ret) {
2da3b9b9 6444 DRM_ERROR("failed to release fence for cursor");
d9e86c0e
CW
6445 goto fail_unpin;
6446 }
6447
05394f39 6448 addr = obj->gtt_offset;
71acb5eb 6449 } else {
6eeefaf3 6450 int align = IS_I830(dev) ? 16 * 1024 : 256;
05394f39 6451 ret = i915_gem_attach_phys_object(dev, obj,
6eeefaf3
CW
6452 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6453 align);
71acb5eb
DA
6454 if (ret) {
6455 DRM_ERROR("failed to attach phys object\n");
7f9872e0 6456 goto fail_locked;
71acb5eb 6457 }
05394f39 6458 addr = obj->phys_obj->handle->busaddr;
3f8bc370
KH
6459 }
6460
a6c45cf0 6461 if (IS_GEN2(dev))
14b60391
JB
6462 I915_WRITE(CURSIZE, (height << 12) | width);
6463
3f8bc370 6464 finish:
3f8bc370 6465 if (intel_crtc->cursor_bo) {
b295d1b6 6466 if (dev_priv->info->cursor_needs_physical) {
05394f39 6467 if (intel_crtc->cursor_bo != obj)
71acb5eb
DA
6468 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6469 } else
6470 i915_gem_object_unpin(intel_crtc->cursor_bo);
05394f39 6471 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
3f8bc370 6472 }
80824003 6473
7f9872e0 6474 mutex_unlock(&dev->struct_mutex);
3f8bc370
KH
6475
6476 intel_crtc->cursor_addr = addr;
05394f39 6477 intel_crtc->cursor_bo = obj;
cda4b7d3
CW
6478 intel_crtc->cursor_width = width;
6479 intel_crtc->cursor_height = height;
6480
6b383a7f 6481 intel_crtc_update_cursor(crtc, true);
3f8bc370 6482
79e53945 6483 return 0;
e7b526bb 6484fail_unpin:
05394f39 6485 i915_gem_object_unpin(obj);
7f9872e0 6486fail_locked:
34b8686e 6487 mutex_unlock(&dev->struct_mutex);
bc9025bd 6488fail:
05394f39 6489 drm_gem_object_unreference_unlocked(&obj->base);
34b8686e 6490 return ret;
79e53945
JB
6491}
6492
6493static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6494{
79e53945 6495 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 6496
cda4b7d3
CW
6497 intel_crtc->cursor_x = x;
6498 intel_crtc->cursor_y = y;
652c393a 6499
6b383a7f 6500 intel_crtc_update_cursor(crtc, true);
79e53945
JB
6501
6502 return 0;
6503}
6504
6505/** Sets the color ramps on behalf of RandR */
6506void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6507 u16 blue, int regno)
6508{
6509 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6510
6511 intel_crtc->lut_r[regno] = red >> 8;
6512 intel_crtc->lut_g[regno] = green >> 8;
6513 intel_crtc->lut_b[regno] = blue >> 8;
6514}
6515
b8c00ac5
DA
6516void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6517 u16 *blue, int regno)
6518{
6519 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6520
6521 *red = intel_crtc->lut_r[regno] << 8;
6522 *green = intel_crtc->lut_g[regno] << 8;
6523 *blue = intel_crtc->lut_b[regno] << 8;
6524}
6525
79e53945 6526static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 6527 u16 *blue, uint32_t start, uint32_t size)
79e53945 6528{
7203425a 6529 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 6530 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 6531
7203425a 6532 for (i = start; i < end; i++) {
79e53945
JB
6533 intel_crtc->lut_r[i] = red[i] >> 8;
6534 intel_crtc->lut_g[i] = green[i] >> 8;
6535 intel_crtc->lut_b[i] = blue[i] >> 8;
6536 }
6537
6538 intel_crtc_load_lut(crtc);
6539}
6540
6541/**
6542 * Get a pipe with a simple mode set on it for doing load-based monitor
6543 * detection.
6544 *
6545 * It will be up to the load-detect code to adjust the pipe as appropriate for
c751ce4f 6546 * its requirements. The pipe will be connected to no other encoders.
79e53945 6547 *
c751ce4f 6548 * Currently this code will only succeed if there is a pipe with no encoders
79e53945
JB
6549 * configured for it. In the future, it could choose to temporarily disable
6550 * some outputs to free up a pipe for its use.
6551 *
6552 * \return crtc, or NULL if no pipes are available.
6553 */
6554
6555/* VESA 640x480x72Hz mode to set on the pipe */
6556static struct drm_display_mode load_detect_mode = {
6557 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6558 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6559};
6560
d2dff872
CW
6561static struct drm_framebuffer *
6562intel_framebuffer_create(struct drm_device *dev,
308e5bcb 6563 struct drm_mode_fb_cmd2 *mode_cmd,
d2dff872
CW
6564 struct drm_i915_gem_object *obj)
6565{
6566 struct intel_framebuffer *intel_fb;
6567 int ret;
6568
6569 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6570 if (!intel_fb) {
6571 drm_gem_object_unreference_unlocked(&obj->base);
6572 return ERR_PTR(-ENOMEM);
6573 }
6574
6575 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6576 if (ret) {
6577 drm_gem_object_unreference_unlocked(&obj->base);
6578 kfree(intel_fb);
6579 return ERR_PTR(ret);
6580 }
6581
6582 return &intel_fb->base;
6583}
6584
6585static u32
6586intel_framebuffer_pitch_for_width(int width, int bpp)
6587{
6588 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6589 return ALIGN(pitch, 64);
6590}
6591
6592static u32
6593intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6594{
6595 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6596 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6597}
6598
6599static struct drm_framebuffer *
6600intel_framebuffer_create_for_mode(struct drm_device *dev,
6601 struct drm_display_mode *mode,
6602 int depth, int bpp)
6603{
6604 struct drm_i915_gem_object *obj;
308e5bcb 6605 struct drm_mode_fb_cmd2 mode_cmd;
d2dff872
CW
6606
6607 obj = i915_gem_alloc_object(dev,
6608 intel_framebuffer_size_for_mode(mode, bpp));
6609 if (obj == NULL)
6610 return ERR_PTR(-ENOMEM);
6611
6612 mode_cmd.width = mode->hdisplay;
6613 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
6614 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6615 bpp);
6616 mode_cmd.pixel_format = 0;
d2dff872
CW
6617
6618 return intel_framebuffer_create(dev, &mode_cmd, obj);
6619}
6620
6621static struct drm_framebuffer *
6622mode_fits_in_fbdev(struct drm_device *dev,
6623 struct drm_display_mode *mode)
6624{
6625 struct drm_i915_private *dev_priv = dev->dev_private;
6626 struct drm_i915_gem_object *obj;
6627 struct drm_framebuffer *fb;
6628
6629 if (dev_priv->fbdev == NULL)
6630 return NULL;
6631
6632 obj = dev_priv->fbdev->ifb.obj;
6633 if (obj == NULL)
6634 return NULL;
6635
6636 fb = &dev_priv->fbdev->ifb.base;
01f2c773
VS
6637 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6638 fb->bits_per_pixel))
d2dff872
CW
6639 return NULL;
6640
01f2c773 6641 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
6642 return NULL;
6643
6644 return fb;
6645}
6646
7173188d
CW
6647bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
6648 struct drm_connector *connector,
6649 struct drm_display_mode *mode,
8261b191 6650 struct intel_load_detect_pipe *old)
79e53945
JB
6651{
6652 struct intel_crtc *intel_crtc;
6653 struct drm_crtc *possible_crtc;
4ef69c7a 6654 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
6655 struct drm_crtc *crtc = NULL;
6656 struct drm_device *dev = encoder->dev;
d2dff872 6657 struct drm_framebuffer *old_fb;
79e53945
JB
6658 int i = -1;
6659
d2dff872
CW
6660 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6661 connector->base.id, drm_get_connector_name(connector),
6662 encoder->base.id, drm_get_encoder_name(encoder));
6663
79e53945
JB
6664 /*
6665 * Algorithm gets a little messy:
7a5e4805 6666 *
79e53945
JB
6667 * - if the connector already has an assigned crtc, use it (but make
6668 * sure it's on first)
7a5e4805 6669 *
79e53945
JB
6670 * - try to find the first unused crtc that can drive this connector,
6671 * and use that if we find one
79e53945
JB
6672 */
6673
6674 /* See if we already have a CRTC for this connector */
6675 if (encoder->crtc) {
6676 crtc = encoder->crtc;
8261b191 6677
79e53945 6678 intel_crtc = to_intel_crtc(crtc);
8261b191
CW
6679 old->dpms_mode = intel_crtc->dpms_mode;
6680 old->load_detect_temp = false;
6681
6682 /* Make sure the crtc and connector are running */
79e53945 6683 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
6492711d
CW
6684 struct drm_encoder_helper_funcs *encoder_funcs;
6685 struct drm_crtc_helper_funcs *crtc_funcs;
6686
79e53945
JB
6687 crtc_funcs = crtc->helper_private;
6688 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
6492711d
CW
6689
6690 encoder_funcs = encoder->helper_private;
79e53945
JB
6691 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
6692 }
8261b191 6693
7173188d 6694 return true;
79e53945
JB
6695 }
6696
6697 /* Find an unused one (if possible) */
6698 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6699 i++;
6700 if (!(encoder->possible_crtcs & (1 << i)))
6701 continue;
6702 if (!possible_crtc->enabled) {
6703 crtc = possible_crtc;
6704 break;
6705 }
79e53945
JB
6706 }
6707
6708 /*
6709 * If we didn't find an unused CRTC, don't use any.
6710 */
6711 if (!crtc) {
7173188d
CW
6712 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6713 return false;
79e53945
JB
6714 }
6715
6716 encoder->crtc = crtc;
c1c43977 6717 connector->encoder = encoder;
79e53945
JB
6718
6719 intel_crtc = to_intel_crtc(crtc);
8261b191
CW
6720 old->dpms_mode = intel_crtc->dpms_mode;
6721 old->load_detect_temp = true;
d2dff872 6722 old->release_fb = NULL;
79e53945 6723
6492711d
CW
6724 if (!mode)
6725 mode = &load_detect_mode;
79e53945 6726
d2dff872
CW
6727 old_fb = crtc->fb;
6728
6729 /* We need a framebuffer large enough to accommodate all accesses
6730 * that the plane may generate whilst we perform load detection.
6731 * We can not rely on the fbcon either being present (we get called
6732 * during its initialisation to detect all boot displays, or it may
6733 * not even exist) or that it is large enough to satisfy the
6734 * requested mode.
6735 */
6736 crtc->fb = mode_fits_in_fbdev(dev, mode);
6737 if (crtc->fb == NULL) {
6738 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6739 crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6740 old->release_fb = crtc->fb;
6741 } else
6742 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6743 if (IS_ERR(crtc->fb)) {
6744 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6745 crtc->fb = old_fb;
6746 return false;
79e53945 6747 }
79e53945 6748
d2dff872 6749 if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
6492711d 6750 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
6751 if (old->release_fb)
6752 old->release_fb->funcs->destroy(old->release_fb);
6753 crtc->fb = old_fb;
6492711d 6754 return false;
79e53945 6755 }
7173188d 6756
79e53945 6757 /* let the connector get through one full cycle before testing */
9d0498a2 6758 intel_wait_for_vblank(dev, intel_crtc->pipe);
79e53945 6759
7173188d 6760 return true;
79e53945
JB
6761}
6762
c1c43977 6763void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
8261b191
CW
6764 struct drm_connector *connector,
6765 struct intel_load_detect_pipe *old)
79e53945 6766{
4ef69c7a 6767 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
6768 struct drm_device *dev = encoder->dev;
6769 struct drm_crtc *crtc = encoder->crtc;
6770 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
6771 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
6772
d2dff872
CW
6773 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6774 connector->base.id, drm_get_connector_name(connector),
6775 encoder->base.id, drm_get_encoder_name(encoder));
6776
8261b191 6777 if (old->load_detect_temp) {
c1c43977 6778 connector->encoder = NULL;
79e53945 6779 drm_helper_disable_unused_functions(dev);
d2dff872
CW
6780
6781 if (old->release_fb)
6782 old->release_fb->funcs->destroy(old->release_fb);
6783
0622a53c 6784 return;
79e53945
JB
6785 }
6786
c751ce4f 6787 /* Switch crtc and encoder back off if necessary */
0622a53c
CW
6788 if (old->dpms_mode != DRM_MODE_DPMS_ON) {
6789 encoder_funcs->dpms(encoder, old->dpms_mode);
8261b191 6790 crtc_funcs->dpms(crtc, old->dpms_mode);
79e53945
JB
6791 }
6792}
6793
6794/* Returns the clock of the currently programmed mode of the given pipe. */
6795static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6796{
6797 struct drm_i915_private *dev_priv = dev->dev_private;
6798 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6799 int pipe = intel_crtc->pipe;
548f245b 6800 u32 dpll = I915_READ(DPLL(pipe));
79e53945
JB
6801 u32 fp;
6802 intel_clock_t clock;
6803
6804 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
39adb7a5 6805 fp = I915_READ(FP0(pipe));
79e53945 6806 else
39adb7a5 6807 fp = I915_READ(FP1(pipe));
79e53945
JB
6808
6809 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
6810 if (IS_PINEVIEW(dev)) {
6811 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6812 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
6813 } else {
6814 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6815 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6816 }
6817
a6c45cf0 6818 if (!IS_GEN2(dev)) {
f2b115e6
AJ
6819 if (IS_PINEVIEW(dev))
6820 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6821 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
6822 else
6823 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
6824 DPLL_FPA01_P1_POST_DIV_SHIFT);
6825
6826 switch (dpll & DPLL_MODE_MASK) {
6827 case DPLLB_MODE_DAC_SERIAL:
6828 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6829 5 : 10;
6830 break;
6831 case DPLLB_MODE_LVDS:
6832 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6833 7 : 14;
6834 break;
6835 default:
28c97730 6836 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945
JB
6837 "mode\n", (int)(dpll & DPLL_MODE_MASK));
6838 return 0;
6839 }
6840
6841 /* XXX: Handle the 100Mhz refclk */
2177832f 6842 intel_clock(dev, 96000, &clock);
79e53945
JB
6843 } else {
6844 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6845
6846 if (is_lvds) {
6847 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6848 DPLL_FPA01_P1_POST_DIV_SHIFT);
6849 clock.p2 = 14;
6850
6851 if ((dpll & PLL_REF_INPUT_MASK) ==
6852 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6853 /* XXX: might not be 66MHz */
2177832f 6854 intel_clock(dev, 66000, &clock);
79e53945 6855 } else
2177832f 6856 intel_clock(dev, 48000, &clock);
79e53945
JB
6857 } else {
6858 if (dpll & PLL_P1_DIVIDE_BY_TWO)
6859 clock.p1 = 2;
6860 else {
6861 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6862 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6863 }
6864 if (dpll & PLL_P2_DIVIDE_BY_4)
6865 clock.p2 = 4;
6866 else
6867 clock.p2 = 2;
6868
2177832f 6869 intel_clock(dev, 48000, &clock);
79e53945
JB
6870 }
6871 }
6872
6873 /* XXX: It would be nice to validate the clocks, but we can't reuse
6874 * i830PllIsValid() because it relies on the xf86_config connector
6875 * configuration being accurate, which it isn't necessarily.
6876 */
6877
6878 return clock.dot;
6879}
6880
6881/** Returns the currently programmed mode of the given pipe. */
6882struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6883 struct drm_crtc *crtc)
6884{
548f245b 6885 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945
JB
6886 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6887 int pipe = intel_crtc->pipe;
6888 struct drm_display_mode *mode;
548f245b
JB
6889 int htot = I915_READ(HTOTAL(pipe));
6890 int hsync = I915_READ(HSYNC(pipe));
6891 int vtot = I915_READ(VTOTAL(pipe));
6892 int vsync = I915_READ(VSYNC(pipe));
79e53945
JB
6893
6894 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6895 if (!mode)
6896 return NULL;
6897
6898 mode->clock = intel_crtc_clock_get(dev, crtc);
6899 mode->hdisplay = (htot & 0xffff) + 1;
6900 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6901 mode->hsync_start = (hsync & 0xffff) + 1;
6902 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6903 mode->vdisplay = (vtot & 0xffff) + 1;
6904 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6905 mode->vsync_start = (vsync & 0xffff) + 1;
6906 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6907
6908 drm_mode_set_name(mode);
6909 drm_mode_set_crtcinfo(mode, 0);
6910
6911 return mode;
6912}
6913
652c393a
JB
6914#define GPU_IDLE_TIMEOUT 500 /* ms */
6915
6916/* When this timer fires, we've been idle for awhile */
6917static void intel_gpu_idle_timer(unsigned long arg)
6918{
6919 struct drm_device *dev = (struct drm_device *)arg;
6920 drm_i915_private_t *dev_priv = dev->dev_private;
6921
ff7ea4c0
CW
6922 if (!list_empty(&dev_priv->mm.active_list)) {
6923 /* Still processing requests, so just re-arm the timer. */
6924 mod_timer(&dev_priv->idle_timer, jiffies +
6925 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
6926 return;
6927 }
652c393a 6928
ff7ea4c0 6929 dev_priv->busy = false;
01dfba93 6930 queue_work(dev_priv->wq, &dev_priv->idle_work);
652c393a
JB
6931}
6932
652c393a
JB
6933#define CRTC_IDLE_TIMEOUT 1000 /* ms */
6934
6935static void intel_crtc_idle_timer(unsigned long arg)
6936{
6937 struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
6938 struct drm_crtc *crtc = &intel_crtc->base;
6939 drm_i915_private_t *dev_priv = crtc->dev->dev_private;
ff7ea4c0 6940 struct intel_framebuffer *intel_fb;
652c393a 6941
ff7ea4c0
CW
6942 intel_fb = to_intel_framebuffer(crtc->fb);
6943 if (intel_fb && intel_fb->obj->active) {
6944 /* The framebuffer is still being accessed by the GPU. */
6945 mod_timer(&intel_crtc->idle_timer, jiffies +
6946 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6947 return;
6948 }
652c393a 6949
ff7ea4c0 6950 intel_crtc->busy = false;
01dfba93 6951 queue_work(dev_priv->wq, &dev_priv->idle_work);
652c393a
JB
6952}
6953
3dec0095 6954static void intel_increase_pllclock(struct drm_crtc *crtc)
652c393a
JB
6955{
6956 struct drm_device *dev = crtc->dev;
6957 drm_i915_private_t *dev_priv = dev->dev_private;
6958 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6959 int pipe = intel_crtc->pipe;
dbdc6479
JB
6960 int dpll_reg = DPLL(pipe);
6961 int dpll;
652c393a 6962
bad720ff 6963 if (HAS_PCH_SPLIT(dev))
652c393a
JB
6964 return;
6965
6966 if (!dev_priv->lvds_downclock_avail)
6967 return;
6968
dbdc6479 6969 dpll = I915_READ(dpll_reg);
652c393a 6970 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
44d98a61 6971 DRM_DEBUG_DRIVER("upclocking LVDS\n");
652c393a
JB
6972
6973 /* Unlock panel regs */
dbdc6479
JB
6974 I915_WRITE(PP_CONTROL,
6975 I915_READ(PP_CONTROL) | PANEL_UNLOCK_REGS);
652c393a
JB
6976
6977 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6978 I915_WRITE(dpll_reg, dpll);
9d0498a2 6979 intel_wait_for_vblank(dev, pipe);
dbdc6479 6980
652c393a
JB
6981 dpll = I915_READ(dpll_reg);
6982 if (dpll & DISPLAY_RATE_SELECT_FPA1)
44d98a61 6983 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
652c393a
JB
6984
6985 /* ...and lock them again */
6986 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
6987 }
6988
6989 /* Schedule downclock */
3dec0095
DV
6990 mod_timer(&intel_crtc->idle_timer, jiffies +
6991 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
652c393a
JB
6992}
6993
6994static void intel_decrease_pllclock(struct drm_crtc *crtc)
6995{
6996 struct drm_device *dev = crtc->dev;
6997 drm_i915_private_t *dev_priv = dev->dev_private;
6998 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6999 int pipe = intel_crtc->pipe;
9db4a9c7 7000 int dpll_reg = DPLL(pipe);
652c393a
JB
7001 int dpll = I915_READ(dpll_reg);
7002
bad720ff 7003 if (HAS_PCH_SPLIT(dev))
652c393a
JB
7004 return;
7005
7006 if (!dev_priv->lvds_downclock_avail)
7007 return;
7008
7009 /*
7010 * Since this is called by a timer, we should never get here in
7011 * the manual case.
7012 */
7013 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
44d98a61 7014 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a
JB
7015
7016 /* Unlock panel regs */
4a655f04
JB
7017 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
7018 PANEL_UNLOCK_REGS);
652c393a
JB
7019
7020 dpll |= DISPLAY_RATE_SELECT_FPA1;
7021 I915_WRITE(dpll_reg, dpll);
9d0498a2 7022 intel_wait_for_vblank(dev, pipe);
652c393a
JB
7023 dpll = I915_READ(dpll_reg);
7024 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 7025 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
7026
7027 /* ...and lock them again */
7028 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
7029 }
7030
7031}
7032
7033/**
7034 * intel_idle_update - adjust clocks for idleness
7035 * @work: work struct
7036 *
7037 * Either the GPU or display (or both) went idle. Check the busy status
7038 * here and adjust the CRTC and GPU clocks as necessary.
7039 */
7040static void intel_idle_update(struct work_struct *work)
7041{
7042 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
7043 idle_work);
7044 struct drm_device *dev = dev_priv->dev;
7045 struct drm_crtc *crtc;
7046 struct intel_crtc *intel_crtc;
7047
7048 if (!i915_powersave)
7049 return;
7050
7051 mutex_lock(&dev->struct_mutex);
7052
7648fa99
JB
7053 i915_update_gfx_val(dev_priv);
7054
652c393a
JB
7055 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7056 /* Skip inactive CRTCs */
7057 if (!crtc->fb)
7058 continue;
7059
7060 intel_crtc = to_intel_crtc(crtc);
7061 if (!intel_crtc->busy)
7062 intel_decrease_pllclock(crtc);
7063 }
7064
45ac22c8 7065
652c393a
JB
7066 mutex_unlock(&dev->struct_mutex);
7067}
7068
7069/**
7070 * intel_mark_busy - mark the GPU and possibly the display busy
7071 * @dev: drm device
7072 * @obj: object we're operating on
7073 *
7074 * Callers can use this function to indicate that the GPU is busy processing
7075 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
7076 * buffer), we'll also mark the display as busy, so we know to increase its
7077 * clock frequency.
7078 */
05394f39 7079void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
652c393a
JB
7080{
7081 drm_i915_private_t *dev_priv = dev->dev_private;
7082 struct drm_crtc *crtc = NULL;
7083 struct intel_framebuffer *intel_fb;
7084 struct intel_crtc *intel_crtc;
7085
5e17ee74
ZW
7086 if (!drm_core_check_feature(dev, DRIVER_MODESET))
7087 return;
7088
18b2190c 7089 if (!dev_priv->busy)
28cf798f 7090 dev_priv->busy = true;
18b2190c 7091 else
28cf798f
CW
7092 mod_timer(&dev_priv->idle_timer, jiffies +
7093 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
652c393a
JB
7094
7095 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7096 if (!crtc->fb)
7097 continue;
7098
7099 intel_crtc = to_intel_crtc(crtc);
7100 intel_fb = to_intel_framebuffer(crtc->fb);
7101 if (intel_fb->obj == obj) {
7102 if (!intel_crtc->busy) {
7103 /* Non-busy -> busy, upclock */
3dec0095 7104 intel_increase_pllclock(crtc);
652c393a
JB
7105 intel_crtc->busy = true;
7106 } else {
7107 /* Busy -> busy, put off timer */
7108 mod_timer(&intel_crtc->idle_timer, jiffies +
7109 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
7110 }
7111 }
7112 }
7113}
7114
79e53945
JB
7115static void intel_crtc_destroy(struct drm_crtc *crtc)
7116{
7117 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
7118 struct drm_device *dev = crtc->dev;
7119 struct intel_unpin_work *work;
7120 unsigned long flags;
7121
7122 spin_lock_irqsave(&dev->event_lock, flags);
7123 work = intel_crtc->unpin_work;
7124 intel_crtc->unpin_work = NULL;
7125 spin_unlock_irqrestore(&dev->event_lock, flags);
7126
7127 if (work) {
7128 cancel_work_sync(&work->work);
7129 kfree(work);
7130 }
79e53945
JB
7131
7132 drm_crtc_cleanup(crtc);
67e77c5a 7133
79e53945
JB
7134 kfree(intel_crtc);
7135}
7136
6b95a207
KH
7137static void intel_unpin_work_fn(struct work_struct *__work)
7138{
7139 struct intel_unpin_work *work =
7140 container_of(__work, struct intel_unpin_work, work);
7141
7142 mutex_lock(&work->dev->struct_mutex);
b1b87f6b 7143 i915_gem_object_unpin(work->old_fb_obj);
05394f39
CW
7144 drm_gem_object_unreference(&work->pending_flip_obj->base);
7145 drm_gem_object_unreference(&work->old_fb_obj->base);
d9e86c0e 7146
7782de3b 7147 intel_update_fbc(work->dev);
6b95a207
KH
7148 mutex_unlock(&work->dev->struct_mutex);
7149 kfree(work);
7150}
7151
1afe3e9d 7152static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 7153 struct drm_crtc *crtc)
6b95a207
KH
7154{
7155 drm_i915_private_t *dev_priv = dev->dev_private;
6b95a207
KH
7156 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7157 struct intel_unpin_work *work;
05394f39 7158 struct drm_i915_gem_object *obj;
6b95a207 7159 struct drm_pending_vblank_event *e;
49b14a5c 7160 struct timeval tnow, tvbl;
6b95a207
KH
7161 unsigned long flags;
7162
7163 /* Ignore early vblank irqs */
7164 if (intel_crtc == NULL)
7165 return;
7166
49b14a5c
MK
7167 do_gettimeofday(&tnow);
7168
6b95a207
KH
7169 spin_lock_irqsave(&dev->event_lock, flags);
7170 work = intel_crtc->unpin_work;
7171 if (work == NULL || !work->pending) {
7172 spin_unlock_irqrestore(&dev->event_lock, flags);
7173 return;
7174 }
7175
7176 intel_crtc->unpin_work = NULL;
6b95a207
KH
7177
7178 if (work->event) {
7179 e = work->event;
49b14a5c 7180 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
0af7e4df
MK
7181
7182 /* Called before vblank count and timestamps have
7183 * been updated for the vblank interval of flip
7184 * completion? Need to increment vblank count and
7185 * add one videorefresh duration to returned timestamp
49b14a5c
MK
7186 * to account for this. We assume this happened if we
7187 * get called over 0.9 frame durations after the last
7188 * timestamped vblank.
7189 *
7190 * This calculation can not be used with vrefresh rates
7191 * below 5Hz (10Hz to be on the safe side) without
7192 * promoting to 64 integers.
0af7e4df 7193 */
49b14a5c
MK
7194 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
7195 9 * crtc->framedur_ns) {
0af7e4df 7196 e->event.sequence++;
49b14a5c
MK
7197 tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
7198 crtc->framedur_ns);
0af7e4df
MK
7199 }
7200
49b14a5c
MK
7201 e->event.tv_sec = tvbl.tv_sec;
7202 e->event.tv_usec = tvbl.tv_usec;
0af7e4df 7203
6b95a207
KH
7204 list_add_tail(&e->base.link,
7205 &e->base.file_priv->event_list);
7206 wake_up_interruptible(&e->base.file_priv->event_wait);
7207 }
7208
0af7e4df
MK
7209 drm_vblank_put(dev, intel_crtc->pipe);
7210
6b95a207
KH
7211 spin_unlock_irqrestore(&dev->event_lock, flags);
7212
05394f39 7213 obj = work->old_fb_obj;
d9e86c0e 7214
e59f2bac 7215 atomic_clear_mask(1 << intel_crtc->plane,
05394f39
CW
7216 &obj->pending_flip.counter);
7217 if (atomic_read(&obj->pending_flip) == 0)
f787a5f5 7218 wake_up(&dev_priv->pending_flip_queue);
d9e86c0e 7219
6b95a207 7220 schedule_work(&work->work);
e5510fac
JB
7221
7222 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6b95a207
KH
7223}
7224
1afe3e9d
JB
7225void intel_finish_page_flip(struct drm_device *dev, int pipe)
7226{
7227 drm_i915_private_t *dev_priv = dev->dev_private;
7228 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7229
49b14a5c 7230 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
7231}
7232
7233void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7234{
7235 drm_i915_private_t *dev_priv = dev->dev_private;
7236 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7237
49b14a5c 7238 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
7239}
7240
6b95a207
KH
7241void intel_prepare_page_flip(struct drm_device *dev, int plane)
7242{
7243 drm_i915_private_t *dev_priv = dev->dev_private;
7244 struct intel_crtc *intel_crtc =
7245 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7246 unsigned long flags;
7247
7248 spin_lock_irqsave(&dev->event_lock, flags);
de3f440f 7249 if (intel_crtc->unpin_work) {
4e5359cd
SF
7250 if ((++intel_crtc->unpin_work->pending) > 1)
7251 DRM_ERROR("Prepared flip multiple times\n");
de3f440f
JB
7252 } else {
7253 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
7254 }
6b95a207
KH
7255 spin_unlock_irqrestore(&dev->event_lock, flags);
7256}
7257
8c9f3aaf
JB
7258static int intel_gen2_queue_flip(struct drm_device *dev,
7259 struct drm_crtc *crtc,
7260 struct drm_framebuffer *fb,
7261 struct drm_i915_gem_object *obj)
7262{
7263 struct drm_i915_private *dev_priv = dev->dev_private;
7264 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7265 unsigned long offset;
7266 u32 flip_mask;
7267 int ret;
7268
7269 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7270 if (ret)
7271 goto out;
7272
7273 /* Offset into the new buffer for cases of shared fbs between CRTCs */
01f2c773 7274 offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
8c9f3aaf
JB
7275
7276 ret = BEGIN_LP_RING(6);
7277 if (ret)
7278 goto out;
7279
7280 /* Can't queue multiple flips, so wait for the previous
7281 * one to finish before executing the next.
7282 */
7283 if (intel_crtc->plane)
7284 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7285 else
7286 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7287 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
7288 OUT_RING(MI_NOOP);
7289 OUT_RING(MI_DISPLAY_FLIP |
7290 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
01f2c773 7291 OUT_RING(fb->pitches[0]);
8c9f3aaf
JB
7292 OUT_RING(obj->gtt_offset + offset);
7293 OUT_RING(MI_NOOP);
7294 ADVANCE_LP_RING();
7295out:
7296 return ret;
7297}
7298
7299static int intel_gen3_queue_flip(struct drm_device *dev,
7300 struct drm_crtc *crtc,
7301 struct drm_framebuffer *fb,
7302 struct drm_i915_gem_object *obj)
7303{
7304 struct drm_i915_private *dev_priv = dev->dev_private;
7305 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7306 unsigned long offset;
7307 u32 flip_mask;
7308 int ret;
7309
7310 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7311 if (ret)
7312 goto out;
7313
7314 /* Offset into the new buffer for cases of shared fbs between CRTCs */
01f2c773 7315 offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
8c9f3aaf
JB
7316
7317 ret = BEGIN_LP_RING(6);
7318 if (ret)
7319 goto out;
7320
7321 if (intel_crtc->plane)
7322 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7323 else
7324 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7325 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
7326 OUT_RING(MI_NOOP);
7327 OUT_RING(MI_DISPLAY_FLIP_I915 |
7328 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
01f2c773 7329 OUT_RING(fb->pitches[0]);
8c9f3aaf
JB
7330 OUT_RING(obj->gtt_offset + offset);
7331 OUT_RING(MI_NOOP);
7332
7333 ADVANCE_LP_RING();
7334out:
7335 return ret;
7336}
7337
7338static int intel_gen4_queue_flip(struct drm_device *dev,
7339 struct drm_crtc *crtc,
7340 struct drm_framebuffer *fb,
7341 struct drm_i915_gem_object *obj)
7342{
7343 struct drm_i915_private *dev_priv = dev->dev_private;
7344 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7345 uint32_t pf, pipesrc;
7346 int ret;
7347
7348 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7349 if (ret)
7350 goto out;
7351
7352 ret = BEGIN_LP_RING(4);
7353 if (ret)
7354 goto out;
7355
7356 /* i965+ uses the linear or tiled offsets from the
7357 * Display Registers (which do not change across a page-flip)
7358 * so we need only reprogram the base address.
7359 */
7360 OUT_RING(MI_DISPLAY_FLIP |
7361 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
01f2c773 7362 OUT_RING(fb->pitches[0]);
8c9f3aaf
JB
7363 OUT_RING(obj->gtt_offset | obj->tiling_mode);
7364
7365 /* XXX Enabling the panel-fitter across page-flip is so far
7366 * untested on non-native modes, so ignore it for now.
7367 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7368 */
7369 pf = 0;
7370 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7371 OUT_RING(pf | pipesrc);
7372 ADVANCE_LP_RING();
7373out:
7374 return ret;
7375}
7376
7377static int intel_gen6_queue_flip(struct drm_device *dev,
7378 struct drm_crtc *crtc,
7379 struct drm_framebuffer *fb,
7380 struct drm_i915_gem_object *obj)
7381{
7382 struct drm_i915_private *dev_priv = dev->dev_private;
7383 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7384 uint32_t pf, pipesrc;
7385 int ret;
7386
7387 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7388 if (ret)
7389 goto out;
7390
7391 ret = BEGIN_LP_RING(4);
7392 if (ret)
7393 goto out;
7394
7395 OUT_RING(MI_DISPLAY_FLIP |
7396 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
01f2c773 7397 OUT_RING(fb->pitches[0] | obj->tiling_mode);
8c9f3aaf
JB
7398 OUT_RING(obj->gtt_offset);
7399
7400 pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7401 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7402 OUT_RING(pf | pipesrc);
7403 ADVANCE_LP_RING();
7404out:
7405 return ret;
7406}
7407
7c9017e5
JB
7408/*
7409 * On gen7 we currently use the blit ring because (in early silicon at least)
7410 * the render ring doesn't give us interrpts for page flip completion, which
7411 * means clients will hang after the first flip is queued. Fortunately the
7412 * blit ring generates interrupts properly, so use it instead.
7413 */
7414static int intel_gen7_queue_flip(struct drm_device *dev,
7415 struct drm_crtc *crtc,
7416 struct drm_framebuffer *fb,
7417 struct drm_i915_gem_object *obj)
7418{
7419 struct drm_i915_private *dev_priv = dev->dev_private;
7420 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7421 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7422 int ret;
7423
7424 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7425 if (ret)
7426 goto out;
7427
7428 ret = intel_ring_begin(ring, 4);
7429 if (ret)
7430 goto out;
7431
7432 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19));
01f2c773 7433 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7c9017e5
JB
7434 intel_ring_emit(ring, (obj->gtt_offset));
7435 intel_ring_emit(ring, (MI_NOOP));
7436 intel_ring_advance(ring);
7437out:
7438 return ret;
7439}
7440
8c9f3aaf
JB
7441static int intel_default_queue_flip(struct drm_device *dev,
7442 struct drm_crtc *crtc,
7443 struct drm_framebuffer *fb,
7444 struct drm_i915_gem_object *obj)
7445{
7446 return -ENODEV;
7447}
7448
6b95a207
KH
7449static int intel_crtc_page_flip(struct drm_crtc *crtc,
7450 struct drm_framebuffer *fb,
7451 struct drm_pending_vblank_event *event)
7452{
7453 struct drm_device *dev = crtc->dev;
7454 struct drm_i915_private *dev_priv = dev->dev_private;
7455 struct intel_framebuffer *intel_fb;
05394f39 7456 struct drm_i915_gem_object *obj;
6b95a207
KH
7457 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7458 struct intel_unpin_work *work;
8c9f3aaf 7459 unsigned long flags;
52e68630 7460 int ret;
6b95a207
KH
7461
7462 work = kzalloc(sizeof *work, GFP_KERNEL);
7463 if (work == NULL)
7464 return -ENOMEM;
7465
6b95a207
KH
7466 work->event = event;
7467 work->dev = crtc->dev;
7468 intel_fb = to_intel_framebuffer(crtc->fb);
b1b87f6b 7469 work->old_fb_obj = intel_fb->obj;
6b95a207
KH
7470 INIT_WORK(&work->work, intel_unpin_work_fn);
7471
7317c75e
JB
7472 ret = drm_vblank_get(dev, intel_crtc->pipe);
7473 if (ret)
7474 goto free_work;
7475
6b95a207
KH
7476 /* We borrow the event spin lock for protecting unpin_work */
7477 spin_lock_irqsave(&dev->event_lock, flags);
7478 if (intel_crtc->unpin_work) {
7479 spin_unlock_irqrestore(&dev->event_lock, flags);
7480 kfree(work);
7317c75e 7481 drm_vblank_put(dev, intel_crtc->pipe);
468f0b44
CW
7482
7483 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6b95a207
KH
7484 return -EBUSY;
7485 }
7486 intel_crtc->unpin_work = work;
7487 spin_unlock_irqrestore(&dev->event_lock, flags);
7488
7489 intel_fb = to_intel_framebuffer(fb);
7490 obj = intel_fb->obj;
7491
468f0b44 7492 mutex_lock(&dev->struct_mutex);
6b95a207 7493
75dfca80 7494 /* Reference the objects for the scheduled work. */
05394f39
CW
7495 drm_gem_object_reference(&work->old_fb_obj->base);
7496 drm_gem_object_reference(&obj->base);
6b95a207
KH
7497
7498 crtc->fb = fb;
96b099fd 7499
e1f99ce6 7500 work->pending_flip_obj = obj;
e1f99ce6 7501
4e5359cd
SF
7502 work->enable_stall_check = true;
7503
e1f99ce6
CW
7504 /* Block clients from rendering to the new back buffer until
7505 * the flip occurs and the object is no longer visible.
7506 */
05394f39 7507 atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
e1f99ce6 7508
8c9f3aaf
JB
7509 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7510 if (ret)
7511 goto cleanup_pending;
6b95a207 7512
7782de3b 7513 intel_disable_fbc(dev);
6b95a207
KH
7514 mutex_unlock(&dev->struct_mutex);
7515
e5510fac
JB
7516 trace_i915_flip_request(intel_crtc->plane, obj);
7517
6b95a207 7518 return 0;
96b099fd 7519
8c9f3aaf
JB
7520cleanup_pending:
7521 atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
05394f39
CW
7522 drm_gem_object_unreference(&work->old_fb_obj->base);
7523 drm_gem_object_unreference(&obj->base);
96b099fd
CW
7524 mutex_unlock(&dev->struct_mutex);
7525
7526 spin_lock_irqsave(&dev->event_lock, flags);
7527 intel_crtc->unpin_work = NULL;
7528 spin_unlock_irqrestore(&dev->event_lock, flags);
7529
7317c75e
JB
7530 drm_vblank_put(dev, intel_crtc->pipe);
7531free_work:
96b099fd
CW
7532 kfree(work);
7533
7534 return ret;
6b95a207
KH
7535}
7536
47f1c6c9
CW
7537static void intel_sanitize_modesetting(struct drm_device *dev,
7538 int pipe, int plane)
7539{
7540 struct drm_i915_private *dev_priv = dev->dev_private;
7541 u32 reg, val;
7542
7543 if (HAS_PCH_SPLIT(dev))
7544 return;
7545
7546 /* Who knows what state these registers were left in by the BIOS or
7547 * grub?
7548 *
7549 * If we leave the registers in a conflicting state (e.g. with the
7550 * display plane reading from the other pipe than the one we intend
7551 * to use) then when we attempt to teardown the active mode, we will
7552 * not disable the pipes and planes in the correct order -- leaving
7553 * a plane reading from a disabled pipe and possibly leading to
7554 * undefined behaviour.
7555 */
7556
7557 reg = DSPCNTR(plane);
7558 val = I915_READ(reg);
7559
7560 if ((val & DISPLAY_PLANE_ENABLE) == 0)
7561 return;
7562 if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
7563 return;
7564
7565 /* This display plane is active and attached to the other CPU pipe. */
7566 pipe = !pipe;
7567
7568 /* Disable the plane and wait for it to stop reading from the pipe. */
b24e7179
JB
7569 intel_disable_plane(dev_priv, plane, pipe);
7570 intel_disable_pipe(dev_priv, pipe);
47f1c6c9 7571}
79e53945 7572
f6e5b160
CW
7573static void intel_crtc_reset(struct drm_crtc *crtc)
7574{
7575 struct drm_device *dev = crtc->dev;
7576 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7577
7578 /* Reset flags back to the 'unknown' status so that they
7579 * will be correctly set on the initial modeset.
7580 */
7581 intel_crtc->dpms_mode = -1;
7582
7583 /* We need to fix up any BIOS configuration that conflicts with
7584 * our expectations.
7585 */
7586 intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
7587}
7588
7589static struct drm_crtc_helper_funcs intel_helper_funcs = {
7590 .dpms = intel_crtc_dpms,
7591 .mode_fixup = intel_crtc_mode_fixup,
7592 .mode_set = intel_crtc_mode_set,
7593 .mode_set_base = intel_pipe_set_base,
7594 .mode_set_base_atomic = intel_pipe_set_base_atomic,
7595 .load_lut = intel_crtc_load_lut,
7596 .disable = intel_crtc_disable,
7597};
7598
7599static const struct drm_crtc_funcs intel_crtc_funcs = {
7600 .reset = intel_crtc_reset,
7601 .cursor_set = intel_crtc_cursor_set,
7602 .cursor_move = intel_crtc_cursor_move,
7603 .gamma_set = intel_crtc_gamma_set,
7604 .set_config = drm_crtc_helper_set_config,
7605 .destroy = intel_crtc_destroy,
7606 .page_flip = intel_crtc_page_flip,
7607};
7608
b358d0a6 7609static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 7610{
22fd0fab 7611 drm_i915_private_t *dev_priv = dev->dev_private;
79e53945
JB
7612 struct intel_crtc *intel_crtc;
7613 int i;
7614
7615 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
7616 if (intel_crtc == NULL)
7617 return;
7618
7619 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
7620
7621 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
7622 for (i = 0; i < 256; i++) {
7623 intel_crtc->lut_r[i] = i;
7624 intel_crtc->lut_g[i] = i;
7625 intel_crtc->lut_b[i] = i;
7626 }
7627
80824003
JB
7628 /* Swap pipes & planes for FBC on pre-965 */
7629 intel_crtc->pipe = pipe;
7630 intel_crtc->plane = pipe;
e2e767ab 7631 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
28c97730 7632 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 7633 intel_crtc->plane = !pipe;
80824003
JB
7634 }
7635
22fd0fab
JB
7636 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
7637 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
7638 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
7639 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
7640
5d1d0cc8 7641 intel_crtc_reset(&intel_crtc->base);
04dbff52 7642 intel_crtc->active = true; /* force the pipe off on setup_init_config */
5a354204 7643 intel_crtc->bpp = 24; /* default for pre-Ironlake */
7e7d76c3
JB
7644
7645 if (HAS_PCH_SPLIT(dev)) {
4b645f14
JB
7646 if (pipe == 2 && IS_IVYBRIDGE(dev))
7647 intel_crtc->no_pll = true;
7e7d76c3
JB
7648 intel_helper_funcs.prepare = ironlake_crtc_prepare;
7649 intel_helper_funcs.commit = ironlake_crtc_commit;
7650 } else {
7651 intel_helper_funcs.prepare = i9xx_crtc_prepare;
7652 intel_helper_funcs.commit = i9xx_crtc_commit;
7653 }
7654
79e53945
JB
7655 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
7656
652c393a
JB
7657 intel_crtc->busy = false;
7658
7659 setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
7660 (unsigned long)intel_crtc);
79e53945
JB
7661}
7662
08d7b3d1 7663int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 7664 struct drm_file *file)
08d7b3d1
CW
7665{
7666 drm_i915_private_t *dev_priv = dev->dev_private;
7667 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
c05422d5
DV
7668 struct drm_mode_object *drmmode_obj;
7669 struct intel_crtc *crtc;
08d7b3d1
CW
7670
7671 if (!dev_priv) {
7672 DRM_ERROR("called with no initialization\n");
7673 return -EINVAL;
7674 }
7675
c05422d5
DV
7676 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
7677 DRM_MODE_OBJECT_CRTC);
08d7b3d1 7678
c05422d5 7679 if (!drmmode_obj) {
08d7b3d1
CW
7680 DRM_ERROR("no such CRTC id\n");
7681 return -EINVAL;
7682 }
7683
c05422d5
DV
7684 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
7685 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 7686
c05422d5 7687 return 0;
08d7b3d1
CW
7688}
7689
c5e4df33 7690static int intel_encoder_clones(struct drm_device *dev, int type_mask)
79e53945 7691{
4ef69c7a 7692 struct intel_encoder *encoder;
79e53945 7693 int index_mask = 0;
79e53945
JB
7694 int entry = 0;
7695
4ef69c7a
CW
7696 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7697 if (type_mask & encoder->clone_mask)
79e53945
JB
7698 index_mask |= (1 << entry);
7699 entry++;
7700 }
4ef69c7a 7701
79e53945
JB
7702 return index_mask;
7703}
7704
4d302442
CW
7705static bool has_edp_a(struct drm_device *dev)
7706{
7707 struct drm_i915_private *dev_priv = dev->dev_private;
7708
7709 if (!IS_MOBILE(dev))
7710 return false;
7711
7712 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
7713 return false;
7714
7715 if (IS_GEN5(dev) &&
7716 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
7717 return false;
7718
7719 return true;
7720}
7721
79e53945
JB
7722static void intel_setup_outputs(struct drm_device *dev)
7723{
725e30ad 7724 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 7725 struct intel_encoder *encoder;
cb0953d7 7726 bool dpd_is_edp = false;
c5d1b51d 7727 bool has_lvds = false;
79e53945 7728
541998a1 7729 if (IS_MOBILE(dev) && !IS_I830(dev))
c5d1b51d
CW
7730 has_lvds = intel_lvds_init(dev);
7731 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
7732 /* disable the panel fitter on everything but LVDS */
7733 I915_WRITE(PFIT_CONTROL, 0);
7734 }
79e53945 7735
bad720ff 7736 if (HAS_PCH_SPLIT(dev)) {
cb0953d7 7737 dpd_is_edp = intel_dpd_is_edp(dev);
30ad48b7 7738
4d302442 7739 if (has_edp_a(dev))
32f9d658
ZW
7740 intel_dp_init(dev, DP_A);
7741
cb0953d7
AJ
7742 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7743 intel_dp_init(dev, PCH_DP_D);
7744 }
7745
7746 intel_crt_init(dev);
7747
7748 if (HAS_PCH_SPLIT(dev)) {
7749 int found;
7750
30ad48b7 7751 if (I915_READ(HDMIB) & PORT_DETECTED) {
461ed3ca
ZY
7752 /* PCH SDVOB multiplex with HDMIB */
7753 found = intel_sdvo_init(dev, PCH_SDVOB);
30ad48b7
ZW
7754 if (!found)
7755 intel_hdmi_init(dev, HDMIB);
5eb08b69
ZW
7756 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
7757 intel_dp_init(dev, PCH_DP_B);
30ad48b7
ZW
7758 }
7759
7760 if (I915_READ(HDMIC) & PORT_DETECTED)
7761 intel_hdmi_init(dev, HDMIC);
7762
7763 if (I915_READ(HDMID) & PORT_DETECTED)
7764 intel_hdmi_init(dev, HDMID);
7765
5eb08b69
ZW
7766 if (I915_READ(PCH_DP_C) & DP_DETECTED)
7767 intel_dp_init(dev, PCH_DP_C);
7768
cb0953d7 7769 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
5eb08b69
ZW
7770 intel_dp_init(dev, PCH_DP_D);
7771
103a196f 7772 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 7773 bool found = false;
7d57382e 7774
725e30ad 7775 if (I915_READ(SDVOB) & SDVO_DETECTED) {
b01f2c3a 7776 DRM_DEBUG_KMS("probing SDVOB\n");
725e30ad 7777 found = intel_sdvo_init(dev, SDVOB);
b01f2c3a
JB
7778 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
7779 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
725e30ad 7780 intel_hdmi_init(dev, SDVOB);
b01f2c3a 7781 }
27185ae1 7782
b01f2c3a
JB
7783 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
7784 DRM_DEBUG_KMS("probing DP_B\n");
a4fc5ed6 7785 intel_dp_init(dev, DP_B);
b01f2c3a 7786 }
725e30ad 7787 }
13520b05
KH
7788
7789 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 7790
b01f2c3a
JB
7791 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7792 DRM_DEBUG_KMS("probing SDVOC\n");
725e30ad 7793 found = intel_sdvo_init(dev, SDVOC);
b01f2c3a 7794 }
27185ae1
ML
7795
7796 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
7797
b01f2c3a
JB
7798 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
7799 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
725e30ad 7800 intel_hdmi_init(dev, SDVOC);
b01f2c3a
JB
7801 }
7802 if (SUPPORTS_INTEGRATED_DP(dev)) {
7803 DRM_DEBUG_KMS("probing DP_C\n");
a4fc5ed6 7804 intel_dp_init(dev, DP_C);
b01f2c3a 7805 }
725e30ad 7806 }
27185ae1 7807
b01f2c3a
JB
7808 if (SUPPORTS_INTEGRATED_DP(dev) &&
7809 (I915_READ(DP_D) & DP_DETECTED)) {
7810 DRM_DEBUG_KMS("probing DP_D\n");
a4fc5ed6 7811 intel_dp_init(dev, DP_D);
b01f2c3a 7812 }
bad720ff 7813 } else if (IS_GEN2(dev))
79e53945
JB
7814 intel_dvo_init(dev);
7815
103a196f 7816 if (SUPPORTS_TV(dev))
79e53945
JB
7817 intel_tv_init(dev);
7818
4ef69c7a
CW
7819 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7820 encoder->base.possible_crtcs = encoder->crtc_mask;
7821 encoder->base.possible_clones =
7822 intel_encoder_clones(dev, encoder->clone_mask);
79e53945 7823 }
47356eb6 7824
2c7111db
CW
7825 /* disable all the possible outputs/crtcs before entering KMS mode */
7826 drm_helper_disable_unused_functions(dev);
9fb526db
KP
7827
7828 if (HAS_PCH_SPLIT(dev))
7829 ironlake_init_pch_refclk(dev);
79e53945
JB
7830}
7831
7832static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
7833{
7834 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945
JB
7835
7836 drm_framebuffer_cleanup(fb);
05394f39 7837 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
79e53945
JB
7838
7839 kfree(intel_fb);
7840}
7841
7842static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 7843 struct drm_file *file,
79e53945
JB
7844 unsigned int *handle)
7845{
7846 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 7847 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 7848
05394f39 7849 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
7850}
7851
7852static const struct drm_framebuffer_funcs intel_fb_funcs = {
7853 .destroy = intel_user_framebuffer_destroy,
7854 .create_handle = intel_user_framebuffer_create_handle,
7855};
7856
38651674
DA
7857int intel_framebuffer_init(struct drm_device *dev,
7858 struct intel_framebuffer *intel_fb,
308e5bcb 7859 struct drm_mode_fb_cmd2 *mode_cmd,
05394f39 7860 struct drm_i915_gem_object *obj)
79e53945 7861{
79e53945
JB
7862 int ret;
7863
05394f39 7864 if (obj->tiling_mode == I915_TILING_Y)
57cd6508
CW
7865 return -EINVAL;
7866
308e5bcb 7867 if (mode_cmd->pitches[0] & 63)
57cd6508
CW
7868 return -EINVAL;
7869
308e5bcb 7870 switch (mode_cmd->pixel_format) {
04b3924d
VS
7871 case DRM_FORMAT_RGB332:
7872 case DRM_FORMAT_RGB565:
7873 case DRM_FORMAT_XRGB8888:
7874 case DRM_FORMAT_ARGB8888:
7875 case DRM_FORMAT_XRGB2101010:
7876 case DRM_FORMAT_ARGB2101010:
308e5bcb 7877 /* RGB formats are common across chipsets */
b5626747 7878 break;
04b3924d
VS
7879 case DRM_FORMAT_YUYV:
7880 case DRM_FORMAT_UYVY:
7881 case DRM_FORMAT_YVYU:
7882 case DRM_FORMAT_VYUY:
57cd6508
CW
7883 break;
7884 default:
308e5bcb 7885 DRM_ERROR("unsupported pixel format\n");
57cd6508
CW
7886 return -EINVAL;
7887 }
7888
79e53945
JB
7889 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
7890 if (ret) {
7891 DRM_ERROR("framebuffer init failed %d\n", ret);
7892 return ret;
7893 }
7894
7895 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
79e53945 7896 intel_fb->obj = obj;
79e53945
JB
7897 return 0;
7898}
7899
79e53945
JB
7900static struct drm_framebuffer *
7901intel_user_framebuffer_create(struct drm_device *dev,
7902 struct drm_file *filp,
308e5bcb 7903 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 7904{
05394f39 7905 struct drm_i915_gem_object *obj;
79e53945 7906
308e5bcb
JB
7907 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
7908 mode_cmd->handles[0]));
c8725226 7909 if (&obj->base == NULL)
cce13ff7 7910 return ERR_PTR(-ENOENT);
79e53945 7911
d2dff872 7912 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
7913}
7914
79e53945 7915static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 7916 .fb_create = intel_user_framebuffer_create,
eb1f8e4f 7917 .output_poll_changed = intel_fb_output_poll_changed,
79e53945
JB
7918};
7919
05394f39 7920static struct drm_i915_gem_object *
aa40d6bb 7921intel_alloc_context_page(struct drm_device *dev)
9ea8d059 7922{
05394f39 7923 struct drm_i915_gem_object *ctx;
9ea8d059
CW
7924 int ret;
7925
2c34b850
BW
7926 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
7927
aa40d6bb
ZN
7928 ctx = i915_gem_alloc_object(dev, 4096);
7929 if (!ctx) {
9ea8d059
CW
7930 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
7931 return NULL;
7932 }
7933
75e9e915 7934 ret = i915_gem_object_pin(ctx, 4096, true);
9ea8d059
CW
7935 if (ret) {
7936 DRM_ERROR("failed to pin power context: %d\n", ret);
7937 goto err_unref;
7938 }
7939
aa40d6bb 7940 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
9ea8d059
CW
7941 if (ret) {
7942 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
7943 goto err_unpin;
7944 }
9ea8d059 7945
aa40d6bb 7946 return ctx;
9ea8d059
CW
7947
7948err_unpin:
aa40d6bb 7949 i915_gem_object_unpin(ctx);
9ea8d059 7950err_unref:
05394f39 7951 drm_gem_object_unreference(&ctx->base);
9ea8d059
CW
7952 mutex_unlock(&dev->struct_mutex);
7953 return NULL;
7954}
7955
7648fa99
JB
7956bool ironlake_set_drps(struct drm_device *dev, u8 val)
7957{
7958 struct drm_i915_private *dev_priv = dev->dev_private;
7959 u16 rgvswctl;
7960
7961 rgvswctl = I915_READ16(MEMSWCTL);
7962 if (rgvswctl & MEMCTL_CMD_STS) {
7963 DRM_DEBUG("gpu busy, RCS change rejected\n");
7964 return false; /* still busy with another command */
7965 }
7966
7967 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
7968 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
7969 I915_WRITE16(MEMSWCTL, rgvswctl);
7970 POSTING_READ16(MEMSWCTL);
7971
7972 rgvswctl |= MEMCTL_CMD_STS;
7973 I915_WRITE16(MEMSWCTL, rgvswctl);
7974
7975 return true;
7976}
7977
f97108d1
JB
7978void ironlake_enable_drps(struct drm_device *dev)
7979{
7980 struct drm_i915_private *dev_priv = dev->dev_private;
7648fa99 7981 u32 rgvmodectl = I915_READ(MEMMODECTL);
f97108d1 7982 u8 fmax, fmin, fstart, vstart;
f97108d1 7983
ea056c14
JB
7984 /* Enable temp reporting */
7985 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
7986 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
7987
f97108d1
JB
7988 /* 100ms RC evaluation intervals */
7989 I915_WRITE(RCUPEI, 100000);
7990 I915_WRITE(RCDNEI, 100000);
7991
7992 /* Set max/min thresholds to 90ms and 80ms respectively */
7993 I915_WRITE(RCBMAXAVG, 90000);
7994 I915_WRITE(RCBMINAVG, 80000);
7995
7996 I915_WRITE(MEMIHYST, 1);
7997
7998 /* Set up min, max, and cur for interrupt handling */
7999 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
8000 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
8001 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
8002 MEMMODE_FSTART_SHIFT;
7648fa99 8003
f97108d1
JB
8004 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
8005 PXVFREQ_PX_SHIFT;
8006
80dbf4b7 8007 dev_priv->fmax = fmax; /* IPS callback will increase this */
7648fa99
JB
8008 dev_priv->fstart = fstart;
8009
80dbf4b7 8010 dev_priv->max_delay = fstart;
f97108d1
JB
8011 dev_priv->min_delay = fmin;
8012 dev_priv->cur_delay = fstart;
8013
80dbf4b7
JB
8014 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
8015 fmax, fmin, fstart);
7648fa99 8016
f97108d1
JB
8017 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
8018
8019 /*
8020 * Interrupts will be enabled in ironlake_irq_postinstall
8021 */
8022
8023 I915_WRITE(VIDSTART, vstart);
8024 POSTING_READ(VIDSTART);
8025
8026 rgvmodectl |= MEMMODE_SWMODE_EN;
8027 I915_WRITE(MEMMODECTL, rgvmodectl);
8028
481b6af3 8029 if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
913d8d11 8030 DRM_ERROR("stuck trying to change perf mode\n");
f97108d1
JB
8031 msleep(1);
8032
7648fa99 8033 ironlake_set_drps(dev, fstart);
f97108d1 8034
7648fa99
JB
8035 dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
8036 I915_READ(0x112e0);
8037 dev_priv->last_time1 = jiffies_to_msecs(jiffies);
8038 dev_priv->last_count2 = I915_READ(0x112f4);
8039 getrawmonotonic(&dev_priv->last_time2);
f97108d1
JB
8040}
8041
8042void ironlake_disable_drps(struct drm_device *dev)
8043{
8044 struct drm_i915_private *dev_priv = dev->dev_private;
7648fa99 8045 u16 rgvswctl = I915_READ16(MEMSWCTL);
f97108d1
JB
8046
8047 /* Ack interrupts, disable EFC interrupt */
8048 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
8049 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
8050 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
8051 I915_WRITE(DEIIR, DE_PCU_EVENT);
8052 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
8053
8054 /* Go back to the starting frequency */
7648fa99 8055 ironlake_set_drps(dev, dev_priv->fstart);
f97108d1
JB
8056 msleep(1);
8057 rgvswctl |= MEMCTL_CMD_STS;
8058 I915_WRITE(MEMSWCTL, rgvswctl);
8059 msleep(1);
8060
8061}
8062
3b8d8d91
JB
8063void gen6_set_rps(struct drm_device *dev, u8 val)
8064{
8065 struct drm_i915_private *dev_priv = dev->dev_private;
8066 u32 swreq;
8067
8068 swreq = (val & 0x3ff) << 25;
8069 I915_WRITE(GEN6_RPNSWREQ, swreq);
8070}
8071
8072void gen6_disable_rps(struct drm_device *dev)
8073{
8074 struct drm_i915_private *dev_priv = dev->dev_private;
8075
8076 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
8077 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
8078 I915_WRITE(GEN6_PMIER, 0);
6fdd4d98
DV
8079 /* Complete PM interrupt masking here doesn't race with the rps work
8080 * item again unmasking PM interrupts because that is using a different
8081 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
8082 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
4912d041
BW
8083
8084 spin_lock_irq(&dev_priv->rps_lock);
8085 dev_priv->pm_iir = 0;
8086 spin_unlock_irq(&dev_priv->rps_lock);
8087
3b8d8d91
JB
8088 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
8089}
8090
7648fa99
JB
8091static unsigned long intel_pxfreq(u32 vidfreq)
8092{
8093 unsigned long freq;
8094 int div = (vidfreq & 0x3f0000) >> 16;
8095 int post = (vidfreq & 0x3000) >> 12;
8096 int pre = (vidfreq & 0x7);
8097
8098 if (!pre)
8099 return 0;
8100
8101 freq = ((div * 133333) / ((1<<post) * pre));
8102
8103 return freq;
8104}
8105
8106void intel_init_emon(struct drm_device *dev)
8107{
8108 struct drm_i915_private *dev_priv = dev->dev_private;
8109 u32 lcfuse;
8110 u8 pxw[16];
8111 int i;
8112
8113 /* Disable to program */
8114 I915_WRITE(ECR, 0);
8115 POSTING_READ(ECR);
8116
8117 /* Program energy weights for various events */
8118 I915_WRITE(SDEW, 0x15040d00);
8119 I915_WRITE(CSIEW0, 0x007f0000);
8120 I915_WRITE(CSIEW1, 0x1e220004);
8121 I915_WRITE(CSIEW2, 0x04000004);
8122
8123 for (i = 0; i < 5; i++)
8124 I915_WRITE(PEW + (i * 4), 0);
8125 for (i = 0; i < 3; i++)
8126 I915_WRITE(DEW + (i * 4), 0);
8127
8128 /* Program P-state weights to account for frequency power adjustment */
8129 for (i = 0; i < 16; i++) {
8130 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
8131 unsigned long freq = intel_pxfreq(pxvidfreq);
8132 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
8133 PXVFREQ_PX_SHIFT;
8134 unsigned long val;
8135
8136 val = vid * vid;
8137 val *= (freq / 1000);
8138 val *= 255;
8139 val /= (127*127*900);
8140 if (val > 0xff)
8141 DRM_ERROR("bad pxval: %ld\n", val);
8142 pxw[i] = val;
8143 }
8144 /* Render standby states get 0 weight */
8145 pxw[14] = 0;
8146 pxw[15] = 0;
8147
8148 for (i = 0; i < 4; i++) {
8149 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
8150 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
8151 I915_WRITE(PXW + (i * 4), val);
8152 }
8153
8154 /* Adjust magic regs to magic values (more experimental results) */
8155 I915_WRITE(OGW0, 0);
8156 I915_WRITE(OGW1, 0);
8157 I915_WRITE(EG0, 0x00007f00);
8158 I915_WRITE(EG1, 0x0000000e);
8159 I915_WRITE(EG2, 0x000e0000);
8160 I915_WRITE(EG3, 0x68000300);
8161 I915_WRITE(EG4, 0x42000000);
8162 I915_WRITE(EG5, 0x00140031);
8163 I915_WRITE(EG6, 0);
8164 I915_WRITE(EG7, 0);
8165
8166 for (i = 0; i < 8; i++)
8167 I915_WRITE(PXWL + (i * 4), 0);
8168
8169 /* Enable PMON + select events */
8170 I915_WRITE(ECR, 0x80000019);
8171
8172 lcfuse = I915_READ(LCFUSE02);
8173
8174 dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
8175}
8176
c0f372b3
KP
8177static bool intel_enable_rc6(struct drm_device *dev)
8178{
8179 /*
8180 * Respect the kernel parameter if it is set
8181 */
8182 if (i915_enable_rc6 >= 0)
8183 return i915_enable_rc6;
8184
8185 /*
8186 * Disable RC6 on Ironlake
8187 */
8188 if (INTEL_INFO(dev)->gen == 5)
8189 return 0;
8190
8191 /*
8192 * Enable rc6 on Sandybridge if DMA remapping is disabled
8193 */
8194 if (INTEL_INFO(dev)->gen == 6) {
8195 DRM_DEBUG_DRIVER("Sandybridge: intel_iommu_enabled %s -- RC6 %sabled\n",
8196 intel_iommu_enabled ? "true" : "false",
8197 !intel_iommu_enabled ? "en" : "dis");
8198 return !intel_iommu_enabled;
8199 }
8200 DRM_DEBUG_DRIVER("RC6 enabled\n");
8201 return 1;
8202}
8203
3b8d8d91 8204void gen6_enable_rps(struct drm_i915_private *dev_priv)
8fd26859 8205{
a6044e23
JB
8206 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
8207 u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
7df8721b 8208 u32 pcu_mbox, rc6_mask = 0;
a6044e23 8209 int cur_freq, min_freq, max_freq;
8fd26859
CW
8210 int i;
8211
8212 /* Here begins a magic sequence of register writes to enable
8213 * auto-downclocking.
8214 *
8215 * Perhaps there might be some value in exposing these to
8216 * userspace...
8217 */
8218 I915_WRITE(GEN6_RC_STATE, 0);
d1ebd816 8219 mutex_lock(&dev_priv->dev->struct_mutex);
fcca7926 8220 gen6_gt_force_wake_get(dev_priv);
8fd26859 8221
3b8d8d91 8222 /* disable the counters and set deterministic thresholds */
8fd26859
CW
8223 I915_WRITE(GEN6_RC_CONTROL, 0);
8224
8225 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
8226 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
8227 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
8228 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
8229 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
8230
8231 for (i = 0; i < I915_NUM_RINGS; i++)
8232 I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
8233
8234 I915_WRITE(GEN6_RC_SLEEP, 0);
8235 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
8236 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
8237 I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
8238 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
8239
c0f372b3 8240 if (intel_enable_rc6(dev_priv->dev))
7df8721b
JB
8241 rc6_mask = GEN6_RC_CTL_RC6p_ENABLE |
8242 GEN6_RC_CTL_RC6_ENABLE;
8243
8fd26859 8244 I915_WRITE(GEN6_RC_CONTROL,
7df8721b 8245 rc6_mask |
9c3d2f7f 8246 GEN6_RC_CTL_EI_MODE(1) |
8fd26859
CW
8247 GEN6_RC_CTL_HW_ENABLE);
8248
3b8d8d91 8249 I915_WRITE(GEN6_RPNSWREQ,
8fd26859
CW
8250 GEN6_FREQUENCY(10) |
8251 GEN6_OFFSET(0) |
8252 GEN6_AGGRESSIVE_TURBO);
8253 I915_WRITE(GEN6_RC_VIDEO_FREQ,
8254 GEN6_FREQUENCY(12));
8255
8256 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
8257 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
8258 18 << 24 |
8259 6 << 16);
ccab5c82
JB
8260 I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
8261 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
8fd26859 8262 I915_WRITE(GEN6_RP_UP_EI, 100000);
ccab5c82 8263 I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
8fd26859
CW
8264 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
8265 I915_WRITE(GEN6_RP_CONTROL,
8266 GEN6_RP_MEDIA_TURBO |
6ed55ee7 8267 GEN6_RP_MEDIA_HW_MODE |
8fd26859
CW
8268 GEN6_RP_MEDIA_IS_GFX |
8269 GEN6_RP_ENABLE |
ccab5c82
JB
8270 GEN6_RP_UP_BUSY_AVG |
8271 GEN6_RP_DOWN_IDLE_CONT);
8fd26859
CW
8272
8273 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8274 500))
8275 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
8276
8277 I915_WRITE(GEN6_PCODE_DATA, 0);
8278 I915_WRITE(GEN6_PCODE_MAILBOX,
8279 GEN6_PCODE_READY |
8280 GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
8281 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8282 500))
8283 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
8284
a6044e23
JB
8285 min_freq = (rp_state_cap & 0xff0000) >> 16;
8286 max_freq = rp_state_cap & 0xff;
8287 cur_freq = (gt_perf_status & 0xff00) >> 8;
8288
8289 /* Check for overclock support */
8290 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8291 500))
8292 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
8293 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
8294 pcu_mbox = I915_READ(GEN6_PCODE_DATA);
8295 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8296 500))
8297 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
8298 if (pcu_mbox & (1<<31)) { /* OC supported */
8299 max_freq = pcu_mbox & 0xff;
e281fcaa 8300 DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
a6044e23
JB
8301 }
8302
8303 /* In units of 100MHz */
8304 dev_priv->max_delay = max_freq;
8305 dev_priv->min_delay = min_freq;
8306 dev_priv->cur_delay = cur_freq;
8307
8fd26859
CW
8308 /* requires MSI enabled */
8309 I915_WRITE(GEN6_PMIER,
8310 GEN6_PM_MBOX_EVENT |
8311 GEN6_PM_THERMAL_EVENT |
8312 GEN6_PM_RP_DOWN_TIMEOUT |
8313 GEN6_PM_RP_UP_THRESHOLD |
8314 GEN6_PM_RP_DOWN_THRESHOLD |
8315 GEN6_PM_RP_UP_EI_EXPIRED |
8316 GEN6_PM_RP_DOWN_EI_EXPIRED);
4912d041
BW
8317 spin_lock_irq(&dev_priv->rps_lock);
8318 WARN_ON(dev_priv->pm_iir != 0);
3b8d8d91 8319 I915_WRITE(GEN6_PMIMR, 0);
4912d041 8320 spin_unlock_irq(&dev_priv->rps_lock);
3b8d8d91
JB
8321 /* enable all PM interrupts */
8322 I915_WRITE(GEN6_PMINTRMSK, 0);
8fd26859 8323
fcca7926 8324 gen6_gt_force_wake_put(dev_priv);
d1ebd816 8325 mutex_unlock(&dev_priv->dev->struct_mutex);
8fd26859
CW
8326}
8327
23b2f8bb
JB
8328void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
8329{
8330 int min_freq = 15;
8331 int gpu_freq, ia_freq, max_ia_freq;
8332 int scaling_factor = 180;
8333
8334 max_ia_freq = cpufreq_quick_get_max(0);
8335 /*
8336 * Default to measured freq if none found, PCU will ensure we don't go
8337 * over
8338 */
8339 if (!max_ia_freq)
8340 max_ia_freq = tsc_khz;
8341
8342 /* Convert from kHz to MHz */
8343 max_ia_freq /= 1000;
8344
8345 mutex_lock(&dev_priv->dev->struct_mutex);
8346
8347 /*
8348 * For each potential GPU frequency, load a ring frequency we'd like
8349 * to use for memory access. We do this by specifying the IA frequency
8350 * the PCU should use as a reference to determine the ring frequency.
8351 */
8352 for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
8353 gpu_freq--) {
8354 int diff = dev_priv->max_delay - gpu_freq;
8355
8356 /*
8357 * For GPU frequencies less than 750MHz, just use the lowest
8358 * ring freq.
8359 */
8360 if (gpu_freq < min_freq)
8361 ia_freq = 800;
8362 else
8363 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
8364 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
8365
8366 I915_WRITE(GEN6_PCODE_DATA,
8367 (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
8368 gpu_freq);
8369 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
8370 GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
8371 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
8372 GEN6_PCODE_READY) == 0, 10)) {
8373 DRM_ERROR("pcode write of freq table timed out\n");
8374 continue;
8375 }
8376 }
8377
8378 mutex_unlock(&dev_priv->dev->struct_mutex);
8379}
8380
6067aaea
JB
8381static void ironlake_init_clock_gating(struct drm_device *dev)
8382{
8383 struct drm_i915_private *dev_priv = dev->dev_private;
8384 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8385
8386 /* Required for FBC */
8387 dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
8388 DPFCRUNIT_CLOCK_GATE_DISABLE |
8389 DPFDUNIT_CLOCK_GATE_DISABLE;
8390 /* Required for CxSR */
8391 dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
8392
8393 I915_WRITE(PCH_3DCGDIS0,
8394 MARIUNIT_CLOCK_GATE_DISABLE |
8395 SVSMUNIT_CLOCK_GATE_DISABLE);
8396 I915_WRITE(PCH_3DCGDIS1,
8397 VFMUNIT_CLOCK_GATE_DISABLE);
8398
8399 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8400
6067aaea
JB
8401 /*
8402 * According to the spec the following bits should be set in
8403 * order to enable memory self-refresh
8404 * The bit 22/21 of 0x42004
8405 * The bit 5 of 0x42020
8406 * The bit 15 of 0x45000
8407 */
8408 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8409 (I915_READ(ILK_DISPLAY_CHICKEN2) |
8410 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8411 I915_WRITE(ILK_DSPCLK_GATE,
8412 (I915_READ(ILK_DSPCLK_GATE) |
8413 ILK_DPARB_CLK_GATE));
8414 I915_WRITE(DISP_ARB_CTL,
8415 (I915_READ(DISP_ARB_CTL) |
8416 DISP_FBC_WM_DIS));
8417 I915_WRITE(WM3_LP_ILK, 0);
8418 I915_WRITE(WM2_LP_ILK, 0);
8419 I915_WRITE(WM1_LP_ILK, 0);
8420
8421 /*
8422 * Based on the document from hardware guys the following bits
8423 * should be set unconditionally in order to enable FBC.
8424 * The bit 22 of 0x42000
8425 * The bit 22 of 0x42004
8426 * The bit 7,8,9 of 0x42020.
8427 */
8428 if (IS_IRONLAKE_M(dev)) {
8429 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8430 I915_READ(ILK_DISPLAY_CHICKEN1) |
8431 ILK_FBCQ_DIS);
8432 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8433 I915_READ(ILK_DISPLAY_CHICKEN2) |
8434 ILK_DPARB_GATE);
8435 I915_WRITE(ILK_DSPCLK_GATE,
8436 I915_READ(ILK_DSPCLK_GATE) |
8437 ILK_DPFC_DIS1 |
8438 ILK_DPFC_DIS2 |
8439 ILK_CLK_FBC);
8440 }
8441
8442 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8443 I915_READ(ILK_DISPLAY_CHICKEN2) |
8444 ILK_ELPIN_409_SELECT);
8445 I915_WRITE(_3D_CHICKEN2,
8446 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
8447 _3D_CHICKEN2_WM_READ_PIPELINED);
8fd26859
CW
8448}
8449
6067aaea 8450static void gen6_init_clock_gating(struct drm_device *dev)
652c393a
JB
8451{
8452 struct drm_i915_private *dev_priv = dev->dev_private;
9db4a9c7 8453 int pipe;
6067aaea
JB
8454 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8455
8456 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
652c393a 8457
6067aaea
JB
8458 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8459 I915_READ(ILK_DISPLAY_CHICKEN2) |
8460 ILK_ELPIN_409_SELECT);
8956c8bb 8461
6067aaea
JB
8462 I915_WRITE(WM3_LP_ILK, 0);
8463 I915_WRITE(WM2_LP_ILK, 0);
8464 I915_WRITE(WM1_LP_ILK, 0);
652c393a 8465
406478dc
EA
8466 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
8467 * gating disable must be set. Failure to set it results in
8468 * flickering pixels due to Z write ordering failures after
8469 * some amount of runtime in the Mesa "fire" demo, and Unigine
8470 * Sanctuary and Tropics, and apparently anything else with
8471 * alpha test or pixel discard.
9ca1d10d
EA
8472 *
8473 * According to the spec, bit 11 (RCCUNIT) must also be set,
8474 * but we didn't debug actual testcases to find it out.
406478dc 8475 */
9ca1d10d
EA
8476 I915_WRITE(GEN6_UCGCTL2,
8477 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
8478 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
406478dc 8479
652c393a 8480 /*
6067aaea
JB
8481 * According to the spec the following bits should be
8482 * set in order to enable memory self-refresh and fbc:
8483 * The bit21 and bit22 of 0x42000
8484 * The bit21 and bit22 of 0x42004
8485 * The bit5 and bit7 of 0x42020
8486 * The bit14 of 0x70180
8487 * The bit14 of 0x71180
652c393a 8488 */
6067aaea
JB
8489 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8490 I915_READ(ILK_DISPLAY_CHICKEN1) |
8491 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
8492 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8493 I915_READ(ILK_DISPLAY_CHICKEN2) |
8494 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8495 I915_WRITE(ILK_DSPCLK_GATE,
8496 I915_READ(ILK_DSPCLK_GATE) |
8497 ILK_DPARB_CLK_GATE |
8498 ILK_DPFD_CLK_GATE);
8956c8bb 8499
d74362c9 8500 for_each_pipe(pipe) {
6067aaea
JB
8501 I915_WRITE(DSPCNTR(pipe),
8502 I915_READ(DSPCNTR(pipe)) |
8503 DISPPLANE_TRICKLE_FEED_DISABLE);
d74362c9
KP
8504 intel_flush_display_plane(dev_priv, pipe);
8505 }
6067aaea 8506}
8956c8bb 8507
28963a3e
JB
8508static void ivybridge_init_clock_gating(struct drm_device *dev)
8509{
8510 struct drm_i915_private *dev_priv = dev->dev_private;
8511 int pipe;
8512 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
7f8a8569 8513
28963a3e 8514 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
382b0936 8515
28963a3e
JB
8516 I915_WRITE(WM3_LP_ILK, 0);
8517 I915_WRITE(WM2_LP_ILK, 0);
8518 I915_WRITE(WM1_LP_ILK, 0);
de6e2eaf 8519
28963a3e 8520 I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
67e92af0 8521
116ac8d2
EA
8522 I915_WRITE(IVB_CHICKEN3,
8523 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
8524 CHICKEN3_DGMG_DONE_FIX_DISABLE);
8525
d74362c9 8526 for_each_pipe(pipe) {
28963a3e
JB
8527 I915_WRITE(DSPCNTR(pipe),
8528 I915_READ(DSPCNTR(pipe)) |
8529 DISPPLANE_TRICKLE_FEED_DISABLE);
d74362c9
KP
8530 intel_flush_display_plane(dev_priv, pipe);
8531 }
28963a3e
JB
8532}
8533
6067aaea
JB
8534static void g4x_init_clock_gating(struct drm_device *dev)
8535{
8536 struct drm_i915_private *dev_priv = dev->dev_private;
8537 uint32_t dspclk_gate;
8fd26859 8538
6067aaea
JB
8539 I915_WRITE(RENCLK_GATE_D1, 0);
8540 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
8541 GS_UNIT_CLOCK_GATE_DISABLE |
8542 CL_UNIT_CLOCK_GATE_DISABLE);
8543 I915_WRITE(RAMCLK_GATE_D, 0);
8544 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
8545 OVRUNIT_CLOCK_GATE_DISABLE |
8546 OVCUNIT_CLOCK_GATE_DISABLE;
8547 if (IS_GM45(dev))
8548 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
8549 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
8550}
1398261a 8551
6067aaea
JB
8552static void crestline_init_clock_gating(struct drm_device *dev)
8553{
8554 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 8555
6067aaea
JB
8556 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
8557 I915_WRITE(RENCLK_GATE_D2, 0);
8558 I915_WRITE(DSPCLK_GATE_D, 0);
8559 I915_WRITE(RAMCLK_GATE_D, 0);
8560 I915_WRITE16(DEUC, 0);
8561}
652c393a 8562
6067aaea
JB
8563static void broadwater_init_clock_gating(struct drm_device *dev)
8564{
8565 struct drm_i915_private *dev_priv = dev->dev_private;
8566
8567 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
8568 I965_RCC_CLOCK_GATE_DISABLE |
8569 I965_RCPB_CLOCK_GATE_DISABLE |
8570 I965_ISC_CLOCK_GATE_DISABLE |
8571 I965_FBC_CLOCK_GATE_DISABLE);
8572 I915_WRITE(RENCLK_GATE_D2, 0);
8573}
8574
8575static void gen3_init_clock_gating(struct drm_device *dev)
8576{
8577 struct drm_i915_private *dev_priv = dev->dev_private;
8578 u32 dstate = I915_READ(D_STATE);
8579
8580 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
8581 DSTATE_DOT_CLOCK_GATING;
8582 I915_WRITE(D_STATE, dstate);
8583}
8584
8585static void i85x_init_clock_gating(struct drm_device *dev)
8586{
8587 struct drm_i915_private *dev_priv = dev->dev_private;
8588
8589 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
8590}
8591
8592static void i830_init_clock_gating(struct drm_device *dev)
8593{
8594 struct drm_i915_private *dev_priv = dev->dev_private;
8595
8596 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
652c393a
JB
8597}
8598
645c62a5
JB
8599static void ibx_init_clock_gating(struct drm_device *dev)
8600{
8601 struct drm_i915_private *dev_priv = dev->dev_private;
8602
8603 /*
8604 * On Ibex Peak and Cougar Point, we need to disable clock
8605 * gating for the panel power sequencer or it will fail to
8606 * start up when no ports are active.
8607 */
8608 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8609}
8610
8611static void cpt_init_clock_gating(struct drm_device *dev)
8612{
8613 struct drm_i915_private *dev_priv = dev->dev_private;
3bcf603f 8614 int pipe;
645c62a5
JB
8615
8616 /*
8617 * On Ibex Peak and Cougar Point, we need to disable clock
8618 * gating for the panel power sequencer or it will fail to
8619 * start up when no ports are active.
8620 */
8621 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8622 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
8623 DPLS_EDP_PPS_FIX_DIS);
3bcf603f
JB
8624 /* Without this, mode sets may fail silently on FDI */
8625 for_each_pipe(pipe)
8626 I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS);
652c393a
JB
8627}
8628
ac668088 8629static void ironlake_teardown_rc6(struct drm_device *dev)
0cdab21f
CW
8630{
8631 struct drm_i915_private *dev_priv = dev->dev_private;
8632
8633 if (dev_priv->renderctx) {
ac668088
CW
8634 i915_gem_object_unpin(dev_priv->renderctx);
8635 drm_gem_object_unreference(&dev_priv->renderctx->base);
0cdab21f
CW
8636 dev_priv->renderctx = NULL;
8637 }
8638
8639 if (dev_priv->pwrctx) {
ac668088
CW
8640 i915_gem_object_unpin(dev_priv->pwrctx);
8641 drm_gem_object_unreference(&dev_priv->pwrctx->base);
8642 dev_priv->pwrctx = NULL;
8643 }
8644}
8645
8646static void ironlake_disable_rc6(struct drm_device *dev)
8647{
8648 struct drm_i915_private *dev_priv = dev->dev_private;
8649
8650 if (I915_READ(PWRCTXA)) {
8651 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
8652 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
8653 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
8654 50);
0cdab21f
CW
8655
8656 I915_WRITE(PWRCTXA, 0);
8657 POSTING_READ(PWRCTXA);
8658
ac668088
CW
8659 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
8660 POSTING_READ(RSTDBYCTL);
0cdab21f 8661 }
ac668088 8662
99507307 8663 ironlake_teardown_rc6(dev);
0cdab21f
CW
8664}
8665
ac668088 8666static int ironlake_setup_rc6(struct drm_device *dev)
d5bb081b
JB
8667{
8668 struct drm_i915_private *dev_priv = dev->dev_private;
8669
ac668088
CW
8670 if (dev_priv->renderctx == NULL)
8671 dev_priv->renderctx = intel_alloc_context_page(dev);
8672 if (!dev_priv->renderctx)
8673 return -ENOMEM;
8674
8675 if (dev_priv->pwrctx == NULL)
8676 dev_priv->pwrctx = intel_alloc_context_page(dev);
8677 if (!dev_priv->pwrctx) {
8678 ironlake_teardown_rc6(dev);
8679 return -ENOMEM;
8680 }
8681
8682 return 0;
d5bb081b
JB
8683}
8684
8685void ironlake_enable_rc6(struct drm_device *dev)
8686{
8687 struct drm_i915_private *dev_priv = dev->dev_private;
8688 int ret;
8689
ac668088
CW
8690 /* rc6 disabled by default due to repeated reports of hanging during
8691 * boot and resume.
8692 */
c0f372b3 8693 if (!intel_enable_rc6(dev))
ac668088
CW
8694 return;
8695
2c34b850 8696 mutex_lock(&dev->struct_mutex);
ac668088 8697 ret = ironlake_setup_rc6(dev);
2c34b850
BW
8698 if (ret) {
8699 mutex_unlock(&dev->struct_mutex);
ac668088 8700 return;
2c34b850 8701 }
ac668088 8702
d5bb081b
JB
8703 /*
8704 * GPU can automatically power down the render unit if given a page
8705 * to save state.
8706 */
8707 ret = BEGIN_LP_RING(6);
8708 if (ret) {
ac668088 8709 ironlake_teardown_rc6(dev);
2c34b850 8710 mutex_unlock(&dev->struct_mutex);
d5bb081b
JB
8711 return;
8712 }
ac668088 8713
d5bb081b
JB
8714 OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
8715 OUT_RING(MI_SET_CONTEXT);
8716 OUT_RING(dev_priv->renderctx->gtt_offset |
8717 MI_MM_SPACE_GTT |
8718 MI_SAVE_EXT_STATE_EN |
8719 MI_RESTORE_EXT_STATE_EN |
8720 MI_RESTORE_INHIBIT);
8721 OUT_RING(MI_SUSPEND_FLUSH);
8722 OUT_RING(MI_NOOP);
8723 OUT_RING(MI_FLUSH);
8724 ADVANCE_LP_RING();
8725
4a246cfc
BW
8726 /*
8727 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
8728 * does an implicit flush, combined with MI_FLUSH above, it should be
8729 * safe to assume that renderctx is valid
8730 */
8731 ret = intel_wait_ring_idle(LP_RING(dev_priv));
8732 if (ret) {
8733 DRM_ERROR("failed to enable ironlake power power savings\n");
8734 ironlake_teardown_rc6(dev);
8735 mutex_unlock(&dev->struct_mutex);
8736 return;
8737 }
8738
d5bb081b
JB
8739 I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
8740 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2c34b850 8741 mutex_unlock(&dev->struct_mutex);
d5bb081b
JB
8742}
8743
645c62a5
JB
8744void intel_init_clock_gating(struct drm_device *dev)
8745{
8746 struct drm_i915_private *dev_priv = dev->dev_private;
8747
8748 dev_priv->display.init_clock_gating(dev);
8749
8750 if (dev_priv->display.init_pch_clock_gating)
8751 dev_priv->display.init_pch_clock_gating(dev);
8752}
ac668088 8753
e70236a8
JB
8754/* Set up chip specific display functions */
8755static void intel_init_display(struct drm_device *dev)
8756{
8757 struct drm_i915_private *dev_priv = dev->dev_private;
8758
8759 /* We always want a DPMS function */
f564048e 8760 if (HAS_PCH_SPLIT(dev)) {
f2b115e6 8761 dev_priv->display.dpms = ironlake_crtc_dpms;
f564048e 8762 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
17638cd6 8763 dev_priv->display.update_plane = ironlake_update_plane;
f564048e 8764 } else {
e70236a8 8765 dev_priv->display.dpms = i9xx_crtc_dpms;
f564048e 8766 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
17638cd6 8767 dev_priv->display.update_plane = i9xx_update_plane;
f564048e 8768 }
e70236a8 8769
ee5382ae 8770 if (I915_HAS_FBC(dev)) {
9c04f015 8771 if (HAS_PCH_SPLIT(dev)) {
b52eb4dc
ZY
8772 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
8773 dev_priv->display.enable_fbc = ironlake_enable_fbc;
8774 dev_priv->display.disable_fbc = ironlake_disable_fbc;
8775 } else if (IS_GM45(dev)) {
74dff282
JB
8776 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
8777 dev_priv->display.enable_fbc = g4x_enable_fbc;
8778 dev_priv->display.disable_fbc = g4x_disable_fbc;
a6c45cf0 8779 } else if (IS_CRESTLINE(dev)) {
e70236a8
JB
8780 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
8781 dev_priv->display.enable_fbc = i8xx_enable_fbc;
8782 dev_priv->display.disable_fbc = i8xx_disable_fbc;
8783 }
74dff282 8784 /* 855GM needs testing */
e70236a8
JB
8785 }
8786
8787 /* Returns the core display clock speed */
0206e353 8788 if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
e70236a8
JB
8789 dev_priv->display.get_display_clock_speed =
8790 i945_get_display_clock_speed;
8791 else if (IS_I915G(dev))
8792 dev_priv->display.get_display_clock_speed =
8793 i915_get_display_clock_speed;
f2b115e6 8794 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
e70236a8
JB
8795 dev_priv->display.get_display_clock_speed =
8796 i9xx_misc_get_display_clock_speed;
8797 else if (IS_I915GM(dev))
8798 dev_priv->display.get_display_clock_speed =
8799 i915gm_get_display_clock_speed;
8800 else if (IS_I865G(dev))
8801 dev_priv->display.get_display_clock_speed =
8802 i865_get_display_clock_speed;
f0f8a9ce 8803 else if (IS_I85X(dev))
e70236a8
JB
8804 dev_priv->display.get_display_clock_speed =
8805 i855_get_display_clock_speed;
8806 else /* 852, 830 */
8807 dev_priv->display.get_display_clock_speed =
8808 i830_get_display_clock_speed;
8809
8810 /* For FIFO watermark updates */
7f8a8569 8811 if (HAS_PCH_SPLIT(dev)) {
8d715f00
KP
8812 dev_priv->display.force_wake_get = __gen6_gt_force_wake_get;
8813 dev_priv->display.force_wake_put = __gen6_gt_force_wake_put;
8814
8815 /* IVB configs may use multi-threaded forcewake */
8816 if (IS_IVYBRIDGE(dev)) {
8817 u32 ecobus;
8818
c7dffff7
KP
8819 /* A small trick here - if the bios hasn't configured MT forcewake,
8820 * and if the device is in RC6, then force_wake_mt_get will not wake
8821 * the device and the ECOBUS read will return zero. Which will be
8822 * (correctly) interpreted by the test below as MT forcewake being
8823 * disabled.
8824 */
8d715f00
KP
8825 mutex_lock(&dev->struct_mutex);
8826 __gen6_gt_force_wake_mt_get(dev_priv);
c7dffff7 8827 ecobus = I915_READ_NOTRACE(ECOBUS);
8d715f00
KP
8828 __gen6_gt_force_wake_mt_put(dev_priv);
8829 mutex_unlock(&dev->struct_mutex);
8830
8831 if (ecobus & FORCEWAKE_MT_ENABLE) {
8832 DRM_DEBUG_KMS("Using MT version of forcewake\n");
8833 dev_priv->display.force_wake_get =
8834 __gen6_gt_force_wake_mt_get;
8835 dev_priv->display.force_wake_put =
8836 __gen6_gt_force_wake_mt_put;
8837 }
8838 }
8839
645c62a5
JB
8840 if (HAS_PCH_IBX(dev))
8841 dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
8842 else if (HAS_PCH_CPT(dev))
8843 dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
8844
f00a3ddf 8845 if (IS_GEN5(dev)) {
7f8a8569
ZW
8846 if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
8847 dev_priv->display.update_wm = ironlake_update_wm;
8848 else {
8849 DRM_DEBUG_KMS("Failed to get proper latency. "
8850 "Disable CxSR\n");
8851 dev_priv->display.update_wm = NULL;
1398261a 8852 }
674cf967 8853 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
6067aaea 8854 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
e0dac65e 8855 dev_priv->display.write_eld = ironlake_write_eld;
1398261a
YL
8856 } else if (IS_GEN6(dev)) {
8857 if (SNB_READ_WM0_LATENCY()) {
8858 dev_priv->display.update_wm = sandybridge_update_wm;
b840d907 8859 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
1398261a
YL
8860 } else {
8861 DRM_DEBUG_KMS("Failed to read display plane latency. "
8862 "Disable CxSR\n");
8863 dev_priv->display.update_wm = NULL;
7f8a8569 8864 }
674cf967 8865 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
6067aaea 8866 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
e0dac65e 8867 dev_priv->display.write_eld = ironlake_write_eld;
357555c0
JB
8868 } else if (IS_IVYBRIDGE(dev)) {
8869 /* FIXME: detect B0+ stepping and use auto training */
8870 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
fe100d4d
JB
8871 if (SNB_READ_WM0_LATENCY()) {
8872 dev_priv->display.update_wm = sandybridge_update_wm;
b840d907 8873 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
fe100d4d
JB
8874 } else {
8875 DRM_DEBUG_KMS("Failed to read display plane latency. "
8876 "Disable CxSR\n");
8877 dev_priv->display.update_wm = NULL;
8878 }
28963a3e 8879 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
e0dac65e 8880 dev_priv->display.write_eld = ironlake_write_eld;
7f8a8569
ZW
8881 } else
8882 dev_priv->display.update_wm = NULL;
8883 } else if (IS_PINEVIEW(dev)) {
d4294342 8884 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
95534263 8885 dev_priv->is_ddr3,
d4294342
ZY
8886 dev_priv->fsb_freq,
8887 dev_priv->mem_freq)) {
8888 DRM_INFO("failed to find known CxSR latency "
95534263 8889 "(found ddr%s fsb freq %d, mem freq %d), "
d4294342 8890 "disabling CxSR\n",
0206e353 8891 (dev_priv->is_ddr3 == 1) ? "3" : "2",
d4294342
ZY
8892 dev_priv->fsb_freq, dev_priv->mem_freq);
8893 /* Disable CxSR and never update its watermark again */
8894 pineview_disable_cxsr(dev);
8895 dev_priv->display.update_wm = NULL;
8896 } else
8897 dev_priv->display.update_wm = pineview_update_wm;
95e0ee92 8898 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6067aaea 8899 } else if (IS_G4X(dev)) {
e0dac65e 8900 dev_priv->display.write_eld = g4x_write_eld;
e70236a8 8901 dev_priv->display.update_wm = g4x_update_wm;
6067aaea
JB
8902 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
8903 } else if (IS_GEN4(dev)) {
e70236a8 8904 dev_priv->display.update_wm = i965_update_wm;
6067aaea
JB
8905 if (IS_CRESTLINE(dev))
8906 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
8907 else if (IS_BROADWATER(dev))
8908 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
8909 } else if (IS_GEN3(dev)) {
e70236a8
JB
8910 dev_priv->display.update_wm = i9xx_update_wm;
8911 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
6067aaea
JB
8912 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
8913 } else if (IS_I865G(dev)) {
8914 dev_priv->display.update_wm = i830_update_wm;
8915 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
8916 dev_priv->display.get_fifo_size = i830_get_fifo_size;
8f4695ed
AJ
8917 } else if (IS_I85X(dev)) {
8918 dev_priv->display.update_wm = i9xx_update_wm;
8919 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
6067aaea 8920 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
e70236a8 8921 } else {
8f4695ed 8922 dev_priv->display.update_wm = i830_update_wm;
6067aaea 8923 dev_priv->display.init_clock_gating = i830_init_clock_gating;
8f4695ed 8924 if (IS_845G(dev))
e70236a8
JB
8925 dev_priv->display.get_fifo_size = i845_get_fifo_size;
8926 else
8927 dev_priv->display.get_fifo_size = i830_get_fifo_size;
e70236a8 8928 }
8c9f3aaf
JB
8929
8930 /* Default just returns -ENODEV to indicate unsupported */
8931 dev_priv->display.queue_flip = intel_default_queue_flip;
8932
8933 switch (INTEL_INFO(dev)->gen) {
8934 case 2:
8935 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8936 break;
8937
8938 case 3:
8939 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8940 break;
8941
8942 case 4:
8943 case 5:
8944 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8945 break;
8946
8947 case 6:
8948 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8949 break;
7c9017e5
JB
8950 case 7:
8951 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8952 break;
8c9f3aaf 8953 }
e70236a8
JB
8954}
8955
b690e96c
JB
8956/*
8957 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8958 * resume, or other times. This quirk makes sure that's the case for
8959 * affected systems.
8960 */
0206e353 8961static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
8962{
8963 struct drm_i915_private *dev_priv = dev->dev_private;
8964
8965 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8966 DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
8967}
8968
435793df
KP
8969/*
8970 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8971 */
8972static void quirk_ssc_force_disable(struct drm_device *dev)
8973{
8974 struct drm_i915_private *dev_priv = dev->dev_private;
8975 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8976}
8977
b690e96c
JB
8978struct intel_quirk {
8979 int device;
8980 int subsystem_vendor;
8981 int subsystem_device;
8982 void (*hook)(struct drm_device *dev);
8983};
8984
8985struct intel_quirk intel_quirks[] = {
8986 /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
8987 { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
8988 /* HP Mini needs pipe A force quirk (LP: #322104) */
0206e353 8989 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
b690e96c
JB
8990
8991 /* Thinkpad R31 needs pipe A force quirk */
8992 { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
8993 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8994 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8995
8996 /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
8997 { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
8998 /* ThinkPad X40 needs pipe A force quirk */
8999
9000 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
9001 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
9002
9003 /* 855 & before need to leave pipe A & dpll A up */
9004 { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9005 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
435793df
KP
9006
9007 /* Lenovo U160 cannot use SSC on LVDS */
9008 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
9009
9010 /* Sony Vaio Y cannot use SSC on LVDS */
9011 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
b690e96c
JB
9012};
9013
9014static void intel_init_quirks(struct drm_device *dev)
9015{
9016 struct pci_dev *d = dev->pdev;
9017 int i;
9018
9019 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
9020 struct intel_quirk *q = &intel_quirks[i];
9021
9022 if (d->device == q->device &&
9023 (d->subsystem_vendor == q->subsystem_vendor ||
9024 q->subsystem_vendor == PCI_ANY_ID) &&
9025 (d->subsystem_device == q->subsystem_device ||
9026 q->subsystem_device == PCI_ANY_ID))
9027 q->hook(dev);
9028 }
9029}
9030
9cce37f4
JB
9031/* Disable the VGA plane that we never use */
9032static void i915_disable_vga(struct drm_device *dev)
9033{
9034 struct drm_i915_private *dev_priv = dev->dev_private;
9035 u8 sr1;
9036 u32 vga_reg;
9037
9038 if (HAS_PCH_SPLIT(dev))
9039 vga_reg = CPU_VGACNTRL;
9040 else
9041 vga_reg = VGACNTRL;
9042
9043 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
9044 outb(1, VGA_SR_INDEX);
9045 sr1 = inb(VGA_SR_DATA);
9046 outb(sr1 | 1<<5, VGA_SR_DATA);
9047 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
9048 udelay(300);
9049
9050 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9051 POSTING_READ(vga_reg);
9052}
9053
79e53945
JB
9054void intel_modeset_init(struct drm_device *dev)
9055{
652c393a 9056 struct drm_i915_private *dev_priv = dev->dev_private;
b840d907 9057 int i, ret;
79e53945
JB
9058
9059 drm_mode_config_init(dev);
9060
9061 dev->mode_config.min_width = 0;
9062 dev->mode_config.min_height = 0;
9063
9064 dev->mode_config.funcs = (void *)&intel_mode_funcs;
9065
b690e96c
JB
9066 intel_init_quirks(dev);
9067
e70236a8
JB
9068 intel_init_display(dev);
9069
a6c45cf0
CW
9070 if (IS_GEN2(dev)) {
9071 dev->mode_config.max_width = 2048;
9072 dev->mode_config.max_height = 2048;
9073 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
9074 dev->mode_config.max_width = 4096;
9075 dev->mode_config.max_height = 4096;
79e53945 9076 } else {
a6c45cf0
CW
9077 dev->mode_config.max_width = 8192;
9078 dev->mode_config.max_height = 8192;
79e53945 9079 }
35c3047a 9080 dev->mode_config.fb_base = dev->agp->base;
79e53945 9081
28c97730 9082 DRM_DEBUG_KMS("%d display pipe%s available.\n",
a3524f1b 9083 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
79e53945 9084
a3524f1b 9085 for (i = 0; i < dev_priv->num_pipe; i++) {
79e53945 9086 intel_crtc_init(dev, i);
b840d907
JB
9087 if (HAS_PCH_SPLIT(dev)) {
9088 ret = intel_plane_init(dev, i);
9089 if (ret)
9090 DRM_ERROR("plane %d init failed: %d\n",
9091 i, ret);
9092 }
79e53945
JB
9093 }
9094
9cce37f4
JB
9095 /* Just disable it once at startup */
9096 i915_disable_vga(dev);
79e53945 9097 intel_setup_outputs(dev);
652c393a 9098
645c62a5 9099 intel_init_clock_gating(dev);
9cce37f4 9100
7648fa99 9101 if (IS_IRONLAKE_M(dev)) {
f97108d1 9102 ironlake_enable_drps(dev);
7648fa99
JB
9103 intel_init_emon(dev);
9104 }
f97108d1 9105
1c70c0ce 9106 if (IS_GEN6(dev) || IS_GEN7(dev)) {
3b8d8d91 9107 gen6_enable_rps(dev_priv);
23b2f8bb
JB
9108 gen6_update_ring_freq(dev_priv);
9109 }
3b8d8d91 9110
652c393a
JB
9111 INIT_WORK(&dev_priv->idle_work, intel_idle_update);
9112 setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
9113 (unsigned long)dev);
2c7111db
CW
9114}
9115
9116void intel_modeset_gem_init(struct drm_device *dev)
9117{
9118 if (IS_IRONLAKE_M(dev))
9119 ironlake_enable_rc6(dev);
02e792fb
DV
9120
9121 intel_setup_overlay(dev);
79e53945
JB
9122}
9123
9124void intel_modeset_cleanup(struct drm_device *dev)
9125{
652c393a
JB
9126 struct drm_i915_private *dev_priv = dev->dev_private;
9127 struct drm_crtc *crtc;
9128 struct intel_crtc *intel_crtc;
9129
f87ea761 9130 drm_kms_helper_poll_fini(dev);
652c393a
JB
9131 mutex_lock(&dev->struct_mutex);
9132
723bfd70
JB
9133 intel_unregister_dsm_handler();
9134
9135
652c393a
JB
9136 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9137 /* Skip inactive CRTCs */
9138 if (!crtc->fb)
9139 continue;
9140
9141 intel_crtc = to_intel_crtc(crtc);
3dec0095 9142 intel_increase_pllclock(crtc);
652c393a
JB
9143 }
9144
973d04f9 9145 intel_disable_fbc(dev);
e70236a8 9146
f97108d1
JB
9147 if (IS_IRONLAKE_M(dev))
9148 ironlake_disable_drps(dev);
1c70c0ce 9149 if (IS_GEN6(dev) || IS_GEN7(dev))
3b8d8d91 9150 gen6_disable_rps(dev);
f97108d1 9151
d5bb081b
JB
9152 if (IS_IRONLAKE_M(dev))
9153 ironlake_disable_rc6(dev);
0cdab21f 9154
69341a5e
KH
9155 mutex_unlock(&dev->struct_mutex);
9156
6c0d9350
DV
9157 /* Disable the irq before mode object teardown, for the irq might
9158 * enqueue unpin/hotplug work. */
9159 drm_irq_uninstall(dev);
9160 cancel_work_sync(&dev_priv->hotplug_work);
6fdd4d98 9161 cancel_work_sync(&dev_priv->rps_work);
6c0d9350 9162
1630fe75
CW
9163 /* flush any delayed tasks or pending work */
9164 flush_scheduled_work();
9165
3dec0095
DV
9166 /* Shut off idle work before the crtcs get freed. */
9167 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9168 intel_crtc = to_intel_crtc(crtc);
9169 del_timer_sync(&intel_crtc->idle_timer);
9170 }
9171 del_timer_sync(&dev_priv->idle_timer);
9172 cancel_work_sync(&dev_priv->idle_work);
9173
79e53945
JB
9174 drm_mode_config_cleanup(dev);
9175}
9176
f1c79df3
ZW
9177/*
9178 * Return which encoder is currently attached for connector.
9179 */
df0e9248 9180struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 9181{
df0e9248
CW
9182 return &intel_attached_encoder(connector)->base;
9183}
f1c79df3 9184
df0e9248
CW
9185void intel_connector_attach_encoder(struct intel_connector *connector,
9186 struct intel_encoder *encoder)
9187{
9188 connector->encoder = encoder;
9189 drm_mode_connector_attach_encoder(&connector->base,
9190 &encoder->base);
79e53945 9191}
28d52043
DA
9192
9193/*
9194 * set vga decode state - true == enable VGA decode
9195 */
9196int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9197{
9198 struct drm_i915_private *dev_priv = dev->dev_private;
9199 u16 gmch_ctrl;
9200
9201 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9202 if (state)
9203 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9204 else
9205 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9206 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9207 return 0;
9208}
c4a1d9e4
CW
9209
9210#ifdef CONFIG_DEBUG_FS
9211#include <linux/seq_file.h>
9212
9213struct intel_display_error_state {
9214 struct intel_cursor_error_state {
9215 u32 control;
9216 u32 position;
9217 u32 base;
9218 u32 size;
9219 } cursor[2];
9220
9221 struct intel_pipe_error_state {
9222 u32 conf;
9223 u32 source;
9224
9225 u32 htotal;
9226 u32 hblank;
9227 u32 hsync;
9228 u32 vtotal;
9229 u32 vblank;
9230 u32 vsync;
9231 } pipe[2];
9232
9233 struct intel_plane_error_state {
9234 u32 control;
9235 u32 stride;
9236 u32 size;
9237 u32 pos;
9238 u32 addr;
9239 u32 surface;
9240 u32 tile_offset;
9241 } plane[2];
9242};
9243
9244struct intel_display_error_state *
9245intel_display_capture_error_state(struct drm_device *dev)
9246{
0206e353 9247 drm_i915_private_t *dev_priv = dev->dev_private;
c4a1d9e4
CW
9248 struct intel_display_error_state *error;
9249 int i;
9250
9251 error = kmalloc(sizeof(*error), GFP_ATOMIC);
9252 if (error == NULL)
9253 return NULL;
9254
9255 for (i = 0; i < 2; i++) {
9256 error->cursor[i].control = I915_READ(CURCNTR(i));
9257 error->cursor[i].position = I915_READ(CURPOS(i));
9258 error->cursor[i].base = I915_READ(CURBASE(i));
9259
9260 error->plane[i].control = I915_READ(DSPCNTR(i));
9261 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9262 error->plane[i].size = I915_READ(DSPSIZE(i));
0206e353 9263 error->plane[i].pos = I915_READ(DSPPOS(i));
c4a1d9e4
CW
9264 error->plane[i].addr = I915_READ(DSPADDR(i));
9265 if (INTEL_INFO(dev)->gen >= 4) {
9266 error->plane[i].surface = I915_READ(DSPSURF(i));
9267 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9268 }
9269
9270 error->pipe[i].conf = I915_READ(PIPECONF(i));
9271 error->pipe[i].source = I915_READ(PIPESRC(i));
9272 error->pipe[i].htotal = I915_READ(HTOTAL(i));
9273 error->pipe[i].hblank = I915_READ(HBLANK(i));
9274 error->pipe[i].hsync = I915_READ(HSYNC(i));
9275 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
9276 error->pipe[i].vblank = I915_READ(VBLANK(i));
9277 error->pipe[i].vsync = I915_READ(VSYNC(i));
9278 }
9279
9280 return error;
9281}
9282
9283void
9284intel_display_print_error_state(struct seq_file *m,
9285 struct drm_device *dev,
9286 struct intel_display_error_state *error)
9287{
9288 int i;
9289
9290 for (i = 0; i < 2; i++) {
9291 seq_printf(m, "Pipe [%d]:\n", i);
9292 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
9293 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
9294 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
9295 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
9296 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
9297 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
9298 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
9299 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
9300
9301 seq_printf(m, "Plane [%d]:\n", i);
9302 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
9303 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
9304 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
9305 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
9306 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
9307 if (INTEL_INFO(dev)->gen >= 4) {
9308 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
9309 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
9310 }
9311
9312 seq_printf(m, "Cursor [%d]:\n", i);
9313 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
9314 seq_printf(m, " POS: %08x\n", error->cursor[i].position);
9315 seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
9316 }
9317}
9318#endif