drm/i915/selftests: Shorten infinite wait for sseu
[linux-2.6-block.git] / drivers / gpu / drm / i915 / i915_request.c
CommitLineData
05235c53
CW
1/*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
b52992c0 25#include <linux/dma-fence-array.h>
e8861964
CW
26#include <linux/irq_work.h>
27#include <linux/prefetch.h>
e6017571
IM
28#include <linux/sched.h>
29#include <linux/sched/clock.h>
f361bf4a 30#include <linux/sched/signal.h>
fa545cbf 31
10be98a7
CW
32#include "gem/i915_gem_context.h"
33#include "gt/intel_context.h"
2871ea85 34#include "gt/intel_ring.h"
3e7abf81 35#include "gt/intel_rps.h"
10be98a7 36
21950ee7 37#include "i915_active.h"
696173b0 38#include "i915_drv.h"
103b76ee 39#include "i915_globals.h"
a09d9a80 40#include "i915_trace.h"
696173b0 41#include "intel_pm.h"
05235c53 42
e8861964
CW
43struct execute_cb {
44 struct list_head link;
45 struct irq_work work;
46 struct i915_sw_fence *fence;
f71e01a7
CW
47 void (*hook)(struct i915_request *rq, struct dma_fence *signal);
48 struct i915_request *signal;
e8861964
CW
49};
50
32eb6bcf 51static struct i915_global_request {
103b76ee 52 struct i915_global base;
32eb6bcf
CW
53 struct kmem_cache *slab_requests;
54 struct kmem_cache *slab_dependencies;
e8861964 55 struct kmem_cache *slab_execute_cbs;
32eb6bcf
CW
56} global;
57
f54d1867 58static const char *i915_fence_get_driver_name(struct dma_fence *fence)
04769652
CW
59{
60 return "i915";
61}
62
f54d1867 63static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
04769652 64{
e61e0f51
CW
65 /*
66 * The timeline struct (as part of the ppgtt underneath a context)
05506b5b
CW
67 * may be freed when the request is no longer in use by the GPU.
68 * We could extend the life of a context to beyond that of all
69 * fences, possibly keeping the hw resource around indefinitely,
70 * or we just give them a false name. Since
71 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
72 * lie seems justifiable.
73 */
74 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
75 return "signaled";
76
4daffb66 77 return to_request(fence)->gem_context->name ?: "[i915]";
04769652
CW
78}
79
f54d1867 80static bool i915_fence_signaled(struct dma_fence *fence)
04769652 81{
e61e0f51 82 return i915_request_completed(to_request(fence));
04769652
CW
83}
84
f54d1867 85static bool i915_fence_enable_signaling(struct dma_fence *fence)
04769652 86{
52c0fdb2 87 return i915_request_enable_breadcrumb(to_request(fence));
04769652
CW
88}
89
f54d1867 90static signed long i915_fence_wait(struct dma_fence *fence,
04769652 91 bool interruptible,
e95433c7 92 signed long timeout)
04769652 93{
62eb3c24
CW
94 return i915_request_wait(to_request(fence),
95 interruptible | I915_WAIT_PRIORITY,
96 timeout);
04769652
CW
97}
98
f54d1867 99static void i915_fence_release(struct dma_fence *fence)
04769652 100{
e61e0f51 101 struct i915_request *rq = to_request(fence);
04769652 102
e61e0f51
CW
103 /*
104 * The request is put onto a RCU freelist (i.e. the address
fc158405
CW
105 * is immediately reused), mark the fences as being freed now.
106 * Otherwise the debugobjects for the fences are only marked as
107 * freed when the slab cache itself is freed, and so we would get
108 * caught trying to reuse dead objects.
109 */
e61e0f51 110 i915_sw_fence_fini(&rq->submit);
0c441cb6 111 i915_sw_fence_fini(&rq->semaphore);
fc158405 112
32eb6bcf 113 kmem_cache_free(global.slab_requests, rq);
04769652
CW
114}
115
f54d1867 116const struct dma_fence_ops i915_fence_ops = {
04769652
CW
117 .get_driver_name = i915_fence_get_driver_name,
118 .get_timeline_name = i915_fence_get_timeline_name,
119 .enable_signaling = i915_fence_enable_signaling,
120 .signaled = i915_fence_signaled,
121 .wait = i915_fence_wait,
122 .release = i915_fence_release,
04769652
CW
123};
124
b87b6c0d
CW
125static void irq_execute_cb(struct irq_work *wrk)
126{
127 struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
128
129 i915_sw_fence_complete(cb->fence);
130 kmem_cache_free(global.slab_execute_cbs, cb);
131}
132
133static void irq_execute_cb_hook(struct irq_work *wrk)
134{
135 struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
136
137 cb->hook(container_of(cb->fence, struct i915_request, submit),
138 &cb->signal->fence);
139 i915_request_put(cb->signal);
140
141 irq_execute_cb(wrk);
142}
143
144static void __notify_execute_cb(struct i915_request *rq)
145{
146 struct execute_cb *cb;
147
148 lockdep_assert_held(&rq->lock);
149
150 if (list_empty(&rq->execute_cb))
151 return;
152
153 list_for_each_entry(cb, &rq->execute_cb, link)
154 irq_work_queue(&cb->work);
155
156 /*
157 * XXX Rollback on __i915_request_unsubmit()
158 *
159 * In the future, perhaps when we have an active time-slicing scheduler,
160 * it will be interesting to unsubmit parallel execution and remove
161 * busywaits from the GPU until their master is restarted. This is
162 * quite hairy, we have to carefully rollback the fence and do a
163 * preempt-to-idle cycle on the target engine, all the while the
164 * master execute_cb may refire.
165 */
166 INIT_LIST_HEAD(&rq->execute_cb);
167}
168
05235c53 169static inline void
44c22f3f 170remove_from_client(struct i915_request *request)
05235c53 171{
c8659efa 172 struct drm_i915_file_private *file_priv;
05235c53 173
77715906 174 if (!READ_ONCE(request->file_priv))
05235c53
CW
175 return;
176
77715906
CW
177 rcu_read_lock();
178 file_priv = xchg(&request->file_priv, NULL);
179 if (file_priv) {
180 spin_lock(&file_priv->mm.lock);
c8659efa 181 list_del(&request->client_link);
77715906 182 spin_unlock(&file_priv->mm.lock);
c8659efa 183 }
77715906 184 rcu_read_unlock();
05235c53
CW
185}
186
e61e0f51 187static void free_capture_list(struct i915_request *request)
b0fd47ad 188{
e61e0f51 189 struct i915_capture_list *capture;
b0fd47ad
CW
190
191 capture = request->capture_list;
192 while (capture) {
e61e0f51 193 struct i915_capture_list *next = capture->next;
b0fd47ad
CW
194
195 kfree(capture);
196 capture = next;
197 }
198}
199
37fa0de3
CW
200static void remove_from_engine(struct i915_request *rq)
201{
202 struct intel_engine_cs *engine, *locked;
203
204 /*
205 * Virtual engines complicate acquiring the engine timeline lock,
206 * as their rq->engine pointer is not stable until under that
207 * engine lock. The simple ploy we use is to take the lock then
208 * check that the rq still belongs to the newly locked engine.
209 */
210 locked = READ_ONCE(rq->engine);
1dfffa00 211 spin_lock_irq(&locked->active.lock);
37fa0de3
CW
212 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
213 spin_unlock(&locked->active.lock);
214 spin_lock(&engine->active.lock);
215 locked = engine;
216 }
217 list_del(&rq->sched.link);
1dfffa00 218 spin_unlock_irq(&locked->active.lock);
37fa0de3
CW
219}
220
66101975 221bool i915_request_retire(struct i915_request *rq)
05235c53 222{
9db0c5ca
CW
223 if (!i915_request_completed(rq))
224 return false;
d9b13c4d 225
9db0c5ca
CW
226 GEM_TRACE("%s fence %llx:%lld, current %d\n",
227 rq->engine->name,
228 rq->fence.context, rq->fence.seqno,
229 hwsp_seqno(rq));
4c7d62c6 230
9db0c5ca
CW
231 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
232 trace_i915_request_retire(rq);
80b204bc 233
e5dadff4
CW
234 /*
235 * We know the GPU must have read the request to have
236 * sent us the seqno + interrupt, so use the position
237 * of tail of the request to update the last known position
238 * of the GPU head.
239 *
240 * Note this requires that we are always called in request
241 * completion order.
242 */
d19d71fc
CW
243 GEM_BUG_ON(!list_is_first(&rq->link,
244 &i915_request_timeline(rq)->requests));
e5dadff4 245 rq->ring->head = rq->postfix;
b0fd47ad 246
22b7a426
CW
247 /*
248 * We only loosely track inflight requests across preemption,
249 * and so we may find ourselves attempting to retire a _completed_
250 * request that we have removed from the HW and put back on a run
251 * queue.
252 */
37fa0de3 253 remove_from_engine(rq);
52e54209 254
1dfffa00 255 spin_lock_irq(&rq->lock);
9db0c5ca
CW
256 i915_request_mark_complete(rq);
257 if (!i915_request_signaled(rq))
258 dma_fence_signal_locked(&rq->fence);
259 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
260 i915_request_cancel_breadcrumb(rq);
2a98f4e6 261 if (i915_request_has_waitboost(rq)) {
3e7abf81
AS
262 GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters));
263 atomic_dec(&rq->engine->gt->rps.num_waiters);
9db0c5ca 264 }
b87b6c0d
CW
265 if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
266 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
267 __notify_execute_cb(rq);
268 }
269 GEM_BUG_ON(!list_empty(&rq->execute_cb));
1dfffa00 270 spin_unlock_irq(&rq->lock);
52d7f16e 271
44c22f3f 272 remove_from_client(rq);
422d7df4 273 list_del(&rq->link);
9db0c5ca 274
75d0a7f3
CW
275 intel_context_exit(rq->hw_context);
276 intel_context_unpin(rq->hw_context);
277
9db0c5ca
CW
278 free_capture_list(rq);
279 i915_sched_node_fini(&rq->sched);
280 i915_request_put(rq);
281
282 return true;
05235c53
CW
283}
284
e61e0f51 285void i915_request_retire_upto(struct i915_request *rq)
05235c53 286{
d19d71fc 287 struct intel_timeline * const tl = i915_request_timeline(rq);
e61e0f51 288 struct i915_request *tmp;
05235c53 289
b300fde8 290 GEM_TRACE("%s fence %llx:%lld, current %d\n",
b887d615
CW
291 rq->engine->name,
292 rq->fence.context, rq->fence.seqno,
8892f477 293 hwsp_seqno(rq));
b887d615 294
e61e0f51 295 GEM_BUG_ON(!i915_request_completed(rq));
4ffd6e0c 296
05235c53 297 do {
e5dadff4 298 tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
9db0c5ca 299 } while (i915_request_retire(tmp) && tmp != rq);
05235c53
CW
300}
301
e8861964 302static int
f71e01a7
CW
303__i915_request_await_execution(struct i915_request *rq,
304 struct i915_request *signal,
305 void (*hook)(struct i915_request *rq,
306 struct dma_fence *signal),
307 gfp_t gfp)
e8861964
CW
308{
309 struct execute_cb *cb;
310
f71e01a7
CW
311 if (i915_request_is_active(signal)) {
312 if (hook)
313 hook(rq, &signal->fence);
e8861964 314 return 0;
f71e01a7 315 }
e8861964
CW
316
317 cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
318 if (!cb)
319 return -ENOMEM;
320
321 cb->fence = &rq->submit;
322 i915_sw_fence_await(cb->fence);
323 init_irq_work(&cb->work, irq_execute_cb);
324
f71e01a7
CW
325 if (hook) {
326 cb->hook = hook;
327 cb->signal = i915_request_get(signal);
328 cb->work.func = irq_execute_cb_hook;
329 }
330
e8861964
CW
331 spin_lock_irq(&signal->lock);
332 if (i915_request_is_active(signal)) {
f71e01a7
CW
333 if (hook) {
334 hook(rq, &signal->fence);
335 i915_request_put(signal);
336 }
e8861964
CW
337 i915_sw_fence_complete(cb->fence);
338 kmem_cache_free(global.slab_execute_cbs, cb);
339 } else {
340 list_add_tail(&cb->link, &signal->execute_cb);
341 }
342 spin_unlock_irq(&signal->lock);
343
344 return 0;
345}
346
c0bb487d 347bool __i915_request_submit(struct i915_request *request)
5590af3e 348{
73cb9701 349 struct intel_engine_cs *engine = request->engine;
c0bb487d 350 bool result = false;
5590af3e 351
422d7df4 352 GEM_TRACE("%s fence %llx:%lld, current %d\n",
e7702760 353 engine->name,
d9b13c4d 354 request->fence.context, request->fence.seqno,
8892f477 355 hwsp_seqno(request));
d9b13c4d 356
e60a870d 357 GEM_BUG_ON(!irqs_disabled());
422d7df4 358 lockdep_assert_held(&engine->active.lock);
e60a870d 359
c0bb487d
CW
360 /*
361 * With the advent of preempt-to-busy, we frequently encounter
362 * requests that we have unsubmitted from HW, but left running
363 * until the next ack and so have completed in the meantime. On
364 * resubmission of that completed request, we can skip
365 * updating the payload, and execlists can even skip submitting
366 * the request.
367 *
368 * We must remove the request from the caller's priority queue,
369 * and the caller must only call us when the request is in their
370 * priority queue, under the active.lock. This ensures that the
371 * request has *not* yet been retired and we can safely move
372 * the request into the engine->active.list where it will be
373 * dropped upon retiring. (Otherwise if resubmit a *retired*
374 * request, this would be a horrible use-after-free.)
375 */
376 if (i915_request_completed(request))
377 goto xfer;
378
d9e61b66
CW
379 if (i915_gem_context_is_banned(request->gem_context))
380 i915_request_skip(request, -EIO);
381
ca6e56f6
CW
382 /*
383 * Are we using semaphores when the gpu is already saturated?
384 *
385 * Using semaphores incurs a cost in having the GPU poll a
386 * memory location, busywaiting for it to change. The continual
387 * memory reads can have a noticeable impact on the rest of the
388 * system with the extra bus traffic, stalling the cpu as it too
389 * tries to access memory across the bus (perf stat -e bus-cycles).
390 *
391 * If we installed a semaphore on this request and we only submit
392 * the request after the signaler completed, that indicates the
393 * system is overloaded and using semaphores at this time only
394 * increases the amount of work we are doing. If so, we disable
395 * further use of semaphores until we are idle again, whence we
396 * optimistically try again.
397 */
398 if (request->sched.semaphores &&
399 i915_sw_fence_signaled(&request->semaphore))
44d89409 400 engine->saturated |= request->sched.semaphores;
ca6e56f6 401
c0bb487d
CW
402 engine->emit_fini_breadcrumb(request,
403 request->ring->vaddr + request->postfix);
b5773a36 404
c0bb487d
CW
405 trace_i915_request_execute(request);
406 engine->serial++;
407 result = true;
422d7df4 408
c0bb487d
CW
409xfer: /* We may be recursing from the signal callback of another i915 fence */
410 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
411
412 if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags))
413 list_move_tail(&request->sched.link, &engine->active.requests);
b5773a36 414
52c0fdb2 415 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
0152b3b3 416 !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
52c0fdb2
CW
417 !i915_request_enable_breadcrumb(request))
418 intel_engine_queue_breadcrumbs(engine);
b5773a36 419
e8861964
CW
420 __notify_execute_cb(request);
421
f2d13290
CW
422 spin_unlock(&request->lock);
423
c0bb487d 424 return result;
d55ac5bf
CW
425}
426
e61e0f51 427void i915_request_submit(struct i915_request *request)
d55ac5bf
CW
428{
429 struct intel_engine_cs *engine = request->engine;
430 unsigned long flags;
23902e49 431
d55ac5bf 432 /* Will be called from irq-context when using foreign fences. */
422d7df4 433 spin_lock_irqsave(&engine->active.lock, flags);
d55ac5bf 434
e61e0f51 435 __i915_request_submit(request);
d55ac5bf 436
422d7df4 437 spin_unlock_irqrestore(&engine->active.lock, flags);
d55ac5bf
CW
438}
439
e61e0f51 440void __i915_request_unsubmit(struct i915_request *request)
d55ac5bf 441{
d6a2289d 442 struct intel_engine_cs *engine = request->engine;
d55ac5bf 443
b300fde8 444 GEM_TRACE("%s fence %llx:%lld, current %d\n",
e7702760 445 engine->name,
d9b13c4d 446 request->fence.context, request->fence.seqno,
8892f477 447 hwsp_seqno(request));
d9b13c4d 448
e60a870d 449 GEM_BUG_ON(!irqs_disabled());
422d7df4 450 lockdep_assert_held(&engine->active.lock);
48bc2a4a 451
e61e0f51
CW
452 /*
453 * Only unwind in reverse order, required so that the per-context list
d6a2289d
CW
454 * is kept in seqno/ring order.
455 */
80b204bc 456
d6a2289d
CW
457 /* We may be recursing from the signal callback of another i915 fence */
458 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
b5773a36 459
d6a2289d 460 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
52c0fdb2 461 i915_request_cancel_breadcrumb(request);
b5773a36 462
52c0fdb2
CW
463 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
464 clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
b5773a36 465
d6a2289d
CW
466 spin_unlock(&request->lock);
467
dba5a7f3
CW
468 /* We've already spun, don't charge on resubmitting. */
469 if (request->sched.semaphores && i915_request_started(request)) {
470 request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE;
471 request->sched.semaphores = 0;
472 }
473
e61e0f51
CW
474 /*
475 * We don't need to wake_up any waiters on request->execute, they
d6a2289d 476 * will get woken by any other event or us re-adding this request
e61e0f51 477 * to the engine timeline (__i915_request_submit()). The waiters
d6a2289d
CW
478 * should be quite adapt at finding that the request now has a new
479 * global_seqno to the one they went to sleep on.
480 */
481}
482
e61e0f51 483void i915_request_unsubmit(struct i915_request *request)
d6a2289d
CW
484{
485 struct intel_engine_cs *engine = request->engine;
486 unsigned long flags;
487
488 /* Will be called from irq-context when using foreign fences. */
422d7df4 489 spin_lock_irqsave(&engine->active.lock, flags);
d6a2289d 490
e61e0f51 491 __i915_request_unsubmit(request);
d6a2289d 492
422d7df4 493 spin_unlock_irqrestore(&engine->active.lock, flags);
5590af3e
CW
494}
495
23902e49 496static int __i915_sw_fence_call
d55ac5bf 497submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
23902e49 498{
e61e0f51 499 struct i915_request *request =
48bc2a4a 500 container_of(fence, typeof(*request), submit);
48bc2a4a
CW
501
502 switch (state) {
503 case FENCE_COMPLETE:
e61e0f51 504 trace_i915_request_submit(request);
ef468849
CW
505
506 if (unlikely(fence->error))
507 i915_request_skip(request, fence->error);
508
af7a8ffa 509 /*
e61e0f51
CW
510 * We need to serialize use of the submit_request() callback
511 * with its hotplugging performed during an emergency
512 * i915_gem_set_wedged(). We use the RCU mechanism to mark the
513 * critical section in order to force i915_gem_set_wedged() to
514 * wait until the submit_request() is completed before
515 * proceeding.
af7a8ffa
DV
516 */
517 rcu_read_lock();
d55ac5bf 518 request->engine->submit_request(request);
af7a8ffa 519 rcu_read_unlock();
48bc2a4a
CW
520 break;
521
522 case FENCE_FREE:
e61e0f51 523 i915_request_put(request);
48bc2a4a
CW
524 break;
525 }
526
23902e49
CW
527 return NOTIFY_DONE;
528}
529
b7404c7e
CW
530static int __i915_sw_fence_call
531semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
532{
533 struct i915_request *request =
534 container_of(fence, typeof(*request), semaphore);
535
536 switch (state) {
537 case FENCE_COMPLETE:
17db337f 538 i915_schedule_bump_priority(request, I915_PRIORITY_NOSEMAPHORE);
b7404c7e
CW
539 break;
540
541 case FENCE_FREE:
542 i915_request_put(request);
543 break;
544 }
545
546 return NOTIFY_DONE;
547}
548
e5dadff4 549static void retire_requests(struct intel_timeline *tl)
d22ba0cb
CW
550{
551 struct i915_request *rq, *rn;
552
e5dadff4 553 list_for_each_entry_safe(rq, rn, &tl->requests, link)
9db0c5ca 554 if (!i915_request_retire(rq))
d22ba0cb 555 break;
d22ba0cb
CW
556}
557
558static noinline struct i915_request *
e5dadff4 559request_alloc_slow(struct intel_timeline *tl, gfp_t gfp)
d22ba0cb 560{
d22ba0cb
CW
561 struct i915_request *rq;
562
e5dadff4 563 if (list_empty(&tl->requests))
d22ba0cb
CW
564 goto out;
565
2ccdf6a1
CW
566 if (!gfpflags_allow_blocking(gfp))
567 goto out;
568
9db0c5ca 569 /* Move our oldest request to the slab-cache (if not in use!) */
e5dadff4 570 rq = list_first_entry(&tl->requests, typeof(*rq), link);
9db0c5ca
CW
571 i915_request_retire(rq);
572
573 rq = kmem_cache_alloc(global.slab_requests,
574 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
575 if (rq)
576 return rq;
577
d22ba0cb 578 /* Ratelimit ourselves to prevent oom from malicious clients */
e5dadff4 579 rq = list_last_entry(&tl->requests, typeof(*rq), link);
d22ba0cb
CW
580 cond_synchronize_rcu(rq->rcustate);
581
582 /* Retire our old requests in the hope that we free some */
e5dadff4 583 retire_requests(tl);
d22ba0cb
CW
584
585out:
2ccdf6a1 586 return kmem_cache_alloc(global.slab_requests, gfp);
d22ba0cb
CW
587}
588
e61e0f51 589struct i915_request *
2ccdf6a1 590__i915_request_create(struct intel_context *ce, gfp_t gfp)
05235c53 591{
75d0a7f3 592 struct intel_timeline *tl = ce->timeline;
ebece753
CW
593 struct i915_request *rq;
594 u32 seqno;
05235c53
CW
595 int ret;
596
2ccdf6a1 597 might_sleep_if(gfpflags_allow_blocking(gfp));
28176ef4 598
2ccdf6a1
CW
599 /* Check that the caller provided an already pinned context */
600 __intel_context_pin(ce);
9b5f4e5e 601
e61e0f51
CW
602 /*
603 * Beware: Dragons be flying overhead.
5a198b8c
CW
604 *
605 * We use RCU to look up requests in flight. The lookups may
606 * race with the request being allocated from the slab freelist.
607 * That is the request we are writing to here, may be in the process
21950ee7 608 * of being read by __i915_active_request_get_rcu(). As such,
5a198b8c
CW
609 * we have to be very careful when overwriting the contents. During
610 * the RCU lookup, we change chase the request->engine pointer,
65e4760e 611 * read the request->global_seqno and increment the reference count.
5a198b8c
CW
612 *
613 * The reference count is incremented atomically. If it is zero,
614 * the lookup knows the request is unallocated and complete. Otherwise,
615 * it is either still in use, or has been reallocated and reset
f54d1867
CW
616 * with dma_fence_init(). This increment is safe for release as we
617 * check that the request we have a reference to and matches the active
5a198b8c
CW
618 * request.
619 *
620 * Before we increment the refcount, we chase the request->engine
621 * pointer. We must not call kmem_cache_zalloc() or else we set
622 * that pointer to NULL and cause a crash during the lookup. If
623 * we see the request is completed (based on the value of the
624 * old engine and seqno), the lookup is complete and reports NULL.
625 * If we decide the request is not completed (new engine or seqno),
626 * then we grab a reference and double check that it is still the
627 * active request - which it won't be and restart the lookup.
628 *
629 * Do not use kmem_cache_zalloc() here!
630 */
32eb6bcf 631 rq = kmem_cache_alloc(global.slab_requests,
2ccdf6a1 632 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
e61e0f51 633 if (unlikely(!rq)) {
e5dadff4 634 rq = request_alloc_slow(tl, gfp);
e61e0f51 635 if (!rq) {
31c70f97
CW
636 ret = -ENOMEM;
637 goto err_unreserve;
638 }
28176ef4 639 }
05235c53 640
f0c02c1b 641 ret = intel_timeline_get_seqno(tl, rq, &seqno);
ebece753
CW
642 if (ret)
643 goto err_free;
644
2ccdf6a1 645 rq->i915 = ce->engine->i915;
1fc44d9b 646 rq->hw_context = ce;
2ccdf6a1
CW
647 rq->gem_context = ce->gem_context;
648 rq->engine = ce->engine;
1fc44d9b 649 rq->ring = ce->ring;
89b6d183 650 rq->execution_mask = ce->engine->mask;
d19d71fc
CW
651
652 rcu_assign_pointer(rq->timeline, tl);
ebece753
CW
653 rq->hwsp_seqno = tl->hwsp_seqno;
654 rq->hwsp_cacheline = tl->hwsp_cacheline;
d19d71fc 655
ebece753 656 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
73cb9701 657
e61e0f51 658 spin_lock_init(&rq->lock);
ebece753
CW
659 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
660 tl->fence_context, seqno);
04769652 661
48bc2a4a 662 /* We bump the ref for the fence chain */
e61e0f51 663 i915_sw_fence_init(&i915_request_get(rq)->submit, submit_notify);
b7404c7e 664 i915_sw_fence_init(&i915_request_get(rq)->semaphore, semaphore_notify);
5590af3e 665
0c7112a0 666 i915_sched_node_init(&rq->sched);
52e54209 667
5a198b8c 668 /* No zalloc, must clear what we need by hand */
e61e0f51
CW
669 rq->file_priv = NULL;
670 rq->batch = NULL;
671 rq->capture_list = NULL;
2a98f4e6 672 rq->flags = 0;
5a198b8c 673
2ccdf6a1
CW
674 INIT_LIST_HEAD(&rq->execute_cb);
675
05235c53
CW
676 /*
677 * Reserve space in the ring buffer for all the commands required to
678 * eventually emit this request. This is to guarantee that the
e61e0f51 679 * i915_request_add() call can't fail. Note that the reserve may need
05235c53
CW
680 * to be redone if the request is not actually submitted straight
681 * away, e.g. because a GPU scheduler has deferred it.
ed2922c0
CW
682 *
683 * Note that due to how we add reserved_space to intel_ring_begin()
684 * we need to double our request to ensure that if we need to wrap
685 * around inside i915_request_add() there is sufficient space at
686 * the beginning of the ring as well.
05235c53 687 */
2ccdf6a1
CW
688 rq->reserved_space =
689 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
05235c53 690
2113184c
CW
691 /*
692 * Record the position of the start of the request so that
d045446d
CW
693 * should we detect the updated seqno part-way through the
694 * GPU processing the request, we never over-estimate the
695 * position of the head.
696 */
e61e0f51 697 rq->head = rq->ring->emit;
d045446d 698
2ccdf6a1 699 ret = rq->engine->request_alloc(rq);
b1c24a61
CW
700 if (ret)
701 goto err_unwind;
2113184c 702
b3ee09a4
CW
703 rq->infix = rq->ring->emit; /* end of header; start of user payload */
704
2ccdf6a1 705 intel_context_mark_active(ce);
e61e0f51 706 return rq;
05235c53 707
b1c24a61 708err_unwind:
1fc44d9b 709 ce->ring->emit = rq->head;
b1c24a61 710
1618bdb8 711 /* Make sure we didn't add ourselves to external state before freeing */
0c7112a0
CW
712 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
713 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
1618bdb8 714
ebece753 715err_free:
32eb6bcf 716 kmem_cache_free(global.slab_requests, rq);
28176ef4 717err_unreserve:
1fc44d9b 718 intel_context_unpin(ce);
8e637178 719 return ERR_PTR(ret);
05235c53
CW
720}
721
2ccdf6a1
CW
722struct i915_request *
723i915_request_create(struct intel_context *ce)
724{
725 struct i915_request *rq;
e5dadff4 726 struct intel_timeline *tl;
2ccdf6a1 727
e5dadff4
CW
728 tl = intel_context_timeline_lock(ce);
729 if (IS_ERR(tl))
730 return ERR_CAST(tl);
2ccdf6a1
CW
731
732 /* Move our oldest request to the slab-cache (if not in use!) */
e5dadff4
CW
733 rq = list_first_entry(&tl->requests, typeof(*rq), link);
734 if (!list_is_last(&rq->link, &tl->requests))
2ccdf6a1
CW
735 i915_request_retire(rq);
736
737 intel_context_enter(ce);
738 rq = __i915_request_create(ce, GFP_KERNEL);
739 intel_context_exit(ce); /* active reference transferred to request */
740 if (IS_ERR(rq))
741 goto err_unlock;
742
743 /* Check that we do not interrupt ourselves with a new request */
e5dadff4 744 rq->cookie = lockdep_pin_lock(&tl->mutex);
2ccdf6a1
CW
745
746 return rq;
747
748err_unlock:
e5dadff4 749 intel_context_timeline_unlock(tl);
2ccdf6a1
CW
750 return rq;
751}
752
0d90ccb7
CW
753static int
754i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
755{
6a79d848
CW
756 struct intel_timeline *tl;
757 struct dma_fence *fence;
758 int err;
0d90ccb7 759
6a79d848
CW
760 GEM_BUG_ON(i915_request_timeline(rq) ==
761 rcu_access_pointer(signal->timeline));
762
763 rcu_read_lock();
764 tl = rcu_dereference(signal->timeline);
765 if (i915_request_started(signal) || !kref_get_unless_zero(&tl->kref))
766 tl = NULL;
767 rcu_read_unlock();
768 if (!tl) /* already started or maybe even completed */
0d90ccb7
CW
769 return 0;
770
6a79d848
CW
771 fence = ERR_PTR(-EBUSY);
772 if (mutex_trylock(&tl->mutex)) {
773 fence = NULL;
774 if (!i915_request_started(signal) &&
775 !list_is_first(&signal->link, &tl->requests)) {
776 signal = list_prev_entry(signal, link);
777 fence = dma_fence_get(&signal->fence);
778 }
779 mutex_unlock(&tl->mutex);
780 }
781 intel_timeline_put(tl);
782 if (IS_ERR_OR_NULL(fence))
783 return PTR_ERR_OR_ZERO(fence);
784
785 err = 0;
786 if (intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
787 err = i915_sw_fence_await_dma_fence(&rq->submit,
788 fence, 0,
789 I915_FENCE_GFP);
790 dma_fence_put(fence);
791
792 return err;
0d90ccb7
CW
793}
794
ca6e56f6
CW
795static intel_engine_mask_t
796already_busywaiting(struct i915_request *rq)
797{
798 /*
799 * Polling a semaphore causes bus traffic, delaying other users of
800 * both the GPU and CPU. We want to limit the impact on others,
801 * while taking advantage of early submission to reduce GPU
802 * latency. Therefore we restrict ourselves to not using more
803 * than one semaphore from each source, and not using a semaphore
804 * if we have detected the engine is saturated (i.e. would not be
805 * submitted early and cause bus traffic reading an already passed
806 * semaphore).
807 *
808 * See the are-we-too-late? check in __i915_request_submit().
809 */
44d89409 810 return rq->sched.semaphores | rq->engine->saturated;
ca6e56f6
CW
811}
812
e8861964
CW
813static int
814emit_semaphore_wait(struct i915_request *to,
815 struct i915_request *from,
816 gfp_t gfp)
817{
c210e85b 818 const int has_token = INTEL_GEN(to->i915) >= 12;
e8861964 819 u32 hwsp_offset;
c210e85b 820 int len;
e8861964 821 u32 *cs;
e8861964 822
e8861964
CW
823 GEM_BUG_ON(INTEL_GEN(to->i915) < 8);
824
7881e605 825 /* Just emit the first semaphore we see as request space is limited. */
ca6e56f6 826 if (already_busywaiting(to) & from->engine->mask)
6a79d848 827 goto await_fence;
7881e605 828
6a79d848
CW
829 if (i915_request_await_start(to, from) < 0)
830 goto await_fence;
0d90ccb7 831
c8a0e2ae 832 /* Only submit our spinner after the signaler is running! */
6a79d848
CW
833 if (__i915_request_await_execution(to, from, NULL, gfp))
834 goto await_fence;
e8861964 835
c8a0e2ae 836 /* We need to pin the signaler's HWSP until we are finished reading. */
6a79d848
CW
837 if (intel_timeline_read_hwsp(from, to, &hwsp_offset))
838 goto await_fence;
e8861964 839
c210e85b
CW
840 len = 4;
841 if (has_token)
842 len += 2;
843
844 cs = intel_ring_begin(to, len);
e8861964
CW
845 if (IS_ERR(cs))
846 return PTR_ERR(cs);
847
848 /*
849 * Using greater-than-or-equal here means we have to worry
850 * about seqno wraparound. To side step that issue, we swap
851 * the timeline HWSP upon wrapping, so that everyone listening
852 * for the old (pre-wrap) values do not see the much smaller
853 * (post-wrap) values than they were expecting (and so wait
854 * forever).
855 */
c210e85b
CW
856 *cs++ = (MI_SEMAPHORE_WAIT |
857 MI_SEMAPHORE_GLOBAL_GTT |
858 MI_SEMAPHORE_POLL |
859 MI_SEMAPHORE_SAD_GTE_SDD) +
860 has_token;
e8861964
CW
861 *cs++ = from->fence.seqno;
862 *cs++ = hwsp_offset;
863 *cs++ = 0;
c210e85b
CW
864 if (has_token) {
865 *cs++ = 0;
866 *cs++ = MI_NOOP;
867 }
e8861964
CW
868
869 intel_ring_advance(to, cs);
7881e605
CW
870 to->sched.semaphores |= from->engine->mask;
871 to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
e8861964 872 return 0;
6a79d848
CW
873
874await_fence:
875 return i915_sw_fence_await_dma_fence(&to->submit,
876 &from->fence, 0,
877 I915_FENCE_GFP);
e8861964
CW
878}
879
a2bc4695 880static int
e61e0f51 881i915_request_await_request(struct i915_request *to, struct i915_request *from)
a2bc4695 882{
85e17f59 883 int ret;
a2bc4695
CW
884
885 GEM_BUG_ON(to == from);
ceae14bd 886 GEM_BUG_ON(to->timeline == from->timeline);
a2bc4695 887
e61e0f51 888 if (i915_request_completed(from))
ade0b0c9
CW
889 return 0;
890
52e54209 891 if (to->engine->schedule) {
32eb6bcf 892 ret = i915_sched_node_add_dependency(&to->sched, &from->sched);
52e54209
CW
893 if (ret < 0)
894 return ret;
895 }
896
73cb9701
CW
897 if (to->engine == from->engine) {
898 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
899 &from->submit,
2abe2f84 900 I915_FENCE_GFP);
e8861964
CW
901 } else if (intel_engine_has_semaphores(to->engine) &&
902 to->gem_context->sched.priority >= I915_PRIORITY_NORMAL) {
903 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
6faf5916
CW
904 } else {
905 ret = i915_sw_fence_await_dma_fence(&to->submit,
906 &from->fence, 0,
907 I915_FENCE_GFP);
a2bc4695 908 }
17db337f
CW
909 if (ret < 0)
910 return ret;
911
912 if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) {
913 ret = i915_sw_fence_await_dma_fence(&to->semaphore,
914 &from->fence, 0,
915 I915_FENCE_GFP);
916 if (ret < 0)
917 return ret;
918 }
a2bc4695 919
17db337f 920 return 0;
a2bc4695
CW
921}
922
b52992c0 923int
e61e0f51 924i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
b52992c0 925{
29ef3fa9
CW
926 struct dma_fence **child = &fence;
927 unsigned int nchild = 1;
b52992c0 928 int ret;
b52992c0 929
e61e0f51
CW
930 /*
931 * Note that if the fence-array was created in signal-on-any mode,
b52992c0
CW
932 * we should *not* decompose it into its individual fences. However,
933 * we don't currently store which mode the fence-array is operating
934 * in. Fortunately, the only user of signal-on-any is private to
935 * amdgpu and we should not see any incoming fence-array from
936 * sync-file being in signal-on-any mode.
937 */
29ef3fa9
CW
938 if (dma_fence_is_array(fence)) {
939 struct dma_fence_array *array = to_dma_fence_array(fence);
940
941 child = array->fences;
942 nchild = array->num_fences;
943 GEM_BUG_ON(!nchild);
944 }
b52992c0 945
29ef3fa9
CW
946 do {
947 fence = *child++;
948 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
949 continue;
b52992c0 950
ceae14bd
CW
951 /*
952 * Requests on the same timeline are explicitly ordered, along
e61e0f51 953 * with their dependencies, by i915_request_add() which ensures
ceae14bd
CW
954 * that requests are submitted in-order through each ring.
955 */
e61e0f51 956 if (fence->context == rq->fence.context)
ceae14bd
CW
957 continue;
958
47979480 959 /* Squash repeated waits to the same timelines */
cc337560 960 if (fence->context &&
d19d71fc
CW
961 intel_timeline_sync_is_later(i915_request_timeline(rq),
962 fence))
47979480
CW
963 continue;
964
29ef3fa9 965 if (dma_fence_is_i915(fence))
e61e0f51 966 ret = i915_request_await_request(rq, to_request(fence));
b52992c0 967 else
e61e0f51 968 ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
0f7dc620 969 fence->context ? I915_FENCE_TIMEOUT : 0,
2abe2f84 970 I915_FENCE_GFP);
b52992c0
CW
971 if (ret < 0)
972 return ret;
47979480
CW
973
974 /* Record the latest fence used against each timeline */
cc337560 975 if (fence->context)
d19d71fc
CW
976 intel_timeline_sync_set(i915_request_timeline(rq),
977 fence);
29ef3fa9 978 } while (--nchild);
b52992c0
CW
979
980 return 0;
981}
982
f71e01a7
CW
983int
984i915_request_await_execution(struct i915_request *rq,
985 struct dma_fence *fence,
986 void (*hook)(struct i915_request *rq,
987 struct dma_fence *signal))
988{
989 struct dma_fence **child = &fence;
990 unsigned int nchild = 1;
991 int ret;
992
993 if (dma_fence_is_array(fence)) {
994 struct dma_fence_array *array = to_dma_fence_array(fence);
995
996 /* XXX Error for signal-on-any fence arrays */
997
998 child = array->fences;
999 nchild = array->num_fences;
1000 GEM_BUG_ON(!nchild);
1001 }
1002
1003 do {
1004 fence = *child++;
1005 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1006 continue;
1007
1008 /*
1009 * We don't squash repeated fence dependencies here as we
1010 * want to run our callback in all cases.
1011 */
1012
1013 if (dma_fence_is_i915(fence))
1014 ret = __i915_request_await_execution(rq,
1015 to_request(fence),
1016 hook,
1017 I915_FENCE_GFP);
1018 else
1019 ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
1020 I915_FENCE_TIMEOUT,
1021 GFP_KERNEL);
1022 if (ret < 0)
1023 return ret;
1024 } while (--nchild);
1025
1026 return 0;
1027}
1028
a2bc4695 1029/**
e61e0f51 1030 * i915_request_await_object - set this request to (async) wait upon a bo
a2bc4695
CW
1031 * @to: request we are wishing to use
1032 * @obj: object which may be in use on another ring.
d8802126 1033 * @write: whether the wait is on behalf of a writer
a2bc4695
CW
1034 *
1035 * This code is meant to abstract object synchronization with the GPU.
1036 * Conceptually we serialise writes between engines inside the GPU.
1037 * We only allow one engine to write into a buffer at any time, but
1038 * multiple readers. To ensure each has a coherent view of memory, we must:
1039 *
1040 * - If there is an outstanding write request to the object, the new
1041 * request must wait for it to complete (either CPU or in hw, requests
1042 * on the same ring will be naturally ordered).
1043 *
1044 * - If we are a write request (pending_write_domain is set), the new
1045 * request must wait for outstanding read requests to complete.
1046 *
1047 * Returns 0 if successful, else propagates up the lower layer error.
1048 */
1049int
e61e0f51
CW
1050i915_request_await_object(struct i915_request *to,
1051 struct drm_i915_gem_object *obj,
1052 bool write)
a2bc4695 1053{
d07f0e59
CW
1054 struct dma_fence *excl;
1055 int ret = 0;
a2bc4695
CW
1056
1057 if (write) {
d07f0e59
CW
1058 struct dma_fence **shared;
1059 unsigned int count, i;
1060
52791eee 1061 ret = dma_resv_get_fences_rcu(obj->base.resv,
d07f0e59
CW
1062 &excl, &count, &shared);
1063 if (ret)
1064 return ret;
1065
1066 for (i = 0; i < count; i++) {
e61e0f51 1067 ret = i915_request_await_dma_fence(to, shared[i]);
d07f0e59
CW
1068 if (ret)
1069 break;
1070
1071 dma_fence_put(shared[i]);
1072 }
1073
1074 for (; i < count; i++)
1075 dma_fence_put(shared[i]);
1076 kfree(shared);
a2bc4695 1077 } else {
52791eee 1078 excl = dma_resv_get_excl_rcu(obj->base.resv);
a2bc4695
CW
1079 }
1080
d07f0e59
CW
1081 if (excl) {
1082 if (ret == 0)
e61e0f51 1083 ret = i915_request_await_dma_fence(to, excl);
a2bc4695 1084
d07f0e59 1085 dma_fence_put(excl);
a2bc4695
CW
1086 }
1087
d07f0e59 1088 return ret;
a2bc4695
CW
1089}
1090
6dd7526f
CW
1091void i915_request_skip(struct i915_request *rq, int error)
1092{
1093 void *vaddr = rq->ring->vaddr;
1094 u32 head;
1095
1096 GEM_BUG_ON(!IS_ERR_VALUE((long)error));
1097 dma_fence_set_error(&rq->fence, error);
1098
ef468849
CW
1099 if (rq->infix == rq->postfix)
1100 return;
1101
6dd7526f
CW
1102 /*
1103 * As this request likely depends on state from the lost
1104 * context, clear out all the user operations leaving the
1105 * breadcrumb at the end (so we get the fence notifications).
1106 */
1107 head = rq->infix;
1108 if (rq->postfix < head) {
1109 memset(vaddr + head, 0, rq->ring->size - head);
1110 head = 0;
1111 }
1112 memset(vaddr + head, 0, rq->postfix - head);
ef468849 1113 rq->infix = rq->postfix;
6dd7526f
CW
1114}
1115
ea593dbb
CW
1116static struct i915_request *
1117__i915_request_add_to_timeline(struct i915_request *rq)
1118{
d19d71fc 1119 struct intel_timeline *timeline = i915_request_timeline(rq);
ea593dbb
CW
1120 struct i915_request *prev;
1121
1122 /*
1123 * Dependency tracking and request ordering along the timeline
1124 * is special cased so that we can eliminate redundant ordering
1125 * operations while building the request (we know that the timeline
1126 * itself is ordered, and here we guarantee it).
1127 *
1128 * As we know we will need to emit tracking along the timeline,
1129 * we embed the hooks into our request struct -- at the cost of
1130 * having to have specialised no-allocation interfaces (which will
1131 * be beneficial elsewhere).
1132 *
1133 * A second benefit to open-coding i915_request_await_request is
1134 * that we can apply a slight variant of the rules specialised
1135 * for timelines that jump between engines (such as virtual engines).
1136 * If we consider the case of virtual engine, we must emit a dma-fence
1137 * to prevent scheduling of the second request until the first is
1138 * complete (to maximise our greedy late load balancing) and this
1139 * precludes optimising to use semaphores serialisation of a single
1140 * timeline across engines.
1141 */
b1e3177b
CW
1142 prev = to_request(__i915_active_fence_set(&timeline->last_request,
1143 &rq->fence));
ea593dbb
CW
1144 if (prev && !i915_request_completed(prev)) {
1145 if (is_power_of_2(prev->engine->mask | rq->engine->mask))
1146 i915_sw_fence_await_sw_fence(&rq->submit,
1147 &prev->submit,
1148 &rq->submitq);
1149 else
1150 __i915_sw_fence_await_dma_fence(&rq->submit,
1151 &prev->fence,
1152 &rq->dmaq);
1153 if (rq->engine->schedule)
1154 __i915_sched_node_add_dependency(&rq->sched,
1155 &prev->sched,
1156 &rq->dep,
1157 0);
1158 }
1159
ea593dbb 1160 list_add_tail(&rq->link, &timeline->requests);
ea593dbb 1161
2ccdf6a1
CW
1162 /*
1163 * Make sure that no request gazumped us - if it was allocated after
1164 * our i915_request_alloc() and called __i915_request_add() before
1165 * us, the timeline will hold its seqno which is later than ours.
1166 */
ea593dbb 1167 GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
ea593dbb
CW
1168
1169 return prev;
1170}
1171
05235c53
CW
1172/*
1173 * NB: This function is not allowed to fail. Doing so would mean the the
1174 * request is not being tracked for completion but the work itself is
1175 * going to happen on the hardware. This would be a Bad Thing(tm).
1176 */
2ccdf6a1 1177struct i915_request *__i915_request_commit(struct i915_request *rq)
05235c53 1178{
2ccdf6a1
CW
1179 struct intel_engine_cs *engine = rq->engine;
1180 struct intel_ring *ring = rq->ring;
73dec95e 1181 u32 *cs;
05235c53 1182
dd847a70 1183 GEM_TRACE("%s fence %llx:%lld\n",
2ccdf6a1 1184 engine->name, rq->fence.context, rq->fence.seqno);
c781c978 1185
05235c53
CW
1186 /*
1187 * To ensure that this call will not fail, space for its emissions
1188 * should already have been reserved in the ring buffer. Let the ring
1189 * know that it is time to use that space up.
1190 */
2ccdf6a1
CW
1191 GEM_BUG_ON(rq->reserved_space > ring->space);
1192 rq->reserved_space = 0;
e5dadff4 1193 rq->emitted_jiffies = jiffies;
05235c53 1194
8ac71d1d
CW
1195 /*
1196 * Record the position of the start of the breadcrumb so that
05235c53
CW
1197 * should we detect the updated seqno part-way through the
1198 * GPU processing the request, we never over-estimate the
d045446d 1199 * position of the ring's HEAD.
05235c53 1200 */
2ccdf6a1 1201 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
73dec95e 1202 GEM_BUG_ON(IS_ERR(cs));
2ccdf6a1 1203 rq->postfix = intel_ring_offset(rq, cs);
05235c53 1204
e5dadff4 1205 return __i915_request_add_to_timeline(rq);
a79ca656
CW
1206}
1207
1208void __i915_request_queue(struct i915_request *rq,
1209 const struct i915_sched_attr *attr)
1210{
8ac71d1d
CW
1211 /*
1212 * Let the backend know a new request has arrived that may need
0de9136d
CW
1213 * to adjust the existing execution schedule due to a high priority
1214 * request - i.e. we may want to preempt the current request in order
1215 * to run a high priority dependency chain *before* we can execute this
1216 * request.
1217 *
1218 * This is called before the request is ready to run so that we can
1219 * decide whether to preempt the entire chain so that it is ready to
1220 * run at the earliest possible convenience.
1221 */
2ccdf6a1 1222 i915_sw_fence_commit(&rq->semaphore);
a79ca656
CW
1223 if (attr && rq->engine->schedule)
1224 rq->engine->schedule(rq, attr);
2ccdf6a1 1225 i915_sw_fence_commit(&rq->submit);
2ccdf6a1
CW
1226}
1227
1228void i915_request_add(struct i915_request *rq)
1229{
a79ca656 1230 struct i915_sched_attr attr = rq->gem_context->sched;
d19d71fc 1231 struct intel_timeline * const tl = i915_request_timeline(rq);
2ccdf6a1
CW
1232 struct i915_request *prev;
1233
e5dadff4
CW
1234 lockdep_assert_held(&tl->mutex);
1235 lockdep_unpin_lock(&tl->mutex, rq->cookie);
2ccdf6a1
CW
1236
1237 trace_i915_request_add(rq);
1238
1239 prev = __i915_request_commit(rq);
1240
a79ca656
CW
1241 /*
1242 * Boost actual workloads past semaphores!
1243 *
1244 * With semaphores we spin on one engine waiting for another,
1245 * simply to reduce the latency of starting our work when
1246 * the signaler completes. However, if there is any other
1247 * work that we could be doing on this engine instead, that
1248 * is better utilisation and will reduce the overall duration
1249 * of the current work. To avoid PI boosting a semaphore
1250 * far in the distance past over useful work, we keep a history
1251 * of any semaphore use along our dependency chain.
1252 */
1253 if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
1254 attr.priority |= I915_PRIORITY_NOSEMAPHORE;
1255
1256 /*
1257 * Boost priorities to new clients (new request flows).
1258 *
1259 * Allow interactive/synchronous clients to jump ahead of
1260 * the bulk clients. (FQ_CODEL)
1261 */
1262 if (list_empty(&rq->sched.signalers_list))
1263 attr.priority |= I915_PRIORITY_WAIT;
1264
62520e33 1265 local_bh_disable();
a79ca656 1266 __i915_request_queue(rq, &attr);
62520e33 1267 local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
a79ca656 1268
c22b355f
CW
1269 /*
1270 * In typical scenarios, we do not expect the previous request on
1271 * the timeline to be still tracked by timeline->last_request if it
1272 * has been completed. If the completed request is still here, that
1273 * implies that request retirement is a long way behind submission,
1274 * suggesting that we haven't been retiring frequently enough from
1275 * the combination of retire-before-alloc, waiters and the background
1276 * retirement worker. So if the last request on this timeline was
1277 * already completed, do a catch up pass, flushing the retirement queue
1278 * up to this client. Since we have now moved the heaviest operations
1279 * during retirement onto secondary workers, such as freeing objects
1280 * or contexts, retiring a bunch of requests is mostly list management
1281 * (and cache misses), and so we should not be overly penalizing this
1282 * client by performing excess work, though we may still performing
1283 * work on behalf of others -- but instead we should benefit from
1284 * improved resource management. (Well, that's the theory at least.)
1285 */
d19d71fc
CW
1286 if (prev &&
1287 i915_request_completed(prev) &&
1288 rcu_access_pointer(prev->timeline) == tl)
e61e0f51 1289 i915_request_retire_upto(prev);
3ef71149 1290
e5dadff4 1291 mutex_unlock(&tl->mutex);
05235c53
CW
1292}
1293
1294static unsigned long local_clock_us(unsigned int *cpu)
1295{
1296 unsigned long t;
1297
e61e0f51
CW
1298 /*
1299 * Cheaply and approximately convert from nanoseconds to microseconds.
05235c53
CW
1300 * The result and subsequent calculations are also defined in the same
1301 * approximate microseconds units. The principal source of timing
1302 * error here is from the simple truncation.
1303 *
1304 * Note that local_clock() is only defined wrt to the current CPU;
1305 * the comparisons are no longer valid if we switch CPUs. Instead of
1306 * blocking preemption for the entire busywait, we can detect the CPU
1307 * switch and use that as indicator of system load and a reason to
1308 * stop busywaiting, see busywait_stop().
1309 */
1310 *cpu = get_cpu();
1311 t = local_clock() >> 10;
1312 put_cpu();
1313
1314 return t;
1315}
1316
1317static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1318{
1319 unsigned int this_cpu;
1320
1321 if (time_after(local_clock_us(&this_cpu), timeout))
1322 return true;
1323
1324 return this_cpu != cpu;
1325}
1326
52c0fdb2
CW
1327static bool __i915_spin_request(const struct i915_request * const rq,
1328 int state, unsigned long timeout_us)
05235c53 1329{
52c0fdb2 1330 unsigned int cpu;
b2f2f0fc
CW
1331
1332 /*
1333 * Only wait for the request if we know it is likely to complete.
1334 *
1335 * We don't track the timestamps around requests, nor the average
1336 * request length, so we do not have a good indicator that this
1337 * request will complete within the timeout. What we do know is the
52c0fdb2
CW
1338 * order in which requests are executed by the context and so we can
1339 * tell if the request has been started. If the request is not even
1340 * running yet, it is a fair assumption that it will not complete
1341 * within our relatively short timeout.
b2f2f0fc 1342 */
52c0fdb2 1343 if (!i915_request_is_running(rq))
b2f2f0fc
CW
1344 return false;
1345
e61e0f51
CW
1346 /*
1347 * When waiting for high frequency requests, e.g. during synchronous
05235c53
CW
1348 * rendering split between the CPU and GPU, the finite amount of time
1349 * required to set up the irq and wait upon it limits the response
1350 * rate. By busywaiting on the request completion for a short while we
1351 * can service the high frequency waits as quick as possible. However,
1352 * if it is a slow request, we want to sleep as quickly as possible.
1353 * The tradeoff between waiting and sleeping is roughly the time it
1354 * takes to sleep on a request, on the order of a microsecond.
1355 */
1356
1357 timeout_us += local_clock_us(&cpu);
1358 do {
52c0fdb2
CW
1359 if (i915_request_completed(rq))
1360 return true;
c33ed067 1361
05235c53
CW
1362 if (signal_pending_state(state, current))
1363 break;
1364
1365 if (busywait_stop(timeout_us, cpu))
1366 break;
1367
f2f09a4c 1368 cpu_relax();
05235c53
CW
1369 } while (!need_resched());
1370
1371 return false;
1372}
1373
52c0fdb2
CW
1374struct request_wait {
1375 struct dma_fence_cb cb;
1376 struct task_struct *tsk;
1377};
1378
1379static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1380{
1381 struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1382
1383 wake_up_process(wait->tsk);
1384}
1385
05235c53 1386/**
e532be89 1387 * i915_request_wait - wait until execution of request has finished
e61e0f51 1388 * @rq: the request to wait upon
ea746f36 1389 * @flags: how to wait
e95433c7
CW
1390 * @timeout: how long to wait in jiffies
1391 *
e532be89 1392 * i915_request_wait() waits for the request to be completed, for a
e95433c7
CW
1393 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1394 * unbounded wait).
05235c53 1395 *
e95433c7
CW
1396 * Returns the remaining time (in jiffies) if the request completed, which may
1397 * be zero or -ETIME if the request is unfinished after the timeout expires.
1398 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1399 * pending before the request completes.
05235c53 1400 */
e61e0f51 1401long i915_request_wait(struct i915_request *rq,
e95433c7
CW
1402 unsigned int flags,
1403 long timeout)
05235c53 1404{
ea746f36
CW
1405 const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1406 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
52c0fdb2 1407 struct request_wait wait;
05235c53
CW
1408
1409 might_sleep();
e95433c7 1410 GEM_BUG_ON(timeout < 0);
05235c53 1411
6e4e9708 1412 if (dma_fence_is_signaled(&rq->fence))
e95433c7 1413 return timeout;
05235c53 1414
e95433c7
CW
1415 if (!timeout)
1416 return -ETIME;
05235c53 1417
e61e0f51 1418 trace_i915_request_wait_begin(rq, flags);
84383d2e
CW
1419
1420 /*
1421 * We must never wait on the GPU while holding a lock as we
1422 * may need to perform a GPU reset. So while we don't need to
1423 * serialise wait/reset with an explicit lock, we do want
1424 * lockdep to detect potential dependency cycles.
1425 */
cb823ed9 1426 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
4680816b 1427
7ce99d24
CW
1428 /*
1429 * Optimistic spin before touching IRQs.
1430 *
1431 * We may use a rather large value here to offset the penalty of
1432 * switching away from the active task. Frequently, the client will
1433 * wait upon an old swapbuffer to throttle itself to remain within a
1434 * frame of the gpu. If the client is running in lockstep with the gpu,
1435 * then it should not be waiting long at all, and a sleep now will incur
1436 * extra scheduler latency in producing the next frame. To try to
1437 * avoid adding the cost of enabling/disabling the interrupt to the
1438 * short wait, we first spin to see if the request would have completed
1439 * in the time taken to setup the interrupt.
1440 *
1441 * We need upto 5us to enable the irq, and upto 20us to hide the
1442 * scheduler latency of a context switch, ignoring the secondary
1443 * impacts from a context switch such as cache eviction.
1444 *
1445 * The scheme used for low-latency IO is called "hybrid interrupt
1446 * polling". The suggestion there is to sleep until just before you
1447 * expect to be woken by the device interrupt and then poll for its
1448 * completion. That requires having a good predictor for the request
1449 * duration, which we currently lack.
1450 */
babaab2f 1451 if (IS_ACTIVE(CONFIG_DRM_I915_SPIN_REQUEST) &&
6e4e9708
CW
1452 __i915_spin_request(rq, state, CONFIG_DRM_I915_SPIN_REQUEST)) {
1453 dma_fence_signal(&rq->fence);
52c0fdb2 1454 goto out;
6e4e9708 1455 }
541ca6ed 1456
62eb3c24
CW
1457 /*
1458 * This client is about to stall waiting for the GPU. In many cases
1459 * this is undesirable and limits the throughput of the system, as
1460 * many clients cannot continue processing user input/output whilst
1461 * blocked. RPS autotuning may take tens of milliseconds to respond
1462 * to the GPU load and thus incurs additional latency for the client.
1463 * We can circumvent that by promoting the GPU frequency to maximum
1464 * before we sleep. This makes the GPU throttle up much more quickly
1465 * (good for benchmarks and user experience, e.g. window animations),
1466 * but at a cost of spending more power processing the workload
1467 * (bad for battery).
1468 */
1469 if (flags & I915_WAIT_PRIORITY) {
1470 if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
3e7abf81 1471 intel_rps_boost(rq);
52c0fdb2 1472 i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT);
62eb3c24 1473 }
4680816b 1474
52c0fdb2
CW
1475 wait.tsk = current;
1476 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1477 goto out;
4680816b 1478
52c0fdb2
CW
1479 for (;;) {
1480 set_current_state(state);
05235c53 1481
ce94bef9
CW
1482 if (i915_request_completed(rq)) {
1483 dma_fence_signal(&rq->fence);
52c0fdb2 1484 break;
ce94bef9 1485 }
05235c53 1486
05235c53 1487 if (signal_pending_state(state, current)) {
e95433c7 1488 timeout = -ERESTARTSYS;
05235c53
CW
1489 break;
1490 }
1491
e95433c7
CW
1492 if (!timeout) {
1493 timeout = -ETIME;
05235c53
CW
1494 break;
1495 }
1496
19306502 1497 intel_engine_flush_submission(rq->engine);
e95433c7 1498 timeout = io_schedule_timeout(timeout);
05235c53 1499 }
a49625f9 1500 __set_current_state(TASK_RUNNING);
05235c53 1501
52c0fdb2
CW
1502 dma_fence_remove_callback(&rq->fence, &wait.cb);
1503
1504out:
cb823ed9 1505 mutex_release(&rq->engine->gt->reset.mutex.dep_map, 0, _THIS_IP_);
52c0fdb2 1506 trace_i915_request_wait_end(rq);
e95433c7 1507 return timeout;
05235c53 1508}
4b8de8e6 1509
c835c550
CW
1510#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1511#include "selftests/mock_request.c"
e61e0f51 1512#include "selftests/i915_request.c"
c835c550 1513#endif
32eb6bcf 1514
103b76ee
CW
1515static void i915_global_request_shrink(void)
1516{
1517 kmem_cache_shrink(global.slab_dependencies);
1518 kmem_cache_shrink(global.slab_execute_cbs);
1519 kmem_cache_shrink(global.slab_requests);
1520}
1521
1522static void i915_global_request_exit(void)
1523{
1524 kmem_cache_destroy(global.slab_dependencies);
1525 kmem_cache_destroy(global.slab_execute_cbs);
1526 kmem_cache_destroy(global.slab_requests);
1527}
1528
1529static struct i915_global_request global = { {
1530 .shrink = i915_global_request_shrink,
1531 .exit = i915_global_request_exit,
1532} };
1533
32eb6bcf
CW
1534int __init i915_global_request_init(void)
1535{
1536 global.slab_requests = KMEM_CACHE(i915_request,
1537 SLAB_HWCACHE_ALIGN |
1538 SLAB_RECLAIM_ACCOUNT |
1539 SLAB_TYPESAFE_BY_RCU);
1540 if (!global.slab_requests)
1541 return -ENOMEM;
1542
e8861964
CW
1543 global.slab_execute_cbs = KMEM_CACHE(execute_cb,
1544 SLAB_HWCACHE_ALIGN |
1545 SLAB_RECLAIM_ACCOUNT |
1546 SLAB_TYPESAFE_BY_RCU);
1547 if (!global.slab_execute_cbs)
1548 goto err_requests;
1549
32eb6bcf
CW
1550 global.slab_dependencies = KMEM_CACHE(i915_dependency,
1551 SLAB_HWCACHE_ALIGN |
1552 SLAB_RECLAIM_ACCOUNT);
1553 if (!global.slab_dependencies)
e8861964 1554 goto err_execute_cbs;
32eb6bcf 1555
103b76ee 1556 i915_global_register(&global.base);
32eb6bcf
CW
1557 return 0;
1558
e8861964
CW
1559err_execute_cbs:
1560 kmem_cache_destroy(global.slab_execute_cbs);
32eb6bcf
CW
1561err_requests:
1562 kmem_cache_destroy(global.slab_requests);
1563 return -ENOMEM;
1564}