drm/i915: Check pipe_config.has_dp_encoder instead of encoder types
[linux-block.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
760285e7
DH
40#include <drm/drm_dp_helper.h>
41#include <drm/drm_crtc_helper.h>
465c120c
MR
42#include <drm/drm_plane_helper.h>
43#include <drm/drm_rect.h>
c0f372b3 44#include <linux/dma_remapping.h>
79e53945 45
465c120c
MR
46/* Primary plane formats supported by all gen */
47#define COMMON_PRIMARY_FORMATS \
48 DRM_FORMAT_C8, \
49 DRM_FORMAT_RGB565, \
50 DRM_FORMAT_XRGB8888, \
51 DRM_FORMAT_ARGB8888
52
53/* Primary plane formats for gen <= 3 */
54static const uint32_t intel_primary_formats_gen2[] = {
55 COMMON_PRIMARY_FORMATS,
56 DRM_FORMAT_XRGB1555,
57 DRM_FORMAT_ARGB1555,
58};
59
60/* Primary plane formats for gen >= 4 */
61static const uint32_t intel_primary_formats_gen4[] = {
62 COMMON_PRIMARY_FORMATS, \
63 DRM_FORMAT_XBGR8888,
64 DRM_FORMAT_ABGR8888,
65 DRM_FORMAT_XRGB2101010,
66 DRM_FORMAT_ARGB2101010,
67 DRM_FORMAT_XBGR2101010,
68 DRM_FORMAT_ABGR2101010,
69};
70
3d7d6510
MR
71/* Cursor formats */
72static const uint32_t intel_cursor_formats[] = {
73 DRM_FORMAT_ARGB8888,
74};
75
6b383a7f 76static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945 77
f1f644dc
JB
78static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
79 struct intel_crtc_config *pipe_config);
18442d08
VS
80static void ironlake_pch_clock_get(struct intel_crtc *crtc,
81 struct intel_crtc_config *pipe_config);
f1f644dc 82
e7457a9a
DL
83static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
84 int x, int y, struct drm_framebuffer *old_fb);
eb1bfe80
JB
85static int intel_framebuffer_init(struct drm_device *dev,
86 struct intel_framebuffer *ifb,
87 struct drm_mode_fb_cmd2 *mode_cmd,
88 struct drm_i915_gem_object *obj);
5b18e57c
DV
89static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
90static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
29407aab 91static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
92 struct intel_link_m_n *m_n,
93 struct intel_link_m_n *m2_n2);
29407aab 94static void ironlake_set_pipeconf(struct drm_crtc *crtc);
229fca97
DV
95static void haswell_set_pipeconf(struct drm_crtc *crtc);
96static void intel_set_pipe_csc(struct drm_crtc *crtc);
d288f65f
VS
97static void vlv_prepare_pll(struct intel_crtc *crtc,
98 const struct intel_crtc_config *pipe_config);
99static void chv_prepare_pll(struct intel_crtc *crtc,
100 const struct intel_crtc_config *pipe_config);
e7457a9a 101
0e32b39c
DA
102static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
103{
104 if (!connector->mst_port)
105 return connector->encoder;
106 else
107 return &connector->mst_port->mst_encoders[pipe]->base;
108}
109
79e53945 110typedef struct {
0206e353 111 int min, max;
79e53945
JB
112} intel_range_t;
113
114typedef struct {
0206e353
AJ
115 int dot_limit;
116 int p2_slow, p2_fast;
79e53945
JB
117} intel_p2_t;
118
d4906093
ML
119typedef struct intel_limit intel_limit_t;
120struct intel_limit {
0206e353
AJ
121 intel_range_t dot, vco, n, m, m1, m2, p, p1;
122 intel_p2_t p2;
d4906093 123};
79e53945 124
d2acd215
DV
125int
126intel_pch_rawclk(struct drm_device *dev)
127{
128 struct drm_i915_private *dev_priv = dev->dev_private;
129
130 WARN_ON(!HAS_PCH_SPLIT(dev));
131
132 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
133}
134
021357ac
CW
135static inline u32 /* units of 100MHz */
136intel_fdi_link_freq(struct drm_device *dev)
137{
8b99e68c
CW
138 if (IS_GEN5(dev)) {
139 struct drm_i915_private *dev_priv = dev->dev_private;
140 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
141 } else
142 return 27;
021357ac
CW
143}
144
5d536e28 145static const intel_limit_t intel_limits_i8xx_dac = {
0206e353 146 .dot = { .min = 25000, .max = 350000 },
9c333719 147 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 148 .n = { .min = 2, .max = 16 },
0206e353
AJ
149 .m = { .min = 96, .max = 140 },
150 .m1 = { .min = 18, .max = 26 },
151 .m2 = { .min = 6, .max = 16 },
152 .p = { .min = 4, .max = 128 },
153 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
154 .p2 = { .dot_limit = 165000,
155 .p2_slow = 4, .p2_fast = 2 },
e4b36699
KP
156};
157
5d536e28
DV
158static const intel_limit_t intel_limits_i8xx_dvo = {
159 .dot = { .min = 25000, .max = 350000 },
9c333719 160 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 161 .n = { .min = 2, .max = 16 },
5d536e28
DV
162 .m = { .min = 96, .max = 140 },
163 .m1 = { .min = 18, .max = 26 },
164 .m2 = { .min = 6, .max = 16 },
165 .p = { .min = 4, .max = 128 },
166 .p1 = { .min = 2, .max = 33 },
167 .p2 = { .dot_limit = 165000,
168 .p2_slow = 4, .p2_fast = 4 },
169};
170
e4b36699 171static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353 172 .dot = { .min = 25000, .max = 350000 },
9c333719 173 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 174 .n = { .min = 2, .max = 16 },
0206e353
AJ
175 .m = { .min = 96, .max = 140 },
176 .m1 = { .min = 18, .max = 26 },
177 .m2 = { .min = 6, .max = 16 },
178 .p = { .min = 4, .max = 128 },
179 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
180 .p2 = { .dot_limit = 165000,
181 .p2_slow = 14, .p2_fast = 7 },
e4b36699 182};
273e27ca 183
e4b36699 184static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
185 .dot = { .min = 20000, .max = 400000 },
186 .vco = { .min = 1400000, .max = 2800000 },
187 .n = { .min = 1, .max = 6 },
188 .m = { .min = 70, .max = 120 },
4f7dfb67
PJ
189 .m1 = { .min = 8, .max = 18 },
190 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
191 .p = { .min = 5, .max = 80 },
192 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
193 .p2 = { .dot_limit = 200000,
194 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
195};
196
197static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
198 .dot = { .min = 20000, .max = 400000 },
199 .vco = { .min = 1400000, .max = 2800000 },
200 .n = { .min = 1, .max = 6 },
201 .m = { .min = 70, .max = 120 },
53a7d2d1
PJ
202 .m1 = { .min = 8, .max = 18 },
203 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
204 .p = { .min = 7, .max = 98 },
205 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
206 .p2 = { .dot_limit = 112000,
207 .p2_slow = 14, .p2_fast = 7 },
e4b36699
KP
208};
209
273e27ca 210
e4b36699 211static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
212 .dot = { .min = 25000, .max = 270000 },
213 .vco = { .min = 1750000, .max = 3500000},
214 .n = { .min = 1, .max = 4 },
215 .m = { .min = 104, .max = 138 },
216 .m1 = { .min = 17, .max = 23 },
217 .m2 = { .min = 5, .max = 11 },
218 .p = { .min = 10, .max = 30 },
219 .p1 = { .min = 1, .max = 3},
220 .p2 = { .dot_limit = 270000,
221 .p2_slow = 10,
222 .p2_fast = 10
044c7c41 223 },
e4b36699
KP
224};
225
226static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
227 .dot = { .min = 22000, .max = 400000 },
228 .vco = { .min = 1750000, .max = 3500000},
229 .n = { .min = 1, .max = 4 },
230 .m = { .min = 104, .max = 138 },
231 .m1 = { .min = 16, .max = 23 },
232 .m2 = { .min = 5, .max = 11 },
233 .p = { .min = 5, .max = 80 },
234 .p1 = { .min = 1, .max = 8},
235 .p2 = { .dot_limit = 165000,
236 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
237};
238
239static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
240 .dot = { .min = 20000, .max = 115000 },
241 .vco = { .min = 1750000, .max = 3500000 },
242 .n = { .min = 1, .max = 3 },
243 .m = { .min = 104, .max = 138 },
244 .m1 = { .min = 17, .max = 23 },
245 .m2 = { .min = 5, .max = 11 },
246 .p = { .min = 28, .max = 112 },
247 .p1 = { .min = 2, .max = 8 },
248 .p2 = { .dot_limit = 0,
249 .p2_slow = 14, .p2_fast = 14
044c7c41 250 },
e4b36699
KP
251};
252
253static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
254 .dot = { .min = 80000, .max = 224000 },
255 .vco = { .min = 1750000, .max = 3500000 },
256 .n = { .min = 1, .max = 3 },
257 .m = { .min = 104, .max = 138 },
258 .m1 = { .min = 17, .max = 23 },
259 .m2 = { .min = 5, .max = 11 },
260 .p = { .min = 14, .max = 42 },
261 .p1 = { .min = 2, .max = 6 },
262 .p2 = { .dot_limit = 0,
263 .p2_slow = 7, .p2_fast = 7
044c7c41 264 },
e4b36699
KP
265};
266
f2b115e6 267static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
268 .dot = { .min = 20000, .max = 400000},
269 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 270 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
271 .n = { .min = 3, .max = 6 },
272 .m = { .min = 2, .max = 256 },
273e27ca 273 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
274 .m1 = { .min = 0, .max = 0 },
275 .m2 = { .min = 0, .max = 254 },
276 .p = { .min = 5, .max = 80 },
277 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
278 .p2 = { .dot_limit = 200000,
279 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
280};
281
f2b115e6 282static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
283 .dot = { .min = 20000, .max = 400000 },
284 .vco = { .min = 1700000, .max = 3500000 },
285 .n = { .min = 3, .max = 6 },
286 .m = { .min = 2, .max = 256 },
287 .m1 = { .min = 0, .max = 0 },
288 .m2 = { .min = 0, .max = 254 },
289 .p = { .min = 7, .max = 112 },
290 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
291 .p2 = { .dot_limit = 112000,
292 .p2_slow = 14, .p2_fast = 14 },
e4b36699
KP
293};
294
273e27ca
EA
295/* Ironlake / Sandybridge
296 *
297 * We calculate clock using (register_value + 2) for N/M1/M2, so here
298 * the range value for them is (actual_value - 2).
299 */
b91ad0ec 300static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
301 .dot = { .min = 25000, .max = 350000 },
302 .vco = { .min = 1760000, .max = 3510000 },
303 .n = { .min = 1, .max = 5 },
304 .m = { .min = 79, .max = 127 },
305 .m1 = { .min = 12, .max = 22 },
306 .m2 = { .min = 5, .max = 9 },
307 .p = { .min = 5, .max = 80 },
308 .p1 = { .min = 1, .max = 8 },
309 .p2 = { .dot_limit = 225000,
310 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
311};
312
b91ad0ec 313static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
314 .dot = { .min = 25000, .max = 350000 },
315 .vco = { .min = 1760000, .max = 3510000 },
316 .n = { .min = 1, .max = 3 },
317 .m = { .min = 79, .max = 118 },
318 .m1 = { .min = 12, .max = 22 },
319 .m2 = { .min = 5, .max = 9 },
320 .p = { .min = 28, .max = 112 },
321 .p1 = { .min = 2, .max = 8 },
322 .p2 = { .dot_limit = 225000,
323 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
324};
325
326static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
327 .dot = { .min = 25000, .max = 350000 },
328 .vco = { .min = 1760000, .max = 3510000 },
329 .n = { .min = 1, .max = 3 },
330 .m = { .min = 79, .max = 127 },
331 .m1 = { .min = 12, .max = 22 },
332 .m2 = { .min = 5, .max = 9 },
333 .p = { .min = 14, .max = 56 },
334 .p1 = { .min = 2, .max = 8 },
335 .p2 = { .dot_limit = 225000,
336 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
337};
338
273e27ca 339/* LVDS 100mhz refclk limits. */
b91ad0ec 340static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
341 .dot = { .min = 25000, .max = 350000 },
342 .vco = { .min = 1760000, .max = 3510000 },
343 .n = { .min = 1, .max = 2 },
344 .m = { .min = 79, .max = 126 },
345 .m1 = { .min = 12, .max = 22 },
346 .m2 = { .min = 5, .max = 9 },
347 .p = { .min = 28, .max = 112 },
0206e353 348 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
349 .p2 = { .dot_limit = 225000,
350 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
351};
352
353static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
354 .dot = { .min = 25000, .max = 350000 },
355 .vco = { .min = 1760000, .max = 3510000 },
356 .n = { .min = 1, .max = 3 },
357 .m = { .min = 79, .max = 126 },
358 .m1 = { .min = 12, .max = 22 },
359 .m2 = { .min = 5, .max = 9 },
360 .p = { .min = 14, .max = 42 },
0206e353 361 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
362 .p2 = { .dot_limit = 225000,
363 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
364};
365
dc730512 366static const intel_limit_t intel_limits_vlv = {
f01b7962
VS
367 /*
368 * These are the data rate limits (measured in fast clocks)
369 * since those are the strictest limits we have. The fast
370 * clock and actual rate limits are more relaxed, so checking
371 * them would make no difference.
372 */
373 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
75e53986 374 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 375 .n = { .min = 1, .max = 7 },
a0c4da24
JB
376 .m1 = { .min = 2, .max = 3 },
377 .m2 = { .min = 11, .max = 156 },
b99ab663 378 .p1 = { .min = 2, .max = 3 },
5fdc9c49 379 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
a0c4da24
JB
380};
381
ef9348c8
CML
382static const intel_limit_t intel_limits_chv = {
383 /*
384 * These are the data rate limits (measured in fast clocks)
385 * since those are the strictest limits we have. The fast
386 * clock and actual rate limits are more relaxed, so checking
387 * them would make no difference.
388 */
389 .dot = { .min = 25000 * 5, .max = 540000 * 5},
390 .vco = { .min = 4860000, .max = 6700000 },
391 .n = { .min = 1, .max = 1 },
392 .m1 = { .min = 2, .max = 2 },
393 .m2 = { .min = 24 << 22, .max = 175 << 22 },
394 .p1 = { .min = 2, .max = 4 },
395 .p2 = { .p2_slow = 1, .p2_fast = 14 },
396};
397
6b4bf1c4
VS
398static void vlv_clock(int refclk, intel_clock_t *clock)
399{
400 clock->m = clock->m1 * clock->m2;
401 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
402 if (WARN_ON(clock->n == 0 || clock->p == 0))
403 return;
fb03ac01
VS
404 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
405 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
6b4bf1c4
VS
406}
407
e0638cdf
PZ
408/**
409 * Returns whether any output on the specified pipe is of the specified type
410 */
7c10a2b5 411bool intel_pipe_has_type(struct intel_crtc *crtc, int type)
e0638cdf 412{
409ee761 413 struct drm_device *dev = crtc->base.dev;
e0638cdf
PZ
414 struct intel_encoder *encoder;
415
409ee761 416 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
e0638cdf
PZ
417 if (encoder->type == type)
418 return true;
419
420 return false;
421}
422
d0737e1d
ACO
423/**
424 * Returns whether any output on the specified pipe will have the specified
425 * type after a staged modeset is complete, i.e., the same as
426 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
427 * encoder->crtc.
428 */
429static bool intel_pipe_will_have_type(struct intel_crtc *crtc, int type)
430{
431 struct drm_device *dev = crtc->base.dev;
432 struct intel_encoder *encoder;
433
434 for_each_intel_encoder(dev, encoder)
435 if (encoder->new_crtc == crtc && encoder->type == type)
436 return true;
437
438 return false;
439}
440
409ee761 441static const intel_limit_t *intel_ironlake_limit(struct intel_crtc *crtc,
1b894b59 442 int refclk)
2c07245f 443{
409ee761 444 struct drm_device *dev = crtc->base.dev;
2c07245f 445 const intel_limit_t *limit;
b91ad0ec 446
d0737e1d 447 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 448 if (intel_is_dual_link_lvds(dev)) {
1b894b59 449 if (refclk == 100000)
b91ad0ec
ZW
450 limit = &intel_limits_ironlake_dual_lvds_100m;
451 else
452 limit = &intel_limits_ironlake_dual_lvds;
453 } else {
1b894b59 454 if (refclk == 100000)
b91ad0ec
ZW
455 limit = &intel_limits_ironlake_single_lvds_100m;
456 else
457 limit = &intel_limits_ironlake_single_lvds;
458 }
c6bb3538 459 } else
b91ad0ec 460 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
461
462 return limit;
463}
464
409ee761 465static const intel_limit_t *intel_g4x_limit(struct intel_crtc *crtc)
044c7c41 466{
409ee761 467 struct drm_device *dev = crtc->base.dev;
044c7c41
ML
468 const intel_limit_t *limit;
469
d0737e1d 470 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 471 if (intel_is_dual_link_lvds(dev))
e4b36699 472 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41 473 else
e4b36699 474 limit = &intel_limits_g4x_single_channel_lvds;
d0737e1d
ACO
475 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI) ||
476 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_ANALOG)) {
e4b36699 477 limit = &intel_limits_g4x_hdmi;
d0737e1d 478 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO)) {
e4b36699 479 limit = &intel_limits_g4x_sdvo;
044c7c41 480 } else /* The option is for other outputs */
e4b36699 481 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
482
483 return limit;
484}
485
409ee761 486static const intel_limit_t *intel_limit(struct intel_crtc *crtc, int refclk)
79e53945 487{
409ee761 488 struct drm_device *dev = crtc->base.dev;
79e53945
JB
489 const intel_limit_t *limit;
490
bad720ff 491 if (HAS_PCH_SPLIT(dev))
1b894b59 492 limit = intel_ironlake_limit(crtc, refclk);
2c07245f 493 else if (IS_G4X(dev)) {
044c7c41 494 limit = intel_g4x_limit(crtc);
f2b115e6 495 } else if (IS_PINEVIEW(dev)) {
d0737e1d 496 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
f2b115e6 497 limit = &intel_limits_pineview_lvds;
2177832f 498 else
f2b115e6 499 limit = &intel_limits_pineview_sdvo;
ef9348c8
CML
500 } else if (IS_CHERRYVIEW(dev)) {
501 limit = &intel_limits_chv;
a0c4da24 502 } else if (IS_VALLEYVIEW(dev)) {
dc730512 503 limit = &intel_limits_vlv;
a6c45cf0 504 } else if (!IS_GEN2(dev)) {
d0737e1d 505 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
a6c45cf0
CW
506 limit = &intel_limits_i9xx_lvds;
507 else
508 limit = &intel_limits_i9xx_sdvo;
79e53945 509 } else {
d0737e1d 510 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 511 limit = &intel_limits_i8xx_lvds;
d0737e1d 512 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
e4b36699 513 limit = &intel_limits_i8xx_dvo;
5d536e28
DV
514 else
515 limit = &intel_limits_i8xx_dac;
79e53945
JB
516 }
517 return limit;
518}
519
f2b115e6
AJ
520/* m1 is reserved as 0 in Pineview, n is a ring counter */
521static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 522{
2177832f
SL
523 clock->m = clock->m2 + 2;
524 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
525 if (WARN_ON(clock->n == 0 || clock->p == 0))
526 return;
fb03ac01
VS
527 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
528 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
2177832f
SL
529}
530
7429e9d4
DV
531static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
532{
533 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
534}
535
ac58c3f0 536static void i9xx_clock(int refclk, intel_clock_t *clock)
2177832f 537{
7429e9d4 538 clock->m = i9xx_dpll_compute_m(clock);
79e53945 539 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
540 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
541 return;
fb03ac01
VS
542 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
543 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
79e53945
JB
544}
545
ef9348c8
CML
546static void chv_clock(int refclk, intel_clock_t *clock)
547{
548 clock->m = clock->m1 * clock->m2;
549 clock->p = clock->p1 * clock->p2;
550 if (WARN_ON(clock->n == 0 || clock->p == 0))
551 return;
552 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
553 clock->n << 22);
554 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
555}
556
7c04d1d9 557#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
558/**
559 * Returns whether the given set of divisors are valid for a given refclk with
560 * the given connectors.
561 */
562
1b894b59
CW
563static bool intel_PLL_is_valid(struct drm_device *dev,
564 const intel_limit_t *limit,
565 const intel_clock_t *clock)
79e53945 566{
f01b7962
VS
567 if (clock->n < limit->n.min || limit->n.max < clock->n)
568 INTELPllInvalid("n out of range\n");
79e53945 569 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 570 INTELPllInvalid("p1 out of range\n");
79e53945 571 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 572 INTELPllInvalid("m2 out of range\n");
79e53945 573 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 574 INTELPllInvalid("m1 out of range\n");
f01b7962
VS
575
576 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
577 if (clock->m1 <= clock->m2)
578 INTELPllInvalid("m1 <= m2\n");
579
580 if (!IS_VALLEYVIEW(dev)) {
581 if (clock->p < limit->p.min || limit->p.max < clock->p)
582 INTELPllInvalid("p out of range\n");
583 if (clock->m < limit->m.min || limit->m.max < clock->m)
584 INTELPllInvalid("m out of range\n");
585 }
586
79e53945 587 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 588 INTELPllInvalid("vco out of range\n");
79e53945
JB
589 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
590 * connector, etc., rather than just a single range.
591 */
592 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 593 INTELPllInvalid("dot out of range\n");
79e53945
JB
594
595 return true;
596}
597
d4906093 598static bool
a919ff14 599i9xx_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
cec2f356
SP
600 int target, int refclk, intel_clock_t *match_clock,
601 intel_clock_t *best_clock)
79e53945 602{
a919ff14 603 struct drm_device *dev = crtc->base.dev;
79e53945 604 intel_clock_t clock;
79e53945
JB
605 int err = target;
606
d0737e1d 607 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 608 /*
a210b028
DV
609 * For LVDS just rely on its current settings for dual-channel.
610 * We haven't figured out how to reliably set up different
611 * single/dual channel state, if we even can.
79e53945 612 */
1974cad0 613 if (intel_is_dual_link_lvds(dev))
79e53945
JB
614 clock.p2 = limit->p2.p2_fast;
615 else
616 clock.p2 = limit->p2.p2_slow;
617 } else {
618 if (target < limit->p2.dot_limit)
619 clock.p2 = limit->p2.p2_slow;
620 else
621 clock.p2 = limit->p2.p2_fast;
622 }
623
0206e353 624 memset(best_clock, 0, sizeof(*best_clock));
79e53945 625
42158660
ZY
626 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
627 clock.m1++) {
628 for (clock.m2 = limit->m2.min;
629 clock.m2 <= limit->m2.max; clock.m2++) {
c0efc387 630 if (clock.m2 >= clock.m1)
42158660
ZY
631 break;
632 for (clock.n = limit->n.min;
633 clock.n <= limit->n.max; clock.n++) {
634 for (clock.p1 = limit->p1.min;
635 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
636 int this_err;
637
ac58c3f0
DV
638 i9xx_clock(refclk, &clock);
639 if (!intel_PLL_is_valid(dev, limit,
640 &clock))
641 continue;
642 if (match_clock &&
643 clock.p != match_clock->p)
644 continue;
645
646 this_err = abs(clock.dot - target);
647 if (this_err < err) {
648 *best_clock = clock;
649 err = this_err;
650 }
651 }
652 }
653 }
654 }
655
656 return (err != target);
657}
658
659static bool
a919ff14 660pnv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ee9300bb
DV
661 int target, int refclk, intel_clock_t *match_clock,
662 intel_clock_t *best_clock)
79e53945 663{
a919ff14 664 struct drm_device *dev = crtc->base.dev;
79e53945 665 intel_clock_t clock;
79e53945
JB
666 int err = target;
667
d0737e1d 668 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 669 /*
a210b028
DV
670 * For LVDS just rely on its current settings for dual-channel.
671 * We haven't figured out how to reliably set up different
672 * single/dual channel state, if we even can.
79e53945 673 */
1974cad0 674 if (intel_is_dual_link_lvds(dev))
79e53945
JB
675 clock.p2 = limit->p2.p2_fast;
676 else
677 clock.p2 = limit->p2.p2_slow;
678 } else {
679 if (target < limit->p2.dot_limit)
680 clock.p2 = limit->p2.p2_slow;
681 else
682 clock.p2 = limit->p2.p2_fast;
683 }
684
0206e353 685 memset(best_clock, 0, sizeof(*best_clock));
79e53945 686
42158660
ZY
687 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
688 clock.m1++) {
689 for (clock.m2 = limit->m2.min;
690 clock.m2 <= limit->m2.max; clock.m2++) {
42158660
ZY
691 for (clock.n = limit->n.min;
692 clock.n <= limit->n.max; clock.n++) {
693 for (clock.p1 = limit->p1.min;
694 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
695 int this_err;
696
ac58c3f0 697 pineview_clock(refclk, &clock);
1b894b59
CW
698 if (!intel_PLL_is_valid(dev, limit,
699 &clock))
79e53945 700 continue;
cec2f356
SP
701 if (match_clock &&
702 clock.p != match_clock->p)
703 continue;
79e53945
JB
704
705 this_err = abs(clock.dot - target);
706 if (this_err < err) {
707 *best_clock = clock;
708 err = this_err;
709 }
710 }
711 }
712 }
713 }
714
715 return (err != target);
716}
717
d4906093 718static bool
a919ff14 719g4x_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ee9300bb
DV
720 int target, int refclk, intel_clock_t *match_clock,
721 intel_clock_t *best_clock)
d4906093 722{
a919ff14 723 struct drm_device *dev = crtc->base.dev;
d4906093
ML
724 intel_clock_t clock;
725 int max_n;
726 bool found;
6ba770dc
AJ
727 /* approximately equals target * 0.00585 */
728 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
729 found = false;
730
d0737e1d 731 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 732 if (intel_is_dual_link_lvds(dev))
d4906093
ML
733 clock.p2 = limit->p2.p2_fast;
734 else
735 clock.p2 = limit->p2.p2_slow;
736 } else {
737 if (target < limit->p2.dot_limit)
738 clock.p2 = limit->p2.p2_slow;
739 else
740 clock.p2 = limit->p2.p2_fast;
741 }
742
743 memset(best_clock, 0, sizeof(*best_clock));
744 max_n = limit->n.max;
f77f13e2 745 /* based on hardware requirement, prefer smaller n to precision */
d4906093 746 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 747 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
748 for (clock.m1 = limit->m1.max;
749 clock.m1 >= limit->m1.min; clock.m1--) {
750 for (clock.m2 = limit->m2.max;
751 clock.m2 >= limit->m2.min; clock.m2--) {
752 for (clock.p1 = limit->p1.max;
753 clock.p1 >= limit->p1.min; clock.p1--) {
754 int this_err;
755
ac58c3f0 756 i9xx_clock(refclk, &clock);
1b894b59
CW
757 if (!intel_PLL_is_valid(dev, limit,
758 &clock))
d4906093 759 continue;
1b894b59
CW
760
761 this_err = abs(clock.dot - target);
d4906093
ML
762 if (this_err < err_most) {
763 *best_clock = clock;
764 err_most = this_err;
765 max_n = clock.n;
766 found = true;
767 }
768 }
769 }
770 }
771 }
2c07245f
ZW
772 return found;
773}
774
a0c4da24 775static bool
a919ff14 776vlv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ee9300bb
DV
777 int target, int refclk, intel_clock_t *match_clock,
778 intel_clock_t *best_clock)
a0c4da24 779{
a919ff14 780 struct drm_device *dev = crtc->base.dev;
6b4bf1c4 781 intel_clock_t clock;
69e4f900 782 unsigned int bestppm = 1000000;
27e639bf
VS
783 /* min update 19.2 MHz */
784 int max_n = min(limit->n.max, refclk / 19200);
49e497ef 785 bool found = false;
a0c4da24 786
6b4bf1c4
VS
787 target *= 5; /* fast clock */
788
789 memset(best_clock, 0, sizeof(*best_clock));
a0c4da24
JB
790
791 /* based on hardware requirement, prefer smaller n to precision */
27e639bf 792 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
811bbf05 793 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
889059d8 794 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
c1a9ae43 795 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
6b4bf1c4 796 clock.p = clock.p1 * clock.p2;
a0c4da24 797 /* based on hardware requirement, prefer bigger m1,m2 values */
6b4bf1c4 798 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
69e4f900
VS
799 unsigned int ppm, diff;
800
6b4bf1c4
VS
801 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
802 refclk * clock.m1);
803
804 vlv_clock(refclk, &clock);
43b0ac53 805
f01b7962
VS
806 if (!intel_PLL_is_valid(dev, limit,
807 &clock))
43b0ac53
VS
808 continue;
809
6b4bf1c4
VS
810 diff = abs(clock.dot - target);
811 ppm = div_u64(1000000ULL * diff, target);
812
813 if (ppm < 100 && clock.p > best_clock->p) {
43b0ac53 814 bestppm = 0;
6b4bf1c4 815 *best_clock = clock;
49e497ef 816 found = true;
43b0ac53 817 }
6b4bf1c4 818
c686122c 819 if (bestppm >= 10 && ppm < bestppm - 10) {
69e4f900 820 bestppm = ppm;
6b4bf1c4 821 *best_clock = clock;
49e497ef 822 found = true;
a0c4da24
JB
823 }
824 }
825 }
826 }
827 }
a0c4da24 828
49e497ef 829 return found;
a0c4da24 830}
a4fc5ed6 831
ef9348c8 832static bool
a919ff14 833chv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ef9348c8
CML
834 int target, int refclk, intel_clock_t *match_clock,
835 intel_clock_t *best_clock)
836{
a919ff14 837 struct drm_device *dev = crtc->base.dev;
ef9348c8
CML
838 intel_clock_t clock;
839 uint64_t m2;
840 int found = false;
841
842 memset(best_clock, 0, sizeof(*best_clock));
843
844 /*
845 * Based on hardware doc, the n always set to 1, and m1 always
846 * set to 2. If requires to support 200Mhz refclk, we need to
847 * revisit this because n may not 1 anymore.
848 */
849 clock.n = 1, clock.m1 = 2;
850 target *= 5; /* fast clock */
851
852 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
853 for (clock.p2 = limit->p2.p2_fast;
854 clock.p2 >= limit->p2.p2_slow;
855 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
856
857 clock.p = clock.p1 * clock.p2;
858
859 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
860 clock.n) << 22, refclk * clock.m1);
861
862 if (m2 > INT_MAX/clock.m1)
863 continue;
864
865 clock.m2 = m2;
866
867 chv_clock(refclk, &clock);
868
869 if (!intel_PLL_is_valid(dev, limit, &clock))
870 continue;
871
872 /* based on hardware requirement, prefer bigger p
873 */
874 if (clock.p > best_clock->p) {
875 *best_clock = clock;
876 found = true;
877 }
878 }
879 }
880
881 return found;
882}
883
20ddf665
VS
884bool intel_crtc_active(struct drm_crtc *crtc)
885{
886 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
887
888 /* Be paranoid as we can arrive here with only partial
889 * state retrieved from the hardware during setup.
890 *
241bfc38 891 * We can ditch the adjusted_mode.crtc_clock check as soon
20ddf665
VS
892 * as Haswell has gained clock readout/fastboot support.
893 *
66e514c1 894 * We can ditch the crtc->primary->fb check as soon as we can
20ddf665
VS
895 * properly reconstruct framebuffers.
896 */
f4510a27 897 return intel_crtc->active && crtc->primary->fb &&
241bfc38 898 intel_crtc->config.adjusted_mode.crtc_clock;
20ddf665
VS
899}
900
a5c961d1
PZ
901enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
902 enum pipe pipe)
903{
904 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
905 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
906
3b117c8f 907 return intel_crtc->config.cpu_transcoder;
a5c961d1
PZ
908}
909
fbf49ea2
VS
910static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
911{
912 struct drm_i915_private *dev_priv = dev->dev_private;
913 u32 reg = PIPEDSL(pipe);
914 u32 line1, line2;
915 u32 line_mask;
916
917 if (IS_GEN2(dev))
918 line_mask = DSL_LINEMASK_GEN2;
919 else
920 line_mask = DSL_LINEMASK_GEN3;
921
922 line1 = I915_READ(reg) & line_mask;
923 mdelay(5);
924 line2 = I915_READ(reg) & line_mask;
925
926 return line1 == line2;
927}
928
ab7ad7f6
KP
929/*
930 * intel_wait_for_pipe_off - wait for pipe to turn off
575f7ab7 931 * @crtc: crtc whose pipe to wait for
9d0498a2
JB
932 *
933 * After disabling a pipe, we can't wait for vblank in the usual way,
934 * spinning on the vblank interrupt status bit, since we won't actually
935 * see an interrupt when the pipe is disabled.
936 *
ab7ad7f6
KP
937 * On Gen4 and above:
938 * wait for the pipe register state bit to turn off
939 *
940 * Otherwise:
941 * wait for the display line value to settle (it usually
942 * ends up stopping at the start of the next frame).
58e10eb9 943 *
9d0498a2 944 */
575f7ab7 945static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
9d0498a2 946{
575f7ab7 947 struct drm_device *dev = crtc->base.dev;
9d0498a2 948 struct drm_i915_private *dev_priv = dev->dev_private;
575f7ab7
VS
949 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
950 enum pipe pipe = crtc->pipe;
ab7ad7f6
KP
951
952 if (INTEL_INFO(dev)->gen >= 4) {
702e7a56 953 int reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
954
955 /* Wait for the Pipe State to go off */
58e10eb9
CW
956 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
957 100))
284637d9 958 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 959 } else {
ab7ad7f6 960 /* Wait for the display line to settle */
fbf49ea2 961 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
284637d9 962 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 963 }
79e53945
JB
964}
965
b0ea7d37
DL
966/*
967 * ibx_digital_port_connected - is the specified port connected?
968 * @dev_priv: i915 private structure
969 * @port: the port to test
970 *
971 * Returns true if @port is connected, false otherwise.
972 */
973bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
974 struct intel_digital_port *port)
975{
976 u32 bit;
977
c36346e3 978 if (HAS_PCH_IBX(dev_priv->dev)) {
eba905b2 979 switch (port->port) {
c36346e3
DL
980 case PORT_B:
981 bit = SDE_PORTB_HOTPLUG;
982 break;
983 case PORT_C:
984 bit = SDE_PORTC_HOTPLUG;
985 break;
986 case PORT_D:
987 bit = SDE_PORTD_HOTPLUG;
988 break;
989 default:
990 return true;
991 }
992 } else {
eba905b2 993 switch (port->port) {
c36346e3
DL
994 case PORT_B:
995 bit = SDE_PORTB_HOTPLUG_CPT;
996 break;
997 case PORT_C:
998 bit = SDE_PORTC_HOTPLUG_CPT;
999 break;
1000 case PORT_D:
1001 bit = SDE_PORTD_HOTPLUG_CPT;
1002 break;
1003 default:
1004 return true;
1005 }
b0ea7d37
DL
1006 }
1007
1008 return I915_READ(SDEISR) & bit;
1009}
1010
b24e7179
JB
1011static const char *state_string(bool enabled)
1012{
1013 return enabled ? "on" : "off";
1014}
1015
1016/* Only for pre-ILK configs */
55607e8a
DV
1017void assert_pll(struct drm_i915_private *dev_priv,
1018 enum pipe pipe, bool state)
b24e7179
JB
1019{
1020 int reg;
1021 u32 val;
1022 bool cur_state;
1023
1024 reg = DPLL(pipe);
1025 val = I915_READ(reg);
1026 cur_state = !!(val & DPLL_VCO_ENABLE);
1027 WARN(cur_state != state,
1028 "PLL state assertion failure (expected %s, current %s)\n",
1029 state_string(state), state_string(cur_state));
1030}
b24e7179 1031
23538ef1
JN
1032/* XXX: the dsi pll is shared between MIPI DSI ports */
1033static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1034{
1035 u32 val;
1036 bool cur_state;
1037
1038 mutex_lock(&dev_priv->dpio_lock);
1039 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1040 mutex_unlock(&dev_priv->dpio_lock);
1041
1042 cur_state = val & DSI_PLL_VCO_EN;
1043 WARN(cur_state != state,
1044 "DSI PLL state assertion failure (expected %s, current %s)\n",
1045 state_string(state), state_string(cur_state));
1046}
1047#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1048#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1049
55607e8a 1050struct intel_shared_dpll *
e2b78267
DV
1051intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1052{
1053 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1054
a43f6e0f 1055 if (crtc->config.shared_dpll < 0)
e2b78267
DV
1056 return NULL;
1057
a43f6e0f 1058 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
e2b78267
DV
1059}
1060
040484af 1061/* For ILK+ */
55607e8a
DV
1062void assert_shared_dpll(struct drm_i915_private *dev_priv,
1063 struct intel_shared_dpll *pll,
1064 bool state)
040484af 1065{
040484af 1066 bool cur_state;
5358901f 1067 struct intel_dpll_hw_state hw_state;
040484af 1068
92b27b08 1069 if (WARN (!pll,
46edb027 1070 "asserting DPLL %s with no DPLL\n", state_string(state)))
ee7b9f93 1071 return;
ee7b9f93 1072
5358901f 1073 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
92b27b08 1074 WARN(cur_state != state,
5358901f
DV
1075 "%s assertion failure (expected %s, current %s)\n",
1076 pll->name, state_string(state), state_string(cur_state));
040484af 1077}
040484af
JB
1078
1079static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1080 enum pipe pipe, bool state)
1081{
1082 int reg;
1083 u32 val;
1084 bool cur_state;
ad80a810
PZ
1085 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1086 pipe);
040484af 1087
affa9354
PZ
1088 if (HAS_DDI(dev_priv->dev)) {
1089 /* DDI does not have a specific FDI_TX register */
ad80a810 1090 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
bf507ef7 1091 val = I915_READ(reg);
ad80a810 1092 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7
ED
1093 } else {
1094 reg = FDI_TX_CTL(pipe);
1095 val = I915_READ(reg);
1096 cur_state = !!(val & FDI_TX_ENABLE);
1097 }
040484af
JB
1098 WARN(cur_state != state,
1099 "FDI TX state assertion failure (expected %s, current %s)\n",
1100 state_string(state), state_string(cur_state));
1101}
1102#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1103#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1104
1105static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1106 enum pipe pipe, bool state)
1107{
1108 int reg;
1109 u32 val;
1110 bool cur_state;
1111
d63fa0dc
PZ
1112 reg = FDI_RX_CTL(pipe);
1113 val = I915_READ(reg);
1114 cur_state = !!(val & FDI_RX_ENABLE);
040484af
JB
1115 WARN(cur_state != state,
1116 "FDI RX state assertion failure (expected %s, current %s)\n",
1117 state_string(state), state_string(cur_state));
1118}
1119#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1120#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1121
1122static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1123 enum pipe pipe)
1124{
1125 int reg;
1126 u32 val;
1127
1128 /* ILK FDI PLL is always enabled */
3d13ef2e 1129 if (INTEL_INFO(dev_priv->dev)->gen == 5)
040484af
JB
1130 return;
1131
bf507ef7 1132 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
affa9354 1133 if (HAS_DDI(dev_priv->dev))
bf507ef7
ED
1134 return;
1135
040484af
JB
1136 reg = FDI_TX_CTL(pipe);
1137 val = I915_READ(reg);
1138 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1139}
1140
55607e8a
DV
1141void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1142 enum pipe pipe, bool state)
040484af
JB
1143{
1144 int reg;
1145 u32 val;
55607e8a 1146 bool cur_state;
040484af
JB
1147
1148 reg = FDI_RX_CTL(pipe);
1149 val = I915_READ(reg);
55607e8a
DV
1150 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1151 WARN(cur_state != state,
1152 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1153 state_string(state), state_string(cur_state));
040484af
JB
1154}
1155
b680c37a
DV
1156void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1157 enum pipe pipe)
ea0760cf 1158{
bedd4dba
JN
1159 struct drm_device *dev = dev_priv->dev;
1160 int pp_reg;
ea0760cf
JB
1161 u32 val;
1162 enum pipe panel_pipe = PIPE_A;
0de3b485 1163 bool locked = true;
ea0760cf 1164
bedd4dba
JN
1165 if (WARN_ON(HAS_DDI(dev)))
1166 return;
1167
1168 if (HAS_PCH_SPLIT(dev)) {
1169 u32 port_sel;
1170
ea0760cf 1171 pp_reg = PCH_PP_CONTROL;
bedd4dba
JN
1172 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1173
1174 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1175 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1176 panel_pipe = PIPE_B;
1177 /* XXX: else fix for eDP */
1178 } else if (IS_VALLEYVIEW(dev)) {
1179 /* presumably write lock depends on pipe, not port select */
1180 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1181 panel_pipe = pipe;
ea0760cf
JB
1182 } else {
1183 pp_reg = PP_CONTROL;
bedd4dba
JN
1184 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1185 panel_pipe = PIPE_B;
ea0760cf
JB
1186 }
1187
1188 val = I915_READ(pp_reg);
1189 if (!(val & PANEL_POWER_ON) ||
ec49ba2d 1190 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
ea0760cf
JB
1191 locked = false;
1192
ea0760cf
JB
1193 WARN(panel_pipe == pipe && locked,
1194 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1195 pipe_name(pipe));
ea0760cf
JB
1196}
1197
93ce0ba6
JN
1198static void assert_cursor(struct drm_i915_private *dev_priv,
1199 enum pipe pipe, bool state)
1200{
1201 struct drm_device *dev = dev_priv->dev;
1202 bool cur_state;
1203
d9d82081 1204 if (IS_845G(dev) || IS_I865G(dev))
93ce0ba6 1205 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
d9d82081 1206 else
5efb3e28 1207 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
93ce0ba6
JN
1208
1209 WARN(cur_state != state,
1210 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1211 pipe_name(pipe), state_string(state), state_string(cur_state));
1212}
1213#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1214#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1215
b840d907
JB
1216void assert_pipe(struct drm_i915_private *dev_priv,
1217 enum pipe pipe, bool state)
b24e7179
JB
1218{
1219 int reg;
1220 u32 val;
63d7bbe9 1221 bool cur_state;
702e7a56
PZ
1222 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1223 pipe);
b24e7179 1224
b6b5d049
VS
1225 /* if we need the pipe quirk it must be always on */
1226 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1227 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
8e636784
DV
1228 state = true;
1229
f458ebbc 1230 if (!intel_display_power_is_enabled(dev_priv,
b97186f0 1231 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
69310161
PZ
1232 cur_state = false;
1233 } else {
1234 reg = PIPECONF(cpu_transcoder);
1235 val = I915_READ(reg);
1236 cur_state = !!(val & PIPECONF_ENABLE);
1237 }
1238
63d7bbe9
JB
1239 WARN(cur_state != state,
1240 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1241 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1242}
1243
931872fc
CW
1244static void assert_plane(struct drm_i915_private *dev_priv,
1245 enum plane plane, bool state)
b24e7179
JB
1246{
1247 int reg;
1248 u32 val;
931872fc 1249 bool cur_state;
b24e7179
JB
1250
1251 reg = DSPCNTR(plane);
1252 val = I915_READ(reg);
931872fc
CW
1253 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1254 WARN(cur_state != state,
1255 "plane %c assertion failure (expected %s, current %s)\n",
1256 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1257}
1258
931872fc
CW
1259#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1260#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1261
b24e7179
JB
1262static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1263 enum pipe pipe)
1264{
653e1026 1265 struct drm_device *dev = dev_priv->dev;
b24e7179
JB
1266 int reg, i;
1267 u32 val;
1268 int cur_pipe;
1269
653e1026
VS
1270 /* Primary planes are fixed to pipes on gen4+ */
1271 if (INTEL_INFO(dev)->gen >= 4) {
28c05794
AJ
1272 reg = DSPCNTR(pipe);
1273 val = I915_READ(reg);
83f26f16 1274 WARN(val & DISPLAY_PLANE_ENABLE,
28c05794
AJ
1275 "plane %c assertion failure, should be disabled but not\n",
1276 plane_name(pipe));
19ec1358 1277 return;
28c05794 1278 }
19ec1358 1279
b24e7179 1280 /* Need to check both planes against the pipe */
055e393f 1281 for_each_pipe(dev_priv, i) {
b24e7179
JB
1282 reg = DSPCNTR(i);
1283 val = I915_READ(reg);
1284 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1285 DISPPLANE_SEL_PIPE_SHIFT;
1286 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1287 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1288 plane_name(i), pipe_name(pipe));
b24e7179
JB
1289 }
1290}
1291
19332d7a
JB
1292static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1293 enum pipe pipe)
1294{
20674eef 1295 struct drm_device *dev = dev_priv->dev;
1fe47785 1296 int reg, sprite;
19332d7a
JB
1297 u32 val;
1298
7feb8b88
DL
1299 if (INTEL_INFO(dev)->gen >= 9) {
1300 for_each_sprite(pipe, sprite) {
1301 val = I915_READ(PLANE_CTL(pipe, sprite));
1302 WARN(val & PLANE_CTL_ENABLE,
1303 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1304 sprite, pipe_name(pipe));
1305 }
1306 } else if (IS_VALLEYVIEW(dev)) {
1fe47785
DL
1307 for_each_sprite(pipe, sprite) {
1308 reg = SPCNTR(pipe, sprite);
20674eef 1309 val = I915_READ(reg);
83f26f16 1310 WARN(val & SP_ENABLE,
20674eef 1311 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1fe47785 1312 sprite_name(pipe, sprite), pipe_name(pipe));
20674eef
VS
1313 }
1314 } else if (INTEL_INFO(dev)->gen >= 7) {
1315 reg = SPRCTL(pipe);
19332d7a 1316 val = I915_READ(reg);
83f26f16 1317 WARN(val & SPRITE_ENABLE,
06da8da2 1318 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef
VS
1319 plane_name(pipe), pipe_name(pipe));
1320 } else if (INTEL_INFO(dev)->gen >= 5) {
1321 reg = DVSCNTR(pipe);
19332d7a 1322 val = I915_READ(reg);
83f26f16 1323 WARN(val & DVS_ENABLE,
06da8da2 1324 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef 1325 plane_name(pipe), pipe_name(pipe));
19332d7a
JB
1326 }
1327}
1328
08c71e5e
VS
1329static void assert_vblank_disabled(struct drm_crtc *crtc)
1330{
1331 if (WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1332 drm_crtc_vblank_put(crtc);
1333}
1334
89eff4be 1335static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
92f2584a
JB
1336{
1337 u32 val;
1338 bool enabled;
1339
89eff4be 1340 WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
9d82aa17 1341
92f2584a
JB
1342 val = I915_READ(PCH_DREF_CONTROL);
1343 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1344 DREF_SUPERSPREAD_SOURCE_MASK));
1345 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1346}
1347
ab9412ba
DV
1348static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1349 enum pipe pipe)
92f2584a
JB
1350{
1351 int reg;
1352 u32 val;
1353 bool enabled;
1354
ab9412ba 1355 reg = PCH_TRANSCONF(pipe);
92f2584a
JB
1356 val = I915_READ(reg);
1357 enabled = !!(val & TRANS_ENABLE);
9db4a9c7
JB
1358 WARN(enabled,
1359 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1360 pipe_name(pipe));
92f2584a
JB
1361}
1362
4e634389
KP
1363static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1364 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1365{
1366 if ((val & DP_PORT_EN) == 0)
1367 return false;
1368
1369 if (HAS_PCH_CPT(dev_priv->dev)) {
1370 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1371 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1372 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1373 return false;
44f37d1f
CML
1374 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1375 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1376 return false;
f0575e92
KP
1377 } else {
1378 if ((val & DP_PIPE_MASK) != (pipe << 30))
1379 return false;
1380 }
1381 return true;
1382}
1383
1519b995
KP
1384static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1385 enum pipe pipe, u32 val)
1386{
dc0fa718 1387 if ((val & SDVO_ENABLE) == 0)
1519b995
KP
1388 return false;
1389
1390 if (HAS_PCH_CPT(dev_priv->dev)) {
dc0fa718 1391 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1519b995 1392 return false;
44f37d1f
CML
1393 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1394 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1395 return false;
1519b995 1396 } else {
dc0fa718 1397 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1519b995
KP
1398 return false;
1399 }
1400 return true;
1401}
1402
1403static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1404 enum pipe pipe, u32 val)
1405{
1406 if ((val & LVDS_PORT_EN) == 0)
1407 return false;
1408
1409 if (HAS_PCH_CPT(dev_priv->dev)) {
1410 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1411 return false;
1412 } else {
1413 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1414 return false;
1415 }
1416 return true;
1417}
1418
1419static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1420 enum pipe pipe, u32 val)
1421{
1422 if ((val & ADPA_DAC_ENABLE) == 0)
1423 return false;
1424 if (HAS_PCH_CPT(dev_priv->dev)) {
1425 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1426 return false;
1427 } else {
1428 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1429 return false;
1430 }
1431 return true;
1432}
1433
291906f1 1434static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1435 enum pipe pipe, int reg, u32 port_sel)
291906f1 1436{
47a05eca 1437 u32 val = I915_READ(reg);
4e634389 1438 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1439 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1440 reg, pipe_name(pipe));
de9a35ab 1441
75c5da27
DV
1442 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1443 && (val & DP_PIPEB_SELECT),
de9a35ab 1444 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1445}
1446
1447static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1448 enum pipe pipe, int reg)
1449{
47a05eca 1450 u32 val = I915_READ(reg);
b70ad586 1451 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1452 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1453 reg, pipe_name(pipe));
de9a35ab 1454
dc0fa718 1455 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
75c5da27 1456 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1457 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1458}
1459
1460static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1461 enum pipe pipe)
1462{
1463 int reg;
1464 u32 val;
291906f1 1465
f0575e92
KP
1466 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1467 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1468 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1469
1470 reg = PCH_ADPA;
1471 val = I915_READ(reg);
b70ad586 1472 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1473 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1474 pipe_name(pipe));
291906f1
JB
1475
1476 reg = PCH_LVDS;
1477 val = I915_READ(reg);
b70ad586 1478 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1479 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1480 pipe_name(pipe));
291906f1 1481
e2debe91
PZ
1482 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1483 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1484 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
291906f1
JB
1485}
1486
40e9cf64
JB
1487static void intel_init_dpio(struct drm_device *dev)
1488{
1489 struct drm_i915_private *dev_priv = dev->dev_private;
1490
1491 if (!IS_VALLEYVIEW(dev))
1492 return;
1493
a09caddd
CML
1494 /*
1495 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1496 * CHV x1 PHY (DP/HDMI D)
1497 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1498 */
1499 if (IS_CHERRYVIEW(dev)) {
1500 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1501 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1502 } else {
1503 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1504 }
5382f5f3
JB
1505}
1506
d288f65f
VS
1507static void vlv_enable_pll(struct intel_crtc *crtc,
1508 const struct intel_crtc_config *pipe_config)
87442f73 1509{
426115cf
DV
1510 struct drm_device *dev = crtc->base.dev;
1511 struct drm_i915_private *dev_priv = dev->dev_private;
1512 int reg = DPLL(crtc->pipe);
d288f65f 1513 u32 dpll = pipe_config->dpll_hw_state.dpll;
87442f73 1514
426115cf 1515 assert_pipe_disabled(dev_priv, crtc->pipe);
87442f73
DV
1516
1517 /* No really, not for ILK+ */
1518 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1519
1520 /* PLL is protected by panel, make sure we can write it */
6a9e7363 1521 if (IS_MOBILE(dev_priv->dev))
426115cf 1522 assert_panel_unlocked(dev_priv, crtc->pipe);
87442f73 1523
426115cf
DV
1524 I915_WRITE(reg, dpll);
1525 POSTING_READ(reg);
1526 udelay(150);
1527
1528 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1529 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1530
d288f65f 1531 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
426115cf 1532 POSTING_READ(DPLL_MD(crtc->pipe));
87442f73
DV
1533
1534 /* We do this three times for luck */
426115cf 1535 I915_WRITE(reg, dpll);
87442f73
DV
1536 POSTING_READ(reg);
1537 udelay(150); /* wait for warmup */
426115cf 1538 I915_WRITE(reg, dpll);
87442f73
DV
1539 POSTING_READ(reg);
1540 udelay(150); /* wait for warmup */
426115cf 1541 I915_WRITE(reg, dpll);
87442f73
DV
1542 POSTING_READ(reg);
1543 udelay(150); /* wait for warmup */
1544}
1545
d288f65f
VS
1546static void chv_enable_pll(struct intel_crtc *crtc,
1547 const struct intel_crtc_config *pipe_config)
9d556c99
CML
1548{
1549 struct drm_device *dev = crtc->base.dev;
1550 struct drm_i915_private *dev_priv = dev->dev_private;
1551 int pipe = crtc->pipe;
1552 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9d556c99
CML
1553 u32 tmp;
1554
1555 assert_pipe_disabled(dev_priv, crtc->pipe);
1556
1557 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1558
1559 mutex_lock(&dev_priv->dpio_lock);
1560
1561 /* Enable back the 10bit clock to display controller */
1562 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1563 tmp |= DPIO_DCLKP_EN;
1564 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1565
1566 /*
1567 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1568 */
1569 udelay(1);
1570
1571 /* Enable PLL */
d288f65f 1572 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
9d556c99
CML
1573
1574 /* Check PLL is locked */
a11b0703 1575 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
9d556c99
CML
1576 DRM_ERROR("PLL %d failed to lock\n", pipe);
1577
a11b0703 1578 /* not sure when this should be written */
d288f65f 1579 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
a11b0703
VS
1580 POSTING_READ(DPLL_MD(pipe));
1581
9d556c99
CML
1582 mutex_unlock(&dev_priv->dpio_lock);
1583}
1584
1c4e0274
VS
1585static int intel_num_dvo_pipes(struct drm_device *dev)
1586{
1587 struct intel_crtc *crtc;
1588 int count = 0;
1589
1590 for_each_intel_crtc(dev, crtc)
1591 count += crtc->active &&
409ee761 1592 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1c4e0274
VS
1593
1594 return count;
1595}
1596
66e3d5c0 1597static void i9xx_enable_pll(struct intel_crtc *crtc)
63d7bbe9 1598{
66e3d5c0
DV
1599 struct drm_device *dev = crtc->base.dev;
1600 struct drm_i915_private *dev_priv = dev->dev_private;
1601 int reg = DPLL(crtc->pipe);
1602 u32 dpll = crtc->config.dpll_hw_state.dpll;
63d7bbe9 1603
66e3d5c0 1604 assert_pipe_disabled(dev_priv, crtc->pipe);
58c6eaa2 1605
63d7bbe9 1606 /* No really, not for ILK+ */
3d13ef2e 1607 BUG_ON(INTEL_INFO(dev)->gen >= 5);
63d7bbe9
JB
1608
1609 /* PLL is protected by panel, make sure we can write it */
66e3d5c0
DV
1610 if (IS_MOBILE(dev) && !IS_I830(dev))
1611 assert_panel_unlocked(dev_priv, crtc->pipe);
63d7bbe9 1612
1c4e0274
VS
1613 /* Enable DVO 2x clock on both PLLs if necessary */
1614 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1615 /*
1616 * It appears to be important that we don't enable this
1617 * for the current pipe before otherwise configuring the
1618 * PLL. No idea how this should be handled if multiple
1619 * DVO outputs are enabled simultaneosly.
1620 */
1621 dpll |= DPLL_DVO_2X_MODE;
1622 I915_WRITE(DPLL(!crtc->pipe),
1623 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1624 }
66e3d5c0
DV
1625
1626 /* Wait for the clocks to stabilize. */
1627 POSTING_READ(reg);
1628 udelay(150);
1629
1630 if (INTEL_INFO(dev)->gen >= 4) {
1631 I915_WRITE(DPLL_MD(crtc->pipe),
1632 crtc->config.dpll_hw_state.dpll_md);
1633 } else {
1634 /* The pixel multiplier can only be updated once the
1635 * DPLL is enabled and the clocks are stable.
1636 *
1637 * So write it again.
1638 */
1639 I915_WRITE(reg, dpll);
1640 }
63d7bbe9
JB
1641
1642 /* We do this three times for luck */
66e3d5c0 1643 I915_WRITE(reg, dpll);
63d7bbe9
JB
1644 POSTING_READ(reg);
1645 udelay(150); /* wait for warmup */
66e3d5c0 1646 I915_WRITE(reg, dpll);
63d7bbe9
JB
1647 POSTING_READ(reg);
1648 udelay(150); /* wait for warmup */
66e3d5c0 1649 I915_WRITE(reg, dpll);
63d7bbe9
JB
1650 POSTING_READ(reg);
1651 udelay(150); /* wait for warmup */
1652}
1653
1654/**
50b44a44 1655 * i9xx_disable_pll - disable a PLL
63d7bbe9
JB
1656 * @dev_priv: i915 private structure
1657 * @pipe: pipe PLL to disable
1658 *
1659 * Disable the PLL for @pipe, making sure the pipe is off first.
1660 *
1661 * Note! This is for pre-ILK only.
1662 */
1c4e0274 1663static void i9xx_disable_pll(struct intel_crtc *crtc)
63d7bbe9 1664{
1c4e0274
VS
1665 struct drm_device *dev = crtc->base.dev;
1666 struct drm_i915_private *dev_priv = dev->dev_private;
1667 enum pipe pipe = crtc->pipe;
1668
1669 /* Disable DVO 2x clock on both PLLs if necessary */
1670 if (IS_I830(dev) &&
409ee761 1671 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1c4e0274
VS
1672 intel_num_dvo_pipes(dev) == 1) {
1673 I915_WRITE(DPLL(PIPE_B),
1674 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1675 I915_WRITE(DPLL(PIPE_A),
1676 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1677 }
1678
b6b5d049
VS
1679 /* Don't disable pipe or pipe PLLs if needed */
1680 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1681 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
63d7bbe9
JB
1682 return;
1683
1684 /* Make sure the pipe isn't still relying on us */
1685 assert_pipe_disabled(dev_priv, pipe);
1686
50b44a44
DV
1687 I915_WRITE(DPLL(pipe), 0);
1688 POSTING_READ(DPLL(pipe));
63d7bbe9
JB
1689}
1690
f6071166
JB
1691static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1692{
1693 u32 val = 0;
1694
1695 /* Make sure the pipe isn't still relying on us */
1696 assert_pipe_disabled(dev_priv, pipe);
1697
e5cbfbfb
ID
1698 /*
1699 * Leave integrated clock source and reference clock enabled for pipe B.
1700 * The latter is needed for VGA hotplug / manual detection.
1701 */
f6071166 1702 if (pipe == PIPE_B)
e5cbfbfb 1703 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
f6071166
JB
1704 I915_WRITE(DPLL(pipe), val);
1705 POSTING_READ(DPLL(pipe));
076ed3b2
CML
1706
1707}
1708
1709static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1710{
d752048d 1711 enum dpio_channel port = vlv_pipe_to_channel(pipe);
076ed3b2
CML
1712 u32 val;
1713
a11b0703
VS
1714 /* Make sure the pipe isn't still relying on us */
1715 assert_pipe_disabled(dev_priv, pipe);
076ed3b2 1716
a11b0703 1717 /* Set PLL en = 0 */
d17ec4ce 1718 val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
a11b0703
VS
1719 if (pipe != PIPE_A)
1720 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1721 I915_WRITE(DPLL(pipe), val);
1722 POSTING_READ(DPLL(pipe));
d752048d
VS
1723
1724 mutex_lock(&dev_priv->dpio_lock);
1725
1726 /* Disable 10bit clock to display controller */
1727 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1728 val &= ~DPIO_DCLKP_EN;
1729 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1730
61407f6d
VS
1731 /* disable left/right clock distribution */
1732 if (pipe != PIPE_B) {
1733 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1734 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1735 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1736 } else {
1737 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1738 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1739 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1740 }
1741
d752048d 1742 mutex_unlock(&dev_priv->dpio_lock);
f6071166
JB
1743}
1744
e4607fcf
CML
1745void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1746 struct intel_digital_port *dport)
89b667f8
JB
1747{
1748 u32 port_mask;
00fc31b7 1749 int dpll_reg;
89b667f8 1750
e4607fcf
CML
1751 switch (dport->port) {
1752 case PORT_B:
89b667f8 1753 port_mask = DPLL_PORTB_READY_MASK;
00fc31b7 1754 dpll_reg = DPLL(0);
e4607fcf
CML
1755 break;
1756 case PORT_C:
89b667f8 1757 port_mask = DPLL_PORTC_READY_MASK;
00fc31b7
CML
1758 dpll_reg = DPLL(0);
1759 break;
1760 case PORT_D:
1761 port_mask = DPLL_PORTD_READY_MASK;
1762 dpll_reg = DPIO_PHY_STATUS;
e4607fcf
CML
1763 break;
1764 default:
1765 BUG();
1766 }
89b667f8 1767
00fc31b7 1768 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
89b667f8 1769 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
00fc31b7 1770 port_name(dport->port), I915_READ(dpll_reg));
89b667f8
JB
1771}
1772
b14b1055
DV
1773static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1774{
1775 struct drm_device *dev = crtc->base.dev;
1776 struct drm_i915_private *dev_priv = dev->dev_private;
1777 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1778
be19f0ff
CW
1779 if (WARN_ON(pll == NULL))
1780 return;
1781
b14b1055
DV
1782 WARN_ON(!pll->refcount);
1783 if (pll->active == 0) {
1784 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1785 WARN_ON(pll->on);
1786 assert_shared_dpll_disabled(dev_priv, pll);
1787
1788 pll->mode_set(dev_priv, pll);
1789 }
1790}
1791
92f2584a 1792/**
85b3894f 1793 * intel_enable_shared_dpll - enable PCH PLL
92f2584a
JB
1794 * @dev_priv: i915 private structure
1795 * @pipe: pipe PLL to enable
1796 *
1797 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1798 * drives the transcoder clock.
1799 */
85b3894f 1800static void intel_enable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1801{
3d13ef2e
DL
1802 struct drm_device *dev = crtc->base.dev;
1803 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1804 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
92f2584a 1805
87a875bb 1806 if (WARN_ON(pll == NULL))
48da64a8
CW
1807 return;
1808
1809 if (WARN_ON(pll->refcount == 0))
1810 return;
ee7b9f93 1811
74dd6928 1812 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
46edb027 1813 pll->name, pll->active, pll->on,
e2b78267 1814 crtc->base.base.id);
92f2584a 1815
cdbd2316
DV
1816 if (pll->active++) {
1817 WARN_ON(!pll->on);
e9d6944e 1818 assert_shared_dpll_enabled(dev_priv, pll);
ee7b9f93
JB
1819 return;
1820 }
f4a091c7 1821 WARN_ON(pll->on);
ee7b9f93 1822
bd2bb1b9
PZ
1823 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1824
46edb027 1825 DRM_DEBUG_KMS("enabling %s\n", pll->name);
e7b903d2 1826 pll->enable(dev_priv, pll);
ee7b9f93 1827 pll->on = true;
92f2584a
JB
1828}
1829
f6daaec2 1830static void intel_disable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1831{
3d13ef2e
DL
1832 struct drm_device *dev = crtc->base.dev;
1833 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1834 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4c609cb8 1835
92f2584a 1836 /* PCH only available on ILK+ */
3d13ef2e 1837 BUG_ON(INTEL_INFO(dev)->gen < 5);
87a875bb 1838 if (WARN_ON(pll == NULL))
ee7b9f93 1839 return;
92f2584a 1840
48da64a8
CW
1841 if (WARN_ON(pll->refcount == 0))
1842 return;
7a419866 1843
46edb027
DV
1844 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1845 pll->name, pll->active, pll->on,
e2b78267 1846 crtc->base.base.id);
7a419866 1847
48da64a8 1848 if (WARN_ON(pll->active == 0)) {
e9d6944e 1849 assert_shared_dpll_disabled(dev_priv, pll);
48da64a8
CW
1850 return;
1851 }
1852
e9d6944e 1853 assert_shared_dpll_enabled(dev_priv, pll);
f4a091c7 1854 WARN_ON(!pll->on);
cdbd2316 1855 if (--pll->active)
7a419866 1856 return;
ee7b9f93 1857
46edb027 1858 DRM_DEBUG_KMS("disabling %s\n", pll->name);
e7b903d2 1859 pll->disable(dev_priv, pll);
ee7b9f93 1860 pll->on = false;
bd2bb1b9
PZ
1861
1862 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
92f2584a
JB
1863}
1864
b8a4f404
PZ
1865static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1866 enum pipe pipe)
040484af 1867{
23670b32 1868 struct drm_device *dev = dev_priv->dev;
7c26e5c6 1869 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e2b78267 1870 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
23670b32 1871 uint32_t reg, val, pipeconf_val;
040484af
JB
1872
1873 /* PCH only available on ILK+ */
55522f37 1874 BUG_ON(!HAS_PCH_SPLIT(dev));
040484af
JB
1875
1876 /* Make sure PCH DPLL is enabled */
e72f9fbf 1877 assert_shared_dpll_enabled(dev_priv,
e9d6944e 1878 intel_crtc_to_shared_dpll(intel_crtc));
040484af
JB
1879
1880 /* FDI must be feeding us bits for PCH ports */
1881 assert_fdi_tx_enabled(dev_priv, pipe);
1882 assert_fdi_rx_enabled(dev_priv, pipe);
1883
23670b32
DV
1884 if (HAS_PCH_CPT(dev)) {
1885 /* Workaround: Set the timing override bit before enabling the
1886 * pch transcoder. */
1887 reg = TRANS_CHICKEN2(pipe);
1888 val = I915_READ(reg);
1889 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1890 I915_WRITE(reg, val);
59c859d6 1891 }
23670b32 1892
ab9412ba 1893 reg = PCH_TRANSCONF(pipe);
040484af 1894 val = I915_READ(reg);
5f7f726d 1895 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1896
1897 if (HAS_PCH_IBX(dev_priv->dev)) {
1898 /*
1899 * make the BPC in transcoder be consistent with
1900 * that in pipeconf reg.
1901 */
dfd07d72
DV
1902 val &= ~PIPECONF_BPC_MASK;
1903 val |= pipeconf_val & PIPECONF_BPC_MASK;
e9bcff5c 1904 }
5f7f726d
PZ
1905
1906 val &= ~TRANS_INTERLACE_MASK;
1907 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6 1908 if (HAS_PCH_IBX(dev_priv->dev) &&
409ee761 1909 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7c26e5c6
PZ
1910 val |= TRANS_LEGACY_INTERLACED_ILK;
1911 else
1912 val |= TRANS_INTERLACED;
5f7f726d
PZ
1913 else
1914 val |= TRANS_PROGRESSIVE;
1915
040484af
JB
1916 I915_WRITE(reg, val | TRANS_ENABLE);
1917 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
4bb6f1f3 1918 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
040484af
JB
1919}
1920
8fb033d7 1921static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 1922 enum transcoder cpu_transcoder)
040484af 1923{
8fb033d7 1924 u32 val, pipeconf_val;
8fb033d7
PZ
1925
1926 /* PCH only available on ILK+ */
55522f37 1927 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
8fb033d7 1928
8fb033d7 1929 /* FDI must be feeding us bits for PCH ports */
1a240d4d 1930 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
937bb610 1931 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 1932
223a6fdf
PZ
1933 /* Workaround: set timing override bit. */
1934 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1935 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf
PZ
1936 I915_WRITE(_TRANSA_CHICKEN2, val);
1937
25f3ef11 1938 val = TRANS_ENABLE;
937bb610 1939 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 1940
9a76b1c6
PZ
1941 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1942 PIPECONF_INTERLACED_ILK)
a35f2679 1943 val |= TRANS_INTERLACED;
8fb033d7
PZ
1944 else
1945 val |= TRANS_PROGRESSIVE;
1946
ab9412ba
DV
1947 I915_WRITE(LPT_TRANSCONF, val);
1948 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
937bb610 1949 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
1950}
1951
b8a4f404
PZ
1952static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1953 enum pipe pipe)
040484af 1954{
23670b32
DV
1955 struct drm_device *dev = dev_priv->dev;
1956 uint32_t reg, val;
040484af
JB
1957
1958 /* FDI relies on the transcoder */
1959 assert_fdi_tx_disabled(dev_priv, pipe);
1960 assert_fdi_rx_disabled(dev_priv, pipe);
1961
291906f1
JB
1962 /* Ports must be off as well */
1963 assert_pch_ports_disabled(dev_priv, pipe);
1964
ab9412ba 1965 reg = PCH_TRANSCONF(pipe);
040484af
JB
1966 val = I915_READ(reg);
1967 val &= ~TRANS_ENABLE;
1968 I915_WRITE(reg, val);
1969 /* wait for PCH transcoder off, transcoder state */
1970 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4bb6f1f3 1971 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
23670b32
DV
1972
1973 if (!HAS_PCH_IBX(dev)) {
1974 /* Workaround: Clear the timing override chicken bit again. */
1975 reg = TRANS_CHICKEN2(pipe);
1976 val = I915_READ(reg);
1977 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1978 I915_WRITE(reg, val);
1979 }
040484af
JB
1980}
1981
ab4d966c 1982static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 1983{
8fb033d7
PZ
1984 u32 val;
1985
ab9412ba 1986 val = I915_READ(LPT_TRANSCONF);
8fb033d7 1987 val &= ~TRANS_ENABLE;
ab9412ba 1988 I915_WRITE(LPT_TRANSCONF, val);
8fb033d7 1989 /* wait for PCH transcoder off, transcoder state */
ab9412ba 1990 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
8a52fd9f 1991 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
1992
1993 /* Workaround: clear timing override bit. */
1994 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1995 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf 1996 I915_WRITE(_TRANSA_CHICKEN2, val);
040484af
JB
1997}
1998
b24e7179 1999/**
309cfea8 2000 * intel_enable_pipe - enable a pipe, asserting requirements
0372264a 2001 * @crtc: crtc responsible for the pipe
b24e7179 2002 *
0372264a 2003 * Enable @crtc's pipe, making sure that various hardware specific requirements
b24e7179 2004 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
b24e7179 2005 */
e1fdc473 2006static void intel_enable_pipe(struct intel_crtc *crtc)
b24e7179 2007{
0372264a
PZ
2008 struct drm_device *dev = crtc->base.dev;
2009 struct drm_i915_private *dev_priv = dev->dev_private;
2010 enum pipe pipe = crtc->pipe;
702e7a56
PZ
2011 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2012 pipe);
1a240d4d 2013 enum pipe pch_transcoder;
b24e7179
JB
2014 int reg;
2015 u32 val;
2016
58c6eaa2 2017 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2018 assert_cursor_disabled(dev_priv, pipe);
58c6eaa2
DV
2019 assert_sprites_disabled(dev_priv, pipe);
2020
681e5811 2021 if (HAS_PCH_LPT(dev_priv->dev))
cc391bbb
PZ
2022 pch_transcoder = TRANSCODER_A;
2023 else
2024 pch_transcoder = pipe;
2025
b24e7179
JB
2026 /*
2027 * A pipe without a PLL won't actually be able to drive bits from
2028 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2029 * need the check.
2030 */
2031 if (!HAS_PCH_SPLIT(dev_priv->dev))
409ee761 2032 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
23538ef1
JN
2033 assert_dsi_pll_enabled(dev_priv);
2034 else
2035 assert_pll_enabled(dev_priv, pipe);
040484af 2036 else {
30421c4f 2037 if (crtc->config.has_pch_encoder) {
040484af 2038 /* if driving the PCH, we need FDI enabled */
cc391bbb 2039 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1a240d4d
DV
2040 assert_fdi_tx_pll_enabled(dev_priv,
2041 (enum pipe) cpu_transcoder);
040484af
JB
2042 }
2043 /* FIXME: assert CPU port conditions for SNB+ */
2044 }
b24e7179 2045
702e7a56 2046 reg = PIPECONF(cpu_transcoder);
b24e7179 2047 val = I915_READ(reg);
7ad25d48 2048 if (val & PIPECONF_ENABLE) {
b6b5d049
VS
2049 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2050 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
00d70b15 2051 return;
7ad25d48 2052 }
00d70b15
CW
2053
2054 I915_WRITE(reg, val | PIPECONF_ENABLE);
851855d8 2055 POSTING_READ(reg);
b24e7179
JB
2056}
2057
2058/**
309cfea8 2059 * intel_disable_pipe - disable a pipe, asserting requirements
575f7ab7 2060 * @crtc: crtc whose pipes is to be disabled
b24e7179 2061 *
575f7ab7
VS
2062 * Disable the pipe of @crtc, making sure that various hardware
2063 * specific requirements are met, if applicable, e.g. plane
2064 * disabled, panel fitter off, etc.
b24e7179
JB
2065 *
2066 * Will wait until the pipe has shut down before returning.
2067 */
575f7ab7 2068static void intel_disable_pipe(struct intel_crtc *crtc)
b24e7179 2069{
575f7ab7
VS
2070 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2071 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
2072 enum pipe pipe = crtc->pipe;
b24e7179
JB
2073 int reg;
2074 u32 val;
2075
2076 /*
2077 * Make sure planes won't keep trying to pump pixels to us,
2078 * or we might hang the display.
2079 */
2080 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2081 assert_cursor_disabled(dev_priv, pipe);
19332d7a 2082 assert_sprites_disabled(dev_priv, pipe);
b24e7179 2083
702e7a56 2084 reg = PIPECONF(cpu_transcoder);
b24e7179 2085 val = I915_READ(reg);
00d70b15
CW
2086 if ((val & PIPECONF_ENABLE) == 0)
2087 return;
2088
67adc644
VS
2089 /*
2090 * Double wide has implications for planes
2091 * so best keep it disabled when not needed.
2092 */
2093 if (crtc->config.double_wide)
2094 val &= ~PIPECONF_DOUBLE_WIDE;
2095
2096 /* Don't disable pipe or pipe PLLs if needed */
b6b5d049
VS
2097 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2098 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
67adc644
VS
2099 val &= ~PIPECONF_ENABLE;
2100
2101 I915_WRITE(reg, val);
2102 if ((val & PIPECONF_ENABLE) == 0)
2103 intel_wait_for_pipe_off(crtc);
b24e7179
JB
2104}
2105
d74362c9
KP
2106/*
2107 * Plane regs are double buffered, going from enabled->disabled needs a
2108 * trigger in order to latch. The display address reg provides this.
2109 */
1dba99f4
VS
2110void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2111 enum plane plane)
d74362c9 2112{
3d13ef2e
DL
2113 struct drm_device *dev = dev_priv->dev;
2114 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1dba99f4
VS
2115
2116 I915_WRITE(reg, I915_READ(reg));
2117 POSTING_READ(reg);
d74362c9
KP
2118}
2119
b24e7179 2120/**
262ca2b0 2121 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
fdd508a6
VS
2122 * @plane: plane to be enabled
2123 * @crtc: crtc for the plane
b24e7179 2124 *
fdd508a6 2125 * Enable @plane on @crtc, making sure that the pipe is running first.
b24e7179 2126 */
fdd508a6
VS
2127static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2128 struct drm_crtc *crtc)
b24e7179 2129{
fdd508a6
VS
2130 struct drm_device *dev = plane->dev;
2131 struct drm_i915_private *dev_priv = dev->dev_private;
2132 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
b24e7179
JB
2133
2134 /* If the pipe isn't enabled, we can't pump pixels and may hang */
fdd508a6 2135 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
b24e7179 2136
98ec7739
VS
2137 if (intel_crtc->primary_enabled)
2138 return;
0037f71c 2139
4c445e0e 2140 intel_crtc->primary_enabled = true;
939c2fe8 2141
fdd508a6
VS
2142 dev_priv->display.update_primary_plane(crtc, plane->fb,
2143 crtc->x, crtc->y);
33c3b0d1
VS
2144
2145 /*
2146 * BDW signals flip done immediately if the plane
2147 * is disabled, even if the plane enable is already
2148 * armed to occur at the next vblank :(
2149 */
2150 if (IS_BROADWELL(dev))
2151 intel_wait_for_vblank(dev, intel_crtc->pipe);
b24e7179
JB
2152}
2153
b24e7179 2154/**
262ca2b0 2155 * intel_disable_primary_hw_plane - disable the primary hardware plane
fdd508a6
VS
2156 * @plane: plane to be disabled
2157 * @crtc: crtc for the plane
b24e7179 2158 *
fdd508a6 2159 * Disable @plane on @crtc, making sure that the pipe is running first.
b24e7179 2160 */
fdd508a6
VS
2161static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2162 struct drm_crtc *crtc)
b24e7179 2163{
fdd508a6
VS
2164 struct drm_device *dev = plane->dev;
2165 struct drm_i915_private *dev_priv = dev->dev_private;
2166 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2167
2168 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
b24e7179 2169
98ec7739
VS
2170 if (!intel_crtc->primary_enabled)
2171 return;
0037f71c 2172
4c445e0e 2173 intel_crtc->primary_enabled = false;
939c2fe8 2174
fdd508a6
VS
2175 dev_priv->display.update_primary_plane(crtc, plane->fb,
2176 crtc->x, crtc->y);
b24e7179
JB
2177}
2178
693db184
CW
2179static bool need_vtd_wa(struct drm_device *dev)
2180{
2181#ifdef CONFIG_INTEL_IOMMU
2182 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2183 return true;
2184#endif
2185 return false;
2186}
2187
a57ce0b2
JB
2188static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2189{
2190 int tile_height;
2191
2192 tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2193 return ALIGN(height, tile_height);
2194}
2195
127bd2ac 2196int
48b956c5 2197intel_pin_and_fence_fb_obj(struct drm_device *dev,
05394f39 2198 struct drm_i915_gem_object *obj,
a4872ba6 2199 struct intel_engine_cs *pipelined)
6b95a207 2200{
ce453d81 2201 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
2202 u32 alignment;
2203 int ret;
2204
ebcdd39e
MR
2205 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2206
05394f39 2207 switch (obj->tiling_mode) {
6b95a207 2208 case I915_TILING_NONE:
1fada4cc
DL
2209 if (INTEL_INFO(dev)->gen >= 9)
2210 alignment = 256 * 1024;
2211 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
534843da 2212 alignment = 128 * 1024;
a6c45cf0 2213 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
2214 alignment = 4 * 1024;
2215 else
2216 alignment = 64 * 1024;
6b95a207
KH
2217 break;
2218 case I915_TILING_X:
1fada4cc
DL
2219 if (INTEL_INFO(dev)->gen >= 9)
2220 alignment = 256 * 1024;
2221 else {
2222 /* pin() will align the object as required by fence */
2223 alignment = 0;
2224 }
6b95a207
KH
2225 break;
2226 case I915_TILING_Y:
80075d49 2227 WARN(1, "Y tiled bo slipped through, driver bug!\n");
6b95a207
KH
2228 return -EINVAL;
2229 default:
2230 BUG();
2231 }
2232
693db184
CW
2233 /* Note that the w/a also requires 64 PTE of padding following the
2234 * bo. We currently fill all unused PTE with the shadow page and so
2235 * we should always have valid PTE following the scanout preventing
2236 * the VT-d warning.
2237 */
2238 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2239 alignment = 256 * 1024;
2240
d6dd6843
PZ
2241 /*
2242 * Global gtt pte registers are special registers which actually forward
2243 * writes to a chunk of system memory. Which means that there is no risk
2244 * that the register values disappear as soon as we call
2245 * intel_runtime_pm_put(), so it is correct to wrap only the
2246 * pin/unpin/fence and not more.
2247 */
2248 intel_runtime_pm_get(dev_priv);
2249
ce453d81 2250 dev_priv->mm.interruptible = false;
2da3b9b9 2251 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
48b956c5 2252 if (ret)
ce453d81 2253 goto err_interruptible;
6b95a207
KH
2254
2255 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2256 * fence, whereas 965+ only requires a fence if using
2257 * framebuffer compression. For simplicity, we always install
2258 * a fence as the cost is not that onerous.
2259 */
06d98131 2260 ret = i915_gem_object_get_fence(obj);
9a5a53b3
CW
2261 if (ret)
2262 goto err_unpin;
1690e1eb 2263
9a5a53b3 2264 i915_gem_object_pin_fence(obj);
6b95a207 2265
ce453d81 2266 dev_priv->mm.interruptible = true;
d6dd6843 2267 intel_runtime_pm_put(dev_priv);
6b95a207 2268 return 0;
48b956c5
CW
2269
2270err_unpin:
cc98b413 2271 i915_gem_object_unpin_from_display_plane(obj);
ce453d81
CW
2272err_interruptible:
2273 dev_priv->mm.interruptible = true;
d6dd6843 2274 intel_runtime_pm_put(dev_priv);
48b956c5 2275 return ret;
6b95a207
KH
2276}
2277
1690e1eb
CW
2278void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2279{
ebcdd39e
MR
2280 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2281
1690e1eb 2282 i915_gem_object_unpin_fence(obj);
cc98b413 2283 i915_gem_object_unpin_from_display_plane(obj);
1690e1eb
CW
2284}
2285
c2c75131
DV
2286/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2287 * is assumed to be a power-of-two. */
bc752862
CW
2288unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2289 unsigned int tiling_mode,
2290 unsigned int cpp,
2291 unsigned int pitch)
c2c75131 2292{
bc752862
CW
2293 if (tiling_mode != I915_TILING_NONE) {
2294 unsigned int tile_rows, tiles;
c2c75131 2295
bc752862
CW
2296 tile_rows = *y / 8;
2297 *y %= 8;
c2c75131 2298
bc752862
CW
2299 tiles = *x / (512/cpp);
2300 *x %= 512/cpp;
2301
2302 return tile_rows * pitch * 8 + tiles * 4096;
2303 } else {
2304 unsigned int offset;
2305
2306 offset = *y * pitch + *x * cpp;
2307 *y = 0;
2308 *x = (offset & 4095) / cpp;
2309 return offset & -4096;
2310 }
c2c75131
DV
2311}
2312
46f297fb
JB
2313int intel_format_to_fourcc(int format)
2314{
2315 switch (format) {
2316 case DISPPLANE_8BPP:
2317 return DRM_FORMAT_C8;
2318 case DISPPLANE_BGRX555:
2319 return DRM_FORMAT_XRGB1555;
2320 case DISPPLANE_BGRX565:
2321 return DRM_FORMAT_RGB565;
2322 default:
2323 case DISPPLANE_BGRX888:
2324 return DRM_FORMAT_XRGB8888;
2325 case DISPPLANE_RGBX888:
2326 return DRM_FORMAT_XBGR8888;
2327 case DISPPLANE_BGRX101010:
2328 return DRM_FORMAT_XRGB2101010;
2329 case DISPPLANE_RGBX101010:
2330 return DRM_FORMAT_XBGR2101010;
2331 }
2332}
2333
484b41dd 2334static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
46f297fb
JB
2335 struct intel_plane_config *plane_config)
2336{
2337 struct drm_device *dev = crtc->base.dev;
2338 struct drm_i915_gem_object *obj = NULL;
2339 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2340 u32 base = plane_config->base;
2341
ff2652ea
CW
2342 if (plane_config->size == 0)
2343 return false;
2344
46f297fb
JB
2345 obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2346 plane_config->size);
2347 if (!obj)
484b41dd 2348 return false;
46f297fb
JB
2349
2350 if (plane_config->tiled) {
2351 obj->tiling_mode = I915_TILING_X;
66e514c1 2352 obj->stride = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2353 }
2354
66e514c1
DA
2355 mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2356 mode_cmd.width = crtc->base.primary->fb->width;
2357 mode_cmd.height = crtc->base.primary->fb->height;
2358 mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2359
2360 mutex_lock(&dev->struct_mutex);
2361
66e514c1 2362 if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
484b41dd 2363 &mode_cmd, obj)) {
46f297fb
JB
2364 DRM_DEBUG_KMS("intel fb init failed\n");
2365 goto out_unref_obj;
2366 }
2367
a071fa00 2368 obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
46f297fb 2369 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2370
2371 DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2372 return true;
46f297fb
JB
2373
2374out_unref_obj:
2375 drm_gem_object_unreference(&obj->base);
2376 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2377 return false;
2378}
2379
2380static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2381 struct intel_plane_config *plane_config)
2382{
2383 struct drm_device *dev = intel_crtc->base.dev;
d9ceb816 2384 struct drm_i915_private *dev_priv = dev->dev_private;
484b41dd
JB
2385 struct drm_crtc *c;
2386 struct intel_crtc *i;
2ff8fde1 2387 struct drm_i915_gem_object *obj;
484b41dd 2388
66e514c1 2389 if (!intel_crtc->base.primary->fb)
484b41dd
JB
2390 return;
2391
2392 if (intel_alloc_plane_obj(intel_crtc, plane_config))
2393 return;
2394
66e514c1
DA
2395 kfree(intel_crtc->base.primary->fb);
2396 intel_crtc->base.primary->fb = NULL;
484b41dd
JB
2397
2398 /*
2399 * Failed to alloc the obj, check to see if we should share
2400 * an fb with another CRTC instead
2401 */
70e1e0ec 2402 for_each_crtc(dev, c) {
484b41dd
JB
2403 i = to_intel_crtc(c);
2404
2405 if (c == &intel_crtc->base)
2406 continue;
2407
2ff8fde1
MR
2408 if (!i->active)
2409 continue;
2410
2411 obj = intel_fb_obj(c->primary->fb);
2412 if (obj == NULL)
484b41dd
JB
2413 continue;
2414
2ff8fde1 2415 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
d9ceb816
JB
2416 if (obj->tiling_mode != I915_TILING_NONE)
2417 dev_priv->preserve_bios_swizzle = true;
2418
66e514c1
DA
2419 drm_framebuffer_reference(c->primary->fb);
2420 intel_crtc->base.primary->fb = c->primary->fb;
2ff8fde1 2421 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
484b41dd
JB
2422 break;
2423 }
2424 }
46f297fb
JB
2425}
2426
29b9bde6
DV
2427static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2428 struct drm_framebuffer *fb,
2429 int x, int y)
81255565
JB
2430{
2431 struct drm_device *dev = crtc->dev;
2432 struct drm_i915_private *dev_priv = dev->dev_private;
2433 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c9ba6fad 2434 struct drm_i915_gem_object *obj;
81255565 2435 int plane = intel_crtc->plane;
e506a0c6 2436 unsigned long linear_offset;
81255565 2437 u32 dspcntr;
f45651ba 2438 u32 reg = DSPCNTR(plane);
48404c1e 2439 int pixel_size;
f45651ba 2440
fdd508a6
VS
2441 if (!intel_crtc->primary_enabled) {
2442 I915_WRITE(reg, 0);
2443 if (INTEL_INFO(dev)->gen >= 4)
2444 I915_WRITE(DSPSURF(plane), 0);
2445 else
2446 I915_WRITE(DSPADDR(plane), 0);
2447 POSTING_READ(reg);
2448 return;
2449 }
2450
c9ba6fad
VS
2451 obj = intel_fb_obj(fb);
2452 if (WARN_ON(obj == NULL))
2453 return;
2454
2455 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2456
f45651ba
VS
2457 dspcntr = DISPPLANE_GAMMA_ENABLE;
2458
fdd508a6 2459 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2460
2461 if (INTEL_INFO(dev)->gen < 4) {
2462 if (intel_crtc->pipe == PIPE_B)
2463 dspcntr |= DISPPLANE_SEL_PIPE_B;
2464
2465 /* pipesrc and dspsize control the size that is scaled from,
2466 * which should always be the user's requested size.
2467 */
2468 I915_WRITE(DSPSIZE(plane),
2469 ((intel_crtc->config.pipe_src_h - 1) << 16) |
2470 (intel_crtc->config.pipe_src_w - 1));
2471 I915_WRITE(DSPPOS(plane), 0);
c14b0485
VS
2472 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2473 I915_WRITE(PRIMSIZE(plane),
2474 ((intel_crtc->config.pipe_src_h - 1) << 16) |
2475 (intel_crtc->config.pipe_src_w - 1));
2476 I915_WRITE(PRIMPOS(plane), 0);
2477 I915_WRITE(PRIMCNSTALPHA(plane), 0);
f45651ba 2478 }
81255565 2479
57779d06
VS
2480 switch (fb->pixel_format) {
2481 case DRM_FORMAT_C8:
81255565
JB
2482 dspcntr |= DISPPLANE_8BPP;
2483 break;
57779d06
VS
2484 case DRM_FORMAT_XRGB1555:
2485 case DRM_FORMAT_ARGB1555:
2486 dspcntr |= DISPPLANE_BGRX555;
81255565 2487 break;
57779d06
VS
2488 case DRM_FORMAT_RGB565:
2489 dspcntr |= DISPPLANE_BGRX565;
2490 break;
2491 case DRM_FORMAT_XRGB8888:
2492 case DRM_FORMAT_ARGB8888:
2493 dspcntr |= DISPPLANE_BGRX888;
2494 break;
2495 case DRM_FORMAT_XBGR8888:
2496 case DRM_FORMAT_ABGR8888:
2497 dspcntr |= DISPPLANE_RGBX888;
2498 break;
2499 case DRM_FORMAT_XRGB2101010:
2500 case DRM_FORMAT_ARGB2101010:
2501 dspcntr |= DISPPLANE_BGRX101010;
2502 break;
2503 case DRM_FORMAT_XBGR2101010:
2504 case DRM_FORMAT_ABGR2101010:
2505 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2506 break;
2507 default:
baba133a 2508 BUG();
81255565 2509 }
57779d06 2510
f45651ba
VS
2511 if (INTEL_INFO(dev)->gen >= 4 &&
2512 obj->tiling_mode != I915_TILING_NONE)
2513 dspcntr |= DISPPLANE_TILED;
81255565 2514
de1aa629
VS
2515 if (IS_G4X(dev))
2516 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2517
b9897127 2518 linear_offset = y * fb->pitches[0] + x * pixel_size;
81255565 2519
c2c75131
DV
2520 if (INTEL_INFO(dev)->gen >= 4) {
2521 intel_crtc->dspaddr_offset =
bc752862 2522 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
b9897127 2523 pixel_size,
bc752862 2524 fb->pitches[0]);
c2c75131
DV
2525 linear_offset -= intel_crtc->dspaddr_offset;
2526 } else {
e506a0c6 2527 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2528 }
e506a0c6 2529
48404c1e
SJ
2530 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2531 dspcntr |= DISPPLANE_ROTATE_180;
2532
2533 x += (intel_crtc->config.pipe_src_w - 1);
2534 y += (intel_crtc->config.pipe_src_h - 1);
2535
2536 /* Finding the last pixel of the last line of the display
2537 data and adding to linear_offset*/
2538 linear_offset +=
2539 (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2540 (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2541 }
2542
2543 I915_WRITE(reg, dspcntr);
2544
f343c5f6
BW
2545 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2546 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2547 fb->pitches[0]);
01f2c773 2548 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2549 if (INTEL_INFO(dev)->gen >= 4) {
85ba7b7d
DV
2550 I915_WRITE(DSPSURF(plane),
2551 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
5eddb70b 2552 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2553 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2554 } else
f343c5f6 2555 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
5eddb70b 2556 POSTING_READ(reg);
17638cd6
JB
2557}
2558
29b9bde6
DV
2559static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2560 struct drm_framebuffer *fb,
2561 int x, int y)
17638cd6
JB
2562{
2563 struct drm_device *dev = crtc->dev;
2564 struct drm_i915_private *dev_priv = dev->dev_private;
2565 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c9ba6fad 2566 struct drm_i915_gem_object *obj;
17638cd6 2567 int plane = intel_crtc->plane;
e506a0c6 2568 unsigned long linear_offset;
17638cd6 2569 u32 dspcntr;
f45651ba 2570 u32 reg = DSPCNTR(plane);
48404c1e 2571 int pixel_size;
f45651ba 2572
fdd508a6
VS
2573 if (!intel_crtc->primary_enabled) {
2574 I915_WRITE(reg, 0);
2575 I915_WRITE(DSPSURF(plane), 0);
2576 POSTING_READ(reg);
2577 return;
2578 }
2579
c9ba6fad
VS
2580 obj = intel_fb_obj(fb);
2581 if (WARN_ON(obj == NULL))
2582 return;
2583
2584 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2585
f45651ba
VS
2586 dspcntr = DISPPLANE_GAMMA_ENABLE;
2587
fdd508a6 2588 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2589
2590 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2591 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
17638cd6 2592
57779d06
VS
2593 switch (fb->pixel_format) {
2594 case DRM_FORMAT_C8:
17638cd6
JB
2595 dspcntr |= DISPPLANE_8BPP;
2596 break;
57779d06
VS
2597 case DRM_FORMAT_RGB565:
2598 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2599 break;
57779d06
VS
2600 case DRM_FORMAT_XRGB8888:
2601 case DRM_FORMAT_ARGB8888:
2602 dspcntr |= DISPPLANE_BGRX888;
2603 break;
2604 case DRM_FORMAT_XBGR8888:
2605 case DRM_FORMAT_ABGR8888:
2606 dspcntr |= DISPPLANE_RGBX888;
2607 break;
2608 case DRM_FORMAT_XRGB2101010:
2609 case DRM_FORMAT_ARGB2101010:
2610 dspcntr |= DISPPLANE_BGRX101010;
2611 break;
2612 case DRM_FORMAT_XBGR2101010:
2613 case DRM_FORMAT_ABGR2101010:
2614 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2615 break;
2616 default:
baba133a 2617 BUG();
17638cd6
JB
2618 }
2619
2620 if (obj->tiling_mode != I915_TILING_NONE)
2621 dspcntr |= DISPPLANE_TILED;
17638cd6 2622
f45651ba 2623 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
1f5d76db 2624 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
17638cd6 2625
b9897127 2626 linear_offset = y * fb->pitches[0] + x * pixel_size;
c2c75131 2627 intel_crtc->dspaddr_offset =
bc752862 2628 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
b9897127 2629 pixel_size,
bc752862 2630 fb->pitches[0]);
c2c75131 2631 linear_offset -= intel_crtc->dspaddr_offset;
48404c1e
SJ
2632 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2633 dspcntr |= DISPPLANE_ROTATE_180;
2634
2635 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2636 x += (intel_crtc->config.pipe_src_w - 1);
2637 y += (intel_crtc->config.pipe_src_h - 1);
2638
2639 /* Finding the last pixel of the last line of the display
2640 data and adding to linear_offset*/
2641 linear_offset +=
2642 (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2643 (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2644 }
2645 }
2646
2647 I915_WRITE(reg, dspcntr);
17638cd6 2648
f343c5f6
BW
2649 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2650 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2651 fb->pitches[0]);
01f2c773 2652 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
85ba7b7d
DV
2653 I915_WRITE(DSPSURF(plane),
2654 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
b3dc685e 2655 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
bc1c91eb
DL
2656 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2657 } else {
2658 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2659 I915_WRITE(DSPLINOFF(plane), linear_offset);
2660 }
17638cd6 2661 POSTING_READ(reg);
17638cd6
JB
2662}
2663
70d21f0e
DL
2664static void skylake_update_primary_plane(struct drm_crtc *crtc,
2665 struct drm_framebuffer *fb,
2666 int x, int y)
2667{
2668 struct drm_device *dev = crtc->dev;
2669 struct drm_i915_private *dev_priv = dev->dev_private;
2670 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2671 struct intel_framebuffer *intel_fb;
2672 struct drm_i915_gem_object *obj;
2673 int pipe = intel_crtc->pipe;
2674 u32 plane_ctl, stride;
2675
2676 if (!intel_crtc->primary_enabled) {
2677 I915_WRITE(PLANE_CTL(pipe, 0), 0);
2678 I915_WRITE(PLANE_SURF(pipe, 0), 0);
2679 POSTING_READ(PLANE_CTL(pipe, 0));
2680 return;
2681 }
2682
2683 plane_ctl = PLANE_CTL_ENABLE |
2684 PLANE_CTL_PIPE_GAMMA_ENABLE |
2685 PLANE_CTL_PIPE_CSC_ENABLE;
2686
2687 switch (fb->pixel_format) {
2688 case DRM_FORMAT_RGB565:
2689 plane_ctl |= PLANE_CTL_FORMAT_RGB_565;
2690 break;
2691 case DRM_FORMAT_XRGB8888:
2692 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2693 break;
2694 case DRM_FORMAT_XBGR8888:
2695 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2696 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2697 break;
2698 case DRM_FORMAT_XRGB2101010:
2699 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2700 break;
2701 case DRM_FORMAT_XBGR2101010:
2702 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2703 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2704 break;
2705 default:
2706 BUG();
2707 }
2708
2709 intel_fb = to_intel_framebuffer(fb);
2710 obj = intel_fb->obj;
2711
2712 /*
2713 * The stride is either expressed as a multiple of 64 bytes chunks for
2714 * linear buffers or in number of tiles for tiled buffers.
2715 */
2716 switch (obj->tiling_mode) {
2717 case I915_TILING_NONE:
2718 stride = fb->pitches[0] >> 6;
2719 break;
2720 case I915_TILING_X:
2721 plane_ctl |= PLANE_CTL_TILED_X;
2722 stride = fb->pitches[0] >> 9;
2723 break;
2724 default:
2725 BUG();
2726 }
2727
2728 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
1447dde0
SJ
2729 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180))
2730 plane_ctl |= PLANE_CTL_ROTATE_180;
70d21f0e
DL
2731
2732 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
2733
2734 DRM_DEBUG_KMS("Writing base %08lX %d,%d,%d,%d pitch=%d\n",
2735 i915_gem_obj_ggtt_offset(obj),
2736 x, y, fb->width, fb->height,
2737 fb->pitches[0]);
2738
2739 I915_WRITE(PLANE_POS(pipe, 0), 0);
2740 I915_WRITE(PLANE_OFFSET(pipe, 0), (y << 16) | x);
2741 I915_WRITE(PLANE_SIZE(pipe, 0),
2742 (intel_crtc->config.pipe_src_h - 1) << 16 |
2743 (intel_crtc->config.pipe_src_w - 1));
2744 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
2745 I915_WRITE(PLANE_SURF(pipe, 0), i915_gem_obj_ggtt_offset(obj));
2746
2747 POSTING_READ(PLANE_SURF(pipe, 0));
2748}
2749
17638cd6
JB
2750/* Assume fb object is pinned & idle & fenced and just update base pointers */
2751static int
2752intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2753 int x, int y, enum mode_set_atomic state)
2754{
2755 struct drm_device *dev = crtc->dev;
2756 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 2757
6b8e6ed0
CW
2758 if (dev_priv->display.disable_fbc)
2759 dev_priv->display.disable_fbc(dev);
81255565 2760
29b9bde6
DV
2761 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2762
2763 return 0;
81255565
JB
2764}
2765
96a02917
VS
2766void intel_display_handle_reset(struct drm_device *dev)
2767{
2768 struct drm_i915_private *dev_priv = dev->dev_private;
2769 struct drm_crtc *crtc;
2770
2771 /*
2772 * Flips in the rings have been nuked by the reset,
2773 * so complete all pending flips so that user space
2774 * will get its events and not get stuck.
2775 *
2776 * Also update the base address of all primary
2777 * planes to the the last fb to make sure we're
2778 * showing the correct fb after a reset.
2779 *
2780 * Need to make two loops over the crtcs so that we
2781 * don't try to grab a crtc mutex before the
2782 * pending_flip_queue really got woken up.
2783 */
2784
70e1e0ec 2785 for_each_crtc(dev, crtc) {
96a02917
VS
2786 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2787 enum plane plane = intel_crtc->plane;
2788
2789 intel_prepare_page_flip(dev, plane);
2790 intel_finish_page_flip_plane(dev, plane);
2791 }
2792
70e1e0ec 2793 for_each_crtc(dev, crtc) {
96a02917
VS
2794 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2795
51fd371b 2796 drm_modeset_lock(&crtc->mutex, NULL);
947fdaad
CW
2797 /*
2798 * FIXME: Once we have proper support for primary planes (and
2799 * disabling them without disabling the entire crtc) allow again
66e514c1 2800 * a NULL crtc->primary->fb.
947fdaad 2801 */
f4510a27 2802 if (intel_crtc->active && crtc->primary->fb)
262ca2b0 2803 dev_priv->display.update_primary_plane(crtc,
66e514c1 2804 crtc->primary->fb,
262ca2b0
MR
2805 crtc->x,
2806 crtc->y);
51fd371b 2807 drm_modeset_unlock(&crtc->mutex);
96a02917
VS
2808 }
2809}
2810
14667a4b
CW
2811static int
2812intel_finish_fb(struct drm_framebuffer *old_fb)
2813{
2ff8fde1 2814 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
14667a4b
CW
2815 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2816 bool was_interruptible = dev_priv->mm.interruptible;
2817 int ret;
2818
14667a4b
CW
2819 /* Big Hammer, we also need to ensure that any pending
2820 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2821 * current scanout is retired before unpinning the old
2822 * framebuffer.
2823 *
2824 * This should only fail upon a hung GPU, in which case we
2825 * can safely continue.
2826 */
2827 dev_priv->mm.interruptible = false;
2828 ret = i915_gem_object_finish_gpu(obj);
2829 dev_priv->mm.interruptible = was_interruptible;
2830
2831 return ret;
2832}
2833
7d5e3799
CW
2834static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2835{
2836 struct drm_device *dev = crtc->dev;
2837 struct drm_i915_private *dev_priv = dev->dev_private;
2838 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7d5e3799
CW
2839 bool pending;
2840
2841 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2842 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2843 return false;
2844
5e2d7afc 2845 spin_lock_irq(&dev->event_lock);
7d5e3799 2846 pending = to_intel_crtc(crtc)->unpin_work != NULL;
5e2d7afc 2847 spin_unlock_irq(&dev->event_lock);
7d5e3799
CW
2848
2849 return pending;
2850}
2851
e30e8f75
GP
2852static void intel_update_pipe_size(struct intel_crtc *crtc)
2853{
2854 struct drm_device *dev = crtc->base.dev;
2855 struct drm_i915_private *dev_priv = dev->dev_private;
2856 const struct drm_display_mode *adjusted_mode;
2857
2858 if (!i915.fastboot)
2859 return;
2860
2861 /*
2862 * Update pipe size and adjust fitter if needed: the reason for this is
2863 * that in compute_mode_changes we check the native mode (not the pfit
2864 * mode) to see if we can flip rather than do a full mode set. In the
2865 * fastboot case, we'll flip, but if we don't update the pipesrc and
2866 * pfit state, we'll end up with a big fb scanned out into the wrong
2867 * sized surface.
2868 *
2869 * To fix this properly, we need to hoist the checks up into
2870 * compute_mode_changes (or above), check the actual pfit state and
2871 * whether the platform allows pfit disable with pipe active, and only
2872 * then update the pipesrc and pfit state, even on the flip path.
2873 */
2874
2875 adjusted_mode = &crtc->config.adjusted_mode;
2876
2877 I915_WRITE(PIPESRC(crtc->pipe),
2878 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2879 (adjusted_mode->crtc_vdisplay - 1));
2880 if (!crtc->config.pch_pfit.enabled &&
409ee761
ACO
2881 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2882 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
e30e8f75
GP
2883 I915_WRITE(PF_CTL(crtc->pipe), 0);
2884 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
2885 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
2886 }
2887 crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2888 crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
2889}
2890
5c3b82e2 2891static int
3c4fdcfb 2892intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
94352cf9 2893 struct drm_framebuffer *fb)
79e53945
JB
2894{
2895 struct drm_device *dev = crtc->dev;
6b8e6ed0 2896 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 2897 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 2898 enum pipe pipe = intel_crtc->pipe;
2ff8fde1
MR
2899 struct drm_framebuffer *old_fb = crtc->primary->fb;
2900 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2901 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
5c3b82e2 2902 int ret;
79e53945 2903
7d5e3799
CW
2904 if (intel_crtc_has_pending_flip(crtc)) {
2905 DRM_ERROR("pipe is still busy with an old pageflip\n");
2906 return -EBUSY;
2907 }
2908
79e53945 2909 /* no fb bound */
94352cf9 2910 if (!fb) {
a5071c2f 2911 DRM_ERROR("No FB bound\n");
5c3b82e2
CW
2912 return 0;
2913 }
2914
7eb552ae 2915 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
84f44ce7
VS
2916 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2917 plane_name(intel_crtc->plane),
2918 INTEL_INFO(dev)->num_pipes);
5c3b82e2 2919 return -EINVAL;
79e53945
JB
2920 }
2921
5c3b82e2 2922 mutex_lock(&dev->struct_mutex);
a071fa00
DV
2923 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
2924 if (ret == 0)
91565c85 2925 i915_gem_track_fb(old_obj, obj,
a071fa00 2926 INTEL_FRONTBUFFER_PRIMARY(pipe));
8ac36ec1 2927 mutex_unlock(&dev->struct_mutex);
5c3b82e2 2928 if (ret != 0) {
a5071c2f 2929 DRM_ERROR("pin & fence failed\n");
5c3b82e2
CW
2930 return ret;
2931 }
79e53945 2932
e30e8f75 2933 intel_update_pipe_size(intel_crtc);
4d6a3e63 2934
29b9bde6 2935 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3c4fdcfb 2936
f99d7069
DV
2937 if (intel_crtc->active)
2938 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
2939
f4510a27 2940 crtc->primary->fb = fb;
6c4c86f5
DV
2941 crtc->x = x;
2942 crtc->y = y;
94352cf9 2943
b7f1de28 2944 if (old_fb) {
d7697eea
DV
2945 if (intel_crtc->active && old_fb != fb)
2946 intel_wait_for_vblank(dev, intel_crtc->pipe);
8ac36ec1 2947 mutex_lock(&dev->struct_mutex);
2ff8fde1 2948 intel_unpin_fb_obj(old_obj);
8ac36ec1 2949 mutex_unlock(&dev->struct_mutex);
b7f1de28 2950 }
652c393a 2951
8ac36ec1 2952 mutex_lock(&dev->struct_mutex);
6b8e6ed0 2953 intel_update_fbc(dev);
5c3b82e2 2954 mutex_unlock(&dev->struct_mutex);
79e53945 2955
5c3b82e2 2956 return 0;
79e53945
JB
2957}
2958
5e84e1a4
ZW
2959static void intel_fdi_normal_train(struct drm_crtc *crtc)
2960{
2961 struct drm_device *dev = crtc->dev;
2962 struct drm_i915_private *dev_priv = dev->dev_private;
2963 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2964 int pipe = intel_crtc->pipe;
2965 u32 reg, temp;
2966
2967 /* enable normal train */
2968 reg = FDI_TX_CTL(pipe);
2969 temp = I915_READ(reg);
61e499bf 2970 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
2971 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2972 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
2973 } else {
2974 temp &= ~FDI_LINK_TRAIN_NONE;
2975 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 2976 }
5e84e1a4
ZW
2977 I915_WRITE(reg, temp);
2978
2979 reg = FDI_RX_CTL(pipe);
2980 temp = I915_READ(reg);
2981 if (HAS_PCH_CPT(dev)) {
2982 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2983 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2984 } else {
2985 temp &= ~FDI_LINK_TRAIN_NONE;
2986 temp |= FDI_LINK_TRAIN_NONE;
2987 }
2988 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2989
2990 /* wait one idle pattern time */
2991 POSTING_READ(reg);
2992 udelay(1000);
357555c0
JB
2993
2994 /* IVB wants error correction enabled */
2995 if (IS_IVYBRIDGE(dev))
2996 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2997 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
2998}
2999
1fbc0d78 3000static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
1e833f40 3001{
1fbc0d78
DV
3002 return crtc->base.enabled && crtc->active &&
3003 crtc->config.has_pch_encoder;
1e833f40
DV
3004}
3005
01a415fd
DV
3006static void ivb_modeset_global_resources(struct drm_device *dev)
3007{
3008 struct drm_i915_private *dev_priv = dev->dev_private;
3009 struct intel_crtc *pipe_B_crtc =
3010 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
3011 struct intel_crtc *pipe_C_crtc =
3012 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
3013 uint32_t temp;
3014
1e833f40
DV
3015 /*
3016 * When everything is off disable fdi C so that we could enable fdi B
3017 * with all lanes. Note that we don't care about enabled pipes without
3018 * an enabled pch encoder.
3019 */
3020 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
3021 !pipe_has_enabled_pch(pipe_C_crtc)) {
01a415fd
DV
3022 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3023 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3024
3025 temp = I915_READ(SOUTH_CHICKEN1);
3026 temp &= ~FDI_BC_BIFURCATION_SELECT;
3027 DRM_DEBUG_KMS("disabling fdi C rx\n");
3028 I915_WRITE(SOUTH_CHICKEN1, temp);
3029 }
3030}
3031
8db9d77b
ZW
3032/* The FDI link training functions for ILK/Ibexpeak. */
3033static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3034{
3035 struct drm_device *dev = crtc->dev;
3036 struct drm_i915_private *dev_priv = dev->dev_private;
3037 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3038 int pipe = intel_crtc->pipe;
5eddb70b 3039 u32 reg, temp, tries;
8db9d77b 3040
1c8562f6 3041 /* FDI needs bits from pipe first */
0fc932b8 3042 assert_pipe_enabled(dev_priv, pipe);
0fc932b8 3043
e1a44743
AJ
3044 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3045 for train result */
5eddb70b
CW
3046 reg = FDI_RX_IMR(pipe);
3047 temp = I915_READ(reg);
e1a44743
AJ
3048 temp &= ~FDI_RX_SYMBOL_LOCK;
3049 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3050 I915_WRITE(reg, temp);
3051 I915_READ(reg);
e1a44743
AJ
3052 udelay(150);
3053
8db9d77b 3054 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3055 reg = FDI_TX_CTL(pipe);
3056 temp = I915_READ(reg);
627eb5a3
DV
3057 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3058 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
8db9d77b
ZW
3059 temp &= ~FDI_LINK_TRAIN_NONE;
3060 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 3061 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3062
5eddb70b
CW
3063 reg = FDI_RX_CTL(pipe);
3064 temp = I915_READ(reg);
8db9d77b
ZW
3065 temp &= ~FDI_LINK_TRAIN_NONE;
3066 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
3067 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3068
3069 POSTING_READ(reg);
8db9d77b
ZW
3070 udelay(150);
3071
5b2adf89 3072 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
3073 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3074 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3075 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 3076
5eddb70b 3077 reg = FDI_RX_IIR(pipe);
e1a44743 3078 for (tries = 0; tries < 5; tries++) {
5eddb70b 3079 temp = I915_READ(reg);
8db9d77b
ZW
3080 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3081
3082 if ((temp & FDI_RX_BIT_LOCK)) {
3083 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 3084 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
3085 break;
3086 }
8db9d77b 3087 }
e1a44743 3088 if (tries == 5)
5eddb70b 3089 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3090
3091 /* Train 2 */
5eddb70b
CW
3092 reg = FDI_TX_CTL(pipe);
3093 temp = I915_READ(reg);
8db9d77b
ZW
3094 temp &= ~FDI_LINK_TRAIN_NONE;
3095 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3096 I915_WRITE(reg, temp);
8db9d77b 3097
5eddb70b
CW
3098 reg = FDI_RX_CTL(pipe);
3099 temp = I915_READ(reg);
8db9d77b
ZW
3100 temp &= ~FDI_LINK_TRAIN_NONE;
3101 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3102 I915_WRITE(reg, temp);
8db9d77b 3103
5eddb70b
CW
3104 POSTING_READ(reg);
3105 udelay(150);
8db9d77b 3106
5eddb70b 3107 reg = FDI_RX_IIR(pipe);
e1a44743 3108 for (tries = 0; tries < 5; tries++) {
5eddb70b 3109 temp = I915_READ(reg);
8db9d77b
ZW
3110 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3111
3112 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 3113 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
3114 DRM_DEBUG_KMS("FDI train 2 done.\n");
3115 break;
3116 }
8db9d77b 3117 }
e1a44743 3118 if (tries == 5)
5eddb70b 3119 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3120
3121 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 3122
8db9d77b
ZW
3123}
3124
0206e353 3125static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
3126 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3127 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3128 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3129 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3130};
3131
3132/* The FDI link training functions for SNB/Cougarpoint. */
3133static void gen6_fdi_link_train(struct drm_crtc *crtc)
3134{
3135 struct drm_device *dev = crtc->dev;
3136 struct drm_i915_private *dev_priv = dev->dev_private;
3137 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3138 int pipe = intel_crtc->pipe;
fa37d39e 3139 u32 reg, temp, i, retry;
8db9d77b 3140
e1a44743
AJ
3141 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3142 for train result */
5eddb70b
CW
3143 reg = FDI_RX_IMR(pipe);
3144 temp = I915_READ(reg);
e1a44743
AJ
3145 temp &= ~FDI_RX_SYMBOL_LOCK;
3146 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3147 I915_WRITE(reg, temp);
3148
3149 POSTING_READ(reg);
e1a44743
AJ
3150 udelay(150);
3151
8db9d77b 3152 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3153 reg = FDI_TX_CTL(pipe);
3154 temp = I915_READ(reg);
627eb5a3
DV
3155 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3156 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
8db9d77b
ZW
3157 temp &= ~FDI_LINK_TRAIN_NONE;
3158 temp |= FDI_LINK_TRAIN_PATTERN_1;
3159 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3160 /* SNB-B */
3161 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 3162 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3163
d74cf324
DV
3164 I915_WRITE(FDI_RX_MISC(pipe),
3165 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3166
5eddb70b
CW
3167 reg = FDI_RX_CTL(pipe);
3168 temp = I915_READ(reg);
8db9d77b
ZW
3169 if (HAS_PCH_CPT(dev)) {
3170 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3171 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3172 } else {
3173 temp &= ~FDI_LINK_TRAIN_NONE;
3174 temp |= FDI_LINK_TRAIN_PATTERN_1;
3175 }
5eddb70b
CW
3176 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3177
3178 POSTING_READ(reg);
8db9d77b
ZW
3179 udelay(150);
3180
0206e353 3181 for (i = 0; i < 4; i++) {
5eddb70b
CW
3182 reg = FDI_TX_CTL(pipe);
3183 temp = I915_READ(reg);
8db9d77b
ZW
3184 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3185 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3186 I915_WRITE(reg, temp);
3187
3188 POSTING_READ(reg);
8db9d77b
ZW
3189 udelay(500);
3190
fa37d39e
SP
3191 for (retry = 0; retry < 5; retry++) {
3192 reg = FDI_RX_IIR(pipe);
3193 temp = I915_READ(reg);
3194 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3195 if (temp & FDI_RX_BIT_LOCK) {
3196 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3197 DRM_DEBUG_KMS("FDI train 1 done.\n");
3198 break;
3199 }
3200 udelay(50);
8db9d77b 3201 }
fa37d39e
SP
3202 if (retry < 5)
3203 break;
8db9d77b
ZW
3204 }
3205 if (i == 4)
5eddb70b 3206 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3207
3208 /* Train 2 */
5eddb70b
CW
3209 reg = FDI_TX_CTL(pipe);
3210 temp = I915_READ(reg);
8db9d77b
ZW
3211 temp &= ~FDI_LINK_TRAIN_NONE;
3212 temp |= FDI_LINK_TRAIN_PATTERN_2;
3213 if (IS_GEN6(dev)) {
3214 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3215 /* SNB-B */
3216 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3217 }
5eddb70b 3218 I915_WRITE(reg, temp);
8db9d77b 3219
5eddb70b
CW
3220 reg = FDI_RX_CTL(pipe);
3221 temp = I915_READ(reg);
8db9d77b
ZW
3222 if (HAS_PCH_CPT(dev)) {
3223 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3224 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3225 } else {
3226 temp &= ~FDI_LINK_TRAIN_NONE;
3227 temp |= FDI_LINK_TRAIN_PATTERN_2;
3228 }
5eddb70b
CW
3229 I915_WRITE(reg, temp);
3230
3231 POSTING_READ(reg);
8db9d77b
ZW
3232 udelay(150);
3233
0206e353 3234 for (i = 0; i < 4; i++) {
5eddb70b
CW
3235 reg = FDI_TX_CTL(pipe);
3236 temp = I915_READ(reg);
8db9d77b
ZW
3237 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3238 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3239 I915_WRITE(reg, temp);
3240
3241 POSTING_READ(reg);
8db9d77b
ZW
3242 udelay(500);
3243
fa37d39e
SP
3244 for (retry = 0; retry < 5; retry++) {
3245 reg = FDI_RX_IIR(pipe);
3246 temp = I915_READ(reg);
3247 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3248 if (temp & FDI_RX_SYMBOL_LOCK) {
3249 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3250 DRM_DEBUG_KMS("FDI train 2 done.\n");
3251 break;
3252 }
3253 udelay(50);
8db9d77b 3254 }
fa37d39e
SP
3255 if (retry < 5)
3256 break;
8db9d77b
ZW
3257 }
3258 if (i == 4)
5eddb70b 3259 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3260
3261 DRM_DEBUG_KMS("FDI train done.\n");
3262}
3263
357555c0
JB
3264/* Manual link training for Ivy Bridge A0 parts */
3265static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3266{
3267 struct drm_device *dev = crtc->dev;
3268 struct drm_i915_private *dev_priv = dev->dev_private;
3269 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3270 int pipe = intel_crtc->pipe;
139ccd3f 3271 u32 reg, temp, i, j;
357555c0
JB
3272
3273 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3274 for train result */
3275 reg = FDI_RX_IMR(pipe);
3276 temp = I915_READ(reg);
3277 temp &= ~FDI_RX_SYMBOL_LOCK;
3278 temp &= ~FDI_RX_BIT_LOCK;
3279 I915_WRITE(reg, temp);
3280
3281 POSTING_READ(reg);
3282 udelay(150);
3283
01a415fd
DV
3284 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3285 I915_READ(FDI_RX_IIR(pipe)));
3286
139ccd3f
JB
3287 /* Try each vswing and preemphasis setting twice before moving on */
3288 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3289 /* disable first in case we need to retry */
3290 reg = FDI_TX_CTL(pipe);
3291 temp = I915_READ(reg);
3292 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3293 temp &= ~FDI_TX_ENABLE;
3294 I915_WRITE(reg, temp);
357555c0 3295
139ccd3f
JB
3296 reg = FDI_RX_CTL(pipe);
3297 temp = I915_READ(reg);
3298 temp &= ~FDI_LINK_TRAIN_AUTO;
3299 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3300 temp &= ~FDI_RX_ENABLE;
3301 I915_WRITE(reg, temp);
357555c0 3302
139ccd3f 3303 /* enable CPU FDI TX and PCH FDI RX */
357555c0
JB
3304 reg = FDI_TX_CTL(pipe);
3305 temp = I915_READ(reg);
139ccd3f
JB
3306 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3307 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3308 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
357555c0 3309 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
139ccd3f
JB
3310 temp |= snb_b_fdi_train_param[j/2];
3311 temp |= FDI_COMPOSITE_SYNC;
3312 I915_WRITE(reg, temp | FDI_TX_ENABLE);
357555c0 3313
139ccd3f
JB
3314 I915_WRITE(FDI_RX_MISC(pipe),
3315 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
357555c0 3316
139ccd3f 3317 reg = FDI_RX_CTL(pipe);
357555c0 3318 temp = I915_READ(reg);
139ccd3f
JB
3319 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3320 temp |= FDI_COMPOSITE_SYNC;
3321 I915_WRITE(reg, temp | FDI_RX_ENABLE);
357555c0 3322
139ccd3f
JB
3323 POSTING_READ(reg);
3324 udelay(1); /* should be 0.5us */
357555c0 3325
139ccd3f
JB
3326 for (i = 0; i < 4; i++) {
3327 reg = FDI_RX_IIR(pipe);
3328 temp = I915_READ(reg);
3329 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3330
139ccd3f
JB
3331 if (temp & FDI_RX_BIT_LOCK ||
3332 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3333 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3334 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3335 i);
3336 break;
3337 }
3338 udelay(1); /* should be 0.5us */
3339 }
3340 if (i == 4) {
3341 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3342 continue;
3343 }
357555c0 3344
139ccd3f 3345 /* Train 2 */
357555c0
JB
3346 reg = FDI_TX_CTL(pipe);
3347 temp = I915_READ(reg);
139ccd3f
JB
3348 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3349 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3350 I915_WRITE(reg, temp);
3351
3352 reg = FDI_RX_CTL(pipe);
3353 temp = I915_READ(reg);
3354 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3355 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
357555c0
JB
3356 I915_WRITE(reg, temp);
3357
3358 POSTING_READ(reg);
139ccd3f 3359 udelay(2); /* should be 1.5us */
357555c0 3360
139ccd3f
JB
3361 for (i = 0; i < 4; i++) {
3362 reg = FDI_RX_IIR(pipe);
3363 temp = I915_READ(reg);
3364 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3365
139ccd3f
JB
3366 if (temp & FDI_RX_SYMBOL_LOCK ||
3367 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3368 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3369 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3370 i);
3371 goto train_done;
3372 }
3373 udelay(2); /* should be 1.5us */
357555c0 3374 }
139ccd3f
JB
3375 if (i == 4)
3376 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
357555c0 3377 }
357555c0 3378
139ccd3f 3379train_done:
357555c0
JB
3380 DRM_DEBUG_KMS("FDI train done.\n");
3381}
3382
88cefb6c 3383static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 3384{
88cefb6c 3385 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 3386 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 3387 int pipe = intel_crtc->pipe;
5eddb70b 3388 u32 reg, temp;
79e53945 3389
c64e311e 3390
c98e9dcf 3391 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
3392 reg = FDI_RX_CTL(pipe);
3393 temp = I915_READ(reg);
627eb5a3
DV
3394 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3395 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
dfd07d72 3396 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5eddb70b
CW
3397 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3398
3399 POSTING_READ(reg);
c98e9dcf
JB
3400 udelay(200);
3401
3402 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
3403 temp = I915_READ(reg);
3404 I915_WRITE(reg, temp | FDI_PCDCLK);
3405
3406 POSTING_READ(reg);
c98e9dcf
JB
3407 udelay(200);
3408
20749730
PZ
3409 /* Enable CPU FDI TX PLL, always on for Ironlake */
3410 reg = FDI_TX_CTL(pipe);
3411 temp = I915_READ(reg);
3412 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3413 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 3414
20749730
PZ
3415 POSTING_READ(reg);
3416 udelay(100);
6be4a607 3417 }
0e23b99d
JB
3418}
3419
88cefb6c
DV
3420static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3421{
3422 struct drm_device *dev = intel_crtc->base.dev;
3423 struct drm_i915_private *dev_priv = dev->dev_private;
3424 int pipe = intel_crtc->pipe;
3425 u32 reg, temp;
3426
3427 /* Switch from PCDclk to Rawclk */
3428 reg = FDI_RX_CTL(pipe);
3429 temp = I915_READ(reg);
3430 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3431
3432 /* Disable CPU FDI TX PLL */
3433 reg = FDI_TX_CTL(pipe);
3434 temp = I915_READ(reg);
3435 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3436
3437 POSTING_READ(reg);
3438 udelay(100);
3439
3440 reg = FDI_RX_CTL(pipe);
3441 temp = I915_READ(reg);
3442 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3443
3444 /* Wait for the clocks to turn off. */
3445 POSTING_READ(reg);
3446 udelay(100);
3447}
3448
0fc932b8
JB
3449static void ironlake_fdi_disable(struct drm_crtc *crtc)
3450{
3451 struct drm_device *dev = crtc->dev;
3452 struct drm_i915_private *dev_priv = dev->dev_private;
3453 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3454 int pipe = intel_crtc->pipe;
3455 u32 reg, temp;
3456
3457 /* disable CPU FDI tx and PCH FDI rx */
3458 reg = FDI_TX_CTL(pipe);
3459 temp = I915_READ(reg);
3460 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3461 POSTING_READ(reg);
3462
3463 reg = FDI_RX_CTL(pipe);
3464 temp = I915_READ(reg);
3465 temp &= ~(0x7 << 16);
dfd07d72 3466 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3467 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3468
3469 POSTING_READ(reg);
3470 udelay(100);
3471
3472 /* Ironlake workaround, disable clock pointer after downing FDI */
eba905b2 3473 if (HAS_PCH_IBX(dev))
6f06ce18 3474 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
3475
3476 /* still set train pattern 1 */
3477 reg = FDI_TX_CTL(pipe);
3478 temp = I915_READ(reg);
3479 temp &= ~FDI_LINK_TRAIN_NONE;
3480 temp |= FDI_LINK_TRAIN_PATTERN_1;
3481 I915_WRITE(reg, temp);
3482
3483 reg = FDI_RX_CTL(pipe);
3484 temp = I915_READ(reg);
3485 if (HAS_PCH_CPT(dev)) {
3486 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3487 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3488 } else {
3489 temp &= ~FDI_LINK_TRAIN_NONE;
3490 temp |= FDI_LINK_TRAIN_PATTERN_1;
3491 }
3492 /* BPC in FDI rx is consistent with that in PIPECONF */
3493 temp &= ~(0x07 << 16);
dfd07d72 3494 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3495 I915_WRITE(reg, temp);
3496
3497 POSTING_READ(reg);
3498 udelay(100);
3499}
3500
5dce5b93
CW
3501bool intel_has_pending_fb_unpin(struct drm_device *dev)
3502{
3503 struct intel_crtc *crtc;
3504
3505 /* Note that we don't need to be called with mode_config.lock here
3506 * as our list of CRTC objects is static for the lifetime of the
3507 * device and so cannot disappear as we iterate. Similarly, we can
3508 * happily treat the predicates as racy, atomic checks as userspace
3509 * cannot claim and pin a new fb without at least acquring the
3510 * struct_mutex and so serialising with us.
3511 */
d3fcc808 3512 for_each_intel_crtc(dev, crtc) {
5dce5b93
CW
3513 if (atomic_read(&crtc->unpin_work_count) == 0)
3514 continue;
3515
3516 if (crtc->unpin_work)
3517 intel_wait_for_vblank(dev, crtc->pipe);
3518
3519 return true;
3520 }
3521
3522 return false;
3523}
3524
d6bbafa1
CW
3525static void page_flip_completed(struct intel_crtc *intel_crtc)
3526{
3527 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3528 struct intel_unpin_work *work = intel_crtc->unpin_work;
3529
3530 /* ensure that the unpin work is consistent wrt ->pending. */
3531 smp_rmb();
3532 intel_crtc->unpin_work = NULL;
3533
3534 if (work->event)
3535 drm_send_vblank_event(intel_crtc->base.dev,
3536 intel_crtc->pipe,
3537 work->event);
3538
3539 drm_crtc_vblank_put(&intel_crtc->base);
3540
3541 wake_up_all(&dev_priv->pending_flip_queue);
3542 queue_work(dev_priv->wq, &work->work);
3543
3544 trace_i915_flip_complete(intel_crtc->plane,
3545 work->pending_flip_obj);
3546}
3547
46a55d30 3548void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
e6c3a2a6 3549{
0f91128d 3550 struct drm_device *dev = crtc->dev;
5bb61643 3551 struct drm_i915_private *dev_priv = dev->dev_private;
e6c3a2a6 3552
2c10d571 3553 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
9c787942
CW
3554 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3555 !intel_crtc_has_pending_flip(crtc),
3556 60*HZ) == 0)) {
3557 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2c10d571 3558
5e2d7afc 3559 spin_lock_irq(&dev->event_lock);
9c787942
CW
3560 if (intel_crtc->unpin_work) {
3561 WARN_ONCE(1, "Removing stuck page flip\n");
3562 page_flip_completed(intel_crtc);
3563 }
5e2d7afc 3564 spin_unlock_irq(&dev->event_lock);
9c787942 3565 }
5bb61643 3566
975d568a
CW
3567 if (crtc->primary->fb) {
3568 mutex_lock(&dev->struct_mutex);
3569 intel_finish_fb(crtc->primary->fb);
3570 mutex_unlock(&dev->struct_mutex);
3571 }
e6c3a2a6
CW
3572}
3573
e615efe4
ED
3574/* Program iCLKIP clock to the desired frequency */
3575static void lpt_program_iclkip(struct drm_crtc *crtc)
3576{
3577 struct drm_device *dev = crtc->dev;
3578 struct drm_i915_private *dev_priv = dev->dev_private;
241bfc38 3579 int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
e615efe4
ED
3580 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3581 u32 temp;
3582
09153000
DV
3583 mutex_lock(&dev_priv->dpio_lock);
3584
e615efe4
ED
3585 /* It is necessary to ungate the pixclk gate prior to programming
3586 * the divisors, and gate it back when it is done.
3587 */
3588 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3589
3590 /* Disable SSCCTL */
3591 intel_sbi_write(dev_priv, SBI_SSCCTL6,
988d6ee8
PZ
3592 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3593 SBI_SSCCTL_DISABLE,
3594 SBI_ICLK);
e615efe4
ED
3595
3596 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
12d7ceed 3597 if (clock == 20000) {
e615efe4
ED
3598 auxdiv = 1;
3599 divsel = 0x41;
3600 phaseinc = 0x20;
3601 } else {
3602 /* The iCLK virtual clock root frequency is in MHz,
241bfc38
DL
3603 * but the adjusted_mode->crtc_clock in in KHz. To get the
3604 * divisors, it is necessary to divide one by another, so we
e615efe4
ED
3605 * convert the virtual clock precision to KHz here for higher
3606 * precision.
3607 */
3608 u32 iclk_virtual_root_freq = 172800 * 1000;
3609 u32 iclk_pi_range = 64;
3610 u32 desired_divisor, msb_divisor_value, pi_value;
3611
12d7ceed 3612 desired_divisor = (iclk_virtual_root_freq / clock);
e615efe4
ED
3613 msb_divisor_value = desired_divisor / iclk_pi_range;
3614 pi_value = desired_divisor % iclk_pi_range;
3615
3616 auxdiv = 0;
3617 divsel = msb_divisor_value - 2;
3618 phaseinc = pi_value;
3619 }
3620
3621 /* This should not happen with any sane values */
3622 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3623 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3624 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3625 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3626
3627 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
12d7ceed 3628 clock,
e615efe4
ED
3629 auxdiv,
3630 divsel,
3631 phasedir,
3632 phaseinc);
3633
3634 /* Program SSCDIVINTPHASE6 */
988d6ee8 3635 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
e615efe4
ED
3636 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3637 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3638 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3639 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3640 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3641 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
988d6ee8 3642 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
e615efe4
ED
3643
3644 /* Program SSCAUXDIV */
988d6ee8 3645 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
e615efe4
ED
3646 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3647 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
988d6ee8 3648 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
e615efe4
ED
3649
3650 /* Enable modulator and associated divider */
988d6ee8 3651 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
e615efe4 3652 temp &= ~SBI_SSCCTL_DISABLE;
988d6ee8 3653 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
e615efe4
ED
3654
3655 /* Wait for initialization time */
3656 udelay(24);
3657
3658 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
09153000
DV
3659
3660 mutex_unlock(&dev_priv->dpio_lock);
e615efe4
ED
3661}
3662
275f01b2
DV
3663static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3664 enum pipe pch_transcoder)
3665{
3666 struct drm_device *dev = crtc->base.dev;
3667 struct drm_i915_private *dev_priv = dev->dev_private;
3668 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3669
3670 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3671 I915_READ(HTOTAL(cpu_transcoder)));
3672 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3673 I915_READ(HBLANK(cpu_transcoder)));
3674 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3675 I915_READ(HSYNC(cpu_transcoder)));
3676
3677 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3678 I915_READ(VTOTAL(cpu_transcoder)));
3679 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3680 I915_READ(VBLANK(cpu_transcoder)));
3681 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3682 I915_READ(VSYNC(cpu_transcoder)));
3683 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3684 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3685}
3686
1fbc0d78
DV
3687static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3688{
3689 struct drm_i915_private *dev_priv = dev->dev_private;
3690 uint32_t temp;
3691
3692 temp = I915_READ(SOUTH_CHICKEN1);
3693 if (temp & FDI_BC_BIFURCATION_SELECT)
3694 return;
3695
3696 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3697 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3698
3699 temp |= FDI_BC_BIFURCATION_SELECT;
3700 DRM_DEBUG_KMS("enabling fdi C rx\n");
3701 I915_WRITE(SOUTH_CHICKEN1, temp);
3702 POSTING_READ(SOUTH_CHICKEN1);
3703}
3704
3705static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3706{
3707 struct drm_device *dev = intel_crtc->base.dev;
3708 struct drm_i915_private *dev_priv = dev->dev_private;
3709
3710 switch (intel_crtc->pipe) {
3711 case PIPE_A:
3712 break;
3713 case PIPE_B:
3714 if (intel_crtc->config.fdi_lanes > 2)
3715 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3716 else
3717 cpt_enable_fdi_bc_bifurcation(dev);
3718
3719 break;
3720 case PIPE_C:
3721 cpt_enable_fdi_bc_bifurcation(dev);
3722
3723 break;
3724 default:
3725 BUG();
3726 }
3727}
3728
f67a559d
JB
3729/*
3730 * Enable PCH resources required for PCH ports:
3731 * - PCH PLLs
3732 * - FDI training & RX/TX
3733 * - update transcoder timings
3734 * - DP transcoding bits
3735 * - transcoder
3736 */
3737static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
3738{
3739 struct drm_device *dev = crtc->dev;
3740 struct drm_i915_private *dev_priv = dev->dev_private;
3741 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3742 int pipe = intel_crtc->pipe;
ee7b9f93 3743 u32 reg, temp;
2c07245f 3744
ab9412ba 3745 assert_pch_transcoder_disabled(dev_priv, pipe);
e7e164db 3746
1fbc0d78
DV
3747 if (IS_IVYBRIDGE(dev))
3748 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3749
cd986abb
DV
3750 /* Write the TU size bits before fdi link training, so that error
3751 * detection works. */
3752 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3753 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3754
c98e9dcf 3755 /* For PCH output, training FDI link */
674cf967 3756 dev_priv->display.fdi_link_train(crtc);
2c07245f 3757
3ad8a208
DV
3758 /* We need to program the right clock selection before writing the pixel
3759 * mutliplier into the DPLL. */
303b81e0 3760 if (HAS_PCH_CPT(dev)) {
ee7b9f93 3761 u32 sel;
4b645f14 3762
c98e9dcf 3763 temp = I915_READ(PCH_DPLL_SEL);
11887397
DV
3764 temp |= TRANS_DPLL_ENABLE(pipe);
3765 sel = TRANS_DPLLB_SEL(pipe);
a43f6e0f 3766 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
ee7b9f93
JB
3767 temp |= sel;
3768 else
3769 temp &= ~sel;
c98e9dcf 3770 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 3771 }
5eddb70b 3772
3ad8a208
DV
3773 /* XXX: pch pll's can be enabled any time before we enable the PCH
3774 * transcoder, and we actually should do this to not upset any PCH
3775 * transcoder that already use the clock when we share it.
3776 *
3777 * Note that enable_shared_dpll tries to do the right thing, but
3778 * get_shared_dpll unconditionally resets the pll - we need that to have
3779 * the right LVDS enable sequence. */
85b3894f 3780 intel_enable_shared_dpll(intel_crtc);
3ad8a208 3781
d9b6cb56
JB
3782 /* set transcoder timing, panel must allow it */
3783 assert_panel_unlocked(dev_priv, pipe);
275f01b2 3784 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
8db9d77b 3785
303b81e0 3786 intel_fdi_normal_train(crtc);
5e84e1a4 3787
c98e9dcf 3788 /* For PCH DP, enable TRANS_DP_CTL */
0a88818d 3789 if (HAS_PCH_CPT(dev) && intel_crtc->config.has_dp_encoder) {
dfd07d72 3790 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5eddb70b
CW
3791 reg = TRANS_DP_CTL(pipe);
3792 temp = I915_READ(reg);
3793 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
3794 TRANS_DP_SYNC_MASK |
3795 TRANS_DP_BPC_MASK);
5eddb70b
CW
3796 temp |= (TRANS_DP_OUTPUT_ENABLE |
3797 TRANS_DP_ENH_FRAMING);
9325c9f0 3798 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
3799
3800 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 3801 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 3802 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 3803 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
3804
3805 switch (intel_trans_dp_port_sel(crtc)) {
3806 case PCH_DP_B:
5eddb70b 3807 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
3808 break;
3809 case PCH_DP_C:
5eddb70b 3810 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
3811 break;
3812 case PCH_DP_D:
5eddb70b 3813 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
3814 break;
3815 default:
e95d41e1 3816 BUG();
32f9d658 3817 }
2c07245f 3818
5eddb70b 3819 I915_WRITE(reg, temp);
6be4a607 3820 }
b52eb4dc 3821
b8a4f404 3822 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
3823}
3824
1507e5bd
PZ
3825static void lpt_pch_enable(struct drm_crtc *crtc)
3826{
3827 struct drm_device *dev = crtc->dev;
3828 struct drm_i915_private *dev_priv = dev->dev_private;
3829 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3b117c8f 3830 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
1507e5bd 3831
ab9412ba 3832 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 3833
8c52b5e8 3834 lpt_program_iclkip(crtc);
1507e5bd 3835
0540e488 3836 /* Set transcoder timing. */
275f01b2 3837 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
1507e5bd 3838
937bb610 3839 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
3840}
3841
716c2e55 3842void intel_put_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3843{
e2b78267 3844 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
ee7b9f93
JB
3845
3846 if (pll == NULL)
3847 return;
3848
3849 if (pll->refcount == 0) {
46edb027 3850 WARN(1, "bad %s refcount\n", pll->name);
ee7b9f93
JB
3851 return;
3852 }
3853
f4a091c7
DV
3854 if (--pll->refcount == 0) {
3855 WARN_ON(pll->on);
3856 WARN_ON(pll->active);
3857 }
3858
a43f6e0f 3859 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
ee7b9f93
JB
3860}
3861
716c2e55 3862struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3863{
e2b78267
DV
3864 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3865 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3866 enum intel_dpll_id i;
ee7b9f93 3867
ee7b9f93 3868 if (pll) {
46edb027
DV
3869 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3870 crtc->base.base.id, pll->name);
e2b78267 3871 intel_put_shared_dpll(crtc);
ee7b9f93
JB
3872 }
3873
98b6bd99
DV
3874 if (HAS_PCH_IBX(dev_priv->dev)) {
3875 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
d94ab068 3876 i = (enum intel_dpll_id) crtc->pipe;
e72f9fbf 3877 pll = &dev_priv->shared_dplls[i];
98b6bd99 3878
46edb027
DV
3879 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3880 crtc->base.base.id, pll->name);
98b6bd99 3881
f2a69f44
DV
3882 WARN_ON(pll->refcount);
3883
98b6bd99
DV
3884 goto found;
3885 }
3886
e72f9fbf
DV
3887 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3888 pll = &dev_priv->shared_dplls[i];
ee7b9f93
JB
3889
3890 /* Only want to check enabled timings first */
3891 if (pll->refcount == 0)
3892 continue;
3893
b89a1d39
DV
3894 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3895 sizeof(pll->hw_state)) == 0) {
46edb027 3896 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
e2b78267 3897 crtc->base.base.id,
46edb027 3898 pll->name, pll->refcount, pll->active);
ee7b9f93
JB
3899
3900 goto found;
3901 }
3902 }
3903
3904 /* Ok no matching timings, maybe there's a free one? */
e72f9fbf
DV
3905 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3906 pll = &dev_priv->shared_dplls[i];
ee7b9f93 3907 if (pll->refcount == 0) {
46edb027
DV
3908 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3909 crtc->base.base.id, pll->name);
ee7b9f93
JB
3910 goto found;
3911 }
3912 }
3913
3914 return NULL;
3915
3916found:
f2a69f44
DV
3917 if (pll->refcount == 0)
3918 pll->hw_state = crtc->config.dpll_hw_state;
3919
a43f6e0f 3920 crtc->config.shared_dpll = i;
46edb027
DV
3921 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3922 pipe_name(crtc->pipe));
ee7b9f93 3923
cdbd2316 3924 pll->refcount++;
e04c7350 3925
ee7b9f93
JB
3926 return pll;
3927}
3928
a1520318 3929static void cpt_verify_modeset(struct drm_device *dev, int pipe)
d4270e57
JB
3930{
3931 struct drm_i915_private *dev_priv = dev->dev_private;
23670b32 3932 int dslreg = PIPEDSL(pipe);
d4270e57
JB
3933 u32 temp;
3934
3935 temp = I915_READ(dslreg);
3936 udelay(500);
3937 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57 3938 if (wait_for(I915_READ(dslreg) != temp, 5))
84f44ce7 3939 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
d4270e57
JB
3940 }
3941}
3942
b074cec8
JB
3943static void ironlake_pfit_enable(struct intel_crtc *crtc)
3944{
3945 struct drm_device *dev = crtc->base.dev;
3946 struct drm_i915_private *dev_priv = dev->dev_private;
3947 int pipe = crtc->pipe;
3948
fd4daa9c 3949 if (crtc->config.pch_pfit.enabled) {
b074cec8
JB
3950 /* Force use of hard-coded filter coefficients
3951 * as some pre-programmed values are broken,
3952 * e.g. x201.
3953 */
3954 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3955 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3956 PF_PIPE_SEL_IVB(pipe));
3957 else
3958 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3959 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3960 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
d4270e57
JB
3961 }
3962}
3963
bb53d4ae
VS
3964static void intel_enable_planes(struct drm_crtc *crtc)
3965{
3966 struct drm_device *dev = crtc->dev;
3967 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 3968 struct drm_plane *plane;
bb53d4ae
VS
3969 struct intel_plane *intel_plane;
3970
af2b653b
MR
3971 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3972 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
3973 if (intel_plane->pipe == pipe)
3974 intel_plane_restore(&intel_plane->base);
af2b653b 3975 }
bb53d4ae
VS
3976}
3977
3978static void intel_disable_planes(struct drm_crtc *crtc)
3979{
3980 struct drm_device *dev = crtc->dev;
3981 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 3982 struct drm_plane *plane;
bb53d4ae
VS
3983 struct intel_plane *intel_plane;
3984
af2b653b
MR
3985 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3986 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
3987 if (intel_plane->pipe == pipe)
3988 intel_plane_disable(&intel_plane->base);
af2b653b 3989 }
bb53d4ae
VS
3990}
3991
20bc8673 3992void hsw_enable_ips(struct intel_crtc *crtc)
d77e4531 3993{
cea165c3
VS
3994 struct drm_device *dev = crtc->base.dev;
3995 struct drm_i915_private *dev_priv = dev->dev_private;
d77e4531
PZ
3996
3997 if (!crtc->config.ips_enabled)
3998 return;
3999
cea165c3
VS
4000 /* We can only enable IPS after we enable a plane and wait for a vblank */
4001 intel_wait_for_vblank(dev, crtc->pipe);
4002
d77e4531 4003 assert_plane_enabled(dev_priv, crtc->plane);
cea165c3 4004 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4005 mutex_lock(&dev_priv->rps.hw_lock);
4006 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4007 mutex_unlock(&dev_priv->rps.hw_lock);
4008 /* Quoting Art Runyan: "its not safe to expect any particular
4009 * value in IPS_CTL bit 31 after enabling IPS through the
e59150dc
JB
4010 * mailbox." Moreover, the mailbox may return a bogus state,
4011 * so we need to just enable it and continue on.
2a114cc1
BW
4012 */
4013 } else {
4014 I915_WRITE(IPS_CTL, IPS_ENABLE);
4015 /* The bit only becomes 1 in the next vblank, so this wait here
4016 * is essentially intel_wait_for_vblank. If we don't have this
4017 * and don't wait for vblanks until the end of crtc_enable, then
4018 * the HW state readout code will complain that the expected
4019 * IPS_CTL value is not the one we read. */
4020 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4021 DRM_ERROR("Timed out waiting for IPS enable\n");
4022 }
d77e4531
PZ
4023}
4024
20bc8673 4025void hsw_disable_ips(struct intel_crtc *crtc)
d77e4531
PZ
4026{
4027 struct drm_device *dev = crtc->base.dev;
4028 struct drm_i915_private *dev_priv = dev->dev_private;
4029
4030 if (!crtc->config.ips_enabled)
4031 return;
4032
4033 assert_plane_enabled(dev_priv, crtc->plane);
23d0b130 4034 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4035 mutex_lock(&dev_priv->rps.hw_lock);
4036 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4037 mutex_unlock(&dev_priv->rps.hw_lock);
23d0b130
BW
4038 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4039 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4040 DRM_ERROR("Timed out waiting for IPS disable\n");
e59150dc 4041 } else {
2a114cc1 4042 I915_WRITE(IPS_CTL, 0);
e59150dc
JB
4043 POSTING_READ(IPS_CTL);
4044 }
d77e4531
PZ
4045
4046 /* We need to wait for a vblank before we can disable the plane. */
4047 intel_wait_for_vblank(dev, crtc->pipe);
4048}
4049
4050/** Loads the palette/gamma unit for the CRTC with the prepared values */
4051static void intel_crtc_load_lut(struct drm_crtc *crtc)
4052{
4053 struct drm_device *dev = crtc->dev;
4054 struct drm_i915_private *dev_priv = dev->dev_private;
4055 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4056 enum pipe pipe = intel_crtc->pipe;
4057 int palreg = PALETTE(pipe);
4058 int i;
4059 bool reenable_ips = false;
4060
4061 /* The clocks have to be on to load the palette. */
4062 if (!crtc->enabled || !intel_crtc->active)
4063 return;
4064
4065 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
409ee761 4066 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
d77e4531
PZ
4067 assert_dsi_pll_enabled(dev_priv);
4068 else
4069 assert_pll_enabled(dev_priv, pipe);
4070 }
4071
4072 /* use legacy palette for Ironlake */
7a1db49a 4073 if (!HAS_GMCH_DISPLAY(dev))
d77e4531
PZ
4074 palreg = LGC_PALETTE(pipe);
4075
4076 /* Workaround : Do not read or write the pipe palette/gamma data while
4077 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4078 */
41e6fc4c 4079 if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
d77e4531
PZ
4080 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4081 GAMMA_MODE_MODE_SPLIT)) {
4082 hsw_disable_ips(intel_crtc);
4083 reenable_ips = true;
4084 }
4085
4086 for (i = 0; i < 256; i++) {
4087 I915_WRITE(palreg + 4 * i,
4088 (intel_crtc->lut_r[i] << 16) |
4089 (intel_crtc->lut_g[i] << 8) |
4090 intel_crtc->lut_b[i]);
4091 }
4092
4093 if (reenable_ips)
4094 hsw_enable_ips(intel_crtc);
4095}
4096
d3eedb1a
VS
4097static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4098{
4099 if (!enable && intel_crtc->overlay) {
4100 struct drm_device *dev = intel_crtc->base.dev;
4101 struct drm_i915_private *dev_priv = dev->dev_private;
4102
4103 mutex_lock(&dev->struct_mutex);
4104 dev_priv->mm.interruptible = false;
4105 (void) intel_overlay_switch_off(intel_crtc->overlay);
4106 dev_priv->mm.interruptible = true;
4107 mutex_unlock(&dev->struct_mutex);
4108 }
4109
4110 /* Let userspace switch the overlay on again. In most cases userspace
4111 * has to recompute where to put it anyway.
4112 */
4113}
4114
d3eedb1a 4115static void intel_crtc_enable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
4116{
4117 struct drm_device *dev = crtc->dev;
a5c4d7bc
VS
4118 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4119 int pipe = intel_crtc->pipe;
a5c4d7bc 4120
fdd508a6 4121 intel_enable_primary_hw_plane(crtc->primary, crtc);
a5c4d7bc
VS
4122 intel_enable_planes(crtc);
4123 intel_crtc_update_cursor(crtc, true);
d3eedb1a 4124 intel_crtc_dpms_overlay(intel_crtc, true);
a5c4d7bc
VS
4125
4126 hsw_enable_ips(intel_crtc);
4127
4128 mutex_lock(&dev->struct_mutex);
4129 intel_update_fbc(dev);
4130 mutex_unlock(&dev->struct_mutex);
f99d7069
DV
4131
4132 /*
4133 * FIXME: Once we grow proper nuclear flip support out of this we need
4134 * to compute the mask of flip planes precisely. For the time being
4135 * consider this a flip from a NULL plane.
4136 */
4137 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
4138}
4139
d3eedb1a 4140static void intel_crtc_disable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
4141{
4142 struct drm_device *dev = crtc->dev;
4143 struct drm_i915_private *dev_priv = dev->dev_private;
4144 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4145 int pipe = intel_crtc->pipe;
4146 int plane = intel_crtc->plane;
4147
4148 intel_crtc_wait_for_pending_flips(crtc);
a5c4d7bc
VS
4149
4150 if (dev_priv->fbc.plane == plane)
4151 intel_disable_fbc(dev);
4152
4153 hsw_disable_ips(intel_crtc);
4154
d3eedb1a 4155 intel_crtc_dpms_overlay(intel_crtc, false);
a5c4d7bc
VS
4156 intel_crtc_update_cursor(crtc, false);
4157 intel_disable_planes(crtc);
fdd508a6 4158 intel_disable_primary_hw_plane(crtc->primary, crtc);
f98551ae 4159
f99d7069
DV
4160 /*
4161 * FIXME: Once we grow proper nuclear flip support out of this we need
4162 * to compute the mask of flip planes precisely. For the time being
4163 * consider this a flip to a NULL plane.
4164 */
4165 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
4166}
4167
f67a559d
JB
4168static void ironlake_crtc_enable(struct drm_crtc *crtc)
4169{
4170 struct drm_device *dev = crtc->dev;
4171 struct drm_i915_private *dev_priv = dev->dev_private;
4172 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4173 struct intel_encoder *encoder;
f67a559d 4174 int pipe = intel_crtc->pipe;
f67a559d 4175
08a48469
DV
4176 WARN_ON(!crtc->enabled);
4177
f67a559d
JB
4178 if (intel_crtc->active)
4179 return;
4180
b14b1055
DV
4181 if (intel_crtc->config.has_pch_encoder)
4182 intel_prepare_shared_dpll(intel_crtc);
4183
29407aab
DV
4184 if (intel_crtc->config.has_dp_encoder)
4185 intel_dp_set_m_n(intel_crtc);
4186
4187 intel_set_pipe_timings(intel_crtc);
4188
4189 if (intel_crtc->config.has_pch_encoder) {
4190 intel_cpu_transcoder_set_m_n(intel_crtc,
f769cd24 4191 &intel_crtc->config.fdi_m_n, NULL);
29407aab
DV
4192 }
4193
4194 ironlake_set_pipeconf(crtc);
4195
f67a559d 4196 intel_crtc->active = true;
8664281b 4197
a72e4c9f
DV
4198 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4199 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
8664281b 4200
f6736a1a 4201 for_each_encoder_on_crtc(dev, crtc, encoder)
952735ee
DV
4202 if (encoder->pre_enable)
4203 encoder->pre_enable(encoder);
f67a559d 4204
5bfe2ac0 4205 if (intel_crtc->config.has_pch_encoder) {
fff367c7
DV
4206 /* Note: FDI PLL enabling _must_ be done before we enable the
4207 * cpu pipes, hence this is separate from all the other fdi/pch
4208 * enabling. */
88cefb6c 4209 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
4210 } else {
4211 assert_fdi_tx_disabled(dev_priv, pipe);
4212 assert_fdi_rx_disabled(dev_priv, pipe);
4213 }
f67a559d 4214
b074cec8 4215 ironlake_pfit_enable(intel_crtc);
f67a559d 4216
9c54c0dd
JB
4217 /*
4218 * On ILK+ LUT must be loaded before the pipe is running but with
4219 * clocks enabled
4220 */
4221 intel_crtc_load_lut(crtc);
4222
f37fcc2a 4223 intel_update_watermarks(crtc);
e1fdc473 4224 intel_enable_pipe(intel_crtc);
f67a559d 4225
5bfe2ac0 4226 if (intel_crtc->config.has_pch_encoder)
f67a559d 4227 ironlake_pch_enable(crtc);
c98e9dcf 4228
fa5c73b1
DV
4229 for_each_encoder_on_crtc(dev, crtc, encoder)
4230 encoder->enable(encoder);
61b77ddd
DV
4231
4232 if (HAS_PCH_CPT(dev))
a1520318 4233 cpt_verify_modeset(dev, intel_crtc->pipe);
6ce94100 4234
4b3a9526
VS
4235 assert_vblank_disabled(crtc);
4236 drm_crtc_vblank_on(crtc);
4237
d3eedb1a 4238 intel_crtc_enable_planes(crtc);
6be4a607
JB
4239}
4240
42db64ef
PZ
4241/* IPS only exists on ULT machines and is tied to pipe A. */
4242static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4243{
f5adf94e 4244 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
42db64ef
PZ
4245}
4246
e4916946
PZ
4247/*
4248 * This implements the workaround described in the "notes" section of the mode
4249 * set sequence documentation. When going from no pipes or single pipe to
4250 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4251 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4252 */
4253static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4254{
4255 struct drm_device *dev = crtc->base.dev;
4256 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4257
4258 /* We want to get the other_active_crtc only if there's only 1 other
4259 * active crtc. */
d3fcc808 4260 for_each_intel_crtc(dev, crtc_it) {
e4916946
PZ
4261 if (!crtc_it->active || crtc_it == crtc)
4262 continue;
4263
4264 if (other_active_crtc)
4265 return;
4266
4267 other_active_crtc = crtc_it;
4268 }
4269 if (!other_active_crtc)
4270 return;
4271
4272 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4273 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4274}
4275
4f771f10
PZ
4276static void haswell_crtc_enable(struct drm_crtc *crtc)
4277{
4278 struct drm_device *dev = crtc->dev;
4279 struct drm_i915_private *dev_priv = dev->dev_private;
4280 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4281 struct intel_encoder *encoder;
4282 int pipe = intel_crtc->pipe;
4f771f10
PZ
4283
4284 WARN_ON(!crtc->enabled);
4285
4286 if (intel_crtc->active)
4287 return;
4288
df8ad70c
DV
4289 if (intel_crtc_to_shared_dpll(intel_crtc))
4290 intel_enable_shared_dpll(intel_crtc);
4291
229fca97
DV
4292 if (intel_crtc->config.has_dp_encoder)
4293 intel_dp_set_m_n(intel_crtc);
4294
4295 intel_set_pipe_timings(intel_crtc);
4296
ebb69c95
CT
4297 if (intel_crtc->config.cpu_transcoder != TRANSCODER_EDP) {
4298 I915_WRITE(PIPE_MULT(intel_crtc->config.cpu_transcoder),
4299 intel_crtc->config.pixel_multiplier - 1);
4300 }
4301
229fca97
DV
4302 if (intel_crtc->config.has_pch_encoder) {
4303 intel_cpu_transcoder_set_m_n(intel_crtc,
f769cd24 4304 &intel_crtc->config.fdi_m_n, NULL);
229fca97
DV
4305 }
4306
4307 haswell_set_pipeconf(crtc);
4308
4309 intel_set_pipe_csc(crtc);
4310
4f771f10 4311 intel_crtc->active = true;
8664281b 4312
a72e4c9f 4313 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4f771f10
PZ
4314 for_each_encoder_on_crtc(dev, crtc, encoder)
4315 if (encoder->pre_enable)
4316 encoder->pre_enable(encoder);
4317
4fe9467d 4318 if (intel_crtc->config.has_pch_encoder) {
a72e4c9f
DV
4319 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4320 true);
4fe9467d
ID
4321 dev_priv->display.fdi_link_train(crtc);
4322 }
4323
1f544388 4324 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 4325
b074cec8 4326 ironlake_pfit_enable(intel_crtc);
4f771f10
PZ
4327
4328 /*
4329 * On ILK+ LUT must be loaded before the pipe is running but with
4330 * clocks enabled
4331 */
4332 intel_crtc_load_lut(crtc);
4333
1f544388 4334 intel_ddi_set_pipe_settings(crtc);
8228c251 4335 intel_ddi_enable_transcoder_func(crtc);
4f771f10 4336
f37fcc2a 4337 intel_update_watermarks(crtc);
e1fdc473 4338 intel_enable_pipe(intel_crtc);
42db64ef 4339
5bfe2ac0 4340 if (intel_crtc->config.has_pch_encoder)
1507e5bd 4341 lpt_pch_enable(crtc);
4f771f10 4342
0e32b39c
DA
4343 if (intel_crtc->config.dp_encoder_is_mst)
4344 intel_ddi_set_vc_payload_alloc(crtc, true);
4345
8807e55b 4346 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10 4347 encoder->enable(encoder);
8807e55b
JN
4348 intel_opregion_notify_encoder(encoder, true);
4349 }
4f771f10 4350
4b3a9526
VS
4351 assert_vblank_disabled(crtc);
4352 drm_crtc_vblank_on(crtc);
4353
e4916946
PZ
4354 /* If we change the relative order between pipe/planes enabling, we need
4355 * to change the workaround. */
4356 haswell_mode_set_planes_workaround(intel_crtc);
d3eedb1a 4357 intel_crtc_enable_planes(crtc);
4f771f10
PZ
4358}
4359
3f8dce3a
DV
4360static void ironlake_pfit_disable(struct intel_crtc *crtc)
4361{
4362 struct drm_device *dev = crtc->base.dev;
4363 struct drm_i915_private *dev_priv = dev->dev_private;
4364 int pipe = crtc->pipe;
4365
4366 /* To avoid upsetting the power well on haswell only disable the pfit if
4367 * it's in use. The hw state code will make sure we get this right. */
fd4daa9c 4368 if (crtc->config.pch_pfit.enabled) {
3f8dce3a
DV
4369 I915_WRITE(PF_CTL(pipe), 0);
4370 I915_WRITE(PF_WIN_POS(pipe), 0);
4371 I915_WRITE(PF_WIN_SZ(pipe), 0);
4372 }
4373}
4374
6be4a607
JB
4375static void ironlake_crtc_disable(struct drm_crtc *crtc)
4376{
4377 struct drm_device *dev = crtc->dev;
4378 struct drm_i915_private *dev_priv = dev->dev_private;
4379 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4380 struct intel_encoder *encoder;
6be4a607 4381 int pipe = intel_crtc->pipe;
5eddb70b 4382 u32 reg, temp;
b52eb4dc 4383
f7abfe8b
CW
4384 if (!intel_crtc->active)
4385 return;
4386
d3eedb1a 4387 intel_crtc_disable_planes(crtc);
a5c4d7bc 4388
4b3a9526
VS
4389 drm_crtc_vblank_off(crtc);
4390 assert_vblank_disabled(crtc);
4391
ea9d758d
DV
4392 for_each_encoder_on_crtc(dev, crtc, encoder)
4393 encoder->disable(encoder);
4394
d925c59a 4395 if (intel_crtc->config.has_pch_encoder)
a72e4c9f 4396 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
d925c59a 4397
575f7ab7 4398 intel_disable_pipe(intel_crtc);
32f9d658 4399
3f8dce3a 4400 ironlake_pfit_disable(intel_crtc);
2c07245f 4401
bf49ec8c
DV
4402 for_each_encoder_on_crtc(dev, crtc, encoder)
4403 if (encoder->post_disable)
4404 encoder->post_disable(encoder);
2c07245f 4405
d925c59a
DV
4406 if (intel_crtc->config.has_pch_encoder) {
4407 ironlake_fdi_disable(crtc);
913d8d11 4408
d925c59a 4409 ironlake_disable_pch_transcoder(dev_priv, pipe);
a72e4c9f 4410 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
6be4a607 4411
d925c59a
DV
4412 if (HAS_PCH_CPT(dev)) {
4413 /* disable TRANS_DP_CTL */
4414 reg = TRANS_DP_CTL(pipe);
4415 temp = I915_READ(reg);
4416 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4417 TRANS_DP_PORT_SEL_MASK);
4418 temp |= TRANS_DP_PORT_SEL_NONE;
4419 I915_WRITE(reg, temp);
4420
4421 /* disable DPLL_SEL */
4422 temp = I915_READ(PCH_DPLL_SEL);
11887397 4423 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
d925c59a 4424 I915_WRITE(PCH_DPLL_SEL, temp);
9db4a9c7 4425 }
e3421a18 4426
d925c59a 4427 /* disable PCH DPLL */
e72f9fbf 4428 intel_disable_shared_dpll(intel_crtc);
8db9d77b 4429
d925c59a
DV
4430 ironlake_fdi_pll_disable(intel_crtc);
4431 }
6b383a7f 4432
f7abfe8b 4433 intel_crtc->active = false;
46ba614c 4434 intel_update_watermarks(crtc);
d1ebd816
BW
4435
4436 mutex_lock(&dev->struct_mutex);
6b383a7f 4437 intel_update_fbc(dev);
d1ebd816 4438 mutex_unlock(&dev->struct_mutex);
6be4a607 4439}
1b3c7a47 4440
4f771f10 4441static void haswell_crtc_disable(struct drm_crtc *crtc)
ee7b9f93 4442{
4f771f10
PZ
4443 struct drm_device *dev = crtc->dev;
4444 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93 4445 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4f771f10 4446 struct intel_encoder *encoder;
3b117c8f 4447 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
ee7b9f93 4448
4f771f10
PZ
4449 if (!intel_crtc->active)
4450 return;
4451
d3eedb1a 4452 intel_crtc_disable_planes(crtc);
dda9a66a 4453
4b3a9526
VS
4454 drm_crtc_vblank_off(crtc);
4455 assert_vblank_disabled(crtc);
4456
8807e55b
JN
4457 for_each_encoder_on_crtc(dev, crtc, encoder) {
4458 intel_opregion_notify_encoder(encoder, false);
4f771f10 4459 encoder->disable(encoder);
8807e55b 4460 }
4f771f10 4461
8664281b 4462 if (intel_crtc->config.has_pch_encoder)
a72e4c9f
DV
4463 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4464 false);
575f7ab7 4465 intel_disable_pipe(intel_crtc);
4f771f10 4466
a4bf214f
VS
4467 if (intel_crtc->config.dp_encoder_is_mst)
4468 intel_ddi_set_vc_payload_alloc(crtc, false);
4469
ad80a810 4470 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10 4471
3f8dce3a 4472 ironlake_pfit_disable(intel_crtc);
4f771f10 4473
1f544388 4474 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10 4475
88adfff1 4476 if (intel_crtc->config.has_pch_encoder) {
ab4d966c 4477 lpt_disable_pch_transcoder(dev_priv);
a72e4c9f
DV
4478 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4479 true);
1ad960f2 4480 intel_ddi_fdi_disable(crtc);
83616634 4481 }
4f771f10 4482
97b040aa
ID
4483 for_each_encoder_on_crtc(dev, crtc, encoder)
4484 if (encoder->post_disable)
4485 encoder->post_disable(encoder);
4486
4f771f10 4487 intel_crtc->active = false;
46ba614c 4488 intel_update_watermarks(crtc);
4f771f10
PZ
4489
4490 mutex_lock(&dev->struct_mutex);
4491 intel_update_fbc(dev);
4492 mutex_unlock(&dev->struct_mutex);
df8ad70c
DV
4493
4494 if (intel_crtc_to_shared_dpll(intel_crtc))
4495 intel_disable_shared_dpll(intel_crtc);
4f771f10
PZ
4496}
4497
ee7b9f93
JB
4498static void ironlake_crtc_off(struct drm_crtc *crtc)
4499{
4500 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
e72f9fbf 4501 intel_put_shared_dpll(intel_crtc);
ee7b9f93
JB
4502}
4503
6441ab5f 4504
2dd24552
JB
4505static void i9xx_pfit_enable(struct intel_crtc *crtc)
4506{
4507 struct drm_device *dev = crtc->base.dev;
4508 struct drm_i915_private *dev_priv = dev->dev_private;
4509 struct intel_crtc_config *pipe_config = &crtc->config;
4510
328d8e82 4511 if (!crtc->config.gmch_pfit.control)
2dd24552
JB
4512 return;
4513
2dd24552 4514 /*
c0b03411
DV
4515 * The panel fitter should only be adjusted whilst the pipe is disabled,
4516 * according to register description and PRM.
2dd24552 4517 */
c0b03411
DV
4518 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4519 assert_pipe_disabled(dev_priv, crtc->pipe);
2dd24552 4520
b074cec8
JB
4521 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4522 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5a80c45c
DV
4523
4524 /* Border color in case we don't scale up to the full screen. Black by
4525 * default, change to something else for debugging. */
4526 I915_WRITE(BCLRPAT(crtc->pipe), 0);
2dd24552
JB
4527}
4528
d05410f9
DA
4529static enum intel_display_power_domain port_to_power_domain(enum port port)
4530{
4531 switch (port) {
4532 case PORT_A:
4533 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4534 case PORT_B:
4535 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4536 case PORT_C:
4537 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4538 case PORT_D:
4539 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4540 default:
4541 WARN_ON_ONCE(1);
4542 return POWER_DOMAIN_PORT_OTHER;
4543 }
4544}
4545
77d22dca
ID
4546#define for_each_power_domain(domain, mask) \
4547 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4548 if ((1 << (domain)) & (mask))
4549
319be8ae
ID
4550enum intel_display_power_domain
4551intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4552{
4553 struct drm_device *dev = intel_encoder->base.dev;
4554 struct intel_digital_port *intel_dig_port;
4555
4556 switch (intel_encoder->type) {
4557 case INTEL_OUTPUT_UNKNOWN:
4558 /* Only DDI platforms should ever use this output type */
4559 WARN_ON_ONCE(!HAS_DDI(dev));
4560 case INTEL_OUTPUT_DISPLAYPORT:
4561 case INTEL_OUTPUT_HDMI:
4562 case INTEL_OUTPUT_EDP:
4563 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
d05410f9 4564 return port_to_power_domain(intel_dig_port->port);
0e32b39c
DA
4565 case INTEL_OUTPUT_DP_MST:
4566 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4567 return port_to_power_domain(intel_dig_port->port);
319be8ae
ID
4568 case INTEL_OUTPUT_ANALOG:
4569 return POWER_DOMAIN_PORT_CRT;
4570 case INTEL_OUTPUT_DSI:
4571 return POWER_DOMAIN_PORT_DSI;
4572 default:
4573 return POWER_DOMAIN_PORT_OTHER;
4574 }
4575}
4576
4577static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
77d22dca 4578{
319be8ae
ID
4579 struct drm_device *dev = crtc->dev;
4580 struct intel_encoder *intel_encoder;
4581 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4582 enum pipe pipe = intel_crtc->pipe;
77d22dca
ID
4583 unsigned long mask;
4584 enum transcoder transcoder;
4585
4586 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4587
4588 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4589 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
fabf6e51
DV
4590 if (intel_crtc->config.pch_pfit.enabled ||
4591 intel_crtc->config.pch_pfit.force_thru)
77d22dca
ID
4592 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4593
319be8ae
ID
4594 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4595 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4596
77d22dca
ID
4597 return mask;
4598}
4599
77d22dca
ID
4600static void modeset_update_crtc_power_domains(struct drm_device *dev)
4601{
4602 struct drm_i915_private *dev_priv = dev->dev_private;
4603 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4604 struct intel_crtc *crtc;
4605
4606 /*
4607 * First get all needed power domains, then put all unneeded, to avoid
4608 * any unnecessary toggling of the power wells.
4609 */
d3fcc808 4610 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4611 enum intel_display_power_domain domain;
4612
4613 if (!crtc->base.enabled)
4614 continue;
4615
319be8ae 4616 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
77d22dca
ID
4617
4618 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4619 intel_display_power_get(dev_priv, domain);
4620 }
4621
d3fcc808 4622 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4623 enum intel_display_power_domain domain;
4624
4625 for_each_power_domain(domain, crtc->enabled_power_domains)
4626 intel_display_power_put(dev_priv, domain);
4627
4628 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4629 }
4630
4631 intel_display_set_init_power(dev_priv, false);
4632}
4633
dfcab17e 4634/* returns HPLL frequency in kHz */
f8bf63fd 4635static int valleyview_get_vco(struct drm_i915_private *dev_priv)
30a970c6 4636{
586f49dc 4637 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
30a970c6 4638
586f49dc
JB
4639 /* Obtain SKU information */
4640 mutex_lock(&dev_priv->dpio_lock);
4641 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4642 CCK_FUSE_HPLL_FREQ_MASK;
4643 mutex_unlock(&dev_priv->dpio_lock);
30a970c6 4644
dfcab17e 4645 return vco_freq[hpll_freq] * 1000;
30a970c6
JB
4646}
4647
f8bf63fd
VS
4648static void vlv_update_cdclk(struct drm_device *dev)
4649{
4650 struct drm_i915_private *dev_priv = dev->dev_private;
4651
4652 dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
43dc52c3 4653 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
f8bf63fd
VS
4654 dev_priv->vlv_cdclk_freq);
4655
4656 /*
4657 * Program the gmbus_freq based on the cdclk frequency.
4658 * BSpec erroneously claims we should aim for 4MHz, but
4659 * in fact 1MHz is the correct frequency.
4660 */
4661 I915_WRITE(GMBUSFREQ_VLV, dev_priv->vlv_cdclk_freq);
4662}
4663
30a970c6
JB
4664/* Adjust CDclk dividers to allow high res or save power if possible */
4665static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4666{
4667 struct drm_i915_private *dev_priv = dev->dev_private;
4668 u32 val, cmd;
4669
d197b7d3 4670 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
d60c4473 4671
dfcab17e 4672 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
30a970c6 4673 cmd = 2;
dfcab17e 4674 else if (cdclk == 266667)
30a970c6
JB
4675 cmd = 1;
4676 else
4677 cmd = 0;
4678
4679 mutex_lock(&dev_priv->rps.hw_lock);
4680 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4681 val &= ~DSPFREQGUAR_MASK;
4682 val |= (cmd << DSPFREQGUAR_SHIFT);
4683 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4684 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4685 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4686 50)) {
4687 DRM_ERROR("timed out waiting for CDclk change\n");
4688 }
4689 mutex_unlock(&dev_priv->rps.hw_lock);
4690
dfcab17e 4691 if (cdclk == 400000) {
30a970c6
JB
4692 u32 divider, vco;
4693
4694 vco = valleyview_get_vco(dev_priv);
dfcab17e 4695 divider = DIV_ROUND_CLOSEST(vco << 1, cdclk) - 1;
30a970c6
JB
4696
4697 mutex_lock(&dev_priv->dpio_lock);
4698 /* adjust cdclk divider */
4699 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
9cf33db5 4700 val &= ~DISPLAY_FREQUENCY_VALUES;
30a970c6
JB
4701 val |= divider;
4702 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
a877e801
VS
4703
4704 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4705 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4706 50))
4707 DRM_ERROR("timed out waiting for CDclk change\n");
30a970c6
JB
4708 mutex_unlock(&dev_priv->dpio_lock);
4709 }
4710
4711 mutex_lock(&dev_priv->dpio_lock);
4712 /* adjust self-refresh exit latency value */
4713 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4714 val &= ~0x7f;
4715
4716 /*
4717 * For high bandwidth configs, we set a higher latency in the bunit
4718 * so that the core display fetch happens in time to avoid underruns.
4719 */
dfcab17e 4720 if (cdclk == 400000)
30a970c6
JB
4721 val |= 4500 / 250; /* 4.5 usec */
4722 else
4723 val |= 3000 / 250; /* 3.0 usec */
4724 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4725 mutex_unlock(&dev_priv->dpio_lock);
4726
f8bf63fd 4727 vlv_update_cdclk(dev);
30a970c6
JB
4728}
4729
383c5a6a
VS
4730static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
4731{
4732 struct drm_i915_private *dev_priv = dev->dev_private;
4733 u32 val, cmd;
4734
4735 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4736
4737 switch (cdclk) {
4738 case 400000:
4739 cmd = 3;
4740 break;
4741 case 333333:
4742 case 320000:
4743 cmd = 2;
4744 break;
4745 case 266667:
4746 cmd = 1;
4747 break;
4748 case 200000:
4749 cmd = 0;
4750 break;
4751 default:
4752 WARN_ON(1);
4753 return;
4754 }
4755
4756 mutex_lock(&dev_priv->rps.hw_lock);
4757 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4758 val &= ~DSPFREQGUAR_MASK_CHV;
4759 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
4760 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4761 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4762 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
4763 50)) {
4764 DRM_ERROR("timed out waiting for CDclk change\n");
4765 }
4766 mutex_unlock(&dev_priv->rps.hw_lock);
4767
4768 vlv_update_cdclk(dev);
4769}
4770
30a970c6
JB
4771static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4772 int max_pixclk)
4773{
29dc7ef3
VS
4774 int vco = valleyview_get_vco(dev_priv);
4775 int freq_320 = (vco << 1) % 320000 != 0 ? 333333 : 320000;
4776
d49a340d
VS
4777 /* FIXME: Punit isn't quite ready yet */
4778 if (IS_CHERRYVIEW(dev_priv->dev))
4779 return 400000;
4780
30a970c6
JB
4781 /*
4782 * Really only a few cases to deal with, as only 4 CDclks are supported:
4783 * 200MHz
4784 * 267MHz
29dc7ef3 4785 * 320/333MHz (depends on HPLL freq)
30a970c6
JB
4786 * 400MHz
4787 * So we check to see whether we're above 90% of the lower bin and
4788 * adjust if needed.
e37c67a1
VS
4789 *
4790 * We seem to get an unstable or solid color picture at 200MHz.
4791 * Not sure what's wrong. For now use 200MHz only when all pipes
4792 * are off.
30a970c6 4793 */
29dc7ef3 4794 if (max_pixclk > freq_320*9/10)
dfcab17e
VS
4795 return 400000;
4796 else if (max_pixclk > 266667*9/10)
29dc7ef3 4797 return freq_320;
e37c67a1 4798 else if (max_pixclk > 0)
dfcab17e 4799 return 266667;
e37c67a1
VS
4800 else
4801 return 200000;
30a970c6
JB
4802}
4803
2f2d7aa1
VS
4804/* compute the max pixel clock for new configuration */
4805static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
30a970c6
JB
4806{
4807 struct drm_device *dev = dev_priv->dev;
4808 struct intel_crtc *intel_crtc;
4809 int max_pixclk = 0;
4810
d3fcc808 4811 for_each_intel_crtc(dev, intel_crtc) {
2f2d7aa1 4812 if (intel_crtc->new_enabled)
30a970c6 4813 max_pixclk = max(max_pixclk,
2f2d7aa1 4814 intel_crtc->new_config->adjusted_mode.crtc_clock);
30a970c6
JB
4815 }
4816
4817 return max_pixclk;
4818}
4819
4820static void valleyview_modeset_global_pipes(struct drm_device *dev,
2f2d7aa1 4821 unsigned *prepare_pipes)
30a970c6
JB
4822{
4823 struct drm_i915_private *dev_priv = dev->dev_private;
4824 struct intel_crtc *intel_crtc;
2f2d7aa1 4825 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6 4826
d60c4473
ID
4827 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4828 dev_priv->vlv_cdclk_freq)
30a970c6
JB
4829 return;
4830
2f2d7aa1 4831 /* disable/enable all currently active pipes while we change cdclk */
d3fcc808 4832 for_each_intel_crtc(dev, intel_crtc)
30a970c6
JB
4833 if (intel_crtc->base.enabled)
4834 *prepare_pipes |= (1 << intel_crtc->pipe);
4835}
4836
4837static void valleyview_modeset_global_resources(struct drm_device *dev)
4838{
4839 struct drm_i915_private *dev_priv = dev->dev_private;
2f2d7aa1 4840 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6
JB
4841 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4842
383c5a6a
VS
4843 if (req_cdclk != dev_priv->vlv_cdclk_freq) {
4844 if (IS_CHERRYVIEW(dev))
4845 cherryview_set_cdclk(dev, req_cdclk);
4846 else
4847 valleyview_set_cdclk(dev, req_cdclk);
4848 }
4849
77961eb9 4850 modeset_update_crtc_power_domains(dev);
30a970c6
JB
4851}
4852
89b667f8
JB
4853static void valleyview_crtc_enable(struct drm_crtc *crtc)
4854{
4855 struct drm_device *dev = crtc->dev;
a72e4c9f 4856 struct drm_i915_private *dev_priv = to_i915(dev);
89b667f8
JB
4857 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4858 struct intel_encoder *encoder;
4859 int pipe = intel_crtc->pipe;
23538ef1 4860 bool is_dsi;
89b667f8
JB
4861
4862 WARN_ON(!crtc->enabled);
4863
4864 if (intel_crtc->active)
4865 return;
4866
409ee761 4867 is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
8525a235 4868
1ae0d137
VS
4869 if (!is_dsi) {
4870 if (IS_CHERRYVIEW(dev))
d288f65f 4871 chv_prepare_pll(intel_crtc, &intel_crtc->config);
1ae0d137 4872 else
d288f65f 4873 vlv_prepare_pll(intel_crtc, &intel_crtc->config);
1ae0d137 4874 }
5b18e57c
DV
4875
4876 if (intel_crtc->config.has_dp_encoder)
4877 intel_dp_set_m_n(intel_crtc);
4878
4879 intel_set_pipe_timings(intel_crtc);
4880
c14b0485
VS
4881 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
4882 struct drm_i915_private *dev_priv = dev->dev_private;
4883
4884 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
4885 I915_WRITE(CHV_CANVAS(pipe), 0);
4886 }
4887
5b18e57c
DV
4888 i9xx_set_pipeconf(intel_crtc);
4889
89b667f8 4890 intel_crtc->active = true;
89b667f8 4891
a72e4c9f 4892 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 4893
89b667f8
JB
4894 for_each_encoder_on_crtc(dev, crtc, encoder)
4895 if (encoder->pre_pll_enable)
4896 encoder->pre_pll_enable(encoder);
4897
9d556c99
CML
4898 if (!is_dsi) {
4899 if (IS_CHERRYVIEW(dev))
d288f65f 4900 chv_enable_pll(intel_crtc, &intel_crtc->config);
9d556c99 4901 else
d288f65f 4902 vlv_enable_pll(intel_crtc, &intel_crtc->config);
9d556c99 4903 }
89b667f8
JB
4904
4905 for_each_encoder_on_crtc(dev, crtc, encoder)
4906 if (encoder->pre_enable)
4907 encoder->pre_enable(encoder);
4908
2dd24552
JB
4909 i9xx_pfit_enable(intel_crtc);
4910
63cbb074
VS
4911 intel_crtc_load_lut(crtc);
4912
f37fcc2a 4913 intel_update_watermarks(crtc);
e1fdc473 4914 intel_enable_pipe(intel_crtc);
be6a6f8e 4915
5004945f
JN
4916 for_each_encoder_on_crtc(dev, crtc, encoder)
4917 encoder->enable(encoder);
9ab0460b 4918
4b3a9526
VS
4919 assert_vblank_disabled(crtc);
4920 drm_crtc_vblank_on(crtc);
4921
9ab0460b 4922 intel_crtc_enable_planes(crtc);
d40d9187 4923
56b80e1f 4924 /* Underruns don't raise interrupts, so check manually. */
a72e4c9f 4925 i9xx_check_fifo_underruns(dev_priv);
89b667f8
JB
4926}
4927
f13c2ef3
DV
4928static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
4929{
4930 struct drm_device *dev = crtc->base.dev;
4931 struct drm_i915_private *dev_priv = dev->dev_private;
4932
4933 I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
4934 I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
4935}
4936
0b8765c6 4937static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
4938{
4939 struct drm_device *dev = crtc->dev;
a72e4c9f 4940 struct drm_i915_private *dev_priv = to_i915(dev);
79e53945 4941 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4942 struct intel_encoder *encoder;
79e53945 4943 int pipe = intel_crtc->pipe;
79e53945 4944
08a48469
DV
4945 WARN_ON(!crtc->enabled);
4946
f7abfe8b
CW
4947 if (intel_crtc->active)
4948 return;
4949
f13c2ef3
DV
4950 i9xx_set_pll_dividers(intel_crtc);
4951
5b18e57c
DV
4952 if (intel_crtc->config.has_dp_encoder)
4953 intel_dp_set_m_n(intel_crtc);
4954
4955 intel_set_pipe_timings(intel_crtc);
4956
5b18e57c
DV
4957 i9xx_set_pipeconf(intel_crtc);
4958
f7abfe8b 4959 intel_crtc->active = true;
6b383a7f 4960
4a3436e8 4961 if (!IS_GEN2(dev))
a72e4c9f 4962 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 4963
9d6d9f19
MK
4964 for_each_encoder_on_crtc(dev, crtc, encoder)
4965 if (encoder->pre_enable)
4966 encoder->pre_enable(encoder);
4967
f6736a1a
DV
4968 i9xx_enable_pll(intel_crtc);
4969
2dd24552
JB
4970 i9xx_pfit_enable(intel_crtc);
4971
63cbb074
VS
4972 intel_crtc_load_lut(crtc);
4973
f37fcc2a 4974 intel_update_watermarks(crtc);
e1fdc473 4975 intel_enable_pipe(intel_crtc);
be6a6f8e 4976
fa5c73b1
DV
4977 for_each_encoder_on_crtc(dev, crtc, encoder)
4978 encoder->enable(encoder);
9ab0460b 4979
4b3a9526
VS
4980 assert_vblank_disabled(crtc);
4981 drm_crtc_vblank_on(crtc);
4982
9ab0460b 4983 intel_crtc_enable_planes(crtc);
d40d9187 4984
4a3436e8
VS
4985 /*
4986 * Gen2 reports pipe underruns whenever all planes are disabled.
4987 * So don't enable underrun reporting before at least some planes
4988 * are enabled.
4989 * FIXME: Need to fix the logic to work when we turn off all planes
4990 * but leave the pipe running.
4991 */
4992 if (IS_GEN2(dev))
a72e4c9f 4993 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 4994
56b80e1f 4995 /* Underruns don't raise interrupts, so check manually. */
a72e4c9f 4996 i9xx_check_fifo_underruns(dev_priv);
0b8765c6 4997}
79e53945 4998
87476d63
DV
4999static void i9xx_pfit_disable(struct intel_crtc *crtc)
5000{
5001 struct drm_device *dev = crtc->base.dev;
5002 struct drm_i915_private *dev_priv = dev->dev_private;
87476d63 5003
328d8e82
DV
5004 if (!crtc->config.gmch_pfit.control)
5005 return;
87476d63 5006
328d8e82 5007 assert_pipe_disabled(dev_priv, crtc->pipe);
87476d63 5008
328d8e82
DV
5009 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5010 I915_READ(PFIT_CONTROL));
5011 I915_WRITE(PFIT_CONTROL, 0);
87476d63
DV
5012}
5013
0b8765c6
JB
5014static void i9xx_crtc_disable(struct drm_crtc *crtc)
5015{
5016 struct drm_device *dev = crtc->dev;
5017 struct drm_i915_private *dev_priv = dev->dev_private;
5018 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 5019 struct intel_encoder *encoder;
0b8765c6 5020 int pipe = intel_crtc->pipe;
ef9c3aee 5021
f7abfe8b
CW
5022 if (!intel_crtc->active)
5023 return;
5024
4a3436e8
VS
5025 /*
5026 * Gen2 reports pipe underruns whenever all planes are disabled.
5027 * So diasble underrun reporting before all the planes get disabled.
5028 * FIXME: Need to fix the logic to work when we turn off all planes
5029 * but leave the pipe running.
5030 */
5031 if (IS_GEN2(dev))
a72e4c9f 5032 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4a3436e8 5033
564ed191
ID
5034 /*
5035 * Vblank time updates from the shadow to live plane control register
5036 * are blocked if the memory self-refresh mode is active at that
5037 * moment. So to make sure the plane gets truly disabled, disable
5038 * first the self-refresh mode. The self-refresh enable bit in turn
5039 * will be checked/applied by the HW only at the next frame start
5040 * event which is after the vblank start event, so we need to have a
5041 * wait-for-vblank between disabling the plane and the pipe.
5042 */
5043 intel_set_memory_cxsr(dev_priv, false);
9ab0460b
VS
5044 intel_crtc_disable_planes(crtc);
5045
6304cd91
VS
5046 /*
5047 * On gen2 planes are double buffered but the pipe isn't, so we must
5048 * wait for planes to fully turn off before disabling the pipe.
564ed191
ID
5049 * We also need to wait on all gmch platforms because of the
5050 * self-refresh mode constraint explained above.
6304cd91 5051 */
564ed191 5052 intel_wait_for_vblank(dev, pipe);
6304cd91 5053
4b3a9526
VS
5054 drm_crtc_vblank_off(crtc);
5055 assert_vblank_disabled(crtc);
5056
5057 for_each_encoder_on_crtc(dev, crtc, encoder)
5058 encoder->disable(encoder);
5059
575f7ab7 5060 intel_disable_pipe(intel_crtc);
24a1f16d 5061
87476d63 5062 i9xx_pfit_disable(intel_crtc);
24a1f16d 5063
89b667f8
JB
5064 for_each_encoder_on_crtc(dev, crtc, encoder)
5065 if (encoder->post_disable)
5066 encoder->post_disable(encoder);
5067
409ee761 5068 if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
076ed3b2
CML
5069 if (IS_CHERRYVIEW(dev))
5070 chv_disable_pll(dev_priv, pipe);
5071 else if (IS_VALLEYVIEW(dev))
5072 vlv_disable_pll(dev_priv, pipe);
5073 else
1c4e0274 5074 i9xx_disable_pll(intel_crtc);
076ed3b2 5075 }
0b8765c6 5076
4a3436e8 5077 if (!IS_GEN2(dev))
a72e4c9f 5078 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4a3436e8 5079
f7abfe8b 5080 intel_crtc->active = false;
46ba614c 5081 intel_update_watermarks(crtc);
f37fcc2a 5082
efa9624e 5083 mutex_lock(&dev->struct_mutex);
6b383a7f 5084 intel_update_fbc(dev);
efa9624e 5085 mutex_unlock(&dev->struct_mutex);
0b8765c6
JB
5086}
5087
ee7b9f93
JB
5088static void i9xx_crtc_off(struct drm_crtc *crtc)
5089{
5090}
5091
976f8a20
DV
5092static void intel_crtc_update_sarea(struct drm_crtc *crtc,
5093 bool enabled)
2c07245f
ZW
5094{
5095 struct drm_device *dev = crtc->dev;
5096 struct drm_i915_master_private *master_priv;
5097 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5098 int pipe = intel_crtc->pipe;
79e53945
JB
5099
5100 if (!dev->primary->master)
5101 return;
5102
5103 master_priv = dev->primary->master->driver_priv;
5104 if (!master_priv->sarea_priv)
5105 return;
5106
79e53945
JB
5107 switch (pipe) {
5108 case 0:
5109 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
5110 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
5111 break;
5112 case 1:
5113 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
5114 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
5115 break;
5116 default:
9db4a9c7 5117 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
79e53945
JB
5118 break;
5119 }
79e53945
JB
5120}
5121
b04c5bd6
BF
5122/* Master function to enable/disable CRTC and corresponding power wells */
5123void intel_crtc_control(struct drm_crtc *crtc, bool enable)
976f8a20
DV
5124{
5125 struct drm_device *dev = crtc->dev;
5126 struct drm_i915_private *dev_priv = dev->dev_private;
0e572fe7 5127 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
0e572fe7
DV
5128 enum intel_display_power_domain domain;
5129 unsigned long domains;
976f8a20 5130
0e572fe7
DV
5131 if (enable) {
5132 if (!intel_crtc->active) {
e1e9fb84
DV
5133 domains = get_crtc_power_domains(crtc);
5134 for_each_power_domain(domain, domains)
5135 intel_display_power_get(dev_priv, domain);
5136 intel_crtc->enabled_power_domains = domains;
0e572fe7
DV
5137
5138 dev_priv->display.crtc_enable(crtc);
5139 }
5140 } else {
5141 if (intel_crtc->active) {
5142 dev_priv->display.crtc_disable(crtc);
5143
e1e9fb84
DV
5144 domains = intel_crtc->enabled_power_domains;
5145 for_each_power_domain(domain, domains)
5146 intel_display_power_put(dev_priv, domain);
5147 intel_crtc->enabled_power_domains = 0;
0e572fe7
DV
5148 }
5149 }
b04c5bd6
BF
5150}
5151
5152/**
5153 * Sets the power management mode of the pipe and plane.
5154 */
5155void intel_crtc_update_dpms(struct drm_crtc *crtc)
5156{
5157 struct drm_device *dev = crtc->dev;
5158 struct intel_encoder *intel_encoder;
5159 bool enable = false;
5160
5161 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5162 enable |= intel_encoder->connectors_active;
5163
5164 intel_crtc_control(crtc, enable);
976f8a20
DV
5165
5166 intel_crtc_update_sarea(crtc, enable);
5167}
5168
cdd59983
CW
5169static void intel_crtc_disable(struct drm_crtc *crtc)
5170{
cdd59983 5171 struct drm_device *dev = crtc->dev;
976f8a20 5172 struct drm_connector *connector;
ee7b9f93 5173 struct drm_i915_private *dev_priv = dev->dev_private;
2ff8fde1 5174 struct drm_i915_gem_object *old_obj = intel_fb_obj(crtc->primary->fb);
a071fa00 5175 enum pipe pipe = to_intel_crtc(crtc)->pipe;
cdd59983 5176
976f8a20
DV
5177 /* crtc should still be enabled when we disable it. */
5178 WARN_ON(!crtc->enabled);
5179
5180 dev_priv->display.crtc_disable(crtc);
5181 intel_crtc_update_sarea(crtc, false);
ee7b9f93
JB
5182 dev_priv->display.off(crtc);
5183
f4510a27 5184 if (crtc->primary->fb) {
cdd59983 5185 mutex_lock(&dev->struct_mutex);
a071fa00
DV
5186 intel_unpin_fb_obj(old_obj);
5187 i915_gem_track_fb(old_obj, NULL,
5188 INTEL_FRONTBUFFER_PRIMARY(pipe));
cdd59983 5189 mutex_unlock(&dev->struct_mutex);
f4510a27 5190 crtc->primary->fb = NULL;
976f8a20
DV
5191 }
5192
5193 /* Update computed state. */
5194 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5195 if (!connector->encoder || !connector->encoder->crtc)
5196 continue;
5197
5198 if (connector->encoder->crtc != crtc)
5199 continue;
5200
5201 connector->dpms = DRM_MODE_DPMS_OFF;
5202 to_intel_encoder(connector->encoder)->connectors_active = false;
cdd59983
CW
5203 }
5204}
5205
ea5b213a 5206void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 5207{
4ef69c7a 5208 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 5209
ea5b213a
CW
5210 drm_encoder_cleanup(encoder);
5211 kfree(intel_encoder);
7e7d76c3
JB
5212}
5213
9237329d 5214/* Simple dpms helper for encoders with just one connector, no cloning and only
5ab432ef
DV
5215 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5216 * state of the entire output pipe. */
9237329d 5217static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
7e7d76c3 5218{
5ab432ef
DV
5219 if (mode == DRM_MODE_DPMS_ON) {
5220 encoder->connectors_active = true;
5221
b2cabb0e 5222 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef
DV
5223 } else {
5224 encoder->connectors_active = false;
5225
b2cabb0e 5226 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef 5227 }
79e53945
JB
5228}
5229
0a91ca29
DV
5230/* Cross check the actual hw state with our own modeset state tracking (and it's
5231 * internal consistency). */
b980514c 5232static void intel_connector_check_state(struct intel_connector *connector)
79e53945 5233{
0a91ca29
DV
5234 if (connector->get_hw_state(connector)) {
5235 struct intel_encoder *encoder = connector->encoder;
5236 struct drm_crtc *crtc;
5237 bool encoder_enabled;
5238 enum pipe pipe;
5239
5240 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5241 connector->base.base.id,
c23cc417 5242 connector->base.name);
0a91ca29 5243
0e32b39c
DA
5244 /* there is no real hw state for MST connectors */
5245 if (connector->mst_port)
5246 return;
5247
0a91ca29
DV
5248 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5249 "wrong connector dpms state\n");
5250 WARN(connector->base.encoder != &encoder->base,
5251 "active connector not linked to encoder\n");
0a91ca29 5252
36cd7444
DA
5253 if (encoder) {
5254 WARN(!encoder->connectors_active,
5255 "encoder->connectors_active not set\n");
5256
5257 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5258 WARN(!encoder_enabled, "encoder not enabled\n");
5259 if (WARN_ON(!encoder->base.crtc))
5260 return;
0a91ca29 5261
36cd7444 5262 crtc = encoder->base.crtc;
0a91ca29 5263
36cd7444
DA
5264 WARN(!crtc->enabled, "crtc not enabled\n");
5265 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5266 WARN(pipe != to_intel_crtc(crtc)->pipe,
5267 "encoder active on the wrong pipe\n");
5268 }
0a91ca29 5269 }
79e53945
JB
5270}
5271
5ab432ef
DV
5272/* Even simpler default implementation, if there's really no special case to
5273 * consider. */
5274void intel_connector_dpms(struct drm_connector *connector, int mode)
79e53945 5275{
5ab432ef
DV
5276 /* All the simple cases only support two dpms states. */
5277 if (mode != DRM_MODE_DPMS_ON)
5278 mode = DRM_MODE_DPMS_OFF;
d4270e57 5279
5ab432ef
DV
5280 if (mode == connector->dpms)
5281 return;
5282
5283 connector->dpms = mode;
5284
5285 /* Only need to change hw state when actually enabled */
c9976dcf
CW
5286 if (connector->encoder)
5287 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
0a91ca29 5288
b980514c 5289 intel_modeset_check_state(connector->dev);
79e53945
JB
5290}
5291
f0947c37
DV
5292/* Simple connector->get_hw_state implementation for encoders that support only
5293 * one connector and no cloning and hence the encoder state determines the state
5294 * of the connector. */
5295bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 5296{
24929352 5297 enum pipe pipe = 0;
f0947c37 5298 struct intel_encoder *encoder = connector->encoder;
ea5b213a 5299
f0947c37 5300 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
5301}
5302
1857e1da
DV
5303static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5304 struct intel_crtc_config *pipe_config)
5305{
5306 struct drm_i915_private *dev_priv = dev->dev_private;
5307 struct intel_crtc *pipe_B_crtc =
5308 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5309
5310 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5311 pipe_name(pipe), pipe_config->fdi_lanes);
5312 if (pipe_config->fdi_lanes > 4) {
5313 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5314 pipe_name(pipe), pipe_config->fdi_lanes);
5315 return false;
5316 }
5317
bafb6553 5318 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1857e1da
DV
5319 if (pipe_config->fdi_lanes > 2) {
5320 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5321 pipe_config->fdi_lanes);
5322 return false;
5323 } else {
5324 return true;
5325 }
5326 }
5327
5328 if (INTEL_INFO(dev)->num_pipes == 2)
5329 return true;
5330
5331 /* Ivybridge 3 pipe is really complicated */
5332 switch (pipe) {
5333 case PIPE_A:
5334 return true;
5335 case PIPE_B:
5336 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5337 pipe_config->fdi_lanes > 2) {
5338 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5339 pipe_name(pipe), pipe_config->fdi_lanes);
5340 return false;
5341 }
5342 return true;
5343 case PIPE_C:
1e833f40 5344 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
1857e1da
DV
5345 pipe_B_crtc->config.fdi_lanes <= 2) {
5346 if (pipe_config->fdi_lanes > 2) {
5347 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5348 pipe_name(pipe), pipe_config->fdi_lanes);
5349 return false;
5350 }
5351 } else {
5352 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5353 return false;
5354 }
5355 return true;
5356 default:
5357 BUG();
5358 }
5359}
5360
e29c22c0
DV
5361#define RETRY 1
5362static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5363 struct intel_crtc_config *pipe_config)
877d48d5 5364{
1857e1da 5365 struct drm_device *dev = intel_crtc->base.dev;
877d48d5 5366 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
ff9a6750 5367 int lane, link_bw, fdi_dotclock;
e29c22c0 5368 bool setup_ok, needs_recompute = false;
877d48d5 5369
e29c22c0 5370retry:
877d48d5
DV
5371 /* FDI is a binary signal running at ~2.7GHz, encoding
5372 * each output octet as 10 bits. The actual frequency
5373 * is stored as a divider into a 100MHz clock, and the
5374 * mode pixel clock is stored in units of 1KHz.
5375 * Hence the bw of each lane in terms of the mode signal
5376 * is:
5377 */
5378 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5379
241bfc38 5380 fdi_dotclock = adjusted_mode->crtc_clock;
877d48d5 5381
2bd89a07 5382 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
877d48d5
DV
5383 pipe_config->pipe_bpp);
5384
5385 pipe_config->fdi_lanes = lane;
5386
2bd89a07 5387 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
877d48d5 5388 link_bw, &pipe_config->fdi_m_n);
1857e1da 5389
e29c22c0
DV
5390 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5391 intel_crtc->pipe, pipe_config);
5392 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5393 pipe_config->pipe_bpp -= 2*3;
5394 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5395 pipe_config->pipe_bpp);
5396 needs_recompute = true;
5397 pipe_config->bw_constrained = true;
5398
5399 goto retry;
5400 }
5401
5402 if (needs_recompute)
5403 return RETRY;
5404
5405 return setup_ok ? 0 : -EINVAL;
877d48d5
DV
5406}
5407
42db64ef
PZ
5408static void hsw_compute_ips_config(struct intel_crtc *crtc,
5409 struct intel_crtc_config *pipe_config)
5410{
d330a953 5411 pipe_config->ips_enabled = i915.enable_ips &&
3c4ca58c 5412 hsw_crtc_supports_ips(crtc) &&
b6dfdc9b 5413 pipe_config->pipe_bpp <= 24;
42db64ef
PZ
5414}
5415
a43f6e0f 5416static int intel_crtc_compute_config(struct intel_crtc *crtc,
e29c22c0 5417 struct intel_crtc_config *pipe_config)
79e53945 5418{
a43f6e0f 5419 struct drm_device *dev = crtc->base.dev;
b8cecdf5 5420 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
89749350 5421
ad3a4479 5422 /* FIXME should check pixel clock limits on all platforms */
cf532bb2
VS
5423 if (INTEL_INFO(dev)->gen < 4) {
5424 struct drm_i915_private *dev_priv = dev->dev_private;
5425 int clock_limit =
5426 dev_priv->display.get_display_clock_speed(dev);
5427
5428 /*
5429 * Enable pixel doubling when the dot clock
5430 * is > 90% of the (display) core speed.
5431 *
b397c96b
VS
5432 * GDG double wide on either pipe,
5433 * otherwise pipe A only.
cf532bb2 5434 */
b397c96b 5435 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
241bfc38 5436 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
ad3a4479 5437 clock_limit *= 2;
cf532bb2 5438 pipe_config->double_wide = true;
ad3a4479
VS
5439 }
5440
241bfc38 5441 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
e29c22c0 5442 return -EINVAL;
2c07245f 5443 }
89749350 5444
1d1d0e27
VS
5445 /*
5446 * Pipe horizontal size must be even in:
5447 * - DVO ganged mode
5448 * - LVDS dual channel mode
5449 * - Double wide pipe
5450 */
409ee761 5451 if ((intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
1d1d0e27
VS
5452 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5453 pipe_config->pipe_src_w &= ~1;
5454
8693a824
DL
5455 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5456 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
44f46b42
CW
5457 */
5458 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5459 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
e29c22c0 5460 return -EINVAL;
44f46b42 5461
bd080ee5 5462 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5d2d38dd 5463 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
bd080ee5 5464 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5d2d38dd
DV
5465 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5466 * for lvds. */
5467 pipe_config->pipe_bpp = 8*3;
5468 }
5469
f5adf94e 5470 if (HAS_IPS(dev))
a43f6e0f
DV
5471 hsw_compute_ips_config(crtc, pipe_config);
5472
12030431
DV
5473 /*
5474 * XXX: PCH/WRPLL clock sharing is done in ->mode_set, so make sure the
5475 * old clock survives for now.
5476 */
5477 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev) || HAS_DDI(dev))
a43f6e0f 5478 pipe_config->shared_dpll = crtc->config.shared_dpll;
42db64ef 5479
877d48d5 5480 if (pipe_config->has_pch_encoder)
a43f6e0f 5481 return ironlake_fdi_compute_config(crtc, pipe_config);
877d48d5 5482
e29c22c0 5483 return 0;
79e53945
JB
5484}
5485
25eb05fc
JB
5486static int valleyview_get_display_clock_speed(struct drm_device *dev)
5487{
d197b7d3
VS
5488 struct drm_i915_private *dev_priv = dev->dev_private;
5489 int vco = valleyview_get_vco(dev_priv);
5490 u32 val;
5491 int divider;
5492
d49a340d
VS
5493 /* FIXME: Punit isn't quite ready yet */
5494 if (IS_CHERRYVIEW(dev))
5495 return 400000;
5496
d197b7d3
VS
5497 mutex_lock(&dev_priv->dpio_lock);
5498 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5499 mutex_unlock(&dev_priv->dpio_lock);
5500
5501 divider = val & DISPLAY_FREQUENCY_VALUES;
5502
7d007f40
VS
5503 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5504 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5505 "cdclk change in progress\n");
5506
d197b7d3 5507 return DIV_ROUND_CLOSEST(vco << 1, divider + 1);
25eb05fc
JB
5508}
5509
e70236a8
JB
5510static int i945_get_display_clock_speed(struct drm_device *dev)
5511{
5512 return 400000;
5513}
79e53945 5514
e70236a8 5515static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 5516{
e70236a8
JB
5517 return 333000;
5518}
79e53945 5519
e70236a8
JB
5520static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5521{
5522 return 200000;
5523}
79e53945 5524
257a7ffc
DV
5525static int pnv_get_display_clock_speed(struct drm_device *dev)
5526{
5527 u16 gcfgc = 0;
5528
5529 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5530
5531 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5532 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5533 return 267000;
5534 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5535 return 333000;
5536 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5537 return 444000;
5538 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5539 return 200000;
5540 default:
5541 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5542 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5543 return 133000;
5544 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5545 return 167000;
5546 }
5547}
5548
e70236a8
JB
5549static int i915gm_get_display_clock_speed(struct drm_device *dev)
5550{
5551 u16 gcfgc = 0;
79e53945 5552
e70236a8
JB
5553 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5554
5555 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5556 return 133000;
5557 else {
5558 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5559 case GC_DISPLAY_CLOCK_333_MHZ:
5560 return 333000;
5561 default:
5562 case GC_DISPLAY_CLOCK_190_200_MHZ:
5563 return 190000;
79e53945 5564 }
e70236a8
JB
5565 }
5566}
5567
5568static int i865_get_display_clock_speed(struct drm_device *dev)
5569{
5570 return 266000;
5571}
5572
5573static int i855_get_display_clock_speed(struct drm_device *dev)
5574{
5575 u16 hpllcc = 0;
5576 /* Assume that the hardware is in the high speed state. This
5577 * should be the default.
5578 */
5579 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5580 case GC_CLOCK_133_200:
5581 case GC_CLOCK_100_200:
5582 return 200000;
5583 case GC_CLOCK_166_250:
5584 return 250000;
5585 case GC_CLOCK_100_133:
79e53945 5586 return 133000;
e70236a8 5587 }
79e53945 5588
e70236a8
JB
5589 /* Shouldn't happen */
5590 return 0;
5591}
79e53945 5592
e70236a8
JB
5593static int i830_get_display_clock_speed(struct drm_device *dev)
5594{
5595 return 133000;
79e53945
JB
5596}
5597
2c07245f 5598static void
a65851af 5599intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2c07245f 5600{
a65851af
VS
5601 while (*num > DATA_LINK_M_N_MASK ||
5602 *den > DATA_LINK_M_N_MASK) {
2c07245f
ZW
5603 *num >>= 1;
5604 *den >>= 1;
5605 }
5606}
5607
a65851af
VS
5608static void compute_m_n(unsigned int m, unsigned int n,
5609 uint32_t *ret_m, uint32_t *ret_n)
5610{
5611 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5612 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5613 intel_reduce_m_n_ratio(ret_m, ret_n);
5614}
5615
e69d0bc1
DV
5616void
5617intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5618 int pixel_clock, int link_clock,
5619 struct intel_link_m_n *m_n)
2c07245f 5620{
e69d0bc1 5621 m_n->tu = 64;
a65851af
VS
5622
5623 compute_m_n(bits_per_pixel * pixel_clock,
5624 link_clock * nlanes * 8,
5625 &m_n->gmch_m, &m_n->gmch_n);
5626
5627 compute_m_n(pixel_clock, link_clock,
5628 &m_n->link_m, &m_n->link_n);
2c07245f
ZW
5629}
5630
a7615030
CW
5631static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5632{
d330a953
JN
5633 if (i915.panel_use_ssc >= 0)
5634 return i915.panel_use_ssc != 0;
41aa3448 5635 return dev_priv->vbt.lvds_use_ssc
435793df 5636 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
5637}
5638
409ee761 5639static int i9xx_get_refclk(struct intel_crtc *crtc, int num_connectors)
c65d77d8 5640{
409ee761 5641 struct drm_device *dev = crtc->base.dev;
c65d77d8
JB
5642 struct drm_i915_private *dev_priv = dev->dev_private;
5643 int refclk;
5644
a0c4da24 5645 if (IS_VALLEYVIEW(dev)) {
9a0ea498 5646 refclk = 100000;
d0737e1d 5647 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
c65d77d8 5648 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b
VS
5649 refclk = dev_priv->vbt.lvds_ssc_freq;
5650 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
c65d77d8
JB
5651 } else if (!IS_GEN2(dev)) {
5652 refclk = 96000;
5653 } else {
5654 refclk = 48000;
5655 }
5656
5657 return refclk;
5658}
5659
7429e9d4 5660static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
c65d77d8 5661{
7df00d7a 5662 return (1 << dpll->n) << 16 | dpll->m2;
7429e9d4 5663}
f47709a9 5664
7429e9d4
DV
5665static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5666{
5667 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
c65d77d8
JB
5668}
5669
f47709a9 5670static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
a7516a05
JB
5671 intel_clock_t *reduced_clock)
5672{
f47709a9 5673 struct drm_device *dev = crtc->base.dev;
a7516a05
JB
5674 u32 fp, fp2 = 0;
5675
5676 if (IS_PINEVIEW(dev)) {
7429e9d4 5677 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
a7516a05 5678 if (reduced_clock)
7429e9d4 5679 fp2 = pnv_dpll_compute_fp(reduced_clock);
a7516a05 5680 } else {
7429e9d4 5681 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
a7516a05 5682 if (reduced_clock)
7429e9d4 5683 fp2 = i9xx_dpll_compute_fp(reduced_clock);
a7516a05
JB
5684 }
5685
8bcc2795 5686 crtc->config.dpll_hw_state.fp0 = fp;
a7516a05 5687
f47709a9 5688 crtc->lowfreq_avail = false;
409ee761 5689 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
d330a953 5690 reduced_clock && i915.powersave) {
8bcc2795 5691 crtc->config.dpll_hw_state.fp1 = fp2;
f47709a9 5692 crtc->lowfreq_avail = true;
a7516a05 5693 } else {
8bcc2795 5694 crtc->config.dpll_hw_state.fp1 = fp;
a7516a05
JB
5695 }
5696}
5697
5e69f97f
CML
5698static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5699 pipe)
89b667f8
JB
5700{
5701 u32 reg_val;
5702
5703 /*
5704 * PLLB opamp always calibrates to max value of 0x3f, force enable it
5705 * and set it to a reasonable value instead.
5706 */
ab3c759a 5707 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8
JB
5708 reg_val &= 0xffffff00;
5709 reg_val |= 0x00000030;
ab3c759a 5710 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5711
ab3c759a 5712 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5713 reg_val &= 0x8cffffff;
5714 reg_val = 0x8c000000;
ab3c759a 5715 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8 5716
ab3c759a 5717 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8 5718 reg_val &= 0xffffff00;
ab3c759a 5719 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5720
ab3c759a 5721 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5722 reg_val &= 0x00ffffff;
5723 reg_val |= 0xb0000000;
ab3c759a 5724 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8
JB
5725}
5726
b551842d
DV
5727static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5728 struct intel_link_m_n *m_n)
5729{
5730 struct drm_device *dev = crtc->base.dev;
5731 struct drm_i915_private *dev_priv = dev->dev_private;
5732 int pipe = crtc->pipe;
5733
e3b95f1e
DV
5734 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5735 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5736 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5737 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
b551842d
DV
5738}
5739
5740static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
5741 struct intel_link_m_n *m_n,
5742 struct intel_link_m_n *m2_n2)
b551842d
DV
5743{
5744 struct drm_device *dev = crtc->base.dev;
5745 struct drm_i915_private *dev_priv = dev->dev_private;
5746 int pipe = crtc->pipe;
5747 enum transcoder transcoder = crtc->config.cpu_transcoder;
5748
5749 if (INTEL_INFO(dev)->gen >= 5) {
5750 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5751 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5752 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5753 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
f769cd24
VK
5754 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
5755 * for gen < 8) and if DRRS is supported (to make sure the
5756 * registers are not unnecessarily accessed).
5757 */
5758 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
5759 crtc->config.has_drrs) {
5760 I915_WRITE(PIPE_DATA_M2(transcoder),
5761 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
5762 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
5763 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
5764 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
5765 }
b551842d 5766 } else {
e3b95f1e
DV
5767 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5768 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5769 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5770 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
b551842d
DV
5771 }
5772}
5773
f769cd24 5774void intel_dp_set_m_n(struct intel_crtc *crtc)
03afc4a2
DV
5775{
5776 if (crtc->config.has_pch_encoder)
5777 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5778 else
f769cd24
VK
5779 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n,
5780 &crtc->config.dp_m2_n2);
03afc4a2
DV
5781}
5782
d288f65f
VS
5783static void vlv_update_pll(struct intel_crtc *crtc,
5784 struct intel_crtc_config *pipe_config)
bdd4b6a6
DV
5785{
5786 u32 dpll, dpll_md;
5787
5788 /*
5789 * Enable DPIO clock input. We should never disable the reference
5790 * clock for pipe B, since VGA hotplug / manual detection depends
5791 * on it.
5792 */
5793 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5794 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5795 /* We should never disable this, set it here for state tracking */
5796 if (crtc->pipe == PIPE_B)
5797 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5798 dpll |= DPLL_VCO_ENABLE;
d288f65f 5799 pipe_config->dpll_hw_state.dpll = dpll;
bdd4b6a6 5800
d288f65f 5801 dpll_md = (pipe_config->pixel_multiplier - 1)
bdd4b6a6 5802 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
d288f65f 5803 pipe_config->dpll_hw_state.dpll_md = dpll_md;
bdd4b6a6
DV
5804}
5805
d288f65f
VS
5806static void vlv_prepare_pll(struct intel_crtc *crtc,
5807 const struct intel_crtc_config *pipe_config)
a0c4da24 5808{
f47709a9 5809 struct drm_device *dev = crtc->base.dev;
a0c4da24 5810 struct drm_i915_private *dev_priv = dev->dev_private;
f47709a9 5811 int pipe = crtc->pipe;
bdd4b6a6 5812 u32 mdiv;
a0c4da24 5813 u32 bestn, bestm1, bestm2, bestp1, bestp2;
bdd4b6a6 5814 u32 coreclk, reg_val;
a0c4da24 5815
09153000
DV
5816 mutex_lock(&dev_priv->dpio_lock);
5817
d288f65f
VS
5818 bestn = pipe_config->dpll.n;
5819 bestm1 = pipe_config->dpll.m1;
5820 bestm2 = pipe_config->dpll.m2;
5821 bestp1 = pipe_config->dpll.p1;
5822 bestp2 = pipe_config->dpll.p2;
a0c4da24 5823
89b667f8
JB
5824 /* See eDP HDMI DPIO driver vbios notes doc */
5825
5826 /* PLL B needs special handling */
bdd4b6a6 5827 if (pipe == PIPE_B)
5e69f97f 5828 vlv_pllb_recal_opamp(dev_priv, pipe);
89b667f8
JB
5829
5830 /* Set up Tx target for periodic Rcomp update */
ab3c759a 5831 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
89b667f8
JB
5832
5833 /* Disable target IRef on PLL */
ab3c759a 5834 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
89b667f8 5835 reg_val &= 0x00ffffff;
ab3c759a 5836 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
89b667f8
JB
5837
5838 /* Disable fast lock */
ab3c759a 5839 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
89b667f8
JB
5840
5841 /* Set idtafcrecal before PLL is enabled */
a0c4da24
JB
5842 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5843 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5844 mdiv |= ((bestn << DPIO_N_SHIFT));
a0c4da24 5845 mdiv |= (1 << DPIO_K_SHIFT);
7df5080b
JB
5846
5847 /*
5848 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5849 * but we don't support that).
5850 * Note: don't use the DAC post divider as it seems unstable.
5851 */
5852 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
ab3c759a 5853 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5854
a0c4da24 5855 mdiv |= DPIO_ENABLE_CALIBRATION;
ab3c759a 5856 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5857
89b667f8 5858 /* Set HBR and RBR LPF coefficients */
d288f65f 5859 if (pipe_config->port_clock == 162000 ||
409ee761
ACO
5860 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
5861 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
ab3c759a 5862 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
885b0120 5863 0x009f0003);
89b667f8 5864 else
ab3c759a 5865 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
89b667f8
JB
5866 0x00d0000f);
5867
0a88818d 5868 if (crtc->config.has_dp_encoder) {
89b667f8 5869 /* Use SSC source */
bdd4b6a6 5870 if (pipe == PIPE_A)
ab3c759a 5871 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5872 0x0df40000);
5873 else
ab3c759a 5874 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5875 0x0df70000);
5876 } else { /* HDMI or VGA */
5877 /* Use bend source */
bdd4b6a6 5878 if (pipe == PIPE_A)
ab3c759a 5879 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5880 0x0df70000);
5881 else
ab3c759a 5882 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5883 0x0df40000);
5884 }
a0c4da24 5885
ab3c759a 5886 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
89b667f8 5887 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
409ee761
ACO
5888 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
5889 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
89b667f8 5890 coreclk |= 0x01000000;
ab3c759a 5891 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
a0c4da24 5892
ab3c759a 5893 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
09153000 5894 mutex_unlock(&dev_priv->dpio_lock);
a0c4da24
JB
5895}
5896
d288f65f
VS
5897static void chv_update_pll(struct intel_crtc *crtc,
5898 struct intel_crtc_config *pipe_config)
1ae0d137 5899{
d288f65f 5900 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
1ae0d137
VS
5901 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5902 DPLL_VCO_ENABLE;
5903 if (crtc->pipe != PIPE_A)
d288f65f 5904 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1ae0d137 5905
d288f65f
VS
5906 pipe_config->dpll_hw_state.dpll_md =
5907 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
1ae0d137
VS
5908}
5909
d288f65f
VS
5910static void chv_prepare_pll(struct intel_crtc *crtc,
5911 const struct intel_crtc_config *pipe_config)
9d556c99
CML
5912{
5913 struct drm_device *dev = crtc->base.dev;
5914 struct drm_i915_private *dev_priv = dev->dev_private;
5915 int pipe = crtc->pipe;
5916 int dpll_reg = DPLL(crtc->pipe);
5917 enum dpio_channel port = vlv_pipe_to_channel(pipe);
580d3811 5918 u32 loopfilter, intcoeff;
9d556c99
CML
5919 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5920 int refclk;
5921
d288f65f
VS
5922 bestn = pipe_config->dpll.n;
5923 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
5924 bestm1 = pipe_config->dpll.m1;
5925 bestm2 = pipe_config->dpll.m2 >> 22;
5926 bestp1 = pipe_config->dpll.p1;
5927 bestp2 = pipe_config->dpll.p2;
9d556c99
CML
5928
5929 /*
5930 * Enable Refclk and SSC
5931 */
a11b0703 5932 I915_WRITE(dpll_reg,
d288f65f 5933 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
a11b0703
VS
5934
5935 mutex_lock(&dev_priv->dpio_lock);
9d556c99 5936
9d556c99
CML
5937 /* p1 and p2 divider */
5938 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
5939 5 << DPIO_CHV_S1_DIV_SHIFT |
5940 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
5941 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
5942 1 << DPIO_CHV_K_DIV_SHIFT);
5943
5944 /* Feedback post-divider - m2 */
5945 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
5946
5947 /* Feedback refclk divider - n and m1 */
5948 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
5949 DPIO_CHV_M1_DIV_BY_2 |
5950 1 << DPIO_CHV_N_DIV_SHIFT);
5951
5952 /* M2 fraction division */
5953 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
5954
5955 /* M2 fraction division enable */
5956 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
5957 DPIO_CHV_FRAC_DIV_EN |
5958 (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
5959
5960 /* Loop filter */
409ee761 5961 refclk = i9xx_get_refclk(crtc, 0);
9d556c99
CML
5962 loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
5963 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
5964 if (refclk == 100000)
5965 intcoeff = 11;
5966 else if (refclk == 38400)
5967 intcoeff = 10;
5968 else
5969 intcoeff = 9;
5970 loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
5971 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
5972
5973 /* AFC Recal */
5974 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
5975 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
5976 DPIO_AFC_RECAL);
5977
5978 mutex_unlock(&dev_priv->dpio_lock);
5979}
5980
d288f65f
VS
5981/**
5982 * vlv_force_pll_on - forcibly enable just the PLL
5983 * @dev_priv: i915 private structure
5984 * @pipe: pipe PLL to enable
5985 * @dpll: PLL configuration
5986 *
5987 * Enable the PLL for @pipe using the supplied @dpll config. To be used
5988 * in cases where we need the PLL enabled even when @pipe is not going to
5989 * be enabled.
5990 */
5991void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
5992 const struct dpll *dpll)
5993{
5994 struct intel_crtc *crtc =
5995 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
5996 struct intel_crtc_config pipe_config = {
5997 .pixel_multiplier = 1,
5998 .dpll = *dpll,
5999 };
6000
6001 if (IS_CHERRYVIEW(dev)) {
6002 chv_update_pll(crtc, &pipe_config);
6003 chv_prepare_pll(crtc, &pipe_config);
6004 chv_enable_pll(crtc, &pipe_config);
6005 } else {
6006 vlv_update_pll(crtc, &pipe_config);
6007 vlv_prepare_pll(crtc, &pipe_config);
6008 vlv_enable_pll(crtc, &pipe_config);
6009 }
6010}
6011
6012/**
6013 * vlv_force_pll_off - forcibly disable just the PLL
6014 * @dev_priv: i915 private structure
6015 * @pipe: pipe PLL to disable
6016 *
6017 * Disable the PLL for @pipe. To be used in cases where we need
6018 * the PLL enabled even when @pipe is not going to be enabled.
6019 */
6020void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
6021{
6022 if (IS_CHERRYVIEW(dev))
6023 chv_disable_pll(to_i915(dev), pipe);
6024 else
6025 vlv_disable_pll(to_i915(dev), pipe);
6026}
6027
f47709a9
DV
6028static void i9xx_update_pll(struct intel_crtc *crtc,
6029 intel_clock_t *reduced_clock,
eb1cbe48
DV
6030 int num_connectors)
6031{
f47709a9 6032 struct drm_device *dev = crtc->base.dev;
eb1cbe48 6033 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48
DV
6034 u32 dpll;
6035 bool is_sdvo;
d0737e1d 6036 struct dpll *clock = &crtc->new_config->dpll;
eb1cbe48 6037
f47709a9 6038 i9xx_update_pll_dividers(crtc, reduced_clock);
2a8f64ca 6039
d0737e1d
ACO
6040 is_sdvo = intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO) ||
6041 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI);
eb1cbe48
DV
6042
6043 dpll = DPLL_VGA_MODE_DIS;
6044
d0737e1d 6045 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
eb1cbe48
DV
6046 dpll |= DPLLB_MODE_LVDS;
6047 else
6048 dpll |= DPLLB_MODE_DAC_SERIAL;
6cc5f341 6049
ef1b460d 6050 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
d0737e1d 6051 dpll |= (crtc->new_config->pixel_multiplier - 1)
198a037f 6052 << SDVO_MULTIPLIER_SHIFT_HIRES;
eb1cbe48 6053 }
198a037f
DV
6054
6055 if (is_sdvo)
4a33e48d 6056 dpll |= DPLL_SDVO_HIGH_SPEED;
198a037f 6057
0a88818d 6058 if (crtc->new_config->has_dp_encoder)
4a33e48d 6059 dpll |= DPLL_SDVO_HIGH_SPEED;
eb1cbe48
DV
6060
6061 /* compute bitmask from p1 value */
6062 if (IS_PINEVIEW(dev))
6063 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6064 else {
6065 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6066 if (IS_G4X(dev) && reduced_clock)
6067 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6068 }
6069 switch (clock->p2) {
6070 case 5:
6071 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6072 break;
6073 case 7:
6074 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6075 break;
6076 case 10:
6077 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6078 break;
6079 case 14:
6080 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6081 break;
6082 }
6083 if (INTEL_INFO(dev)->gen >= 4)
6084 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6085
d0737e1d 6086 if (crtc->new_config->sdvo_tv_clock)
eb1cbe48 6087 dpll |= PLL_REF_INPUT_TVCLKINBC;
d0737e1d 6088 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
6089 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6090 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6091 else
6092 dpll |= PLL_REF_INPUT_DREFCLK;
6093
6094 dpll |= DPLL_VCO_ENABLE;
d0737e1d 6095 crtc->new_config->dpll_hw_state.dpll = dpll;
8bcc2795 6096
eb1cbe48 6097 if (INTEL_INFO(dev)->gen >= 4) {
d0737e1d 6098 u32 dpll_md = (crtc->new_config->pixel_multiplier - 1)
ef1b460d 6099 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
d0737e1d 6100 crtc->new_config->dpll_hw_state.dpll_md = dpll_md;
eb1cbe48
DV
6101 }
6102}
6103
f47709a9 6104static void i8xx_update_pll(struct intel_crtc *crtc,
f47709a9 6105 intel_clock_t *reduced_clock,
eb1cbe48
DV
6106 int num_connectors)
6107{
f47709a9 6108 struct drm_device *dev = crtc->base.dev;
eb1cbe48 6109 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48 6110 u32 dpll;
d0737e1d 6111 struct dpll *clock = &crtc->new_config->dpll;
eb1cbe48 6112
f47709a9 6113 i9xx_update_pll_dividers(crtc, reduced_clock);
2a8f64ca 6114
eb1cbe48
DV
6115 dpll = DPLL_VGA_MODE_DIS;
6116
d0737e1d 6117 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
eb1cbe48
DV
6118 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6119 } else {
6120 if (clock->p1 == 2)
6121 dpll |= PLL_P1_DIVIDE_BY_TWO;
6122 else
6123 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6124 if (clock->p2 == 4)
6125 dpll |= PLL_P2_DIVIDE_BY_4;
6126 }
6127
d0737e1d 6128 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
4a33e48d
DV
6129 dpll |= DPLL_DVO_2X_MODE;
6130
d0737e1d 6131 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
6132 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6133 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6134 else
6135 dpll |= PLL_REF_INPUT_DREFCLK;
6136
6137 dpll |= DPLL_VCO_ENABLE;
d0737e1d 6138 crtc->new_config->dpll_hw_state.dpll = dpll;
eb1cbe48
DV
6139}
6140
8a654f3b 6141static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
b0e77b9c
PZ
6142{
6143 struct drm_device *dev = intel_crtc->base.dev;
6144 struct drm_i915_private *dev_priv = dev->dev_private;
6145 enum pipe pipe = intel_crtc->pipe;
3b117c8f 6146 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8a654f3b
DV
6147 struct drm_display_mode *adjusted_mode =
6148 &intel_crtc->config.adjusted_mode;
1caea6e9
VS
6149 uint32_t crtc_vtotal, crtc_vblank_end;
6150 int vsyncshift = 0;
4d8a62ea
DV
6151
6152 /* We need to be careful not to changed the adjusted mode, for otherwise
6153 * the hw state checker will get angry at the mismatch. */
6154 crtc_vtotal = adjusted_mode->crtc_vtotal;
6155 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
b0e77b9c 6156
609aeaca 6157 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
b0e77b9c 6158 /* the chip adds 2 halflines automatically */
4d8a62ea
DV
6159 crtc_vtotal -= 1;
6160 crtc_vblank_end -= 1;
609aeaca 6161
409ee761 6162 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
609aeaca
VS
6163 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6164 else
6165 vsyncshift = adjusted_mode->crtc_hsync_start -
6166 adjusted_mode->crtc_htotal / 2;
1caea6e9
VS
6167 if (vsyncshift < 0)
6168 vsyncshift += adjusted_mode->crtc_htotal;
b0e77b9c
PZ
6169 }
6170
6171 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 6172 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 6173
fe2b8f9d 6174 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
6175 (adjusted_mode->crtc_hdisplay - 1) |
6176 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 6177 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
6178 (adjusted_mode->crtc_hblank_start - 1) |
6179 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 6180 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
6181 (adjusted_mode->crtc_hsync_start - 1) |
6182 ((adjusted_mode->crtc_hsync_end - 1) << 16));
6183
fe2b8f9d 6184 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c 6185 (adjusted_mode->crtc_vdisplay - 1) |
4d8a62ea 6186 ((crtc_vtotal - 1) << 16));
fe2b8f9d 6187 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c 6188 (adjusted_mode->crtc_vblank_start - 1) |
4d8a62ea 6189 ((crtc_vblank_end - 1) << 16));
fe2b8f9d 6190 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
6191 (adjusted_mode->crtc_vsync_start - 1) |
6192 ((adjusted_mode->crtc_vsync_end - 1) << 16));
6193
b5e508d4
PZ
6194 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6195 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6196 * documented on the DDI_FUNC_CTL register description, EDP Input Select
6197 * bits. */
6198 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
6199 (pipe == PIPE_B || pipe == PIPE_C))
6200 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6201
b0e77b9c
PZ
6202 /* pipesrc controls the size that is scaled from, which should
6203 * always be the user's requested size.
6204 */
6205 I915_WRITE(PIPESRC(pipe),
37327abd
VS
6206 ((intel_crtc->config.pipe_src_w - 1) << 16) |
6207 (intel_crtc->config.pipe_src_h - 1));
b0e77b9c
PZ
6208}
6209
1bd1bd80
DV
6210static void intel_get_pipe_timings(struct intel_crtc *crtc,
6211 struct intel_crtc_config *pipe_config)
6212{
6213 struct drm_device *dev = crtc->base.dev;
6214 struct drm_i915_private *dev_priv = dev->dev_private;
6215 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6216 uint32_t tmp;
6217
6218 tmp = I915_READ(HTOTAL(cpu_transcoder));
6219 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6220 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
6221 tmp = I915_READ(HBLANK(cpu_transcoder));
6222 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6223 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
6224 tmp = I915_READ(HSYNC(cpu_transcoder));
6225 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6226 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
6227
6228 tmp = I915_READ(VTOTAL(cpu_transcoder));
6229 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6230 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
6231 tmp = I915_READ(VBLANK(cpu_transcoder));
6232 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6233 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
6234 tmp = I915_READ(VSYNC(cpu_transcoder));
6235 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6236 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
6237
6238 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
6239 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6240 pipe_config->adjusted_mode.crtc_vtotal += 1;
6241 pipe_config->adjusted_mode.crtc_vblank_end += 1;
6242 }
6243
6244 tmp = I915_READ(PIPESRC(crtc->pipe));
37327abd
VS
6245 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6246 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6247
6248 pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
6249 pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
1bd1bd80
DV
6250}
6251
f6a83288
DV
6252void intel_mode_from_pipe_config(struct drm_display_mode *mode,
6253 struct intel_crtc_config *pipe_config)
babea61d 6254{
f6a83288
DV
6255 mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
6256 mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
6257 mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
6258 mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
babea61d 6259
f6a83288
DV
6260 mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
6261 mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
6262 mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
6263 mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
babea61d 6264
f6a83288 6265 mode->flags = pipe_config->adjusted_mode.flags;
babea61d 6266
f6a83288
DV
6267 mode->clock = pipe_config->adjusted_mode.crtc_clock;
6268 mode->flags |= pipe_config->adjusted_mode.flags;
babea61d
JB
6269}
6270
84b046f3
DV
6271static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6272{
6273 struct drm_device *dev = intel_crtc->base.dev;
6274 struct drm_i915_private *dev_priv = dev->dev_private;
6275 uint32_t pipeconf;
6276
9f11a9e4 6277 pipeconf = 0;
84b046f3 6278
b6b5d049
VS
6279 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
6280 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
6281 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
67c72a12 6282
cf532bb2
VS
6283 if (intel_crtc->config.double_wide)
6284 pipeconf |= PIPECONF_DOUBLE_WIDE;
84b046f3 6285
ff9ce46e
DV
6286 /* only g4x and later have fancy bpc/dither controls */
6287 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
ff9ce46e
DV
6288 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6289 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
6290 pipeconf |= PIPECONF_DITHER_EN |
84b046f3 6291 PIPECONF_DITHER_TYPE_SP;
84b046f3 6292
ff9ce46e
DV
6293 switch (intel_crtc->config.pipe_bpp) {
6294 case 18:
6295 pipeconf |= PIPECONF_6BPC;
6296 break;
6297 case 24:
6298 pipeconf |= PIPECONF_8BPC;
6299 break;
6300 case 30:
6301 pipeconf |= PIPECONF_10BPC;
6302 break;
6303 default:
6304 /* Case prevented by intel_choose_pipe_bpp_dither. */
6305 BUG();
84b046f3
DV
6306 }
6307 }
6308
6309 if (HAS_PIPE_CXSR(dev)) {
6310 if (intel_crtc->lowfreq_avail) {
6311 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6312 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6313 } else {
6314 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
84b046f3
DV
6315 }
6316 }
6317
efc2cfff
VS
6318 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6319 if (INTEL_INFO(dev)->gen < 4 ||
409ee761 6320 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
efc2cfff
VS
6321 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6322 else
6323 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6324 } else
84b046f3
DV
6325 pipeconf |= PIPECONF_PROGRESSIVE;
6326
9f11a9e4
DV
6327 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
6328 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9c8e09b7 6329
84b046f3
DV
6330 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6331 POSTING_READ(PIPECONF(intel_crtc->pipe));
6332}
6333
c7653199 6334static int i9xx_crtc_mode_set(struct intel_crtc *crtc,
f564048e 6335 int x, int y,
94352cf9 6336 struct drm_framebuffer *fb)
79e53945 6337{
c7653199 6338 struct drm_device *dev = crtc->base.dev;
79e53945 6339 struct drm_i915_private *dev_priv = dev->dev_private;
c751ce4f 6340 int refclk, num_connectors = 0;
652c393a 6341 intel_clock_t clock, reduced_clock;
a16af721 6342 bool ok, has_reduced_clock = false;
e9fd1c02 6343 bool is_lvds = false, is_dsi = false;
5eddb70b 6344 struct intel_encoder *encoder;
d4906093 6345 const intel_limit_t *limit;
79e53945 6346
d0737e1d
ACO
6347 for_each_intel_encoder(dev, encoder) {
6348 if (encoder->new_crtc != crtc)
6349 continue;
6350
5eddb70b 6351 switch (encoder->type) {
79e53945
JB
6352 case INTEL_OUTPUT_LVDS:
6353 is_lvds = true;
6354 break;
e9fd1c02
JN
6355 case INTEL_OUTPUT_DSI:
6356 is_dsi = true;
6357 break;
6847d71b
PZ
6358 default:
6359 break;
79e53945 6360 }
43565a06 6361
c751ce4f 6362 num_connectors++;
79e53945
JB
6363 }
6364
f2335330 6365 if (is_dsi)
5b18e57c 6366 return 0;
f2335330 6367
d0737e1d 6368 if (!crtc->new_config->clock_set) {
409ee761 6369 refclk = i9xx_get_refclk(crtc, num_connectors);
79e53945 6370
e9fd1c02
JN
6371 /*
6372 * Returns a set of divisors for the desired target clock with
6373 * the given refclk, or FALSE. The returned values represent
6374 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6375 * 2) / p1 / p2.
6376 */
409ee761 6377 limit = intel_limit(crtc, refclk);
c7653199 6378 ok = dev_priv->display.find_dpll(limit, crtc,
d0737e1d 6379 crtc->new_config->port_clock,
e9fd1c02 6380 refclk, NULL, &clock);
f2335330 6381 if (!ok) {
e9fd1c02
JN
6382 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6383 return -EINVAL;
6384 }
79e53945 6385
f2335330
JN
6386 if (is_lvds && dev_priv->lvds_downclock_avail) {
6387 /*
6388 * Ensure we match the reduced clock's P to the target
6389 * clock. If the clocks don't match, we can't switch
6390 * the display clock by using the FP0/FP1. In such case
6391 * we will disable the LVDS downclock feature.
6392 */
6393 has_reduced_clock =
c7653199 6394 dev_priv->display.find_dpll(limit, crtc,
f2335330
JN
6395 dev_priv->lvds_downclock,
6396 refclk, &clock,
6397 &reduced_clock);
6398 }
6399 /* Compat-code for transition, will disappear. */
d0737e1d
ACO
6400 crtc->new_config->dpll.n = clock.n;
6401 crtc->new_config->dpll.m1 = clock.m1;
6402 crtc->new_config->dpll.m2 = clock.m2;
6403 crtc->new_config->dpll.p1 = clock.p1;
6404 crtc->new_config->dpll.p2 = clock.p2;
f47709a9 6405 }
7026d4ac 6406
e9fd1c02 6407 if (IS_GEN2(dev)) {
c7653199 6408 i8xx_update_pll(crtc,
2a8f64ca
VP
6409 has_reduced_clock ? &reduced_clock : NULL,
6410 num_connectors);
9d556c99 6411 } else if (IS_CHERRYVIEW(dev)) {
d0737e1d 6412 chv_update_pll(crtc, crtc->new_config);
e9fd1c02 6413 } else if (IS_VALLEYVIEW(dev)) {
d0737e1d 6414 vlv_update_pll(crtc, crtc->new_config);
e9fd1c02 6415 } else {
c7653199 6416 i9xx_update_pll(crtc,
eb1cbe48 6417 has_reduced_clock ? &reduced_clock : NULL,
eba905b2 6418 num_connectors);
e9fd1c02 6419 }
79e53945 6420
c8f7a0db 6421 return 0;
f564048e
EA
6422}
6423
2fa2fe9a
DV
6424static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6425 struct intel_crtc_config *pipe_config)
6426{
6427 struct drm_device *dev = crtc->base.dev;
6428 struct drm_i915_private *dev_priv = dev->dev_private;
6429 uint32_t tmp;
6430
dc9e7dec
VS
6431 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6432 return;
6433
2fa2fe9a 6434 tmp = I915_READ(PFIT_CONTROL);
06922821
DV
6435 if (!(tmp & PFIT_ENABLE))
6436 return;
2fa2fe9a 6437
06922821 6438 /* Check whether the pfit is attached to our pipe. */
2fa2fe9a
DV
6439 if (INTEL_INFO(dev)->gen < 4) {
6440 if (crtc->pipe != PIPE_B)
6441 return;
2fa2fe9a
DV
6442 } else {
6443 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6444 return;
6445 }
6446
06922821 6447 pipe_config->gmch_pfit.control = tmp;
2fa2fe9a
DV
6448 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6449 if (INTEL_INFO(dev)->gen < 5)
6450 pipe_config->gmch_pfit.lvds_border_bits =
6451 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6452}
6453
acbec814
JB
6454static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6455 struct intel_crtc_config *pipe_config)
6456{
6457 struct drm_device *dev = crtc->base.dev;
6458 struct drm_i915_private *dev_priv = dev->dev_private;
6459 int pipe = pipe_config->cpu_transcoder;
6460 intel_clock_t clock;
6461 u32 mdiv;
662c6ecb 6462 int refclk = 100000;
acbec814 6463
f573de5a
SK
6464 /* In case of MIPI DPLL will not even be used */
6465 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6466 return;
6467
acbec814 6468 mutex_lock(&dev_priv->dpio_lock);
ab3c759a 6469 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
acbec814
JB
6470 mutex_unlock(&dev_priv->dpio_lock);
6471
6472 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6473 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6474 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6475 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6476 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6477
f646628b 6478 vlv_clock(refclk, &clock);
acbec814 6479
f646628b
VS
6480 /* clock.dot is the fast clock */
6481 pipe_config->port_clock = clock.dot / 5;
acbec814
JB
6482}
6483
1ad292b5
JB
6484static void i9xx_get_plane_config(struct intel_crtc *crtc,
6485 struct intel_plane_config *plane_config)
6486{
6487 struct drm_device *dev = crtc->base.dev;
6488 struct drm_i915_private *dev_priv = dev->dev_private;
6489 u32 val, base, offset;
6490 int pipe = crtc->pipe, plane = crtc->plane;
6491 int fourcc, pixel_format;
6492 int aligned_height;
6493
66e514c1
DA
6494 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6495 if (!crtc->base.primary->fb) {
1ad292b5
JB
6496 DRM_DEBUG_KMS("failed to alloc fb\n");
6497 return;
6498 }
6499
6500 val = I915_READ(DSPCNTR(plane));
6501
6502 if (INTEL_INFO(dev)->gen >= 4)
6503 if (val & DISPPLANE_TILED)
6504 plane_config->tiled = true;
6505
6506 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6507 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
6508 crtc->base.primary->fb->pixel_format = fourcc;
6509 crtc->base.primary->fb->bits_per_pixel =
1ad292b5
JB
6510 drm_format_plane_cpp(fourcc, 0) * 8;
6511
6512 if (INTEL_INFO(dev)->gen >= 4) {
6513 if (plane_config->tiled)
6514 offset = I915_READ(DSPTILEOFF(plane));
6515 else
6516 offset = I915_READ(DSPLINOFF(plane));
6517 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6518 } else {
6519 base = I915_READ(DSPADDR(plane));
6520 }
6521 plane_config->base = base;
6522
6523 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
6524 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6525 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
1ad292b5
JB
6526
6527 val = I915_READ(DSPSTRIDE(pipe));
026b96e2 6528 crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
1ad292b5 6529
66e514c1 6530 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
1ad292b5
JB
6531 plane_config->tiled);
6532
1267a26b
FF
6533 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6534 aligned_height);
1ad292b5
JB
6535
6536 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
6537 pipe, plane, crtc->base.primary->fb->width,
6538 crtc->base.primary->fb->height,
6539 crtc->base.primary->fb->bits_per_pixel, base,
6540 crtc->base.primary->fb->pitches[0],
1ad292b5
JB
6541 plane_config->size);
6542
6543}
6544
70b23a98
VS
6545static void chv_crtc_clock_get(struct intel_crtc *crtc,
6546 struct intel_crtc_config *pipe_config)
6547{
6548 struct drm_device *dev = crtc->base.dev;
6549 struct drm_i915_private *dev_priv = dev->dev_private;
6550 int pipe = pipe_config->cpu_transcoder;
6551 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6552 intel_clock_t clock;
6553 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6554 int refclk = 100000;
6555
6556 mutex_lock(&dev_priv->dpio_lock);
6557 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6558 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6559 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6560 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6561 mutex_unlock(&dev_priv->dpio_lock);
6562
6563 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6564 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6565 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6566 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6567 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6568
6569 chv_clock(refclk, &clock);
6570
6571 /* clock.dot is the fast clock */
6572 pipe_config->port_clock = clock.dot / 5;
6573}
6574
0e8ffe1b
DV
6575static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6576 struct intel_crtc_config *pipe_config)
6577{
6578 struct drm_device *dev = crtc->base.dev;
6579 struct drm_i915_private *dev_priv = dev->dev_private;
6580 uint32_t tmp;
6581
f458ebbc
DV
6582 if (!intel_display_power_is_enabled(dev_priv,
6583 POWER_DOMAIN_PIPE(crtc->pipe)))
b5482bd0
ID
6584 return false;
6585
e143a21c 6586 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 6587 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 6588
0e8ffe1b
DV
6589 tmp = I915_READ(PIPECONF(crtc->pipe));
6590 if (!(tmp & PIPECONF_ENABLE))
6591 return false;
6592
42571aef
VS
6593 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6594 switch (tmp & PIPECONF_BPC_MASK) {
6595 case PIPECONF_6BPC:
6596 pipe_config->pipe_bpp = 18;
6597 break;
6598 case PIPECONF_8BPC:
6599 pipe_config->pipe_bpp = 24;
6600 break;
6601 case PIPECONF_10BPC:
6602 pipe_config->pipe_bpp = 30;
6603 break;
6604 default:
6605 break;
6606 }
6607 }
6608
b5a9fa09
DV
6609 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6610 pipe_config->limited_color_range = true;
6611
282740f7
VS
6612 if (INTEL_INFO(dev)->gen < 4)
6613 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6614
1bd1bd80
DV
6615 intel_get_pipe_timings(crtc, pipe_config);
6616
2fa2fe9a
DV
6617 i9xx_get_pfit_config(crtc, pipe_config);
6618
6c49f241
DV
6619 if (INTEL_INFO(dev)->gen >= 4) {
6620 tmp = I915_READ(DPLL_MD(crtc->pipe));
6621 pipe_config->pixel_multiplier =
6622 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6623 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8bcc2795 6624 pipe_config->dpll_hw_state.dpll_md = tmp;
6c49f241
DV
6625 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6626 tmp = I915_READ(DPLL(crtc->pipe));
6627 pipe_config->pixel_multiplier =
6628 ((tmp & SDVO_MULTIPLIER_MASK)
6629 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6630 } else {
6631 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6632 * port and will be fixed up in the encoder->get_config
6633 * function. */
6634 pipe_config->pixel_multiplier = 1;
6635 }
8bcc2795
DV
6636 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6637 if (!IS_VALLEYVIEW(dev)) {
1c4e0274
VS
6638 /*
6639 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
6640 * on 830. Filter it out here so that we don't
6641 * report errors due to that.
6642 */
6643 if (IS_I830(dev))
6644 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
6645
8bcc2795
DV
6646 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6647 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
165e901c
VS
6648 } else {
6649 /* Mask out read-only status bits. */
6650 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6651 DPLL_PORTC_READY_MASK |
6652 DPLL_PORTB_READY_MASK);
8bcc2795 6653 }
6c49f241 6654
70b23a98
VS
6655 if (IS_CHERRYVIEW(dev))
6656 chv_crtc_clock_get(crtc, pipe_config);
6657 else if (IS_VALLEYVIEW(dev))
acbec814
JB
6658 vlv_crtc_clock_get(crtc, pipe_config);
6659 else
6660 i9xx_crtc_clock_get(crtc, pipe_config);
18442d08 6661
0e8ffe1b
DV
6662 return true;
6663}
6664
dde86e2d 6665static void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
6666{
6667 struct drm_i915_private *dev_priv = dev->dev_private;
13d83a67 6668 struct intel_encoder *encoder;
74cfd7ac 6669 u32 val, final;
13d83a67 6670 bool has_lvds = false;
199e5d79 6671 bool has_cpu_edp = false;
199e5d79 6672 bool has_panel = false;
99eb6a01
KP
6673 bool has_ck505 = false;
6674 bool can_ssc = false;
13d83a67
JB
6675
6676 /* We need to take the global config into account */
b2784e15 6677 for_each_intel_encoder(dev, encoder) {
199e5d79
KP
6678 switch (encoder->type) {
6679 case INTEL_OUTPUT_LVDS:
6680 has_panel = true;
6681 has_lvds = true;
6682 break;
6683 case INTEL_OUTPUT_EDP:
6684 has_panel = true;
2de6905f 6685 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
199e5d79
KP
6686 has_cpu_edp = true;
6687 break;
6847d71b
PZ
6688 default:
6689 break;
13d83a67
JB
6690 }
6691 }
6692
99eb6a01 6693 if (HAS_PCH_IBX(dev)) {
41aa3448 6694 has_ck505 = dev_priv->vbt.display_clock_mode;
99eb6a01
KP
6695 can_ssc = has_ck505;
6696 } else {
6697 has_ck505 = false;
6698 can_ssc = true;
6699 }
6700
2de6905f
ID
6701 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6702 has_panel, has_lvds, has_ck505);
13d83a67
JB
6703
6704 /* Ironlake: try to setup display ref clock before DPLL
6705 * enabling. This is only under driver's control after
6706 * PCH B stepping, previous chipset stepping should be
6707 * ignoring this setting.
6708 */
74cfd7ac
CW
6709 val = I915_READ(PCH_DREF_CONTROL);
6710
6711 /* As we must carefully and slowly disable/enable each source in turn,
6712 * compute the final state we want first and check if we need to
6713 * make any changes at all.
6714 */
6715 final = val;
6716 final &= ~DREF_NONSPREAD_SOURCE_MASK;
6717 if (has_ck505)
6718 final |= DREF_NONSPREAD_CK505_ENABLE;
6719 else
6720 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6721
6722 final &= ~DREF_SSC_SOURCE_MASK;
6723 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6724 final &= ~DREF_SSC1_ENABLE;
6725
6726 if (has_panel) {
6727 final |= DREF_SSC_SOURCE_ENABLE;
6728
6729 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6730 final |= DREF_SSC1_ENABLE;
6731
6732 if (has_cpu_edp) {
6733 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6734 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6735 else
6736 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6737 } else
6738 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6739 } else {
6740 final |= DREF_SSC_SOURCE_DISABLE;
6741 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6742 }
6743
6744 if (final == val)
6745 return;
6746
13d83a67 6747 /* Always enable nonspread source */
74cfd7ac 6748 val &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 6749
99eb6a01 6750 if (has_ck505)
74cfd7ac 6751 val |= DREF_NONSPREAD_CK505_ENABLE;
99eb6a01 6752 else
74cfd7ac 6753 val |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 6754
199e5d79 6755 if (has_panel) {
74cfd7ac
CW
6756 val &= ~DREF_SSC_SOURCE_MASK;
6757 val |= DREF_SSC_SOURCE_ENABLE;
13d83a67 6758
199e5d79 6759 /* SSC must be turned on before enabling the CPU output */
99eb6a01 6760 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6761 DRM_DEBUG_KMS("Using SSC on panel\n");
74cfd7ac 6762 val |= DREF_SSC1_ENABLE;
e77166b5 6763 } else
74cfd7ac 6764 val &= ~DREF_SSC1_ENABLE;
199e5d79
KP
6765
6766 /* Get SSC going before enabling the outputs */
74cfd7ac 6767 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6768 POSTING_READ(PCH_DREF_CONTROL);
6769 udelay(200);
6770
74cfd7ac 6771 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
13d83a67
JB
6772
6773 /* Enable CPU source on CPU attached eDP */
199e5d79 6774 if (has_cpu_edp) {
99eb6a01 6775 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6776 DRM_DEBUG_KMS("Using SSC on eDP\n");
74cfd7ac 6777 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
eba905b2 6778 } else
74cfd7ac 6779 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79 6780 } else
74cfd7ac 6781 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6782
74cfd7ac 6783 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6784 POSTING_READ(PCH_DREF_CONTROL);
6785 udelay(200);
6786 } else {
6787 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6788
74cfd7ac 6789 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
199e5d79
KP
6790
6791 /* Turn off CPU output */
74cfd7ac 6792 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6793
74cfd7ac 6794 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6795 POSTING_READ(PCH_DREF_CONTROL);
6796 udelay(200);
6797
6798 /* Turn off the SSC source */
74cfd7ac
CW
6799 val &= ~DREF_SSC_SOURCE_MASK;
6800 val |= DREF_SSC_SOURCE_DISABLE;
199e5d79
KP
6801
6802 /* Turn off SSC1 */
74cfd7ac 6803 val &= ~DREF_SSC1_ENABLE;
199e5d79 6804
74cfd7ac 6805 I915_WRITE(PCH_DREF_CONTROL, val);
13d83a67
JB
6806 POSTING_READ(PCH_DREF_CONTROL);
6807 udelay(200);
6808 }
74cfd7ac
CW
6809
6810 BUG_ON(val != final);
13d83a67
JB
6811}
6812
f31f2d55 6813static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
dde86e2d 6814{
f31f2d55 6815 uint32_t tmp;
dde86e2d 6816
0ff066a9
PZ
6817 tmp = I915_READ(SOUTH_CHICKEN2);
6818 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6819 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6820
0ff066a9
PZ
6821 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6822 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6823 DRM_ERROR("FDI mPHY reset assert timeout\n");
dde86e2d 6824
0ff066a9
PZ
6825 tmp = I915_READ(SOUTH_CHICKEN2);
6826 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6827 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6828
0ff066a9
PZ
6829 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6830 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6831 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
f31f2d55
PZ
6832}
6833
6834/* WaMPhyProgramming:hsw */
6835static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6836{
6837 uint32_t tmp;
dde86e2d
PZ
6838
6839 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6840 tmp &= ~(0xFF << 24);
6841 tmp |= (0x12 << 24);
6842 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6843
dde86e2d
PZ
6844 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6845 tmp |= (1 << 11);
6846 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6847
6848 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6849 tmp |= (1 << 11);
6850 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6851
dde86e2d
PZ
6852 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6853 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6854 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6855
6856 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6857 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6858 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6859
0ff066a9
PZ
6860 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6861 tmp &= ~(7 << 13);
6862 tmp |= (5 << 13);
6863 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
dde86e2d 6864
0ff066a9
PZ
6865 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6866 tmp &= ~(7 << 13);
6867 tmp |= (5 << 13);
6868 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
dde86e2d
PZ
6869
6870 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6871 tmp &= ~0xFF;
6872 tmp |= 0x1C;
6873 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6874
6875 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6876 tmp &= ~0xFF;
6877 tmp |= 0x1C;
6878 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6879
6880 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6881 tmp &= ~(0xFF << 16);
6882 tmp |= (0x1C << 16);
6883 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6884
6885 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6886 tmp &= ~(0xFF << 16);
6887 tmp |= (0x1C << 16);
6888 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6889
0ff066a9
PZ
6890 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6891 tmp |= (1 << 27);
6892 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
dde86e2d 6893
0ff066a9
PZ
6894 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6895 tmp |= (1 << 27);
6896 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
dde86e2d 6897
0ff066a9
PZ
6898 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6899 tmp &= ~(0xF << 28);
6900 tmp |= (4 << 28);
6901 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
dde86e2d 6902
0ff066a9
PZ
6903 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6904 tmp &= ~(0xF << 28);
6905 tmp |= (4 << 28);
6906 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
f31f2d55
PZ
6907}
6908
2fa86a1f
PZ
6909/* Implements 3 different sequences from BSpec chapter "Display iCLK
6910 * Programming" based on the parameters passed:
6911 * - Sequence to enable CLKOUT_DP
6912 * - Sequence to enable CLKOUT_DP without spread
6913 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6914 */
6915static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6916 bool with_fdi)
f31f2d55
PZ
6917{
6918 struct drm_i915_private *dev_priv = dev->dev_private;
2fa86a1f
PZ
6919 uint32_t reg, tmp;
6920
6921 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6922 with_spread = true;
6923 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6924 with_fdi, "LP PCH doesn't have FDI\n"))
6925 with_fdi = false;
f31f2d55
PZ
6926
6927 mutex_lock(&dev_priv->dpio_lock);
6928
6929 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6930 tmp &= ~SBI_SSCCTL_DISABLE;
6931 tmp |= SBI_SSCCTL_PATHALT;
6932 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6933
6934 udelay(24);
6935
2fa86a1f
PZ
6936 if (with_spread) {
6937 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6938 tmp &= ~SBI_SSCCTL_PATHALT;
6939 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
f31f2d55 6940
2fa86a1f
PZ
6941 if (with_fdi) {
6942 lpt_reset_fdi_mphy(dev_priv);
6943 lpt_program_fdi_mphy(dev_priv);
6944 }
6945 }
dde86e2d 6946
2fa86a1f
PZ
6947 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6948 SBI_GEN0 : SBI_DBUFF0;
6949 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6950 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6951 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
c00db246
DV
6952
6953 mutex_unlock(&dev_priv->dpio_lock);
dde86e2d
PZ
6954}
6955
47701c3b
PZ
6956/* Sequence to disable CLKOUT_DP */
6957static void lpt_disable_clkout_dp(struct drm_device *dev)
6958{
6959 struct drm_i915_private *dev_priv = dev->dev_private;
6960 uint32_t reg, tmp;
6961
6962 mutex_lock(&dev_priv->dpio_lock);
6963
6964 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6965 SBI_GEN0 : SBI_DBUFF0;
6966 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6967 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6968 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6969
6970 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6971 if (!(tmp & SBI_SSCCTL_DISABLE)) {
6972 if (!(tmp & SBI_SSCCTL_PATHALT)) {
6973 tmp |= SBI_SSCCTL_PATHALT;
6974 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6975 udelay(32);
6976 }
6977 tmp |= SBI_SSCCTL_DISABLE;
6978 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6979 }
6980
6981 mutex_unlock(&dev_priv->dpio_lock);
6982}
6983
bf8fa3d3
PZ
6984static void lpt_init_pch_refclk(struct drm_device *dev)
6985{
bf8fa3d3
PZ
6986 struct intel_encoder *encoder;
6987 bool has_vga = false;
6988
b2784e15 6989 for_each_intel_encoder(dev, encoder) {
bf8fa3d3
PZ
6990 switch (encoder->type) {
6991 case INTEL_OUTPUT_ANALOG:
6992 has_vga = true;
6993 break;
6847d71b
PZ
6994 default:
6995 break;
bf8fa3d3
PZ
6996 }
6997 }
6998
47701c3b
PZ
6999 if (has_vga)
7000 lpt_enable_clkout_dp(dev, true, true);
7001 else
7002 lpt_disable_clkout_dp(dev);
bf8fa3d3
PZ
7003}
7004
dde86e2d
PZ
7005/*
7006 * Initialize reference clocks when the driver loads
7007 */
7008void intel_init_pch_refclk(struct drm_device *dev)
7009{
7010 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7011 ironlake_init_pch_refclk(dev);
7012 else if (HAS_PCH_LPT(dev))
7013 lpt_init_pch_refclk(dev);
7014}
7015
d9d444cb
JB
7016static int ironlake_get_refclk(struct drm_crtc *crtc)
7017{
7018 struct drm_device *dev = crtc->dev;
7019 struct drm_i915_private *dev_priv = dev->dev_private;
7020 struct intel_encoder *encoder;
d9d444cb
JB
7021 int num_connectors = 0;
7022 bool is_lvds = false;
7023
d0737e1d
ACO
7024 for_each_intel_encoder(dev, encoder) {
7025 if (encoder->new_crtc != to_intel_crtc(crtc))
7026 continue;
7027
d9d444cb
JB
7028 switch (encoder->type) {
7029 case INTEL_OUTPUT_LVDS:
7030 is_lvds = true;
7031 break;
6847d71b
PZ
7032 default:
7033 break;
d9d444cb
JB
7034 }
7035 num_connectors++;
7036 }
7037
7038 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b 7039 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
41aa3448 7040 dev_priv->vbt.lvds_ssc_freq);
e91e941b 7041 return dev_priv->vbt.lvds_ssc_freq;
d9d444cb
JB
7042 }
7043
7044 return 120000;
7045}
7046
6ff93609 7047static void ironlake_set_pipeconf(struct drm_crtc *crtc)
79e53945 7048{
c8203565 7049 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
79e53945
JB
7050 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7051 int pipe = intel_crtc->pipe;
c8203565
PZ
7052 uint32_t val;
7053
78114071 7054 val = 0;
c8203565 7055
965e0c48 7056 switch (intel_crtc->config.pipe_bpp) {
c8203565 7057 case 18:
dfd07d72 7058 val |= PIPECONF_6BPC;
c8203565
PZ
7059 break;
7060 case 24:
dfd07d72 7061 val |= PIPECONF_8BPC;
c8203565
PZ
7062 break;
7063 case 30:
dfd07d72 7064 val |= PIPECONF_10BPC;
c8203565
PZ
7065 break;
7066 case 36:
dfd07d72 7067 val |= PIPECONF_12BPC;
c8203565
PZ
7068 break;
7069 default:
cc769b62
PZ
7070 /* Case prevented by intel_choose_pipe_bpp_dither. */
7071 BUG();
c8203565
PZ
7072 }
7073
d8b32247 7074 if (intel_crtc->config.dither)
c8203565
PZ
7075 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7076
6ff93609 7077 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
c8203565
PZ
7078 val |= PIPECONF_INTERLACED_ILK;
7079 else
7080 val |= PIPECONF_PROGRESSIVE;
7081
50f3b016 7082 if (intel_crtc->config.limited_color_range)
3685a8f3 7083 val |= PIPECONF_COLOR_RANGE_SELECT;
3685a8f3 7084
c8203565
PZ
7085 I915_WRITE(PIPECONF(pipe), val);
7086 POSTING_READ(PIPECONF(pipe));
7087}
7088
86d3efce
VS
7089/*
7090 * Set up the pipe CSC unit.
7091 *
7092 * Currently only full range RGB to limited range RGB conversion
7093 * is supported, but eventually this should handle various
7094 * RGB<->YCbCr scenarios as well.
7095 */
50f3b016 7096static void intel_set_pipe_csc(struct drm_crtc *crtc)
86d3efce
VS
7097{
7098 struct drm_device *dev = crtc->dev;
7099 struct drm_i915_private *dev_priv = dev->dev_private;
7100 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7101 int pipe = intel_crtc->pipe;
7102 uint16_t coeff = 0x7800; /* 1.0 */
7103
7104 /*
7105 * TODO: Check what kind of values actually come out of the pipe
7106 * with these coeff/postoff values and adjust to get the best
7107 * accuracy. Perhaps we even need to take the bpc value into
7108 * consideration.
7109 */
7110
50f3b016 7111 if (intel_crtc->config.limited_color_range)
86d3efce
VS
7112 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
7113
7114 /*
7115 * GY/GU and RY/RU should be the other way around according
7116 * to BSpec, but reality doesn't agree. Just set them up in
7117 * a way that results in the correct picture.
7118 */
7119 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
7120 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
7121
7122 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
7123 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
7124
7125 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
7126 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
7127
7128 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
7129 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
7130 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
7131
7132 if (INTEL_INFO(dev)->gen > 6) {
7133 uint16_t postoff = 0;
7134
50f3b016 7135 if (intel_crtc->config.limited_color_range)
32cf0cb0 7136 postoff = (16 * (1 << 12) / 255) & 0x1fff;
86d3efce
VS
7137
7138 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
7139 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
7140 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
7141
7142 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
7143 } else {
7144 uint32_t mode = CSC_MODE_YUV_TO_RGB;
7145
50f3b016 7146 if (intel_crtc->config.limited_color_range)
86d3efce
VS
7147 mode |= CSC_BLACK_SCREEN_OFFSET;
7148
7149 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
7150 }
7151}
7152
6ff93609 7153static void haswell_set_pipeconf(struct drm_crtc *crtc)
ee2b0b38 7154{
756f85cf
PZ
7155 struct drm_device *dev = crtc->dev;
7156 struct drm_i915_private *dev_priv = dev->dev_private;
ee2b0b38 7157 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756f85cf 7158 enum pipe pipe = intel_crtc->pipe;
3b117c8f 7159 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
ee2b0b38
PZ
7160 uint32_t val;
7161
3eff4faa 7162 val = 0;
ee2b0b38 7163
756f85cf 7164 if (IS_HASWELL(dev) && intel_crtc->config.dither)
ee2b0b38
PZ
7165 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7166
6ff93609 7167 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
ee2b0b38
PZ
7168 val |= PIPECONF_INTERLACED_ILK;
7169 else
7170 val |= PIPECONF_PROGRESSIVE;
7171
702e7a56
PZ
7172 I915_WRITE(PIPECONF(cpu_transcoder), val);
7173 POSTING_READ(PIPECONF(cpu_transcoder));
3eff4faa
DV
7174
7175 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
7176 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
756f85cf 7177
3cdf122c 7178 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
756f85cf
PZ
7179 val = 0;
7180
7181 switch (intel_crtc->config.pipe_bpp) {
7182 case 18:
7183 val |= PIPEMISC_DITHER_6_BPC;
7184 break;
7185 case 24:
7186 val |= PIPEMISC_DITHER_8_BPC;
7187 break;
7188 case 30:
7189 val |= PIPEMISC_DITHER_10_BPC;
7190 break;
7191 case 36:
7192 val |= PIPEMISC_DITHER_12_BPC;
7193 break;
7194 default:
7195 /* Case prevented by pipe_config_set_bpp. */
7196 BUG();
7197 }
7198
7199 if (intel_crtc->config.dither)
7200 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
7201
7202 I915_WRITE(PIPEMISC(pipe), val);
7203 }
ee2b0b38
PZ
7204}
7205
6591c6e4 7206static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6591c6e4
PZ
7207 intel_clock_t *clock,
7208 bool *has_reduced_clock,
7209 intel_clock_t *reduced_clock)
7210{
7211 struct drm_device *dev = crtc->dev;
7212 struct drm_i915_private *dev_priv = dev->dev_private;
a919ff14 7213 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6591c6e4 7214 int refclk;
d4906093 7215 const intel_limit_t *limit;
a16af721 7216 bool ret, is_lvds = false;
79e53945 7217
d0737e1d 7218 is_lvds = intel_pipe_will_have_type(intel_crtc, INTEL_OUTPUT_LVDS);
79e53945 7219
d9d444cb 7220 refclk = ironlake_get_refclk(crtc);
79e53945 7221
d4906093
ML
7222 /*
7223 * Returns a set of divisors for the desired target clock with the given
7224 * refclk, or FALSE. The returned values represent the clock equation:
7225 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
7226 */
409ee761 7227 limit = intel_limit(intel_crtc, refclk);
a919ff14 7228 ret = dev_priv->display.find_dpll(limit, intel_crtc,
d0737e1d 7229 intel_crtc->new_config->port_clock,
ee9300bb 7230 refclk, NULL, clock);
6591c6e4
PZ
7231 if (!ret)
7232 return false;
cda4b7d3 7233
ddc9003c 7234 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
7235 /*
7236 * Ensure we match the reduced clock's P to the target clock.
7237 * If the clocks don't match, we can't switch the display clock
7238 * by using the FP0/FP1. In such case we will disable the LVDS
7239 * downclock feature.
7240 */
ee9300bb 7241 *has_reduced_clock =
a919ff14 7242 dev_priv->display.find_dpll(limit, intel_crtc,
ee9300bb
DV
7243 dev_priv->lvds_downclock,
7244 refclk, clock,
7245 reduced_clock);
652c393a 7246 }
61e9653f 7247
6591c6e4
PZ
7248 return true;
7249}
7250
d4b1931c
PZ
7251int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7252{
7253 /*
7254 * Account for spread spectrum to avoid
7255 * oversubscribing the link. Max center spread
7256 * is 2.5%; use 5% for safety's sake.
7257 */
7258 u32 bps = target_clock * bpp * 21 / 20;
619d4d04 7259 return DIV_ROUND_UP(bps, link_bw * 8);
d4b1931c
PZ
7260}
7261
7429e9d4 7262static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6cf86a5e 7263{
7429e9d4 7264 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
f48d8f23
PZ
7265}
7266
de13a2e3 7267static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7429e9d4 7268 u32 *fp,
9a7c7890 7269 intel_clock_t *reduced_clock, u32 *fp2)
79e53945 7270{
de13a2e3 7271 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
7272 struct drm_device *dev = crtc->dev;
7273 struct drm_i915_private *dev_priv = dev->dev_private;
de13a2e3
PZ
7274 struct intel_encoder *intel_encoder;
7275 uint32_t dpll;
6cc5f341 7276 int factor, num_connectors = 0;
09ede541 7277 bool is_lvds = false, is_sdvo = false;
79e53945 7278
d0737e1d
ACO
7279 for_each_intel_encoder(dev, intel_encoder) {
7280 if (intel_encoder->new_crtc != to_intel_crtc(crtc))
7281 continue;
7282
de13a2e3 7283 switch (intel_encoder->type) {
79e53945
JB
7284 case INTEL_OUTPUT_LVDS:
7285 is_lvds = true;
7286 break;
7287 case INTEL_OUTPUT_SDVO:
7d57382e 7288 case INTEL_OUTPUT_HDMI:
79e53945 7289 is_sdvo = true;
79e53945 7290 break;
6847d71b
PZ
7291 default:
7292 break;
79e53945 7293 }
43565a06 7294
c751ce4f 7295 num_connectors++;
79e53945 7296 }
79e53945 7297
c1858123 7298 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
7299 factor = 21;
7300 if (is_lvds) {
7301 if ((intel_panel_use_ssc(dev_priv) &&
e91e941b 7302 dev_priv->vbt.lvds_ssc_freq == 100000) ||
f0b44056 7303 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8febb297 7304 factor = 25;
d0737e1d 7305 } else if (intel_crtc->new_config->sdvo_tv_clock)
8febb297 7306 factor = 20;
c1858123 7307
d0737e1d 7308 if (ironlake_needs_fb_cb_tune(&intel_crtc->new_config->dpll, factor))
7d0ac5b7 7309 *fp |= FP_CB_TUNE;
2c07245f 7310
9a7c7890
DV
7311 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7312 *fp2 |= FP_CB_TUNE;
7313
5eddb70b 7314 dpll = 0;
2c07245f 7315
a07d6787
EA
7316 if (is_lvds)
7317 dpll |= DPLLB_MODE_LVDS;
7318 else
7319 dpll |= DPLLB_MODE_DAC_SERIAL;
198a037f 7320
d0737e1d 7321 dpll |= (intel_crtc->new_config->pixel_multiplier - 1)
ef1b460d 7322 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
198a037f
DV
7323
7324 if (is_sdvo)
4a33e48d 7325 dpll |= DPLL_SDVO_HIGH_SPEED;
d0737e1d 7326 if (intel_crtc->new_config->has_dp_encoder)
4a33e48d 7327 dpll |= DPLL_SDVO_HIGH_SPEED;
79e53945 7328
a07d6787 7329 /* compute bitmask from p1 value */
d0737e1d 7330 dpll |= (1 << (intel_crtc->new_config->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 7331 /* also FPA1 */
d0737e1d 7332 dpll |= (1 << (intel_crtc->new_config->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 7333
d0737e1d 7334 switch (intel_crtc->new_config->dpll.p2) {
a07d6787
EA
7335 case 5:
7336 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7337 break;
7338 case 7:
7339 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7340 break;
7341 case 10:
7342 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7343 break;
7344 case 14:
7345 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7346 break;
79e53945
JB
7347 }
7348
b4c09f3b 7349 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 7350 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
7351 else
7352 dpll |= PLL_REF_INPUT_DREFCLK;
7353
959e16d6 7354 return dpll | DPLL_VCO_ENABLE;
de13a2e3
PZ
7355}
7356
c7653199 7357static int ironlake_crtc_mode_set(struct intel_crtc *crtc,
de13a2e3
PZ
7358 int x, int y,
7359 struct drm_framebuffer *fb)
7360{
c7653199 7361 struct drm_device *dev = crtc->base.dev;
de13a2e3 7362 intel_clock_t clock, reduced_clock;
cbbab5bd 7363 u32 dpll = 0, fp = 0, fp2 = 0;
e2f12b07 7364 bool ok, has_reduced_clock = false;
8b47047b 7365 bool is_lvds = false;
e2b78267 7366 struct intel_shared_dpll *pll;
de13a2e3 7367
409ee761 7368 is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
79e53945 7369
5dc5298b
PZ
7370 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7371 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
a07d6787 7372
c7653199 7373 ok = ironlake_compute_clocks(&crtc->base, &clock,
de13a2e3 7374 &has_reduced_clock, &reduced_clock);
d0737e1d 7375 if (!ok && !crtc->new_config->clock_set) {
de13a2e3
PZ
7376 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7377 return -EINVAL;
79e53945 7378 }
f47709a9 7379 /* Compat-code for transition, will disappear. */
d0737e1d
ACO
7380 if (!crtc->new_config->clock_set) {
7381 crtc->new_config->dpll.n = clock.n;
7382 crtc->new_config->dpll.m1 = clock.m1;
7383 crtc->new_config->dpll.m2 = clock.m2;
7384 crtc->new_config->dpll.p1 = clock.p1;
7385 crtc->new_config->dpll.p2 = clock.p2;
f47709a9 7386 }
79e53945 7387
5dc5298b 7388 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
d0737e1d
ACO
7389 if (crtc->new_config->has_pch_encoder) {
7390 fp = i9xx_dpll_compute_fp(&crtc->new_config->dpll);
cbbab5bd 7391 if (has_reduced_clock)
7429e9d4 7392 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
cbbab5bd 7393
c7653199 7394 dpll = ironlake_compute_dpll(crtc,
cbbab5bd
DV
7395 &fp, &reduced_clock,
7396 has_reduced_clock ? &fp2 : NULL);
7397
d0737e1d
ACO
7398 crtc->new_config->dpll_hw_state.dpll = dpll;
7399 crtc->new_config->dpll_hw_state.fp0 = fp;
66e985c0 7400 if (has_reduced_clock)
d0737e1d 7401 crtc->new_config->dpll_hw_state.fp1 = fp2;
66e985c0 7402 else
d0737e1d 7403 crtc->new_config->dpll_hw_state.fp1 = fp;
66e985c0 7404
c7653199 7405 pll = intel_get_shared_dpll(crtc);
ee7b9f93 7406 if (pll == NULL) {
84f44ce7 7407 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
c7653199 7408 pipe_name(crtc->pipe));
4b645f14
JB
7409 return -EINVAL;
7410 }
ee7b9f93 7411 } else
c7653199 7412 intel_put_shared_dpll(crtc);
79e53945 7413
d330a953 7414 if (is_lvds && has_reduced_clock && i915.powersave)
c7653199 7415 crtc->lowfreq_avail = true;
bcd644e0 7416 else
c7653199 7417 crtc->lowfreq_avail = false;
e2b78267 7418
c8f7a0db 7419 return 0;
79e53945
JB
7420}
7421
eb14cb74
VS
7422static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7423 struct intel_link_m_n *m_n)
7424{
7425 struct drm_device *dev = crtc->base.dev;
7426 struct drm_i915_private *dev_priv = dev->dev_private;
7427 enum pipe pipe = crtc->pipe;
7428
7429 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7430 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7431 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7432 & ~TU_SIZE_MASK;
7433 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7434 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7435 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7436}
7437
7438static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7439 enum transcoder transcoder,
b95af8be
VK
7440 struct intel_link_m_n *m_n,
7441 struct intel_link_m_n *m2_n2)
72419203
DV
7442{
7443 struct drm_device *dev = crtc->base.dev;
7444 struct drm_i915_private *dev_priv = dev->dev_private;
eb14cb74 7445 enum pipe pipe = crtc->pipe;
72419203 7446
eb14cb74
VS
7447 if (INTEL_INFO(dev)->gen >= 5) {
7448 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7449 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7450 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7451 & ~TU_SIZE_MASK;
7452 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7453 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7454 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
b95af8be
VK
7455 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7456 * gen < 8) and if DRRS is supported (to make sure the
7457 * registers are not unnecessarily read).
7458 */
7459 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
7460 crtc->config.has_drrs) {
7461 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7462 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7463 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7464 & ~TU_SIZE_MASK;
7465 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7466 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7467 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7468 }
eb14cb74
VS
7469 } else {
7470 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7471 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7472 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7473 & ~TU_SIZE_MASK;
7474 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7475 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7476 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7477 }
7478}
7479
7480void intel_dp_get_m_n(struct intel_crtc *crtc,
7481 struct intel_crtc_config *pipe_config)
7482{
7483 if (crtc->config.has_pch_encoder)
7484 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7485 else
7486 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be
VK
7487 &pipe_config->dp_m_n,
7488 &pipe_config->dp_m2_n2);
eb14cb74 7489}
72419203 7490
eb14cb74
VS
7491static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7492 struct intel_crtc_config *pipe_config)
7493{
7494 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be 7495 &pipe_config->fdi_m_n, NULL);
72419203
DV
7496}
7497
2fa2fe9a
DV
7498static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7499 struct intel_crtc_config *pipe_config)
7500{
7501 struct drm_device *dev = crtc->base.dev;
7502 struct drm_i915_private *dev_priv = dev->dev_private;
7503 uint32_t tmp;
7504
7505 tmp = I915_READ(PF_CTL(crtc->pipe));
7506
7507 if (tmp & PF_ENABLE) {
fd4daa9c 7508 pipe_config->pch_pfit.enabled = true;
2fa2fe9a
DV
7509 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7510 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
cb8b2a30
DV
7511
7512 /* We currently do not free assignements of panel fitters on
7513 * ivb/hsw (since we don't use the higher upscaling modes which
7514 * differentiates them) so just WARN about this case for now. */
7515 if (IS_GEN7(dev)) {
7516 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7517 PF_PIPE_SEL_IVB(crtc->pipe));
7518 }
2fa2fe9a 7519 }
79e53945
JB
7520}
7521
4c6baa59
JB
7522static void ironlake_get_plane_config(struct intel_crtc *crtc,
7523 struct intel_plane_config *plane_config)
7524{
7525 struct drm_device *dev = crtc->base.dev;
7526 struct drm_i915_private *dev_priv = dev->dev_private;
7527 u32 val, base, offset;
7528 int pipe = crtc->pipe, plane = crtc->plane;
7529 int fourcc, pixel_format;
7530 int aligned_height;
7531
66e514c1
DA
7532 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7533 if (!crtc->base.primary->fb) {
4c6baa59
JB
7534 DRM_DEBUG_KMS("failed to alloc fb\n");
7535 return;
7536 }
7537
7538 val = I915_READ(DSPCNTR(plane));
7539
7540 if (INTEL_INFO(dev)->gen >= 4)
7541 if (val & DISPPLANE_TILED)
7542 plane_config->tiled = true;
7543
7544 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7545 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
7546 crtc->base.primary->fb->pixel_format = fourcc;
7547 crtc->base.primary->fb->bits_per_pixel =
4c6baa59
JB
7548 drm_format_plane_cpp(fourcc, 0) * 8;
7549
7550 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7551 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7552 offset = I915_READ(DSPOFFSET(plane));
7553 } else {
7554 if (plane_config->tiled)
7555 offset = I915_READ(DSPTILEOFF(plane));
7556 else
7557 offset = I915_READ(DSPLINOFF(plane));
7558 }
7559 plane_config->base = base;
7560
7561 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
7562 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7563 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
4c6baa59
JB
7564
7565 val = I915_READ(DSPSTRIDE(pipe));
026b96e2 7566 crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
4c6baa59 7567
66e514c1 7568 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
4c6baa59
JB
7569 plane_config->tiled);
7570
1267a26b
FF
7571 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7572 aligned_height);
4c6baa59
JB
7573
7574 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
7575 pipe, plane, crtc->base.primary->fb->width,
7576 crtc->base.primary->fb->height,
7577 crtc->base.primary->fb->bits_per_pixel, base,
7578 crtc->base.primary->fb->pitches[0],
4c6baa59
JB
7579 plane_config->size);
7580}
7581
0e8ffe1b
DV
7582static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7583 struct intel_crtc_config *pipe_config)
7584{
7585 struct drm_device *dev = crtc->base.dev;
7586 struct drm_i915_private *dev_priv = dev->dev_private;
7587 uint32_t tmp;
7588
f458ebbc
DV
7589 if (!intel_display_power_is_enabled(dev_priv,
7590 POWER_DOMAIN_PIPE(crtc->pipe)))
930e8c9e
PZ
7591 return false;
7592
e143a21c 7593 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 7594 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 7595
0e8ffe1b
DV
7596 tmp = I915_READ(PIPECONF(crtc->pipe));
7597 if (!(tmp & PIPECONF_ENABLE))
7598 return false;
7599
42571aef
VS
7600 switch (tmp & PIPECONF_BPC_MASK) {
7601 case PIPECONF_6BPC:
7602 pipe_config->pipe_bpp = 18;
7603 break;
7604 case PIPECONF_8BPC:
7605 pipe_config->pipe_bpp = 24;
7606 break;
7607 case PIPECONF_10BPC:
7608 pipe_config->pipe_bpp = 30;
7609 break;
7610 case PIPECONF_12BPC:
7611 pipe_config->pipe_bpp = 36;
7612 break;
7613 default:
7614 break;
7615 }
7616
b5a9fa09
DV
7617 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7618 pipe_config->limited_color_range = true;
7619
ab9412ba 7620 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
66e985c0
DV
7621 struct intel_shared_dpll *pll;
7622
88adfff1
DV
7623 pipe_config->has_pch_encoder = true;
7624
627eb5a3
DV
7625 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7626 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7627 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
7628
7629 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6c49f241 7630
c0d43d62 7631 if (HAS_PCH_IBX(dev_priv->dev)) {
d94ab068
DV
7632 pipe_config->shared_dpll =
7633 (enum intel_dpll_id) crtc->pipe;
c0d43d62
DV
7634 } else {
7635 tmp = I915_READ(PCH_DPLL_SEL);
7636 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7637 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7638 else
7639 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7640 }
66e985c0
DV
7641
7642 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7643
7644 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7645 &pipe_config->dpll_hw_state));
c93f54cf
DV
7646
7647 tmp = pipe_config->dpll_hw_state.dpll;
7648 pipe_config->pixel_multiplier =
7649 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7650 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
18442d08
VS
7651
7652 ironlake_pch_clock_get(crtc, pipe_config);
6c49f241
DV
7653 } else {
7654 pipe_config->pixel_multiplier = 1;
627eb5a3
DV
7655 }
7656
1bd1bd80
DV
7657 intel_get_pipe_timings(crtc, pipe_config);
7658
2fa2fe9a
DV
7659 ironlake_get_pfit_config(crtc, pipe_config);
7660
0e8ffe1b
DV
7661 return true;
7662}
7663
be256dc7
PZ
7664static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7665{
7666 struct drm_device *dev = dev_priv->dev;
be256dc7 7667 struct intel_crtc *crtc;
be256dc7 7668
d3fcc808 7669 for_each_intel_crtc(dev, crtc)
798183c5 7670 WARN(crtc->active, "CRTC for pipe %c enabled\n",
be256dc7
PZ
7671 pipe_name(crtc->pipe));
7672
7673 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
8cc3e169
DV
7674 WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7675 WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7676 WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
be256dc7
PZ
7677 WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7678 WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7679 "CPU PWM1 enabled\n");
c5107b87
PZ
7680 if (IS_HASWELL(dev))
7681 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7682 "CPU PWM2 enabled\n");
be256dc7
PZ
7683 WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7684 "PCH PWM1 enabled\n");
7685 WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7686 "Utility pin enabled\n");
7687 WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7688
9926ada1
PZ
7689 /*
7690 * In theory we can still leave IRQs enabled, as long as only the HPD
7691 * interrupts remain enabled. We used to check for that, but since it's
7692 * gen-specific and since we only disable LCPLL after we fully disable
7693 * the interrupts, the check below should be enough.
7694 */
9df7575f 7695 WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
be256dc7
PZ
7696}
7697
9ccd5aeb
PZ
7698static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7699{
7700 struct drm_device *dev = dev_priv->dev;
7701
7702 if (IS_HASWELL(dev))
7703 return I915_READ(D_COMP_HSW);
7704 else
7705 return I915_READ(D_COMP_BDW);
7706}
7707
3c4c9b81
PZ
7708static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7709{
7710 struct drm_device *dev = dev_priv->dev;
7711
7712 if (IS_HASWELL(dev)) {
7713 mutex_lock(&dev_priv->rps.hw_lock);
7714 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7715 val))
f475dadf 7716 DRM_ERROR("Failed to write to D_COMP\n");
3c4c9b81
PZ
7717 mutex_unlock(&dev_priv->rps.hw_lock);
7718 } else {
9ccd5aeb
PZ
7719 I915_WRITE(D_COMP_BDW, val);
7720 POSTING_READ(D_COMP_BDW);
3c4c9b81 7721 }
be256dc7
PZ
7722}
7723
7724/*
7725 * This function implements pieces of two sequences from BSpec:
7726 * - Sequence for display software to disable LCPLL
7727 * - Sequence for display software to allow package C8+
7728 * The steps implemented here are just the steps that actually touch the LCPLL
7729 * register. Callers should take care of disabling all the display engine
7730 * functions, doing the mode unset, fixing interrupts, etc.
7731 */
6ff58d53
PZ
7732static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7733 bool switch_to_fclk, bool allow_power_down)
be256dc7
PZ
7734{
7735 uint32_t val;
7736
7737 assert_can_disable_lcpll(dev_priv);
7738
7739 val = I915_READ(LCPLL_CTL);
7740
7741 if (switch_to_fclk) {
7742 val |= LCPLL_CD_SOURCE_FCLK;
7743 I915_WRITE(LCPLL_CTL, val);
7744
7745 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7746 LCPLL_CD_SOURCE_FCLK_DONE, 1))
7747 DRM_ERROR("Switching to FCLK failed\n");
7748
7749 val = I915_READ(LCPLL_CTL);
7750 }
7751
7752 val |= LCPLL_PLL_DISABLE;
7753 I915_WRITE(LCPLL_CTL, val);
7754 POSTING_READ(LCPLL_CTL);
7755
7756 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7757 DRM_ERROR("LCPLL still locked\n");
7758
9ccd5aeb 7759 val = hsw_read_dcomp(dev_priv);
be256dc7 7760 val |= D_COMP_COMP_DISABLE;
3c4c9b81 7761 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7762 ndelay(100);
7763
9ccd5aeb
PZ
7764 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7765 1))
be256dc7
PZ
7766 DRM_ERROR("D_COMP RCOMP still in progress\n");
7767
7768 if (allow_power_down) {
7769 val = I915_READ(LCPLL_CTL);
7770 val |= LCPLL_POWER_DOWN_ALLOW;
7771 I915_WRITE(LCPLL_CTL, val);
7772 POSTING_READ(LCPLL_CTL);
7773 }
7774}
7775
7776/*
7777 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7778 * source.
7779 */
6ff58d53 7780static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
be256dc7
PZ
7781{
7782 uint32_t val;
7783
7784 val = I915_READ(LCPLL_CTL);
7785
7786 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7787 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7788 return;
7789
a8a8bd54
PZ
7790 /*
7791 * Make sure we're not on PC8 state before disabling PC8, otherwise
7792 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7793 *
7794 * The other problem is that hsw_restore_lcpll() is called as part of
7795 * the runtime PM resume sequence, so we can't just call
7796 * gen6_gt_force_wake_get() because that function calls
7797 * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7798 * while we are on the resume sequence. So to solve this problem we have
7799 * to call special forcewake code that doesn't touch runtime PM and
7800 * doesn't enable the forcewake delayed work.
7801 */
d2e40e27 7802 spin_lock_irq(&dev_priv->uncore.lock);
a8a8bd54
PZ
7803 if (dev_priv->uncore.forcewake_count++ == 0)
7804 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
d2e40e27 7805 spin_unlock_irq(&dev_priv->uncore.lock);
215733fa 7806
be256dc7
PZ
7807 if (val & LCPLL_POWER_DOWN_ALLOW) {
7808 val &= ~LCPLL_POWER_DOWN_ALLOW;
7809 I915_WRITE(LCPLL_CTL, val);
35d8f2eb 7810 POSTING_READ(LCPLL_CTL);
be256dc7
PZ
7811 }
7812
9ccd5aeb 7813 val = hsw_read_dcomp(dev_priv);
be256dc7
PZ
7814 val |= D_COMP_COMP_FORCE;
7815 val &= ~D_COMP_COMP_DISABLE;
3c4c9b81 7816 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7817
7818 val = I915_READ(LCPLL_CTL);
7819 val &= ~LCPLL_PLL_DISABLE;
7820 I915_WRITE(LCPLL_CTL, val);
7821
7822 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7823 DRM_ERROR("LCPLL not locked yet\n");
7824
7825 if (val & LCPLL_CD_SOURCE_FCLK) {
7826 val = I915_READ(LCPLL_CTL);
7827 val &= ~LCPLL_CD_SOURCE_FCLK;
7828 I915_WRITE(LCPLL_CTL, val);
7829
7830 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7831 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7832 DRM_ERROR("Switching back to LCPLL failed\n");
7833 }
215733fa 7834
a8a8bd54 7835 /* See the big comment above. */
d2e40e27 7836 spin_lock_irq(&dev_priv->uncore.lock);
a8a8bd54
PZ
7837 if (--dev_priv->uncore.forcewake_count == 0)
7838 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
d2e40e27 7839 spin_unlock_irq(&dev_priv->uncore.lock);
be256dc7
PZ
7840}
7841
765dab67
PZ
7842/*
7843 * Package states C8 and deeper are really deep PC states that can only be
7844 * reached when all the devices on the system allow it, so even if the graphics
7845 * device allows PC8+, it doesn't mean the system will actually get to these
7846 * states. Our driver only allows PC8+ when going into runtime PM.
7847 *
7848 * The requirements for PC8+ are that all the outputs are disabled, the power
7849 * well is disabled and most interrupts are disabled, and these are also
7850 * requirements for runtime PM. When these conditions are met, we manually do
7851 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7852 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7853 * hang the machine.
7854 *
7855 * When we really reach PC8 or deeper states (not just when we allow it) we lose
7856 * the state of some registers, so when we come back from PC8+ we need to
7857 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7858 * need to take care of the registers kept by RC6. Notice that this happens even
7859 * if we don't put the device in PCI D3 state (which is what currently happens
7860 * because of the runtime PM support).
7861 *
7862 * For more, read "Display Sequences for Package C8" on the hardware
7863 * documentation.
7864 */
a14cb6fc 7865void hsw_enable_pc8(struct drm_i915_private *dev_priv)
c67a470b 7866{
c67a470b
PZ
7867 struct drm_device *dev = dev_priv->dev;
7868 uint32_t val;
7869
c67a470b
PZ
7870 DRM_DEBUG_KMS("Enabling package C8+\n");
7871
c67a470b
PZ
7872 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7873 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7874 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7875 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7876 }
7877
7878 lpt_disable_clkout_dp(dev);
c67a470b
PZ
7879 hsw_disable_lcpll(dev_priv, true, true);
7880}
7881
a14cb6fc 7882void hsw_disable_pc8(struct drm_i915_private *dev_priv)
c67a470b
PZ
7883{
7884 struct drm_device *dev = dev_priv->dev;
7885 uint32_t val;
7886
c67a470b
PZ
7887 DRM_DEBUG_KMS("Disabling package C8+\n");
7888
7889 hsw_restore_lcpll(dev_priv);
c67a470b
PZ
7890 lpt_init_pch_refclk(dev);
7891
7892 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7893 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7894 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7895 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7896 }
7897
7898 intel_prepare_ddi(dev);
c67a470b
PZ
7899}
7900
9a952a0d
PZ
7901static void snb_modeset_global_resources(struct drm_device *dev)
7902{
7903 modeset_update_crtc_power_domains(dev);
7904}
7905
4f074129
ID
7906static void haswell_modeset_global_resources(struct drm_device *dev)
7907{
da723569 7908 modeset_update_crtc_power_domains(dev);
d6dd9eb1
DV
7909}
7910
c7653199 7911static int haswell_crtc_mode_set(struct intel_crtc *crtc,
09b4ddf9
PZ
7912 int x, int y,
7913 struct drm_framebuffer *fb)
7914{
c7653199 7915 if (!intel_ddi_pll_select(crtc))
6441ab5f 7916 return -EINVAL;
716c2e55 7917
c7653199 7918 crtc->lowfreq_avail = false;
644cef34 7919
c8f7a0db 7920 return 0;
79e53945
JB
7921}
7922
7d2c8175
DL
7923static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
7924 enum port port,
7925 struct intel_crtc_config *pipe_config)
7926{
7927 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
7928
7929 switch (pipe_config->ddi_pll_sel) {
7930 case PORT_CLK_SEL_WRPLL1:
7931 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
7932 break;
7933 case PORT_CLK_SEL_WRPLL2:
7934 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
7935 break;
7936 }
7937}
7938
26804afd
DV
7939static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
7940 struct intel_crtc_config *pipe_config)
7941{
7942 struct drm_device *dev = crtc->base.dev;
7943 struct drm_i915_private *dev_priv = dev->dev_private;
d452c5b6 7944 struct intel_shared_dpll *pll;
26804afd
DV
7945 enum port port;
7946 uint32_t tmp;
7947
7948 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
7949
7950 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
7951
7d2c8175 7952 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9cd86933 7953
d452c5b6
DV
7954 if (pipe_config->shared_dpll >= 0) {
7955 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7956
7957 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7958 &pipe_config->dpll_hw_state));
7959 }
7960
26804afd
DV
7961 /*
7962 * Haswell has only FDI/PCH transcoder A. It is which is connected to
7963 * DDI E. So just check whether this pipe is wired to DDI E and whether
7964 * the PCH transcoder is on.
7965 */
ca370455
DL
7966 if (INTEL_INFO(dev)->gen < 9 &&
7967 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
26804afd
DV
7968 pipe_config->has_pch_encoder = true;
7969
7970 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7971 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7972 FDI_DP_PORT_WIDTH_SHIFT) + 1;
7973
7974 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7975 }
7976}
7977
0e8ffe1b
DV
7978static bool haswell_get_pipe_config(struct intel_crtc *crtc,
7979 struct intel_crtc_config *pipe_config)
7980{
7981 struct drm_device *dev = crtc->base.dev;
7982 struct drm_i915_private *dev_priv = dev->dev_private;
2fa2fe9a 7983 enum intel_display_power_domain pfit_domain;
0e8ffe1b
DV
7984 uint32_t tmp;
7985
f458ebbc 7986 if (!intel_display_power_is_enabled(dev_priv,
b5482bd0
ID
7987 POWER_DOMAIN_PIPE(crtc->pipe)))
7988 return false;
7989
e143a21c 7990 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62
DV
7991 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7992
eccb140b
DV
7993 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
7994 if (tmp & TRANS_DDI_FUNC_ENABLE) {
7995 enum pipe trans_edp_pipe;
7996 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
7997 default:
7998 WARN(1, "unknown pipe linked to edp transcoder\n");
7999 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8000 case TRANS_DDI_EDP_INPUT_A_ON:
8001 trans_edp_pipe = PIPE_A;
8002 break;
8003 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8004 trans_edp_pipe = PIPE_B;
8005 break;
8006 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8007 trans_edp_pipe = PIPE_C;
8008 break;
8009 }
8010
8011 if (trans_edp_pipe == crtc->pipe)
8012 pipe_config->cpu_transcoder = TRANSCODER_EDP;
8013 }
8014
f458ebbc 8015 if (!intel_display_power_is_enabled(dev_priv,
eccb140b 8016 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
2bfce950
PZ
8017 return false;
8018
eccb140b 8019 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
0e8ffe1b
DV
8020 if (!(tmp & PIPECONF_ENABLE))
8021 return false;
8022
26804afd 8023 haswell_get_ddi_port_state(crtc, pipe_config);
627eb5a3 8024
1bd1bd80
DV
8025 intel_get_pipe_timings(crtc, pipe_config);
8026
2fa2fe9a 8027 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
f458ebbc 8028 if (intel_display_power_is_enabled(dev_priv, pfit_domain))
2fa2fe9a 8029 ironlake_get_pfit_config(crtc, pipe_config);
88adfff1 8030
e59150dc
JB
8031 if (IS_HASWELL(dev))
8032 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
8033 (I915_READ(IPS_CTL) & IPS_ENABLE);
42db64ef 8034
ebb69c95
CT
8035 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
8036 pipe_config->pixel_multiplier =
8037 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
8038 } else {
8039 pipe_config->pixel_multiplier = 1;
8040 }
6c49f241 8041
0e8ffe1b
DV
8042 return true;
8043}
8044
560b85bb
CW
8045static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8046{
8047 struct drm_device *dev = crtc->dev;
8048 struct drm_i915_private *dev_priv = dev->dev_private;
8049 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
dc41c154 8050 uint32_t cntl = 0, size = 0;
560b85bb 8051
dc41c154
VS
8052 if (base) {
8053 unsigned int width = intel_crtc->cursor_width;
8054 unsigned int height = intel_crtc->cursor_height;
8055 unsigned int stride = roundup_pow_of_two(width) * 4;
8056
8057 switch (stride) {
8058 default:
8059 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8060 width, stride);
8061 stride = 256;
8062 /* fallthrough */
8063 case 256:
8064 case 512:
8065 case 1024:
8066 case 2048:
8067 break;
4b0e333e
CW
8068 }
8069
dc41c154
VS
8070 cntl |= CURSOR_ENABLE |
8071 CURSOR_GAMMA_ENABLE |
8072 CURSOR_FORMAT_ARGB |
8073 CURSOR_STRIDE(stride);
8074
8075 size = (height << 12) | width;
4b0e333e 8076 }
560b85bb 8077
dc41c154
VS
8078 if (intel_crtc->cursor_cntl != 0 &&
8079 (intel_crtc->cursor_base != base ||
8080 intel_crtc->cursor_size != size ||
8081 intel_crtc->cursor_cntl != cntl)) {
8082 /* On these chipsets we can only modify the base/size/stride
8083 * whilst the cursor is disabled.
8084 */
8085 I915_WRITE(_CURACNTR, 0);
4b0e333e 8086 POSTING_READ(_CURACNTR);
dc41c154 8087 intel_crtc->cursor_cntl = 0;
4b0e333e 8088 }
560b85bb 8089
99d1f387 8090 if (intel_crtc->cursor_base != base) {
9db4a9c7 8091 I915_WRITE(_CURABASE, base);
99d1f387
VS
8092 intel_crtc->cursor_base = base;
8093 }
4726e0b0 8094
dc41c154
VS
8095 if (intel_crtc->cursor_size != size) {
8096 I915_WRITE(CURSIZE, size);
8097 intel_crtc->cursor_size = size;
4b0e333e 8098 }
560b85bb 8099
4b0e333e 8100 if (intel_crtc->cursor_cntl != cntl) {
4b0e333e
CW
8101 I915_WRITE(_CURACNTR, cntl);
8102 POSTING_READ(_CURACNTR);
4b0e333e 8103 intel_crtc->cursor_cntl = cntl;
560b85bb 8104 }
560b85bb
CW
8105}
8106
560b85bb 8107static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
65a21cd6
JB
8108{
8109 struct drm_device *dev = crtc->dev;
8110 struct drm_i915_private *dev_priv = dev->dev_private;
8111 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8112 int pipe = intel_crtc->pipe;
4b0e333e
CW
8113 uint32_t cntl;
8114
8115 cntl = 0;
8116 if (base) {
8117 cntl = MCURSOR_GAMMA_ENABLE;
8118 switch (intel_crtc->cursor_width) {
4726e0b0
SK
8119 case 64:
8120 cntl |= CURSOR_MODE_64_ARGB_AX;
8121 break;
8122 case 128:
8123 cntl |= CURSOR_MODE_128_ARGB_AX;
8124 break;
8125 case 256:
8126 cntl |= CURSOR_MODE_256_ARGB_AX;
8127 break;
8128 default:
8129 WARN_ON(1);
8130 return;
65a21cd6 8131 }
4b0e333e 8132 cntl |= pipe << 28; /* Connect to correct pipe */
47bf17a7
VS
8133
8134 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8135 cntl |= CURSOR_PIPE_CSC_ENABLE;
4b0e333e 8136 }
65a21cd6 8137
4398ad45
VS
8138 if (to_intel_plane(crtc->cursor)->rotation == BIT(DRM_ROTATE_180))
8139 cntl |= CURSOR_ROTATE_180;
8140
4b0e333e
CW
8141 if (intel_crtc->cursor_cntl != cntl) {
8142 I915_WRITE(CURCNTR(pipe), cntl);
8143 POSTING_READ(CURCNTR(pipe));
8144 intel_crtc->cursor_cntl = cntl;
65a21cd6 8145 }
4b0e333e 8146
65a21cd6 8147 /* and commit changes on next vblank */
5efb3e28
VS
8148 I915_WRITE(CURBASE(pipe), base);
8149 POSTING_READ(CURBASE(pipe));
99d1f387
VS
8150
8151 intel_crtc->cursor_base = base;
65a21cd6
JB
8152}
8153
cda4b7d3 8154/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
8155static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8156 bool on)
cda4b7d3
CW
8157{
8158 struct drm_device *dev = crtc->dev;
8159 struct drm_i915_private *dev_priv = dev->dev_private;
8160 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8161 int pipe = intel_crtc->pipe;
3d7d6510
MR
8162 int x = crtc->cursor_x;
8163 int y = crtc->cursor_y;
d6e4db15 8164 u32 base = 0, pos = 0;
cda4b7d3 8165
d6e4db15 8166 if (on)
cda4b7d3 8167 base = intel_crtc->cursor_addr;
cda4b7d3 8168
d6e4db15
VS
8169 if (x >= intel_crtc->config.pipe_src_w)
8170 base = 0;
8171
8172 if (y >= intel_crtc->config.pipe_src_h)
cda4b7d3
CW
8173 base = 0;
8174
8175 if (x < 0) {
efc9064e 8176 if (x + intel_crtc->cursor_width <= 0)
cda4b7d3
CW
8177 base = 0;
8178
8179 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8180 x = -x;
8181 }
8182 pos |= x << CURSOR_X_SHIFT;
8183
8184 if (y < 0) {
efc9064e 8185 if (y + intel_crtc->cursor_height <= 0)
cda4b7d3
CW
8186 base = 0;
8187
8188 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8189 y = -y;
8190 }
8191 pos |= y << CURSOR_Y_SHIFT;
8192
4b0e333e 8193 if (base == 0 && intel_crtc->cursor_base == 0)
cda4b7d3
CW
8194 return;
8195
5efb3e28
VS
8196 I915_WRITE(CURPOS(pipe), pos);
8197
4398ad45
VS
8198 /* ILK+ do this automagically */
8199 if (HAS_GMCH_DISPLAY(dev) &&
8200 to_intel_plane(crtc->cursor)->rotation == BIT(DRM_ROTATE_180)) {
8201 base += (intel_crtc->cursor_height *
8202 intel_crtc->cursor_width - 1) * 4;
8203 }
8204
8ac54669 8205 if (IS_845G(dev) || IS_I865G(dev))
5efb3e28
VS
8206 i845_update_cursor(crtc, base);
8207 else
8208 i9xx_update_cursor(crtc, base);
cda4b7d3
CW
8209}
8210
dc41c154
VS
8211static bool cursor_size_ok(struct drm_device *dev,
8212 uint32_t width, uint32_t height)
8213{
8214 if (width == 0 || height == 0)
8215 return false;
8216
8217 /*
8218 * 845g/865g are special in that they are only limited by
8219 * the width of their cursors, the height is arbitrary up to
8220 * the precision of the register. Everything else requires
8221 * square cursors, limited to a few power-of-two sizes.
8222 */
8223 if (IS_845G(dev) || IS_I865G(dev)) {
8224 if ((width & 63) != 0)
8225 return false;
8226
8227 if (width > (IS_845G(dev) ? 64 : 512))
8228 return false;
8229
8230 if (height > 1023)
8231 return false;
8232 } else {
8233 switch (width | height) {
8234 case 256:
8235 case 128:
8236 if (IS_GEN2(dev))
8237 return false;
8238 case 64:
8239 break;
8240 default:
8241 return false;
8242 }
8243 }
8244
8245 return true;
8246}
8247
e3287951
MR
8248static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc,
8249 struct drm_i915_gem_object *obj,
8250 uint32_t width, uint32_t height)
79e53945
JB
8251{
8252 struct drm_device *dev = crtc->dev;
8253 struct drm_i915_private *dev_priv = dev->dev_private;
8254 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 8255 enum pipe pipe = intel_crtc->pipe;
757f9a3e 8256 unsigned old_width;
cda4b7d3 8257 uint32_t addr;
3f8bc370 8258 int ret;
79e53945 8259
79e53945 8260 /* if we want to turn off the cursor ignore width and height */
e3287951 8261 if (!obj) {
28c97730 8262 DRM_DEBUG_KMS("cursor off\n");
3f8bc370 8263 addr = 0;
5004417d 8264 mutex_lock(&dev->struct_mutex);
3f8bc370 8265 goto finish;
79e53945
JB
8266 }
8267
71acb5eb 8268 /* we only need to pin inside GTT if cursor is non-phy */
7f9872e0 8269 mutex_lock(&dev->struct_mutex);
3d13ef2e 8270 if (!INTEL_INFO(dev)->cursor_needs_physical) {
693db184
CW
8271 unsigned alignment;
8272
d6dd6843
PZ
8273 /*
8274 * Global gtt pte registers are special registers which actually
8275 * forward writes to a chunk of system memory. Which means that
8276 * there is no risk that the register values disappear as soon
8277 * as we call intel_runtime_pm_put(), so it is correct to wrap
8278 * only the pin/unpin/fence and not more.
8279 */
8280 intel_runtime_pm_get(dev_priv);
8281
693db184
CW
8282 /* Note that the w/a also requires 2 PTE of padding following
8283 * the bo. We currently fill all unused PTE with the shadow
8284 * page and so we should always have valid PTE following the
8285 * cursor preventing the VT-d warning.
8286 */
8287 alignment = 0;
8288 if (need_vtd_wa(dev))
8289 alignment = 64*1024;
8290
8291 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
e7b526bb 8292 if (ret) {
3b25b31f 8293 DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
d6dd6843 8294 intel_runtime_pm_put(dev_priv);
2da3b9b9 8295 goto fail_locked;
e7b526bb
CW
8296 }
8297
d9e86c0e
CW
8298 ret = i915_gem_object_put_fence(obj);
8299 if (ret) {
3b25b31f 8300 DRM_DEBUG_KMS("failed to release fence for cursor");
d6dd6843 8301 intel_runtime_pm_put(dev_priv);
d9e86c0e
CW
8302 goto fail_unpin;
8303 }
8304
f343c5f6 8305 addr = i915_gem_obj_ggtt_offset(obj);
d6dd6843
PZ
8306
8307 intel_runtime_pm_put(dev_priv);
71acb5eb 8308 } else {
6eeefaf3 8309 int align = IS_I830(dev) ? 16 * 1024 : 256;
00731155 8310 ret = i915_gem_object_attach_phys(obj, align);
71acb5eb 8311 if (ret) {
3b25b31f 8312 DRM_DEBUG_KMS("failed to attach phys object\n");
7f9872e0 8313 goto fail_locked;
71acb5eb 8314 }
00731155 8315 addr = obj->phys_handle->busaddr;
3f8bc370
KH
8316 }
8317
3f8bc370 8318 finish:
3f8bc370 8319 if (intel_crtc->cursor_bo) {
00731155 8320 if (!INTEL_INFO(dev)->cursor_needs_physical)
cc98b413 8321 i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
3f8bc370 8322 }
80824003 8323
a071fa00
DV
8324 i915_gem_track_fb(intel_crtc->cursor_bo, obj,
8325 INTEL_FRONTBUFFER_CURSOR(pipe));
7f9872e0 8326 mutex_unlock(&dev->struct_mutex);
3f8bc370 8327
64f962e3
CW
8328 old_width = intel_crtc->cursor_width;
8329
3f8bc370 8330 intel_crtc->cursor_addr = addr;
05394f39 8331 intel_crtc->cursor_bo = obj;
cda4b7d3
CW
8332 intel_crtc->cursor_width = width;
8333 intel_crtc->cursor_height = height;
8334
64f962e3
CW
8335 if (intel_crtc->active) {
8336 if (old_width != width)
8337 intel_update_watermarks(crtc);
f2f5f771 8338 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
3f8bc370 8339
3f20df98
GP
8340 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
8341 }
f99d7069 8342
79e53945 8343 return 0;
e7b526bb 8344fail_unpin:
cc98b413 8345 i915_gem_object_unpin_from_display_plane(obj);
7f9872e0 8346fail_locked:
34b8686e
DA
8347 mutex_unlock(&dev->struct_mutex);
8348 return ret;
79e53945
JB
8349}
8350
79e53945 8351static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 8352 u16 *blue, uint32_t start, uint32_t size)
79e53945 8353{
7203425a 8354 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 8355 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8356
7203425a 8357 for (i = start; i < end; i++) {
79e53945
JB
8358 intel_crtc->lut_r[i] = red[i] >> 8;
8359 intel_crtc->lut_g[i] = green[i] >> 8;
8360 intel_crtc->lut_b[i] = blue[i] >> 8;
8361 }
8362
8363 intel_crtc_load_lut(crtc);
8364}
8365
79e53945
JB
8366/* VESA 640x480x72Hz mode to set on the pipe */
8367static struct drm_display_mode load_detect_mode = {
8368 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8369 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8370};
8371
a8bb6818
DV
8372struct drm_framebuffer *
8373__intel_framebuffer_create(struct drm_device *dev,
8374 struct drm_mode_fb_cmd2 *mode_cmd,
8375 struct drm_i915_gem_object *obj)
d2dff872
CW
8376{
8377 struct intel_framebuffer *intel_fb;
8378 int ret;
8379
8380 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8381 if (!intel_fb) {
8382 drm_gem_object_unreference_unlocked(&obj->base);
8383 return ERR_PTR(-ENOMEM);
8384 }
8385
8386 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
dd4916c5
DV
8387 if (ret)
8388 goto err;
d2dff872
CW
8389
8390 return &intel_fb->base;
dd4916c5
DV
8391err:
8392 drm_gem_object_unreference_unlocked(&obj->base);
8393 kfree(intel_fb);
8394
8395 return ERR_PTR(ret);
d2dff872
CW
8396}
8397
b5ea642a 8398static struct drm_framebuffer *
a8bb6818
DV
8399intel_framebuffer_create(struct drm_device *dev,
8400 struct drm_mode_fb_cmd2 *mode_cmd,
8401 struct drm_i915_gem_object *obj)
8402{
8403 struct drm_framebuffer *fb;
8404 int ret;
8405
8406 ret = i915_mutex_lock_interruptible(dev);
8407 if (ret)
8408 return ERR_PTR(ret);
8409 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8410 mutex_unlock(&dev->struct_mutex);
8411
8412 return fb;
8413}
8414
d2dff872
CW
8415static u32
8416intel_framebuffer_pitch_for_width(int width, int bpp)
8417{
8418 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8419 return ALIGN(pitch, 64);
8420}
8421
8422static u32
8423intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8424{
8425 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
1267a26b 8426 return PAGE_ALIGN(pitch * mode->vdisplay);
d2dff872
CW
8427}
8428
8429static struct drm_framebuffer *
8430intel_framebuffer_create_for_mode(struct drm_device *dev,
8431 struct drm_display_mode *mode,
8432 int depth, int bpp)
8433{
8434 struct drm_i915_gem_object *obj;
0fed39bd 8435 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872
CW
8436
8437 obj = i915_gem_alloc_object(dev,
8438 intel_framebuffer_size_for_mode(mode, bpp));
8439 if (obj == NULL)
8440 return ERR_PTR(-ENOMEM);
8441
8442 mode_cmd.width = mode->hdisplay;
8443 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
8444 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8445 bpp);
5ca0c34a 8446 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872
CW
8447
8448 return intel_framebuffer_create(dev, &mode_cmd, obj);
8449}
8450
8451static struct drm_framebuffer *
8452mode_fits_in_fbdev(struct drm_device *dev,
8453 struct drm_display_mode *mode)
8454{
4520f53a 8455#ifdef CONFIG_DRM_I915_FBDEV
d2dff872
CW
8456 struct drm_i915_private *dev_priv = dev->dev_private;
8457 struct drm_i915_gem_object *obj;
8458 struct drm_framebuffer *fb;
8459
4c0e5528 8460 if (!dev_priv->fbdev)
d2dff872
CW
8461 return NULL;
8462
4c0e5528 8463 if (!dev_priv->fbdev->fb)
d2dff872
CW
8464 return NULL;
8465
4c0e5528
DV
8466 obj = dev_priv->fbdev->fb->obj;
8467 BUG_ON(!obj);
8468
8bcd4553 8469 fb = &dev_priv->fbdev->fb->base;
01f2c773
VS
8470 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8471 fb->bits_per_pixel))
d2dff872
CW
8472 return NULL;
8473
01f2c773 8474 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
8475 return NULL;
8476
8477 return fb;
4520f53a
DV
8478#else
8479 return NULL;
8480#endif
d2dff872
CW
8481}
8482
d2434ab7 8483bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 8484 struct drm_display_mode *mode,
51fd371b
RC
8485 struct intel_load_detect_pipe *old,
8486 struct drm_modeset_acquire_ctx *ctx)
79e53945
JB
8487{
8488 struct intel_crtc *intel_crtc;
d2434ab7
DV
8489 struct intel_encoder *intel_encoder =
8490 intel_attached_encoder(connector);
79e53945 8491 struct drm_crtc *possible_crtc;
4ef69c7a 8492 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
8493 struct drm_crtc *crtc = NULL;
8494 struct drm_device *dev = encoder->dev;
94352cf9 8495 struct drm_framebuffer *fb;
51fd371b
RC
8496 struct drm_mode_config *config = &dev->mode_config;
8497 int ret, i = -1;
79e53945 8498
d2dff872 8499 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8500 connector->base.id, connector->name,
8e329a03 8501 encoder->base.id, encoder->name);
d2dff872 8502
51fd371b
RC
8503retry:
8504 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8505 if (ret)
8506 goto fail_unlock;
6e9f798d 8507
79e53945
JB
8508 /*
8509 * Algorithm gets a little messy:
7a5e4805 8510 *
79e53945
JB
8511 * - if the connector already has an assigned crtc, use it (but make
8512 * sure it's on first)
7a5e4805 8513 *
79e53945
JB
8514 * - try to find the first unused crtc that can drive this connector,
8515 * and use that if we find one
79e53945
JB
8516 */
8517
8518 /* See if we already have a CRTC for this connector */
8519 if (encoder->crtc) {
8520 crtc = encoder->crtc;
8261b191 8521
51fd371b
RC
8522 ret = drm_modeset_lock(&crtc->mutex, ctx);
8523 if (ret)
8524 goto fail_unlock;
7b24056b 8525
24218aac 8526 old->dpms_mode = connector->dpms;
8261b191
CW
8527 old->load_detect_temp = false;
8528
8529 /* Make sure the crtc and connector are running */
24218aac
DV
8530 if (connector->dpms != DRM_MODE_DPMS_ON)
8531 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 8532
7173188d 8533 return true;
79e53945
JB
8534 }
8535
8536 /* Find an unused one (if possible) */
70e1e0ec 8537 for_each_crtc(dev, possible_crtc) {
79e53945
JB
8538 i++;
8539 if (!(encoder->possible_crtcs & (1 << i)))
8540 continue;
a459249c
VS
8541 if (possible_crtc->enabled)
8542 continue;
8543 /* This can occur when applying the pipe A quirk on resume. */
8544 if (to_intel_crtc(possible_crtc)->new_enabled)
8545 continue;
8546
8547 crtc = possible_crtc;
8548 break;
79e53945
JB
8549 }
8550
8551 /*
8552 * If we didn't find an unused CRTC, don't use any.
8553 */
8554 if (!crtc) {
7173188d 8555 DRM_DEBUG_KMS("no pipe available for load-detect\n");
51fd371b 8556 goto fail_unlock;
79e53945
JB
8557 }
8558
51fd371b
RC
8559 ret = drm_modeset_lock(&crtc->mutex, ctx);
8560 if (ret)
8561 goto fail_unlock;
fc303101
DV
8562 intel_encoder->new_crtc = to_intel_crtc(crtc);
8563 to_intel_connector(connector)->new_encoder = intel_encoder;
79e53945
JB
8564
8565 intel_crtc = to_intel_crtc(crtc);
412b61d8
VS
8566 intel_crtc->new_enabled = true;
8567 intel_crtc->new_config = &intel_crtc->config;
24218aac 8568 old->dpms_mode = connector->dpms;
8261b191 8569 old->load_detect_temp = true;
d2dff872 8570 old->release_fb = NULL;
79e53945 8571
6492711d
CW
8572 if (!mode)
8573 mode = &load_detect_mode;
79e53945 8574
d2dff872
CW
8575 /* We need a framebuffer large enough to accommodate all accesses
8576 * that the plane may generate whilst we perform load detection.
8577 * We can not rely on the fbcon either being present (we get called
8578 * during its initialisation to detect all boot displays, or it may
8579 * not even exist) or that it is large enough to satisfy the
8580 * requested mode.
8581 */
94352cf9
DV
8582 fb = mode_fits_in_fbdev(dev, mode);
8583 if (fb == NULL) {
d2dff872 8584 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
8585 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8586 old->release_fb = fb;
d2dff872
CW
8587 } else
8588 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 8589 if (IS_ERR(fb)) {
d2dff872 8590 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
412b61d8 8591 goto fail;
79e53945 8592 }
79e53945 8593
c0c36b94 8594 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6492711d 8595 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
8596 if (old->release_fb)
8597 old->release_fb->funcs->destroy(old->release_fb);
412b61d8 8598 goto fail;
79e53945 8599 }
7173188d 8600
79e53945 8601 /* let the connector get through one full cycle before testing */
9d0498a2 8602 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 8603 return true;
412b61d8
VS
8604
8605 fail:
8606 intel_crtc->new_enabled = crtc->enabled;
8607 if (intel_crtc->new_enabled)
8608 intel_crtc->new_config = &intel_crtc->config;
8609 else
8610 intel_crtc->new_config = NULL;
51fd371b
RC
8611fail_unlock:
8612 if (ret == -EDEADLK) {
8613 drm_modeset_backoff(ctx);
8614 goto retry;
8615 }
8616
412b61d8 8617 return false;
79e53945
JB
8618}
8619
d2434ab7 8620void intel_release_load_detect_pipe(struct drm_connector *connector,
208bf9fd 8621 struct intel_load_detect_pipe *old)
79e53945 8622{
d2434ab7
DV
8623 struct intel_encoder *intel_encoder =
8624 intel_attached_encoder(connector);
4ef69c7a 8625 struct drm_encoder *encoder = &intel_encoder->base;
7b24056b 8626 struct drm_crtc *crtc = encoder->crtc;
412b61d8 8627 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8628
d2dff872 8629 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8630 connector->base.id, connector->name,
8e329a03 8631 encoder->base.id, encoder->name);
d2dff872 8632
8261b191 8633 if (old->load_detect_temp) {
fc303101
DV
8634 to_intel_connector(connector)->new_encoder = NULL;
8635 intel_encoder->new_crtc = NULL;
412b61d8
VS
8636 intel_crtc->new_enabled = false;
8637 intel_crtc->new_config = NULL;
fc303101 8638 intel_set_mode(crtc, NULL, 0, 0, NULL);
d2dff872 8639
36206361
DV
8640 if (old->release_fb) {
8641 drm_framebuffer_unregister_private(old->release_fb);
8642 drm_framebuffer_unreference(old->release_fb);
8643 }
d2dff872 8644
0622a53c 8645 return;
79e53945
JB
8646 }
8647
c751ce4f 8648 /* Switch crtc and encoder back off if necessary */
24218aac
DV
8649 if (old->dpms_mode != DRM_MODE_DPMS_ON)
8650 connector->funcs->dpms(connector, old->dpms_mode);
79e53945
JB
8651}
8652
da4a1efa
VS
8653static int i9xx_pll_refclk(struct drm_device *dev,
8654 const struct intel_crtc_config *pipe_config)
8655{
8656 struct drm_i915_private *dev_priv = dev->dev_private;
8657 u32 dpll = pipe_config->dpll_hw_state.dpll;
8658
8659 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
e91e941b 8660 return dev_priv->vbt.lvds_ssc_freq;
da4a1efa
VS
8661 else if (HAS_PCH_SPLIT(dev))
8662 return 120000;
8663 else if (!IS_GEN2(dev))
8664 return 96000;
8665 else
8666 return 48000;
8667}
8668
79e53945 8669/* Returns the clock of the currently programmed mode of the given pipe. */
f1f644dc
JB
8670static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8671 struct intel_crtc_config *pipe_config)
79e53945 8672{
f1f644dc 8673 struct drm_device *dev = crtc->base.dev;
79e53945 8674 struct drm_i915_private *dev_priv = dev->dev_private;
f1f644dc 8675 int pipe = pipe_config->cpu_transcoder;
293623f7 8676 u32 dpll = pipe_config->dpll_hw_state.dpll;
79e53945
JB
8677 u32 fp;
8678 intel_clock_t clock;
da4a1efa 8679 int refclk = i9xx_pll_refclk(dev, pipe_config);
79e53945
JB
8680
8681 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
293623f7 8682 fp = pipe_config->dpll_hw_state.fp0;
79e53945 8683 else
293623f7 8684 fp = pipe_config->dpll_hw_state.fp1;
79e53945
JB
8685
8686 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
8687 if (IS_PINEVIEW(dev)) {
8688 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8689 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
8690 } else {
8691 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8692 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8693 }
8694
a6c45cf0 8695 if (!IS_GEN2(dev)) {
f2b115e6
AJ
8696 if (IS_PINEVIEW(dev))
8697 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8698 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
8699 else
8700 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
8701 DPLL_FPA01_P1_POST_DIV_SHIFT);
8702
8703 switch (dpll & DPLL_MODE_MASK) {
8704 case DPLLB_MODE_DAC_SERIAL:
8705 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8706 5 : 10;
8707 break;
8708 case DPLLB_MODE_LVDS:
8709 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8710 7 : 14;
8711 break;
8712 default:
28c97730 8713 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945 8714 "mode\n", (int)(dpll & DPLL_MODE_MASK));
f1f644dc 8715 return;
79e53945
JB
8716 }
8717
ac58c3f0 8718 if (IS_PINEVIEW(dev))
da4a1efa 8719 pineview_clock(refclk, &clock);
ac58c3f0 8720 else
da4a1efa 8721 i9xx_clock(refclk, &clock);
79e53945 8722 } else {
0fb58223 8723 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
b1c560d1 8724 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
79e53945
JB
8725
8726 if (is_lvds) {
8727 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8728 DPLL_FPA01_P1_POST_DIV_SHIFT);
b1c560d1
VS
8729
8730 if (lvds & LVDS_CLKB_POWER_UP)
8731 clock.p2 = 7;
8732 else
8733 clock.p2 = 14;
79e53945
JB
8734 } else {
8735 if (dpll & PLL_P1_DIVIDE_BY_TWO)
8736 clock.p1 = 2;
8737 else {
8738 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8739 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8740 }
8741 if (dpll & PLL_P2_DIVIDE_BY_4)
8742 clock.p2 = 4;
8743 else
8744 clock.p2 = 2;
79e53945 8745 }
da4a1efa
VS
8746
8747 i9xx_clock(refclk, &clock);
79e53945
JB
8748 }
8749
18442d08
VS
8750 /*
8751 * This value includes pixel_multiplier. We will use
241bfc38 8752 * port_clock to compute adjusted_mode.crtc_clock in the
18442d08
VS
8753 * encoder's get_config() function.
8754 */
8755 pipe_config->port_clock = clock.dot;
f1f644dc
JB
8756}
8757
6878da05
VS
8758int intel_dotclock_calculate(int link_freq,
8759 const struct intel_link_m_n *m_n)
f1f644dc 8760{
f1f644dc
JB
8761 /*
8762 * The calculation for the data clock is:
1041a02f 8763 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
f1f644dc 8764 * But we want to avoid losing precison if possible, so:
1041a02f 8765 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
f1f644dc
JB
8766 *
8767 * and the link clock is simpler:
1041a02f 8768 * link_clock = (m * link_clock) / n
f1f644dc
JB
8769 */
8770
6878da05
VS
8771 if (!m_n->link_n)
8772 return 0;
f1f644dc 8773
6878da05
VS
8774 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8775}
f1f644dc 8776
18442d08
VS
8777static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8778 struct intel_crtc_config *pipe_config)
6878da05
VS
8779{
8780 struct drm_device *dev = crtc->base.dev;
79e53945 8781
18442d08
VS
8782 /* read out port_clock from the DPLL */
8783 i9xx_crtc_clock_get(crtc, pipe_config);
f1f644dc 8784
f1f644dc 8785 /*
18442d08 8786 * This value does not include pixel_multiplier.
241bfc38 8787 * We will check that port_clock and adjusted_mode.crtc_clock
18442d08
VS
8788 * agree once we know their relationship in the encoder's
8789 * get_config() function.
79e53945 8790 */
241bfc38 8791 pipe_config->adjusted_mode.crtc_clock =
18442d08
VS
8792 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8793 &pipe_config->fdi_m_n);
79e53945
JB
8794}
8795
8796/** Returns the currently programmed mode of the given pipe. */
8797struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8798 struct drm_crtc *crtc)
8799{
548f245b 8800 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 8801 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3b117c8f 8802 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
79e53945 8803 struct drm_display_mode *mode;
f1f644dc 8804 struct intel_crtc_config pipe_config;
fe2b8f9d
PZ
8805 int htot = I915_READ(HTOTAL(cpu_transcoder));
8806 int hsync = I915_READ(HSYNC(cpu_transcoder));
8807 int vtot = I915_READ(VTOTAL(cpu_transcoder));
8808 int vsync = I915_READ(VSYNC(cpu_transcoder));
293623f7 8809 enum pipe pipe = intel_crtc->pipe;
79e53945
JB
8810
8811 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8812 if (!mode)
8813 return NULL;
8814
f1f644dc
JB
8815 /*
8816 * Construct a pipe_config sufficient for getting the clock info
8817 * back out of crtc_clock_get.
8818 *
8819 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8820 * to use a real value here instead.
8821 */
293623f7 8822 pipe_config.cpu_transcoder = (enum transcoder) pipe;
f1f644dc 8823 pipe_config.pixel_multiplier = 1;
293623f7
VS
8824 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8825 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8826 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
f1f644dc
JB
8827 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8828
773ae034 8829 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
79e53945
JB
8830 mode->hdisplay = (htot & 0xffff) + 1;
8831 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8832 mode->hsync_start = (hsync & 0xffff) + 1;
8833 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8834 mode->vdisplay = (vtot & 0xffff) + 1;
8835 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8836 mode->vsync_start = (vsync & 0xffff) + 1;
8837 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8838
8839 drm_mode_set_name(mode);
79e53945
JB
8840
8841 return mode;
8842}
8843
652c393a
JB
8844static void intel_decrease_pllclock(struct drm_crtc *crtc)
8845{
8846 struct drm_device *dev = crtc->dev;
fbee40df 8847 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 8848 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
652c393a 8849
baff296c 8850 if (!HAS_GMCH_DISPLAY(dev))
652c393a
JB
8851 return;
8852
8853 if (!dev_priv->lvds_downclock_avail)
8854 return;
8855
8856 /*
8857 * Since this is called by a timer, we should never get here in
8858 * the manual case.
8859 */
8860 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
dc257cf1
DV
8861 int pipe = intel_crtc->pipe;
8862 int dpll_reg = DPLL(pipe);
8863 int dpll;
f6e5b160 8864
44d98a61 8865 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a 8866
8ac5a6d5 8867 assert_panel_unlocked(dev_priv, pipe);
652c393a 8868
dc257cf1 8869 dpll = I915_READ(dpll_reg);
652c393a
JB
8870 dpll |= DISPLAY_RATE_SELECT_FPA1;
8871 I915_WRITE(dpll_reg, dpll);
9d0498a2 8872 intel_wait_for_vblank(dev, pipe);
652c393a
JB
8873 dpll = I915_READ(dpll_reg);
8874 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 8875 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
8876 }
8877
8878}
8879
f047e395
CW
8880void intel_mark_busy(struct drm_device *dev)
8881{
c67a470b
PZ
8882 struct drm_i915_private *dev_priv = dev->dev_private;
8883
f62a0076
CW
8884 if (dev_priv->mm.busy)
8885 return;
8886
43694d69 8887 intel_runtime_pm_get(dev_priv);
c67a470b 8888 i915_update_gfx_val(dev_priv);
f62a0076 8889 dev_priv->mm.busy = true;
f047e395
CW
8890}
8891
8892void intel_mark_idle(struct drm_device *dev)
652c393a 8893{
c67a470b 8894 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 8895 struct drm_crtc *crtc;
652c393a 8896
f62a0076
CW
8897 if (!dev_priv->mm.busy)
8898 return;
8899
8900 dev_priv->mm.busy = false;
8901
d330a953 8902 if (!i915.powersave)
bb4cdd53 8903 goto out;
652c393a 8904
70e1e0ec 8905 for_each_crtc(dev, crtc) {
f4510a27 8906 if (!crtc->primary->fb)
652c393a
JB
8907 continue;
8908
725a5b54 8909 intel_decrease_pllclock(crtc);
652c393a 8910 }
b29c19b6 8911
3d13ef2e 8912 if (INTEL_INFO(dev)->gen >= 6)
b29c19b6 8913 gen6_rps_idle(dev->dev_private);
bb4cdd53
PZ
8914
8915out:
43694d69 8916 intel_runtime_pm_put(dev_priv);
652c393a
JB
8917}
8918
79e53945
JB
8919static void intel_crtc_destroy(struct drm_crtc *crtc)
8920{
8921 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
8922 struct drm_device *dev = crtc->dev;
8923 struct intel_unpin_work *work;
67e77c5a 8924
5e2d7afc 8925 spin_lock_irq(&dev->event_lock);
67e77c5a
DV
8926 work = intel_crtc->unpin_work;
8927 intel_crtc->unpin_work = NULL;
5e2d7afc 8928 spin_unlock_irq(&dev->event_lock);
67e77c5a
DV
8929
8930 if (work) {
8931 cancel_work_sync(&work->work);
8932 kfree(work);
8933 }
79e53945
JB
8934
8935 drm_crtc_cleanup(crtc);
67e77c5a 8936
79e53945
JB
8937 kfree(intel_crtc);
8938}
8939
6b95a207
KH
8940static void intel_unpin_work_fn(struct work_struct *__work)
8941{
8942 struct intel_unpin_work *work =
8943 container_of(__work, struct intel_unpin_work, work);
b4a98e57 8944 struct drm_device *dev = work->crtc->dev;
f99d7069 8945 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
6b95a207 8946
b4a98e57 8947 mutex_lock(&dev->struct_mutex);
1690e1eb 8948 intel_unpin_fb_obj(work->old_fb_obj);
05394f39
CW
8949 drm_gem_object_unreference(&work->pending_flip_obj->base);
8950 drm_gem_object_unreference(&work->old_fb_obj->base);
d9e86c0e 8951
b4a98e57
CW
8952 intel_update_fbc(dev);
8953 mutex_unlock(&dev->struct_mutex);
8954
f99d7069
DV
8955 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
8956
b4a98e57
CW
8957 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
8958 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
8959
6b95a207
KH
8960 kfree(work);
8961}
8962
1afe3e9d 8963static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 8964 struct drm_crtc *crtc)
6b95a207 8965{
6b95a207
KH
8966 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8967 struct intel_unpin_work *work;
6b95a207
KH
8968 unsigned long flags;
8969
8970 /* Ignore early vblank irqs */
8971 if (intel_crtc == NULL)
8972 return;
8973
f326038a
DV
8974 /*
8975 * This is called both by irq handlers and the reset code (to complete
8976 * lost pageflips) so needs the full irqsave spinlocks.
8977 */
6b95a207
KH
8978 spin_lock_irqsave(&dev->event_lock, flags);
8979 work = intel_crtc->unpin_work;
e7d841ca
CW
8980
8981 /* Ensure we don't miss a work->pending update ... */
8982 smp_rmb();
8983
8984 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6b95a207
KH
8985 spin_unlock_irqrestore(&dev->event_lock, flags);
8986 return;
8987 }
8988
d6bbafa1 8989 page_flip_completed(intel_crtc);
0af7e4df 8990
6b95a207 8991 spin_unlock_irqrestore(&dev->event_lock, flags);
6b95a207
KH
8992}
8993
1afe3e9d
JB
8994void intel_finish_page_flip(struct drm_device *dev, int pipe)
8995{
fbee40df 8996 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
8997 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
8998
49b14a5c 8999 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9000}
9001
9002void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9003{
fbee40df 9004 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9005 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9006
49b14a5c 9007 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9008}
9009
75f7f3ec
VS
9010/* Is 'a' after or equal to 'b'? */
9011static bool g4x_flip_count_after_eq(u32 a, u32 b)
9012{
9013 return !((a - b) & 0x80000000);
9014}
9015
9016static bool page_flip_finished(struct intel_crtc *crtc)
9017{
9018 struct drm_device *dev = crtc->base.dev;
9019 struct drm_i915_private *dev_priv = dev->dev_private;
9020
9021 /*
9022 * The relevant registers doen't exist on pre-ctg.
9023 * As the flip done interrupt doesn't trigger for mmio
9024 * flips on gmch platforms, a flip count check isn't
9025 * really needed there. But since ctg has the registers,
9026 * include it in the check anyway.
9027 */
9028 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9029 return true;
9030
9031 /*
9032 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9033 * used the same base address. In that case the mmio flip might
9034 * have completed, but the CS hasn't even executed the flip yet.
9035 *
9036 * A flip count check isn't enough as the CS might have updated
9037 * the base address just after start of vblank, but before we
9038 * managed to process the interrupt. This means we'd complete the
9039 * CS flip too soon.
9040 *
9041 * Combining both checks should get us a good enough result. It may
9042 * still happen that the CS flip has been executed, but has not
9043 * yet actually completed. But in case the base address is the same
9044 * anyway, we don't really care.
9045 */
9046 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9047 crtc->unpin_work->gtt_offset &&
9048 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9049 crtc->unpin_work->flip_count);
9050}
9051
6b95a207
KH
9052void intel_prepare_page_flip(struct drm_device *dev, int plane)
9053{
fbee40df 9054 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
9055 struct intel_crtc *intel_crtc =
9056 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9057 unsigned long flags;
9058
f326038a
DV
9059
9060 /*
9061 * This is called both by irq handlers and the reset code (to complete
9062 * lost pageflips) so needs the full irqsave spinlocks.
9063 *
9064 * NB: An MMIO update of the plane base pointer will also
e7d841ca
CW
9065 * generate a page-flip completion irq, i.e. every modeset
9066 * is also accompanied by a spurious intel_prepare_page_flip().
9067 */
6b95a207 9068 spin_lock_irqsave(&dev->event_lock, flags);
75f7f3ec 9069 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
e7d841ca 9070 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
6b95a207
KH
9071 spin_unlock_irqrestore(&dev->event_lock, flags);
9072}
9073
eba905b2 9074static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
e7d841ca
CW
9075{
9076 /* Ensure that the work item is consistent when activating it ... */
9077 smp_wmb();
9078 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9079 /* and that it is marked active as soon as the irq could fire. */
9080 smp_wmb();
9081}
9082
8c9f3aaf
JB
9083static int intel_gen2_queue_flip(struct drm_device *dev,
9084 struct drm_crtc *crtc,
9085 struct drm_framebuffer *fb,
ed8d1975 9086 struct drm_i915_gem_object *obj,
a4872ba6 9087 struct intel_engine_cs *ring,
ed8d1975 9088 uint32_t flags)
8c9f3aaf 9089{
8c9f3aaf 9090 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9091 u32 flip_mask;
9092 int ret;
9093
6d90c952 9094 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9095 if (ret)
4fa62c89 9096 return ret;
8c9f3aaf
JB
9097
9098 /* Can't queue multiple flips, so wait for the previous
9099 * one to finish before executing the next.
9100 */
9101 if (intel_crtc->plane)
9102 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9103 else
9104 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9105 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9106 intel_ring_emit(ring, MI_NOOP);
9107 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9108 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9109 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9110 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952 9111 intel_ring_emit(ring, 0); /* aux display base address, unused */
e7d841ca
CW
9112
9113 intel_mark_page_flip_active(intel_crtc);
09246732 9114 __intel_ring_advance(ring);
83d4092b 9115 return 0;
8c9f3aaf
JB
9116}
9117
9118static int intel_gen3_queue_flip(struct drm_device *dev,
9119 struct drm_crtc *crtc,
9120 struct drm_framebuffer *fb,
ed8d1975 9121 struct drm_i915_gem_object *obj,
a4872ba6 9122 struct intel_engine_cs *ring,
ed8d1975 9123 uint32_t flags)
8c9f3aaf 9124{
8c9f3aaf 9125 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9126 u32 flip_mask;
9127 int ret;
9128
6d90c952 9129 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9130 if (ret)
4fa62c89 9131 return ret;
8c9f3aaf
JB
9132
9133 if (intel_crtc->plane)
9134 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9135 else
9136 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9137 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9138 intel_ring_emit(ring, MI_NOOP);
9139 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9140 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9141 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9142 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952
DV
9143 intel_ring_emit(ring, MI_NOOP);
9144
e7d841ca 9145 intel_mark_page_flip_active(intel_crtc);
09246732 9146 __intel_ring_advance(ring);
83d4092b 9147 return 0;
8c9f3aaf
JB
9148}
9149
9150static int intel_gen4_queue_flip(struct drm_device *dev,
9151 struct drm_crtc *crtc,
9152 struct drm_framebuffer *fb,
ed8d1975 9153 struct drm_i915_gem_object *obj,
a4872ba6 9154 struct intel_engine_cs *ring,
ed8d1975 9155 uint32_t flags)
8c9f3aaf
JB
9156{
9157 struct drm_i915_private *dev_priv = dev->dev_private;
9158 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9159 uint32_t pf, pipesrc;
9160 int ret;
9161
6d90c952 9162 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9163 if (ret)
4fa62c89 9164 return ret;
8c9f3aaf
JB
9165
9166 /* i965+ uses the linear or tiled offsets from the
9167 * Display Registers (which do not change across a page-flip)
9168 * so we need only reprogram the base address.
9169 */
6d90c952
DV
9170 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9171 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9172 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9173 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
c2c75131 9174 obj->tiling_mode);
8c9f3aaf
JB
9175
9176 /* XXX Enabling the panel-fitter across page-flip is so far
9177 * untested on non-native modes, so ignore it for now.
9178 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9179 */
9180 pf = 0;
9181 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9182 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9183
9184 intel_mark_page_flip_active(intel_crtc);
09246732 9185 __intel_ring_advance(ring);
83d4092b 9186 return 0;
8c9f3aaf
JB
9187}
9188
9189static int intel_gen6_queue_flip(struct drm_device *dev,
9190 struct drm_crtc *crtc,
9191 struct drm_framebuffer *fb,
ed8d1975 9192 struct drm_i915_gem_object *obj,
a4872ba6 9193 struct intel_engine_cs *ring,
ed8d1975 9194 uint32_t flags)
8c9f3aaf
JB
9195{
9196 struct drm_i915_private *dev_priv = dev->dev_private;
9197 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9198 uint32_t pf, pipesrc;
9199 int ret;
9200
6d90c952 9201 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9202 if (ret)
4fa62c89 9203 return ret;
8c9f3aaf 9204
6d90c952
DV
9205 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9206 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9207 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
75f7f3ec 9208 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
8c9f3aaf 9209
dc257cf1
DV
9210 /* Contrary to the suggestions in the documentation,
9211 * "Enable Panel Fitter" does not seem to be required when page
9212 * flipping with a non-native mode, and worse causes a normal
9213 * modeset to fail.
9214 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9215 */
9216 pf = 0;
8c9f3aaf 9217 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9218 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9219
9220 intel_mark_page_flip_active(intel_crtc);
09246732 9221 __intel_ring_advance(ring);
83d4092b 9222 return 0;
8c9f3aaf
JB
9223}
9224
7c9017e5
JB
9225static int intel_gen7_queue_flip(struct drm_device *dev,
9226 struct drm_crtc *crtc,
9227 struct drm_framebuffer *fb,
ed8d1975 9228 struct drm_i915_gem_object *obj,
a4872ba6 9229 struct intel_engine_cs *ring,
ed8d1975 9230 uint32_t flags)
7c9017e5 9231{
7c9017e5 9232 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cb05d8de 9233 uint32_t plane_bit = 0;
ffe74d75
CW
9234 int len, ret;
9235
eba905b2 9236 switch (intel_crtc->plane) {
cb05d8de
DV
9237 case PLANE_A:
9238 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9239 break;
9240 case PLANE_B:
9241 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9242 break;
9243 case PLANE_C:
9244 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9245 break;
9246 default:
9247 WARN_ONCE(1, "unknown plane in flip command\n");
4fa62c89 9248 return -ENODEV;
cb05d8de
DV
9249 }
9250
ffe74d75 9251 len = 4;
f476828a 9252 if (ring->id == RCS) {
ffe74d75 9253 len += 6;
f476828a
DL
9254 /*
9255 * On Gen 8, SRM is now taking an extra dword to accommodate
9256 * 48bits addresses, and we need a NOOP for the batch size to
9257 * stay even.
9258 */
9259 if (IS_GEN8(dev))
9260 len += 2;
9261 }
ffe74d75 9262
f66fab8e
VS
9263 /*
9264 * BSpec MI_DISPLAY_FLIP for IVB:
9265 * "The full packet must be contained within the same cache line."
9266 *
9267 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9268 * cacheline, if we ever start emitting more commands before
9269 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9270 * then do the cacheline alignment, and finally emit the
9271 * MI_DISPLAY_FLIP.
9272 */
9273 ret = intel_ring_cacheline_align(ring);
9274 if (ret)
4fa62c89 9275 return ret;
f66fab8e 9276
ffe74d75 9277 ret = intel_ring_begin(ring, len);
7c9017e5 9278 if (ret)
4fa62c89 9279 return ret;
7c9017e5 9280
ffe74d75
CW
9281 /* Unmask the flip-done completion message. Note that the bspec says that
9282 * we should do this for both the BCS and RCS, and that we must not unmask
9283 * more than one flip event at any time (or ensure that one flip message
9284 * can be sent by waiting for flip-done prior to queueing new flips).
9285 * Experimentation says that BCS works despite DERRMR masking all
9286 * flip-done completion events and that unmasking all planes at once
9287 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9288 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9289 */
9290 if (ring->id == RCS) {
9291 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9292 intel_ring_emit(ring, DERRMR);
9293 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9294 DERRMR_PIPEB_PRI_FLIP_DONE |
9295 DERRMR_PIPEC_PRI_FLIP_DONE));
f476828a
DL
9296 if (IS_GEN8(dev))
9297 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9298 MI_SRM_LRM_GLOBAL_GTT);
9299 else
9300 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9301 MI_SRM_LRM_GLOBAL_GTT);
ffe74d75
CW
9302 intel_ring_emit(ring, DERRMR);
9303 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
f476828a
DL
9304 if (IS_GEN8(dev)) {
9305 intel_ring_emit(ring, 0);
9306 intel_ring_emit(ring, MI_NOOP);
9307 }
ffe74d75
CW
9308 }
9309
cb05d8de 9310 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 9311 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
75f7f3ec 9312 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
7c9017e5 9313 intel_ring_emit(ring, (MI_NOOP));
e7d841ca
CW
9314
9315 intel_mark_page_flip_active(intel_crtc);
09246732 9316 __intel_ring_advance(ring);
83d4092b 9317 return 0;
7c9017e5
JB
9318}
9319
84c33a64
SG
9320static bool use_mmio_flip(struct intel_engine_cs *ring,
9321 struct drm_i915_gem_object *obj)
9322{
9323 /*
9324 * This is not being used for older platforms, because
9325 * non-availability of flip done interrupt forces us to use
9326 * CS flips. Older platforms derive flip done using some clever
9327 * tricks involving the flip_pending status bits and vblank irqs.
9328 * So using MMIO flips there would disrupt this mechanism.
9329 */
9330
8e09bf83
CW
9331 if (ring == NULL)
9332 return true;
9333
84c33a64
SG
9334 if (INTEL_INFO(ring->dev)->gen < 5)
9335 return false;
9336
9337 if (i915.use_mmio_flip < 0)
9338 return false;
9339 else if (i915.use_mmio_flip > 0)
9340 return true;
14bf993e
OM
9341 else if (i915.enable_execlists)
9342 return true;
84c33a64
SG
9343 else
9344 return ring != obj->ring;
9345}
9346
9347static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9348{
9349 struct drm_device *dev = intel_crtc->base.dev;
9350 struct drm_i915_private *dev_priv = dev->dev_private;
9351 struct intel_framebuffer *intel_fb =
9352 to_intel_framebuffer(intel_crtc->base.primary->fb);
9353 struct drm_i915_gem_object *obj = intel_fb->obj;
9354 u32 dspcntr;
9355 u32 reg;
9356
9357 intel_mark_page_flip_active(intel_crtc);
9358
9359 reg = DSPCNTR(intel_crtc->plane);
9360 dspcntr = I915_READ(reg);
9361
c5d97472
DL
9362 if (obj->tiling_mode != I915_TILING_NONE)
9363 dspcntr |= DISPPLANE_TILED;
9364 else
9365 dspcntr &= ~DISPPLANE_TILED;
9366
84c33a64
SG
9367 I915_WRITE(reg, dspcntr);
9368
9369 I915_WRITE(DSPSURF(intel_crtc->plane),
9370 intel_crtc->unpin_work->gtt_offset);
9371 POSTING_READ(DSPSURF(intel_crtc->plane));
9372}
9373
9374static int intel_postpone_flip(struct drm_i915_gem_object *obj)
9375{
9376 struct intel_engine_cs *ring;
9377 int ret;
9378
9379 lockdep_assert_held(&obj->base.dev->struct_mutex);
9380
9381 if (!obj->last_write_seqno)
9382 return 0;
9383
9384 ring = obj->ring;
9385
9386 if (i915_seqno_passed(ring->get_seqno(ring, true),
9387 obj->last_write_seqno))
9388 return 0;
9389
9390 ret = i915_gem_check_olr(ring, obj->last_write_seqno);
9391 if (ret)
9392 return ret;
9393
9394 if (WARN_ON(!ring->irq_get(ring)))
9395 return 0;
9396
9397 return 1;
9398}
9399
9400void intel_notify_mmio_flip(struct intel_engine_cs *ring)
9401{
9402 struct drm_i915_private *dev_priv = to_i915(ring->dev);
9403 struct intel_crtc *intel_crtc;
9404 unsigned long irq_flags;
9405 u32 seqno;
9406
9407 seqno = ring->get_seqno(ring, false);
9408
9409 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9410 for_each_intel_crtc(ring->dev, intel_crtc) {
9411 struct intel_mmio_flip *mmio_flip;
9412
9413 mmio_flip = &intel_crtc->mmio_flip;
9414 if (mmio_flip->seqno == 0)
9415 continue;
9416
9417 if (ring->id != mmio_flip->ring_id)
9418 continue;
9419
9420 if (i915_seqno_passed(seqno, mmio_flip->seqno)) {
9421 intel_do_mmio_flip(intel_crtc);
9422 mmio_flip->seqno = 0;
9423 ring->irq_put(ring);
9424 }
9425 }
9426 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9427}
9428
9429static int intel_queue_mmio_flip(struct drm_device *dev,
9430 struct drm_crtc *crtc,
9431 struct drm_framebuffer *fb,
9432 struct drm_i915_gem_object *obj,
9433 struct intel_engine_cs *ring,
9434 uint32_t flags)
9435{
9436 struct drm_i915_private *dev_priv = dev->dev_private;
9437 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
84c33a64
SG
9438 int ret;
9439
9440 if (WARN_ON(intel_crtc->mmio_flip.seqno))
9441 return -EBUSY;
9442
9443 ret = intel_postpone_flip(obj);
9444 if (ret < 0)
9445 return ret;
9446 if (ret == 0) {
9447 intel_do_mmio_flip(intel_crtc);
9448 return 0;
9449 }
9450
24955f24 9451 spin_lock_irq(&dev_priv->mmio_flip_lock);
84c33a64
SG
9452 intel_crtc->mmio_flip.seqno = obj->last_write_seqno;
9453 intel_crtc->mmio_flip.ring_id = obj->ring->id;
24955f24 9454 spin_unlock_irq(&dev_priv->mmio_flip_lock);
84c33a64
SG
9455
9456 /*
9457 * Double check to catch cases where irq fired before
9458 * mmio flip data was ready
9459 */
9460 intel_notify_mmio_flip(obj->ring);
9461 return 0;
9462}
9463
8c9f3aaf
JB
9464static int intel_default_queue_flip(struct drm_device *dev,
9465 struct drm_crtc *crtc,
9466 struct drm_framebuffer *fb,
ed8d1975 9467 struct drm_i915_gem_object *obj,
a4872ba6 9468 struct intel_engine_cs *ring,
ed8d1975 9469 uint32_t flags)
8c9f3aaf
JB
9470{
9471 return -ENODEV;
9472}
9473
d6bbafa1
CW
9474static bool __intel_pageflip_stall_check(struct drm_device *dev,
9475 struct drm_crtc *crtc)
9476{
9477 struct drm_i915_private *dev_priv = dev->dev_private;
9478 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9479 struct intel_unpin_work *work = intel_crtc->unpin_work;
9480 u32 addr;
9481
9482 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
9483 return true;
9484
9485 if (!work->enable_stall_check)
9486 return false;
9487
9488 if (work->flip_ready_vblank == 0) {
9489 if (work->flip_queued_ring &&
9490 !i915_seqno_passed(work->flip_queued_ring->get_seqno(work->flip_queued_ring, true),
9491 work->flip_queued_seqno))
9492 return false;
9493
9494 work->flip_ready_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9495 }
9496
9497 if (drm_vblank_count(dev, intel_crtc->pipe) - work->flip_ready_vblank < 3)
9498 return false;
9499
9500 /* Potential stall - if we see that the flip has happened,
9501 * assume a missed interrupt. */
9502 if (INTEL_INFO(dev)->gen >= 4)
9503 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
9504 else
9505 addr = I915_READ(DSPADDR(intel_crtc->plane));
9506
9507 /* There is a potential issue here with a false positive after a flip
9508 * to the same address. We could address this by checking for a
9509 * non-incrementing frame counter.
9510 */
9511 return addr == work->gtt_offset;
9512}
9513
9514void intel_check_page_flip(struct drm_device *dev, int pipe)
9515{
9516 struct drm_i915_private *dev_priv = dev->dev_private;
9517 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9518 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
f326038a
DV
9519
9520 WARN_ON(!in_irq());
d6bbafa1
CW
9521
9522 if (crtc == NULL)
9523 return;
9524
f326038a 9525 spin_lock(&dev->event_lock);
d6bbafa1
CW
9526 if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
9527 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
9528 intel_crtc->unpin_work->flip_queued_vblank, drm_vblank_count(dev, pipe));
9529 page_flip_completed(intel_crtc);
9530 }
f326038a 9531 spin_unlock(&dev->event_lock);
d6bbafa1
CW
9532}
9533
6b95a207
KH
9534static int intel_crtc_page_flip(struct drm_crtc *crtc,
9535 struct drm_framebuffer *fb,
ed8d1975
KP
9536 struct drm_pending_vblank_event *event,
9537 uint32_t page_flip_flags)
6b95a207
KH
9538{
9539 struct drm_device *dev = crtc->dev;
9540 struct drm_i915_private *dev_priv = dev->dev_private;
f4510a27 9541 struct drm_framebuffer *old_fb = crtc->primary->fb;
2ff8fde1 9542 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6b95a207 9543 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 9544 enum pipe pipe = intel_crtc->pipe;
6b95a207 9545 struct intel_unpin_work *work;
a4872ba6 9546 struct intel_engine_cs *ring;
52e68630 9547 int ret;
6b95a207 9548
2ff8fde1
MR
9549 /*
9550 * drm_mode_page_flip_ioctl() should already catch this, but double
9551 * check to be safe. In the future we may enable pageflipping from
9552 * a disabled primary plane.
9553 */
9554 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9555 return -EBUSY;
9556
e6a595d2 9557 /* Can't change pixel format via MI display flips. */
f4510a27 9558 if (fb->pixel_format != crtc->primary->fb->pixel_format)
e6a595d2
VS
9559 return -EINVAL;
9560
9561 /*
9562 * TILEOFF/LINOFF registers can't be changed via MI display flips.
9563 * Note that pitch changes could also affect these register.
9564 */
9565 if (INTEL_INFO(dev)->gen > 3 &&
f4510a27
MR
9566 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9567 fb->pitches[0] != crtc->primary->fb->pitches[0]))
e6a595d2
VS
9568 return -EINVAL;
9569
f900db47
CW
9570 if (i915_terminally_wedged(&dev_priv->gpu_error))
9571 goto out_hang;
9572
b14c5679 9573 work = kzalloc(sizeof(*work), GFP_KERNEL);
6b95a207
KH
9574 if (work == NULL)
9575 return -ENOMEM;
9576
6b95a207 9577 work->event = event;
b4a98e57 9578 work->crtc = crtc;
2ff8fde1 9579 work->old_fb_obj = intel_fb_obj(old_fb);
6b95a207
KH
9580 INIT_WORK(&work->work, intel_unpin_work_fn);
9581
87b6b101 9582 ret = drm_crtc_vblank_get(crtc);
7317c75e
JB
9583 if (ret)
9584 goto free_work;
9585
6b95a207 9586 /* We borrow the event spin lock for protecting unpin_work */
5e2d7afc 9587 spin_lock_irq(&dev->event_lock);
6b95a207 9588 if (intel_crtc->unpin_work) {
d6bbafa1
CW
9589 /* Before declaring the flip queue wedged, check if
9590 * the hardware completed the operation behind our backs.
9591 */
9592 if (__intel_pageflip_stall_check(dev, crtc)) {
9593 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
9594 page_flip_completed(intel_crtc);
9595 } else {
9596 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
5e2d7afc 9597 spin_unlock_irq(&dev->event_lock);
468f0b44 9598
d6bbafa1
CW
9599 drm_crtc_vblank_put(crtc);
9600 kfree(work);
9601 return -EBUSY;
9602 }
6b95a207
KH
9603 }
9604 intel_crtc->unpin_work = work;
5e2d7afc 9605 spin_unlock_irq(&dev->event_lock);
6b95a207 9606
b4a98e57
CW
9607 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9608 flush_workqueue(dev_priv->wq);
9609
79158103
CW
9610 ret = i915_mutex_lock_interruptible(dev);
9611 if (ret)
9612 goto cleanup;
6b95a207 9613
75dfca80 9614 /* Reference the objects for the scheduled work. */
05394f39
CW
9615 drm_gem_object_reference(&work->old_fb_obj->base);
9616 drm_gem_object_reference(&obj->base);
6b95a207 9617
f4510a27 9618 crtc->primary->fb = fb;
96b099fd 9619
e1f99ce6 9620 work->pending_flip_obj = obj;
e1f99ce6 9621
b4a98e57 9622 atomic_inc(&intel_crtc->unpin_work_count);
10d83730 9623 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
e1f99ce6 9624
75f7f3ec 9625 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
a071fa00 9626 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
75f7f3ec 9627
4fa62c89
VS
9628 if (IS_VALLEYVIEW(dev)) {
9629 ring = &dev_priv->ring[BCS];
8e09bf83
CW
9630 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
9631 /* vlv: DISPLAY_FLIP fails to change tiling */
9632 ring = NULL;
2a92d5bc
CW
9633 } else if (IS_IVYBRIDGE(dev)) {
9634 ring = &dev_priv->ring[BCS];
4fa62c89
VS
9635 } else if (INTEL_INFO(dev)->gen >= 7) {
9636 ring = obj->ring;
9637 if (ring == NULL || ring->id != RCS)
9638 ring = &dev_priv->ring[BCS];
9639 } else {
9640 ring = &dev_priv->ring[RCS];
9641 }
9642
9643 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf
JB
9644 if (ret)
9645 goto cleanup_pending;
6b95a207 9646
4fa62c89
VS
9647 work->gtt_offset =
9648 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9649
d6bbafa1 9650 if (use_mmio_flip(ring, obj)) {
84c33a64
SG
9651 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9652 page_flip_flags);
d6bbafa1
CW
9653 if (ret)
9654 goto cleanup_unpin;
9655
9656 work->flip_queued_seqno = obj->last_write_seqno;
9657 work->flip_queued_ring = obj->ring;
9658 } else {
84c33a64 9659 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
d6bbafa1
CW
9660 page_flip_flags);
9661 if (ret)
9662 goto cleanup_unpin;
9663
9664 work->flip_queued_seqno = intel_ring_get_seqno(ring);
9665 work->flip_queued_ring = ring;
9666 }
9667
9668 work->flip_queued_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9669 work->enable_stall_check = true;
4fa62c89 9670
a071fa00
DV
9671 i915_gem_track_fb(work->old_fb_obj, obj,
9672 INTEL_FRONTBUFFER_PRIMARY(pipe));
9673
7782de3b 9674 intel_disable_fbc(dev);
f99d7069 9675 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
6b95a207
KH
9676 mutex_unlock(&dev->struct_mutex);
9677
e5510fac
JB
9678 trace_i915_flip_request(intel_crtc->plane, obj);
9679
6b95a207 9680 return 0;
96b099fd 9681
4fa62c89
VS
9682cleanup_unpin:
9683 intel_unpin_fb_obj(obj);
8c9f3aaf 9684cleanup_pending:
b4a98e57 9685 atomic_dec(&intel_crtc->unpin_work_count);
f4510a27 9686 crtc->primary->fb = old_fb;
05394f39
CW
9687 drm_gem_object_unreference(&work->old_fb_obj->base);
9688 drm_gem_object_unreference(&obj->base);
96b099fd
CW
9689 mutex_unlock(&dev->struct_mutex);
9690
79158103 9691cleanup:
5e2d7afc 9692 spin_lock_irq(&dev->event_lock);
96b099fd 9693 intel_crtc->unpin_work = NULL;
5e2d7afc 9694 spin_unlock_irq(&dev->event_lock);
96b099fd 9695
87b6b101 9696 drm_crtc_vblank_put(crtc);
7317c75e 9697free_work:
96b099fd
CW
9698 kfree(work);
9699
f900db47
CW
9700 if (ret == -EIO) {
9701out_hang:
9702 intel_crtc_wait_for_pending_flips(crtc);
9703 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
f0d3dad3 9704 if (ret == 0 && event) {
5e2d7afc 9705 spin_lock_irq(&dev->event_lock);
a071fa00 9706 drm_send_vblank_event(dev, pipe, event);
5e2d7afc 9707 spin_unlock_irq(&dev->event_lock);
f0d3dad3 9708 }
f900db47 9709 }
96b099fd 9710 return ret;
6b95a207
KH
9711}
9712
f6e5b160 9713static struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
9714 .mode_set_base_atomic = intel_pipe_set_base_atomic,
9715 .load_lut = intel_crtc_load_lut,
f6e5b160
CW
9716};
9717
9a935856
DV
9718/**
9719 * intel_modeset_update_staged_output_state
9720 *
9721 * Updates the staged output configuration state, e.g. after we've read out the
9722 * current hw state.
9723 */
9724static void intel_modeset_update_staged_output_state(struct drm_device *dev)
f6e5b160 9725{
7668851f 9726 struct intel_crtc *crtc;
9a935856
DV
9727 struct intel_encoder *encoder;
9728 struct intel_connector *connector;
f6e5b160 9729
9a935856
DV
9730 list_for_each_entry(connector, &dev->mode_config.connector_list,
9731 base.head) {
9732 connector->new_encoder =
9733 to_intel_encoder(connector->base.encoder);
9734 }
f6e5b160 9735
b2784e15 9736 for_each_intel_encoder(dev, encoder) {
9a935856
DV
9737 encoder->new_crtc =
9738 to_intel_crtc(encoder->base.crtc);
9739 }
7668851f 9740
d3fcc808 9741 for_each_intel_crtc(dev, crtc) {
7668851f 9742 crtc->new_enabled = crtc->base.enabled;
7bd0a8e7
VS
9743
9744 if (crtc->new_enabled)
9745 crtc->new_config = &crtc->config;
9746 else
9747 crtc->new_config = NULL;
7668851f 9748 }
f6e5b160
CW
9749}
9750
9a935856
DV
9751/**
9752 * intel_modeset_commit_output_state
9753 *
9754 * This function copies the stage display pipe configuration to the real one.
9755 */
9756static void intel_modeset_commit_output_state(struct drm_device *dev)
9757{
7668851f 9758 struct intel_crtc *crtc;
9a935856
DV
9759 struct intel_encoder *encoder;
9760 struct intel_connector *connector;
f6e5b160 9761
9a935856
DV
9762 list_for_each_entry(connector, &dev->mode_config.connector_list,
9763 base.head) {
9764 connector->base.encoder = &connector->new_encoder->base;
9765 }
f6e5b160 9766
b2784e15 9767 for_each_intel_encoder(dev, encoder) {
9a935856
DV
9768 encoder->base.crtc = &encoder->new_crtc->base;
9769 }
7668851f 9770
d3fcc808 9771 for_each_intel_crtc(dev, crtc) {
7668851f
VS
9772 crtc->base.enabled = crtc->new_enabled;
9773 }
9a935856
DV
9774}
9775
050f7aeb 9776static void
eba905b2 9777connected_sink_compute_bpp(struct intel_connector *connector,
050f7aeb
DV
9778 struct intel_crtc_config *pipe_config)
9779{
9780 int bpp = pipe_config->pipe_bpp;
9781
9782 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9783 connector->base.base.id,
c23cc417 9784 connector->base.name);
050f7aeb
DV
9785
9786 /* Don't use an invalid EDID bpc value */
9787 if (connector->base.display_info.bpc &&
9788 connector->base.display_info.bpc * 3 < bpp) {
9789 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9790 bpp, connector->base.display_info.bpc*3);
9791 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9792 }
9793
9794 /* Clamp bpp to 8 on screens without EDID 1.4 */
9795 if (connector->base.display_info.bpc == 0 && bpp > 24) {
9796 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9797 bpp);
9798 pipe_config->pipe_bpp = 24;
9799 }
9800}
9801
4e53c2e0 9802static int
050f7aeb
DV
9803compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9804 struct drm_framebuffer *fb,
9805 struct intel_crtc_config *pipe_config)
4e53c2e0 9806{
050f7aeb
DV
9807 struct drm_device *dev = crtc->base.dev;
9808 struct intel_connector *connector;
4e53c2e0
DV
9809 int bpp;
9810
d42264b1
DV
9811 switch (fb->pixel_format) {
9812 case DRM_FORMAT_C8:
4e53c2e0
DV
9813 bpp = 8*3; /* since we go through a colormap */
9814 break;
d42264b1
DV
9815 case DRM_FORMAT_XRGB1555:
9816 case DRM_FORMAT_ARGB1555:
9817 /* checked in intel_framebuffer_init already */
9818 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9819 return -EINVAL;
9820 case DRM_FORMAT_RGB565:
4e53c2e0
DV
9821 bpp = 6*3; /* min is 18bpp */
9822 break;
d42264b1
DV
9823 case DRM_FORMAT_XBGR8888:
9824 case DRM_FORMAT_ABGR8888:
9825 /* checked in intel_framebuffer_init already */
9826 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9827 return -EINVAL;
9828 case DRM_FORMAT_XRGB8888:
9829 case DRM_FORMAT_ARGB8888:
4e53c2e0
DV
9830 bpp = 8*3;
9831 break;
d42264b1
DV
9832 case DRM_FORMAT_XRGB2101010:
9833 case DRM_FORMAT_ARGB2101010:
9834 case DRM_FORMAT_XBGR2101010:
9835 case DRM_FORMAT_ABGR2101010:
9836 /* checked in intel_framebuffer_init already */
9837 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
baba133a 9838 return -EINVAL;
4e53c2e0
DV
9839 bpp = 10*3;
9840 break;
baba133a 9841 /* TODO: gen4+ supports 16 bpc floating point, too. */
4e53c2e0
DV
9842 default:
9843 DRM_DEBUG_KMS("unsupported depth\n");
9844 return -EINVAL;
9845 }
9846
4e53c2e0
DV
9847 pipe_config->pipe_bpp = bpp;
9848
9849 /* Clamp display bpp to EDID value */
9850 list_for_each_entry(connector, &dev->mode_config.connector_list,
050f7aeb 9851 base.head) {
1b829e05
DV
9852 if (!connector->new_encoder ||
9853 connector->new_encoder->new_crtc != crtc)
4e53c2e0
DV
9854 continue;
9855
050f7aeb 9856 connected_sink_compute_bpp(connector, pipe_config);
4e53c2e0
DV
9857 }
9858
9859 return bpp;
9860}
9861
644db711
DV
9862static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
9863{
9864 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
9865 "type: 0x%x flags: 0x%x\n",
1342830c 9866 mode->crtc_clock,
644db711
DV
9867 mode->crtc_hdisplay, mode->crtc_hsync_start,
9868 mode->crtc_hsync_end, mode->crtc_htotal,
9869 mode->crtc_vdisplay, mode->crtc_vsync_start,
9870 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
9871}
9872
c0b03411
DV
9873static void intel_dump_pipe_config(struct intel_crtc *crtc,
9874 struct intel_crtc_config *pipe_config,
9875 const char *context)
9876{
9877 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
9878 context, pipe_name(crtc->pipe));
9879
9880 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
9881 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
9882 pipe_config->pipe_bpp, pipe_config->dither);
9883 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9884 pipe_config->has_pch_encoder,
9885 pipe_config->fdi_lanes,
9886 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
9887 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
9888 pipe_config->fdi_m_n.tu);
eb14cb74
VS
9889 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9890 pipe_config->has_dp_encoder,
9891 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
9892 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
9893 pipe_config->dp_m_n.tu);
b95af8be
VK
9894
9895 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
9896 pipe_config->has_dp_encoder,
9897 pipe_config->dp_m2_n2.gmch_m,
9898 pipe_config->dp_m2_n2.gmch_n,
9899 pipe_config->dp_m2_n2.link_m,
9900 pipe_config->dp_m2_n2.link_n,
9901 pipe_config->dp_m2_n2.tu);
9902
c0b03411
DV
9903 DRM_DEBUG_KMS("requested mode:\n");
9904 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
9905 DRM_DEBUG_KMS("adjusted mode:\n");
9906 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
644db711 9907 intel_dump_crtc_timings(&pipe_config->adjusted_mode);
d71b8d4a 9908 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
37327abd
VS
9909 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
9910 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
c0b03411
DV
9911 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
9912 pipe_config->gmch_pfit.control,
9913 pipe_config->gmch_pfit.pgm_ratios,
9914 pipe_config->gmch_pfit.lvds_border_bits);
fd4daa9c 9915 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
c0b03411 9916 pipe_config->pch_pfit.pos,
fd4daa9c
CW
9917 pipe_config->pch_pfit.size,
9918 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
42db64ef 9919 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
cf532bb2 9920 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
c0b03411
DV
9921}
9922
bc079e8b
VS
9923static bool encoders_cloneable(const struct intel_encoder *a,
9924 const struct intel_encoder *b)
accfc0c5 9925{
bc079e8b
VS
9926 /* masks could be asymmetric, so check both ways */
9927 return a == b || (a->cloneable & (1 << b->type) &&
9928 b->cloneable & (1 << a->type));
9929}
9930
9931static bool check_single_encoder_cloning(struct intel_crtc *crtc,
9932 struct intel_encoder *encoder)
9933{
9934 struct drm_device *dev = crtc->base.dev;
9935 struct intel_encoder *source_encoder;
9936
b2784e15 9937 for_each_intel_encoder(dev, source_encoder) {
bc079e8b
VS
9938 if (source_encoder->new_crtc != crtc)
9939 continue;
9940
9941 if (!encoders_cloneable(encoder, source_encoder))
9942 return false;
9943 }
9944
9945 return true;
9946}
9947
9948static bool check_encoder_cloning(struct intel_crtc *crtc)
9949{
9950 struct drm_device *dev = crtc->base.dev;
accfc0c5
DV
9951 struct intel_encoder *encoder;
9952
b2784e15 9953 for_each_intel_encoder(dev, encoder) {
bc079e8b 9954 if (encoder->new_crtc != crtc)
accfc0c5
DV
9955 continue;
9956
bc079e8b
VS
9957 if (!check_single_encoder_cloning(crtc, encoder))
9958 return false;
accfc0c5
DV
9959 }
9960
bc079e8b 9961 return true;
accfc0c5
DV
9962}
9963
b8cecdf5
DV
9964static struct intel_crtc_config *
9965intel_modeset_pipe_config(struct drm_crtc *crtc,
4e53c2e0 9966 struct drm_framebuffer *fb,
b8cecdf5 9967 struct drm_display_mode *mode)
ee7b9f93 9968{
7758a113 9969 struct drm_device *dev = crtc->dev;
7758a113 9970 struct intel_encoder *encoder;
b8cecdf5 9971 struct intel_crtc_config *pipe_config;
e29c22c0
DV
9972 int plane_bpp, ret = -EINVAL;
9973 bool retry = true;
ee7b9f93 9974
bc079e8b 9975 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
accfc0c5
DV
9976 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
9977 return ERR_PTR(-EINVAL);
9978 }
9979
b8cecdf5
DV
9980 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
9981 if (!pipe_config)
7758a113
DV
9982 return ERR_PTR(-ENOMEM);
9983
b8cecdf5
DV
9984 drm_mode_copy(&pipe_config->adjusted_mode, mode);
9985 drm_mode_copy(&pipe_config->requested_mode, mode);
37327abd 9986
e143a21c
DV
9987 pipe_config->cpu_transcoder =
9988 (enum transcoder) to_intel_crtc(crtc)->pipe;
c0d43d62 9989 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
b8cecdf5 9990
2960bc9c
ID
9991 /*
9992 * Sanitize sync polarity flags based on requested ones. If neither
9993 * positive or negative polarity is requested, treat this as meaning
9994 * negative polarity.
9995 */
9996 if (!(pipe_config->adjusted_mode.flags &
9997 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
9998 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
9999
10000 if (!(pipe_config->adjusted_mode.flags &
10001 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10002 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10003
050f7aeb
DV
10004 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10005 * plane pixel format and any sink constraints into account. Returns the
10006 * source plane bpp so that dithering can be selected on mismatches
10007 * after encoders and crtc also have had their say. */
10008 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10009 fb, pipe_config);
4e53c2e0
DV
10010 if (plane_bpp < 0)
10011 goto fail;
10012
e41a56be
VS
10013 /*
10014 * Determine the real pipe dimensions. Note that stereo modes can
10015 * increase the actual pipe size due to the frame doubling and
10016 * insertion of additional space for blanks between the frame. This
10017 * is stored in the crtc timings. We use the requested mode to do this
10018 * computation to clearly distinguish it from the adjusted mode, which
10019 * can be changed by the connectors in the below retry loop.
10020 */
10021 drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
10022 pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
10023 pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
10024
e29c22c0 10025encoder_retry:
ef1b460d 10026 /* Ensure the port clock defaults are reset when retrying. */
ff9a6750 10027 pipe_config->port_clock = 0;
ef1b460d 10028 pipe_config->pixel_multiplier = 1;
ff9a6750 10029
135c81b8 10030 /* Fill in default crtc timings, allow encoders to overwrite them. */
6ce70f5e 10031 drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
135c81b8 10032
7758a113
DV
10033 /* Pass our mode to the connectors and the CRTC to give them a chance to
10034 * adjust it according to limitations or connector properties, and also
10035 * a chance to reject the mode entirely.
47f1c6c9 10036 */
b2784e15 10037 for_each_intel_encoder(dev, encoder) {
47f1c6c9 10038
7758a113
DV
10039 if (&encoder->new_crtc->base != crtc)
10040 continue;
7ae89233 10041
efea6e8e
DV
10042 if (!(encoder->compute_config(encoder, pipe_config))) {
10043 DRM_DEBUG_KMS("Encoder config failure\n");
7758a113
DV
10044 goto fail;
10045 }
ee7b9f93 10046 }
47f1c6c9 10047
ff9a6750
DV
10048 /* Set default port clock if not overwritten by the encoder. Needs to be
10049 * done afterwards in case the encoder adjusts the mode. */
10050 if (!pipe_config->port_clock)
241bfc38
DL
10051 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10052 * pipe_config->pixel_multiplier;
ff9a6750 10053
a43f6e0f 10054 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
e29c22c0 10055 if (ret < 0) {
7758a113
DV
10056 DRM_DEBUG_KMS("CRTC fixup failed\n");
10057 goto fail;
ee7b9f93 10058 }
e29c22c0
DV
10059
10060 if (ret == RETRY) {
10061 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10062 ret = -EINVAL;
10063 goto fail;
10064 }
10065
10066 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10067 retry = false;
10068 goto encoder_retry;
10069 }
10070
4e53c2e0
DV
10071 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10072 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10073 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10074
b8cecdf5 10075 return pipe_config;
7758a113 10076fail:
b8cecdf5 10077 kfree(pipe_config);
e29c22c0 10078 return ERR_PTR(ret);
ee7b9f93 10079}
47f1c6c9 10080
e2e1ed41
DV
10081/* Computes which crtcs are affected and sets the relevant bits in the mask. For
10082 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10083static void
10084intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10085 unsigned *prepare_pipes, unsigned *disable_pipes)
79e53945
JB
10086{
10087 struct intel_crtc *intel_crtc;
e2e1ed41
DV
10088 struct drm_device *dev = crtc->dev;
10089 struct intel_encoder *encoder;
10090 struct intel_connector *connector;
10091 struct drm_crtc *tmp_crtc;
79e53945 10092
e2e1ed41 10093 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
79e53945 10094
e2e1ed41
DV
10095 /* Check which crtcs have changed outputs connected to them, these need
10096 * to be part of the prepare_pipes mask. We don't (yet) support global
10097 * modeset across multiple crtcs, so modeset_pipes will only have one
10098 * bit set at most. */
10099 list_for_each_entry(connector, &dev->mode_config.connector_list,
10100 base.head) {
10101 if (connector->base.encoder == &connector->new_encoder->base)
10102 continue;
79e53945 10103
e2e1ed41
DV
10104 if (connector->base.encoder) {
10105 tmp_crtc = connector->base.encoder->crtc;
10106
10107 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10108 }
10109
10110 if (connector->new_encoder)
10111 *prepare_pipes |=
10112 1 << connector->new_encoder->new_crtc->pipe;
79e53945
JB
10113 }
10114
b2784e15 10115 for_each_intel_encoder(dev, encoder) {
e2e1ed41
DV
10116 if (encoder->base.crtc == &encoder->new_crtc->base)
10117 continue;
10118
10119 if (encoder->base.crtc) {
10120 tmp_crtc = encoder->base.crtc;
10121
10122 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10123 }
10124
10125 if (encoder->new_crtc)
10126 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
80824003
JB
10127 }
10128
7668851f 10129 /* Check for pipes that will be enabled/disabled ... */
d3fcc808 10130 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10131 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
e2e1ed41 10132 continue;
7e7d76c3 10133
7668851f 10134 if (!intel_crtc->new_enabled)
e2e1ed41 10135 *disable_pipes |= 1 << intel_crtc->pipe;
7668851f
VS
10136 else
10137 *prepare_pipes |= 1 << intel_crtc->pipe;
7e7d76c3
JB
10138 }
10139
e2e1ed41
DV
10140
10141 /* set_mode is also used to update properties on life display pipes. */
10142 intel_crtc = to_intel_crtc(crtc);
7668851f 10143 if (intel_crtc->new_enabled)
e2e1ed41
DV
10144 *prepare_pipes |= 1 << intel_crtc->pipe;
10145
b6c5164d
DV
10146 /*
10147 * For simplicity do a full modeset on any pipe where the output routing
10148 * changed. We could be more clever, but that would require us to be
10149 * more careful with calling the relevant encoder->mode_set functions.
10150 */
e2e1ed41
DV
10151 if (*prepare_pipes)
10152 *modeset_pipes = *prepare_pipes;
10153
10154 /* ... and mask these out. */
10155 *modeset_pipes &= ~(*disable_pipes);
10156 *prepare_pipes &= ~(*disable_pipes);
b6c5164d
DV
10157
10158 /*
10159 * HACK: We don't (yet) fully support global modesets. intel_set_config
10160 * obies this rule, but the modeset restore mode of
10161 * intel_modeset_setup_hw_state does not.
10162 */
10163 *modeset_pipes &= 1 << intel_crtc->pipe;
10164 *prepare_pipes &= 1 << intel_crtc->pipe;
e3641d3f
DV
10165
10166 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10167 *modeset_pipes, *prepare_pipes, *disable_pipes);
47f1c6c9 10168}
79e53945 10169
ea9d758d 10170static bool intel_crtc_in_use(struct drm_crtc *crtc)
f6e5b160 10171{
ea9d758d 10172 struct drm_encoder *encoder;
f6e5b160 10173 struct drm_device *dev = crtc->dev;
f6e5b160 10174
ea9d758d
DV
10175 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10176 if (encoder->crtc == crtc)
10177 return true;
10178
10179 return false;
10180}
10181
10182static void
10183intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10184{
10185 struct intel_encoder *intel_encoder;
10186 struct intel_crtc *intel_crtc;
10187 struct drm_connector *connector;
10188
b2784e15 10189 for_each_intel_encoder(dev, intel_encoder) {
ea9d758d
DV
10190 if (!intel_encoder->base.crtc)
10191 continue;
10192
10193 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10194
10195 if (prepare_pipes & (1 << intel_crtc->pipe))
10196 intel_encoder->connectors_active = false;
10197 }
10198
10199 intel_modeset_commit_output_state(dev);
10200
7668851f 10201 /* Double check state. */
d3fcc808 10202 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10203 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
7bd0a8e7
VS
10204 WARN_ON(intel_crtc->new_config &&
10205 intel_crtc->new_config != &intel_crtc->config);
10206 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
ea9d758d
DV
10207 }
10208
10209 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10210 if (!connector->encoder || !connector->encoder->crtc)
10211 continue;
10212
10213 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10214
10215 if (prepare_pipes & (1 << intel_crtc->pipe)) {
68d34720
DV
10216 struct drm_property *dpms_property =
10217 dev->mode_config.dpms_property;
10218
ea9d758d 10219 connector->dpms = DRM_MODE_DPMS_ON;
662595df 10220 drm_object_property_set_value(&connector->base,
68d34720
DV
10221 dpms_property,
10222 DRM_MODE_DPMS_ON);
ea9d758d
DV
10223
10224 intel_encoder = to_intel_encoder(connector->encoder);
10225 intel_encoder->connectors_active = true;
10226 }
10227 }
10228
10229}
10230
3bd26263 10231static bool intel_fuzzy_clock_check(int clock1, int clock2)
f1f644dc 10232{
3bd26263 10233 int diff;
f1f644dc
JB
10234
10235 if (clock1 == clock2)
10236 return true;
10237
10238 if (!clock1 || !clock2)
10239 return false;
10240
10241 diff = abs(clock1 - clock2);
10242
10243 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10244 return true;
10245
10246 return false;
10247}
10248
25c5b266
DV
10249#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10250 list_for_each_entry((intel_crtc), \
10251 &(dev)->mode_config.crtc_list, \
10252 base.head) \
0973f18f 10253 if (mask & (1 <<(intel_crtc)->pipe))
25c5b266 10254
0e8ffe1b 10255static bool
2fa2fe9a
DV
10256intel_pipe_config_compare(struct drm_device *dev,
10257 struct intel_crtc_config *current_config,
0e8ffe1b
DV
10258 struct intel_crtc_config *pipe_config)
10259{
66e985c0
DV
10260#define PIPE_CONF_CHECK_X(name) \
10261 if (current_config->name != pipe_config->name) { \
10262 DRM_ERROR("mismatch in " #name " " \
10263 "(expected 0x%08x, found 0x%08x)\n", \
10264 current_config->name, \
10265 pipe_config->name); \
10266 return false; \
10267 }
10268
08a24034
DV
10269#define PIPE_CONF_CHECK_I(name) \
10270 if (current_config->name != pipe_config->name) { \
10271 DRM_ERROR("mismatch in " #name " " \
10272 "(expected %i, found %i)\n", \
10273 current_config->name, \
10274 pipe_config->name); \
10275 return false; \
88adfff1
DV
10276 }
10277
b95af8be
VK
10278/* This is required for BDW+ where there is only one set of registers for
10279 * switching between high and low RR.
10280 * This macro can be used whenever a comparison has to be made between one
10281 * hw state and multiple sw state variables.
10282 */
10283#define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10284 if ((current_config->name != pipe_config->name) && \
10285 (current_config->alt_name != pipe_config->name)) { \
10286 DRM_ERROR("mismatch in " #name " " \
10287 "(expected %i or %i, found %i)\n", \
10288 current_config->name, \
10289 current_config->alt_name, \
10290 pipe_config->name); \
10291 return false; \
10292 }
10293
1bd1bd80
DV
10294#define PIPE_CONF_CHECK_FLAGS(name, mask) \
10295 if ((current_config->name ^ pipe_config->name) & (mask)) { \
6f02488e 10296 DRM_ERROR("mismatch in " #name "(" #mask ") " \
1bd1bd80
DV
10297 "(expected %i, found %i)\n", \
10298 current_config->name & (mask), \
10299 pipe_config->name & (mask)); \
10300 return false; \
10301 }
10302
5e550656
VS
10303#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10304 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10305 DRM_ERROR("mismatch in " #name " " \
10306 "(expected %i, found %i)\n", \
10307 current_config->name, \
10308 pipe_config->name); \
10309 return false; \
10310 }
10311
bb760063
DV
10312#define PIPE_CONF_QUIRK(quirk) \
10313 ((current_config->quirks | pipe_config->quirks) & (quirk))
10314
eccb140b
DV
10315 PIPE_CONF_CHECK_I(cpu_transcoder);
10316
08a24034
DV
10317 PIPE_CONF_CHECK_I(has_pch_encoder);
10318 PIPE_CONF_CHECK_I(fdi_lanes);
72419203
DV
10319 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10320 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10321 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10322 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10323 PIPE_CONF_CHECK_I(fdi_m_n.tu);
08a24034 10324
eb14cb74 10325 PIPE_CONF_CHECK_I(has_dp_encoder);
b95af8be
VK
10326
10327 if (INTEL_INFO(dev)->gen < 8) {
10328 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10329 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10330 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10331 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10332 PIPE_CONF_CHECK_I(dp_m_n.tu);
10333
10334 if (current_config->has_drrs) {
10335 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10336 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10337 PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10338 PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10339 PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10340 }
10341 } else {
10342 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10343 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10344 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10345 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10346 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10347 }
eb14cb74 10348
1bd1bd80
DV
10349 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10350 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10351 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10352 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10353 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10354 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10355
10356 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10357 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10358 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10359 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10360 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10361 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10362
c93f54cf 10363 PIPE_CONF_CHECK_I(pixel_multiplier);
6897b4b5 10364 PIPE_CONF_CHECK_I(has_hdmi_sink);
b5a9fa09
DV
10365 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10366 IS_VALLEYVIEW(dev))
10367 PIPE_CONF_CHECK_I(limited_color_range);
6c49f241 10368
9ed109a7
DV
10369 PIPE_CONF_CHECK_I(has_audio);
10370
1bd1bd80
DV
10371 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10372 DRM_MODE_FLAG_INTERLACE);
10373
bb760063
DV
10374 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10375 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10376 DRM_MODE_FLAG_PHSYNC);
10377 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10378 DRM_MODE_FLAG_NHSYNC);
10379 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10380 DRM_MODE_FLAG_PVSYNC);
10381 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10382 DRM_MODE_FLAG_NVSYNC);
10383 }
045ac3b5 10384
37327abd
VS
10385 PIPE_CONF_CHECK_I(pipe_src_w);
10386 PIPE_CONF_CHECK_I(pipe_src_h);
1bd1bd80 10387
9953599b
DV
10388 /*
10389 * FIXME: BIOS likes to set up a cloned config with lvds+external
10390 * screen. Since we don't yet re-compute the pipe config when moving
10391 * just the lvds port away to another pipe the sw tracking won't match.
10392 *
10393 * Proper atomic modesets with recomputed global state will fix this.
10394 * Until then just don't check gmch state for inherited modes.
10395 */
10396 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10397 PIPE_CONF_CHECK_I(gmch_pfit.control);
10398 /* pfit ratios are autocomputed by the hw on gen4+ */
10399 if (INTEL_INFO(dev)->gen < 4)
10400 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10401 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10402 }
10403
fd4daa9c
CW
10404 PIPE_CONF_CHECK_I(pch_pfit.enabled);
10405 if (current_config->pch_pfit.enabled) {
10406 PIPE_CONF_CHECK_I(pch_pfit.pos);
10407 PIPE_CONF_CHECK_I(pch_pfit.size);
10408 }
2fa2fe9a 10409
e59150dc
JB
10410 /* BDW+ don't expose a synchronous way to read the state */
10411 if (IS_HASWELL(dev))
10412 PIPE_CONF_CHECK_I(ips_enabled);
42db64ef 10413
282740f7
VS
10414 PIPE_CONF_CHECK_I(double_wide);
10415
26804afd
DV
10416 PIPE_CONF_CHECK_X(ddi_pll_sel);
10417
c0d43d62 10418 PIPE_CONF_CHECK_I(shared_dpll);
66e985c0 10419 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8bcc2795 10420 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
66e985c0
DV
10421 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10422 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
d452c5b6 10423 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
c0d43d62 10424
42571aef
VS
10425 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10426 PIPE_CONF_CHECK_I(pipe_bpp);
10427
a9a7e98a
JB
10428 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10429 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
5e550656 10430
66e985c0 10431#undef PIPE_CONF_CHECK_X
08a24034 10432#undef PIPE_CONF_CHECK_I
b95af8be 10433#undef PIPE_CONF_CHECK_I_ALT
1bd1bd80 10434#undef PIPE_CONF_CHECK_FLAGS
5e550656 10435#undef PIPE_CONF_CHECK_CLOCK_FUZZY
bb760063 10436#undef PIPE_CONF_QUIRK
88adfff1 10437
0e8ffe1b
DV
10438 return true;
10439}
10440
91d1b4bd
DV
10441static void
10442check_connector_state(struct drm_device *dev)
8af6cf88 10443{
8af6cf88
DV
10444 struct intel_connector *connector;
10445
10446 list_for_each_entry(connector, &dev->mode_config.connector_list,
10447 base.head) {
10448 /* This also checks the encoder/connector hw state with the
10449 * ->get_hw_state callbacks. */
10450 intel_connector_check_state(connector);
10451
10452 WARN(&connector->new_encoder->base != connector->base.encoder,
10453 "connector's staged encoder doesn't match current encoder\n");
10454 }
91d1b4bd
DV
10455}
10456
10457static void
10458check_encoder_state(struct drm_device *dev)
10459{
10460 struct intel_encoder *encoder;
10461 struct intel_connector *connector;
8af6cf88 10462
b2784e15 10463 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
10464 bool enabled = false;
10465 bool active = false;
10466 enum pipe pipe, tracked_pipe;
10467
10468 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10469 encoder->base.base.id,
8e329a03 10470 encoder->base.name);
8af6cf88
DV
10471
10472 WARN(&encoder->new_crtc->base != encoder->base.crtc,
10473 "encoder's stage crtc doesn't match current crtc\n");
10474 WARN(encoder->connectors_active && !encoder->base.crtc,
10475 "encoder's active_connectors set, but no crtc\n");
10476
10477 list_for_each_entry(connector, &dev->mode_config.connector_list,
10478 base.head) {
10479 if (connector->base.encoder != &encoder->base)
10480 continue;
10481 enabled = true;
10482 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10483 active = true;
10484 }
0e32b39c
DA
10485 /*
10486 * for MST connectors if we unplug the connector is gone
10487 * away but the encoder is still connected to a crtc
10488 * until a modeset happens in response to the hotplug.
10489 */
10490 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10491 continue;
10492
8af6cf88
DV
10493 WARN(!!encoder->base.crtc != enabled,
10494 "encoder's enabled state mismatch "
10495 "(expected %i, found %i)\n",
10496 !!encoder->base.crtc, enabled);
10497 WARN(active && !encoder->base.crtc,
10498 "active encoder with no crtc\n");
10499
10500 WARN(encoder->connectors_active != active,
10501 "encoder's computed active state doesn't match tracked active state "
10502 "(expected %i, found %i)\n", active, encoder->connectors_active);
10503
10504 active = encoder->get_hw_state(encoder, &pipe);
10505 WARN(active != encoder->connectors_active,
10506 "encoder's hw state doesn't match sw tracking "
10507 "(expected %i, found %i)\n",
10508 encoder->connectors_active, active);
10509
10510 if (!encoder->base.crtc)
10511 continue;
10512
10513 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10514 WARN(active && pipe != tracked_pipe,
10515 "active encoder's pipe doesn't match"
10516 "(expected %i, found %i)\n",
10517 tracked_pipe, pipe);
10518
10519 }
91d1b4bd
DV
10520}
10521
10522static void
10523check_crtc_state(struct drm_device *dev)
10524{
fbee40df 10525 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10526 struct intel_crtc *crtc;
10527 struct intel_encoder *encoder;
10528 struct intel_crtc_config pipe_config;
8af6cf88 10529
d3fcc808 10530 for_each_intel_crtc(dev, crtc) {
8af6cf88
DV
10531 bool enabled = false;
10532 bool active = false;
10533
045ac3b5
JB
10534 memset(&pipe_config, 0, sizeof(pipe_config));
10535
8af6cf88
DV
10536 DRM_DEBUG_KMS("[CRTC:%d]\n",
10537 crtc->base.base.id);
10538
10539 WARN(crtc->active && !crtc->base.enabled,
10540 "active crtc, but not enabled in sw tracking\n");
10541
b2784e15 10542 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
10543 if (encoder->base.crtc != &crtc->base)
10544 continue;
10545 enabled = true;
10546 if (encoder->connectors_active)
10547 active = true;
10548 }
6c49f241 10549
8af6cf88
DV
10550 WARN(active != crtc->active,
10551 "crtc's computed active state doesn't match tracked active state "
10552 "(expected %i, found %i)\n", active, crtc->active);
10553 WARN(enabled != crtc->base.enabled,
10554 "crtc's computed enabled state doesn't match tracked enabled state "
10555 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10556
0e8ffe1b
DV
10557 active = dev_priv->display.get_pipe_config(crtc,
10558 &pipe_config);
d62cf62a 10559
b6b5d049
VS
10560 /* hw state is inconsistent with the pipe quirk */
10561 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
10562 (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
d62cf62a
DV
10563 active = crtc->active;
10564
b2784e15 10565 for_each_intel_encoder(dev, encoder) {
3eaba51c 10566 enum pipe pipe;
6c49f241
DV
10567 if (encoder->base.crtc != &crtc->base)
10568 continue;
1d37b689 10569 if (encoder->get_hw_state(encoder, &pipe))
6c49f241
DV
10570 encoder->get_config(encoder, &pipe_config);
10571 }
10572
0e8ffe1b
DV
10573 WARN(crtc->active != active,
10574 "crtc active state doesn't match with hw state "
10575 "(expected %i, found %i)\n", crtc->active, active);
10576
c0b03411
DV
10577 if (active &&
10578 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10579 WARN(1, "pipe state doesn't match!\n");
10580 intel_dump_pipe_config(crtc, &pipe_config,
10581 "[hw state]");
10582 intel_dump_pipe_config(crtc, &crtc->config,
10583 "[sw state]");
10584 }
8af6cf88
DV
10585 }
10586}
10587
91d1b4bd
DV
10588static void
10589check_shared_dpll_state(struct drm_device *dev)
10590{
fbee40df 10591 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10592 struct intel_crtc *crtc;
10593 struct intel_dpll_hw_state dpll_hw_state;
10594 int i;
5358901f
DV
10595
10596 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10597 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10598 int enabled_crtcs = 0, active_crtcs = 0;
10599 bool active;
10600
10601 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10602
10603 DRM_DEBUG_KMS("%s\n", pll->name);
10604
10605 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10606
10607 WARN(pll->active > pll->refcount,
10608 "more active pll users than references: %i vs %i\n",
10609 pll->active, pll->refcount);
10610 WARN(pll->active && !pll->on,
10611 "pll in active use but not on in sw tracking\n");
35c95375
DV
10612 WARN(pll->on && !pll->active,
10613 "pll in on but not on in use in sw tracking\n");
5358901f
DV
10614 WARN(pll->on != active,
10615 "pll on state mismatch (expected %i, found %i)\n",
10616 pll->on, active);
10617
d3fcc808 10618 for_each_intel_crtc(dev, crtc) {
5358901f
DV
10619 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10620 enabled_crtcs++;
10621 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10622 active_crtcs++;
10623 }
10624 WARN(pll->active != active_crtcs,
10625 "pll active crtcs mismatch (expected %i, found %i)\n",
10626 pll->active, active_crtcs);
10627 WARN(pll->refcount != enabled_crtcs,
10628 "pll enabled crtcs mismatch (expected %i, found %i)\n",
10629 pll->refcount, enabled_crtcs);
66e985c0
DV
10630
10631 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
10632 sizeof(dpll_hw_state)),
10633 "pll hw state mismatch\n");
5358901f 10634 }
8af6cf88
DV
10635}
10636
91d1b4bd
DV
10637void
10638intel_modeset_check_state(struct drm_device *dev)
10639{
10640 check_connector_state(dev);
10641 check_encoder_state(dev);
10642 check_crtc_state(dev);
10643 check_shared_dpll_state(dev);
10644}
10645
18442d08
VS
10646void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
10647 int dotclock)
10648{
10649 /*
10650 * FDI already provided one idea for the dotclock.
10651 * Yell if the encoder disagrees.
10652 */
241bfc38 10653 WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
18442d08 10654 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
241bfc38 10655 pipe_config->adjusted_mode.crtc_clock, dotclock);
18442d08
VS
10656}
10657
80715b2f
VS
10658static void update_scanline_offset(struct intel_crtc *crtc)
10659{
10660 struct drm_device *dev = crtc->base.dev;
10661
10662 /*
10663 * The scanline counter increments at the leading edge of hsync.
10664 *
10665 * On most platforms it starts counting from vtotal-1 on the
10666 * first active line. That means the scanline counter value is
10667 * always one less than what we would expect. Ie. just after
10668 * start of vblank, which also occurs at start of hsync (on the
10669 * last active line), the scanline counter will read vblank_start-1.
10670 *
10671 * On gen2 the scanline counter starts counting from 1 instead
10672 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10673 * to keep the value positive), instead of adding one.
10674 *
10675 * On HSW+ the behaviour of the scanline counter depends on the output
10676 * type. For DP ports it behaves like most other platforms, but on HDMI
10677 * there's an extra 1 line difference. So we need to add two instead of
10678 * one to the value.
10679 */
10680 if (IS_GEN2(dev)) {
10681 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
10682 int vtotal;
10683
10684 vtotal = mode->crtc_vtotal;
10685 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10686 vtotal /= 2;
10687
10688 crtc->scanline_offset = vtotal - 1;
10689 } else if (HAS_DDI(dev) &&
409ee761 10690 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
80715b2f
VS
10691 crtc->scanline_offset = 2;
10692 } else
10693 crtc->scanline_offset = 1;
10694}
10695
f30da187
DV
10696static int __intel_set_mode(struct drm_crtc *crtc,
10697 struct drm_display_mode *mode,
10698 int x, int y, struct drm_framebuffer *fb)
a6778b3c
DV
10699{
10700 struct drm_device *dev = crtc->dev;
fbee40df 10701 struct drm_i915_private *dev_priv = dev->dev_private;
4b4b9238 10702 struct drm_display_mode *saved_mode;
b8cecdf5 10703 struct intel_crtc_config *pipe_config = NULL;
25c5b266
DV
10704 struct intel_crtc *intel_crtc;
10705 unsigned disable_pipes, prepare_pipes, modeset_pipes;
c0c36b94 10706 int ret = 0;
a6778b3c 10707
4b4b9238 10708 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
c0c36b94
CW
10709 if (!saved_mode)
10710 return -ENOMEM;
a6778b3c 10711
e2e1ed41 10712 intel_modeset_affected_pipes(crtc, &modeset_pipes,
25c5b266
DV
10713 &prepare_pipes, &disable_pipes);
10714
3ac18232 10715 *saved_mode = crtc->mode;
a6778b3c 10716
25c5b266
DV
10717 /* Hack: Because we don't (yet) support global modeset on multiple
10718 * crtcs, we don't keep track of the new mode for more than one crtc.
10719 * Hence simply check whether any bit is set in modeset_pipes in all the
10720 * pieces of code that are not yet converted to deal with mutliple crtcs
10721 * changing their mode at the same time. */
25c5b266 10722 if (modeset_pipes) {
4e53c2e0 10723 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
b8cecdf5
DV
10724 if (IS_ERR(pipe_config)) {
10725 ret = PTR_ERR(pipe_config);
10726 pipe_config = NULL;
10727
3ac18232 10728 goto out;
25c5b266 10729 }
c0b03411
DV
10730 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
10731 "[modeset]");
50741abc 10732 to_intel_crtc(crtc)->new_config = pipe_config;
25c5b266 10733 }
a6778b3c 10734
30a970c6
JB
10735 /*
10736 * See if the config requires any additional preparation, e.g.
10737 * to adjust global state with pipes off. We need to do this
10738 * here so we can get the modeset_pipe updated config for the new
10739 * mode set on this crtc. For other crtcs we need to use the
10740 * adjusted_mode bits in the crtc directly.
10741 */
c164f833 10742 if (IS_VALLEYVIEW(dev)) {
2f2d7aa1 10743 valleyview_modeset_global_pipes(dev, &prepare_pipes);
30a970c6 10744
c164f833
VS
10745 /* may have added more to prepare_pipes than we should */
10746 prepare_pipes &= ~disable_pipes;
10747 }
10748
460da916
DV
10749 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
10750 intel_crtc_disable(&intel_crtc->base);
10751
ea9d758d
DV
10752 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10753 if (intel_crtc->base.enabled)
10754 dev_priv->display.crtc_disable(&intel_crtc->base);
10755 }
a6778b3c 10756
6c4c86f5
DV
10757 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
10758 * to set it here already despite that we pass it down the callchain.
f6e5b160 10759 */
b8cecdf5 10760 if (modeset_pipes) {
25c5b266 10761 crtc->mode = *mode;
b8cecdf5
DV
10762 /* mode_set/enable/disable functions rely on a correct pipe
10763 * config. */
10764 to_intel_crtc(crtc)->config = *pipe_config;
50741abc 10765 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
c326c0a9
VS
10766
10767 /*
10768 * Calculate and store various constants which
10769 * are later needed by vblank and swap-completion
10770 * timestamping. They are derived from true hwmode.
10771 */
10772 drm_calc_timestamping_constants(crtc,
10773 &pipe_config->adjusted_mode);
b8cecdf5 10774 }
7758a113 10775
ea9d758d
DV
10776 /* Only after disabling all output pipelines that will be changed can we
10777 * update the the output configuration. */
10778 intel_modeset_update_state(dev, prepare_pipes);
f6e5b160 10779
47fab737
DV
10780 if (dev_priv->display.modeset_global_resources)
10781 dev_priv->display.modeset_global_resources(dev);
10782
a6778b3c
DV
10783 /* Set up the DPLL and any encoders state that needs to adjust or depend
10784 * on the DPLL.
f6e5b160 10785 */
25c5b266 10786 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
2ff8fde1
MR
10787 struct drm_framebuffer *old_fb = crtc->primary->fb;
10788 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
10789 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
4c10794f
DV
10790
10791 mutex_lock(&dev->struct_mutex);
10792 ret = intel_pin_and_fence_fb_obj(dev,
a071fa00 10793 obj,
4c10794f
DV
10794 NULL);
10795 if (ret != 0) {
10796 DRM_ERROR("pin & fence failed\n");
10797 mutex_unlock(&dev->struct_mutex);
10798 goto done;
10799 }
2ff8fde1 10800 if (old_fb)
a071fa00 10801 intel_unpin_fb_obj(old_obj);
a071fa00
DV
10802 i915_gem_track_fb(old_obj, obj,
10803 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
4c10794f
DV
10804 mutex_unlock(&dev->struct_mutex);
10805
10806 crtc->primary->fb = fb;
10807 crtc->x = x;
10808 crtc->y = y;
10809
c7653199 10810 ret = dev_priv->display.crtc_mode_set(intel_crtc, x, y, fb);
c0c36b94
CW
10811 if (ret)
10812 goto done;
a6778b3c
DV
10813 }
10814
10815 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
80715b2f
VS
10816 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10817 update_scanline_offset(intel_crtc);
10818
25c5b266 10819 dev_priv->display.crtc_enable(&intel_crtc->base);
80715b2f 10820 }
a6778b3c 10821
a6778b3c
DV
10822 /* FIXME: add subpixel order */
10823done:
4b4b9238 10824 if (ret && crtc->enabled)
3ac18232 10825 crtc->mode = *saved_mode;
a6778b3c 10826
3ac18232 10827out:
b8cecdf5 10828 kfree(pipe_config);
3ac18232 10829 kfree(saved_mode);
a6778b3c 10830 return ret;
f6e5b160
CW
10831}
10832
e7457a9a
DL
10833static int intel_set_mode(struct drm_crtc *crtc,
10834 struct drm_display_mode *mode,
10835 int x, int y, struct drm_framebuffer *fb)
f30da187
DV
10836{
10837 int ret;
10838
10839 ret = __intel_set_mode(crtc, mode, x, y, fb);
10840
10841 if (ret == 0)
10842 intel_modeset_check_state(crtc->dev);
10843
10844 return ret;
10845}
10846
c0c36b94
CW
10847void intel_crtc_restore_mode(struct drm_crtc *crtc)
10848{
f4510a27 10849 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
c0c36b94
CW
10850}
10851
25c5b266
DV
10852#undef for_each_intel_crtc_masked
10853
d9e55608
DV
10854static void intel_set_config_free(struct intel_set_config *config)
10855{
10856 if (!config)
10857 return;
10858
1aa4b628
DV
10859 kfree(config->save_connector_encoders);
10860 kfree(config->save_encoder_crtcs);
7668851f 10861 kfree(config->save_crtc_enabled);
d9e55608
DV
10862 kfree(config);
10863}
10864
85f9eb71
DV
10865static int intel_set_config_save_state(struct drm_device *dev,
10866 struct intel_set_config *config)
10867{
7668851f 10868 struct drm_crtc *crtc;
85f9eb71
DV
10869 struct drm_encoder *encoder;
10870 struct drm_connector *connector;
10871 int count;
10872
7668851f
VS
10873 config->save_crtc_enabled =
10874 kcalloc(dev->mode_config.num_crtc,
10875 sizeof(bool), GFP_KERNEL);
10876 if (!config->save_crtc_enabled)
10877 return -ENOMEM;
10878
1aa4b628
DV
10879 config->save_encoder_crtcs =
10880 kcalloc(dev->mode_config.num_encoder,
10881 sizeof(struct drm_crtc *), GFP_KERNEL);
10882 if (!config->save_encoder_crtcs)
85f9eb71
DV
10883 return -ENOMEM;
10884
1aa4b628
DV
10885 config->save_connector_encoders =
10886 kcalloc(dev->mode_config.num_connector,
10887 sizeof(struct drm_encoder *), GFP_KERNEL);
10888 if (!config->save_connector_encoders)
85f9eb71
DV
10889 return -ENOMEM;
10890
10891 /* Copy data. Note that driver private data is not affected.
10892 * Should anything bad happen only the expected state is
10893 * restored, not the drivers personal bookkeeping.
10894 */
7668851f 10895 count = 0;
70e1e0ec 10896 for_each_crtc(dev, crtc) {
7668851f
VS
10897 config->save_crtc_enabled[count++] = crtc->enabled;
10898 }
10899
85f9eb71
DV
10900 count = 0;
10901 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
1aa4b628 10902 config->save_encoder_crtcs[count++] = encoder->crtc;
85f9eb71
DV
10903 }
10904
10905 count = 0;
10906 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1aa4b628 10907 config->save_connector_encoders[count++] = connector->encoder;
85f9eb71
DV
10908 }
10909
10910 return 0;
10911}
10912
10913static void intel_set_config_restore_state(struct drm_device *dev,
10914 struct intel_set_config *config)
10915{
7668851f 10916 struct intel_crtc *crtc;
9a935856
DV
10917 struct intel_encoder *encoder;
10918 struct intel_connector *connector;
85f9eb71
DV
10919 int count;
10920
7668851f 10921 count = 0;
d3fcc808 10922 for_each_intel_crtc(dev, crtc) {
7668851f 10923 crtc->new_enabled = config->save_crtc_enabled[count++];
7bd0a8e7
VS
10924
10925 if (crtc->new_enabled)
10926 crtc->new_config = &crtc->config;
10927 else
10928 crtc->new_config = NULL;
7668851f
VS
10929 }
10930
85f9eb71 10931 count = 0;
b2784e15 10932 for_each_intel_encoder(dev, encoder) {
9a935856
DV
10933 encoder->new_crtc =
10934 to_intel_crtc(config->save_encoder_crtcs[count++]);
85f9eb71
DV
10935 }
10936
10937 count = 0;
9a935856
DV
10938 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
10939 connector->new_encoder =
10940 to_intel_encoder(config->save_connector_encoders[count++]);
85f9eb71
DV
10941 }
10942}
10943
e3de42b6 10944static bool
2e57f47d 10945is_crtc_connector_off(struct drm_mode_set *set)
e3de42b6
ID
10946{
10947 int i;
10948
2e57f47d
CW
10949 if (set->num_connectors == 0)
10950 return false;
10951
10952 if (WARN_ON(set->connectors == NULL))
10953 return false;
10954
10955 for (i = 0; i < set->num_connectors; i++)
10956 if (set->connectors[i]->encoder &&
10957 set->connectors[i]->encoder->crtc == set->crtc &&
10958 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
e3de42b6
ID
10959 return true;
10960
10961 return false;
10962}
10963
5e2b584e
DV
10964static void
10965intel_set_config_compute_mode_changes(struct drm_mode_set *set,
10966 struct intel_set_config *config)
10967{
10968
10969 /* We should be able to check here if the fb has the same properties
10970 * and then just flip_or_move it */
2e57f47d
CW
10971 if (is_crtc_connector_off(set)) {
10972 config->mode_changed = true;
f4510a27 10973 } else if (set->crtc->primary->fb != set->fb) {
3b150f08
MR
10974 /*
10975 * If we have no fb, we can only flip as long as the crtc is
10976 * active, otherwise we need a full mode set. The crtc may
10977 * be active if we've only disabled the primary plane, or
10978 * in fastboot situations.
10979 */
f4510a27 10980 if (set->crtc->primary->fb == NULL) {
319d9827
JB
10981 struct intel_crtc *intel_crtc =
10982 to_intel_crtc(set->crtc);
10983
3b150f08 10984 if (intel_crtc->active) {
319d9827
JB
10985 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
10986 config->fb_changed = true;
10987 } else {
10988 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
10989 config->mode_changed = true;
10990 }
5e2b584e
DV
10991 } else if (set->fb == NULL) {
10992 config->mode_changed = true;
72f4901e 10993 } else if (set->fb->pixel_format !=
f4510a27 10994 set->crtc->primary->fb->pixel_format) {
5e2b584e 10995 config->mode_changed = true;
e3de42b6 10996 } else {
5e2b584e 10997 config->fb_changed = true;
e3de42b6 10998 }
5e2b584e
DV
10999 }
11000
835c5873 11001 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
5e2b584e
DV
11002 config->fb_changed = true;
11003
11004 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11005 DRM_DEBUG_KMS("modes are different, full mode set\n");
11006 drm_mode_debug_printmodeline(&set->crtc->mode);
11007 drm_mode_debug_printmodeline(set->mode);
11008 config->mode_changed = true;
11009 }
a1d95703
CW
11010
11011 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11012 set->crtc->base.id, config->mode_changed, config->fb_changed);
5e2b584e
DV
11013}
11014
2e431051 11015static int
9a935856
DV
11016intel_modeset_stage_output_state(struct drm_device *dev,
11017 struct drm_mode_set *set,
11018 struct intel_set_config *config)
50f56119 11019{
9a935856
DV
11020 struct intel_connector *connector;
11021 struct intel_encoder *encoder;
7668851f 11022 struct intel_crtc *crtc;
f3f08572 11023 int ro;
50f56119 11024
9abdda74 11025 /* The upper layers ensure that we either disable a crtc or have a list
9a935856
DV
11026 * of connectors. For paranoia, double-check this. */
11027 WARN_ON(!set->fb && (set->num_connectors != 0));
11028 WARN_ON(set->fb && (set->num_connectors == 0));
11029
9a935856
DV
11030 list_for_each_entry(connector, &dev->mode_config.connector_list,
11031 base.head) {
11032 /* Otherwise traverse passed in connector list and get encoders
11033 * for them. */
50f56119 11034 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11035 if (set->connectors[ro] == &connector->base) {
0e32b39c 11036 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
50f56119
DV
11037 break;
11038 }
11039 }
11040
9a935856
DV
11041 /* If we disable the crtc, disable all its connectors. Also, if
11042 * the connector is on the changing crtc but not on the new
11043 * connector list, disable it. */
11044 if ((!set->fb || ro == set->num_connectors) &&
11045 connector->base.encoder &&
11046 connector->base.encoder->crtc == set->crtc) {
11047 connector->new_encoder = NULL;
11048
11049 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11050 connector->base.base.id,
c23cc417 11051 connector->base.name);
9a935856
DV
11052 }
11053
11054
11055 if (&connector->new_encoder->base != connector->base.encoder) {
50f56119 11056 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
5e2b584e 11057 config->mode_changed = true;
50f56119
DV
11058 }
11059 }
9a935856 11060 /* connector->new_encoder is now updated for all connectors. */
50f56119 11061
9a935856 11062 /* Update crtc of enabled connectors. */
9a935856
DV
11063 list_for_each_entry(connector, &dev->mode_config.connector_list,
11064 base.head) {
7668851f
VS
11065 struct drm_crtc *new_crtc;
11066
9a935856 11067 if (!connector->new_encoder)
50f56119
DV
11068 continue;
11069
9a935856 11070 new_crtc = connector->new_encoder->base.crtc;
50f56119
DV
11071
11072 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11073 if (set->connectors[ro] == &connector->base)
50f56119
DV
11074 new_crtc = set->crtc;
11075 }
11076
11077 /* Make sure the new CRTC will work with the encoder */
14509916
TR
11078 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11079 new_crtc)) {
5e2b584e 11080 return -EINVAL;
50f56119 11081 }
0e32b39c 11082 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
9a935856
DV
11083
11084 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11085 connector->base.base.id,
c23cc417 11086 connector->base.name,
9a935856
DV
11087 new_crtc->base.id);
11088 }
11089
11090 /* Check for any encoders that needs to be disabled. */
b2784e15 11091 for_each_intel_encoder(dev, encoder) {
5a65f358 11092 int num_connectors = 0;
9a935856
DV
11093 list_for_each_entry(connector,
11094 &dev->mode_config.connector_list,
11095 base.head) {
11096 if (connector->new_encoder == encoder) {
11097 WARN_ON(!connector->new_encoder->new_crtc);
5a65f358 11098 num_connectors++;
9a935856
DV
11099 }
11100 }
5a65f358
PZ
11101
11102 if (num_connectors == 0)
11103 encoder->new_crtc = NULL;
11104 else if (num_connectors > 1)
11105 return -EINVAL;
11106
9a935856
DV
11107 /* Only now check for crtc changes so we don't miss encoders
11108 * that will be disabled. */
11109 if (&encoder->new_crtc->base != encoder->base.crtc) {
50f56119 11110 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
5e2b584e 11111 config->mode_changed = true;
50f56119
DV
11112 }
11113 }
9a935856 11114 /* Now we've also updated encoder->new_crtc for all encoders. */
0e32b39c
DA
11115 list_for_each_entry(connector, &dev->mode_config.connector_list,
11116 base.head) {
11117 if (connector->new_encoder)
11118 if (connector->new_encoder != connector->encoder)
11119 connector->encoder = connector->new_encoder;
11120 }
d3fcc808 11121 for_each_intel_crtc(dev, crtc) {
7668851f
VS
11122 crtc->new_enabled = false;
11123
b2784e15 11124 for_each_intel_encoder(dev, encoder) {
7668851f
VS
11125 if (encoder->new_crtc == crtc) {
11126 crtc->new_enabled = true;
11127 break;
11128 }
11129 }
11130
11131 if (crtc->new_enabled != crtc->base.enabled) {
11132 DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11133 crtc->new_enabled ? "en" : "dis");
11134 config->mode_changed = true;
11135 }
7bd0a8e7
VS
11136
11137 if (crtc->new_enabled)
11138 crtc->new_config = &crtc->config;
11139 else
11140 crtc->new_config = NULL;
7668851f
VS
11141 }
11142
2e431051
DV
11143 return 0;
11144}
11145
7d00a1f5
VS
11146static void disable_crtc_nofb(struct intel_crtc *crtc)
11147{
11148 struct drm_device *dev = crtc->base.dev;
11149 struct intel_encoder *encoder;
11150 struct intel_connector *connector;
11151
11152 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11153 pipe_name(crtc->pipe));
11154
11155 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11156 if (connector->new_encoder &&
11157 connector->new_encoder->new_crtc == crtc)
11158 connector->new_encoder = NULL;
11159 }
11160
b2784e15 11161 for_each_intel_encoder(dev, encoder) {
7d00a1f5
VS
11162 if (encoder->new_crtc == crtc)
11163 encoder->new_crtc = NULL;
11164 }
11165
11166 crtc->new_enabled = false;
7bd0a8e7 11167 crtc->new_config = NULL;
7d00a1f5
VS
11168}
11169
2e431051
DV
11170static int intel_crtc_set_config(struct drm_mode_set *set)
11171{
11172 struct drm_device *dev;
2e431051
DV
11173 struct drm_mode_set save_set;
11174 struct intel_set_config *config;
11175 int ret;
2e431051 11176
8d3e375e
DV
11177 BUG_ON(!set);
11178 BUG_ON(!set->crtc);
11179 BUG_ON(!set->crtc->helper_private);
2e431051 11180
7e53f3a4
DV
11181 /* Enforce sane interface api - has been abused by the fb helper. */
11182 BUG_ON(!set->mode && set->fb);
11183 BUG_ON(set->fb && set->num_connectors == 0);
431e50f7 11184
2e431051
DV
11185 if (set->fb) {
11186 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11187 set->crtc->base.id, set->fb->base.id,
11188 (int)set->num_connectors, set->x, set->y);
11189 } else {
11190 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
2e431051
DV
11191 }
11192
11193 dev = set->crtc->dev;
11194
11195 ret = -ENOMEM;
11196 config = kzalloc(sizeof(*config), GFP_KERNEL);
11197 if (!config)
11198 goto out_config;
11199
11200 ret = intel_set_config_save_state(dev, config);
11201 if (ret)
11202 goto out_config;
11203
11204 save_set.crtc = set->crtc;
11205 save_set.mode = &set->crtc->mode;
11206 save_set.x = set->crtc->x;
11207 save_set.y = set->crtc->y;
f4510a27 11208 save_set.fb = set->crtc->primary->fb;
2e431051
DV
11209
11210 /* Compute whether we need a full modeset, only an fb base update or no
11211 * change at all. In the future we might also check whether only the
11212 * mode changed, e.g. for LVDS where we only change the panel fitter in
11213 * such cases. */
11214 intel_set_config_compute_mode_changes(set, config);
11215
9a935856 11216 ret = intel_modeset_stage_output_state(dev, set, config);
2e431051
DV
11217 if (ret)
11218 goto fail;
11219
5e2b584e 11220 if (config->mode_changed) {
c0c36b94
CW
11221 ret = intel_set_mode(set->crtc, set->mode,
11222 set->x, set->y, set->fb);
5e2b584e 11223 } else if (config->fb_changed) {
3b150f08
MR
11224 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11225
4878cae2
VS
11226 intel_crtc_wait_for_pending_flips(set->crtc);
11227
4f660f49 11228 ret = intel_pipe_set_base(set->crtc,
94352cf9 11229 set->x, set->y, set->fb);
3b150f08
MR
11230
11231 /*
11232 * We need to make sure the primary plane is re-enabled if it
11233 * has previously been turned off.
11234 */
11235 if (!intel_crtc->primary_enabled && ret == 0) {
11236 WARN_ON(!intel_crtc->active);
fdd508a6 11237 intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
3b150f08
MR
11238 }
11239
7ca51a3a
JB
11240 /*
11241 * In the fastboot case this may be our only check of the
11242 * state after boot. It would be better to only do it on
11243 * the first update, but we don't have a nice way of doing that
11244 * (and really, set_config isn't used much for high freq page
11245 * flipping, so increasing its cost here shouldn't be a big
11246 * deal).
11247 */
d330a953 11248 if (i915.fastboot && ret == 0)
7ca51a3a 11249 intel_modeset_check_state(set->crtc->dev);
50f56119
DV
11250 }
11251
2d05eae1 11252 if (ret) {
bf67dfeb
DV
11253 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11254 set->crtc->base.id, ret);
50f56119 11255fail:
2d05eae1 11256 intel_set_config_restore_state(dev, config);
50f56119 11257
7d00a1f5
VS
11258 /*
11259 * HACK: if the pipe was on, but we didn't have a framebuffer,
11260 * force the pipe off to avoid oopsing in the modeset code
11261 * due to fb==NULL. This should only happen during boot since
11262 * we don't yet reconstruct the FB from the hardware state.
11263 */
11264 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11265 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11266
2d05eae1
CW
11267 /* Try to restore the config */
11268 if (config->mode_changed &&
11269 intel_set_mode(save_set.crtc, save_set.mode,
11270 save_set.x, save_set.y, save_set.fb))
11271 DRM_ERROR("failed to restore config after modeset failure\n");
11272 }
50f56119 11273
d9e55608
DV
11274out_config:
11275 intel_set_config_free(config);
50f56119
DV
11276 return ret;
11277}
f6e5b160
CW
11278
11279static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160 11280 .gamma_set = intel_crtc_gamma_set,
50f56119 11281 .set_config = intel_crtc_set_config,
f6e5b160
CW
11282 .destroy = intel_crtc_destroy,
11283 .page_flip = intel_crtc_page_flip,
11284};
11285
5358901f
DV
11286static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11287 struct intel_shared_dpll *pll,
11288 struct intel_dpll_hw_state *hw_state)
ee7b9f93 11289{
5358901f 11290 uint32_t val;
ee7b9f93 11291
f458ebbc 11292 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
bd2bb1b9
PZ
11293 return false;
11294
5358901f 11295 val = I915_READ(PCH_DPLL(pll->id));
66e985c0
DV
11296 hw_state->dpll = val;
11297 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11298 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
5358901f
DV
11299
11300 return val & DPLL_VCO_ENABLE;
11301}
11302
15bdd4cf
DV
11303static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11304 struct intel_shared_dpll *pll)
11305{
11306 I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
11307 I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
11308}
11309
e7b903d2
DV
11310static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11311 struct intel_shared_dpll *pll)
11312{
e7b903d2 11313 /* PCH refclock must be enabled first */
89eff4be 11314 ibx_assert_pch_refclk_enabled(dev_priv);
e7b903d2 11315
15bdd4cf
DV
11316 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11317
11318 /* Wait for the clocks to stabilize. */
11319 POSTING_READ(PCH_DPLL(pll->id));
11320 udelay(150);
11321
11322 /* The pixel multiplier can only be updated once the
11323 * DPLL is enabled and the clocks are stable.
11324 *
11325 * So write it again.
11326 */
11327 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11328 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11329 udelay(200);
11330}
11331
11332static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11333 struct intel_shared_dpll *pll)
11334{
11335 struct drm_device *dev = dev_priv->dev;
11336 struct intel_crtc *crtc;
e7b903d2
DV
11337
11338 /* Make sure no transcoder isn't still depending on us. */
d3fcc808 11339 for_each_intel_crtc(dev, crtc) {
e7b903d2
DV
11340 if (intel_crtc_to_shared_dpll(crtc) == pll)
11341 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
ee7b9f93
JB
11342 }
11343
15bdd4cf
DV
11344 I915_WRITE(PCH_DPLL(pll->id), 0);
11345 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11346 udelay(200);
11347}
11348
46edb027
DV
11349static char *ibx_pch_dpll_names[] = {
11350 "PCH DPLL A",
11351 "PCH DPLL B",
11352};
11353
7c74ade1 11354static void ibx_pch_dpll_init(struct drm_device *dev)
ee7b9f93 11355{
e7b903d2 11356 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93
JB
11357 int i;
11358
7c74ade1 11359 dev_priv->num_shared_dpll = 2;
ee7b9f93 11360
e72f9fbf 11361 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
46edb027
DV
11362 dev_priv->shared_dplls[i].id = i;
11363 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
15bdd4cf 11364 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
e7b903d2
DV
11365 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11366 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
5358901f
DV
11367 dev_priv->shared_dplls[i].get_hw_state =
11368 ibx_pch_dpll_get_hw_state;
ee7b9f93
JB
11369 }
11370}
11371
7c74ade1
DV
11372static void intel_shared_dpll_init(struct drm_device *dev)
11373{
e7b903d2 11374 struct drm_i915_private *dev_priv = dev->dev_private;
7c74ade1 11375
9cd86933
DV
11376 if (HAS_DDI(dev))
11377 intel_ddi_pll_init(dev);
11378 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7c74ade1
DV
11379 ibx_pch_dpll_init(dev);
11380 else
11381 dev_priv->num_shared_dpll = 0;
11382
11383 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
7c74ade1
DV
11384}
11385
465c120c
MR
11386static int
11387intel_primary_plane_disable(struct drm_plane *plane)
11388{
11389 struct drm_device *dev = plane->dev;
465c120c
MR
11390 struct intel_crtc *intel_crtc;
11391
11392 if (!plane->fb)
11393 return 0;
11394
11395 BUG_ON(!plane->crtc);
11396
11397 intel_crtc = to_intel_crtc(plane->crtc);
11398
11399 /*
11400 * Even though we checked plane->fb above, it's still possible that
11401 * the primary plane has been implicitly disabled because the crtc
11402 * coordinates given weren't visible, or because we detected
11403 * that it was 100% covered by a sprite plane. Or, the CRTC may be
11404 * off and we've set a fb, but haven't actually turned on the CRTC yet.
11405 * In either case, we need to unpin the FB and let the fb pointer get
11406 * updated, but otherwise we don't need to touch the hardware.
11407 */
11408 if (!intel_crtc->primary_enabled)
11409 goto disable_unpin;
11410
11411 intel_crtc_wait_for_pending_flips(plane->crtc);
fdd508a6
VS
11412 intel_disable_primary_hw_plane(plane, plane->crtc);
11413
465c120c 11414disable_unpin:
4c34574f 11415 mutex_lock(&dev->struct_mutex);
2ff8fde1 11416 i915_gem_track_fb(intel_fb_obj(plane->fb), NULL,
a071fa00 11417 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
2ff8fde1 11418 intel_unpin_fb_obj(intel_fb_obj(plane->fb));
4c34574f 11419 mutex_unlock(&dev->struct_mutex);
465c120c
MR
11420 plane->fb = NULL;
11421
11422 return 0;
11423}
11424
11425static int
3c692a41
GP
11426intel_check_primary_plane(struct drm_plane *plane,
11427 struct intel_plane_state *state)
11428{
11429 struct drm_crtc *crtc = state->crtc;
11430 struct drm_framebuffer *fb = state->fb;
11431 struct drm_rect *dest = &state->dst;
11432 struct drm_rect *src = &state->src;
11433 const struct drm_rect *clip = &state->clip;
ccc759dc 11434
3ead8bb2
GP
11435 return drm_plane_helper_check_update(plane, crtc, fb,
11436 src, dest, clip,
11437 DRM_PLANE_HELPER_NO_SCALING,
11438 DRM_PLANE_HELPER_NO_SCALING,
11439 false, true, &state->visible);
3c692a41
GP
11440}
11441
11442static int
14af293f
GP
11443intel_prepare_primary_plane(struct drm_plane *plane,
11444 struct intel_plane_state *state)
465c120c 11445{
3c692a41
GP
11446 struct drm_crtc *crtc = state->crtc;
11447 struct drm_framebuffer *fb = state->fb;
465c120c 11448 struct drm_device *dev = crtc->dev;
465c120c 11449 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ccc759dc 11450 enum pipe pipe = intel_crtc->pipe;
2ff8fde1
MR
11451 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11452 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
465c120c
MR
11453 int ret;
11454
465c120c
MR
11455 intel_crtc_wait_for_pending_flips(crtc);
11456
ccc759dc
GP
11457 if (intel_crtc_has_pending_flip(crtc)) {
11458 DRM_ERROR("pipe is still busy with an old pageflip\n");
11459 return -EBUSY;
11460 }
11461
14af293f 11462 if (old_obj != obj) {
4c34574f 11463 mutex_lock(&dev->struct_mutex);
ccc759dc
GP
11464 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
11465 if (ret == 0)
11466 i915_gem_track_fb(old_obj, obj,
11467 INTEL_FRONTBUFFER_PRIMARY(pipe));
11468 mutex_unlock(&dev->struct_mutex);
11469 if (ret != 0) {
11470 DRM_DEBUG_KMS("pin & fence failed\n");
11471 return ret;
11472 }
11473 }
11474
14af293f
GP
11475 return 0;
11476}
11477
11478static void
11479intel_commit_primary_plane(struct drm_plane *plane,
11480 struct intel_plane_state *state)
11481{
11482 struct drm_crtc *crtc = state->crtc;
11483 struct drm_framebuffer *fb = state->fb;
11484 struct drm_device *dev = crtc->dev;
11485 struct drm_i915_private *dev_priv = dev->dev_private;
11486 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11487 enum pipe pipe = intel_crtc->pipe;
11488 struct drm_framebuffer *old_fb = plane->fb;
11489 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11490 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11491 struct intel_plane *intel_plane = to_intel_plane(plane);
11492 struct drm_rect *src = &state->src;
11493
ccc759dc
GP
11494 crtc->primary->fb = fb;
11495 crtc->x = src->x1;
11496 crtc->y = src->y1;
11497
11498 intel_plane->crtc_x = state->orig_dst.x1;
11499 intel_plane->crtc_y = state->orig_dst.y1;
11500 intel_plane->crtc_w = drm_rect_width(&state->orig_dst);
11501 intel_plane->crtc_h = drm_rect_height(&state->orig_dst);
11502 intel_plane->src_x = state->orig_src.x1;
11503 intel_plane->src_y = state->orig_src.y1;
11504 intel_plane->src_w = drm_rect_width(&state->orig_src);
11505 intel_plane->src_h = drm_rect_height(&state->orig_src);
11506 intel_plane->obj = obj;
4c34574f 11507
ccc759dc 11508 if (intel_crtc->active) {
465c120c 11509 /*
ccc759dc
GP
11510 * FBC does not work on some platforms for rotated
11511 * planes, so disable it when rotation is not 0 and
11512 * update it when rotation is set back to 0.
11513 *
11514 * FIXME: This is redundant with the fbc update done in
11515 * the primary plane enable function except that that
11516 * one is done too late. We eventually need to unify
11517 * this.
465c120c 11518 */
ccc759dc
GP
11519 if (intel_crtc->primary_enabled &&
11520 INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11521 dev_priv->fbc.plane == intel_crtc->plane &&
11522 intel_plane->rotation != BIT(DRM_ROTATE_0)) {
11523 intel_disable_fbc(dev);
465c120c
MR
11524 }
11525
ccc759dc
GP
11526 if (state->visible) {
11527 bool was_enabled = intel_crtc->primary_enabled;
465c120c 11528
ccc759dc
GP
11529 /* FIXME: kill this fastboot hack */
11530 intel_update_pipe_size(intel_crtc);
465c120c 11531
ccc759dc 11532 intel_crtc->primary_enabled = true;
465c120c 11533
ccc759dc
GP
11534 dev_priv->display.update_primary_plane(crtc, plane->fb,
11535 crtc->x, crtc->y);
4c34574f 11536
48404c1e 11537 /*
ccc759dc
GP
11538 * BDW signals flip done immediately if the plane
11539 * is disabled, even if the plane enable is already
11540 * armed to occur at the next vblank :(
48404c1e 11541 */
ccc759dc
GP
11542 if (IS_BROADWELL(dev) && !was_enabled)
11543 intel_wait_for_vblank(dev, intel_crtc->pipe);
11544 } else {
11545 /*
11546 * If clipping results in a non-visible primary plane,
11547 * we'll disable the primary plane. Note that this is
11548 * a bit different than what happens if userspace
11549 * explicitly disables the plane by passing fb=0
11550 * because plane->fb still gets set and pinned.
11551 */
11552 intel_disable_primary_hw_plane(plane, crtc);
48404c1e 11553 }
465c120c 11554
ccc759dc
GP
11555 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
11556
11557 mutex_lock(&dev->struct_mutex);
11558 intel_update_fbc(dev);
11559 mutex_unlock(&dev->struct_mutex);
ce54d85a 11560 }
465c120c 11561
ccc759dc
GP
11562 if (old_fb && old_fb != fb) {
11563 if (intel_crtc->active)
11564 intel_wait_for_vblank(dev, intel_crtc->pipe);
11565
11566 mutex_lock(&dev->struct_mutex);
11567 intel_unpin_fb_obj(old_obj);
11568 mutex_unlock(&dev->struct_mutex);
11569 }
465c120c
MR
11570}
11571
3c692a41
GP
11572static int
11573intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
11574 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11575 unsigned int crtc_w, unsigned int crtc_h,
11576 uint32_t src_x, uint32_t src_y,
11577 uint32_t src_w, uint32_t src_h)
11578{
11579 struct intel_plane_state state;
11580 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11581 int ret;
11582
11583 state.crtc = crtc;
11584 state.fb = fb;
11585
11586 /* sample coordinates in 16.16 fixed point */
11587 state.src.x1 = src_x;
11588 state.src.x2 = src_x + src_w;
11589 state.src.y1 = src_y;
11590 state.src.y2 = src_y + src_h;
11591
11592 /* integer pixels */
11593 state.dst.x1 = crtc_x;
11594 state.dst.x2 = crtc_x + crtc_w;
11595 state.dst.y1 = crtc_y;
11596 state.dst.y2 = crtc_y + crtc_h;
11597
11598 state.clip.x1 = 0;
11599 state.clip.y1 = 0;
11600 state.clip.x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0;
11601 state.clip.y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0;
11602
11603 state.orig_src = state.src;
11604 state.orig_dst = state.dst;
11605
11606 ret = intel_check_primary_plane(plane, &state);
11607 if (ret)
14af293f
GP
11608 return ret;
11609
11610 ret = intel_prepare_primary_plane(plane, &state);
11611 if (ret)
3c692a41
GP
11612 return ret;
11613
11614 intel_commit_primary_plane(plane, &state);
11615
11616 return 0;
11617}
11618
3d7d6510
MR
11619/* Common destruction function for both primary and cursor planes */
11620static void intel_plane_destroy(struct drm_plane *plane)
465c120c
MR
11621{
11622 struct intel_plane *intel_plane = to_intel_plane(plane);
11623 drm_plane_cleanup(plane);
11624 kfree(intel_plane);
11625}
11626
11627static const struct drm_plane_funcs intel_primary_plane_funcs = {
11628 .update_plane = intel_primary_plane_setplane,
11629 .disable_plane = intel_primary_plane_disable,
3d7d6510 11630 .destroy = intel_plane_destroy,
48404c1e 11631 .set_property = intel_plane_set_property
465c120c
MR
11632};
11633
11634static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
11635 int pipe)
11636{
11637 struct intel_plane *primary;
11638 const uint32_t *intel_primary_formats;
11639 int num_formats;
11640
11641 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
11642 if (primary == NULL)
11643 return NULL;
11644
11645 primary->can_scale = false;
11646 primary->max_downscale = 1;
11647 primary->pipe = pipe;
11648 primary->plane = pipe;
48404c1e 11649 primary->rotation = BIT(DRM_ROTATE_0);
465c120c
MR
11650 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
11651 primary->plane = !pipe;
11652
11653 if (INTEL_INFO(dev)->gen <= 3) {
11654 intel_primary_formats = intel_primary_formats_gen2;
11655 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
11656 } else {
11657 intel_primary_formats = intel_primary_formats_gen4;
11658 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
11659 }
11660
11661 drm_universal_plane_init(dev, &primary->base, 0,
11662 &intel_primary_plane_funcs,
11663 intel_primary_formats, num_formats,
11664 DRM_PLANE_TYPE_PRIMARY);
48404c1e
SJ
11665
11666 if (INTEL_INFO(dev)->gen >= 4) {
11667 if (!dev->mode_config.rotation_property)
11668 dev->mode_config.rotation_property =
11669 drm_mode_create_rotation_property(dev,
11670 BIT(DRM_ROTATE_0) |
11671 BIT(DRM_ROTATE_180));
11672 if (dev->mode_config.rotation_property)
11673 drm_object_attach_property(&primary->base.base,
11674 dev->mode_config.rotation_property,
11675 primary->rotation);
11676 }
11677
465c120c
MR
11678 return &primary->base;
11679}
11680
3d7d6510
MR
11681static int
11682intel_cursor_plane_disable(struct drm_plane *plane)
11683{
11684 if (!plane->fb)
11685 return 0;
11686
11687 BUG_ON(!plane->crtc);
11688
11689 return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0);
11690}
11691
11692static int
852e787c
GP
11693intel_check_cursor_plane(struct drm_plane *plane,
11694 struct intel_plane_state *state)
3d7d6510 11695{
852e787c 11696 struct drm_crtc *crtc = state->crtc;
757f9a3e 11697 struct drm_device *dev = crtc->dev;
852e787c
GP
11698 struct drm_framebuffer *fb = state->fb;
11699 struct drm_rect *dest = &state->dst;
11700 struct drm_rect *src = &state->src;
11701 const struct drm_rect *clip = &state->clip;
757f9a3e
GP
11702 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11703 int crtc_w, crtc_h;
11704 unsigned stride;
11705 int ret;
3d7d6510 11706
757f9a3e 11707 ret = drm_plane_helper_check_update(plane, crtc, fb,
852e787c 11708 src, dest, clip,
3d7d6510
MR
11709 DRM_PLANE_HELPER_NO_SCALING,
11710 DRM_PLANE_HELPER_NO_SCALING,
852e787c 11711 true, true, &state->visible);
757f9a3e
GP
11712 if (ret)
11713 return ret;
11714
11715
11716 /* if we want to turn off the cursor ignore width and height */
11717 if (!obj)
11718 return 0;
11719
757f9a3e
GP
11720 /* Check for which cursor types we support */
11721 crtc_w = drm_rect_width(&state->orig_dst);
11722 crtc_h = drm_rect_height(&state->orig_dst);
11723 if (!cursor_size_ok(dev, crtc_w, crtc_h)) {
11724 DRM_DEBUG("Cursor dimension not supported\n");
11725 return -EINVAL;
11726 }
11727
11728 stride = roundup_pow_of_two(crtc_w) * 4;
11729 if (obj->base.size < stride * crtc_h) {
11730 DRM_DEBUG_KMS("buffer is too small\n");
11731 return -ENOMEM;
11732 }
11733
e391ea88
GP
11734 if (fb == crtc->cursor->fb)
11735 return 0;
11736
757f9a3e
GP
11737 /* we only need to pin inside GTT if cursor is non-phy */
11738 mutex_lock(&dev->struct_mutex);
11739 if (!INTEL_INFO(dev)->cursor_needs_physical && obj->tiling_mode) {
11740 DRM_DEBUG_KMS("cursor cannot be tiled\n");
11741 ret = -EINVAL;
11742 }
11743 mutex_unlock(&dev->struct_mutex);
11744
11745 return ret;
852e787c 11746}
3d7d6510 11747
852e787c
GP
11748static int
11749intel_commit_cursor_plane(struct drm_plane *plane,
11750 struct intel_plane_state *state)
11751{
11752 struct drm_crtc *crtc = state->crtc;
11753 struct drm_framebuffer *fb = state->fb;
11754 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a919db90 11755 struct intel_plane *intel_plane = to_intel_plane(plane);
852e787c
GP
11756 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
11757 struct drm_i915_gem_object *obj = intel_fb->obj;
11758 int crtc_w, crtc_h;
11759
11760 crtc->cursor_x = state->orig_dst.x1;
11761 crtc->cursor_y = state->orig_dst.y1;
a919db90
SJ
11762
11763 intel_plane->crtc_x = state->orig_dst.x1;
11764 intel_plane->crtc_y = state->orig_dst.y1;
11765 intel_plane->crtc_w = drm_rect_width(&state->orig_dst);
11766 intel_plane->crtc_h = drm_rect_height(&state->orig_dst);
11767 intel_plane->src_x = state->orig_src.x1;
11768 intel_plane->src_y = state->orig_src.y1;
11769 intel_plane->src_w = drm_rect_width(&state->orig_src);
11770 intel_plane->src_h = drm_rect_height(&state->orig_src);
11771 intel_plane->obj = obj;
11772
3d7d6510 11773 if (fb != crtc->cursor->fb) {
852e787c
GP
11774 crtc_w = drm_rect_width(&state->orig_dst);
11775 crtc_h = drm_rect_height(&state->orig_dst);
3d7d6510
MR
11776 return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h);
11777 } else {
852e787c 11778 intel_crtc_update_cursor(crtc, state->visible);
4ed91096
DV
11779
11780 intel_frontbuffer_flip(crtc->dev,
11781 INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe));
11782
3d7d6510
MR
11783 return 0;
11784 }
11785}
852e787c
GP
11786
11787static int
11788intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
11789 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11790 unsigned int crtc_w, unsigned int crtc_h,
11791 uint32_t src_x, uint32_t src_y,
11792 uint32_t src_w, uint32_t src_h)
11793{
11794 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11795 struct intel_plane_state state;
11796 int ret;
11797
11798 state.crtc = crtc;
11799 state.fb = fb;
11800
11801 /* sample coordinates in 16.16 fixed point */
11802 state.src.x1 = src_x;
11803 state.src.x2 = src_x + src_w;
11804 state.src.y1 = src_y;
11805 state.src.y2 = src_y + src_h;
11806
11807 /* integer pixels */
11808 state.dst.x1 = crtc_x;
11809 state.dst.x2 = crtc_x + crtc_w;
11810 state.dst.y1 = crtc_y;
11811 state.dst.y2 = crtc_y + crtc_h;
11812
11813 state.clip.x1 = 0;
11814 state.clip.y1 = 0;
11815 state.clip.x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0;
11816 state.clip.y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0;
11817
11818 state.orig_src = state.src;
11819 state.orig_dst = state.dst;
11820
11821 ret = intel_check_cursor_plane(plane, &state);
11822 if (ret)
11823 return ret;
11824
11825 return intel_commit_cursor_plane(plane, &state);
11826}
11827
3d7d6510
MR
11828static const struct drm_plane_funcs intel_cursor_plane_funcs = {
11829 .update_plane = intel_cursor_plane_update,
11830 .disable_plane = intel_cursor_plane_disable,
11831 .destroy = intel_plane_destroy,
4398ad45 11832 .set_property = intel_plane_set_property,
3d7d6510
MR
11833};
11834
11835static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
11836 int pipe)
11837{
11838 struct intel_plane *cursor;
11839
11840 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
11841 if (cursor == NULL)
11842 return NULL;
11843
11844 cursor->can_scale = false;
11845 cursor->max_downscale = 1;
11846 cursor->pipe = pipe;
11847 cursor->plane = pipe;
4398ad45 11848 cursor->rotation = BIT(DRM_ROTATE_0);
3d7d6510
MR
11849
11850 drm_universal_plane_init(dev, &cursor->base, 0,
11851 &intel_cursor_plane_funcs,
11852 intel_cursor_formats,
11853 ARRAY_SIZE(intel_cursor_formats),
11854 DRM_PLANE_TYPE_CURSOR);
4398ad45
VS
11855
11856 if (INTEL_INFO(dev)->gen >= 4) {
11857 if (!dev->mode_config.rotation_property)
11858 dev->mode_config.rotation_property =
11859 drm_mode_create_rotation_property(dev,
11860 BIT(DRM_ROTATE_0) |
11861 BIT(DRM_ROTATE_180));
11862 if (dev->mode_config.rotation_property)
11863 drm_object_attach_property(&cursor->base.base,
11864 dev->mode_config.rotation_property,
11865 cursor->rotation);
11866 }
11867
3d7d6510
MR
11868 return &cursor->base;
11869}
11870
b358d0a6 11871static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 11872{
fbee40df 11873 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 11874 struct intel_crtc *intel_crtc;
3d7d6510
MR
11875 struct drm_plane *primary = NULL;
11876 struct drm_plane *cursor = NULL;
465c120c 11877 int i, ret;
79e53945 11878
955382f3 11879 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
79e53945
JB
11880 if (intel_crtc == NULL)
11881 return;
11882
465c120c 11883 primary = intel_primary_plane_create(dev, pipe);
3d7d6510
MR
11884 if (!primary)
11885 goto fail;
11886
11887 cursor = intel_cursor_plane_create(dev, pipe);
11888 if (!cursor)
11889 goto fail;
11890
465c120c 11891 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
3d7d6510
MR
11892 cursor, &intel_crtc_funcs);
11893 if (ret)
11894 goto fail;
79e53945
JB
11895
11896 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
11897 for (i = 0; i < 256; i++) {
11898 intel_crtc->lut_r[i] = i;
11899 intel_crtc->lut_g[i] = i;
11900 intel_crtc->lut_b[i] = i;
11901 }
11902
1f1c2e24
VS
11903 /*
11904 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
8c0f92e1 11905 * is hooked to pipe B. Hence we want plane A feeding pipe B.
1f1c2e24 11906 */
80824003
JB
11907 intel_crtc->pipe = pipe;
11908 intel_crtc->plane = pipe;
3a77c4c4 11909 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
28c97730 11910 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 11911 intel_crtc->plane = !pipe;
80824003
JB
11912 }
11913
4b0e333e
CW
11914 intel_crtc->cursor_base = ~0;
11915 intel_crtc->cursor_cntl = ~0;
dc41c154 11916 intel_crtc->cursor_size = ~0;
8d7849db 11917
22fd0fab
JB
11918 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
11919 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
11920 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
11921 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
11922
79e53945 11923 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
87b6b101
DV
11924
11925 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
3d7d6510
MR
11926 return;
11927
11928fail:
11929 if (primary)
11930 drm_plane_cleanup(primary);
11931 if (cursor)
11932 drm_plane_cleanup(cursor);
11933 kfree(intel_crtc);
79e53945
JB
11934}
11935
752aa88a
JB
11936enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
11937{
11938 struct drm_encoder *encoder = connector->base.encoder;
6e9f798d 11939 struct drm_device *dev = connector->base.dev;
752aa88a 11940
51fd371b 11941 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
752aa88a
JB
11942
11943 if (!encoder)
11944 return INVALID_PIPE;
11945
11946 return to_intel_crtc(encoder->crtc)->pipe;
11947}
11948
08d7b3d1 11949int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 11950 struct drm_file *file)
08d7b3d1 11951{
08d7b3d1 11952 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7707e653 11953 struct drm_crtc *drmmode_crtc;
c05422d5 11954 struct intel_crtc *crtc;
08d7b3d1 11955
1cff8f6b
DV
11956 if (!drm_core_check_feature(dev, DRIVER_MODESET))
11957 return -ENODEV;
08d7b3d1 11958
7707e653 11959 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
08d7b3d1 11960
7707e653 11961 if (!drmmode_crtc) {
08d7b3d1 11962 DRM_ERROR("no such CRTC id\n");
3f2c2057 11963 return -ENOENT;
08d7b3d1
CW
11964 }
11965
7707e653 11966 crtc = to_intel_crtc(drmmode_crtc);
c05422d5 11967 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 11968
c05422d5 11969 return 0;
08d7b3d1
CW
11970}
11971
66a9278e 11972static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 11973{
66a9278e
DV
11974 struct drm_device *dev = encoder->base.dev;
11975 struct intel_encoder *source_encoder;
79e53945 11976 int index_mask = 0;
79e53945
JB
11977 int entry = 0;
11978
b2784e15 11979 for_each_intel_encoder(dev, source_encoder) {
bc079e8b 11980 if (encoders_cloneable(encoder, source_encoder))
66a9278e
DV
11981 index_mask |= (1 << entry);
11982
79e53945
JB
11983 entry++;
11984 }
4ef69c7a 11985
79e53945
JB
11986 return index_mask;
11987}
11988
4d302442
CW
11989static bool has_edp_a(struct drm_device *dev)
11990{
11991 struct drm_i915_private *dev_priv = dev->dev_private;
11992
11993 if (!IS_MOBILE(dev))
11994 return false;
11995
11996 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
11997 return false;
11998
e3589908 11999 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
4d302442
CW
12000 return false;
12001
12002 return true;
12003}
12004
ba0fbca4
DL
12005const char *intel_output_name(int output)
12006{
12007 static const char *names[] = {
12008 [INTEL_OUTPUT_UNUSED] = "Unused",
12009 [INTEL_OUTPUT_ANALOG] = "Analog",
12010 [INTEL_OUTPUT_DVO] = "DVO",
12011 [INTEL_OUTPUT_SDVO] = "SDVO",
12012 [INTEL_OUTPUT_LVDS] = "LVDS",
12013 [INTEL_OUTPUT_TVOUT] = "TV",
12014 [INTEL_OUTPUT_HDMI] = "HDMI",
12015 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
12016 [INTEL_OUTPUT_EDP] = "eDP",
12017 [INTEL_OUTPUT_DSI] = "DSI",
12018 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
12019 };
12020
12021 if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
12022 return "Invalid";
12023
12024 return names[output];
12025}
12026
84b4e042
JB
12027static bool intel_crt_present(struct drm_device *dev)
12028{
12029 struct drm_i915_private *dev_priv = dev->dev_private;
12030
884497ed
DL
12031 if (INTEL_INFO(dev)->gen >= 9)
12032 return false;
12033
cf404ce4 12034 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
84b4e042
JB
12035 return false;
12036
12037 if (IS_CHERRYVIEW(dev))
12038 return false;
12039
12040 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12041 return false;
12042
12043 return true;
12044}
12045
79e53945
JB
12046static void intel_setup_outputs(struct drm_device *dev)
12047{
725e30ad 12048 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 12049 struct intel_encoder *encoder;
cb0953d7 12050 bool dpd_is_edp = false;
79e53945 12051
c9093354 12052 intel_lvds_init(dev);
79e53945 12053
84b4e042 12054 if (intel_crt_present(dev))
79935fca 12055 intel_crt_init(dev);
cb0953d7 12056
affa9354 12057 if (HAS_DDI(dev)) {
0e72a5b5
ED
12058 int found;
12059
12060 /* Haswell uses DDI functions to detect digital outputs */
12061 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
12062 /* DDI A only supports eDP */
12063 if (found)
12064 intel_ddi_init(dev, PORT_A);
12065
12066 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12067 * register */
12068 found = I915_READ(SFUSE_STRAP);
12069
12070 if (found & SFUSE_STRAP_DDIB_DETECTED)
12071 intel_ddi_init(dev, PORT_B);
12072 if (found & SFUSE_STRAP_DDIC_DETECTED)
12073 intel_ddi_init(dev, PORT_C);
12074 if (found & SFUSE_STRAP_DDID_DETECTED)
12075 intel_ddi_init(dev, PORT_D);
12076 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 12077 int found;
5d8a7752 12078 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
270b3042
DV
12079
12080 if (has_edp_a(dev))
12081 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 12082
dc0fa718 12083 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
461ed3ca 12084 /* PCH SDVOB multiplex with HDMIB */
eef4eacb 12085 found = intel_sdvo_init(dev, PCH_SDVOB, true);
30ad48b7 12086 if (!found)
e2debe91 12087 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
5eb08b69 12088 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 12089 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
12090 }
12091
dc0fa718 12092 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
e2debe91 12093 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
30ad48b7 12094
dc0fa718 12095 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
e2debe91 12096 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
30ad48b7 12097
5eb08b69 12098 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 12099 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 12100
270b3042 12101 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 12102 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d 12103 } else if (IS_VALLEYVIEW(dev)) {
e17ac6db
VS
12104 /*
12105 * The DP_DETECTED bit is the latched state of the DDC
12106 * SDA pin at boot. However since eDP doesn't require DDC
12107 * (no way to plug in a DP->HDMI dongle) the DDC pins for
12108 * eDP ports may have been muxed to an alternate function.
12109 * Thus we can't rely on the DP_DETECTED bit alone to detect
12110 * eDP ports. Consult the VBT as well as DP_DETECTED to
12111 * detect eDP ports.
12112 */
12113 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED)
585a94b8
AB
12114 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12115 PORT_B);
e17ac6db
VS
12116 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
12117 intel_dp_is_edp(dev, PORT_B))
12118 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
585a94b8 12119
e17ac6db 12120 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED)
6f6005a5
JB
12121 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12122 PORT_C);
e17ac6db
VS
12123 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
12124 intel_dp_is_edp(dev, PORT_C))
12125 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
19c03924 12126
9418c1f1 12127 if (IS_CHERRYVIEW(dev)) {
e17ac6db 12128 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
9418c1f1
VS
12129 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12130 PORT_D);
e17ac6db
VS
12131 /* eDP not supported on port D, so don't check VBT */
12132 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12133 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
9418c1f1
VS
12134 }
12135
3cfca973 12136 intel_dsi_init(dev);
103a196f 12137 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 12138 bool found = false;
7d57382e 12139
e2debe91 12140 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 12141 DRM_DEBUG_KMS("probing SDVOB\n");
e2debe91 12142 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
b01f2c3a
JB
12143 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12144 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
e2debe91 12145 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
b01f2c3a 12146 }
27185ae1 12147
e7281eab 12148 if (!found && SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 12149 intel_dp_init(dev, DP_B, PORT_B);
725e30ad 12150 }
13520b05
KH
12151
12152 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 12153
e2debe91 12154 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 12155 DRM_DEBUG_KMS("probing SDVOC\n");
e2debe91 12156 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
b01f2c3a 12157 }
27185ae1 12158
e2debe91 12159 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
27185ae1 12160
b01f2c3a
JB
12161 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12162 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
e2debe91 12163 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
b01f2c3a 12164 }
e7281eab 12165 if (SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 12166 intel_dp_init(dev, DP_C, PORT_C);
725e30ad 12167 }
27185ae1 12168
b01f2c3a 12169 if (SUPPORTS_INTEGRATED_DP(dev) &&
e7281eab 12170 (I915_READ(DP_D) & DP_DETECTED))
ab9d7c30 12171 intel_dp_init(dev, DP_D, PORT_D);
bad720ff 12172 } else if (IS_GEN2(dev))
79e53945
JB
12173 intel_dvo_init(dev);
12174
103a196f 12175 if (SUPPORTS_TV(dev))
79e53945
JB
12176 intel_tv_init(dev);
12177
7c8f8a70
RV
12178 intel_edp_psr_init(dev);
12179
b2784e15 12180 for_each_intel_encoder(dev, encoder) {
4ef69c7a
CW
12181 encoder->base.possible_crtcs = encoder->crtc_mask;
12182 encoder->base.possible_clones =
66a9278e 12183 intel_encoder_clones(encoder);
79e53945 12184 }
47356eb6 12185
dde86e2d 12186 intel_init_pch_refclk(dev);
270b3042
DV
12187
12188 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
12189}
12190
12191static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12192{
60a5ca01 12193 struct drm_device *dev = fb->dev;
79e53945 12194 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945 12195
ef2d633e 12196 drm_framebuffer_cleanup(fb);
60a5ca01 12197 mutex_lock(&dev->struct_mutex);
ef2d633e 12198 WARN_ON(!intel_fb->obj->framebuffer_references--);
60a5ca01
VS
12199 drm_gem_object_unreference(&intel_fb->obj->base);
12200 mutex_unlock(&dev->struct_mutex);
79e53945
JB
12201 kfree(intel_fb);
12202}
12203
12204static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 12205 struct drm_file *file,
79e53945
JB
12206 unsigned int *handle)
12207{
12208 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 12209 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 12210
05394f39 12211 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
12212}
12213
12214static const struct drm_framebuffer_funcs intel_fb_funcs = {
12215 .destroy = intel_user_framebuffer_destroy,
12216 .create_handle = intel_user_framebuffer_create_handle,
12217};
12218
b5ea642a
DV
12219static int intel_framebuffer_init(struct drm_device *dev,
12220 struct intel_framebuffer *intel_fb,
12221 struct drm_mode_fb_cmd2 *mode_cmd,
12222 struct drm_i915_gem_object *obj)
79e53945 12223{
a57ce0b2 12224 int aligned_height;
a35cdaa0 12225 int pitch_limit;
79e53945
JB
12226 int ret;
12227
dd4916c5
DV
12228 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12229
c16ed4be
CW
12230 if (obj->tiling_mode == I915_TILING_Y) {
12231 DRM_DEBUG("hardware does not support tiling Y\n");
57cd6508 12232 return -EINVAL;
c16ed4be 12233 }
57cd6508 12234
c16ed4be
CW
12235 if (mode_cmd->pitches[0] & 63) {
12236 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12237 mode_cmd->pitches[0]);
57cd6508 12238 return -EINVAL;
c16ed4be 12239 }
57cd6508 12240
a35cdaa0
CW
12241 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12242 pitch_limit = 32*1024;
12243 } else if (INTEL_INFO(dev)->gen >= 4) {
12244 if (obj->tiling_mode)
12245 pitch_limit = 16*1024;
12246 else
12247 pitch_limit = 32*1024;
12248 } else if (INTEL_INFO(dev)->gen >= 3) {
12249 if (obj->tiling_mode)
12250 pitch_limit = 8*1024;
12251 else
12252 pitch_limit = 16*1024;
12253 } else
12254 /* XXX DSPC is limited to 4k tiled */
12255 pitch_limit = 8*1024;
12256
12257 if (mode_cmd->pitches[0] > pitch_limit) {
12258 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12259 obj->tiling_mode ? "tiled" : "linear",
12260 mode_cmd->pitches[0], pitch_limit);
5d7bd705 12261 return -EINVAL;
c16ed4be 12262 }
5d7bd705
VS
12263
12264 if (obj->tiling_mode != I915_TILING_NONE &&
c16ed4be
CW
12265 mode_cmd->pitches[0] != obj->stride) {
12266 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12267 mode_cmd->pitches[0], obj->stride);
5d7bd705 12268 return -EINVAL;
c16ed4be 12269 }
5d7bd705 12270
57779d06 12271 /* Reject formats not supported by any plane early. */
308e5bcb 12272 switch (mode_cmd->pixel_format) {
57779d06 12273 case DRM_FORMAT_C8:
04b3924d
VS
12274 case DRM_FORMAT_RGB565:
12275 case DRM_FORMAT_XRGB8888:
12276 case DRM_FORMAT_ARGB8888:
57779d06
VS
12277 break;
12278 case DRM_FORMAT_XRGB1555:
12279 case DRM_FORMAT_ARGB1555:
c16ed4be 12280 if (INTEL_INFO(dev)->gen > 3) {
4ee62c76
VS
12281 DRM_DEBUG("unsupported pixel format: %s\n",
12282 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12283 return -EINVAL;
c16ed4be 12284 }
57779d06
VS
12285 break;
12286 case DRM_FORMAT_XBGR8888:
12287 case DRM_FORMAT_ABGR8888:
04b3924d
VS
12288 case DRM_FORMAT_XRGB2101010:
12289 case DRM_FORMAT_ARGB2101010:
57779d06
VS
12290 case DRM_FORMAT_XBGR2101010:
12291 case DRM_FORMAT_ABGR2101010:
c16ed4be 12292 if (INTEL_INFO(dev)->gen < 4) {
4ee62c76
VS
12293 DRM_DEBUG("unsupported pixel format: %s\n",
12294 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12295 return -EINVAL;
c16ed4be 12296 }
b5626747 12297 break;
04b3924d
VS
12298 case DRM_FORMAT_YUYV:
12299 case DRM_FORMAT_UYVY:
12300 case DRM_FORMAT_YVYU:
12301 case DRM_FORMAT_VYUY:
c16ed4be 12302 if (INTEL_INFO(dev)->gen < 5) {
4ee62c76
VS
12303 DRM_DEBUG("unsupported pixel format: %s\n",
12304 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12305 return -EINVAL;
c16ed4be 12306 }
57cd6508
CW
12307 break;
12308 default:
4ee62c76
VS
12309 DRM_DEBUG("unsupported pixel format: %s\n",
12310 drm_get_format_name(mode_cmd->pixel_format));
57cd6508
CW
12311 return -EINVAL;
12312 }
12313
90f9a336
VS
12314 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12315 if (mode_cmd->offsets[0] != 0)
12316 return -EINVAL;
12317
a57ce0b2
JB
12318 aligned_height = intel_align_height(dev, mode_cmd->height,
12319 obj->tiling_mode);
53155c0a
DV
12320 /* FIXME drm helper for size checks (especially planar formats)? */
12321 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12322 return -EINVAL;
12323
c7d73f6a
DV
12324 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12325 intel_fb->obj = obj;
80075d49 12326 intel_fb->obj->framebuffer_references++;
c7d73f6a 12327
79e53945
JB
12328 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12329 if (ret) {
12330 DRM_ERROR("framebuffer init failed %d\n", ret);
12331 return ret;
12332 }
12333
79e53945
JB
12334 return 0;
12335}
12336
79e53945
JB
12337static struct drm_framebuffer *
12338intel_user_framebuffer_create(struct drm_device *dev,
12339 struct drm_file *filp,
308e5bcb 12340 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 12341{
05394f39 12342 struct drm_i915_gem_object *obj;
79e53945 12343
308e5bcb
JB
12344 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12345 mode_cmd->handles[0]));
c8725226 12346 if (&obj->base == NULL)
cce13ff7 12347 return ERR_PTR(-ENOENT);
79e53945 12348
d2dff872 12349 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
12350}
12351
4520f53a 12352#ifndef CONFIG_DRM_I915_FBDEV
0632fef6 12353static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
4520f53a
DV
12354{
12355}
12356#endif
12357
79e53945 12358static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 12359 .fb_create = intel_user_framebuffer_create,
0632fef6 12360 .output_poll_changed = intel_fbdev_output_poll_changed,
79e53945
JB
12361};
12362
e70236a8
JB
12363/* Set up chip specific display functions */
12364static void intel_init_display(struct drm_device *dev)
12365{
12366 struct drm_i915_private *dev_priv = dev->dev_private;
12367
ee9300bb
DV
12368 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12369 dev_priv->display.find_dpll = g4x_find_best_dpll;
ef9348c8
CML
12370 else if (IS_CHERRYVIEW(dev))
12371 dev_priv->display.find_dpll = chv_find_best_dpll;
ee9300bb
DV
12372 else if (IS_VALLEYVIEW(dev))
12373 dev_priv->display.find_dpll = vlv_find_best_dpll;
12374 else if (IS_PINEVIEW(dev))
12375 dev_priv->display.find_dpll = pnv_find_best_dpll;
12376 else
12377 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12378
affa9354 12379 if (HAS_DDI(dev)) {
0e8ffe1b 12380 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
4c6baa59 12381 dev_priv->display.get_plane_config = ironlake_get_plane_config;
09b4ddf9 12382 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
4f771f10
PZ
12383 dev_priv->display.crtc_enable = haswell_crtc_enable;
12384 dev_priv->display.crtc_disable = haswell_crtc_disable;
df8ad70c 12385 dev_priv->display.off = ironlake_crtc_off;
70d21f0e
DL
12386 if (INTEL_INFO(dev)->gen >= 9)
12387 dev_priv->display.update_primary_plane =
12388 skylake_update_primary_plane;
12389 else
12390 dev_priv->display.update_primary_plane =
12391 ironlake_update_primary_plane;
09b4ddf9 12392 } else if (HAS_PCH_SPLIT(dev)) {
0e8ffe1b 12393 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
4c6baa59 12394 dev_priv->display.get_plane_config = ironlake_get_plane_config;
f564048e 12395 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
76e5a89c
DV
12396 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12397 dev_priv->display.crtc_disable = ironlake_crtc_disable;
ee7b9f93 12398 dev_priv->display.off = ironlake_crtc_off;
262ca2b0
MR
12399 dev_priv->display.update_primary_plane =
12400 ironlake_update_primary_plane;
89b667f8
JB
12401 } else if (IS_VALLEYVIEW(dev)) {
12402 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12403 dev_priv->display.get_plane_config = i9xx_get_plane_config;
89b667f8
JB
12404 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12405 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12406 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12407 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12408 dev_priv->display.update_primary_plane =
12409 i9xx_update_primary_plane;
f564048e 12410 } else {
0e8ffe1b 12411 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12412 dev_priv->display.get_plane_config = i9xx_get_plane_config;
f564048e 12413 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
76e5a89c
DV
12414 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12415 dev_priv->display.crtc_disable = i9xx_crtc_disable;
ee7b9f93 12416 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12417 dev_priv->display.update_primary_plane =
12418 i9xx_update_primary_plane;
f564048e 12419 }
e70236a8 12420
e70236a8 12421 /* Returns the core display clock speed */
25eb05fc
JB
12422 if (IS_VALLEYVIEW(dev))
12423 dev_priv->display.get_display_clock_speed =
12424 valleyview_get_display_clock_speed;
12425 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
e70236a8
JB
12426 dev_priv->display.get_display_clock_speed =
12427 i945_get_display_clock_speed;
12428 else if (IS_I915G(dev))
12429 dev_priv->display.get_display_clock_speed =
12430 i915_get_display_clock_speed;
257a7ffc 12431 else if (IS_I945GM(dev) || IS_845G(dev))
e70236a8
JB
12432 dev_priv->display.get_display_clock_speed =
12433 i9xx_misc_get_display_clock_speed;
257a7ffc
DV
12434 else if (IS_PINEVIEW(dev))
12435 dev_priv->display.get_display_clock_speed =
12436 pnv_get_display_clock_speed;
e70236a8
JB
12437 else if (IS_I915GM(dev))
12438 dev_priv->display.get_display_clock_speed =
12439 i915gm_get_display_clock_speed;
12440 else if (IS_I865G(dev))
12441 dev_priv->display.get_display_clock_speed =
12442 i865_get_display_clock_speed;
f0f8a9ce 12443 else if (IS_I85X(dev))
e70236a8
JB
12444 dev_priv->display.get_display_clock_speed =
12445 i855_get_display_clock_speed;
12446 else /* 852, 830 */
12447 dev_priv->display.get_display_clock_speed =
12448 i830_get_display_clock_speed;
12449
7c10a2b5 12450 if (IS_GEN5(dev)) {
3bb11b53 12451 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
3bb11b53
SJ
12452 } else if (IS_GEN6(dev)) {
12453 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
3bb11b53
SJ
12454 dev_priv->display.modeset_global_resources =
12455 snb_modeset_global_resources;
12456 } else if (IS_IVYBRIDGE(dev)) {
12457 /* FIXME: detect B0+ stepping and use auto training */
12458 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
3bb11b53
SJ
12459 dev_priv->display.modeset_global_resources =
12460 ivb_modeset_global_resources;
059b2fe9 12461 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3bb11b53 12462 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
3bb11b53
SJ
12463 dev_priv->display.modeset_global_resources =
12464 haswell_modeset_global_resources;
30a970c6
JB
12465 } else if (IS_VALLEYVIEW(dev)) {
12466 dev_priv->display.modeset_global_resources =
12467 valleyview_modeset_global_resources;
02c29259 12468 } else if (INTEL_INFO(dev)->gen >= 9) {
02c29259
S
12469 dev_priv->display.modeset_global_resources =
12470 haswell_modeset_global_resources;
e70236a8 12471 }
8c9f3aaf
JB
12472
12473 /* Default just returns -ENODEV to indicate unsupported */
12474 dev_priv->display.queue_flip = intel_default_queue_flip;
12475
12476 switch (INTEL_INFO(dev)->gen) {
12477 case 2:
12478 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12479 break;
12480
12481 case 3:
12482 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12483 break;
12484
12485 case 4:
12486 case 5:
12487 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12488 break;
12489
12490 case 6:
12491 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12492 break;
7c9017e5 12493 case 7:
4e0bbc31 12494 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
7c9017e5
JB
12495 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12496 break;
8c9f3aaf 12497 }
7bd688cd
JN
12498
12499 intel_panel_init_backlight_funcs(dev);
e39b999a
VS
12500
12501 mutex_init(&dev_priv->pps_mutex);
e70236a8
JB
12502}
12503
b690e96c
JB
12504/*
12505 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12506 * resume, or other times. This quirk makes sure that's the case for
12507 * affected systems.
12508 */
0206e353 12509static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
12510{
12511 struct drm_i915_private *dev_priv = dev->dev_private;
12512
12513 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 12514 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
12515}
12516
b6b5d049
VS
12517static void quirk_pipeb_force(struct drm_device *dev)
12518{
12519 struct drm_i915_private *dev_priv = dev->dev_private;
12520
12521 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
12522 DRM_INFO("applying pipe b force quirk\n");
12523}
12524
435793df
KP
12525/*
12526 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12527 */
12528static void quirk_ssc_force_disable(struct drm_device *dev)
12529{
12530 struct drm_i915_private *dev_priv = dev->dev_private;
12531 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 12532 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
12533}
12534
4dca20ef 12535/*
5a15ab5b
CE
12536 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12537 * brightness value
4dca20ef
CE
12538 */
12539static void quirk_invert_brightness(struct drm_device *dev)
12540{
12541 struct drm_i915_private *dev_priv = dev->dev_private;
12542 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 12543 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
12544}
12545
9c72cc6f
SD
12546/* Some VBT's incorrectly indicate no backlight is present */
12547static void quirk_backlight_present(struct drm_device *dev)
12548{
12549 struct drm_i915_private *dev_priv = dev->dev_private;
12550 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
12551 DRM_INFO("applying backlight present quirk\n");
12552}
12553
b690e96c
JB
12554struct intel_quirk {
12555 int device;
12556 int subsystem_vendor;
12557 int subsystem_device;
12558 void (*hook)(struct drm_device *dev);
12559};
12560
5f85f176
EE
12561/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12562struct intel_dmi_quirk {
12563 void (*hook)(struct drm_device *dev);
12564 const struct dmi_system_id (*dmi_id_list)[];
12565};
12566
12567static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12568{
12569 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12570 return 1;
12571}
12572
12573static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12574 {
12575 .dmi_id_list = &(const struct dmi_system_id[]) {
12576 {
12577 .callback = intel_dmi_reverse_brightness,
12578 .ident = "NCR Corporation",
12579 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12580 DMI_MATCH(DMI_PRODUCT_NAME, ""),
12581 },
12582 },
12583 { } /* terminating entry */
12584 },
12585 .hook = quirk_invert_brightness,
12586 },
12587};
12588
c43b5634 12589static struct intel_quirk intel_quirks[] = {
b690e96c 12590 /* HP Mini needs pipe A force quirk (LP: #322104) */
0206e353 12591 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
b690e96c 12592
b690e96c
JB
12593 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12594 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12595
b690e96c
JB
12596 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12597 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12598
5f080c0f
VS
12599 /* 830 needs to leave pipe A & dpll A up */
12600 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
12601
b6b5d049
VS
12602 /* 830 needs to leave pipe B & dpll B up */
12603 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
12604
435793df
KP
12605 /* Lenovo U160 cannot use SSC on LVDS */
12606 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
12607
12608 /* Sony Vaio Y cannot use SSC on LVDS */
12609 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b 12610
be505f64
AH
12611 /* Acer Aspire 5734Z must invert backlight brightness */
12612 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12613
12614 /* Acer/eMachines G725 */
12615 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12616
12617 /* Acer/eMachines e725 */
12618 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12619
12620 /* Acer/Packard Bell NCL20 */
12621 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
12622
12623 /* Acer Aspire 4736Z */
12624 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
0f540c3a
JN
12625
12626 /* Acer Aspire 5336 */
12627 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
2e93a1aa
SD
12628
12629 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
12630 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
d4967d8c 12631
dfb3d47b
SD
12632 /* Acer C720 Chromebook (Core i3 4005U) */
12633 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
12634
d4967d8c
SD
12635 /* Toshiba CB35 Chromebook (Celeron 2955U) */
12636 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
724cb06f
SD
12637
12638 /* HP Chromebook 14 (Celeron 2955U) */
12639 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
b690e96c
JB
12640};
12641
12642static void intel_init_quirks(struct drm_device *dev)
12643{
12644 struct pci_dev *d = dev->pdev;
12645 int i;
12646
12647 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
12648 struct intel_quirk *q = &intel_quirks[i];
12649
12650 if (d->device == q->device &&
12651 (d->subsystem_vendor == q->subsystem_vendor ||
12652 q->subsystem_vendor == PCI_ANY_ID) &&
12653 (d->subsystem_device == q->subsystem_device ||
12654 q->subsystem_device == PCI_ANY_ID))
12655 q->hook(dev);
12656 }
5f85f176
EE
12657 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
12658 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
12659 intel_dmi_quirks[i].hook(dev);
12660 }
b690e96c
JB
12661}
12662
9cce37f4
JB
12663/* Disable the VGA plane that we never use */
12664static void i915_disable_vga(struct drm_device *dev)
12665{
12666 struct drm_i915_private *dev_priv = dev->dev_private;
12667 u8 sr1;
766aa1c4 12668 u32 vga_reg = i915_vgacntrl_reg(dev);
9cce37f4 12669
2b37c616 12670 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
9cce37f4 12671 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 12672 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
12673 sr1 = inb(VGA_SR_DATA);
12674 outb(sr1 | 1<<5, VGA_SR_DATA);
12675 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
12676 udelay(300);
12677
69769f9a
VS
12678 /*
12679 * Fujitsu-Siemens Lifebook S6010 (830) has problems resuming
12680 * from S3 without preserving (some of?) the other bits.
12681 */
12682 I915_WRITE(vga_reg, dev_priv->bios_vgacntr | VGA_DISP_DISABLE);
9cce37f4
JB
12683 POSTING_READ(vga_reg);
12684}
12685
f817586c
DV
12686void intel_modeset_init_hw(struct drm_device *dev)
12687{
a8f78b58
ED
12688 intel_prepare_ddi(dev);
12689
f8bf63fd
VS
12690 if (IS_VALLEYVIEW(dev))
12691 vlv_update_cdclk(dev);
12692
f817586c
DV
12693 intel_init_clock_gating(dev);
12694
8090c6b9 12695 intel_enable_gt_powersave(dev);
f817586c
DV
12696}
12697
79e53945
JB
12698void intel_modeset_init(struct drm_device *dev)
12699{
652c393a 12700 struct drm_i915_private *dev_priv = dev->dev_private;
1fe47785 12701 int sprite, ret;
8cc87b75 12702 enum pipe pipe;
46f297fb 12703 struct intel_crtc *crtc;
79e53945
JB
12704
12705 drm_mode_config_init(dev);
12706
12707 dev->mode_config.min_width = 0;
12708 dev->mode_config.min_height = 0;
12709
019d96cb
DA
12710 dev->mode_config.preferred_depth = 24;
12711 dev->mode_config.prefer_shadow = 1;
12712
e6ecefaa 12713 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 12714
b690e96c
JB
12715 intel_init_quirks(dev);
12716
1fa61106
ED
12717 intel_init_pm(dev);
12718
e3c74757
BW
12719 if (INTEL_INFO(dev)->num_pipes == 0)
12720 return;
12721
e70236a8 12722 intel_init_display(dev);
7c10a2b5 12723 intel_init_audio(dev);
e70236a8 12724
a6c45cf0
CW
12725 if (IS_GEN2(dev)) {
12726 dev->mode_config.max_width = 2048;
12727 dev->mode_config.max_height = 2048;
12728 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
12729 dev->mode_config.max_width = 4096;
12730 dev->mode_config.max_height = 4096;
79e53945 12731 } else {
a6c45cf0
CW
12732 dev->mode_config.max_width = 8192;
12733 dev->mode_config.max_height = 8192;
79e53945 12734 }
068be561 12735
dc41c154
VS
12736 if (IS_845G(dev) || IS_I865G(dev)) {
12737 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
12738 dev->mode_config.cursor_height = 1023;
12739 } else if (IS_GEN2(dev)) {
068be561
DL
12740 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
12741 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
12742 } else {
12743 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
12744 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
12745 }
12746
5d4545ae 12747 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
79e53945 12748
28c97730 12749 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7eb552ae
BW
12750 INTEL_INFO(dev)->num_pipes,
12751 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
79e53945 12752
055e393f 12753 for_each_pipe(dev_priv, pipe) {
8cc87b75 12754 intel_crtc_init(dev, pipe);
1fe47785
DL
12755 for_each_sprite(pipe, sprite) {
12756 ret = intel_plane_init(dev, pipe, sprite);
7f1f3851 12757 if (ret)
06da8da2 12758 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
1fe47785 12759 pipe_name(pipe), sprite_name(pipe, sprite), ret);
7f1f3851 12760 }
79e53945
JB
12761 }
12762
f42bb70d
JB
12763 intel_init_dpio(dev);
12764
e72f9fbf 12765 intel_shared_dpll_init(dev);
ee7b9f93 12766
69769f9a
VS
12767 /* save the BIOS value before clobbering it */
12768 dev_priv->bios_vgacntr = I915_READ(i915_vgacntrl_reg(dev));
9cce37f4
JB
12769 /* Just disable it once at startup */
12770 i915_disable_vga(dev);
79e53945 12771 intel_setup_outputs(dev);
11be49eb
CW
12772
12773 /* Just in case the BIOS is doing something questionable. */
12774 intel_disable_fbc(dev);
fa9fa083 12775
6e9f798d 12776 drm_modeset_lock_all(dev);
fa9fa083 12777 intel_modeset_setup_hw_state(dev, false);
6e9f798d 12778 drm_modeset_unlock_all(dev);
46f297fb 12779
d3fcc808 12780 for_each_intel_crtc(dev, crtc) {
46f297fb
JB
12781 if (!crtc->active)
12782 continue;
12783
46f297fb 12784 /*
46f297fb
JB
12785 * Note that reserving the BIOS fb up front prevents us
12786 * from stuffing other stolen allocations like the ring
12787 * on top. This prevents some ugliness at boot time, and
12788 * can even allow for smooth boot transitions if the BIOS
12789 * fb is large enough for the active pipe configuration.
12790 */
12791 if (dev_priv->display.get_plane_config) {
12792 dev_priv->display.get_plane_config(crtc,
12793 &crtc->plane_config);
12794 /*
12795 * If the fb is shared between multiple heads, we'll
12796 * just get the first one.
12797 */
484b41dd 12798 intel_find_plane_obj(crtc, &crtc->plane_config);
46f297fb 12799 }
46f297fb 12800 }
2c7111db
CW
12801}
12802
7fad798e
DV
12803static void intel_enable_pipe_a(struct drm_device *dev)
12804{
12805 struct intel_connector *connector;
12806 struct drm_connector *crt = NULL;
12807 struct intel_load_detect_pipe load_detect_temp;
208bf9fd 12808 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
7fad798e
DV
12809
12810 /* We can't just switch on the pipe A, we need to set things up with a
12811 * proper mode and output configuration. As a gross hack, enable pipe A
12812 * by enabling the load detect pipe once. */
12813 list_for_each_entry(connector,
12814 &dev->mode_config.connector_list,
12815 base.head) {
12816 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
12817 crt = &connector->base;
12818 break;
12819 }
12820 }
12821
12822 if (!crt)
12823 return;
12824
208bf9fd
VS
12825 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
12826 intel_release_load_detect_pipe(crt, &load_detect_temp);
7fad798e
DV
12827}
12828
fa555837
DV
12829static bool
12830intel_check_plane_mapping(struct intel_crtc *crtc)
12831{
7eb552ae
BW
12832 struct drm_device *dev = crtc->base.dev;
12833 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837
DV
12834 u32 reg, val;
12835
7eb552ae 12836 if (INTEL_INFO(dev)->num_pipes == 1)
fa555837
DV
12837 return true;
12838
12839 reg = DSPCNTR(!crtc->plane);
12840 val = I915_READ(reg);
12841
12842 if ((val & DISPLAY_PLANE_ENABLE) &&
12843 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
12844 return false;
12845
12846 return true;
12847}
12848
24929352
DV
12849static void intel_sanitize_crtc(struct intel_crtc *crtc)
12850{
12851 struct drm_device *dev = crtc->base.dev;
12852 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837 12853 u32 reg;
24929352 12854
24929352 12855 /* Clear any frame start delays used for debugging left by the BIOS */
3b117c8f 12856 reg = PIPECONF(crtc->config.cpu_transcoder);
24929352
DV
12857 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
12858
d3eaf884 12859 /* restore vblank interrupts to correct state */
d297e103
VS
12860 if (crtc->active) {
12861 update_scanline_offset(crtc);
d3eaf884 12862 drm_vblank_on(dev, crtc->pipe);
d297e103 12863 } else
d3eaf884
VS
12864 drm_vblank_off(dev, crtc->pipe);
12865
24929352 12866 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
12867 * disable the crtc (and hence change the state) if it is wrong. Note
12868 * that gen4+ has a fixed plane -> pipe mapping. */
12869 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
12870 struct intel_connector *connector;
12871 bool plane;
12872
24929352
DV
12873 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
12874 crtc->base.base.id);
12875
12876 /* Pipe has the wrong plane attached and the plane is active.
12877 * Temporarily change the plane mapping and disable everything
12878 * ... */
12879 plane = crtc->plane;
12880 crtc->plane = !plane;
9c8958bc 12881 crtc->primary_enabled = true;
24929352
DV
12882 dev_priv->display.crtc_disable(&crtc->base);
12883 crtc->plane = plane;
12884
12885 /* ... and break all links. */
12886 list_for_each_entry(connector, &dev->mode_config.connector_list,
12887 base.head) {
12888 if (connector->encoder->base.crtc != &crtc->base)
12889 continue;
12890
7f1950fb
EE
12891 connector->base.dpms = DRM_MODE_DPMS_OFF;
12892 connector->base.encoder = NULL;
24929352 12893 }
7f1950fb
EE
12894 /* multiple connectors may have the same encoder:
12895 * handle them and break crtc link separately */
12896 list_for_each_entry(connector, &dev->mode_config.connector_list,
12897 base.head)
12898 if (connector->encoder->base.crtc == &crtc->base) {
12899 connector->encoder->base.crtc = NULL;
12900 connector->encoder->connectors_active = false;
12901 }
24929352
DV
12902
12903 WARN_ON(crtc->active);
12904 crtc->base.enabled = false;
12905 }
24929352 12906
7fad798e
DV
12907 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
12908 crtc->pipe == PIPE_A && !crtc->active) {
12909 /* BIOS forgot to enable pipe A, this mostly happens after
12910 * resume. Force-enable the pipe to fix this, the update_dpms
12911 * call below we restore the pipe to the right state, but leave
12912 * the required bits on. */
12913 intel_enable_pipe_a(dev);
12914 }
12915
24929352
DV
12916 /* Adjust the state of the output pipe according to whether we
12917 * have active connectors/encoders. */
12918 intel_crtc_update_dpms(&crtc->base);
12919
12920 if (crtc->active != crtc->base.enabled) {
12921 struct intel_encoder *encoder;
12922
12923 /* This can happen either due to bugs in the get_hw_state
12924 * functions or because the pipe is force-enabled due to the
12925 * pipe A quirk. */
12926 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
12927 crtc->base.base.id,
12928 crtc->base.enabled ? "enabled" : "disabled",
12929 crtc->active ? "enabled" : "disabled");
12930
12931 crtc->base.enabled = crtc->active;
12932
12933 /* Because we only establish the connector -> encoder ->
12934 * crtc links if something is active, this means the
12935 * crtc is now deactivated. Break the links. connector
12936 * -> encoder links are only establish when things are
12937 * actually up, hence no need to break them. */
12938 WARN_ON(crtc->active);
12939
12940 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
12941 WARN_ON(encoder->connectors_active);
12942 encoder->base.crtc = NULL;
12943 }
12944 }
c5ab3bc0 12945
a3ed6aad 12946 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
4cc31489
DV
12947 /*
12948 * We start out with underrun reporting disabled to avoid races.
12949 * For correct bookkeeping mark this on active crtcs.
12950 *
c5ab3bc0
DV
12951 * Also on gmch platforms we dont have any hardware bits to
12952 * disable the underrun reporting. Which means we need to start
12953 * out with underrun reporting disabled also on inactive pipes,
12954 * since otherwise we'll complain about the garbage we read when
12955 * e.g. coming up after runtime pm.
12956 *
4cc31489
DV
12957 * No protection against concurrent access is required - at
12958 * worst a fifo underrun happens which also sets this to false.
12959 */
12960 crtc->cpu_fifo_underrun_disabled = true;
12961 crtc->pch_fifo_underrun_disabled = true;
12962 }
24929352
DV
12963}
12964
12965static void intel_sanitize_encoder(struct intel_encoder *encoder)
12966{
12967 struct intel_connector *connector;
12968 struct drm_device *dev = encoder->base.dev;
12969
12970 /* We need to check both for a crtc link (meaning that the
12971 * encoder is active and trying to read from a pipe) and the
12972 * pipe itself being active. */
12973 bool has_active_crtc = encoder->base.crtc &&
12974 to_intel_crtc(encoder->base.crtc)->active;
12975
12976 if (encoder->connectors_active && !has_active_crtc) {
12977 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
12978 encoder->base.base.id,
8e329a03 12979 encoder->base.name);
24929352
DV
12980
12981 /* Connector is active, but has no active pipe. This is
12982 * fallout from our resume register restoring. Disable
12983 * the encoder manually again. */
12984 if (encoder->base.crtc) {
12985 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
12986 encoder->base.base.id,
8e329a03 12987 encoder->base.name);
24929352 12988 encoder->disable(encoder);
a62d1497
VS
12989 if (encoder->post_disable)
12990 encoder->post_disable(encoder);
24929352 12991 }
7f1950fb
EE
12992 encoder->base.crtc = NULL;
12993 encoder->connectors_active = false;
24929352
DV
12994
12995 /* Inconsistent output/port/pipe state happens presumably due to
12996 * a bug in one of the get_hw_state functions. Or someplace else
12997 * in our code, like the register restore mess on resume. Clamp
12998 * things to off as a safer default. */
12999 list_for_each_entry(connector,
13000 &dev->mode_config.connector_list,
13001 base.head) {
13002 if (connector->encoder != encoder)
13003 continue;
7f1950fb
EE
13004 connector->base.dpms = DRM_MODE_DPMS_OFF;
13005 connector->base.encoder = NULL;
24929352
DV
13006 }
13007 }
13008 /* Enabled encoders without active connectors will be fixed in
13009 * the crtc fixup. */
13010}
13011
04098753 13012void i915_redisable_vga_power_on(struct drm_device *dev)
0fde901f
KM
13013{
13014 struct drm_i915_private *dev_priv = dev->dev_private;
766aa1c4 13015 u32 vga_reg = i915_vgacntrl_reg(dev);
0fde901f 13016
04098753
ID
13017 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
13018 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
13019 i915_disable_vga(dev);
13020 }
13021}
13022
13023void i915_redisable_vga(struct drm_device *dev)
13024{
13025 struct drm_i915_private *dev_priv = dev->dev_private;
13026
8dc8a27c
PZ
13027 /* This function can be called both from intel_modeset_setup_hw_state or
13028 * at a very early point in our resume sequence, where the power well
13029 * structures are not yet restored. Since this function is at a very
13030 * paranoid "someone might have enabled VGA while we were not looking"
13031 * level, just check if the power well is enabled instead of trying to
13032 * follow the "don't touch the power well if we don't need it" policy
13033 * the rest of the driver uses. */
f458ebbc 13034 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
8dc8a27c
PZ
13035 return;
13036
04098753 13037 i915_redisable_vga_power_on(dev);
0fde901f
KM
13038}
13039
98ec7739
VS
13040static bool primary_get_hw_state(struct intel_crtc *crtc)
13041{
13042 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
13043
13044 if (!crtc->active)
13045 return false;
13046
13047 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
13048}
13049
30e984df 13050static void intel_modeset_readout_hw_state(struct drm_device *dev)
24929352
DV
13051{
13052 struct drm_i915_private *dev_priv = dev->dev_private;
13053 enum pipe pipe;
24929352
DV
13054 struct intel_crtc *crtc;
13055 struct intel_encoder *encoder;
13056 struct intel_connector *connector;
5358901f 13057 int i;
24929352 13058
d3fcc808 13059 for_each_intel_crtc(dev, crtc) {
88adfff1 13060 memset(&crtc->config, 0, sizeof(crtc->config));
3b117c8f 13061
9953599b
DV
13062 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
13063
0e8ffe1b
DV
13064 crtc->active = dev_priv->display.get_pipe_config(crtc,
13065 &crtc->config);
24929352
DV
13066
13067 crtc->base.enabled = crtc->active;
98ec7739 13068 crtc->primary_enabled = primary_get_hw_state(crtc);
24929352
DV
13069
13070 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
13071 crtc->base.base.id,
13072 crtc->active ? "enabled" : "disabled");
13073 }
13074
5358901f
DV
13075 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13076 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13077
13078 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
13079 pll->active = 0;
d3fcc808 13080 for_each_intel_crtc(dev, crtc) {
5358901f
DV
13081 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
13082 pll->active++;
13083 }
13084 pll->refcount = pll->active;
13085
35c95375
DV
13086 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
13087 pll->name, pll->refcount, pll->on);
bd2bb1b9
PZ
13088
13089 if (pll->refcount)
13090 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5358901f
DV
13091 }
13092
b2784e15 13093 for_each_intel_encoder(dev, encoder) {
24929352
DV
13094 pipe = 0;
13095
13096 if (encoder->get_hw_state(encoder, &pipe)) {
045ac3b5
JB
13097 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13098 encoder->base.crtc = &crtc->base;
1d37b689 13099 encoder->get_config(encoder, &crtc->config);
24929352
DV
13100 } else {
13101 encoder->base.crtc = NULL;
13102 }
13103
13104 encoder->connectors_active = false;
6f2bcceb 13105 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
24929352 13106 encoder->base.base.id,
8e329a03 13107 encoder->base.name,
24929352 13108 encoder->base.crtc ? "enabled" : "disabled",
6f2bcceb 13109 pipe_name(pipe));
24929352
DV
13110 }
13111
13112 list_for_each_entry(connector, &dev->mode_config.connector_list,
13113 base.head) {
13114 if (connector->get_hw_state(connector)) {
13115 connector->base.dpms = DRM_MODE_DPMS_ON;
13116 connector->encoder->connectors_active = true;
13117 connector->base.encoder = &connector->encoder->base;
13118 } else {
13119 connector->base.dpms = DRM_MODE_DPMS_OFF;
13120 connector->base.encoder = NULL;
13121 }
13122 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
13123 connector->base.base.id,
c23cc417 13124 connector->base.name,
24929352
DV
13125 connector->base.encoder ? "enabled" : "disabled");
13126 }
30e984df
DV
13127}
13128
13129/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13130 * and i915 state tracking structures. */
13131void intel_modeset_setup_hw_state(struct drm_device *dev,
13132 bool force_restore)
13133{
13134 struct drm_i915_private *dev_priv = dev->dev_private;
13135 enum pipe pipe;
30e984df
DV
13136 struct intel_crtc *crtc;
13137 struct intel_encoder *encoder;
35c95375 13138 int i;
30e984df
DV
13139
13140 intel_modeset_readout_hw_state(dev);
24929352 13141
babea61d
JB
13142 /*
13143 * Now that we have the config, copy it to each CRTC struct
13144 * Note that this could go away if we move to using crtc_config
13145 * checking everywhere.
13146 */
d3fcc808 13147 for_each_intel_crtc(dev, crtc) {
d330a953 13148 if (crtc->active && i915.fastboot) {
f6a83288 13149 intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
babea61d
JB
13150 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13151 crtc->base.base.id);
13152 drm_mode_debug_printmodeline(&crtc->base.mode);
13153 }
13154 }
13155
24929352 13156 /* HW state is read out, now we need to sanitize this mess. */
b2784e15 13157 for_each_intel_encoder(dev, encoder) {
24929352
DV
13158 intel_sanitize_encoder(encoder);
13159 }
13160
055e393f 13161 for_each_pipe(dev_priv, pipe) {
24929352
DV
13162 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13163 intel_sanitize_crtc(crtc);
c0b03411 13164 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
24929352 13165 }
9a935856 13166
35c95375
DV
13167 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13168 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13169
13170 if (!pll->on || pll->active)
13171 continue;
13172
13173 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13174
13175 pll->disable(dev_priv, pll);
13176 pll->on = false;
13177 }
13178
96f90c54 13179 if (HAS_PCH_SPLIT(dev))
243e6a44
VS
13180 ilk_wm_get_hw_state(dev);
13181
45e2b5f6 13182 if (force_restore) {
7d0bc1ea
VS
13183 i915_redisable_vga(dev);
13184
f30da187
DV
13185 /*
13186 * We need to use raw interfaces for restoring state to avoid
13187 * checking (bogus) intermediate states.
13188 */
055e393f 13189 for_each_pipe(dev_priv, pipe) {
b5644d05
JB
13190 struct drm_crtc *crtc =
13191 dev_priv->pipe_to_crtc_mapping[pipe];
f30da187
DV
13192
13193 __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
f4510a27 13194 crtc->primary->fb);
45e2b5f6
DV
13195 }
13196 } else {
13197 intel_modeset_update_staged_output_state(dev);
13198 }
8af6cf88
DV
13199
13200 intel_modeset_check_state(dev);
2c7111db
CW
13201}
13202
13203void intel_modeset_gem_init(struct drm_device *dev)
13204{
484b41dd 13205 struct drm_crtc *c;
2ff8fde1 13206 struct drm_i915_gem_object *obj;
484b41dd 13207
ae48434c
ID
13208 mutex_lock(&dev->struct_mutex);
13209 intel_init_gt_powersave(dev);
13210 mutex_unlock(&dev->struct_mutex);
13211
1833b134 13212 intel_modeset_init_hw(dev);
02e792fb
DV
13213
13214 intel_setup_overlay(dev);
484b41dd
JB
13215
13216 /*
13217 * Make sure any fbs we allocated at startup are properly
13218 * pinned & fenced. When we do the allocation it's too early
13219 * for this.
13220 */
13221 mutex_lock(&dev->struct_mutex);
70e1e0ec 13222 for_each_crtc(dev, c) {
2ff8fde1
MR
13223 obj = intel_fb_obj(c->primary->fb);
13224 if (obj == NULL)
484b41dd
JB
13225 continue;
13226
2ff8fde1 13227 if (intel_pin_and_fence_fb_obj(dev, obj, NULL)) {
484b41dd
JB
13228 DRM_ERROR("failed to pin boot fb on pipe %d\n",
13229 to_intel_crtc(c)->pipe);
66e514c1
DA
13230 drm_framebuffer_unreference(c->primary->fb);
13231 c->primary->fb = NULL;
484b41dd
JB
13232 }
13233 }
13234 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13235}
13236
4932e2c3
ID
13237void intel_connector_unregister(struct intel_connector *intel_connector)
13238{
13239 struct drm_connector *connector = &intel_connector->base;
13240
13241 intel_panel_destroy_backlight(connector);
34ea3d38 13242 drm_connector_unregister(connector);
4932e2c3
ID
13243}
13244
79e53945
JB
13245void intel_modeset_cleanup(struct drm_device *dev)
13246{
652c393a 13247 struct drm_i915_private *dev_priv = dev->dev_private;
d9255d57 13248 struct drm_connector *connector;
652c393a 13249
fd0c0642
DV
13250 /*
13251 * Interrupts and polling as the first thing to avoid creating havoc.
13252 * Too much stuff here (turning of rps, connectors, ...) would
13253 * experience fancy races otherwise.
13254 */
2aeb7d3a 13255 intel_irq_uninstall(dev_priv);
eb21b92b 13256
fd0c0642
DV
13257 /*
13258 * Due to the hpd irq storm handling the hotplug work can re-arm the
13259 * poll handlers. Hence disable polling after hpd handling is shut down.
13260 */
f87ea761 13261 drm_kms_helper_poll_fini(dev);
fd0c0642 13262
652c393a
JB
13263 mutex_lock(&dev->struct_mutex);
13264
723bfd70
JB
13265 intel_unregister_dsm_handler();
13266
973d04f9 13267 intel_disable_fbc(dev);
e70236a8 13268
8090c6b9 13269 intel_disable_gt_powersave(dev);
0cdab21f 13270
930ebb46
DV
13271 ironlake_teardown_rc6(dev);
13272
69341a5e
KH
13273 mutex_unlock(&dev->struct_mutex);
13274
1630fe75
CW
13275 /* flush any delayed tasks or pending work */
13276 flush_scheduled_work();
13277
db31af1d
JN
13278 /* destroy the backlight and sysfs files before encoders/connectors */
13279 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4932e2c3
ID
13280 struct intel_connector *intel_connector;
13281
13282 intel_connector = to_intel_connector(connector);
13283 intel_connector->unregister(intel_connector);
db31af1d 13284 }
d9255d57 13285
79e53945 13286 drm_mode_config_cleanup(dev);
4d7bb011
DV
13287
13288 intel_cleanup_overlay(dev);
ae48434c
ID
13289
13290 mutex_lock(&dev->struct_mutex);
13291 intel_cleanup_gt_powersave(dev);
13292 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13293}
13294
f1c79df3
ZW
13295/*
13296 * Return which encoder is currently attached for connector.
13297 */
df0e9248 13298struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 13299{
df0e9248
CW
13300 return &intel_attached_encoder(connector)->base;
13301}
f1c79df3 13302
df0e9248
CW
13303void intel_connector_attach_encoder(struct intel_connector *connector,
13304 struct intel_encoder *encoder)
13305{
13306 connector->encoder = encoder;
13307 drm_mode_connector_attach_encoder(&connector->base,
13308 &encoder->base);
79e53945 13309}
28d52043
DA
13310
13311/*
13312 * set vga decode state - true == enable VGA decode
13313 */
13314int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13315{
13316 struct drm_i915_private *dev_priv = dev->dev_private;
a885b3cc 13317 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
28d52043
DA
13318 u16 gmch_ctrl;
13319
75fa041d
CW
13320 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13321 DRM_ERROR("failed to read control word\n");
13322 return -EIO;
13323 }
13324
c0cc8a55
CW
13325 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13326 return 0;
13327
28d52043
DA
13328 if (state)
13329 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13330 else
13331 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
75fa041d
CW
13332
13333 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13334 DRM_ERROR("failed to write control word\n");
13335 return -EIO;
13336 }
13337
28d52043
DA
13338 return 0;
13339}
c4a1d9e4 13340
c4a1d9e4 13341struct intel_display_error_state {
ff57f1b0
PZ
13342
13343 u32 power_well_driver;
13344
63b66e5b
CW
13345 int num_transcoders;
13346
c4a1d9e4
CW
13347 struct intel_cursor_error_state {
13348 u32 control;
13349 u32 position;
13350 u32 base;
13351 u32 size;
52331309 13352 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
13353
13354 struct intel_pipe_error_state {
ddf9c536 13355 bool power_domain_on;
c4a1d9e4 13356 u32 source;
f301b1e1 13357 u32 stat;
52331309 13358 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
13359
13360 struct intel_plane_error_state {
13361 u32 control;
13362 u32 stride;
13363 u32 size;
13364 u32 pos;
13365 u32 addr;
13366 u32 surface;
13367 u32 tile_offset;
52331309 13368 } plane[I915_MAX_PIPES];
63b66e5b
CW
13369
13370 struct intel_transcoder_error_state {
ddf9c536 13371 bool power_domain_on;
63b66e5b
CW
13372 enum transcoder cpu_transcoder;
13373
13374 u32 conf;
13375
13376 u32 htotal;
13377 u32 hblank;
13378 u32 hsync;
13379 u32 vtotal;
13380 u32 vblank;
13381 u32 vsync;
13382 } transcoder[4];
c4a1d9e4
CW
13383};
13384
13385struct intel_display_error_state *
13386intel_display_capture_error_state(struct drm_device *dev)
13387{
fbee40df 13388 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4 13389 struct intel_display_error_state *error;
63b66e5b
CW
13390 int transcoders[] = {
13391 TRANSCODER_A,
13392 TRANSCODER_B,
13393 TRANSCODER_C,
13394 TRANSCODER_EDP,
13395 };
c4a1d9e4
CW
13396 int i;
13397
63b66e5b
CW
13398 if (INTEL_INFO(dev)->num_pipes == 0)
13399 return NULL;
13400
9d1cb914 13401 error = kzalloc(sizeof(*error), GFP_ATOMIC);
c4a1d9e4
CW
13402 if (error == NULL)
13403 return NULL;
13404
190be112 13405 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ff57f1b0
PZ
13406 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13407
055e393f 13408 for_each_pipe(dev_priv, i) {
ddf9c536 13409 error->pipe[i].power_domain_on =
f458ebbc
DV
13410 __intel_display_power_is_enabled(dev_priv,
13411 POWER_DOMAIN_PIPE(i));
ddf9c536 13412 if (!error->pipe[i].power_domain_on)
9d1cb914
PZ
13413 continue;
13414
5efb3e28
VS
13415 error->cursor[i].control = I915_READ(CURCNTR(i));
13416 error->cursor[i].position = I915_READ(CURPOS(i));
13417 error->cursor[i].base = I915_READ(CURBASE(i));
c4a1d9e4
CW
13418
13419 error->plane[i].control = I915_READ(DSPCNTR(i));
13420 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
80ca378b 13421 if (INTEL_INFO(dev)->gen <= 3) {
51889b35 13422 error->plane[i].size = I915_READ(DSPSIZE(i));
80ca378b
PZ
13423 error->plane[i].pos = I915_READ(DSPPOS(i));
13424 }
ca291363
PZ
13425 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13426 error->plane[i].addr = I915_READ(DSPADDR(i));
c4a1d9e4
CW
13427 if (INTEL_INFO(dev)->gen >= 4) {
13428 error->plane[i].surface = I915_READ(DSPSURF(i));
13429 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13430 }
13431
c4a1d9e4 13432 error->pipe[i].source = I915_READ(PIPESRC(i));
f301b1e1 13433
3abfce77 13434 if (HAS_GMCH_DISPLAY(dev))
f301b1e1 13435 error->pipe[i].stat = I915_READ(PIPESTAT(i));
63b66e5b
CW
13436 }
13437
13438 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13439 if (HAS_DDI(dev_priv->dev))
13440 error->num_transcoders++; /* Account for eDP. */
13441
13442 for (i = 0; i < error->num_transcoders; i++) {
13443 enum transcoder cpu_transcoder = transcoders[i];
13444
ddf9c536 13445 error->transcoder[i].power_domain_on =
f458ebbc 13446 __intel_display_power_is_enabled(dev_priv,
38cc1daf 13447 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
ddf9c536 13448 if (!error->transcoder[i].power_domain_on)
9d1cb914
PZ
13449 continue;
13450
63b66e5b
CW
13451 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13452
13453 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13454 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13455 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13456 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13457 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13458 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13459 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
13460 }
13461
13462 return error;
13463}
13464
edc3d884
MK
13465#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13466
c4a1d9e4 13467void
edc3d884 13468intel_display_print_error_state(struct drm_i915_error_state_buf *m,
c4a1d9e4
CW
13469 struct drm_device *dev,
13470 struct intel_display_error_state *error)
13471{
055e393f 13472 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4
CW
13473 int i;
13474
63b66e5b
CW
13475 if (!error)
13476 return;
13477
edc3d884 13478 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
190be112 13479 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
edc3d884 13480 err_printf(m, "PWR_WELL_CTL2: %08x\n",
ff57f1b0 13481 error->power_well_driver);
055e393f 13482 for_each_pipe(dev_priv, i) {
edc3d884 13483 err_printf(m, "Pipe [%d]:\n", i);
ddf9c536
ID
13484 err_printf(m, " Power: %s\n",
13485 error->pipe[i].power_domain_on ? "on" : "off");
edc3d884 13486 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
f301b1e1 13487 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
edc3d884
MK
13488
13489 err_printf(m, "Plane [%d]:\n", i);
13490 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
13491 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
80ca378b 13492 if (INTEL_INFO(dev)->gen <= 3) {
edc3d884
MK
13493 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
13494 err_printf(m, " POS: %08x\n", error->plane[i].pos);
80ca378b 13495 }
4b71a570 13496 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
edc3d884 13497 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
c4a1d9e4 13498 if (INTEL_INFO(dev)->gen >= 4) {
edc3d884
MK
13499 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
13500 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
c4a1d9e4
CW
13501 }
13502
edc3d884
MK
13503 err_printf(m, "Cursor [%d]:\n", i);
13504 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
13505 err_printf(m, " POS: %08x\n", error->cursor[i].position);
13506 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
c4a1d9e4 13507 }
63b66e5b
CW
13508
13509 for (i = 0; i < error->num_transcoders; i++) {
1cf84bb6 13510 err_printf(m, "CPU transcoder: %c\n",
63b66e5b 13511 transcoder_name(error->transcoder[i].cpu_transcoder));
ddf9c536
ID
13512 err_printf(m, " Power: %s\n",
13513 error->transcoder[i].power_domain_on ? "on" : "off");
63b66e5b
CW
13514 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
13515 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
13516 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
13517 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
13518 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
13519 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
13520 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
13521 }
c4a1d9e4 13522}
e2fcdaa9
VS
13523
13524void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
13525{
13526 struct intel_crtc *crtc;
13527
13528 for_each_intel_crtc(dev, crtc) {
13529 struct intel_unpin_work *work;
e2fcdaa9 13530
5e2d7afc 13531 spin_lock_irq(&dev->event_lock);
e2fcdaa9
VS
13532
13533 work = crtc->unpin_work;
13534
13535 if (work && work->event &&
13536 work->event->base.file_priv == file) {
13537 kfree(work->event);
13538 work->event = NULL;
13539 }
13540
5e2d7afc 13541 spin_unlock_irq(&dev->event_lock);
e2fcdaa9
VS
13542 }
13543}