drm/i915/gt: Mark up a debug-only function
[linux-2.6-block.git] / drivers / gpu / drm / i915 / i915_request.c
CommitLineData
05235c53
CW
1/*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
b52992c0 25#include <linux/dma-fence-array.h>
3136deb7 26#include <linux/dma-fence-chain.h>
e8861964
CW
27#include <linux/irq_work.h>
28#include <linux/prefetch.h>
e6017571
IM
29#include <linux/sched.h>
30#include <linux/sched/clock.h>
f361bf4a 31#include <linux/sched/signal.h>
fa545cbf 32
10be98a7 33#include "gem/i915_gem_context.h"
b3786b29 34#include "gt/intel_breadcrumbs.h"
10be98a7 35#include "gt/intel_context.h"
45233ab2 36#include "gt/intel_gpu_commands.h"
2871ea85 37#include "gt/intel_ring.h"
3e7abf81 38#include "gt/intel_rps.h"
10be98a7 39
21950ee7 40#include "i915_active.h"
696173b0 41#include "i915_drv.h"
103b76ee 42#include "i915_globals.h"
a09d9a80 43#include "i915_trace.h"
696173b0 44#include "intel_pm.h"
05235c53 45
e8861964 46struct execute_cb {
e8861964
CW
47 struct irq_work work;
48 struct i915_sw_fence *fence;
f71e01a7
CW
49 void (*hook)(struct i915_request *rq, struct dma_fence *signal);
50 struct i915_request *signal;
e8861964
CW
51};
52
32eb6bcf 53static struct i915_global_request {
103b76ee 54 struct i915_global base;
32eb6bcf 55 struct kmem_cache *slab_requests;
e8861964 56 struct kmem_cache *slab_execute_cbs;
32eb6bcf
CW
57} global;
58
f54d1867 59static const char *i915_fence_get_driver_name(struct dma_fence *fence)
04769652 60{
5a833995 61 return dev_name(to_request(fence)->engine->i915->drm.dev);
04769652
CW
62}
63
f54d1867 64static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
04769652 65{
9f3ccd40
CW
66 const struct i915_gem_context *ctx;
67
e61e0f51
CW
68 /*
69 * The timeline struct (as part of the ppgtt underneath a context)
05506b5b
CW
70 * may be freed when the request is no longer in use by the GPU.
71 * We could extend the life of a context to beyond that of all
72 * fences, possibly keeping the hw resource around indefinitely,
73 * or we just give them a false name. Since
74 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
75 * lie seems justifiable.
76 */
77 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
78 return "signaled";
79
6a8679c0 80 ctx = i915_request_gem_context(to_request(fence));
9f3ccd40
CW
81 if (!ctx)
82 return "[" DRIVER_NAME "]";
83
84 return ctx->name;
04769652
CW
85}
86
f54d1867 87static bool i915_fence_signaled(struct dma_fence *fence)
04769652 88{
e61e0f51 89 return i915_request_completed(to_request(fence));
04769652
CW
90}
91
f54d1867 92static bool i915_fence_enable_signaling(struct dma_fence *fence)
04769652 93{
52c0fdb2 94 return i915_request_enable_breadcrumb(to_request(fence));
04769652
CW
95}
96
f54d1867 97static signed long i915_fence_wait(struct dma_fence *fence,
04769652 98 bool interruptible,
e95433c7 99 signed long timeout)
04769652 100{
62eb3c24
CW
101 return i915_request_wait(to_request(fence),
102 interruptible | I915_WAIT_PRIORITY,
103 timeout);
04769652
CW
104}
105
43acd651
CW
106struct kmem_cache *i915_request_slab_cache(void)
107{
108 return global.slab_requests;
109}
110
f54d1867 111static void i915_fence_release(struct dma_fence *fence)
04769652 112{
e61e0f51 113 struct i915_request *rq = to_request(fence);
04769652 114
e61e0f51
CW
115 /*
116 * The request is put onto a RCU freelist (i.e. the address
fc158405
CW
117 * is immediately reused), mark the fences as being freed now.
118 * Otherwise the debugobjects for the fences are only marked as
119 * freed when the slab cache itself is freed, and so we would get
120 * caught trying to reuse dead objects.
121 */
e61e0f51 122 i915_sw_fence_fini(&rq->submit);
0c441cb6 123 i915_sw_fence_fini(&rq->semaphore);
fc158405 124
32a4605b
CW
125 /*
126 * Keep one request on each engine for reserved use under mempressure
127 *
128 * We do not hold a reference to the engine here and so have to be
129 * very careful in what rq->engine we poke. The virtual engine is
130 * referenced via the rq->context and we released that ref during
131 * i915_request_retire(), ergo we must not dereference a virtual
132 * engine here. Not that we would want to, as the only consumer of
133 * the reserved engine->request_pool is the power management parking,
134 * which must-not-fail, and that is only run on the physical engines.
135 *
136 * Since the request must have been executed to be have completed,
137 * we know that it will have been processed by the HW and will
138 * not be unsubmitted again, so rq->engine and rq->execution_mask
139 * at this point is stable. rq->execution_mask will be a single
140 * bit if the last and _only_ engine it could execution on was a
141 * physical engine, if it's multiple bits then it started on and
142 * could still be on a virtual engine. Thus if the mask is not a
143 * power-of-two we assume that rq->engine may still be a virtual
144 * engine and so a dangling invalid pointer that we cannot dereference
145 *
146 * For example, consider the flow of a bonded request through a virtual
147 * engine. The request is created with a wide engine mask (all engines
148 * that we might execute on). On processing the bond, the request mask
149 * is reduced to one or more engines. If the request is subsequently
150 * bound to a single engine, it will then be constrained to only
151 * execute on that engine and never returned to the virtual engine
152 * after timeslicing away, see __unwind_incomplete_requests(). Thus we
153 * know that if the rq->execution_mask is a single bit, rq->engine
154 * can be a physical engine with the exact corresponding mask.
155 */
156 if (is_power_of_2(rq->execution_mask) &&
157 !cmpxchg(&rq->engine->request_pool, NULL, rq))
43acd651
CW
158 return;
159
32eb6bcf 160 kmem_cache_free(global.slab_requests, rq);
04769652
CW
161}
162
f54d1867 163const struct dma_fence_ops i915_fence_ops = {
04769652
CW
164 .get_driver_name = i915_fence_get_driver_name,
165 .get_timeline_name = i915_fence_get_timeline_name,
166 .enable_signaling = i915_fence_enable_signaling,
167 .signaled = i915_fence_signaled,
168 .wait = i915_fence_wait,
169 .release = i915_fence_release,
04769652
CW
170};
171
b87b6c0d
CW
172static void irq_execute_cb(struct irq_work *wrk)
173{
174 struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
175
176 i915_sw_fence_complete(cb->fence);
177 kmem_cache_free(global.slab_execute_cbs, cb);
178}
179
180static void irq_execute_cb_hook(struct irq_work *wrk)
181{
182 struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
183
184 cb->hook(container_of(cb->fence, struct i915_request, submit),
185 &cb->signal->fence);
186 i915_request_put(cb->signal);
187
188 irq_execute_cb(wrk);
189}
190
2e4c6c1a
CW
191static __always_inline void
192__notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk))
b87b6c0d 193{
fc0e1270 194 struct execute_cb *cb, *cn;
b87b6c0d 195
fc0e1270 196 if (llist_empty(&rq->execute_cb))
b87b6c0d
CW
197 return;
198
2e4c6c1a
CW
199 llist_for_each_entry_safe(cb, cn,
200 llist_del_all(&rq->execute_cb),
201 work.llnode)
202 fn(&cb->work);
203}
b87b6c0d 204
2e4c6c1a
CW
205static void __notify_execute_cb_irq(struct i915_request *rq)
206{
207 __notify_execute_cb(rq, irq_work_queue);
208}
209
210static bool irq_work_imm(struct irq_work *wrk)
211{
212 wrk->func(wrk);
213 return false;
214}
215
216static void __notify_execute_cb_imm(struct i915_request *rq)
217{
218 __notify_execute_cb(rq, irq_work_imm);
b87b6c0d
CW
219}
220
e61e0f51 221static void free_capture_list(struct i915_request *request)
b0fd47ad 222{
e61e0f51 223 struct i915_capture_list *capture;
b0fd47ad 224
67a3acaa 225 capture = fetch_and_zero(&request->capture_list);
b0fd47ad 226 while (capture) {
e61e0f51 227 struct i915_capture_list *next = capture->next;
b0fd47ad
CW
228
229 kfree(capture);
230 capture = next;
231 }
232}
233
89dd019a
CW
234static void __i915_request_fill(struct i915_request *rq, u8 val)
235{
236 void *vaddr = rq->ring->vaddr;
237 u32 head;
238
239 head = rq->infix;
240 if (rq->postfix < head) {
241 memset(vaddr + head, val, rq->ring->size - head);
242 head = 0;
243 }
244 memset(vaddr + head, val, rq->postfix - head);
245}
246
37fa0de3
CW
247static void remove_from_engine(struct i915_request *rq)
248{
249 struct intel_engine_cs *engine, *locked;
250
251 /*
252 * Virtual engines complicate acquiring the engine timeline lock,
253 * as their rq->engine pointer is not stable until under that
254 * engine lock. The simple ploy we use is to take the lock then
255 * check that the rq still belongs to the newly locked engine.
256 */
257 locked = READ_ONCE(rq->engine);
1dfffa00 258 spin_lock_irq(&locked->active.lock);
37fa0de3
CW
259 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
260 spin_unlock(&locked->active.lock);
261 spin_lock(&engine->active.lock);
262 locked = engine;
263 }
67a3acaa 264 list_del_init(&rq->sched.link);
2e4c6c1a 265
b4a9a149
CW
266 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
267 clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
2e4c6c1a
CW
268
269 /* Prevent further __await_execution() registering a cb, then flush */
270 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
271
1dfffa00 272 spin_unlock_irq(&locked->active.lock);
2e4c6c1a
CW
273
274 __notify_execute_cb_imm(rq);
37fa0de3
CW
275}
276
66101975 277bool i915_request_retire(struct i915_request *rq)
05235c53 278{
9db0c5ca
CW
279 if (!i915_request_completed(rq))
280 return false;
d9b13c4d 281
639f2f24 282 RQ_TRACE(rq, "\n");
4c7d62c6 283
9db0c5ca
CW
284 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
285 trace_i915_request_retire(rq);
2e4c6c1a 286 i915_request_mark_complete(rq);
80b204bc 287
e5dadff4
CW
288 /*
289 * We know the GPU must have read the request to have
290 * sent us the seqno + interrupt, so use the position
291 * of tail of the request to update the last known position
292 * of the GPU head.
293 *
294 * Note this requires that we are always called in request
295 * completion order.
296 */
d19d71fc
CW
297 GEM_BUG_ON(!list_is_first(&rq->link,
298 &i915_request_timeline(rq)->requests));
89dd019a
CW
299 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
300 /* Poison before we release our space in the ring */
301 __i915_request_fill(rq, POISON_FREE);
e5dadff4 302 rq->ring->head = rq->postfix;
b0fd47ad 303
e2300560
CW
304 if (!i915_request_signaled(rq)) {
305 spin_lock_irq(&rq->lock);
9db0c5ca 306 dma_fence_signal_locked(&rq->fence);
e2300560
CW
307 spin_unlock_irq(&rq->lock);
308 }
c18636f7 309
4e5c8a99 310 if (test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags))
3e7abf81 311 atomic_dec(&rq->engine->gt->rps.num_waiters);
c18636f7
CW
312
313 /*
314 * We only loosely track inflight requests across preemption,
315 * and so we may find ourselves attempting to retire a _completed_
316 * request that we have removed from the HW and put back on a run
317 * queue.
318 *
319 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be
320 * after removing the breadcrumb and signaling it, so that we do not
321 * inadvertently attach the breadcrumb to a completed request.
322 */
b8e2bd98
CW
323 if (!list_empty(&rq->sched.link))
324 remove_from_engine(rq);
fc0e1270 325 GEM_BUG_ON(!llist_empty(&rq->execute_cb));
52d7f16e 326
dff2a11b 327 __list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
9db0c5ca 328
9f3ccd40
CW
329 intel_context_exit(rq->context);
330 intel_context_unpin(rq->context);
75d0a7f3 331
9db0c5ca
CW
332 free_capture_list(rq);
333 i915_sched_node_fini(&rq->sched);
334 i915_request_put(rq);
335
336 return true;
05235c53
CW
337}
338
e61e0f51 339void i915_request_retire_upto(struct i915_request *rq)
05235c53 340{
d19d71fc 341 struct intel_timeline * const tl = i915_request_timeline(rq);
e61e0f51 342 struct i915_request *tmp;
05235c53 343
639f2f24 344 RQ_TRACE(rq, "\n");
b887d615 345
e61e0f51 346 GEM_BUG_ON(!i915_request_completed(rq));
4ffd6e0c 347
05235c53 348 do {
e5dadff4 349 tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
9db0c5ca 350 } while (i915_request_retire(tmp) && tmp != rq);
05235c53
CW
351}
352
b55230e5
CW
353static struct i915_request * const *
354__engine_active(struct intel_engine_cs *engine)
355{
356 return READ_ONCE(engine->execlists.active);
357}
358
359static bool __request_in_flight(const struct i915_request *signal)
360{
361 struct i915_request * const *port, *rq;
362 bool inflight = false;
363
364 if (!i915_request_is_ready(signal))
365 return false;
366
367 /*
368 * Even if we have unwound the request, it may still be on
369 * the GPU (preempt-to-busy). If that request is inside an
370 * unpreemptible critical section, it will not be removed. Some
371 * GPU functions may even be stuck waiting for the paired request
372 * (__await_execution) to be submitted and cannot be preempted
373 * until the bond is executing.
374 *
375 * As we know that there are always preemption points between
376 * requests, we know that only the currently executing request
377 * may be still active even though we have cleared the flag.
b4d9145b 378 * However, we can't rely on our tracking of ELSP[0] to know
b55230e5
CW
379 * which request is currently active and so maybe stuck, as
380 * the tracking maybe an event behind. Instead assume that
381 * if the context is still inflight, then it is still active
382 * even if the active flag has been cleared.
b4d9145b
CW
383 *
384 * To further complicate matters, if there a pending promotion, the HW
385 * may either perform a context switch to the second inflight execlists,
386 * or it may switch to the pending set of execlists. In the case of the
387 * latter, it may send the ACK and we process the event copying the
388 * pending[] over top of inflight[], _overwriting_ our *active. Since
389 * this implies the HW is arbitrating and not struck in *active, we do
390 * not worry about complete accuracy, but we do require no read/write
391 * tearing of the pointer [the read of the pointer must be valid, even
392 * as the array is being overwritten, for which we require the writes
393 * to avoid tearing.]
394 *
395 * Note that the read of *execlists->active may race with the promotion
396 * of execlists->pending[] to execlists->inflight[], overwritting
397 * the value at *execlists->active. This is fine. The promotion implies
398 * that we received an ACK from the HW, and so the context is not
399 * stuck -- if we do not see ourselves in *active, the inflight status
400 * is valid. If instead we see ourselves being copied into *active,
401 * we are inflight and may signal the callback.
b55230e5
CW
402 */
403 if (!intel_context_inflight(signal->context))
404 return false;
405
406 rcu_read_lock();
b4d9145b
CW
407 for (port = __engine_active(signal->engine);
408 (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */
409 port++) {
b55230e5
CW
410 if (rq->context == signal->context) {
411 inflight = i915_seqno_passed(rq->fence.seqno,
412 signal->fence.seqno);
413 break;
414 }
415 }
416 rcu_read_unlock();
417
418 return inflight;
419}
420
e8861964 421static int
c81471f5
CW
422__await_execution(struct i915_request *rq,
423 struct i915_request *signal,
424 void (*hook)(struct i915_request *rq,
425 struct dma_fence *signal),
426 gfp_t gfp)
e8861964
CW
427{
428 struct execute_cb *cb;
429
f71e01a7
CW
430 if (i915_request_is_active(signal)) {
431 if (hook)
432 hook(rq, &signal->fence);
e8861964 433 return 0;
f71e01a7 434 }
e8861964
CW
435
436 cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
437 if (!cb)
438 return -ENOMEM;
439
440 cb->fence = &rq->submit;
441 i915_sw_fence_await(cb->fence);
442 init_irq_work(&cb->work, irq_execute_cb);
443
f71e01a7
CW
444 if (hook) {
445 cb->hook = hook;
446 cb->signal = i915_request_get(signal);
447 cb->work.func = irq_execute_cb_hook;
448 }
449
2e4c6c1a
CW
450 /*
451 * Register the callback first, then see if the signaler is already
452 * active. This ensures that if we race with the
453 * __notify_execute_cb from i915_request_submit() and we are not
454 * included in that list, we get a second bite of the cherry and
455 * execute it ourselves. After this point, a future
456 * i915_request_submit() will notify us.
457 *
458 * In i915_request_retire() we set the ACTIVE bit on a completed
459 * request (then flush the execute_cb). So by registering the
460 * callback first, then checking the ACTIVE bit, we serialise with
461 * the completed/retired request.
462 */
463 if (llist_add(&cb->work.llnode, &signal->execute_cb)) {
464 if (i915_request_is_active(signal) ||
465 __request_in_flight(signal))
466 __notify_execute_cb_imm(signal);
e8861964 467 }
e8861964
CW
468
469 return 0;
470}
471
36e191f0
CW
472static bool fatal_error(int error)
473{
474 switch (error) {
475 case 0: /* not an error! */
476 case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
477 case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
478 return false;
479 default:
480 return true;
481 }
482}
483
484void __i915_request_skip(struct i915_request *rq)
485{
486 GEM_BUG_ON(!fatal_error(rq->fence.error));
487
488 if (rq->infix == rq->postfix)
489 return;
490
7904e081
CW
491 RQ_TRACE(rq, "error: %d\n", rq->fence.error);
492
36e191f0
CW
493 /*
494 * As this request likely depends on state from the lost
495 * context, clear out all the user operations leaving the
496 * breadcrumb at the end (so we get the fence notifications).
497 */
498 __i915_request_fill(rq, 0);
499 rq->infix = rq->postfix;
500}
501
502void i915_request_set_error_once(struct i915_request *rq, int error)
503{
504 int old;
505
506 GEM_BUG_ON(!IS_ERR_VALUE((long)error));
507
508 if (i915_request_signaled(rq))
509 return;
510
511 old = READ_ONCE(rq->fence.error);
512 do {
513 if (fatal_error(old))
514 return;
515 } while (!try_cmpxchg(&rq->fence.error, &old, error));
516}
517
c0bb487d 518bool __i915_request_submit(struct i915_request *request)
5590af3e 519{
73cb9701 520 struct intel_engine_cs *engine = request->engine;
c0bb487d 521 bool result = false;
5590af3e 522
639f2f24 523 RQ_TRACE(request, "\n");
d9b13c4d 524
e60a870d 525 GEM_BUG_ON(!irqs_disabled());
422d7df4 526 lockdep_assert_held(&engine->active.lock);
e60a870d 527
c0bb487d
CW
528 /*
529 * With the advent of preempt-to-busy, we frequently encounter
530 * requests that we have unsubmitted from HW, but left running
531 * until the next ack and so have completed in the meantime. On
532 * resubmission of that completed request, we can skip
533 * updating the payload, and execlists can even skip submitting
534 * the request.
535 *
536 * We must remove the request from the caller's priority queue,
537 * and the caller must only call us when the request is in their
538 * priority queue, under the active.lock. This ensures that the
539 * request has *not* yet been retired and we can safely move
540 * the request into the engine->active.list where it will be
541 * dropped upon retiring. (Otherwise if resubmit a *retired*
542 * request, this would be a horrible use-after-free.)
543 */
544 if (i915_request_completed(request))
545 goto xfer;
7d442ea7 546
36e191f0
CW
547 if (unlikely(intel_context_is_banned(request->context)))
548 i915_request_set_error_once(request, -EIO);
7d442ea7 549
36e191f0
CW
550 if (unlikely(fatal_error(request->fence.error)))
551 __i915_request_skip(request);
d9e61b66 552
ca6e56f6
CW
553 /*
554 * Are we using semaphores when the gpu is already saturated?
555 *
556 * Using semaphores incurs a cost in having the GPU poll a
557 * memory location, busywaiting for it to change. The continual
558 * memory reads can have a noticeable impact on the rest of the
559 * system with the extra bus traffic, stalling the cpu as it too
560 * tries to access memory across the bus (perf stat -e bus-cycles).
561 *
562 * If we installed a semaphore on this request and we only submit
563 * the request after the signaler completed, that indicates the
564 * system is overloaded and using semaphores at this time only
565 * increases the amount of work we are doing. If so, we disable
566 * further use of semaphores until we are idle again, whence we
567 * optimistically try again.
568 */
569 if (request->sched.semaphores &&
570 i915_sw_fence_signaled(&request->semaphore))
44d89409 571 engine->saturated |= request->sched.semaphores;
ca6e56f6 572
c0bb487d
CW
573 engine->emit_fini_breadcrumb(request,
574 request->ring->vaddr + request->postfix);
b5773a36 575
c0bb487d
CW
576 trace_i915_request_execute(request);
577 engine->serial++;
578 result = true;
422d7df4 579
1d9221e9 580xfer:
672c368f 581 if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) {
c0bb487d 582 list_move_tail(&request->sched.link, &engine->active.requests);
672c368f
CW
583 clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
584 }
b5773a36 585
c18636f7
CW
586 /*
587 * XXX Rollback bonded-execution on __i915_request_unsubmit()?
588 *
589 * In the future, perhaps when we have an active time-slicing scheduler,
590 * it will be interesting to unsubmit parallel execution and remove
591 * busywaits from the GPU until their master is restarted. This is
592 * quite hairy, we have to carefully rollback the fence and do a
593 * preempt-to-idle cycle on the target engine, all the while the
594 * master execute_cb may refire.
595 */
2e4c6c1a
CW
596 __notify_execute_cb_irq(request);
597
598 /* We may be recursing from the signal callback of another i915 fence */
5701a66e
CW
599 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
600 i915_request_enable_breadcrumb(request);
f2d13290 601
c0bb487d 602 return result;
d55ac5bf
CW
603}
604
e61e0f51 605void i915_request_submit(struct i915_request *request)
d55ac5bf
CW
606{
607 struct intel_engine_cs *engine = request->engine;
608 unsigned long flags;
23902e49 609
d55ac5bf 610 /* Will be called from irq-context when using foreign fences. */
422d7df4 611 spin_lock_irqsave(&engine->active.lock, flags);
d55ac5bf 612
e61e0f51 613 __i915_request_submit(request);
d55ac5bf 614
422d7df4 615 spin_unlock_irqrestore(&engine->active.lock, flags);
d55ac5bf
CW
616}
617
e61e0f51 618void __i915_request_unsubmit(struct i915_request *request)
d55ac5bf 619{
d6a2289d 620 struct intel_engine_cs *engine = request->engine;
d55ac5bf 621
c18636f7
CW
622 /*
623 * Only unwind in reverse order, required so that the per-context list
624 * is kept in seqno/ring order.
625 */
639f2f24 626 RQ_TRACE(request, "\n");
d9b13c4d 627
e60a870d 628 GEM_BUG_ON(!irqs_disabled());
422d7df4 629 lockdep_assert_held(&engine->active.lock);
48bc2a4a 630
e61e0f51 631 /*
c18636f7
CW
632 * Before we remove this breadcrumb from the signal list, we have
633 * to ensure that a concurrent dma_fence_enable_signaling() does not
634 * attach itself. We first mark the request as no longer active and
635 * make sure that is visible to other cores, and then remove the
636 * breadcrumb if attached.
d6a2289d 637 */
c18636f7
CW
638 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
639 clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
d6a2289d 640 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
52c0fdb2 641 i915_request_cancel_breadcrumb(request);
b5773a36 642
dba5a7f3 643 /* We've already spun, don't charge on resubmitting. */
18e4af04 644 if (request->sched.semaphores && i915_request_started(request))
dba5a7f3 645 request->sched.semaphores = 0;
dba5a7f3 646
e61e0f51
CW
647 /*
648 * We don't need to wake_up any waiters on request->execute, they
d6a2289d 649 * will get woken by any other event or us re-adding this request
e61e0f51 650 * to the engine timeline (__i915_request_submit()). The waiters
d6a2289d
CW
651 * should be quite adapt at finding that the request now has a new
652 * global_seqno to the one they went to sleep on.
653 */
654}
655
e61e0f51 656void i915_request_unsubmit(struct i915_request *request)
d6a2289d
CW
657{
658 struct intel_engine_cs *engine = request->engine;
659 unsigned long flags;
660
661 /* Will be called from irq-context when using foreign fences. */
422d7df4 662 spin_lock_irqsave(&engine->active.lock, flags);
d6a2289d 663
e61e0f51 664 __i915_request_unsubmit(request);
d6a2289d 665
422d7df4 666 spin_unlock_irqrestore(&engine->active.lock, flags);
5590af3e
CW
667}
668
23902e49 669static int __i915_sw_fence_call
d55ac5bf 670submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
23902e49 671{
e61e0f51 672 struct i915_request *request =
48bc2a4a 673 container_of(fence, typeof(*request), submit);
48bc2a4a
CW
674
675 switch (state) {
676 case FENCE_COMPLETE:
e61e0f51 677 trace_i915_request_submit(request);
ef468849
CW
678
679 if (unlikely(fence->error))
36e191f0 680 i915_request_set_error_once(request, fence->error);
ef468849 681
af7a8ffa 682 /*
e61e0f51
CW
683 * We need to serialize use of the submit_request() callback
684 * with its hotplugging performed during an emergency
685 * i915_gem_set_wedged(). We use the RCU mechanism to mark the
686 * critical section in order to force i915_gem_set_wedged() to
687 * wait until the submit_request() is completed before
688 * proceeding.
af7a8ffa
DV
689 */
690 rcu_read_lock();
d55ac5bf 691 request->engine->submit_request(request);
af7a8ffa 692 rcu_read_unlock();
48bc2a4a
CW
693 break;
694
695 case FENCE_FREE:
e61e0f51 696 i915_request_put(request);
48bc2a4a
CW
697 break;
698 }
699
23902e49
CW
700 return NOTIFY_DONE;
701}
702
b7404c7e
CW
703static int __i915_sw_fence_call
704semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
705{
209df10b 706 struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
b7404c7e
CW
707
708 switch (state) {
709 case FENCE_COMPLETE:
b7404c7e
CW
710 break;
711
712 case FENCE_FREE:
209df10b 713 i915_request_put(rq);
b7404c7e
CW
714 break;
715 }
716
717 return NOTIFY_DONE;
718}
719
e5dadff4 720static void retire_requests(struct intel_timeline *tl)
d22ba0cb
CW
721{
722 struct i915_request *rq, *rn;
723
e5dadff4 724 list_for_each_entry_safe(rq, rn, &tl->requests, link)
9db0c5ca 725 if (!i915_request_retire(rq))
d22ba0cb 726 break;
d22ba0cb
CW
727}
728
729static noinline struct i915_request *
43acd651
CW
730request_alloc_slow(struct intel_timeline *tl,
731 struct i915_request **rsvd,
732 gfp_t gfp)
d22ba0cb 733{
d22ba0cb
CW
734 struct i915_request *rq;
735
43acd651
CW
736 /* If we cannot wait, dip into our reserves */
737 if (!gfpflags_allow_blocking(gfp)) {
738 rq = xchg(rsvd, NULL);
739 if (!rq) /* Use the normal failure path for one final WARN */
740 goto out;
d22ba0cb 741
43acd651
CW
742 return rq;
743 }
744
745 if (list_empty(&tl->requests))
2ccdf6a1
CW
746 goto out;
747
9db0c5ca 748 /* Move our oldest request to the slab-cache (if not in use!) */
e5dadff4 749 rq = list_first_entry(&tl->requests, typeof(*rq), link);
9db0c5ca
CW
750 i915_request_retire(rq);
751
752 rq = kmem_cache_alloc(global.slab_requests,
753 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
754 if (rq)
755 return rq;
756
d22ba0cb 757 /* Ratelimit ourselves to prevent oom from malicious clients */
e5dadff4 758 rq = list_last_entry(&tl->requests, typeof(*rq), link);
d22ba0cb
CW
759 cond_synchronize_rcu(rq->rcustate);
760
761 /* Retire our old requests in the hope that we free some */
e5dadff4 762 retire_requests(tl);
d22ba0cb
CW
763
764out:
2ccdf6a1 765 return kmem_cache_alloc(global.slab_requests, gfp);
d22ba0cb
CW
766}
767
67a3acaa
CW
768static void __i915_request_ctor(void *arg)
769{
770 struct i915_request *rq = arg;
771
772 spin_lock_init(&rq->lock);
773 i915_sched_node_init(&rq->sched);
774 i915_sw_fence_init(&rq->submit, submit_notify);
775 i915_sw_fence_init(&rq->semaphore, semaphore_notify);
776
855e39e6
CW
777 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0);
778
67a3acaa
CW
779 rq->capture_list = NULL;
780
fc0e1270 781 init_llist_head(&rq->execute_cb);
67a3acaa
CW
782}
783
e61e0f51 784struct i915_request *
2ccdf6a1 785__i915_request_create(struct intel_context *ce, gfp_t gfp)
05235c53 786{
75d0a7f3 787 struct intel_timeline *tl = ce->timeline;
ebece753
CW
788 struct i915_request *rq;
789 u32 seqno;
05235c53
CW
790 int ret;
791
2ccdf6a1 792 might_sleep_if(gfpflags_allow_blocking(gfp));
28176ef4 793
2ccdf6a1
CW
794 /* Check that the caller provided an already pinned context */
795 __intel_context_pin(ce);
9b5f4e5e 796
e61e0f51
CW
797 /*
798 * Beware: Dragons be flying overhead.
5a198b8c
CW
799 *
800 * We use RCU to look up requests in flight. The lookups may
801 * race with the request being allocated from the slab freelist.
802 * That is the request we are writing to here, may be in the process
21950ee7 803 * of being read by __i915_active_request_get_rcu(). As such,
5a198b8c
CW
804 * we have to be very careful when overwriting the contents. During
805 * the RCU lookup, we change chase the request->engine pointer,
65e4760e 806 * read the request->global_seqno and increment the reference count.
5a198b8c
CW
807 *
808 * The reference count is incremented atomically. If it is zero,
809 * the lookup knows the request is unallocated and complete. Otherwise,
810 * it is either still in use, or has been reallocated and reset
f54d1867
CW
811 * with dma_fence_init(). This increment is safe for release as we
812 * check that the request we have a reference to and matches the active
5a198b8c
CW
813 * request.
814 *
815 * Before we increment the refcount, we chase the request->engine
816 * pointer. We must not call kmem_cache_zalloc() or else we set
817 * that pointer to NULL and cause a crash during the lookup. If
818 * we see the request is completed (based on the value of the
819 * old engine and seqno), the lookup is complete and reports NULL.
820 * If we decide the request is not completed (new engine or seqno),
821 * then we grab a reference and double check that it is still the
822 * active request - which it won't be and restart the lookup.
823 *
824 * Do not use kmem_cache_zalloc() here!
825 */
32eb6bcf 826 rq = kmem_cache_alloc(global.slab_requests,
2ccdf6a1 827 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
e61e0f51 828 if (unlikely(!rq)) {
43acd651 829 rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp);
e61e0f51 830 if (!rq) {
31c70f97
CW
831 ret = -ENOMEM;
832 goto err_unreserve;
833 }
28176ef4 834 }
05235c53 835
9f3ccd40 836 rq->context = ce;
2ccdf6a1 837 rq->engine = ce->engine;
1fc44d9b 838 rq->ring = ce->ring;
89b6d183 839 rq->execution_mask = ce->engine->mask;
d19d71fc 840
855e39e6
CW
841 kref_init(&rq->fence.refcount);
842 rq->fence.flags = 0;
843 rq->fence.error = 0;
844 INIT_LIST_HEAD(&rq->fence.cb_list);
845
846 ret = intel_timeline_get_seqno(tl, rq, &seqno);
847 if (ret)
848 goto err_free;
849
850 rq->fence.context = tl->fence_context;
851 rq->fence.seqno = seqno;
852
85bedbf1
CW
853 RCU_INIT_POINTER(rq->timeline, tl);
854 RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline);
ebece753 855 rq->hwsp_seqno = tl->hwsp_seqno;
1eaa251b 856 GEM_BUG_ON(i915_request_completed(rq));
d19d71fc 857
ebece753 858 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
73cb9701 859
48bc2a4a 860 /* We bump the ref for the fence chain */
67a3acaa
CW
861 i915_sw_fence_reinit(&i915_request_get(rq)->submit);
862 i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
5590af3e 863
67a3acaa 864 i915_sched_node_reinit(&rq->sched);
52e54209 865
67a3acaa 866 /* No zalloc, everything must be cleared after use */
e61e0f51 867 rq->batch = NULL;
67a3acaa 868 GEM_BUG_ON(rq->capture_list);
fc0e1270 869 GEM_BUG_ON(!llist_empty(&rq->execute_cb));
2ccdf6a1 870
05235c53
CW
871 /*
872 * Reserve space in the ring buffer for all the commands required to
873 * eventually emit this request. This is to guarantee that the
e61e0f51 874 * i915_request_add() call can't fail. Note that the reserve may need
05235c53
CW
875 * to be redone if the request is not actually submitted straight
876 * away, e.g. because a GPU scheduler has deferred it.
ed2922c0
CW
877 *
878 * Note that due to how we add reserved_space to intel_ring_begin()
879 * we need to double our request to ensure that if we need to wrap
880 * around inside i915_request_add() there is sufficient space at
881 * the beginning of the ring as well.
05235c53 882 */
2ccdf6a1
CW
883 rq->reserved_space =
884 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
05235c53 885
2113184c
CW
886 /*
887 * Record the position of the start of the request so that
d045446d
CW
888 * should we detect the updated seqno part-way through the
889 * GPU processing the request, we never over-estimate the
890 * position of the head.
891 */
e61e0f51 892 rq->head = rq->ring->emit;
d045446d 893
2ccdf6a1 894 ret = rq->engine->request_alloc(rq);
b1c24a61
CW
895 if (ret)
896 goto err_unwind;
2113184c 897
b3ee09a4
CW
898 rq->infix = rq->ring->emit; /* end of header; start of user payload */
899
2ccdf6a1 900 intel_context_mark_active(ce);
d22d2d07
CW
901 list_add_tail_rcu(&rq->link, &tl->requests);
902
e61e0f51 903 return rq;
05235c53 904
b1c24a61 905err_unwind:
1fc44d9b 906 ce->ring->emit = rq->head;
b1c24a61 907
1618bdb8 908 /* Make sure we didn't add ourselves to external state before freeing */
0c7112a0
CW
909 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
910 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
1618bdb8 911
ebece753 912err_free:
32eb6bcf 913 kmem_cache_free(global.slab_requests, rq);
28176ef4 914err_unreserve:
1fc44d9b 915 intel_context_unpin(ce);
8e637178 916 return ERR_PTR(ret);
05235c53
CW
917}
918
2ccdf6a1
CW
919struct i915_request *
920i915_request_create(struct intel_context *ce)
921{
922 struct i915_request *rq;
e5dadff4 923 struct intel_timeline *tl;
2ccdf6a1 924
e5dadff4
CW
925 tl = intel_context_timeline_lock(ce);
926 if (IS_ERR(tl))
927 return ERR_CAST(tl);
2ccdf6a1
CW
928
929 /* Move our oldest request to the slab-cache (if not in use!) */
e5dadff4
CW
930 rq = list_first_entry(&tl->requests, typeof(*rq), link);
931 if (!list_is_last(&rq->link, &tl->requests))
2ccdf6a1
CW
932 i915_request_retire(rq);
933
934 intel_context_enter(ce);
935 rq = __i915_request_create(ce, GFP_KERNEL);
936 intel_context_exit(ce); /* active reference transferred to request */
937 if (IS_ERR(rq))
938 goto err_unlock;
939
940 /* Check that we do not interrupt ourselves with a new request */
e5dadff4 941 rq->cookie = lockdep_pin_lock(&tl->mutex);
2ccdf6a1
CW
942
943 return rq;
944
945err_unlock:
e5dadff4 946 intel_context_timeline_unlock(tl);
2ccdf6a1
CW
947 return rq;
948}
949
0d90ccb7
CW
950static int
951i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
952{
6a79d848
CW
953 struct dma_fence *fence;
954 int err;
0d90ccb7 955
ab7a6902
CW
956 if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
957 return 0;
6a79d848 958
d22d2d07
CW
959 if (i915_request_started(signal))
960 return 0;
961
9ddc8ec0 962 fence = NULL;
6a79d848 963 rcu_read_lock();
9ddc8ec0 964 spin_lock_irq(&signal->lock);
d22d2d07
CW
965 do {
966 struct list_head *pos = READ_ONCE(signal->link.prev);
967 struct i915_request *prev;
968
969 /* Confirm signal has not been retired, the link is valid */
970 if (unlikely(i915_request_started(signal)))
971 break;
972
973 /* Is signal the earliest request on its timeline? */
974 if (pos == &rcu_dereference(signal->timeline)->requests)
975 break;
0d90ccb7 976
9ddc8ec0
CW
977 /*
978 * Peek at the request before us in the timeline. That
979 * request will only be valid before it is retired, so
980 * after acquiring a reference to it, confirm that it is
981 * still part of the signaler's timeline.
982 */
d22d2d07
CW
983 prev = list_entry(pos, typeof(*prev), link);
984 if (!i915_request_get_rcu(prev))
985 break;
986
987 /* After the strong barrier, confirm prev is still attached */
988 if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
989 i915_request_put(prev);
990 break;
6a79d848 991 }
d22d2d07
CW
992
993 fence = &prev->fence;
994 } while (0);
9ddc8ec0
CW
995 spin_unlock_irq(&signal->lock);
996 rcu_read_unlock();
997 if (!fence)
998 return 0;
6a79d848
CW
999
1000 err = 0;
07e9c59d 1001 if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
6a79d848
CW
1002 err = i915_sw_fence_await_dma_fence(&rq->submit,
1003 fence, 0,
1004 I915_FENCE_GFP);
1005 dma_fence_put(fence);
1006
1007 return err;
0d90ccb7
CW
1008}
1009
ca6e56f6
CW
1010static intel_engine_mask_t
1011already_busywaiting(struct i915_request *rq)
1012{
1013 /*
1014 * Polling a semaphore causes bus traffic, delaying other users of
1015 * both the GPU and CPU. We want to limit the impact on others,
1016 * while taking advantage of early submission to reduce GPU
1017 * latency. Therefore we restrict ourselves to not using more
1018 * than one semaphore from each source, and not using a semaphore
1019 * if we have detected the engine is saturated (i.e. would not be
1020 * submitted early and cause bus traffic reading an already passed
1021 * semaphore).
1022 *
1023 * See the are-we-too-late? check in __i915_request_submit().
1024 */
60900add 1025 return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
ca6e56f6
CW
1026}
1027
e8861964 1028static int
c81471f5
CW
1029__emit_semaphore_wait(struct i915_request *to,
1030 struct i915_request *from,
1031 u32 seqno)
e8861964 1032{
5a833995 1033 const int has_token = INTEL_GEN(to->engine->i915) >= 12;
e8861964 1034 u32 hwsp_offset;
c81471f5 1035 int len, err;
e8861964 1036 u32 *cs;
e8861964 1037
5a833995 1038 GEM_BUG_ON(INTEL_GEN(to->engine->i915) < 8);
795d4d7f 1039 GEM_BUG_ON(i915_request_has_initial_breadcrumb(to));
e8861964 1040
c8a0e2ae 1041 /* We need to pin the signaler's HWSP until we are finished reading. */
c81471f5
CW
1042 err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
1043 if (err)
1044 return err;
e8861964 1045
c210e85b
CW
1046 len = 4;
1047 if (has_token)
1048 len += 2;
1049
1050 cs = intel_ring_begin(to, len);
e8861964
CW
1051 if (IS_ERR(cs))
1052 return PTR_ERR(cs);
1053
1054 /*
1055 * Using greater-than-or-equal here means we have to worry
1056 * about seqno wraparound. To side step that issue, we swap
1057 * the timeline HWSP upon wrapping, so that everyone listening
1058 * for the old (pre-wrap) values do not see the much smaller
1059 * (post-wrap) values than they were expecting (and so wait
1060 * forever).
1061 */
c210e85b
CW
1062 *cs++ = (MI_SEMAPHORE_WAIT |
1063 MI_SEMAPHORE_GLOBAL_GTT |
1064 MI_SEMAPHORE_POLL |
1065 MI_SEMAPHORE_SAD_GTE_SDD) +
1066 has_token;
c81471f5 1067 *cs++ = seqno;
e8861964
CW
1068 *cs++ = hwsp_offset;
1069 *cs++ = 0;
c210e85b
CW
1070 if (has_token) {
1071 *cs++ = 0;
1072 *cs++ = MI_NOOP;
1073 }
e8861964
CW
1074
1075 intel_ring_advance(to, cs);
c81471f5
CW
1076 return 0;
1077}
1078
1079static int
1080emit_semaphore_wait(struct i915_request *to,
1081 struct i915_request *from,
1082 gfp_t gfp)
1083{
326611dd 1084 const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
18e4af04 1085 struct i915_sw_fence *wait = &to->submit;
326611dd 1086
f16ccb64
CW
1087 if (!intel_context_use_semaphores(to->context))
1088 goto await_fence;
1089
795d4d7f
CW
1090 if (i915_request_has_initial_breadcrumb(to))
1091 goto await_fence;
1092
f16ccb64
CW
1093 if (!rcu_access_pointer(from->hwsp_cacheline))
1094 goto await_fence;
1095
fcae4961
CW
1096 /*
1097 * If this or its dependents are waiting on an external fence
1098 * that may fail catastrophically, then we want to avoid using
1099 * sempahores as they bypass the fence signaling metadata, and we
1100 * lose the fence->error propagation.
1101 */
1102 if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN)
1103 goto await_fence;
1104
c81471f5 1105 /* Just emit the first semaphore we see as request space is limited. */
326611dd 1106 if (already_busywaiting(to) & mask)
c81471f5
CW
1107 goto await_fence;
1108
1109 if (i915_request_await_start(to, from) < 0)
1110 goto await_fence;
1111
1112 /* Only submit our spinner after the signaler is running! */
1113 if (__await_execution(to, from, NULL, gfp))
1114 goto await_fence;
1115
1116 if (__emit_semaphore_wait(to, from, from->fence.seqno))
1117 goto await_fence;
1118
326611dd 1119 to->sched.semaphores |= mask;
18e4af04 1120 wait = &to->semaphore;
6a79d848
CW
1121
1122await_fence:
18e4af04 1123 return i915_sw_fence_await_dma_fence(wait,
6a79d848
CW
1124 &from->fence, 0,
1125 I915_FENCE_GFP);
e8861964
CW
1126}
1127
ffb0c600
CW
1128static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1129 struct dma_fence *fence)
1130{
1131 return __intel_timeline_sync_is_later(tl,
1132 fence->context,
1133 fence->seqno - 1);
1134}
1135
1136static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1137 const struct dma_fence *fence)
1138{
1139 return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1140}
1141
a2bc4695 1142static int
ffb0c600
CW
1143__i915_request_await_execution(struct i915_request *to,
1144 struct i915_request *from,
1145 void (*hook)(struct i915_request *rq,
1146 struct dma_fence *signal))
a2bc4695 1147{
ffb0c600 1148 int err;
a2bc4695 1149
ffb0c600 1150 GEM_BUG_ON(intel_context_is_barrier(from->context));
a2bc4695 1151
ffb0c600
CW
1152 /* Submit both requests at the same time */
1153 err = __await_execution(to, from, hook, I915_FENCE_GFP);
1154 if (err)
1155 return err;
1156
1157 /* Squash repeated depenendices to the same timelines */
1158 if (intel_timeline_sync_has_start(i915_request_timeline(to),
1159 &from->fence))
ade0b0c9 1160 return 0;
ffb0c600
CW
1161
1162 /*
1163 * Wait until the start of this request.
1164 *
1165 * The execution cb fires when we submit the request to HW. But in
1166 * many cases this may be long before the request itself is ready to
1167 * run (consider that we submit 2 requests for the same context, where
1168 * the request of interest is behind an indefinite spinner). So we hook
1169 * up to both to reduce our queues and keep the execution lag minimised
1170 * in the worst case, though we hope that the await_start is elided.
1171 */
1172 err = i915_request_await_start(to, from);
1173 if (err < 0)
1174 return err;
1175
1176 /*
1177 * Ensure both start together [after all semaphores in signal]
1178 *
1179 * Now that we are queued to the HW at roughly the same time (thanks
1180 * to the execute cb) and are ready to run at roughly the same time
1181 * (thanks to the await start), our signaler may still be indefinitely
1182 * delayed by waiting on a semaphore from a remote engine. If our
1183 * signaler depends on a semaphore, so indirectly do we, and we do not
1184 * want to start our payload until our signaler also starts theirs.
1185 * So we wait.
1186 *
1187 * However, there is also a second condition for which we need to wait
1188 * for the precise start of the signaler. Consider that the signaler
1189 * was submitted in a chain of requests following another context
1190 * (with just an ordinary intra-engine fence dependency between the
1191 * two). In this case the signaler is queued to HW, but not for
1192 * immediate execution, and so we must wait until it reaches the
1193 * active slot.
1194 */
1195 if (intel_engine_has_semaphores(to->engine) &&
1196 !i915_request_has_initial_breadcrumb(to)) {
1197 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1198 if (err < 0)
1199 return err;
24fe5f2a 1200 }
ade0b0c9 1201
ffb0c600 1202 /* Couple the dependency tree for PI on this exposed to->fence */
52e54209 1203 if (to->engine->schedule) {
ffb0c600 1204 err = i915_sched_node_add_dependency(&to->sched,
6b6cd2eb 1205 &from->sched,
ffb0c600
CW
1206 I915_DEPENDENCY_WEAK);
1207 if (err < 0)
1208 return err;
52e54209
CW
1209 }
1210
ffb0c600
CW
1211 return intel_timeline_sync_set_start(i915_request_timeline(to),
1212 &from->fence);
a2bc4695
CW
1213}
1214
fcae4961
CW
1215static void mark_external(struct i915_request *rq)
1216{
1217 /*
1218 * The downside of using semaphores is that we lose metadata passing
1219 * along the signaling chain. This is particularly nasty when we
1220 * need to pass along a fatal error such as EFAULT or EDEADLK. For
1221 * fatal errors we want to scrub the request before it is executed,
1222 * which means that we cannot preload the request onto HW and have
1223 * it wait upon a semaphore.
1224 */
1225 rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN;
1226}
1227
ac938052 1228static int
3136deb7 1229__i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
ac938052 1230{
fcae4961 1231 mark_external(rq);
ac938052 1232 return i915_sw_fence_await_dma_fence(&rq->submit, fence,
5a833995 1233 i915_fence_context_timeout(rq->engine->i915,
16dc224f 1234 fence->context),
ac938052
CW
1235 I915_FENCE_GFP);
1236}
1237
3136deb7
LL
1238static int
1239i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1240{
1241 struct dma_fence *iter;
1242 int err = 0;
1243
1244 if (!to_dma_fence_chain(fence))
1245 return __i915_request_await_external(rq, fence);
1246
1247 dma_fence_chain_for_each(iter, fence) {
1248 struct dma_fence_chain *chain = to_dma_fence_chain(iter);
1249
1250 if (!dma_fence_is_i915(chain->fence)) {
1251 err = __i915_request_await_external(rq, iter);
1252 break;
1253 }
1254
1255 err = i915_request_await_dma_fence(rq, chain->fence);
1256 if (err < 0)
1257 break;
1258 }
1259
1260 dma_fence_put(iter);
1261 return err;
1262}
1263
b52992c0 1264int
ffb0c600
CW
1265i915_request_await_execution(struct i915_request *rq,
1266 struct dma_fence *fence,
1267 void (*hook)(struct i915_request *rq,
1268 struct dma_fence *signal))
b52992c0 1269{
29ef3fa9
CW
1270 struct dma_fence **child = &fence;
1271 unsigned int nchild = 1;
b52992c0 1272 int ret;
b52992c0 1273
29ef3fa9
CW
1274 if (dma_fence_is_array(fence)) {
1275 struct dma_fence_array *array = to_dma_fence_array(fence);
1276
ffb0c600
CW
1277 /* XXX Error for signal-on-any fence arrays */
1278
29ef3fa9
CW
1279 child = array->fences;
1280 nchild = array->num_fences;
1281 GEM_BUG_ON(!nchild);
1282 }
b52992c0 1283
29ef3fa9
CW
1284 do {
1285 fence = *child++;
9e31c1fe
CW
1286 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1287 i915_sw_fence_set_error_once(&rq->submit, fence->error);
29ef3fa9 1288 continue;
9e31c1fe 1289 }
b52992c0 1290
e61e0f51 1291 if (fence->context == rq->fence.context)
ceae14bd
CW
1292 continue;
1293
ffb0c600
CW
1294 /*
1295 * We don't squash repeated fence dependencies here as we
1296 * want to run our callback in all cases.
1297 */
47979480 1298
29ef3fa9 1299 if (dma_fence_is_i915(fence))
ffb0c600
CW
1300 ret = __i915_request_await_execution(rq,
1301 to_request(fence),
1302 hook);
b52992c0 1303 else
ac938052 1304 ret = i915_request_await_external(rq, fence);
b52992c0
CW
1305 if (ret < 0)
1306 return ret;
29ef3fa9 1307 } while (--nchild);
b52992c0
CW
1308
1309 return 0;
1310}
1311
511b6d9a
CW
1312static int
1313await_request_submit(struct i915_request *to, struct i915_request *from)
1314{
1315 /*
1316 * If we are waiting on a virtual engine, then it may be
1317 * constrained to execute on a single engine *prior* to submission.
1318 * When it is submitted, it will be first submitted to the virtual
1319 * engine and then passed to the physical engine. We cannot allow
1320 * the waiter to be submitted immediately to the physical engine
1321 * as it may then bypass the virtual request.
1322 */
1323 if (to->engine == READ_ONCE(from->engine))
1324 return i915_sw_fence_await_sw_fence_gfp(&to->submit,
1325 &from->submit,
1326 I915_FENCE_GFP);
1327 else
1328 return __i915_request_await_execution(to, from, NULL);
1329}
1330
c81471f5 1331static int
ffb0c600 1332i915_request_await_request(struct i915_request *to, struct i915_request *from)
c81471f5 1333{
ffb0c600 1334 int ret;
f16ccb64 1335
ffb0c600
CW
1336 GEM_BUG_ON(to == from);
1337 GEM_BUG_ON(to->timeline == from->timeline);
c81471f5 1338
ffb0c600
CW
1339 if (i915_request_completed(from)) {
1340 i915_sw_fence_set_error_once(&to->submit, from->fence.error);
c81471f5 1341 return 0;
798fa870
CW
1342 }
1343
c81471f5 1344 if (to->engine->schedule) {
ffb0c600 1345 ret = i915_sched_node_add_dependency(&to->sched,
6b6cd2eb 1346 &from->sched,
ffb0c600
CW
1347 I915_DEPENDENCY_EXTERNAL);
1348 if (ret < 0)
1349 return ret;
c81471f5
CW
1350 }
1351
511b6d9a
CW
1352 if (is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask)))
1353 ret = await_request_submit(to, from);
ffb0c600
CW
1354 else
1355 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
1356 if (ret < 0)
1357 return ret;
1358
1359 return 0;
c81471f5
CW
1360}
1361
f71e01a7 1362int
ffb0c600 1363i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
f71e01a7
CW
1364{
1365 struct dma_fence **child = &fence;
1366 unsigned int nchild = 1;
1367 int ret;
1368
ffb0c600
CW
1369 /*
1370 * Note that if the fence-array was created in signal-on-any mode,
1371 * we should *not* decompose it into its individual fences. However,
1372 * we don't currently store which mode the fence-array is operating
1373 * in. Fortunately, the only user of signal-on-any is private to
1374 * amdgpu and we should not see any incoming fence-array from
1375 * sync-file being in signal-on-any mode.
1376 */
f71e01a7
CW
1377 if (dma_fence_is_array(fence)) {
1378 struct dma_fence_array *array = to_dma_fence_array(fence);
1379
f71e01a7
CW
1380 child = array->fences;
1381 nchild = array->num_fences;
1382 GEM_BUG_ON(!nchild);
1383 }
1384
1385 do {
1386 fence = *child++;
9e31c1fe
CW
1387 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1388 i915_sw_fence_set_error_once(&rq->submit, fence->error);
f71e01a7 1389 continue;
9e31c1fe 1390 }
f71e01a7 1391
ffb0c600
CW
1392 /*
1393 * Requests on the same timeline are explicitly ordered, along
1394 * with their dependencies, by i915_request_add() which ensures
1395 * that requests are submitted in-order through each ring.
1396 */
2045d666
CW
1397 if (fence->context == rq->fence.context)
1398 continue;
1399
ffb0c600
CW
1400 /* Squash repeated waits to the same timelines */
1401 if (fence->context &&
1402 intel_timeline_sync_is_later(i915_request_timeline(rq),
1403 fence))
1404 continue;
f71e01a7
CW
1405
1406 if (dma_fence_is_i915(fence))
ffb0c600 1407 ret = i915_request_await_request(rq, to_request(fence));
f71e01a7 1408 else
ac938052 1409 ret = i915_request_await_external(rq, fence);
f71e01a7
CW
1410 if (ret < 0)
1411 return ret;
ffb0c600
CW
1412
1413 /* Record the latest fence used against each timeline */
1414 if (fence->context)
1415 intel_timeline_sync_set(i915_request_timeline(rq),
1416 fence);
f71e01a7
CW
1417 } while (--nchild);
1418
1419 return 0;
1420}
1421
a2bc4695 1422/**
e61e0f51 1423 * i915_request_await_object - set this request to (async) wait upon a bo
a2bc4695
CW
1424 * @to: request we are wishing to use
1425 * @obj: object which may be in use on another ring.
d8802126 1426 * @write: whether the wait is on behalf of a writer
a2bc4695
CW
1427 *
1428 * This code is meant to abstract object synchronization with the GPU.
1429 * Conceptually we serialise writes between engines inside the GPU.
1430 * We only allow one engine to write into a buffer at any time, but
1431 * multiple readers. To ensure each has a coherent view of memory, we must:
1432 *
1433 * - If there is an outstanding write request to the object, the new
1434 * request must wait for it to complete (either CPU or in hw, requests
1435 * on the same ring will be naturally ordered).
1436 *
1437 * - If we are a write request (pending_write_domain is set), the new
1438 * request must wait for outstanding read requests to complete.
1439 *
1440 * Returns 0 if successful, else propagates up the lower layer error.
1441 */
1442int
e61e0f51
CW
1443i915_request_await_object(struct i915_request *to,
1444 struct drm_i915_gem_object *obj,
1445 bool write)
a2bc4695 1446{
d07f0e59
CW
1447 struct dma_fence *excl;
1448 int ret = 0;
a2bc4695
CW
1449
1450 if (write) {
d07f0e59
CW
1451 struct dma_fence **shared;
1452 unsigned int count, i;
1453
52791eee 1454 ret = dma_resv_get_fences_rcu(obj->base.resv,
d07f0e59
CW
1455 &excl, &count, &shared);
1456 if (ret)
1457 return ret;
1458
1459 for (i = 0; i < count; i++) {
e61e0f51 1460 ret = i915_request_await_dma_fence(to, shared[i]);
d07f0e59
CW
1461 if (ret)
1462 break;
1463
1464 dma_fence_put(shared[i]);
1465 }
1466
1467 for (; i < count; i++)
1468 dma_fence_put(shared[i]);
1469 kfree(shared);
a2bc4695 1470 } else {
52791eee 1471 excl = dma_resv_get_excl_rcu(obj->base.resv);
a2bc4695
CW
1472 }
1473
d07f0e59
CW
1474 if (excl) {
1475 if (ret == 0)
e61e0f51 1476 ret = i915_request_await_dma_fence(to, excl);
a2bc4695 1477
d07f0e59 1478 dma_fence_put(excl);
a2bc4695
CW
1479 }
1480
d07f0e59 1481 return ret;
a2bc4695
CW
1482}
1483
ea593dbb
CW
1484static struct i915_request *
1485__i915_request_add_to_timeline(struct i915_request *rq)
1486{
d19d71fc 1487 struct intel_timeline *timeline = i915_request_timeline(rq);
ea593dbb
CW
1488 struct i915_request *prev;
1489
1490 /*
1491 * Dependency tracking and request ordering along the timeline
1492 * is special cased so that we can eliminate redundant ordering
1493 * operations while building the request (we know that the timeline
1494 * itself is ordered, and here we guarantee it).
1495 *
1496 * As we know we will need to emit tracking along the timeline,
1497 * we embed the hooks into our request struct -- at the cost of
1498 * having to have specialised no-allocation interfaces (which will
1499 * be beneficial elsewhere).
1500 *
1501 * A second benefit to open-coding i915_request_await_request is
1502 * that we can apply a slight variant of the rules specialised
1503 * for timelines that jump between engines (such as virtual engines).
1504 * If we consider the case of virtual engine, we must emit a dma-fence
1505 * to prevent scheduling of the second request until the first is
1506 * complete (to maximise our greedy late load balancing) and this
1507 * precludes optimising to use semaphores serialisation of a single
1508 * timeline across engines.
1509 */
b1e3177b
CW
1510 prev = to_request(__i915_active_fence_set(&timeline->last_request,
1511 &rq->fence));
ea593dbb 1512 if (prev && !i915_request_completed(prev)) {
1eaa251b
CW
1513 /*
1514 * The requests are supposed to be kept in order. However,
1515 * we need to be wary in case the timeline->last_request
1516 * is used as a barrier for external modification to this
1517 * context.
1518 */
1519 GEM_BUG_ON(prev->context == rq->context &&
1520 i915_seqno_passed(prev->fence.seqno,
1521 rq->fence.seqno));
1522
326611dd 1523 if (is_power_of_2(READ_ONCE(prev->engine)->mask | rq->engine->mask))
ea593dbb
CW
1524 i915_sw_fence_await_sw_fence(&rq->submit,
1525 &prev->submit,
1526 &rq->submitq);
1527 else
1528 __i915_sw_fence_await_dma_fence(&rq->submit,
1529 &prev->fence,
1530 &rq->dmaq);
1531 if (rq->engine->schedule)
1532 __i915_sched_node_add_dependency(&rq->sched,
1533 &prev->sched,
1534 &rq->dep,
1535 0);
1536 }
1537
2ccdf6a1
CW
1538 /*
1539 * Make sure that no request gazumped us - if it was allocated after
1540 * our i915_request_alloc() and called __i915_request_add() before
1541 * us, the timeline will hold its seqno which is later than ours.
1542 */
ea593dbb 1543 GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
ea593dbb
CW
1544
1545 return prev;
1546}
1547
05235c53
CW
1548/*
1549 * NB: This function is not allowed to fail. Doing so would mean the the
1550 * request is not being tracked for completion but the work itself is
1551 * going to happen on the hardware. This would be a Bad Thing(tm).
1552 */
2ccdf6a1 1553struct i915_request *__i915_request_commit(struct i915_request *rq)
05235c53 1554{
2ccdf6a1
CW
1555 struct intel_engine_cs *engine = rq->engine;
1556 struct intel_ring *ring = rq->ring;
73dec95e 1557 u32 *cs;
05235c53 1558
639f2f24 1559 RQ_TRACE(rq, "\n");
c781c978 1560
05235c53
CW
1561 /*
1562 * To ensure that this call will not fail, space for its emissions
1563 * should already have been reserved in the ring buffer. Let the ring
1564 * know that it is time to use that space up.
1565 */
2ccdf6a1
CW
1566 GEM_BUG_ON(rq->reserved_space > ring->space);
1567 rq->reserved_space = 0;
e5dadff4 1568 rq->emitted_jiffies = jiffies;
05235c53 1569
8ac71d1d
CW
1570 /*
1571 * Record the position of the start of the breadcrumb so that
05235c53
CW
1572 * should we detect the updated seqno part-way through the
1573 * GPU processing the request, we never over-estimate the
d045446d 1574 * position of the ring's HEAD.
05235c53 1575 */
2ccdf6a1 1576 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
73dec95e 1577 GEM_BUG_ON(IS_ERR(cs));
2ccdf6a1 1578 rq->postfix = intel_ring_offset(rq, cs);
05235c53 1579
e5dadff4 1580 return __i915_request_add_to_timeline(rq);
a79ca656
CW
1581}
1582
16f2941a
CW
1583void __i915_request_queue_bh(struct i915_request *rq)
1584{
1585 i915_sw_fence_commit(&rq->semaphore);
1586 i915_sw_fence_commit(&rq->submit);
1587}
1588
a79ca656
CW
1589void __i915_request_queue(struct i915_request *rq,
1590 const struct i915_sched_attr *attr)
1591{
8ac71d1d
CW
1592 /*
1593 * Let the backend know a new request has arrived that may need
0de9136d
CW
1594 * to adjust the existing execution schedule due to a high priority
1595 * request - i.e. we may want to preempt the current request in order
1596 * to run a high priority dependency chain *before* we can execute this
1597 * request.
1598 *
1599 * This is called before the request is ready to run so that we can
1600 * decide whether to preempt the entire chain so that it is ready to
1601 * run at the earliest possible convenience.
1602 */
a79ca656
CW
1603 if (attr && rq->engine->schedule)
1604 rq->engine->schedule(rq, attr);
16f2941a
CW
1605
1606 local_bh_disable();
1607 __i915_request_queue_bh(rq);
1608 local_bh_enable(); /* kick tasklets */
2ccdf6a1
CW
1609}
1610
1611void i915_request_add(struct i915_request *rq)
1612{
d19d71fc 1613 struct intel_timeline * const tl = i915_request_timeline(rq);
e6ba7648 1614 struct i915_sched_attr attr = {};
61231f6b 1615 struct i915_gem_context *ctx;
2ccdf6a1 1616
e5dadff4
CW
1617 lockdep_assert_held(&tl->mutex);
1618 lockdep_unpin_lock(&tl->mutex, rq->cookie);
2ccdf6a1
CW
1619
1620 trace_i915_request_add(rq);
61231f6b 1621 __i915_request_commit(rq);
2ccdf6a1 1622
61231f6b
CW
1623 /* XXX placeholder for selftests */
1624 rcu_read_lock();
1625 ctx = rcu_dereference(rq->context->gem_context);
1626 if (ctx)
1627 attr = ctx->sched;
1628 rcu_read_unlock();
e6ba7648 1629
a79ca656
CW
1630 __i915_request_queue(rq, &attr);
1631
e5dadff4 1632 mutex_unlock(&tl->mutex);
05235c53
CW
1633}
1634
062444bb 1635static unsigned long local_clock_ns(unsigned int *cpu)
05235c53
CW
1636{
1637 unsigned long t;
1638
e61e0f51
CW
1639 /*
1640 * Cheaply and approximately convert from nanoseconds to microseconds.
05235c53
CW
1641 * The result and subsequent calculations are also defined in the same
1642 * approximate microseconds units. The principal source of timing
1643 * error here is from the simple truncation.
1644 *
1645 * Note that local_clock() is only defined wrt to the current CPU;
1646 * the comparisons are no longer valid if we switch CPUs. Instead of
1647 * blocking preemption for the entire busywait, we can detect the CPU
1648 * switch and use that as indicator of system load and a reason to
1649 * stop busywaiting, see busywait_stop().
1650 */
1651 *cpu = get_cpu();
062444bb 1652 t = local_clock();
05235c53
CW
1653 put_cpu();
1654
1655 return t;
1656}
1657
1658static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1659{
1660 unsigned int this_cpu;
1661
062444bb 1662 if (time_after(local_clock_ns(&this_cpu), timeout))
05235c53
CW
1663 return true;
1664
1665 return this_cpu != cpu;
1666}
1667
3f6a6f34 1668static bool __i915_spin_request(struct i915_request * const rq, int state)
05235c53 1669{
062444bb 1670 unsigned long timeout_ns;
52c0fdb2 1671 unsigned int cpu;
b2f2f0fc
CW
1672
1673 /*
1674 * Only wait for the request if we know it is likely to complete.
1675 *
1676 * We don't track the timestamps around requests, nor the average
1677 * request length, so we do not have a good indicator that this
1678 * request will complete within the timeout. What we do know is the
52c0fdb2
CW
1679 * order in which requests are executed by the context and so we can
1680 * tell if the request has been started. If the request is not even
1681 * running yet, it is a fair assumption that it will not complete
1682 * within our relatively short timeout.
b2f2f0fc 1683 */
52c0fdb2 1684 if (!i915_request_is_running(rq))
b2f2f0fc
CW
1685 return false;
1686
e61e0f51
CW
1687 /*
1688 * When waiting for high frequency requests, e.g. during synchronous
05235c53
CW
1689 * rendering split between the CPU and GPU, the finite amount of time
1690 * required to set up the irq and wait upon it limits the response
1691 * rate. By busywaiting on the request completion for a short while we
1692 * can service the high frequency waits as quick as possible. However,
1693 * if it is a slow request, we want to sleep as quickly as possible.
1694 * The tradeoff between waiting and sleeping is roughly the time it
1695 * takes to sleep on a request, on the order of a microsecond.
1696 */
1697
062444bb
CW
1698 timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
1699 timeout_ns += local_clock_ns(&cpu);
05235c53 1700 do {
3f6a6f34 1701 if (dma_fence_is_signaled(&rq->fence))
52c0fdb2 1702 return true;
c33ed067 1703
05235c53
CW
1704 if (signal_pending_state(state, current))
1705 break;
1706
062444bb 1707 if (busywait_stop(timeout_ns, cpu))
05235c53
CW
1708 break;
1709
f2f09a4c 1710 cpu_relax();
05235c53
CW
1711 } while (!need_resched());
1712
1713 return false;
1714}
1715
52c0fdb2
CW
1716struct request_wait {
1717 struct dma_fence_cb cb;
1718 struct task_struct *tsk;
1719};
1720
1721static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1722{
1723 struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1724
3f6a6f34 1725 wake_up_process(fetch_and_zero(&wait->tsk));
52c0fdb2
CW
1726}
1727
05235c53 1728/**
e532be89 1729 * i915_request_wait - wait until execution of request has finished
e61e0f51 1730 * @rq: the request to wait upon
ea746f36 1731 * @flags: how to wait
e95433c7
CW
1732 * @timeout: how long to wait in jiffies
1733 *
e532be89 1734 * i915_request_wait() waits for the request to be completed, for a
e95433c7
CW
1735 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1736 * unbounded wait).
05235c53 1737 *
e95433c7
CW
1738 * Returns the remaining time (in jiffies) if the request completed, which may
1739 * be zero or -ETIME if the request is unfinished after the timeout expires.
1740 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1741 * pending before the request completes.
05235c53 1742 */
e61e0f51 1743long i915_request_wait(struct i915_request *rq,
e95433c7
CW
1744 unsigned int flags,
1745 long timeout)
05235c53 1746{
ea746f36
CW
1747 const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1748 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
52c0fdb2 1749 struct request_wait wait;
05235c53
CW
1750
1751 might_sleep();
e95433c7 1752 GEM_BUG_ON(timeout < 0);
05235c53 1753
6e4e9708 1754 if (dma_fence_is_signaled(&rq->fence))
e95433c7 1755 return timeout;
05235c53 1756
e95433c7
CW
1757 if (!timeout)
1758 return -ETIME;
05235c53 1759
e61e0f51 1760 trace_i915_request_wait_begin(rq, flags);
84383d2e
CW
1761
1762 /*
1763 * We must never wait on the GPU while holding a lock as we
1764 * may need to perform a GPU reset. So while we don't need to
1765 * serialise wait/reset with an explicit lock, we do want
1766 * lockdep to detect potential dependency cycles.
1767 */
cb823ed9 1768 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
4680816b 1769
7ce99d24
CW
1770 /*
1771 * Optimistic spin before touching IRQs.
1772 *
1773 * We may use a rather large value here to offset the penalty of
1774 * switching away from the active task. Frequently, the client will
1775 * wait upon an old swapbuffer to throttle itself to remain within a
1776 * frame of the gpu. If the client is running in lockstep with the gpu,
1777 * then it should not be waiting long at all, and a sleep now will incur
1778 * extra scheduler latency in producing the next frame. To try to
1779 * avoid adding the cost of enabling/disabling the interrupt to the
1780 * short wait, we first spin to see if the request would have completed
1781 * in the time taken to setup the interrupt.
1782 *
1783 * We need upto 5us to enable the irq, and upto 20us to hide the
1784 * scheduler latency of a context switch, ignoring the secondary
1785 * impacts from a context switch such as cache eviction.
1786 *
1787 * The scheme used for low-latency IO is called "hybrid interrupt
1788 * polling". The suggestion there is to sleep until just before you
1789 * expect to be woken by the device interrupt and then poll for its
1790 * completion. That requires having a good predictor for the request
1791 * duration, which we currently lack.
1792 */
062444bb 1793 if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) &&
3f6a6f34 1794 __i915_spin_request(rq, state))
52c0fdb2 1795 goto out;
541ca6ed 1796
62eb3c24
CW
1797 /*
1798 * This client is about to stall waiting for the GPU. In many cases
1799 * this is undesirable and limits the throughput of the system, as
1800 * many clients cannot continue processing user input/output whilst
1801 * blocked. RPS autotuning may take tens of milliseconds to respond
1802 * to the GPU load and thus incurs additional latency for the client.
1803 * We can circumvent that by promoting the GPU frequency to maximum
1804 * before we sleep. This makes the GPU throttle up much more quickly
1805 * (good for benchmarks and user experience, e.g. window animations),
1806 * but at a cost of spending more power processing the workload
1807 * (bad for battery).
1808 */
1840d40a
CW
1809 if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq))
1810 intel_rps_boost(rq);
4680816b 1811
52c0fdb2
CW
1812 wait.tsk = current;
1813 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1814 goto out;
4680816b 1815
3adee4ac
CW
1816 /*
1817 * Flush the submission tasklet, but only if it may help this request.
1818 *
1819 * We sometimes experience some latency between the HW interrupts and
1820 * tasklet execution (mostly due to ksoftirqd latency, but it can also
1821 * be due to lazy CS events), so lets run the tasklet manually if there
1822 * is a chance it may submit this request. If the request is not ready
1823 * to run, as it is waiting for other fences to be signaled, flushing
1824 * the tasklet is busy work without any advantage for this client.
1825 *
1826 * If the HW is being lazy, this is the last chance before we go to
1827 * sleep to catch any pending events. We will check periodically in
1828 * the heartbeat to flush the submission tasklets as a last resort
1829 * for unhappy HW.
1830 */
1831 if (i915_request_is_ready(rq))
5ec17c76 1832 __intel_engine_flush_submission(rq->engine, false);
3adee4ac 1833
52c0fdb2
CW
1834 for (;;) {
1835 set_current_state(state);
05235c53 1836
3f6a6f34 1837 if (dma_fence_is_signaled(&rq->fence))
52c0fdb2 1838 break;
05235c53 1839
05235c53 1840 if (signal_pending_state(state, current)) {
e95433c7 1841 timeout = -ERESTARTSYS;
05235c53
CW
1842 break;
1843 }
1844
e95433c7
CW
1845 if (!timeout) {
1846 timeout = -ETIME;
05235c53
CW
1847 break;
1848 }
1849
e95433c7 1850 timeout = io_schedule_timeout(timeout);
05235c53 1851 }
a49625f9 1852 __set_current_state(TASK_RUNNING);
05235c53 1853
3f6a6f34
CW
1854 if (READ_ONCE(wait.tsk))
1855 dma_fence_remove_callback(&rq->fence, &wait.cb);
1856 GEM_BUG_ON(!list_empty(&wait.cb.node));
52c0fdb2
CW
1857
1858out:
5facae4f 1859 mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
52c0fdb2 1860 trace_i915_request_wait_end(rq);
e95433c7 1861 return timeout;
05235c53 1862}
4b8de8e6 1863
1f0e785a
CW
1864static int print_sched_attr(const struct i915_sched_attr *attr,
1865 char *buf, int x, int len)
1866{
1867 if (attr->priority == I915_PRIORITY_INVALID)
1868 return x;
1869
1870 x += snprintf(buf + x, len - x,
1871 " prio=%d", attr->priority);
1872
1873 return x;
1874}
1875
562675d0
CW
1876static char queue_status(const struct i915_request *rq)
1877{
1878 if (i915_request_is_active(rq))
1879 return 'E';
1880
1881 if (i915_request_is_ready(rq))
1882 return intel_engine_is_virtual(rq->engine) ? 'V' : 'R';
1883
1884 return 'U';
1885}
1886
1887static const char *run_status(const struct i915_request *rq)
1888{
1889 if (i915_request_completed(rq))
1890 return "!";
1891
1892 if (i915_request_started(rq))
1893 return "*";
1894
1895 if (!i915_sw_fence_signaled(&rq->semaphore))
1896 return "&";
1897
1898 return "";
1899}
1900
1901static const char *fence_status(const struct i915_request *rq)
1902{
1903 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
1904 return "+";
1905
1906 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
1907 return "-";
1908
1909 return "";
1910}
1911
1f0e785a
CW
1912void i915_request_show(struct drm_printer *m,
1913 const struct i915_request *rq,
562675d0
CW
1914 const char *prefix,
1915 int indent)
1f0e785a
CW
1916{
1917 const char *name = rq->fence.ops->get_timeline_name((struct dma_fence *)&rq->fence);
1918 char buf[80] = "";
1919 int x = 0;
1920
562675d0
CW
1921 /*
1922 * The prefix is used to show the queue status, for which we use
1923 * the following flags:
1924 *
1925 * U [Unready]
1926 * - initial status upon being submitted by the user
1927 *
1928 * - the request is not ready for execution as it is waiting
1929 * for external fences
1930 *
1931 * R [Ready]
1932 * - all fences the request was waiting on have been signaled,
1933 * and the request is now ready for execution and will be
1934 * in a backend queue
1935 *
1936 * - a ready request may still need to wait on semaphores
1937 * [internal fences]
1938 *
1939 * V [Ready/virtual]
1940 * - same as ready, but queued over multiple backends
1941 *
1942 * E [Executing]
1943 * - the request has been transferred from the backend queue and
1944 * submitted for execution on HW
1945 *
1946 * - a completed request may still be regarded as executing, its
1947 * status may not be updated until it is retired and removed
1948 * from the lists
1949 */
1950
1f0e785a
CW
1951 x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf));
1952
562675d0
CW
1953 drm_printf(m, "%s%.*s%c %llx:%lld%s%s %s @ %dms: %s\n",
1954 prefix, indent, " ",
1955 queue_status(rq),
1f0e785a 1956 rq->fence.context, rq->fence.seqno,
562675d0
CW
1957 run_status(rq),
1958 fence_status(rq),
1f0e785a
CW
1959 buf,
1960 jiffies_to_msecs(jiffies - rq->emitted_jiffies),
1961 name);
1962}
1963
c835c550
CW
1964#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1965#include "selftests/mock_request.c"
e61e0f51 1966#include "selftests/i915_request.c"
c835c550 1967#endif
32eb6bcf 1968
103b76ee
CW
1969static void i915_global_request_shrink(void)
1970{
103b76ee
CW
1971 kmem_cache_shrink(global.slab_execute_cbs);
1972 kmem_cache_shrink(global.slab_requests);
1973}
1974
1975static void i915_global_request_exit(void)
1976{
103b76ee
CW
1977 kmem_cache_destroy(global.slab_execute_cbs);
1978 kmem_cache_destroy(global.slab_requests);
1979}
1980
1981static struct i915_global_request global = { {
1982 .shrink = i915_global_request_shrink,
1983 .exit = i915_global_request_exit,
1984} };
1985
32eb6bcf
CW
1986int __init i915_global_request_init(void)
1987{
67a3acaa
CW
1988 global.slab_requests =
1989 kmem_cache_create("i915_request",
1990 sizeof(struct i915_request),
1991 __alignof__(struct i915_request),
1992 SLAB_HWCACHE_ALIGN |
1993 SLAB_RECLAIM_ACCOUNT |
1994 SLAB_TYPESAFE_BY_RCU,
1995 __i915_request_ctor);
32eb6bcf
CW
1996 if (!global.slab_requests)
1997 return -ENOMEM;
1998
e8861964
CW
1999 global.slab_execute_cbs = KMEM_CACHE(execute_cb,
2000 SLAB_HWCACHE_ALIGN |
2001 SLAB_RECLAIM_ACCOUNT |
2002 SLAB_TYPESAFE_BY_RCU);
2003 if (!global.slab_execute_cbs)
2004 goto err_requests;
2005
103b76ee 2006 i915_global_register(&global.base);
32eb6bcf
CW
2007 return 0;
2008
2009err_requests:
2010 kmem_cache_destroy(global.slab_requests);
2011 return -ENOMEM;
2012}