drm/i915: s/pipe_config/crtc_state/ in intel_crtc_atomic_check()
[linux-2.6-block.git] / drivers / gpu / drm / i915 / intel_device_info.c
CommitLineData
94b4f3ba
CW
1/*
2 * Copyright © 2016 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
a8c9b849
MW
25#include <drm/drm_print.h>
26
b978520d 27#include "intel_device_info.h"
94b4f3ba
CW
28#include "i915_drv.h"
29
2e0d26f8
JN
30#define PLATFORM_NAME(x) [INTEL_##x] = #x
31static const char * const platform_names[] = {
32 PLATFORM_NAME(I830),
33 PLATFORM_NAME(I845G),
34 PLATFORM_NAME(I85X),
35 PLATFORM_NAME(I865G),
36 PLATFORM_NAME(I915G),
37 PLATFORM_NAME(I915GM),
38 PLATFORM_NAME(I945G),
39 PLATFORM_NAME(I945GM),
40 PLATFORM_NAME(G33),
41 PLATFORM_NAME(PINEVIEW),
c0f86832
JN
42 PLATFORM_NAME(I965G),
43 PLATFORM_NAME(I965GM),
f69c11ae
JN
44 PLATFORM_NAME(G45),
45 PLATFORM_NAME(GM45),
2e0d26f8
JN
46 PLATFORM_NAME(IRONLAKE),
47 PLATFORM_NAME(SANDYBRIDGE),
48 PLATFORM_NAME(IVYBRIDGE),
49 PLATFORM_NAME(VALLEYVIEW),
50 PLATFORM_NAME(HASWELL),
51 PLATFORM_NAME(BROADWELL),
52 PLATFORM_NAME(CHERRYVIEW),
53 PLATFORM_NAME(SKYLAKE),
54 PLATFORM_NAME(BROXTON),
55 PLATFORM_NAME(KABYLAKE),
56 PLATFORM_NAME(GEMINILAKE),
71851fa8 57 PLATFORM_NAME(COFFEELAKE),
413f3c19 58 PLATFORM_NAME(CANNONLAKE),
41231001 59 PLATFORM_NAME(ICELAKE),
897f2961 60 PLATFORM_NAME(ELKHARTLAKE),
abd3a0fe 61 PLATFORM_NAME(TIGERLAKE),
2e0d26f8
JN
62};
63#undef PLATFORM_NAME
64
65const char *intel_platform_name(enum intel_platform platform)
66{
9160095c
JN
67 BUILD_BUG_ON(ARRAY_SIZE(platform_names) != INTEL_MAX_PLATFORMS);
68
2e0d26f8
JN
69 if (WARN_ON_ONCE(platform >= ARRAY_SIZE(platform_names) ||
70 platform_names[platform] == NULL))
71 return "<unknown>";
72
73 return platform_names[platform];
74}
75
a8c9b849
MW
76void intel_device_info_dump_flags(const struct intel_device_info *info,
77 struct drm_printer *p)
78{
79#define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->name));
80 DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
81#undef PRINT_FLAG
d53db442
JRS
82
83#define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->display.name));
84 DEV_INFO_DISPLAY_FOR_EACH_FLAG(PRINT_FLAG);
85#undef PRINT_FLAG
a8c9b849
MW
86}
87
5fbbe8d4
MW
88static void sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p)
89{
8cc76693
LL
90 int s;
91
0ef904bb
TU
92 drm_printf(p, "slice total: %u, mask=%04x\n",
93 hweight8(sseu->slice_mask), sseu->slice_mask);
0040fd19 94 drm_printf(p, "subslice total: %u\n", intel_sseu_subslice_total(sseu));
0ef904bb 95 for (s = 0; s < sseu->max_slices; s++) {
100f5f7f 96 drm_printf(p, "slice%d: %u subslices, mask=%08x\n",
b5ab1abe 97 s, intel_sseu_subslices_per_slice(sseu, s),
100f5f7f 98 intel_sseu_get_subslices(sseu, s));
8cc76693 99 }
5fbbe8d4
MW
100 drm_printf(p, "EU total: %u\n", sseu->eu_total);
101 drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice);
102 drm_printf(p, "has slice power gating: %s\n",
103 yesno(sseu->has_slice_pg));
104 drm_printf(p, "has subslice power gating: %s\n",
105 yesno(sseu->has_subslice_pg));
106 drm_printf(p, "has EU power gating: %s\n", yesno(sseu->has_eu_pg));
107}
108
0258404f 109void intel_device_info_dump_runtime(const struct intel_runtime_info *info,
5fbbe8d4
MW
110 struct drm_printer *p)
111{
112 sseu_dump(&info->sseu, p);
113
114 drm_printf(p, "CS timestamp frequency: %u kHz\n",
115 info->cs_timestamp_frequency_khz);
116}
117
0040fd19
SS
118static int sseu_eu_idx(const struct sseu_dev_info *sseu, int slice,
119 int subslice)
120{
49610c37 121 int slice_stride = sseu->max_subslices * sseu->eu_stride;
0040fd19 122
49610c37 123 return slice * slice_stride + subslice * sseu->eu_stride;
0040fd19
SS
124}
125
126static u16 sseu_get_eus(const struct sseu_dev_info *sseu, int slice,
127 int subslice)
128{
129 int i, offset = sseu_eu_idx(sseu, slice, subslice);
130 u16 eu_mask = 0;
131
49610c37 132 for (i = 0; i < sseu->eu_stride; i++) {
0040fd19
SS
133 eu_mask |= ((u16)sseu->eu_mask[offset + i]) <<
134 (i * BITS_PER_BYTE);
135 }
136
137 return eu_mask;
138}
139
140static void sseu_set_eus(struct sseu_dev_info *sseu, int slice, int subslice,
141 u16 eu_mask)
142{
143 int i, offset = sseu_eu_idx(sseu, slice, subslice);
144
49610c37 145 for (i = 0; i < sseu->eu_stride; i++) {
0040fd19
SS
146 sseu->eu_mask[offset + i] =
147 (eu_mask >> (BITS_PER_BYTE * i)) & 0xff;
148 }
149}
150
79e9cd5f
LL
151void intel_device_info_dump_topology(const struct sseu_dev_info *sseu,
152 struct drm_printer *p)
153{
154 int s, ss;
155
156 if (sseu->max_slices == 0) {
157 drm_printf(p, "Unavailable\n");
158 return;
159 }
160
161 for (s = 0; s < sseu->max_slices; s++) {
100f5f7f 162 drm_printf(p, "slice%d: %u subslice(s) (0x%08x):\n",
b5ab1abe 163 s, intel_sseu_subslices_per_slice(sseu, s),
100f5f7f 164 intel_sseu_get_subslices(sseu, s));
79e9cd5f
LL
165
166 for (ss = 0; ss < sseu->max_subslices; ss++) {
167 u16 enabled_eus = sseu_get_eus(sseu, s, ss);
168
169 drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n",
170 ss, hweight16(enabled_eus), enabled_eus);
171 }
172 }
173}
174
8cc76693
LL
175static u16 compute_eu_total(const struct sseu_dev_info *sseu)
176{
177 u16 i, total = 0;
178
179 for (i = 0; i < ARRAY_SIZE(sseu->eu_mask); i++)
180 total += hweight8(sseu->eu_mask[i]);
181
182 return total;
183}
184
8b5eb5e2
KG
185static void gen11_sseu_info_init(struct drm_i915_private *dev_priv)
186{
0258404f 187 struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
8b5eb5e2
KG
188 u8 s_en;
189 u32 ss_en, ss_en_mask;
190 u8 eu_en;
191 int s;
192
8b355db9
SS
193 if (IS_ELKHARTLAKE(dev_priv))
194 intel_sseu_set_info(sseu, 1, 4, 8);
195 else
196 intel_sseu_set_info(sseu, 1, 8, 8);
8b5eb5e2
KG
197
198 s_en = I915_READ(GEN11_GT_SLICE_ENABLE) & GEN11_GT_S_ENA_MASK;
199 ss_en = ~I915_READ(GEN11_GT_SUBSLICE_DISABLE);
200 ss_en_mask = BIT(sseu->max_subslices) - 1;
201 eu_en = ~(I915_READ(GEN11_EU_DISABLE) & GEN11_EU_DIS_MASK);
202
203 for (s = 0; s < sseu->max_slices; s++) {
204 if (s_en & BIT(s)) {
a10f361d 205 int ss_idx = sseu->max_subslices * s;
8b5eb5e2
KG
206 int ss;
207
208 sseu->slice_mask |= BIT(s);
9e8a135e
SS
209
210 intel_sseu_set_subslices(sseu, s, (ss_en >> ss_idx) &
211 ss_en_mask);
212
e1210bbf
SS
213 for (ss = 0; ss < sseu->max_subslices; ss++)
214 if (intel_sseu_has_subslice(sseu, s, ss))
8b5eb5e2 215 sseu_set_eus(sseu, s, ss, eu_en);
8b5eb5e2
KG
216 }
217 }
218 sseu->eu_per_subslice = hweight8(eu_en);
219 sseu->eu_total = compute_eu_total(sseu);
220
221 /* ICL has no power gating restrictions. */
222 sseu->has_slice_pg = 1;
223 sseu->has_subslice_pg = 1;
224 sseu->has_eu_pg = 1;
225}
226
4e9767bc
BW
227static void gen10_sseu_info_init(struct drm_i915_private *dev_priv)
228{
0258404f 229 struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
4e9767bc 230 const u32 fuse2 = I915_READ(GEN8_FUSE2);
8cc76693
LL
231 int s, ss;
232 const int eu_mask = 0xff;
233 u32 subslice_mask, eu_en;
4e9767bc 234
8b355db9
SS
235 intel_sseu_set_info(sseu, 6, 4, 8);
236
4e9767bc
BW
237 sseu->slice_mask = (fuse2 & GEN10_F2_S_ENA_MASK) >>
238 GEN10_F2_S_ENA_SHIFT;
a10f361d 239
8cc76693
LL
240 /* Slice0 */
241 eu_en = ~I915_READ(GEN8_EU_DISABLE0);
242 for (ss = 0; ss < sseu->max_subslices; ss++)
243 sseu_set_eus(sseu, 0, ss, (eu_en >> (8 * ss)) & eu_mask);
244 /* Slice1 */
245 sseu_set_eus(sseu, 1, 0, (eu_en >> 24) & eu_mask);
246 eu_en = ~I915_READ(GEN8_EU_DISABLE1);
247 sseu_set_eus(sseu, 1, 1, eu_en & eu_mask);
248 /* Slice2 */
249 sseu_set_eus(sseu, 2, 0, (eu_en >> 8) & eu_mask);
250 sseu_set_eus(sseu, 2, 1, (eu_en >> 16) & eu_mask);
251 /* Slice3 */
252 sseu_set_eus(sseu, 3, 0, (eu_en >> 24) & eu_mask);
253 eu_en = ~I915_READ(GEN8_EU_DISABLE2);
254 sseu_set_eus(sseu, 3, 1, eu_en & eu_mask);
255 /* Slice4 */
256 sseu_set_eus(sseu, 4, 0, (eu_en >> 8) & eu_mask);
257 sseu_set_eus(sseu, 4, 1, (eu_en >> 16) & eu_mask);
258 /* Slice5 */
259 sseu_set_eus(sseu, 5, 0, (eu_en >> 24) & eu_mask);
260 eu_en = ~I915_READ(GEN10_EU_DISABLE3);
261 sseu_set_eus(sseu, 5, 1, eu_en & eu_mask);
262
33ee9e86
SS
263 subslice_mask = (1 << 4) - 1;
264 subslice_mask &= ~((fuse2 & GEN10_F2_SS_DIS_MASK) >>
265 GEN10_F2_SS_DIS_SHIFT);
266
8cc76693 267 for (s = 0; s < sseu->max_slices; s++) {
33ee9e86
SS
268 u32 subslice_mask_with_eus = subslice_mask;
269
8cc76693
LL
270 for (ss = 0; ss < sseu->max_subslices; ss++) {
271 if (sseu_get_eus(sseu, s, ss) == 0)
33ee9e86 272 subslice_mask_with_eus &= ~BIT(ss);
8cc76693 273 }
33ee9e86
SS
274
275 /*
276 * Slice0 can have up to 3 subslices, but there are only 2 in
277 * slice1/2.
278 */
9e8a135e
SS
279 intel_sseu_set_subslices(sseu, s, s == 0 ?
280 subslice_mask_with_eus :
281 subslice_mask_with_eus & 0x3);
8cc76693
LL
282 }
283
284 sseu->eu_total = compute_eu_total(sseu);
4e9767bc
BW
285
286 /*
287 * CNL is expected to always have a uniform distribution
288 * of EU across subslices with the exception that any one
289 * EU in any one subslice may be fused off for die
290 * recovery.
291 */
0040fd19 292 sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
4e9767bc 293 DIV_ROUND_UP(sseu->eu_total,
0040fd19
SS
294 intel_sseu_subslice_total(sseu)) :
295 0;
4e9767bc
BW
296
297 /* No restrictions on Power Gating */
298 sseu->has_slice_pg = 1;
299 sseu->has_subslice_pg = 1;
300 sseu->has_eu_pg = 1;
301}
302
94b4f3ba
CW
303static void cherryview_sseu_info_init(struct drm_i915_private *dev_priv)
304{
0258404f 305 struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
8cc76693 306 u32 fuse;
33ee9e86 307 u8 subslice_mask = 0;
94b4f3ba
CW
308
309 fuse = I915_READ(CHV_FUSE_GT);
310
f08a0c92 311 sseu->slice_mask = BIT(0);
8b355db9 312 intel_sseu_set_info(sseu, 1, 2, 8);
94b4f3ba
CW
313
314 if (!(fuse & CHV_FGT_DISABLE_SS0)) {
8cc76693
LL
315 u8 disabled_mask =
316 ((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >>
317 CHV_FGT_EU_DIS_SS0_R0_SHIFT) |
318 (((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >>
319 CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4);
320
33ee9e86 321 subslice_mask |= BIT(0);
8cc76693 322 sseu_set_eus(sseu, 0, 0, ~disabled_mask);
94b4f3ba
CW
323 }
324
325 if (!(fuse & CHV_FGT_DISABLE_SS1)) {
8cc76693
LL
326 u8 disabled_mask =
327 ((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >>
328 CHV_FGT_EU_DIS_SS1_R0_SHIFT) |
329 (((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >>
330 CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4);
331
33ee9e86 332 subslice_mask |= BIT(1);
8cc76693 333 sseu_set_eus(sseu, 0, 1, ~disabled_mask);
94b4f3ba
CW
334 }
335
9e8a135e 336 intel_sseu_set_subslices(sseu, 0, subslice_mask);
33ee9e86 337
8cc76693
LL
338 sseu->eu_total = compute_eu_total(sseu);
339
94b4f3ba
CW
340 /*
341 * CHV expected to always have a uniform distribution of EU
342 * across subslices.
343 */
0040fd19
SS
344 sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
345 sseu->eu_total /
346 intel_sseu_subslice_total(sseu) :
94b4f3ba
CW
347 0;
348 /*
349 * CHV supports subslice power gating on devices with more than
350 * one subslice, and supports EU power gating on devices with
351 * more than one EU pair per subslice.
352 */
43b67998 353 sseu->has_slice_pg = 0;
0040fd19 354 sseu->has_subslice_pg = intel_sseu_subslice_total(sseu) > 1;
43b67998 355 sseu->has_eu_pg = (sseu->eu_per_subslice > 2);
94b4f3ba
CW
356}
357
358static void gen9_sseu_info_init(struct drm_i915_private *dev_priv)
359{
360 struct intel_device_info *info = mkwrite_device_info(dev_priv);
0258404f 361 struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
94b4f3ba 362 int s, ss;
8cc76693
LL
363 u32 fuse2, eu_disable, subslice_mask;
364 const u8 eu_mask = 0xff;
94b4f3ba
CW
365
366 fuse2 = I915_READ(GEN8_FUSE2);
f08a0c92 367 sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
94b4f3ba 368
8cc76693 369 /* BXT has a single slice and at most 3 subslices. */
8b355db9
SS
370 intel_sseu_set_info(sseu, IS_GEN9_LP(dev_priv) ? 1 : 3,
371 IS_GEN9_LP(dev_priv) ? 3 : 4, 8);
8cc76693 372
94b4f3ba
CW
373 /*
374 * The subslice disable field is global, i.e. it applies
375 * to each of the enabled slices.
376 */
8cc76693
LL
377 subslice_mask = (1 << sseu->max_subslices) - 1;
378 subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >>
379 GEN9_F2_SS_DIS_SHIFT);
94b4f3ba
CW
380
381 /*
382 * Iterate through enabled slices and subslices to
383 * count the total enabled EU.
384 */
8cc76693 385 for (s = 0; s < sseu->max_slices; s++) {
f08a0c92 386 if (!(sseu->slice_mask & BIT(s)))
94b4f3ba
CW
387 /* skip disabled slice */
388 continue;
389
9e8a135e 390 intel_sseu_set_subslices(sseu, s, subslice_mask);
8cc76693 391
94b4f3ba 392 eu_disable = I915_READ(GEN9_EU_DISABLE(s));
8cc76693 393 for (ss = 0; ss < sseu->max_subslices; ss++) {
94b4f3ba 394 int eu_per_ss;
8cc76693 395 u8 eu_disabled_mask;
94b4f3ba 396
e1210bbf 397 if (!intel_sseu_has_subslice(sseu, s, ss))
94b4f3ba
CW
398 /* skip disabled subslice */
399 continue;
400
b3e7f866 401 eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask;
8cc76693
LL
402
403 sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
404
405 eu_per_ss = sseu->max_eus_per_subslice -
406 hweight8(eu_disabled_mask);
94b4f3ba
CW
407
408 /*
409 * Record which subslice(s) has(have) 7 EUs. we
410 * can tune the hash used to spread work among
411 * subslices if they are unbalanced.
412 */
413 if (eu_per_ss == 7)
43b67998 414 sseu->subslice_7eu[s] |= BIT(ss);
94b4f3ba
CW
415 }
416 }
417
8cc76693
LL
418 sseu->eu_total = compute_eu_total(sseu);
419
94b4f3ba
CW
420 /*
421 * SKL is expected to always have a uniform distribution
422 * of EU across subslices with the exception that any one
423 * EU in any one subslice may be fused off for die
424 * recovery. BXT is expected to be perfectly uniform in EU
425 * distribution.
426 */
0040fd19 427 sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
43b67998 428 DIV_ROUND_UP(sseu->eu_total,
0040fd19
SS
429 intel_sseu_subslice_total(sseu)) :
430 0;
94b4f3ba 431 /*
c7ae7e9a 432 * SKL+ supports slice power gating on devices with more than
94b4f3ba 433 * one slice, and supports EU power gating on devices with
c7ae7e9a 434 * more than one EU pair per subslice. BXT+ supports subslice
94b4f3ba
CW
435 * power gating on devices with more than one subslice, and
436 * supports EU power gating on devices with more than one EU
437 * pair per subslice.
438 */
43b67998 439 sseu->has_slice_pg =
c7ae7e9a 440 !IS_GEN9_LP(dev_priv) && hweight8(sseu->slice_mask) > 1;
43b67998 441 sseu->has_subslice_pg =
0040fd19 442 IS_GEN9_LP(dev_priv) && intel_sseu_subslice_total(sseu) > 1;
43b67998 443 sseu->has_eu_pg = sseu->eu_per_subslice > 2;
94b4f3ba 444
234516af 445 if (IS_GEN9_LP(dev_priv)) {
8cc76693
LL
446#define IS_SS_DISABLED(ss) (!(sseu->subslice_mask[0] & BIT(ss)))
447 info->has_pooled_eu = hweight8(sseu->subslice_mask[0]) == 3;
234516af 448
43b67998 449 sseu->min_eu_in_pool = 0;
94b4f3ba 450 if (info->has_pooled_eu) {
57ec171e 451 if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0))
43b67998 452 sseu->min_eu_in_pool = 3;
57ec171e 453 else if (IS_SS_DISABLED(1))
43b67998 454 sseu->min_eu_in_pool = 6;
94b4f3ba 455 else
43b67998 456 sseu->min_eu_in_pool = 9;
94b4f3ba
CW
457 }
458#undef IS_SS_DISABLED
459 }
460}
461
462static void broadwell_sseu_info_init(struct drm_i915_private *dev_priv)
463{
0258404f 464 struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
94b4f3ba 465 int s, ss;
8cc76693 466 u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */
94b4f3ba
CW
467
468 fuse2 = I915_READ(GEN8_FUSE2);
f08a0c92 469 sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
8b355db9 470 intel_sseu_set_info(sseu, 3, 3, 8);
8cc76693 471
57ec171e
ID
472 /*
473 * The subslice disable field is global, i.e. it applies
474 * to each of the enabled slices.
475 */
8cc76693
LL
476 subslice_mask = GENMASK(sseu->max_subslices - 1, 0);
477 subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >>
478 GEN8_F2_SS_DIS_SHIFT);
94b4f3ba
CW
479
480 eu_disable[0] = I915_READ(GEN8_EU_DISABLE0) & GEN8_EU_DIS0_S0_MASK;
481 eu_disable[1] = (I915_READ(GEN8_EU_DISABLE0) >> GEN8_EU_DIS0_S1_SHIFT) |
482 ((I915_READ(GEN8_EU_DISABLE1) & GEN8_EU_DIS1_S1_MASK) <<
483 (32 - GEN8_EU_DIS0_S1_SHIFT));
484 eu_disable[2] = (I915_READ(GEN8_EU_DISABLE1) >> GEN8_EU_DIS1_S2_SHIFT) |
485 ((I915_READ(GEN8_EU_DISABLE2) & GEN8_EU_DIS2_S2_MASK) <<
486 (32 - GEN8_EU_DIS1_S2_SHIFT));
487
94b4f3ba
CW
488 /*
489 * Iterate through enabled slices and subslices to
490 * count the total enabled EU.
491 */
8cc76693 492 for (s = 0; s < sseu->max_slices; s++) {
f08a0c92 493 if (!(sseu->slice_mask & BIT(s)))
94b4f3ba
CW
494 /* skip disabled slice */
495 continue;
496
9e8a135e 497 intel_sseu_set_subslices(sseu, s, subslice_mask);
8cc76693
LL
498
499 for (ss = 0; ss < sseu->max_subslices; ss++) {
500 u8 eu_disabled_mask;
94b4f3ba
CW
501 u32 n_disabled;
502
e1210bbf 503 if (!intel_sseu_has_subslice(sseu, s, ss))
94b4f3ba
CW
504 /* skip disabled subslice */
505 continue;
506
8cc76693 507 eu_disabled_mask =
a10f361d 508 eu_disable[s] >> (ss * sseu->max_eus_per_subslice);
8cc76693
LL
509
510 sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
511
512 n_disabled = hweight8(eu_disabled_mask);
94b4f3ba
CW
513
514 /*
515 * Record which subslices have 7 EUs.
516 */
8cc76693 517 if (sseu->max_eus_per_subslice - n_disabled == 7)
43b67998 518 sseu->subslice_7eu[s] |= 1 << ss;
94b4f3ba
CW
519 }
520 }
521
8cc76693
LL
522 sseu->eu_total = compute_eu_total(sseu);
523
94b4f3ba
CW
524 /*
525 * BDW is expected to always have a uniform distribution of EU across
526 * subslices with the exception that any one EU in any one subslice may
527 * be fused off for die recovery.
528 */
0040fd19 529 sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
57ec171e 530 DIV_ROUND_UP(sseu->eu_total,
0040fd19
SS
531 intel_sseu_subslice_total(sseu)) :
532 0;
94b4f3ba
CW
533
534 /*
535 * BDW supports slice power gating on devices with more than
536 * one slice.
537 */
f08a0c92 538 sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1;
43b67998
ID
539 sseu->has_subslice_pg = 0;
540 sseu->has_eu_pg = 0;
94b4f3ba
CW
541}
542
b8ec759e
LL
543static void haswell_sseu_info_init(struct drm_i915_private *dev_priv)
544{
0258404f 545 struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
b8ec759e 546 u32 fuse1;
33ee9e86 547 u8 subslice_mask = 0;
8cc76693 548 int s, ss;
b8ec759e
LL
549
550 /*
551 * There isn't a register to tell us how many slices/subslices. We
552 * work off the PCI-ids here.
553 */
0258404f 554 switch (INTEL_INFO(dev_priv)->gt) {
b8ec759e 555 default:
0258404f 556 MISSING_CASE(INTEL_INFO(dev_priv)->gt);
b8ec759e
LL
557 /* fall through */
558 case 1:
559 sseu->slice_mask = BIT(0);
33ee9e86 560 subslice_mask = BIT(0);
b8ec759e
LL
561 break;
562 case 2:
563 sseu->slice_mask = BIT(0);
33ee9e86 564 subslice_mask = BIT(0) | BIT(1);
b8ec759e
LL
565 break;
566 case 3:
567 sseu->slice_mask = BIT(0) | BIT(1);
33ee9e86 568 subslice_mask = BIT(0) | BIT(1);
b8ec759e
LL
569 break;
570 }
571
572 fuse1 = I915_READ(HSW_PAVP_FUSE1);
573 switch ((fuse1 & HSW_F1_EU_DIS_MASK) >> HSW_F1_EU_DIS_SHIFT) {
574 default:
575 MISSING_CASE((fuse1 & HSW_F1_EU_DIS_MASK) >>
576 HSW_F1_EU_DIS_SHIFT);
577 /* fall through */
578 case HSW_F1_EU_DIS_10EUS:
579 sseu->eu_per_subslice = 10;
580 break;
581 case HSW_F1_EU_DIS_8EUS:
582 sseu->eu_per_subslice = 8;
583 break;
584 case HSW_F1_EU_DIS_6EUS:
585 sseu->eu_per_subslice = 6;
586 break;
587 }
8b355db9
SS
588
589 intel_sseu_set_info(sseu, hweight8(sseu->slice_mask),
33ee9e86 590 hweight8(subslice_mask),
8b355db9 591 sseu->eu_per_subslice);
8cc76693
LL
592
593 for (s = 0; s < sseu->max_slices; s++) {
9e8a135e 594 intel_sseu_set_subslices(sseu, s, subslice_mask);
33ee9e86 595
8cc76693
LL
596 for (ss = 0; ss < sseu->max_subslices; ss++) {
597 sseu_set_eus(sseu, s, ss,
598 (1UL << sseu->eu_per_subslice) - 1);
599 }
600 }
b8ec759e 601
8cc76693 602 sseu->eu_total = compute_eu_total(sseu);
b8ec759e
LL
603
604 /* No powergating for you. */
605 sseu->has_slice_pg = 0;
606 sseu->has_subslice_pg = 0;
607 sseu->has_eu_pg = 0;
608}
609
f577a03b 610static u32 read_reference_ts_freq(struct drm_i915_private *dev_priv)
dab91783
LL
611{
612 u32 ts_override = I915_READ(GEN9_TIMESTAMP_OVERRIDE);
f577a03b 613 u32 base_freq, frac_freq;
dab91783
LL
614
615 base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >>
616 GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1;
f577a03b 617 base_freq *= 1000;
dab91783
LL
618
619 frac_freq = ((ts_override &
620 GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >>
621 GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT);
f577a03b 622 frac_freq = 1000 / (frac_freq + 1);
dab91783
LL
623
624 return base_freq + frac_freq;
625}
626
d775a7b1
PZ
627static u32 gen10_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
628 u32 rpm_config_reg)
629{
630 u32 f19_2_mhz = 19200;
631 u32 f24_mhz = 24000;
632 u32 crystal_clock = (rpm_config_reg &
633 GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
634 GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
635
636 switch (crystal_clock) {
637 case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
638 return f19_2_mhz;
639 case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
640 return f24_mhz;
641 default:
642 MISSING_CASE(crystal_clock);
643 return 0;
644 }
645}
646
647static u32 gen11_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
648 u32 rpm_config_reg)
649{
650 u32 f19_2_mhz = 19200;
651 u32 f24_mhz = 24000;
652 u32 f25_mhz = 25000;
653 u32 f38_4_mhz = 38400;
654 u32 crystal_clock = (rpm_config_reg &
655 GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
656 GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
657
658 switch (crystal_clock) {
659 case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
660 return f24_mhz;
661 case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
662 return f19_2_mhz;
663 case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_38_4_MHZ:
664 return f38_4_mhz;
665 case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_25_MHZ:
666 return f25_mhz;
667 default:
668 MISSING_CASE(crystal_clock);
669 return 0;
670 }
671}
672
f577a03b 673static u32 read_timestamp_frequency(struct drm_i915_private *dev_priv)
dab91783 674{
f577a03b
LL
675 u32 f12_5_mhz = 12500;
676 u32 f19_2_mhz = 19200;
677 u32 f24_mhz = 24000;
dab91783
LL
678
679 if (INTEL_GEN(dev_priv) <= 4) {
680 /* PRMs say:
681 *
682 * "The value in this register increments once every 16
683 * hclks." (through the “Clocking Configuration”
684 * (“CLKCFG”) MCHBAR register)
685 */
f577a03b 686 return dev_priv->rawclk_freq / 16;
dab91783
LL
687 } else if (INTEL_GEN(dev_priv) <= 8) {
688 /* PRMs say:
689 *
690 * "The PCU TSC counts 10ns increments; this timestamp
691 * reflects bits 38:3 of the TSC (i.e. 80ns granularity,
692 * rolling over every 1.5 hours).
693 */
694 return f12_5_mhz;
695 } else if (INTEL_GEN(dev_priv) <= 9) {
696 u32 ctc_reg = I915_READ(CTC_MODE);
f577a03b 697 u32 freq = 0;
dab91783
LL
698
699 if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
700 freq = read_reference_ts_freq(dev_priv);
701 } else {
702 freq = IS_GEN9_LP(dev_priv) ? f19_2_mhz : f24_mhz;
703
704 /* Now figure out how the command stream's timestamp
705 * register increments from this frequency (it might
706 * increment only every few clock cycle).
707 */
708 freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >>
709 CTC_SHIFT_PARAMETER_SHIFT);
710 }
711
712 return freq;
465242ee 713 } else if (INTEL_GEN(dev_priv) <= 12) {
dab91783 714 u32 ctc_reg = I915_READ(CTC_MODE);
f577a03b 715 u32 freq = 0;
dab91783
LL
716
717 /* First figure out the reference frequency. There are 2 ways
718 * we can compute the frequency, either through the
719 * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE
720 * tells us which one we should use.
721 */
722 if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
723 freq = read_reference_ts_freq(dev_priv);
724 } else {
d775a7b1
PZ
725 u32 rpm_config_reg = I915_READ(RPM_CONFIG0);
726
727 if (INTEL_GEN(dev_priv) <= 10)
728 freq = gen10_get_crystal_clock_freq(dev_priv,
729 rpm_config_reg);
730 else
731 freq = gen11_get_crystal_clock_freq(dev_priv,
732 rpm_config_reg);
dab91783 733
53ff2641
LL
734 /* Now figure out how the command stream's timestamp
735 * register increments from this frequency (it might
736 * increment only every few clock cycle).
737 */
738 freq >>= 3 - ((rpm_config_reg &
739 GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
740 GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT);
741 }
dab91783
LL
742
743 return freq;
744 }
745
fe66e928 746 MISSING_CASE("Unknown gen, unable to read command streamer timestamp frequency\n");
dab91783
LL
747 return 0;
748}
749
805446c8
TU
750#undef INTEL_VGA_DEVICE
751#define INTEL_VGA_DEVICE(id, info) (id)
752
753static const u16 subplatform_ult_ids[] = {
754 INTEL_HSW_ULT_GT1_IDS(0),
755 INTEL_HSW_ULT_GT2_IDS(0),
756 INTEL_HSW_ULT_GT3_IDS(0),
757 INTEL_BDW_ULT_GT1_IDS(0),
758 INTEL_BDW_ULT_GT2_IDS(0),
759 INTEL_BDW_ULT_GT3_IDS(0),
760 INTEL_BDW_ULT_RSVD_IDS(0),
761 INTEL_SKL_ULT_GT1_IDS(0),
762 INTEL_SKL_ULT_GT2_IDS(0),
763 INTEL_SKL_ULT_GT3_IDS(0),
764 INTEL_KBL_ULT_GT1_IDS(0),
765 INTEL_KBL_ULT_GT2_IDS(0),
766 INTEL_KBL_ULT_GT3_IDS(0),
767 INTEL_CFL_U_GT2_IDS(0),
768 INTEL_CFL_U_GT3_IDS(0),
769 INTEL_WHL_U_GT1_IDS(0),
770 INTEL_WHL_U_GT2_IDS(0),
c3ad8d29 771 INTEL_WHL_U_GT3_IDS(0),
805446c8
TU
772};
773
774static const u16 subplatform_ulx_ids[] = {
775 INTEL_HSW_ULX_GT1_IDS(0),
776 INTEL_HSW_ULX_GT2_IDS(0),
777 INTEL_BDW_ULX_GT1_IDS(0),
778 INTEL_BDW_ULX_GT2_IDS(0),
779 INTEL_BDW_ULX_GT3_IDS(0),
780 INTEL_BDW_ULX_RSVD_IDS(0),
781 INTEL_SKL_ULX_GT1_IDS(0),
782 INTEL_SKL_ULX_GT2_IDS(0),
783 INTEL_KBL_ULX_GT1_IDS(0),
c3ad8d29 784 INTEL_KBL_ULX_GT2_IDS(0),
805446c8 785 INTEL_AML_KBL_GT2_IDS(0),
c3ad8d29 786 INTEL_AML_CFL_GT2_IDS(0),
805446c8
TU
787};
788
789static const u16 subplatform_portf_ids[] = {
790 INTEL_CNL_PORT_F_IDS(0),
c3ad8d29 791 INTEL_ICL_PORT_F_IDS(0),
805446c8
TU
792};
793
794static bool find_devid(u16 id, const u16 *p, unsigned int num)
795{
796 for (; num; num--, p++) {
797 if (*p == id)
798 return true;
799 }
800
801 return false;
802}
803
804void intel_device_info_subplatform_init(struct drm_i915_private *i915)
805{
806 const struct intel_device_info *info = INTEL_INFO(i915);
807 const struct intel_runtime_info *rinfo = RUNTIME_INFO(i915);
808 const unsigned int pi = __platform_mask_index(rinfo, info->platform);
809 const unsigned int pb = __platform_mask_bit(rinfo, info->platform);
810 u16 devid = INTEL_DEVID(i915);
640cde65 811 u32 mask = 0;
805446c8
TU
812
813 /* Make sure IS_<platform> checks are working. */
814 RUNTIME_INFO(i915)->platform_mask[pi] = BIT(pb);
815
816 /* Find and mark subplatform bits based on the PCI device id. */
817 if (find_devid(devid, subplatform_ult_ids,
818 ARRAY_SIZE(subplatform_ult_ids))) {
819 mask = BIT(INTEL_SUBPLATFORM_ULT);
820 } else if (find_devid(devid, subplatform_ulx_ids,
821 ARRAY_SIZE(subplatform_ulx_ids))) {
822 mask = BIT(INTEL_SUBPLATFORM_ULX);
823 if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
824 /* ULX machines are also considered ULT. */
825 mask |= BIT(INTEL_SUBPLATFORM_ULT);
826 }
805446c8
TU
827 } else if (find_devid(devid, subplatform_portf_ids,
828 ARRAY_SIZE(subplatform_portf_ids))) {
829 mask = BIT(INTEL_SUBPLATFORM_PORTF);
830 }
831
832 GEM_BUG_ON(mask & ~INTEL_SUBPLATFORM_BITS);
833
834 RUNTIME_INFO(i915)->platform_mask[pi] |= mask;
835}
836
6a7e51f3
MW
837/**
838 * intel_device_info_runtime_init - initialize runtime info
963cc126 839 * @dev_priv: the i915 device
6a7e51f3 840 *
94b4f3ba
CW
841 * Determine various intel_device_info fields at runtime.
842 *
843 * Use it when either:
844 * - it's judged too laborious to fill n static structures with the limit
845 * when a simple if statement does the job,
846 * - run-time checks (eg read fuse/strap registers) are needed.
847 *
848 * This function needs to be called:
849 * - after the MMIO has been setup as we are reading registers,
850 * - after the PCH has been detected,
851 * - before the first usage of the fields it can tweak.
852 */
1400cc7e 853void intel_device_info_runtime_init(struct drm_i915_private *dev_priv)
94b4f3ba 854{
1400cc7e 855 struct intel_device_info *info = mkwrite_device_info(dev_priv);
0258404f 856 struct intel_runtime_info *runtime = RUNTIME_INFO(dev_priv);
94b4f3ba
CW
857 enum pipe pipe;
858
6e7406db
MK
859 if (INTEL_GEN(dev_priv) >= 10) {
860 for_each_pipe(dev_priv, pipe)
0258404f 861 runtime->num_scalers[pipe] = 2;
cf819eff 862 } else if (IS_GEN(dev_priv, 9)) {
0258404f
JN
863 runtime->num_scalers[PIPE_A] = 2;
864 runtime->num_scalers[PIPE_B] = 2;
865 runtime->num_scalers[PIPE_C] = 1;
0bf0230e
ACO
866 }
867
8a68d464 868 BUILD_BUG_ON(BITS_PER_TYPE(intel_engine_mask_t) < I915_NUM_ENGINES);
022d3093 869
2dd24a9c 870 if (INTEL_GEN(dev_priv) >= 11)
6711bd73 871 for_each_pipe(dev_priv, pipe)
0258404f 872 runtime->num_sprites[pipe] = 6;
cf819eff 873 else if (IS_GEN(dev_priv, 10) || IS_GEMINILAKE(dev_priv))
e9c98825 874 for_each_pipe(dev_priv, pipe)
0258404f 875 runtime->num_sprites[pipe] = 3;
e9c98825 876 else if (IS_BROXTON(dev_priv)) {
6711bd73
ML
877 /*
878 * Skylake and Broxton currently don't expose the topmost plane as its
879 * use is exclusive with the legacy cursor and we only want to expose
880 * one of those, not both. Until we can safely expose the topmost plane
881 * as a DRM_PLANE_TYPE_CURSOR with all the features exposed/supported,
882 * we don't expose the topmost plane at all to prevent ABI breakage
883 * down the line.
884 */
885
0258404f
JN
886 runtime->num_sprites[PIPE_A] = 2;
887 runtime->num_sprites[PIPE_B] = 2;
888 runtime->num_sprites[PIPE_C] = 1;
33edc24d 889 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
94b4f3ba 890 for_each_pipe(dev_priv, pipe)
0258404f 891 runtime->num_sprites[pipe] = 2;
ab33081a 892 } else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
94b4f3ba 893 for_each_pipe(dev_priv, pipe)
0258404f 894 runtime->num_sprites[pipe] = 1;
33edc24d 895 }
94b4f3ba 896
4f044a88 897 if (i915_modparams.disable_display) {
94b4f3ba 898 DRM_INFO("Display disabled (module parameter)\n");
8d8b0031 899 info->pipe_mask = 0;
e1bf094b 900 } else if (HAS_DISPLAY(dev_priv) &&
f3ce44a0 901 (IS_GEN_RANGE(dev_priv, 7, 8)) &&
94b4f3ba
CW
902 HAS_PCH_SPLIT(dev_priv)) {
903 u32 fuse_strap = I915_READ(FUSE_STRAP);
904 u32 sfuse_strap = I915_READ(SFUSE_STRAP);
905
906 /*
907 * SFUSE_STRAP is supposed to have a bit signalling the display
908 * is fused off. Unfortunately it seems that, at least in
909 * certain cases, fused off display means that PCH display
910 * reads don't land anywhere. In that case, we read 0s.
911 *
912 * On CPT/PPT, we can detect this case as SFUSE_STRAP_FUSE_LOCK
913 * should be set when taking over after the firmware.
914 */
915 if (fuse_strap & ILK_INTERNAL_DISPLAY_DISABLE ||
916 sfuse_strap & SFUSE_STRAP_DISPLAY_DISABLED ||
b9eb89b2 917 (HAS_PCH_CPT(dev_priv) &&
94b4f3ba
CW
918 !(sfuse_strap & SFUSE_STRAP_FUSE_LOCK))) {
919 DRM_INFO("Display fused off, disabling\n");
8d8b0031 920 info->pipe_mask = 0;
94b4f3ba
CW
921 } else if (fuse_strap & IVB_PIPE_C_DISABLE) {
922 DRM_INFO("PipeC fused off\n");
8d8b0031 923 info->pipe_mask &= ~BIT(PIPE_C);
94b4f3ba 924 }
bea68f4a 925 } else if (HAS_DISPLAY(dev_priv) && INTEL_GEN(dev_priv) >= 9) {
94b4f3ba 926 u32 dfsm = I915_READ(SKL_DFSM);
8d8b0031 927 u8 enabled_mask = info->pipe_mask;
94b4f3ba
CW
928
929 if (dfsm & SKL_DFSM_PIPE_A_DISABLE)
501ec325 930 enabled_mask &= ~BIT(PIPE_A);
94b4f3ba 931 if (dfsm & SKL_DFSM_PIPE_B_DISABLE)
501ec325 932 enabled_mask &= ~BIT(PIPE_B);
94b4f3ba 933 if (dfsm & SKL_DFSM_PIPE_C_DISABLE)
501ec325 934 enabled_mask &= ~BIT(PIPE_C);
7ff0fca4
JRS
935 if (INTEL_GEN(dev_priv) >= 12 &&
936 (dfsm & TGL_DFSM_PIPE_D_DISABLE))
937 enabled_mask &= ~BIT(PIPE_D);
94b4f3ba 938
501ec325
LDM
939 /*
940 * At least one pipe should be enabled and if there are
941 * disabled pipes, they should be the last ones, with no holes
942 * in the mask.
943 */
944 if (enabled_mask == 0 || !is_power_of_2(enabled_mask + 1))
945 DRM_ERROR("invalid pipe fuse configuration: enabled_mask=0x%x\n",
946 enabled_mask);
94b4f3ba 947 else
8d8b0031 948 info->pipe_mask = enabled_mask;
94b4f3ba
CW
949 }
950
951 /* Initialize slice/subslice/EU info */
b8ec759e
LL
952 if (IS_HASWELL(dev_priv))
953 haswell_sseu_info_init(dev_priv);
954 else if (IS_CHERRYVIEW(dev_priv))
94b4f3ba
CW
955 cherryview_sseu_info_init(dev_priv);
956 else if (IS_BROADWELL(dev_priv))
957 broadwell_sseu_info_init(dev_priv);
cf819eff 958 else if (IS_GEN(dev_priv, 9))
94b4f3ba 959 gen9_sseu_info_init(dev_priv);
cf819eff 960 else if (IS_GEN(dev_priv, 10))
4e9767bc 961 gen10_sseu_info_init(dev_priv);
f60fa408 962 else if (INTEL_GEN(dev_priv) >= 11)
8b5eb5e2 963 gen11_sseu_info_init(dev_priv);
94b4f3ba 964
cf819eff 965 if (IS_GEN(dev_priv, 6) && intel_vtd_active()) {
4bdafb9d 966 DRM_INFO("Disabling ppGTT for VT-d support\n");
cbecbcca 967 info->ppgtt_type = INTEL_PPGTT_NONE;
4bdafb9d
CW
968 }
969
dab91783 970 /* Initialize command stream timestamp frequency */
0258404f 971 runtime->cs_timestamp_frequency_khz = read_timestamp_frequency(dev_priv);
94b4f3ba 972}
3fed1808
CW
973
974void intel_driver_caps_print(const struct intel_driver_caps *caps,
975 struct drm_printer *p)
976{
481827b4
CW
977 drm_printf(p, "Has logical contexts? %s\n",
978 yesno(caps->has_logical_contexts));
3fed1808
CW
979 drm_printf(p, "scheduler: %x\n", caps->scheduler);
980}
26376a7e
OM
981
982/*
983 * Determine which engines are fused off in our particular hardware. Since the
984 * fuse register is in the blitter powerwell, we need forcewake to be ready at
985 * this point (but later we need to prune the forcewake domains for engines that
986 * are indeed fused off).
987 */
988void intel_device_info_init_mmio(struct drm_i915_private *dev_priv)
989{
990 struct intel_device_info *info = mkwrite_device_info(dev_priv);
57b19d55 991 unsigned int logical_vdbox = 0;
9213e4f5 992 unsigned int i;
57b19d55 993 u32 media_fuse;
97ee6e92
DCS
994 u16 vdbox_mask;
995 u16 vebox_mask;
26376a7e
OM
996
997 if (INTEL_GEN(dev_priv) < 11)
998 return;
999
9213e4f5 1000 media_fuse = ~I915_READ(GEN11_GT_VEBOX_VDBOX_DISABLE);
26376a7e 1001
97ee6e92
DCS
1002 vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
1003 vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
1004 GEN11_GT_VEBOX_DISABLE_SHIFT;
26376a7e 1005
26376a7e 1006 for (i = 0; i < I915_MAX_VCS; i++) {
6da301e5
CW
1007 if (!HAS_ENGINE(dev_priv, _VCS(i))) {
1008 vdbox_mask &= ~BIT(i);
26376a7e 1009 continue;
6da301e5 1010 }
26376a7e 1011
97ee6e92 1012 if (!(BIT(i) & vdbox_mask)) {
8a68d464 1013 info->engine_mask &= ~BIT(_VCS(i));
9213e4f5 1014 DRM_DEBUG_DRIVER("vcs%u fused off\n", i);
57b19d55 1015 continue;
9213e4f5 1016 }
57b19d55
OM
1017
1018 /*
1019 * In Gen11, only even numbered logical VDBOXes are
1020 * hooked up to an SFC (Scaler & Format Converter) unit.
bd3b3004 1021 * In TGL each VDBOX has access to an SFC.
57b19d55 1022 */
bd3b3004 1023 if (IS_TIGERLAKE(dev_priv) || logical_vdbox++ % 2 == 0)
0258404f 1024 RUNTIME_INFO(dev_priv)->vdbox_sfc_access |= BIT(i);
26376a7e 1025 }
9511cb64
CW
1026 DRM_DEBUG_DRIVER("vdbox enable: %04x, instances: %04lx\n",
1027 vdbox_mask, VDBOX_MASK(dev_priv));
1028 GEM_BUG_ON(vdbox_mask != VDBOX_MASK(dev_priv));
26376a7e 1029
26376a7e 1030 for (i = 0; i < I915_MAX_VECS; i++) {
6da301e5
CW
1031 if (!HAS_ENGINE(dev_priv, _VECS(i))) {
1032 vebox_mask &= ~BIT(i);
26376a7e 1033 continue;
6da301e5 1034 }
26376a7e 1035
97ee6e92 1036 if (!(BIT(i) & vebox_mask)) {
8a68d464 1037 info->engine_mask &= ~BIT(_VECS(i));
9213e4f5
TU
1038 DRM_DEBUG_DRIVER("vecs%u fused off\n", i);
1039 }
26376a7e 1040 }
9511cb64
CW
1041 DRM_DEBUG_DRIVER("vebox enable: %04x, instances: %04lx\n",
1042 vebox_mask, VEBOX_MASK(dev_priv));
1043 GEM_BUG_ON(vebox_mask != VEBOX_MASK(dev_priv));
26376a7e 1044}