drm/i915/debugfs: reuse max slice/subslices already stored in sseu
[linux-2.6-block.git] / drivers / gpu / drm / i915 / intel_device_info.c
CommitLineData
94b4f3ba
CW
1/*
2 * Copyright © 2016 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
a8c9b849
MW
25#include <drm/drm_print.h>
26
b978520d 27#include "intel_device_info.h"
94b4f3ba
CW
28#include "i915_drv.h"
29
2e0d26f8
JN
30#define PLATFORM_NAME(x) [INTEL_##x] = #x
31static const char * const platform_names[] = {
32 PLATFORM_NAME(I830),
33 PLATFORM_NAME(I845G),
34 PLATFORM_NAME(I85X),
35 PLATFORM_NAME(I865G),
36 PLATFORM_NAME(I915G),
37 PLATFORM_NAME(I915GM),
38 PLATFORM_NAME(I945G),
39 PLATFORM_NAME(I945GM),
40 PLATFORM_NAME(G33),
41 PLATFORM_NAME(PINEVIEW),
c0f86832
JN
42 PLATFORM_NAME(I965G),
43 PLATFORM_NAME(I965GM),
f69c11ae
JN
44 PLATFORM_NAME(G45),
45 PLATFORM_NAME(GM45),
2e0d26f8
JN
46 PLATFORM_NAME(IRONLAKE),
47 PLATFORM_NAME(SANDYBRIDGE),
48 PLATFORM_NAME(IVYBRIDGE),
49 PLATFORM_NAME(VALLEYVIEW),
50 PLATFORM_NAME(HASWELL),
51 PLATFORM_NAME(BROADWELL),
52 PLATFORM_NAME(CHERRYVIEW),
53 PLATFORM_NAME(SKYLAKE),
54 PLATFORM_NAME(BROXTON),
55 PLATFORM_NAME(KABYLAKE),
56 PLATFORM_NAME(GEMINILAKE),
71851fa8 57 PLATFORM_NAME(COFFEELAKE),
413f3c19 58 PLATFORM_NAME(CANNONLAKE),
41231001 59 PLATFORM_NAME(ICELAKE),
2e0d26f8
JN
60};
61#undef PLATFORM_NAME
62
63const char *intel_platform_name(enum intel_platform platform)
64{
9160095c
JN
65 BUILD_BUG_ON(ARRAY_SIZE(platform_names) != INTEL_MAX_PLATFORMS);
66
2e0d26f8
JN
67 if (WARN_ON_ONCE(platform >= ARRAY_SIZE(platform_names) ||
68 platform_names[platform] == NULL))
69 return "<unknown>";
70
71 return platform_names[platform];
72}
73
a8c9b849
MW
74void intel_device_info_dump_flags(const struct intel_device_info *info,
75 struct drm_printer *p)
76{
77#define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->name));
78 DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
79#undef PRINT_FLAG
80}
81
5fbbe8d4
MW
82static void sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p)
83{
8cc76693
LL
84 int s;
85
5fbbe8d4
MW
86 drm_printf(p, "slice mask: %04x\n", sseu->slice_mask);
87 drm_printf(p, "slice total: %u\n", hweight8(sseu->slice_mask));
88 drm_printf(p, "subslice total: %u\n", sseu_subslice_total(sseu));
8cc76693
LL
89 for (s = 0; s < ARRAY_SIZE(sseu->subslice_mask); s++) {
90 drm_printf(p, "slice%d %u subslices mask=%04x\n",
91 s, hweight8(sseu->subslice_mask[s]),
92 sseu->subslice_mask[s]);
93 }
5fbbe8d4
MW
94 drm_printf(p, "EU total: %u\n", sseu->eu_total);
95 drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice);
96 drm_printf(p, "has slice power gating: %s\n",
97 yesno(sseu->has_slice_pg));
98 drm_printf(p, "has subslice power gating: %s\n",
99 yesno(sseu->has_subslice_pg));
100 drm_printf(p, "has EU power gating: %s\n", yesno(sseu->has_eu_pg));
101}
102
103void intel_device_info_dump_runtime(const struct intel_device_info *info,
104 struct drm_printer *p)
105{
106 sseu_dump(&info->sseu, p);
107
108 drm_printf(p, "CS timestamp frequency: %u kHz\n",
109 info->cs_timestamp_frequency_khz);
110}
111
eb10ed9a
MW
112void intel_device_info_dump(const struct intel_device_info *info,
113 struct drm_printer *p)
94b4f3ba 114{
eb10ed9a
MW
115 struct drm_i915_private *dev_priv =
116 container_of(info, struct drm_i915_private, info);
94b4f3ba 117
eb10ed9a
MW
118 drm_printf(p, "pciid=0x%04x rev=0x%02x platform=%s gen=%i\n",
119 INTEL_DEVID(dev_priv),
120 INTEL_REVID(dev_priv),
121 intel_platform_name(info->platform),
122 info->gen);
a8c9b849 123
eb10ed9a 124 intel_device_info_dump_flags(info, p);
94b4f3ba
CW
125}
126
8cc76693
LL
127static u16 compute_eu_total(const struct sseu_dev_info *sseu)
128{
129 u16 i, total = 0;
130
131 for (i = 0; i < ARRAY_SIZE(sseu->eu_mask); i++)
132 total += hweight8(sseu->eu_mask[i]);
133
134 return total;
135}
136
4e9767bc
BW
137static void gen10_sseu_info_init(struct drm_i915_private *dev_priv)
138{
139 struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu;
140 const u32 fuse2 = I915_READ(GEN8_FUSE2);
8cc76693
LL
141 int s, ss;
142 const int eu_mask = 0xff;
143 u32 subslice_mask, eu_en;
4e9767bc
BW
144
145 sseu->slice_mask = (fuse2 & GEN10_F2_S_ENA_MASK) >>
146 GEN10_F2_S_ENA_SHIFT;
8cc76693
LL
147 sseu->max_slices = 6;
148 sseu->max_subslices = 4;
149 sseu->max_eus_per_subslice = 8;
4e9767bc 150
8cc76693
LL
151 subslice_mask = (1 << 4) - 1;
152 subslice_mask &= ~((fuse2 & GEN10_F2_SS_DIS_MASK) >>
153 GEN10_F2_SS_DIS_SHIFT);
154
155 /*
156 * Slice0 can have up to 3 subslices, but there are only 2 in
157 * slice1/2.
158 */
159 sseu->subslice_mask[0] = subslice_mask;
160 for (s = 1; s < sseu->max_slices; s++)
161 sseu->subslice_mask[s] = subslice_mask & 0x3;
162
163 /* Slice0 */
164 eu_en = ~I915_READ(GEN8_EU_DISABLE0);
165 for (ss = 0; ss < sseu->max_subslices; ss++)
166 sseu_set_eus(sseu, 0, ss, (eu_en >> (8 * ss)) & eu_mask);
167 /* Slice1 */
168 sseu_set_eus(sseu, 1, 0, (eu_en >> 24) & eu_mask);
169 eu_en = ~I915_READ(GEN8_EU_DISABLE1);
170 sseu_set_eus(sseu, 1, 1, eu_en & eu_mask);
171 /* Slice2 */
172 sseu_set_eus(sseu, 2, 0, (eu_en >> 8) & eu_mask);
173 sseu_set_eus(sseu, 2, 1, (eu_en >> 16) & eu_mask);
174 /* Slice3 */
175 sseu_set_eus(sseu, 3, 0, (eu_en >> 24) & eu_mask);
176 eu_en = ~I915_READ(GEN8_EU_DISABLE2);
177 sseu_set_eus(sseu, 3, 1, eu_en & eu_mask);
178 /* Slice4 */
179 sseu_set_eus(sseu, 4, 0, (eu_en >> 8) & eu_mask);
180 sseu_set_eus(sseu, 4, 1, (eu_en >> 16) & eu_mask);
181 /* Slice5 */
182 sseu_set_eus(sseu, 5, 0, (eu_en >> 24) & eu_mask);
183 eu_en = ~I915_READ(GEN10_EU_DISABLE3);
184 sseu_set_eus(sseu, 5, 1, eu_en & eu_mask);
185
186 /* Do a second pass where we mark the subslices disabled if all their
187 * eus are off.
188 */
189 for (s = 0; s < sseu->max_slices; s++) {
190 for (ss = 0; ss < sseu->max_subslices; ss++) {
191 if (sseu_get_eus(sseu, s, ss) == 0)
192 sseu->subslice_mask[s] &= ~BIT(ss);
193 }
194 }
195
196 sseu->eu_total = compute_eu_total(sseu);
4e9767bc
BW
197
198 /*
199 * CNL is expected to always have a uniform distribution
200 * of EU across subslices with the exception that any one
201 * EU in any one subslice may be fused off for die
202 * recovery.
203 */
204 sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
205 DIV_ROUND_UP(sseu->eu_total,
206 sseu_subslice_total(sseu)) : 0;
207
208 /* No restrictions on Power Gating */
209 sseu->has_slice_pg = 1;
210 sseu->has_subslice_pg = 1;
211 sseu->has_eu_pg = 1;
212}
213
94b4f3ba
CW
214static void cherryview_sseu_info_init(struct drm_i915_private *dev_priv)
215{
43b67998 216 struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu;
8cc76693 217 u32 fuse;
94b4f3ba
CW
218
219 fuse = I915_READ(CHV_FUSE_GT);
220
f08a0c92 221 sseu->slice_mask = BIT(0);
8cc76693
LL
222 sseu->max_slices = 1;
223 sseu->max_subslices = 2;
224 sseu->max_eus_per_subslice = 8;
94b4f3ba
CW
225
226 if (!(fuse & CHV_FGT_DISABLE_SS0)) {
8cc76693
LL
227 u8 disabled_mask =
228 ((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >>
229 CHV_FGT_EU_DIS_SS0_R0_SHIFT) |
230 (((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >>
231 CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4);
232
233 sseu->subslice_mask[0] |= BIT(0);
234 sseu_set_eus(sseu, 0, 0, ~disabled_mask);
94b4f3ba
CW
235 }
236
237 if (!(fuse & CHV_FGT_DISABLE_SS1)) {
8cc76693
LL
238 u8 disabled_mask =
239 ((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >>
240 CHV_FGT_EU_DIS_SS1_R0_SHIFT) |
241 (((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >>
242 CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4);
243
244 sseu->subslice_mask[0] |= BIT(1);
245 sseu_set_eus(sseu, 0, 1, ~disabled_mask);
94b4f3ba
CW
246 }
247
8cc76693
LL
248 sseu->eu_total = compute_eu_total(sseu);
249
94b4f3ba
CW
250 /*
251 * CHV expected to always have a uniform distribution of EU
252 * across subslices.
253 */
57ec171e
ID
254 sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
255 sseu->eu_total / sseu_subslice_total(sseu) :
94b4f3ba
CW
256 0;
257 /*
258 * CHV supports subslice power gating on devices with more than
259 * one subslice, and supports EU power gating on devices with
260 * more than one EU pair per subslice.
261 */
43b67998 262 sseu->has_slice_pg = 0;
57ec171e 263 sseu->has_subslice_pg = sseu_subslice_total(sseu) > 1;
43b67998 264 sseu->has_eu_pg = (sseu->eu_per_subslice > 2);
94b4f3ba
CW
265}
266
267static void gen9_sseu_info_init(struct drm_i915_private *dev_priv)
268{
269 struct intel_device_info *info = mkwrite_device_info(dev_priv);
43b67998 270 struct sseu_dev_info *sseu = &info->sseu;
94b4f3ba 271 int s, ss;
8cc76693
LL
272 u32 fuse2, eu_disable, subslice_mask;
273 const u8 eu_mask = 0xff;
94b4f3ba
CW
274
275 fuse2 = I915_READ(GEN8_FUSE2);
f08a0c92 276 sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
94b4f3ba 277
8cc76693
LL
278 /* BXT has a single slice and at most 3 subslices. */
279 sseu->max_slices = IS_GEN9_LP(dev_priv) ? 1 : 3;
280 sseu->max_subslices = IS_GEN9_LP(dev_priv) ? 3 : 4;
281 sseu->max_eus_per_subslice = 8;
282
94b4f3ba
CW
283 /*
284 * The subslice disable field is global, i.e. it applies
285 * to each of the enabled slices.
286 */
8cc76693
LL
287 subslice_mask = (1 << sseu->max_subslices) - 1;
288 subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >>
289 GEN9_F2_SS_DIS_SHIFT);
94b4f3ba
CW
290
291 /*
292 * Iterate through enabled slices and subslices to
293 * count the total enabled EU.
294 */
8cc76693 295 for (s = 0; s < sseu->max_slices; s++) {
f08a0c92 296 if (!(sseu->slice_mask & BIT(s)))
94b4f3ba
CW
297 /* skip disabled slice */
298 continue;
299
8cc76693
LL
300 sseu->subslice_mask[s] = subslice_mask;
301
94b4f3ba 302 eu_disable = I915_READ(GEN9_EU_DISABLE(s));
8cc76693 303 for (ss = 0; ss < sseu->max_subslices; ss++) {
94b4f3ba 304 int eu_per_ss;
8cc76693 305 u8 eu_disabled_mask;
94b4f3ba 306
8cc76693 307 if (!(sseu->subslice_mask[s] & BIT(ss)))
94b4f3ba
CW
308 /* skip disabled subslice */
309 continue;
310
b3e7f866 311 eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask;
8cc76693
LL
312
313 sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
314
315 eu_per_ss = sseu->max_eus_per_subslice -
316 hweight8(eu_disabled_mask);
94b4f3ba
CW
317
318 /*
319 * Record which subslice(s) has(have) 7 EUs. we
320 * can tune the hash used to spread work among
321 * subslices if they are unbalanced.
322 */
323 if (eu_per_ss == 7)
43b67998 324 sseu->subslice_7eu[s] |= BIT(ss);
94b4f3ba
CW
325 }
326 }
327
8cc76693
LL
328 sseu->eu_total = compute_eu_total(sseu);
329
94b4f3ba
CW
330 /*
331 * SKL is expected to always have a uniform distribution
332 * of EU across subslices with the exception that any one
333 * EU in any one subslice may be fused off for die
334 * recovery. BXT is expected to be perfectly uniform in EU
335 * distribution.
336 */
57ec171e 337 sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
43b67998 338 DIV_ROUND_UP(sseu->eu_total,
57ec171e 339 sseu_subslice_total(sseu)) : 0;
94b4f3ba 340 /*
c7ae7e9a 341 * SKL+ supports slice power gating on devices with more than
94b4f3ba 342 * one slice, and supports EU power gating on devices with
c7ae7e9a 343 * more than one EU pair per subslice. BXT+ supports subslice
94b4f3ba
CW
344 * power gating on devices with more than one subslice, and
345 * supports EU power gating on devices with more than one EU
346 * pair per subslice.
347 */
43b67998 348 sseu->has_slice_pg =
c7ae7e9a 349 !IS_GEN9_LP(dev_priv) && hweight8(sseu->slice_mask) > 1;
43b67998 350 sseu->has_subslice_pg =
254e0931 351 IS_GEN9_LP(dev_priv) && sseu_subslice_total(sseu) > 1;
43b67998 352 sseu->has_eu_pg = sseu->eu_per_subslice > 2;
94b4f3ba 353
234516af 354 if (IS_GEN9_LP(dev_priv)) {
8cc76693
LL
355#define IS_SS_DISABLED(ss) (!(sseu->subslice_mask[0] & BIT(ss)))
356 info->has_pooled_eu = hweight8(sseu->subslice_mask[0]) == 3;
234516af 357
43b67998 358 sseu->min_eu_in_pool = 0;
94b4f3ba 359 if (info->has_pooled_eu) {
57ec171e 360 if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0))
43b67998 361 sseu->min_eu_in_pool = 3;
57ec171e 362 else if (IS_SS_DISABLED(1))
43b67998 363 sseu->min_eu_in_pool = 6;
94b4f3ba 364 else
43b67998 365 sseu->min_eu_in_pool = 9;
94b4f3ba
CW
366 }
367#undef IS_SS_DISABLED
368 }
369}
370
371static void broadwell_sseu_info_init(struct drm_i915_private *dev_priv)
372{
43b67998 373 struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu;
94b4f3ba 374 int s, ss;
8cc76693 375 u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */
94b4f3ba
CW
376
377 fuse2 = I915_READ(GEN8_FUSE2);
f08a0c92 378 sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
8cc76693
LL
379 sseu->max_slices = 3;
380 sseu->max_subslices = 3;
381 sseu->max_eus_per_subslice = 8;
382
57ec171e
ID
383 /*
384 * The subslice disable field is global, i.e. it applies
385 * to each of the enabled slices.
386 */
8cc76693
LL
387 subslice_mask = GENMASK(sseu->max_subslices - 1, 0);
388 subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >>
389 GEN8_F2_SS_DIS_SHIFT);
94b4f3ba
CW
390
391 eu_disable[0] = I915_READ(GEN8_EU_DISABLE0) & GEN8_EU_DIS0_S0_MASK;
392 eu_disable[1] = (I915_READ(GEN8_EU_DISABLE0) >> GEN8_EU_DIS0_S1_SHIFT) |
393 ((I915_READ(GEN8_EU_DISABLE1) & GEN8_EU_DIS1_S1_MASK) <<
394 (32 - GEN8_EU_DIS0_S1_SHIFT));
395 eu_disable[2] = (I915_READ(GEN8_EU_DISABLE1) >> GEN8_EU_DIS1_S2_SHIFT) |
396 ((I915_READ(GEN8_EU_DISABLE2) & GEN8_EU_DIS2_S2_MASK) <<
397 (32 - GEN8_EU_DIS1_S2_SHIFT));
398
94b4f3ba
CW
399 /*
400 * Iterate through enabled slices and subslices to
401 * count the total enabled EU.
402 */
8cc76693 403 for (s = 0; s < sseu->max_slices; s++) {
f08a0c92 404 if (!(sseu->slice_mask & BIT(s)))
94b4f3ba
CW
405 /* skip disabled slice */
406 continue;
407
8cc76693
LL
408 sseu->subslice_mask[s] = subslice_mask;
409
410 for (ss = 0; ss < sseu->max_subslices; ss++) {
411 u8 eu_disabled_mask;
94b4f3ba
CW
412 u32 n_disabled;
413
8cc76693 414 if (!(sseu->subslice_mask[ss] & BIT(ss)))
94b4f3ba
CW
415 /* skip disabled subslice */
416 continue;
417
8cc76693
LL
418 eu_disabled_mask =
419 eu_disable[s] >> (ss * sseu->max_eus_per_subslice);
420
421 sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
422
423 n_disabled = hweight8(eu_disabled_mask);
94b4f3ba
CW
424
425 /*
426 * Record which subslices have 7 EUs.
427 */
8cc76693 428 if (sseu->max_eus_per_subslice - n_disabled == 7)
43b67998 429 sseu->subslice_7eu[s] |= 1 << ss;
94b4f3ba
CW
430 }
431 }
432
8cc76693
LL
433 sseu->eu_total = compute_eu_total(sseu);
434
94b4f3ba
CW
435 /*
436 * BDW is expected to always have a uniform distribution of EU across
437 * subslices with the exception that any one EU in any one subslice may
438 * be fused off for die recovery.
439 */
57ec171e
ID
440 sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
441 DIV_ROUND_UP(sseu->eu_total,
442 sseu_subslice_total(sseu)) : 0;
94b4f3ba
CW
443
444 /*
445 * BDW supports slice power gating on devices with more than
446 * one slice.
447 */
f08a0c92 448 sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1;
43b67998
ID
449 sseu->has_subslice_pg = 0;
450 sseu->has_eu_pg = 0;
94b4f3ba
CW
451}
452
b8ec759e
LL
453static void haswell_sseu_info_init(struct drm_i915_private *dev_priv)
454{
455 struct intel_device_info *info = mkwrite_device_info(dev_priv);
456 struct sseu_dev_info *sseu = &info->sseu;
457 u32 fuse1;
8cc76693 458 int s, ss;
b8ec759e
LL
459
460 /*
461 * There isn't a register to tell us how many slices/subslices. We
462 * work off the PCI-ids here.
463 */
464 switch (info->gt) {
465 default:
466 MISSING_CASE(info->gt);
467 /* fall through */
468 case 1:
469 sseu->slice_mask = BIT(0);
8cc76693 470 sseu->subslice_mask[0] = BIT(0);
b8ec759e
LL
471 break;
472 case 2:
473 sseu->slice_mask = BIT(0);
8cc76693 474 sseu->subslice_mask[0] = BIT(0) | BIT(1);
b8ec759e
LL
475 break;
476 case 3:
477 sseu->slice_mask = BIT(0) | BIT(1);
8cc76693
LL
478 sseu->subslice_mask[0] = BIT(0) | BIT(1);
479 sseu->subslice_mask[1] = BIT(0) | BIT(1);
b8ec759e
LL
480 break;
481 }
482
8cc76693
LL
483 sseu->max_slices = hweight8(sseu->slice_mask);
484 sseu->max_subslices = hweight8(sseu->subslice_mask[0]);
485
b8ec759e
LL
486 fuse1 = I915_READ(HSW_PAVP_FUSE1);
487 switch ((fuse1 & HSW_F1_EU_DIS_MASK) >> HSW_F1_EU_DIS_SHIFT) {
488 default:
489 MISSING_CASE((fuse1 & HSW_F1_EU_DIS_MASK) >>
490 HSW_F1_EU_DIS_SHIFT);
491 /* fall through */
492 case HSW_F1_EU_DIS_10EUS:
493 sseu->eu_per_subslice = 10;
494 break;
495 case HSW_F1_EU_DIS_8EUS:
496 sseu->eu_per_subslice = 8;
497 break;
498 case HSW_F1_EU_DIS_6EUS:
499 sseu->eu_per_subslice = 6;
500 break;
501 }
8cc76693
LL
502 sseu->max_eus_per_subslice = sseu->eu_per_subslice;
503
504 for (s = 0; s < sseu->max_slices; s++) {
505 for (ss = 0; ss < sseu->max_subslices; ss++) {
506 sseu_set_eus(sseu, s, ss,
507 (1UL << sseu->eu_per_subslice) - 1);
508 }
509 }
b8ec759e 510
8cc76693 511 sseu->eu_total = compute_eu_total(sseu);
b8ec759e
LL
512
513 /* No powergating for you. */
514 sseu->has_slice_pg = 0;
515 sseu->has_subslice_pg = 0;
516 sseu->has_eu_pg = 0;
517}
518
f577a03b 519static u32 read_reference_ts_freq(struct drm_i915_private *dev_priv)
dab91783
LL
520{
521 u32 ts_override = I915_READ(GEN9_TIMESTAMP_OVERRIDE);
f577a03b 522 u32 base_freq, frac_freq;
dab91783
LL
523
524 base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >>
525 GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1;
f577a03b 526 base_freq *= 1000;
dab91783
LL
527
528 frac_freq = ((ts_override &
529 GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >>
530 GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT);
f577a03b 531 frac_freq = 1000 / (frac_freq + 1);
dab91783
LL
532
533 return base_freq + frac_freq;
534}
535
f577a03b 536static u32 read_timestamp_frequency(struct drm_i915_private *dev_priv)
dab91783 537{
f577a03b
LL
538 u32 f12_5_mhz = 12500;
539 u32 f19_2_mhz = 19200;
540 u32 f24_mhz = 24000;
dab91783
LL
541
542 if (INTEL_GEN(dev_priv) <= 4) {
543 /* PRMs say:
544 *
545 * "The value in this register increments once every 16
546 * hclks." (through the “Clocking Configuration”
547 * (“CLKCFG”) MCHBAR register)
548 */
f577a03b 549 return dev_priv->rawclk_freq / 16;
dab91783
LL
550 } else if (INTEL_GEN(dev_priv) <= 8) {
551 /* PRMs say:
552 *
553 * "The PCU TSC counts 10ns increments; this timestamp
554 * reflects bits 38:3 of the TSC (i.e. 80ns granularity,
555 * rolling over every 1.5 hours).
556 */
557 return f12_5_mhz;
558 } else if (INTEL_GEN(dev_priv) <= 9) {
559 u32 ctc_reg = I915_READ(CTC_MODE);
f577a03b 560 u32 freq = 0;
dab91783
LL
561
562 if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
563 freq = read_reference_ts_freq(dev_priv);
564 } else {
565 freq = IS_GEN9_LP(dev_priv) ? f19_2_mhz : f24_mhz;
566
567 /* Now figure out how the command stream's timestamp
568 * register increments from this frequency (it might
569 * increment only every few clock cycle).
570 */
571 freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >>
572 CTC_SHIFT_PARAMETER_SHIFT);
573 }
574
575 return freq;
576 } else if (INTEL_GEN(dev_priv) <= 10) {
577 u32 ctc_reg = I915_READ(CTC_MODE);
f577a03b 578 u32 freq = 0;
dab91783
LL
579 u32 rpm_config_reg = 0;
580
581 /* First figure out the reference frequency. There are 2 ways
582 * we can compute the frequency, either through the
583 * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE
584 * tells us which one we should use.
585 */
586 if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
587 freq = read_reference_ts_freq(dev_priv);
588 } else {
589 u32 crystal_clock;
590
591 rpm_config_reg = I915_READ(RPM_CONFIG0);
592 crystal_clock = (rpm_config_reg &
593 GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
594 GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
595 switch (crystal_clock) {
596 case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
597 freq = f19_2_mhz;
598 break;
599 case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
600 freq = f24_mhz;
601 break;
602 }
dab91783 603
53ff2641
LL
604 /* Now figure out how the command stream's timestamp
605 * register increments from this frequency (it might
606 * increment only every few clock cycle).
607 */
608 freq >>= 3 - ((rpm_config_reg &
609 GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
610 GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT);
611 }
dab91783
LL
612
613 return freq;
614 }
615
fe66e928 616 MISSING_CASE("Unknown gen, unable to read command streamer timestamp frequency\n");
dab91783
LL
617 return 0;
618}
619
6a7e51f3
MW
620/**
621 * intel_device_info_runtime_init - initialize runtime info
622 * @info: intel device info struct
623 *
94b4f3ba
CW
624 * Determine various intel_device_info fields at runtime.
625 *
626 * Use it when either:
627 * - it's judged too laborious to fill n static structures with the limit
628 * when a simple if statement does the job,
629 * - run-time checks (eg read fuse/strap registers) are needed.
630 *
631 * This function needs to be called:
632 * - after the MMIO has been setup as we are reading registers,
633 * - after the PCH has been detected,
634 * - before the first usage of the fields it can tweak.
635 */
6a7e51f3 636void intel_device_info_runtime_init(struct intel_device_info *info)
94b4f3ba 637{
6a7e51f3
MW
638 struct drm_i915_private *dev_priv =
639 container_of(info, struct drm_i915_private, info);
94b4f3ba
CW
640 enum pipe pipe;
641
6e7406db
MK
642 if (INTEL_GEN(dev_priv) >= 10) {
643 for_each_pipe(dev_priv, pipe)
644 info->num_scalers[pipe] = 2;
645 } else if (INTEL_GEN(dev_priv) == 9) {
0bf0230e
ACO
646 info->num_scalers[PIPE_A] = 2;
647 info->num_scalers[PIPE_B] = 2;
648 info->num_scalers[PIPE_C] = 1;
649 }
650
022d3093
TU
651 BUILD_BUG_ON(I915_NUM_ENGINES >
652 sizeof(intel_ring_mask_t) * BITS_PER_BYTE);
653
94b4f3ba
CW
654 /*
655 * Skylake and Broxton currently don't expose the topmost plane as its
656 * use is exclusive with the legacy cursor and we only want to expose
657 * one of those, not both. Until we can safely expose the topmost plane
658 * as a DRM_PLANE_TYPE_CURSOR with all the features exposed/supported,
659 * we don't expose the topmost plane at all to prevent ABI breakage
660 * down the line.
661 */
8366be98 662 if (IS_GEN10(dev_priv) || IS_GEMINILAKE(dev_priv))
e9c98825
ACO
663 for_each_pipe(dev_priv, pipe)
664 info->num_sprites[pipe] = 3;
665 else if (IS_BROXTON(dev_priv)) {
94b4f3ba
CW
666 info->num_sprites[PIPE_A] = 2;
667 info->num_sprites[PIPE_B] = 2;
668 info->num_sprites[PIPE_C] = 1;
33edc24d 669 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
94b4f3ba
CW
670 for_each_pipe(dev_priv, pipe)
671 info->num_sprites[pipe] = 2;
ab33081a 672 } else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
94b4f3ba
CW
673 for_each_pipe(dev_priv, pipe)
674 info->num_sprites[pipe] = 1;
33edc24d 675 }
94b4f3ba 676
4f044a88 677 if (i915_modparams.disable_display) {
94b4f3ba
CW
678 DRM_INFO("Display disabled (module parameter)\n");
679 info->num_pipes = 0;
680 } else if (info->num_pipes > 0 &&
681 (IS_GEN7(dev_priv) || IS_GEN8(dev_priv)) &&
682 HAS_PCH_SPLIT(dev_priv)) {
683 u32 fuse_strap = I915_READ(FUSE_STRAP);
684 u32 sfuse_strap = I915_READ(SFUSE_STRAP);
685
686 /*
687 * SFUSE_STRAP is supposed to have a bit signalling the display
688 * is fused off. Unfortunately it seems that, at least in
689 * certain cases, fused off display means that PCH display
690 * reads don't land anywhere. In that case, we read 0s.
691 *
692 * On CPT/PPT, we can detect this case as SFUSE_STRAP_FUSE_LOCK
693 * should be set when taking over after the firmware.
694 */
695 if (fuse_strap & ILK_INTERNAL_DISPLAY_DISABLE ||
696 sfuse_strap & SFUSE_STRAP_DISPLAY_DISABLED ||
b9eb89b2 697 (HAS_PCH_CPT(dev_priv) &&
94b4f3ba
CW
698 !(sfuse_strap & SFUSE_STRAP_FUSE_LOCK))) {
699 DRM_INFO("Display fused off, disabling\n");
700 info->num_pipes = 0;
701 } else if (fuse_strap & IVB_PIPE_C_DISABLE) {
702 DRM_INFO("PipeC fused off\n");
703 info->num_pipes -= 1;
704 }
705 } else if (info->num_pipes > 0 && IS_GEN9(dev_priv)) {
706 u32 dfsm = I915_READ(SKL_DFSM);
707 u8 disabled_mask = 0;
708 bool invalid;
709 int num_bits;
710
711 if (dfsm & SKL_DFSM_PIPE_A_DISABLE)
712 disabled_mask |= BIT(PIPE_A);
713 if (dfsm & SKL_DFSM_PIPE_B_DISABLE)
714 disabled_mask |= BIT(PIPE_B);
715 if (dfsm & SKL_DFSM_PIPE_C_DISABLE)
716 disabled_mask |= BIT(PIPE_C);
717
718 num_bits = hweight8(disabled_mask);
719
720 switch (disabled_mask) {
721 case BIT(PIPE_A):
722 case BIT(PIPE_B):
723 case BIT(PIPE_A) | BIT(PIPE_B):
724 case BIT(PIPE_A) | BIT(PIPE_C):
725 invalid = true;
726 break;
727 default:
728 invalid = false;
729 }
730
731 if (num_bits > info->num_pipes || invalid)
732 DRM_ERROR("invalid pipe fuse configuration: 0x%x\n",
733 disabled_mask);
734 else
735 info->num_pipes -= num_bits;
736 }
737
738 /* Initialize slice/subslice/EU info */
b8ec759e
LL
739 if (IS_HASWELL(dev_priv))
740 haswell_sseu_info_init(dev_priv);
741 else if (IS_CHERRYVIEW(dev_priv))
94b4f3ba
CW
742 cherryview_sseu_info_init(dev_priv);
743 else if (IS_BROADWELL(dev_priv))
744 broadwell_sseu_info_init(dev_priv);
4e9767bc 745 else if (INTEL_GEN(dev_priv) == 9)
94b4f3ba 746 gen9_sseu_info_init(dev_priv);
4e9767bc
BW
747 else if (INTEL_GEN(dev_priv) >= 10)
748 gen10_sseu_info_init(dev_priv);
94b4f3ba 749
dab91783 750 /* Initialize command stream timestamp frequency */
f577a03b 751 info->cs_timestamp_frequency_khz = read_timestamp_frequency(dev_priv);
94b4f3ba 752}
3fed1808
CW
753
754void intel_driver_caps_print(const struct intel_driver_caps *caps,
755 struct drm_printer *p)
756{
757 drm_printf(p, "scheduler: %x\n", caps->scheduler);
758}