drm/i915: Seal races between async GPU cancellation, retirement and signaling
[linux-2.6-block.git] / drivers / gpu / drm / i915 / i915_request.c
CommitLineData
05235c53
CW
1/*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
b52992c0 25#include <linux/dma-fence-array.h>
e8861964
CW
26#include <linux/irq_work.h>
27#include <linux/prefetch.h>
e6017571
IM
28#include <linux/sched.h>
29#include <linux/sched/clock.h>
f361bf4a 30#include <linux/sched/signal.h>
fa545cbf 31
21950ee7 32#include "i915_active.h"
696173b0 33#include "i915_drv.h"
103b76ee 34#include "i915_globals.h"
9f58892e 35#include "i915_reset.h"
696173b0 36#include "intel_pm.h"
05235c53 37
e8861964
CW
38struct execute_cb {
39 struct list_head link;
40 struct irq_work work;
41 struct i915_sw_fence *fence;
42};
43
32eb6bcf 44static struct i915_global_request {
103b76ee 45 struct i915_global base;
32eb6bcf
CW
46 struct kmem_cache *slab_requests;
47 struct kmem_cache *slab_dependencies;
e8861964 48 struct kmem_cache *slab_execute_cbs;
32eb6bcf
CW
49} global;
50
f54d1867 51static const char *i915_fence_get_driver_name(struct dma_fence *fence)
04769652
CW
52{
53 return "i915";
54}
55
f54d1867 56static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
04769652 57{
e61e0f51
CW
58 /*
59 * The timeline struct (as part of the ppgtt underneath a context)
05506b5b
CW
60 * may be freed when the request is no longer in use by the GPU.
61 * We could extend the life of a context to beyond that of all
62 * fences, possibly keeping the hw resource around indefinitely,
63 * or we just give them a false name. Since
64 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
65 * lie seems justifiable.
66 */
67 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
68 return "signaled";
69
4daffb66 70 return to_request(fence)->gem_context->name ?: "[i915]";
04769652
CW
71}
72
f54d1867 73static bool i915_fence_signaled(struct dma_fence *fence)
04769652 74{
e61e0f51 75 return i915_request_completed(to_request(fence));
04769652
CW
76}
77
f54d1867 78static bool i915_fence_enable_signaling(struct dma_fence *fence)
04769652 79{
52c0fdb2 80 return i915_request_enable_breadcrumb(to_request(fence));
04769652
CW
81}
82
f54d1867 83static signed long i915_fence_wait(struct dma_fence *fence,
04769652 84 bool interruptible,
e95433c7 85 signed long timeout)
04769652 86{
62eb3c24
CW
87 return i915_request_wait(to_request(fence),
88 interruptible | I915_WAIT_PRIORITY,
89 timeout);
04769652
CW
90}
91
f54d1867 92static void i915_fence_release(struct dma_fence *fence)
04769652 93{
e61e0f51 94 struct i915_request *rq = to_request(fence);
04769652 95
e61e0f51
CW
96 /*
97 * The request is put onto a RCU freelist (i.e. the address
fc158405
CW
98 * is immediately reused), mark the fences as being freed now.
99 * Otherwise the debugobjects for the fences are only marked as
100 * freed when the slab cache itself is freed, and so we would get
101 * caught trying to reuse dead objects.
102 */
e61e0f51 103 i915_sw_fence_fini(&rq->submit);
0c441cb6 104 i915_sw_fence_fini(&rq->semaphore);
fc158405 105
32eb6bcf 106 kmem_cache_free(global.slab_requests, rq);
04769652
CW
107}
108
f54d1867 109const struct dma_fence_ops i915_fence_ops = {
04769652
CW
110 .get_driver_name = i915_fence_get_driver_name,
111 .get_timeline_name = i915_fence_get_timeline_name,
112 .enable_signaling = i915_fence_enable_signaling,
113 .signaled = i915_fence_signaled,
114 .wait = i915_fence_wait,
115 .release = i915_fence_release,
04769652
CW
116};
117
05235c53 118static inline void
e61e0f51 119i915_request_remove_from_client(struct i915_request *request)
05235c53 120{
c8659efa 121 struct drm_i915_file_private *file_priv;
05235c53 122
c8659efa 123 file_priv = request->file_priv;
05235c53
CW
124 if (!file_priv)
125 return;
126
127 spin_lock(&file_priv->mm.lock);
c8659efa
CW
128 if (request->file_priv) {
129 list_del(&request->client_link);
130 request->file_priv = NULL;
131 }
05235c53 132 spin_unlock(&file_priv->mm.lock);
05235c53
CW
133}
134
6faf5916 135static void reserve_gt(struct drm_i915_private *i915)
12d3173b 136{
636918f1 137 if (!i915->gt.active_requests++)
e4d2006f 138 i915_gem_unpark(i915);
12d3173b
CW
139}
140
52d7f16e 141static void unreserve_gt(struct drm_i915_private *i915)
9b6586ae 142{
b887d615 143 GEM_BUG_ON(!i915->gt.active_requests);
e4d2006f
CW
144 if (!--i915->gt.active_requests)
145 i915_gem_park(i915);
9b6586ae
CW
146}
147
e61e0f51 148static void advance_ring(struct i915_request *request)
cbb60b4b 149{
b887d615 150 struct intel_ring *ring = request->ring;
cbb60b4b
CW
151 unsigned int tail;
152
e61e0f51
CW
153 /*
154 * We know the GPU must have read the request to have
cbb60b4b
CW
155 * sent us the seqno + interrupt, so use the position
156 * of tail of the request to update the last known position
157 * of the GPU head.
158 *
159 * Note this requires that we are always called in request
160 * completion order.
161 */
b887d615
CW
162 GEM_BUG_ON(!list_is_first(&request->ring_link, &ring->request_list));
163 if (list_is_last(&request->ring_link, &ring->request_list)) {
e61e0f51
CW
164 /*
165 * We may race here with execlists resubmitting this request
e6ba9992
CW
166 * as we retire it. The resubmission will move the ring->tail
167 * forwards (to request->wa_tail). We either read the
168 * current value that was written to hw, or the value that
169 * is just about to be. Either works, if we miss the last two
170 * noops - they are safe to be replayed on a reset.
171 */
36620032 172 tail = READ_ONCE(request->tail);
643b450a 173 list_del(&ring->active_link);
e6ba9992 174 } else {
cbb60b4b 175 tail = request->postfix;
e6ba9992 176 }
b887d615 177 list_del_init(&request->ring_link);
cbb60b4b 178
b887d615 179 ring->head = tail;
cbb60b4b
CW
180}
181
e61e0f51 182static void free_capture_list(struct i915_request *request)
b0fd47ad 183{
e61e0f51 184 struct i915_capture_list *capture;
b0fd47ad
CW
185
186 capture = request->capture_list;
187 while (capture) {
e61e0f51 188 struct i915_capture_list *next = capture->next;
b0fd47ad
CW
189
190 kfree(capture);
191 capture = next;
192 }
193}
194
b887d615
CW
195static void __retire_engine_request(struct intel_engine_cs *engine,
196 struct i915_request *rq)
197{
b300fde8 198 GEM_TRACE("%s(%s) fence %llx:%lld, current %d\n",
b887d615
CW
199 __func__, engine->name,
200 rq->fence.context, rq->fence.seqno,
8892f477 201 hwsp_seqno(rq));
b887d615
CW
202
203 GEM_BUG_ON(!i915_request_completed(rq));
204
205 local_irq_disable();
206
a89d1f92
CW
207 spin_lock(&engine->timeline.lock);
208 GEM_BUG_ON(!list_is_first(&rq->link, &engine->timeline.requests));
b887d615 209 list_del_init(&rq->link);
a89d1f92 210 spin_unlock(&engine->timeline.lock);
b887d615
CW
211
212 spin_lock(&rq->lock);
5013eb8c 213 i915_request_mark_complete(rq);
0e21834e 214 if (!i915_request_signaled(rq))
b887d615
CW
215 dma_fence_signal_locked(&rq->fence);
216 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
52c0fdb2 217 i915_request_cancel_breadcrumb(rq);
b887d615
CW
218 if (rq->waitboost) {
219 GEM_BUG_ON(!atomic_read(&rq->i915->gt_pm.rps.num_waiters));
220 atomic_dec(&rq->i915->gt_pm.rps.num_waiters);
221 }
222 spin_unlock(&rq->lock);
223
224 local_irq_enable();
225
226 /*
227 * The backing object for the context is done after switching to the
228 * *next* context. Therefore we cannot retire the previous context until
229 * the next context has already started running. However, since we
230 * cannot take the required locks at i915_request_submit() we
231 * defer the unpinning of the active context to now, retirement of
232 * the subsequent request.
233 */
234 if (engine->last_retired_context)
1fc44d9b
CW
235 intel_context_unpin(engine->last_retired_context);
236 engine->last_retired_context = rq->hw_context;
b887d615
CW
237}
238
239static void __retire_engine_upto(struct intel_engine_cs *engine,
240 struct i915_request *rq)
241{
242 struct i915_request *tmp;
243
244 if (list_empty(&rq->link))
245 return;
246
247 do {
a89d1f92 248 tmp = list_first_entry(&engine->timeline.requests,
b887d615
CW
249 typeof(*tmp), link);
250
251 GEM_BUG_ON(tmp->engine != engine);
252 __retire_engine_request(engine, tmp);
253 } while (tmp != rq);
254}
255
e61e0f51 256static void i915_request_retire(struct i915_request *request)
05235c53 257{
21950ee7 258 struct i915_active_request *active, *next;
fa545cbf 259
b300fde8 260 GEM_TRACE("%s fence %llx:%lld, current %d\n",
b887d615 261 request->engine->name,
d9b13c4d 262 request->fence.context, request->fence.seqno,
8892f477 263 hwsp_seqno(request));
d9b13c4d 264
4c7d62c6 265 lockdep_assert_held(&request->i915->drm.struct_mutex);
48bc2a4a 266 GEM_BUG_ON(!i915_sw_fence_signaled(&request->submit));
e61e0f51 267 GEM_BUG_ON(!i915_request_completed(request));
4c7d62c6 268
e61e0f51 269 trace_i915_request_retire(request);
80b204bc 270
cbb60b4b 271 advance_ring(request);
b0fd47ad
CW
272 free_capture_list(request);
273
e61e0f51
CW
274 /*
275 * Walk through the active list, calling retire on each. This allows
fa545cbf
CW
276 * objects to track their GPU activity and mark themselves as idle
277 * when their *last* active request is completed (updating state
278 * tracking lists for eviction, active references for GEM, etc).
279 *
280 * As the ->retire() may free the node, we decouple it first and
281 * pass along the auxiliary information (to avoid dereferencing
282 * the node after the callback).
283 */
284 list_for_each_entry_safe(active, next, &request->active_list, link) {
e61e0f51
CW
285 /*
286 * In microbenchmarks or focusing upon time inside the kernel,
fa545cbf
CW
287 * we may spend an inordinate amount of time simply handling
288 * the retirement of requests and processing their callbacks.
289 * Of which, this loop itself is particularly hot due to the
21950ee7
CW
290 * cache misses when jumping around the list of
291 * i915_active_request. So we try to keep this loop as
292 * streamlined as possible and also prefetch the next
293 * i915_active_request to try and hide the likely cache miss.
fa545cbf
CW
294 */
295 prefetchw(next);
296
297 INIT_LIST_HEAD(&active->link);
0eafec6d 298 RCU_INIT_POINTER(active->request, NULL);
fa545cbf
CW
299
300 active->retire(active, request);
301 }
302
e61e0f51 303 i915_request_remove_from_client(request);
05235c53 304
1fc44d9b 305 intel_context_unpin(request->hw_context);
e5e1fc47 306
b887d615 307 __retire_engine_upto(request->engine, request);
52e54209 308
52d7f16e
CW
309 unreserve_gt(request->i915);
310
32eb6bcf 311 i915_sched_node_fini(&request->sched);
e61e0f51 312 i915_request_put(request);
05235c53
CW
313}
314
e61e0f51 315void i915_request_retire_upto(struct i915_request *rq)
05235c53 316{
b887d615 317 struct intel_ring *ring = rq->ring;
e61e0f51 318 struct i915_request *tmp;
05235c53 319
b300fde8 320 GEM_TRACE("%s fence %llx:%lld, current %d\n",
b887d615
CW
321 rq->engine->name,
322 rq->fence.context, rq->fence.seqno,
8892f477 323 hwsp_seqno(rq));
b887d615 324
e61e0f51
CW
325 lockdep_assert_held(&rq->i915->drm.struct_mutex);
326 GEM_BUG_ON(!i915_request_completed(rq));
4ffd6e0c 327
b887d615 328 if (list_empty(&rq->ring_link))
e95433c7 329 return;
05235c53
CW
330
331 do {
b887d615
CW
332 tmp = list_first_entry(&ring->request_list,
333 typeof(*tmp), ring_link);
05235c53 334
e61e0f51
CW
335 i915_request_retire(tmp);
336 } while (tmp != rq);
05235c53
CW
337}
338
e8861964
CW
339static void irq_execute_cb(struct irq_work *wrk)
340{
341 struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
342
343 i915_sw_fence_complete(cb->fence);
344 kmem_cache_free(global.slab_execute_cbs, cb);
345}
346
347static void __notify_execute_cb(struct i915_request *rq)
348{
349 struct execute_cb *cb;
350
351 lockdep_assert_held(&rq->lock);
352
353 if (list_empty(&rq->execute_cb))
354 return;
355
356 list_for_each_entry(cb, &rq->execute_cb, link)
357 irq_work_queue(&cb->work);
358
359 /*
360 * XXX Rollback on __i915_request_unsubmit()
361 *
362 * In the future, perhaps when we have an active time-slicing scheduler,
363 * it will be interesting to unsubmit parallel execution and remove
364 * busywaits from the GPU until their master is restarted. This is
365 * quite hairy, we have to carefully rollback the fence and do a
366 * preempt-to-idle cycle on the target engine, all the while the
367 * master execute_cb may refire.
368 */
369 INIT_LIST_HEAD(&rq->execute_cb);
370}
371
372static int
373i915_request_await_execution(struct i915_request *rq,
374 struct i915_request *signal,
375 gfp_t gfp)
376{
377 struct execute_cb *cb;
378
379 if (i915_request_is_active(signal))
380 return 0;
381
382 cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
383 if (!cb)
384 return -ENOMEM;
385
386 cb->fence = &rq->submit;
387 i915_sw_fence_await(cb->fence);
388 init_irq_work(&cb->work, irq_execute_cb);
389
390 spin_lock_irq(&signal->lock);
391 if (i915_request_is_active(signal)) {
392 i915_sw_fence_complete(cb->fence);
393 kmem_cache_free(global.slab_execute_cbs, cb);
394 } else {
395 list_add_tail(&cb->link, &signal->execute_cb);
396 }
397 spin_unlock_irq(&signal->lock);
398
399 return 0;
400}
401
4ccfee92 402static void move_to_timeline(struct i915_request *request,
a89d1f92 403 struct i915_timeline *timeline)
4ccfee92 404{
a89d1f92
CW
405 GEM_BUG_ON(request->timeline == &request->engine->timeline);
406 lockdep_assert_held(&request->engine->timeline.lock);
4ccfee92 407
890fd185 408 spin_lock(&request->timeline->lock);
4ccfee92
CW
409 list_move_tail(&request->link, &timeline->requests);
410 spin_unlock(&request->timeline->lock);
411}
412
e61e0f51 413void __i915_request_submit(struct i915_request *request)
5590af3e 414{
73cb9701 415 struct intel_engine_cs *engine = request->engine;
5590af3e 416
b300fde8 417 GEM_TRACE("%s fence %llx:%lld -> current %d\n",
e7702760 418 engine->name,
d9b13c4d 419 request->fence.context, request->fence.seqno,
8892f477 420 hwsp_seqno(request));
d9b13c4d 421
e60a870d 422 GEM_BUG_ON(!irqs_disabled());
a89d1f92 423 lockdep_assert_held(&engine->timeline.lock);
e60a870d 424
d9e61b66
CW
425 if (i915_gem_context_is_banned(request->gem_context))
426 i915_request_skip(request, -EIO);
427
2564fe70
CW
428 /*
429 * Are we using semaphores when the gpu is already saturated?
430 *
431 * Using semaphores incurs a cost in having the GPU poll a
432 * memory location, busywaiting for it to change. The continual
433 * memory reads can have a noticeable impact on the rest of the
434 * system with the extra bus traffic, stalling the cpu as it too
435 * tries to access memory across the bus (perf stat -e bus-cycles).
436 *
437 * If we installed a semaphore on this request and we only submit
438 * the request after the signaler completed, that indicates the
439 * system is overloaded and using semaphores at this time only
440 * increases the amount of work we are doing. If so, we disable
441 * further use of semaphores until we are idle again, whence we
442 * optimistically try again.
443 */
444 if (request->sched.semaphores &&
445 i915_sw_fence_signaled(&request->semaphore))
446 request->hw_context->saturated |= request->sched.semaphores;
447
f2d13290
CW
448 /* We may be recursing from the signal callback of another i915 fence */
449 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
b5773a36 450
52c0fdb2
CW
451 GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
452 set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
b5773a36 453
52c0fdb2 454 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
c36beba6 455 !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
52c0fdb2
CW
456 !i915_request_enable_breadcrumb(request))
457 intel_engine_queue_breadcrumbs(engine);
b5773a36 458
e8861964
CW
459 __notify_execute_cb(request);
460
f2d13290
CW
461 spin_unlock(&request->lock);
462
85474441
CW
463 engine->emit_fini_breadcrumb(request,
464 request->ring->vaddr + request->postfix);
5590af3e 465
4ccfee92 466 /* Transfer from per-context onto the global per-engine timeline */
a89d1f92 467 move_to_timeline(request, &engine->timeline);
80b204bc 468
e61e0f51 469 trace_i915_request_execute(request);
d55ac5bf
CW
470}
471
e61e0f51 472void i915_request_submit(struct i915_request *request)
d55ac5bf
CW
473{
474 struct intel_engine_cs *engine = request->engine;
475 unsigned long flags;
23902e49 476
d55ac5bf 477 /* Will be called from irq-context when using foreign fences. */
a89d1f92 478 spin_lock_irqsave(&engine->timeline.lock, flags);
d55ac5bf 479
e61e0f51 480 __i915_request_submit(request);
d55ac5bf 481
a89d1f92 482 spin_unlock_irqrestore(&engine->timeline.lock, flags);
d55ac5bf
CW
483}
484
e61e0f51 485void __i915_request_unsubmit(struct i915_request *request)
d55ac5bf 486{
d6a2289d 487 struct intel_engine_cs *engine = request->engine;
d55ac5bf 488
b300fde8 489 GEM_TRACE("%s fence %llx:%lld, current %d\n",
e7702760 490 engine->name,
d9b13c4d 491 request->fence.context, request->fence.seqno,
8892f477 492 hwsp_seqno(request));
d9b13c4d 493
e60a870d 494 GEM_BUG_ON(!irqs_disabled());
a89d1f92 495 lockdep_assert_held(&engine->timeline.lock);
48bc2a4a 496
e61e0f51
CW
497 /*
498 * Only unwind in reverse order, required so that the per-context list
d6a2289d
CW
499 * is kept in seqno/ring order.
500 */
80b204bc 501
d6a2289d
CW
502 /* We may be recursing from the signal callback of another i915 fence */
503 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
b5773a36
CW
504
505 /*
506 * As we do not allow WAIT to preempt inflight requests,
507 * once we have executed a request, along with triggering
508 * any execution callbacks, we must preserve its ordering
509 * within the non-preemptible FIFO.
510 */
511 BUILD_BUG_ON(__NO_PREEMPTION & ~I915_PRIORITY_MASK); /* only internal */
512 request->sched.attr.priority |= __NO_PREEMPTION;
513
d6a2289d 514 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
52c0fdb2 515 i915_request_cancel_breadcrumb(request);
b5773a36 516
52c0fdb2
CW
517 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
518 clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
b5773a36 519
d6a2289d
CW
520 spin_unlock(&request->lock);
521
522 /* Transfer back from the global per-engine timeline to per-context */
4ccfee92 523 move_to_timeline(request, request->timeline);
d6a2289d 524
e61e0f51
CW
525 /*
526 * We don't need to wake_up any waiters on request->execute, they
d6a2289d 527 * will get woken by any other event or us re-adding this request
e61e0f51 528 * to the engine timeline (__i915_request_submit()). The waiters
d6a2289d
CW
529 * should be quite adapt at finding that the request now has a new
530 * global_seqno to the one they went to sleep on.
531 */
532}
533
e61e0f51 534void i915_request_unsubmit(struct i915_request *request)
d6a2289d
CW
535{
536 struct intel_engine_cs *engine = request->engine;
537 unsigned long flags;
538
539 /* Will be called from irq-context when using foreign fences. */
a89d1f92 540 spin_lock_irqsave(&engine->timeline.lock, flags);
d6a2289d 541
e61e0f51 542 __i915_request_unsubmit(request);
d6a2289d 543
a89d1f92 544 spin_unlock_irqrestore(&engine->timeline.lock, flags);
5590af3e
CW
545}
546
23902e49 547static int __i915_sw_fence_call
d55ac5bf 548submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
23902e49 549{
e61e0f51 550 struct i915_request *request =
48bc2a4a 551 container_of(fence, typeof(*request), submit);
48bc2a4a
CW
552
553 switch (state) {
554 case FENCE_COMPLETE:
e61e0f51 555 trace_i915_request_submit(request);
af7a8ffa 556 /*
e61e0f51
CW
557 * We need to serialize use of the submit_request() callback
558 * with its hotplugging performed during an emergency
559 * i915_gem_set_wedged(). We use the RCU mechanism to mark the
560 * critical section in order to force i915_gem_set_wedged() to
561 * wait until the submit_request() is completed before
562 * proceeding.
af7a8ffa
DV
563 */
564 rcu_read_lock();
d55ac5bf 565 request->engine->submit_request(request);
af7a8ffa 566 rcu_read_unlock();
48bc2a4a
CW
567 break;
568
569 case FENCE_FREE:
e61e0f51 570 i915_request_put(request);
48bc2a4a
CW
571 break;
572 }
573
23902e49
CW
574 return NOTIFY_DONE;
575}
576
b7404c7e
CW
577static int __i915_sw_fence_call
578semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
579{
580 struct i915_request *request =
581 container_of(fence, typeof(*request), semaphore);
582
583 switch (state) {
584 case FENCE_COMPLETE:
585 /*
586 * We only check a small portion of our dependencies
587 * and so cannot guarantee that there remains no
588 * semaphore chain across all. Instead of opting
589 * for the full NOSEMAPHORE boost, we go for the
590 * smaller (but still preempting) boost of
591 * NEWCLIENT. This will be enough to boost over
592 * a busywaiting request (as that cannot be
593 * NEWCLIENT) without accidentally boosting
594 * a busywait over real work elsewhere.
595 */
596 i915_schedule_bump_priority(request, I915_PRIORITY_NEWCLIENT);
597 break;
598
599 case FENCE_FREE:
600 i915_request_put(request);
601 break;
602 }
603
604 return NOTIFY_DONE;
605}
606
d22ba0cb
CW
607static void ring_retire_requests(struct intel_ring *ring)
608{
609 struct i915_request *rq, *rn;
610
611 list_for_each_entry_safe(rq, rn, &ring->request_list, ring_link) {
612 if (!i915_request_completed(rq))
613 break;
614
615 i915_request_retire(rq);
616 }
617}
618
619static noinline struct i915_request *
620i915_request_alloc_slow(struct intel_context *ce)
621{
622 struct intel_ring *ring = ce->ring;
623 struct i915_request *rq;
624
625 if (list_empty(&ring->request_list))
626 goto out;
627
628 /* Ratelimit ourselves to prevent oom from malicious clients */
629 rq = list_last_entry(&ring->request_list, typeof(*rq), ring_link);
630 cond_synchronize_rcu(rq->rcustate);
631
632 /* Retire our old requests in the hope that we free some */
633 ring_retire_requests(ring);
634
635out:
32eb6bcf 636 return kmem_cache_alloc(global.slab_requests, GFP_KERNEL);
d22ba0cb
CW
637}
638
8e637178 639/**
e61e0f51 640 * i915_request_alloc - allocate a request structure
8e637178
CW
641 *
642 * @engine: engine that we wish to issue the request on.
643 * @ctx: context that the request will be associated with.
8e637178
CW
644 *
645 * Returns a pointer to the allocated request if successful,
646 * or an error code if not.
647 */
e61e0f51
CW
648struct i915_request *
649i915_request_alloc(struct intel_engine_cs *engine, struct i915_gem_context *ctx)
05235c53 650{
e61e0f51 651 struct drm_i915_private *i915 = engine->i915;
1fc44d9b 652 struct intel_context *ce;
ebece753
CW
653 struct i915_timeline *tl;
654 struct i915_request *rq;
655 u32 seqno;
05235c53
CW
656 int ret;
657
e61e0f51 658 lockdep_assert_held(&i915->drm.struct_mutex);
28176ef4 659
e7af3116
CW
660 /*
661 * Preempt contexts are reserved for exclusive use to inject a
662 * preemption context switch. They are never to be used for any trivial
663 * request!
664 */
e61e0f51 665 GEM_BUG_ON(ctx == i915->preempt_context);
e7af3116 666
e61e0f51
CW
667 /*
668 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
6ffb7d07 669 * EIO if the GPU is already wedged.
05235c53 670 */
c41166f9
CW
671 ret = i915_terminally_wedged(i915);
672 if (ret)
673 return ERR_PTR(ret);
05235c53 674
e61e0f51
CW
675 /*
676 * Pinning the contexts may generate requests in order to acquire
e8a9c58f
CW
677 * GGTT space, so do this first before we reserve a seqno for
678 * ourselves.
679 */
1fc44d9b
CW
680 ce = intel_context_pin(ctx, engine);
681 if (IS_ERR(ce))
682 return ERR_CAST(ce);
28176ef4 683
6faf5916 684 reserve_gt(i915);
3ef71149 685 mutex_lock(&ce->ring->timeline->mutex);
e8a9c58f 686
b887d615 687 /* Move our oldest request to the slab-cache (if not in use!) */
1fc44d9b
CW
688 rq = list_first_entry(&ce->ring->request_list, typeof(*rq), ring_link);
689 if (!list_is_last(&rq->ring_link, &ce->ring->request_list) &&
7c572e1b 690 i915_request_completed(rq))
e61e0f51 691 i915_request_retire(rq);
9b5f4e5e 692
e61e0f51
CW
693 /*
694 * Beware: Dragons be flying overhead.
5a198b8c
CW
695 *
696 * We use RCU to look up requests in flight. The lookups may
697 * race with the request being allocated from the slab freelist.
698 * That is the request we are writing to here, may be in the process
21950ee7 699 * of being read by __i915_active_request_get_rcu(). As such,
5a198b8c
CW
700 * we have to be very careful when overwriting the contents. During
701 * the RCU lookup, we change chase the request->engine pointer,
65e4760e 702 * read the request->global_seqno and increment the reference count.
5a198b8c
CW
703 *
704 * The reference count is incremented atomically. If it is zero,
705 * the lookup knows the request is unallocated and complete. Otherwise,
706 * it is either still in use, or has been reallocated and reset
f54d1867
CW
707 * with dma_fence_init(). This increment is safe for release as we
708 * check that the request we have a reference to and matches the active
5a198b8c
CW
709 * request.
710 *
711 * Before we increment the refcount, we chase the request->engine
712 * pointer. We must not call kmem_cache_zalloc() or else we set
713 * that pointer to NULL and cause a crash during the lookup. If
714 * we see the request is completed (based on the value of the
715 * old engine and seqno), the lookup is complete and reports NULL.
716 * If we decide the request is not completed (new engine or seqno),
717 * then we grab a reference and double check that it is still the
718 * active request - which it won't be and restart the lookup.
719 *
720 * Do not use kmem_cache_zalloc() here!
721 */
32eb6bcf 722 rq = kmem_cache_alloc(global.slab_requests,
e61e0f51
CW
723 GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
724 if (unlikely(!rq)) {
d22ba0cb 725 rq = i915_request_alloc_slow(ce);
e61e0f51 726 if (!rq) {
31c70f97
CW
727 ret = -ENOMEM;
728 goto err_unreserve;
729 }
28176ef4 730 }
05235c53 731
65fcb806 732 INIT_LIST_HEAD(&rq->active_list);
e8861964 733 INIT_LIST_HEAD(&rq->execute_cb);
ebece753
CW
734
735 tl = ce->ring->timeline;
736 ret = i915_timeline_get_seqno(tl, rq, &seqno);
737 if (ret)
738 goto err_free;
739
65fcb806
CW
740 rq->i915 = i915;
741 rq->engine = engine;
4e0d64db 742 rq->gem_context = ctx;
1fc44d9b
CW
743 rq->hw_context = ce;
744 rq->ring = ce->ring;
ebece753 745 rq->timeline = tl;
a89d1f92 746 GEM_BUG_ON(rq->timeline == &engine->timeline);
ebece753
CW
747 rq->hwsp_seqno = tl->hwsp_seqno;
748 rq->hwsp_cacheline = tl->hwsp_cacheline;
749 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
73cb9701 750
e61e0f51 751 spin_lock_init(&rq->lock);
ebece753
CW
752 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
753 tl->fence_context, seqno);
04769652 754
48bc2a4a 755 /* We bump the ref for the fence chain */
e61e0f51 756 i915_sw_fence_init(&i915_request_get(rq)->submit, submit_notify);
b7404c7e 757 i915_sw_fence_init(&i915_request_get(rq)->semaphore, semaphore_notify);
5590af3e 758
0c7112a0 759 i915_sched_node_init(&rq->sched);
52e54209 760
5a198b8c 761 /* No zalloc, must clear what we need by hand */
e61e0f51
CW
762 rq->file_priv = NULL;
763 rq->batch = NULL;
764 rq->capture_list = NULL;
765 rq->waitboost = false;
5a198b8c 766
05235c53
CW
767 /*
768 * Reserve space in the ring buffer for all the commands required to
769 * eventually emit this request. This is to guarantee that the
e61e0f51 770 * i915_request_add() call can't fail. Note that the reserve may need
05235c53
CW
771 * to be redone if the request is not actually submitted straight
772 * away, e.g. because a GPU scheduler has deferred it.
ed2922c0
CW
773 *
774 * Note that due to how we add reserved_space to intel_ring_begin()
775 * we need to double our request to ensure that if we need to wrap
776 * around inside i915_request_add() there is sufficient space at
777 * the beginning of the ring as well.
05235c53 778 */
85474441 779 rq->reserved_space = 2 * engine->emit_fini_breadcrumb_dw * sizeof(u32);
05235c53 780
2113184c
CW
781 /*
782 * Record the position of the start of the request so that
d045446d
CW
783 * should we detect the updated seqno part-way through the
784 * GPU processing the request, we never over-estimate the
785 * position of the head.
786 */
e61e0f51 787 rq->head = rq->ring->emit;
d045446d 788
e61e0f51 789 ret = engine->request_alloc(rq);
b1c24a61
CW
790 if (ret)
791 goto err_unwind;
2113184c 792
b887d615 793 /* Keep a second pin for the dual retirement along engine and ring */
1fc44d9b 794 __intel_context_pin(ce);
b887d615 795
b3ee09a4
CW
796 rq->infix = rq->ring->emit; /* end of header; start of user payload */
797
9b6586ae 798 /* Check that we didn't interrupt ourselves with a new request */
b66ea2c2 799 lockdep_assert_held(&rq->timeline->mutex);
e61e0f51 800 GEM_BUG_ON(rq->timeline->seqno != rq->fence.seqno);
b66ea2c2
CW
801 rq->cookie = lockdep_pin_lock(&rq->timeline->mutex);
802
e61e0f51 803 return rq;
05235c53 804
b1c24a61 805err_unwind:
1fc44d9b 806 ce->ring->emit = rq->head;
b1c24a61 807
1618bdb8 808 /* Make sure we didn't add ourselves to external state before freeing */
e61e0f51 809 GEM_BUG_ON(!list_empty(&rq->active_list));
0c7112a0
CW
810 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
811 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
1618bdb8 812
ebece753 813err_free:
32eb6bcf 814 kmem_cache_free(global.slab_requests, rq);
28176ef4 815err_unreserve:
3ef71149 816 mutex_unlock(&ce->ring->timeline->mutex);
52d7f16e 817 unreserve_gt(i915);
1fc44d9b 818 intel_context_unpin(ce);
8e637178 819 return ERR_PTR(ret);
05235c53
CW
820}
821
e766fde6
CW
822static int
823i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
824{
825 if (list_is_first(&signal->ring_link, &signal->ring->request_list))
826 return 0;
827
828 signal = list_prev_entry(signal, ring_link);
829 if (i915_timeline_sync_is_later(rq->timeline, &signal->fence))
830 return 0;
831
832 return i915_sw_fence_await_dma_fence(&rq->submit,
833 &signal->fence, 0,
834 I915_FENCE_GFP);
835}
836
2564fe70
CW
837static intel_engine_mask_t
838already_busywaiting(struct i915_request *rq)
839{
840 /*
841 * Polling a semaphore causes bus traffic, delaying other users of
842 * both the GPU and CPU. We want to limit the impact on others,
843 * while taking advantage of early submission to reduce GPU
844 * latency. Therefore we restrict ourselves to not using more
845 * than one semaphore from each source, and not using a semaphore
846 * if we have detected the engine is saturated (i.e. would not be
847 * submitted early and cause bus traffic reading an already passed
848 * semaphore).
849 *
850 * See the are-we-too-late? check in __i915_request_submit().
851 */
852 return rq->sched.semaphores | rq->hw_context->saturated;
853}
854
e8861964
CW
855static int
856emit_semaphore_wait(struct i915_request *to,
857 struct i915_request *from,
858 gfp_t gfp)
859{
860 u32 hwsp_offset;
861 u32 *cs;
862 int err;
863
864 GEM_BUG_ON(!from->timeline->has_initial_breadcrumb);
865 GEM_BUG_ON(INTEL_GEN(to->i915) < 8);
866
7881e605 867 /* Just emit the first semaphore we see as request space is limited. */
2564fe70 868 if (already_busywaiting(to) & from->engine->mask)
7881e605
CW
869 return i915_sw_fence_await_dma_fence(&to->submit,
870 &from->fence, 0,
871 I915_FENCE_GFP);
872
e766fde6
CW
873 err = i915_request_await_start(to, from);
874 if (err < 0)
875 return err;
876
b7404c7e
CW
877 err = i915_sw_fence_await_dma_fence(&to->semaphore,
878 &from->fence, 0,
879 I915_FENCE_GFP);
880 if (err < 0)
881 return err;
882
e8861964
CW
883 /* We need to pin the signaler's HWSP until we are finished reading. */
884 err = i915_timeline_read_hwsp(from, to, &hwsp_offset);
885 if (err)
886 return err;
887
888 /* Only submit our spinner after the signaler is running! */
889 err = i915_request_await_execution(to, from, gfp);
890 if (err)
891 return err;
892
893 cs = intel_ring_begin(to, 4);
894 if (IS_ERR(cs))
895 return PTR_ERR(cs);
896
897 /*
898 * Using greater-than-or-equal here means we have to worry
899 * about seqno wraparound. To side step that issue, we swap
900 * the timeline HWSP upon wrapping, so that everyone listening
901 * for the old (pre-wrap) values do not see the much smaller
902 * (post-wrap) values than they were expecting (and so wait
903 * forever).
904 */
905 *cs++ = MI_SEMAPHORE_WAIT |
906 MI_SEMAPHORE_GLOBAL_GTT |
907 MI_SEMAPHORE_POLL |
908 MI_SEMAPHORE_SAD_GTE_SDD;
909 *cs++ = from->fence.seqno;
910 *cs++ = hwsp_offset;
911 *cs++ = 0;
912
913 intel_ring_advance(to, cs);
7881e605
CW
914 to->sched.semaphores |= from->engine->mask;
915 to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
e8861964
CW
916 return 0;
917}
918
a2bc4695 919static int
e61e0f51 920i915_request_await_request(struct i915_request *to, struct i915_request *from)
a2bc4695 921{
85e17f59 922 int ret;
a2bc4695
CW
923
924 GEM_BUG_ON(to == from);
ceae14bd 925 GEM_BUG_ON(to->timeline == from->timeline);
a2bc4695 926
e61e0f51 927 if (i915_request_completed(from))
ade0b0c9
CW
928 return 0;
929
52e54209 930 if (to->engine->schedule) {
32eb6bcf 931 ret = i915_sched_node_add_dependency(&to->sched, &from->sched);
52e54209
CW
932 if (ret < 0)
933 return ret;
934 }
935
73cb9701
CW
936 if (to->engine == from->engine) {
937 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
938 &from->submit,
2abe2f84 939 I915_FENCE_GFP);
e8861964
CW
940 } else if (intel_engine_has_semaphores(to->engine) &&
941 to->gem_context->sched.priority >= I915_PRIORITY_NORMAL) {
942 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
6faf5916
CW
943 } else {
944 ret = i915_sw_fence_await_dma_fence(&to->submit,
945 &from->fence, 0,
946 I915_FENCE_GFP);
a2bc4695
CW
947 }
948
fc9d4d2b 949 return ret < 0 ? ret : 0;
a2bc4695
CW
950}
951
b52992c0 952int
e61e0f51 953i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
b52992c0 954{
29ef3fa9
CW
955 struct dma_fence **child = &fence;
956 unsigned int nchild = 1;
b52992c0 957 int ret;
b52992c0 958
e61e0f51
CW
959 /*
960 * Note that if the fence-array was created in signal-on-any mode,
b52992c0
CW
961 * we should *not* decompose it into its individual fences. However,
962 * we don't currently store which mode the fence-array is operating
963 * in. Fortunately, the only user of signal-on-any is private to
964 * amdgpu and we should not see any incoming fence-array from
965 * sync-file being in signal-on-any mode.
966 */
29ef3fa9
CW
967 if (dma_fence_is_array(fence)) {
968 struct dma_fence_array *array = to_dma_fence_array(fence);
969
970 child = array->fences;
971 nchild = array->num_fences;
972 GEM_BUG_ON(!nchild);
973 }
b52992c0 974
29ef3fa9
CW
975 do {
976 fence = *child++;
977 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
978 continue;
b52992c0 979
ceae14bd
CW
980 /*
981 * Requests on the same timeline are explicitly ordered, along
e61e0f51 982 * with their dependencies, by i915_request_add() which ensures
ceae14bd
CW
983 * that requests are submitted in-order through each ring.
984 */
e61e0f51 985 if (fence->context == rq->fence.context)
ceae14bd
CW
986 continue;
987
47979480 988 /* Squash repeated waits to the same timelines */
e61e0f51 989 if (fence->context != rq->i915->mm.unordered_timeline &&
a89d1f92 990 i915_timeline_sync_is_later(rq->timeline, fence))
47979480
CW
991 continue;
992
29ef3fa9 993 if (dma_fence_is_i915(fence))
e61e0f51 994 ret = i915_request_await_request(rq, to_request(fence));
b52992c0 995 else
e61e0f51 996 ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
29ef3fa9 997 I915_FENCE_TIMEOUT,
2abe2f84 998 I915_FENCE_GFP);
b52992c0
CW
999 if (ret < 0)
1000 return ret;
47979480
CW
1001
1002 /* Record the latest fence used against each timeline */
e61e0f51 1003 if (fence->context != rq->i915->mm.unordered_timeline)
a89d1f92 1004 i915_timeline_sync_set(rq->timeline, fence);
29ef3fa9 1005 } while (--nchild);
b52992c0
CW
1006
1007 return 0;
1008}
1009
a2bc4695 1010/**
e61e0f51 1011 * i915_request_await_object - set this request to (async) wait upon a bo
a2bc4695
CW
1012 * @to: request we are wishing to use
1013 * @obj: object which may be in use on another ring.
d8802126 1014 * @write: whether the wait is on behalf of a writer
a2bc4695
CW
1015 *
1016 * This code is meant to abstract object synchronization with the GPU.
1017 * Conceptually we serialise writes between engines inside the GPU.
1018 * We only allow one engine to write into a buffer at any time, but
1019 * multiple readers. To ensure each has a coherent view of memory, we must:
1020 *
1021 * - If there is an outstanding write request to the object, the new
1022 * request must wait for it to complete (either CPU or in hw, requests
1023 * on the same ring will be naturally ordered).
1024 *
1025 * - If we are a write request (pending_write_domain is set), the new
1026 * request must wait for outstanding read requests to complete.
1027 *
1028 * Returns 0 if successful, else propagates up the lower layer error.
1029 */
1030int
e61e0f51
CW
1031i915_request_await_object(struct i915_request *to,
1032 struct drm_i915_gem_object *obj,
1033 bool write)
a2bc4695 1034{
d07f0e59
CW
1035 struct dma_fence *excl;
1036 int ret = 0;
a2bc4695
CW
1037
1038 if (write) {
d07f0e59
CW
1039 struct dma_fence **shared;
1040 unsigned int count, i;
1041
1042 ret = reservation_object_get_fences_rcu(obj->resv,
1043 &excl, &count, &shared);
1044 if (ret)
1045 return ret;
1046
1047 for (i = 0; i < count; i++) {
e61e0f51 1048 ret = i915_request_await_dma_fence(to, shared[i]);
d07f0e59
CW
1049 if (ret)
1050 break;
1051
1052 dma_fence_put(shared[i]);
1053 }
1054
1055 for (; i < count; i++)
1056 dma_fence_put(shared[i]);
1057 kfree(shared);
a2bc4695 1058 } else {
d07f0e59 1059 excl = reservation_object_get_excl_rcu(obj->resv);
a2bc4695
CW
1060 }
1061
d07f0e59
CW
1062 if (excl) {
1063 if (ret == 0)
e61e0f51 1064 ret = i915_request_await_dma_fence(to, excl);
a2bc4695 1065
d07f0e59 1066 dma_fence_put(excl);
a2bc4695
CW
1067 }
1068
d07f0e59 1069 return ret;
a2bc4695
CW
1070}
1071
6dd7526f
CW
1072void i915_request_skip(struct i915_request *rq, int error)
1073{
1074 void *vaddr = rq->ring->vaddr;
1075 u32 head;
1076
1077 GEM_BUG_ON(!IS_ERR_VALUE((long)error));
1078 dma_fence_set_error(&rq->fence, error);
1079
1080 /*
1081 * As this request likely depends on state from the lost
1082 * context, clear out all the user operations leaving the
1083 * breadcrumb at the end (so we get the fence notifications).
1084 */
1085 head = rq->infix;
1086 if (rq->postfix < head) {
1087 memset(vaddr + head, 0, rq->ring->size - head);
1088 head = 0;
1089 }
1090 memset(vaddr + head, 0, rq->postfix - head);
1091}
1092
ea593dbb
CW
1093static struct i915_request *
1094__i915_request_add_to_timeline(struct i915_request *rq)
1095{
1096 struct i915_timeline *timeline = rq->timeline;
1097 struct i915_request *prev;
1098
1099 /*
1100 * Dependency tracking and request ordering along the timeline
1101 * is special cased so that we can eliminate redundant ordering
1102 * operations while building the request (we know that the timeline
1103 * itself is ordered, and here we guarantee it).
1104 *
1105 * As we know we will need to emit tracking along the timeline,
1106 * we embed the hooks into our request struct -- at the cost of
1107 * having to have specialised no-allocation interfaces (which will
1108 * be beneficial elsewhere).
1109 *
1110 * A second benefit to open-coding i915_request_await_request is
1111 * that we can apply a slight variant of the rules specialised
1112 * for timelines that jump between engines (such as virtual engines).
1113 * If we consider the case of virtual engine, we must emit a dma-fence
1114 * to prevent scheduling of the second request until the first is
1115 * complete (to maximise our greedy late load balancing) and this
1116 * precludes optimising to use semaphores serialisation of a single
1117 * timeline across engines.
1118 */
1119 prev = i915_active_request_raw(&timeline->last_request,
1120 &rq->i915->drm.struct_mutex);
1121 if (prev && !i915_request_completed(prev)) {
1122 if (is_power_of_2(prev->engine->mask | rq->engine->mask))
1123 i915_sw_fence_await_sw_fence(&rq->submit,
1124 &prev->submit,
1125 &rq->submitq);
1126 else
1127 __i915_sw_fence_await_dma_fence(&rq->submit,
1128 &prev->fence,
1129 &rq->dmaq);
1130 if (rq->engine->schedule)
1131 __i915_sched_node_add_dependency(&rq->sched,
1132 &prev->sched,
1133 &rq->dep,
1134 0);
1135 }
1136
1137 spin_lock_irq(&timeline->lock);
1138 list_add_tail(&rq->link, &timeline->requests);
1139 spin_unlock_irq(&timeline->lock);
1140
1141 GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1142 __i915_active_request_set(&timeline->last_request, rq);
1143
1144 return prev;
1145}
1146
05235c53
CW
1147/*
1148 * NB: This function is not allowed to fail. Doing so would mean the the
1149 * request is not being tracked for completion but the work itself is
1150 * going to happen on the hardware. This would be a Bad Thing(tm).
1151 */
697b9a87 1152void i915_request_add(struct i915_request *request)
05235c53 1153{
95b2ab56 1154 struct intel_engine_cs *engine = request->engine;
a89d1f92 1155 struct i915_timeline *timeline = request->timeline;
1fc44d9b 1156 struct intel_ring *ring = request->ring;
e61e0f51 1157 struct i915_request *prev;
73dec95e 1158 u32 *cs;
05235c53 1159
dd847a70 1160 GEM_TRACE("%s fence %llx:%lld\n",
d9b13c4d
CW
1161 engine->name, request->fence.context, request->fence.seqno);
1162
3ef71149 1163 lockdep_assert_held(&request->timeline->mutex);
b66ea2c2
CW
1164 lockdep_unpin_lock(&request->timeline->mutex, request->cookie);
1165
e61e0f51 1166 trace_i915_request_add(request);
0f25dff6 1167
8ac71d1d
CW
1168 /*
1169 * Make sure that no request gazumped us - if it was allocated after
e61e0f51 1170 * our i915_request_alloc() and called __i915_request_add() before
c781c978
CW
1171 * us, the timeline will hold its seqno which is later than ours.
1172 */
9b6586ae 1173 GEM_BUG_ON(timeline->seqno != request->fence.seqno);
c781c978 1174
05235c53
CW
1175 /*
1176 * To ensure that this call will not fail, space for its emissions
1177 * should already have been reserved in the ring buffer. Let the ring
1178 * know that it is time to use that space up.
1179 */
ed2922c0 1180 GEM_BUG_ON(request->reserved_space > request->ring->space);
05235c53 1181 request->reserved_space = 0;
05235c53 1182
8ac71d1d
CW
1183 /*
1184 * Record the position of the start of the breadcrumb so that
05235c53
CW
1185 * should we detect the updated seqno part-way through the
1186 * GPU processing the request, we never over-estimate the
d045446d 1187 * position of the ring's HEAD.
05235c53 1188 */
85474441 1189 cs = intel_ring_begin(request, engine->emit_fini_breadcrumb_dw);
73dec95e
TU
1190 GEM_BUG_ON(IS_ERR(cs));
1191 request->postfix = intel_ring_offset(request, cs);
05235c53 1192
ea593dbb 1193 prev = __i915_request_add_to_timeline(request);
f2d13290 1194
0f25dff6 1195 list_add_tail(&request->ring_link, &ring->request_list);
4daffb66 1196 if (list_is_first(&request->ring_link, &ring->request_list))
643b450a 1197 list_add(&ring->active_link, &request->i915->gt.active_rings);
c6eeb479 1198 request->i915->gt.active_engines |= request->engine->mask;
f2d13290 1199 request->emitted_jiffies = jiffies;
0f25dff6 1200
8ac71d1d
CW
1201 /*
1202 * Let the backend know a new request has arrived that may need
0de9136d
CW
1203 * to adjust the existing execution schedule due to a high priority
1204 * request - i.e. we may want to preempt the current request in order
1205 * to run a high priority dependency chain *before* we can execute this
1206 * request.
1207 *
1208 * This is called before the request is ready to run so that we can
1209 * decide whether to preempt the entire chain so that it is ready to
1210 * run at the earliest possible convenience.
1211 */
71ace7ca 1212 local_bh_disable();
b7404c7e 1213 i915_sw_fence_commit(&request->semaphore);
71ace7ca 1214 rcu_read_lock(); /* RCU serialisation for set-wedged protection */
b16c7651
CW
1215 if (engine->schedule) {
1216 struct i915_sched_attr attr = request->gem_context->sched;
1217
f9e9e9de
CW
1218 /*
1219 * Boost actual workloads past semaphores!
1220 *
1221 * With semaphores we spin on one engine waiting for another,
1222 * simply to reduce the latency of starting our work when
1223 * the signaler completes. However, if there is any other
1224 * work that we could be doing on this engine instead, that
1225 * is better utilisation and will reduce the overall duration
1226 * of the current work. To avoid PI boosting a semaphore
1227 * far in the distance past over useful work, we keep a history
1228 * of any semaphore use along our dependency chain.
1229 */
7881e605 1230 if (!(request->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
f9e9e9de
CW
1231 attr.priority |= I915_PRIORITY_NOSEMAPHORE;
1232
b16c7651
CW
1233 /*
1234 * Boost priorities to new clients (new request flows).
1235 *
1236 * Allow interactive/synchronous clients to jump ahead of
1237 * the bulk clients. (FQ_CODEL)
1238 */
1413b2bc 1239 if (list_empty(&request->sched.signalers_list))
b16c7651
CW
1240 attr.priority |= I915_PRIORITY_NEWCLIENT;
1241
1242 engine->schedule(request, &attr);
1243 }
47650db0 1244 rcu_read_unlock();
5590af3e
CW
1245 i915_sw_fence_commit(&request->submit);
1246 local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
c22b355f
CW
1247
1248 /*
1249 * In typical scenarios, we do not expect the previous request on
1250 * the timeline to be still tracked by timeline->last_request if it
1251 * has been completed. If the completed request is still here, that
1252 * implies that request retirement is a long way behind submission,
1253 * suggesting that we haven't been retiring frequently enough from
1254 * the combination of retire-before-alloc, waiters and the background
1255 * retirement worker. So if the last request on this timeline was
1256 * already completed, do a catch up pass, flushing the retirement queue
1257 * up to this client. Since we have now moved the heaviest operations
1258 * during retirement onto secondary workers, such as freeing objects
1259 * or contexts, retiring a bunch of requests is mostly list management
1260 * (and cache misses), and so we should not be overly penalizing this
1261 * client by performing excess work, though we may still performing
1262 * work on behalf of others -- but instead we should benefit from
1263 * improved resource management. (Well, that's the theory at least.)
1264 */
e61e0f51
CW
1265 if (prev && i915_request_completed(prev))
1266 i915_request_retire_upto(prev);
3ef71149
CW
1267
1268 mutex_unlock(&request->timeline->mutex);
05235c53
CW
1269}
1270
1271static unsigned long local_clock_us(unsigned int *cpu)
1272{
1273 unsigned long t;
1274
e61e0f51
CW
1275 /*
1276 * Cheaply and approximately convert from nanoseconds to microseconds.
05235c53
CW
1277 * The result and subsequent calculations are also defined in the same
1278 * approximate microseconds units. The principal source of timing
1279 * error here is from the simple truncation.
1280 *
1281 * Note that local_clock() is only defined wrt to the current CPU;
1282 * the comparisons are no longer valid if we switch CPUs. Instead of
1283 * blocking preemption for the entire busywait, we can detect the CPU
1284 * switch and use that as indicator of system load and a reason to
1285 * stop busywaiting, see busywait_stop().
1286 */
1287 *cpu = get_cpu();
1288 t = local_clock() >> 10;
1289 put_cpu();
1290
1291 return t;
1292}
1293
1294static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1295{
1296 unsigned int this_cpu;
1297
1298 if (time_after(local_clock_us(&this_cpu), timeout))
1299 return true;
1300
1301 return this_cpu != cpu;
1302}
1303
52c0fdb2
CW
1304static bool __i915_spin_request(const struct i915_request * const rq,
1305 int state, unsigned long timeout_us)
05235c53 1306{
52c0fdb2 1307 unsigned int cpu;
b2f2f0fc
CW
1308
1309 /*
1310 * Only wait for the request if we know it is likely to complete.
1311 *
1312 * We don't track the timestamps around requests, nor the average
1313 * request length, so we do not have a good indicator that this
1314 * request will complete within the timeout. What we do know is the
52c0fdb2
CW
1315 * order in which requests are executed by the context and so we can
1316 * tell if the request has been started. If the request is not even
1317 * running yet, it is a fair assumption that it will not complete
1318 * within our relatively short timeout.
b2f2f0fc 1319 */
52c0fdb2 1320 if (!i915_request_is_running(rq))
b2f2f0fc
CW
1321 return false;
1322
e61e0f51
CW
1323 /*
1324 * When waiting for high frequency requests, e.g. during synchronous
05235c53
CW
1325 * rendering split between the CPU and GPU, the finite amount of time
1326 * required to set up the irq and wait upon it limits the response
1327 * rate. By busywaiting on the request completion for a short while we
1328 * can service the high frequency waits as quick as possible. However,
1329 * if it is a slow request, we want to sleep as quickly as possible.
1330 * The tradeoff between waiting and sleeping is roughly the time it
1331 * takes to sleep on a request, on the order of a microsecond.
1332 */
1333
1334 timeout_us += local_clock_us(&cpu);
1335 do {
52c0fdb2
CW
1336 if (i915_request_completed(rq))
1337 return true;
c33ed067 1338
05235c53
CW
1339 if (signal_pending_state(state, current))
1340 break;
1341
1342 if (busywait_stop(timeout_us, cpu))
1343 break;
1344
f2f09a4c 1345 cpu_relax();
05235c53
CW
1346 } while (!need_resched());
1347
1348 return false;
1349}
1350
52c0fdb2
CW
1351struct request_wait {
1352 struct dma_fence_cb cb;
1353 struct task_struct *tsk;
1354};
1355
1356static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1357{
1358 struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1359
1360 wake_up_process(wait->tsk);
1361}
1362
05235c53 1363/**
e532be89 1364 * i915_request_wait - wait until execution of request has finished
e61e0f51 1365 * @rq: the request to wait upon
ea746f36 1366 * @flags: how to wait
e95433c7
CW
1367 * @timeout: how long to wait in jiffies
1368 *
e532be89 1369 * i915_request_wait() waits for the request to be completed, for a
e95433c7
CW
1370 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1371 * unbounded wait).
05235c53 1372 *
e95433c7
CW
1373 * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED
1374 * in via the flags, and vice versa if the struct_mutex is not held, the caller
1375 * must not specify that the wait is locked.
05235c53 1376 *
e95433c7
CW
1377 * Returns the remaining time (in jiffies) if the request completed, which may
1378 * be zero or -ETIME if the request is unfinished after the timeout expires.
1379 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1380 * pending before the request completes.
05235c53 1381 */
e61e0f51 1382long i915_request_wait(struct i915_request *rq,
e95433c7
CW
1383 unsigned int flags,
1384 long timeout)
05235c53 1385{
ea746f36
CW
1386 const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1387 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
52c0fdb2 1388 struct request_wait wait;
05235c53
CW
1389
1390 might_sleep();
e95433c7 1391 GEM_BUG_ON(timeout < 0);
05235c53 1392
e61e0f51 1393 if (i915_request_completed(rq))
e95433c7 1394 return timeout;
05235c53 1395
e95433c7
CW
1396 if (!timeout)
1397 return -ETIME;
05235c53 1398
e61e0f51 1399 trace_i915_request_wait_begin(rq, flags);
4680816b 1400
52c0fdb2
CW
1401 /* Optimistic short spin before touching IRQs */
1402 if (__i915_spin_request(rq, state, 5))
1403 goto out;
541ca6ed 1404
62eb3c24
CW
1405 /*
1406 * This client is about to stall waiting for the GPU. In many cases
1407 * this is undesirable and limits the throughput of the system, as
1408 * many clients cannot continue processing user input/output whilst
1409 * blocked. RPS autotuning may take tens of milliseconds to respond
1410 * to the GPU load and thus incurs additional latency for the client.
1411 * We can circumvent that by promoting the GPU frequency to maximum
1412 * before we sleep. This makes the GPU throttle up much more quickly
1413 * (good for benchmarks and user experience, e.g. window animations),
1414 * but at a cost of spending more power processing the workload
1415 * (bad for battery).
1416 */
1417 if (flags & I915_WAIT_PRIORITY) {
1418 if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
1419 gen6_rps_boost(rq);
b7404c7e 1420 local_bh_disable(); /* suspend tasklets for reprioritisation */
52c0fdb2 1421 i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT);
b7404c7e 1422 local_bh_enable(); /* kick tasklets en masse */
62eb3c24 1423 }
4680816b 1424
52c0fdb2
CW
1425 wait.tsk = current;
1426 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1427 goto out;
4680816b 1428
52c0fdb2
CW
1429 for (;;) {
1430 set_current_state(state);
05235c53 1431
52c0fdb2
CW
1432 if (i915_request_completed(rq))
1433 break;
05235c53 1434
05235c53 1435 if (signal_pending_state(state, current)) {
e95433c7 1436 timeout = -ERESTARTSYS;
05235c53
CW
1437 break;
1438 }
1439
e95433c7
CW
1440 if (!timeout) {
1441 timeout = -ETIME;
05235c53
CW
1442 break;
1443 }
1444
e95433c7 1445 timeout = io_schedule_timeout(timeout);
05235c53 1446 }
a49625f9 1447 __set_current_state(TASK_RUNNING);
05235c53 1448
52c0fdb2
CW
1449 dma_fence_remove_callback(&rq->fence, &wait.cb);
1450
1451out:
1452 trace_i915_request_wait_end(rq);
e95433c7 1453 return timeout;
05235c53 1454}
4b8de8e6 1455
e61e0f51 1456void i915_retire_requests(struct drm_i915_private *i915)
4b8de8e6 1457{
643b450a 1458 struct intel_ring *ring, *tmp;
4b8de8e6 1459
e61e0f51 1460 lockdep_assert_held(&i915->drm.struct_mutex);
4b8de8e6 1461
e61e0f51 1462 if (!i915->gt.active_requests)
4b8de8e6
CW
1463 return;
1464
65baf0ef
CW
1465 list_for_each_entry_safe(ring, tmp,
1466 &i915->gt.active_rings, active_link) {
1467 intel_ring_get(ring); /* last rq holds reference! */
b887d615 1468 ring_retire_requests(ring);
65baf0ef
CW
1469 intel_ring_put(ring);
1470 }
4b8de8e6 1471}
c835c550
CW
1472
1473#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1474#include "selftests/mock_request.c"
e61e0f51 1475#include "selftests/i915_request.c"
c835c550 1476#endif
32eb6bcf 1477
103b76ee
CW
1478static void i915_global_request_shrink(void)
1479{
1480 kmem_cache_shrink(global.slab_dependencies);
1481 kmem_cache_shrink(global.slab_execute_cbs);
1482 kmem_cache_shrink(global.slab_requests);
1483}
1484
1485static void i915_global_request_exit(void)
1486{
1487 kmem_cache_destroy(global.slab_dependencies);
1488 kmem_cache_destroy(global.slab_execute_cbs);
1489 kmem_cache_destroy(global.slab_requests);
1490}
1491
1492static struct i915_global_request global = { {
1493 .shrink = i915_global_request_shrink,
1494 .exit = i915_global_request_exit,
1495} };
1496
32eb6bcf
CW
1497int __init i915_global_request_init(void)
1498{
1499 global.slab_requests = KMEM_CACHE(i915_request,
1500 SLAB_HWCACHE_ALIGN |
1501 SLAB_RECLAIM_ACCOUNT |
1502 SLAB_TYPESAFE_BY_RCU);
1503 if (!global.slab_requests)
1504 return -ENOMEM;
1505
e8861964
CW
1506 global.slab_execute_cbs = KMEM_CACHE(execute_cb,
1507 SLAB_HWCACHE_ALIGN |
1508 SLAB_RECLAIM_ACCOUNT |
1509 SLAB_TYPESAFE_BY_RCU);
1510 if (!global.slab_execute_cbs)
1511 goto err_requests;
1512
32eb6bcf
CW
1513 global.slab_dependencies = KMEM_CACHE(i915_dependency,
1514 SLAB_HWCACHE_ALIGN |
1515 SLAB_RECLAIM_ACCOUNT);
1516 if (!global.slab_dependencies)
e8861964 1517 goto err_execute_cbs;
32eb6bcf 1518
103b76ee 1519 i915_global_register(&global.base);
32eb6bcf
CW
1520 return 0;
1521
e8861964
CW
1522err_execute_cbs:
1523 kmem_cache_destroy(global.slab_execute_cbs);
32eb6bcf
CW
1524err_requests:
1525 kmem_cache_destroy(global.slab_requests);
1526 return -ENOMEM;
1527}