drm/i915: Only enqueue already completed requests
[linux-2.6-block.git] / drivers / gpu / drm / i915 / i915_request.c
CommitLineData
05235c53
CW
1/*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
b52992c0 25#include <linux/dma-fence-array.h>
e8861964
CW
26#include <linux/irq_work.h>
27#include <linux/prefetch.h>
e6017571
IM
28#include <linux/sched.h>
29#include <linux/sched/clock.h>
f361bf4a 30#include <linux/sched/signal.h>
fa545cbf 31
10be98a7
CW
32#include "gem/i915_gem_context.h"
33#include "gt/intel_context.h"
34
21950ee7 35#include "i915_active.h"
696173b0 36#include "i915_drv.h"
103b76ee 37#include "i915_globals.h"
a09d9a80 38#include "i915_trace.h"
696173b0 39#include "intel_pm.h"
05235c53 40
e8861964
CW
41struct execute_cb {
42 struct list_head link;
43 struct irq_work work;
44 struct i915_sw_fence *fence;
f71e01a7
CW
45 void (*hook)(struct i915_request *rq, struct dma_fence *signal);
46 struct i915_request *signal;
e8861964
CW
47};
48
32eb6bcf 49static struct i915_global_request {
103b76ee 50 struct i915_global base;
32eb6bcf
CW
51 struct kmem_cache *slab_requests;
52 struct kmem_cache *slab_dependencies;
e8861964 53 struct kmem_cache *slab_execute_cbs;
32eb6bcf
CW
54} global;
55
f54d1867 56static const char *i915_fence_get_driver_name(struct dma_fence *fence)
04769652
CW
57{
58 return "i915";
59}
60
f54d1867 61static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
04769652 62{
e61e0f51
CW
63 /*
64 * The timeline struct (as part of the ppgtt underneath a context)
05506b5b
CW
65 * may be freed when the request is no longer in use by the GPU.
66 * We could extend the life of a context to beyond that of all
67 * fences, possibly keeping the hw resource around indefinitely,
68 * or we just give them a false name. Since
69 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
70 * lie seems justifiable.
71 */
72 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
73 return "signaled";
74
4daffb66 75 return to_request(fence)->gem_context->name ?: "[i915]";
04769652
CW
76}
77
f54d1867 78static bool i915_fence_signaled(struct dma_fence *fence)
04769652 79{
e61e0f51 80 return i915_request_completed(to_request(fence));
04769652
CW
81}
82
f54d1867 83static bool i915_fence_enable_signaling(struct dma_fence *fence)
04769652 84{
52c0fdb2 85 return i915_request_enable_breadcrumb(to_request(fence));
04769652
CW
86}
87
f54d1867 88static signed long i915_fence_wait(struct dma_fence *fence,
04769652 89 bool interruptible,
e95433c7 90 signed long timeout)
04769652 91{
62eb3c24
CW
92 return i915_request_wait(to_request(fence),
93 interruptible | I915_WAIT_PRIORITY,
94 timeout);
04769652
CW
95}
96
f54d1867 97static void i915_fence_release(struct dma_fence *fence)
04769652 98{
e61e0f51 99 struct i915_request *rq = to_request(fence);
04769652 100
e61e0f51
CW
101 /*
102 * The request is put onto a RCU freelist (i.e. the address
fc158405
CW
103 * is immediately reused), mark the fences as being freed now.
104 * Otherwise the debugobjects for the fences are only marked as
105 * freed when the slab cache itself is freed, and so we would get
106 * caught trying to reuse dead objects.
107 */
e61e0f51 108 i915_sw_fence_fini(&rq->submit);
0c441cb6 109 i915_sw_fence_fini(&rq->semaphore);
fc158405 110
32eb6bcf 111 kmem_cache_free(global.slab_requests, rq);
04769652
CW
112}
113
f54d1867 114const struct dma_fence_ops i915_fence_ops = {
04769652
CW
115 .get_driver_name = i915_fence_get_driver_name,
116 .get_timeline_name = i915_fence_get_timeline_name,
117 .enable_signaling = i915_fence_enable_signaling,
118 .signaled = i915_fence_signaled,
119 .wait = i915_fence_wait,
120 .release = i915_fence_release,
04769652
CW
121};
122
b87b6c0d
CW
123static void irq_execute_cb(struct irq_work *wrk)
124{
125 struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
126
127 i915_sw_fence_complete(cb->fence);
128 kmem_cache_free(global.slab_execute_cbs, cb);
129}
130
131static void irq_execute_cb_hook(struct irq_work *wrk)
132{
133 struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
134
135 cb->hook(container_of(cb->fence, struct i915_request, submit),
136 &cb->signal->fence);
137 i915_request_put(cb->signal);
138
139 irq_execute_cb(wrk);
140}
141
142static void __notify_execute_cb(struct i915_request *rq)
143{
144 struct execute_cb *cb;
145
146 lockdep_assert_held(&rq->lock);
147
148 if (list_empty(&rq->execute_cb))
149 return;
150
151 list_for_each_entry(cb, &rq->execute_cb, link)
152 irq_work_queue(&cb->work);
153
154 /*
155 * XXX Rollback on __i915_request_unsubmit()
156 *
157 * In the future, perhaps when we have an active time-slicing scheduler,
158 * it will be interesting to unsubmit parallel execution and remove
159 * busywaits from the GPU until their master is restarted. This is
160 * quite hairy, we have to carefully rollback the fence and do a
161 * preempt-to-idle cycle on the target engine, all the while the
162 * master execute_cb may refire.
163 */
164 INIT_LIST_HEAD(&rq->execute_cb);
165}
166
05235c53 167static inline void
44c22f3f 168remove_from_client(struct i915_request *request)
05235c53 169{
c8659efa 170 struct drm_i915_file_private *file_priv;
05235c53 171
77715906 172 if (!READ_ONCE(request->file_priv))
05235c53
CW
173 return;
174
77715906
CW
175 rcu_read_lock();
176 file_priv = xchg(&request->file_priv, NULL);
177 if (file_priv) {
178 spin_lock(&file_priv->mm.lock);
c8659efa 179 list_del(&request->client_link);
77715906 180 spin_unlock(&file_priv->mm.lock);
c8659efa 181 }
77715906 182 rcu_read_unlock();
05235c53
CW
183}
184
e61e0f51 185static void free_capture_list(struct i915_request *request)
b0fd47ad 186{
e61e0f51 187 struct i915_capture_list *capture;
b0fd47ad
CW
188
189 capture = request->capture_list;
190 while (capture) {
e61e0f51 191 struct i915_capture_list *next = capture->next;
b0fd47ad
CW
192
193 kfree(capture);
194 capture = next;
195 }
196}
197
37fa0de3
CW
198static void remove_from_engine(struct i915_request *rq)
199{
200 struct intel_engine_cs *engine, *locked;
201
202 /*
203 * Virtual engines complicate acquiring the engine timeline lock,
204 * as their rq->engine pointer is not stable until under that
205 * engine lock. The simple ploy we use is to take the lock then
206 * check that the rq still belongs to the newly locked engine.
207 */
208 locked = READ_ONCE(rq->engine);
209 spin_lock(&locked->active.lock);
210 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
211 spin_unlock(&locked->active.lock);
212 spin_lock(&engine->active.lock);
213 locked = engine;
214 }
215 list_del(&rq->sched.link);
216 spin_unlock(&locked->active.lock);
217}
218
9db0c5ca 219static bool i915_request_retire(struct i915_request *rq)
05235c53 220{
21950ee7 221 struct i915_active_request *active, *next;
fa545cbf 222
9db0c5ca
CW
223 if (!i915_request_completed(rq))
224 return false;
d9b13c4d 225
9db0c5ca
CW
226 GEM_TRACE("%s fence %llx:%lld, current %d\n",
227 rq->engine->name,
228 rq->fence.context, rq->fence.seqno,
229 hwsp_seqno(rq));
4c7d62c6 230
9db0c5ca
CW
231 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
232 trace_i915_request_retire(rq);
80b204bc 233
e5dadff4
CW
234 /*
235 * We know the GPU must have read the request to have
236 * sent us the seqno + interrupt, so use the position
237 * of tail of the request to update the last known position
238 * of the GPU head.
239 *
240 * Note this requires that we are always called in request
241 * completion order.
242 */
d19d71fc
CW
243 GEM_BUG_ON(!list_is_first(&rq->link,
244 &i915_request_timeline(rq)->requests));
e5dadff4 245 rq->ring->head = rq->postfix;
b0fd47ad 246
e61e0f51
CW
247 /*
248 * Walk through the active list, calling retire on each. This allows
fa545cbf
CW
249 * objects to track their GPU activity and mark themselves as idle
250 * when their *last* active request is completed (updating state
251 * tracking lists for eviction, active references for GEM, etc).
252 *
253 * As the ->retire() may free the node, we decouple it first and
254 * pass along the auxiliary information (to avoid dereferencing
255 * the node after the callback).
256 */
9db0c5ca 257 list_for_each_entry_safe(active, next, &rq->active_list, link) {
e61e0f51
CW
258 /*
259 * In microbenchmarks or focusing upon time inside the kernel,
fa545cbf
CW
260 * we may spend an inordinate amount of time simply handling
261 * the retirement of requests and processing their callbacks.
262 * Of which, this loop itself is particularly hot due to the
21950ee7
CW
263 * cache misses when jumping around the list of
264 * i915_active_request. So we try to keep this loop as
265 * streamlined as possible and also prefetch the next
266 * i915_active_request to try and hide the likely cache miss.
fa545cbf
CW
267 */
268 prefetchw(next);
269
270 INIT_LIST_HEAD(&active->link);
0eafec6d 271 RCU_INIT_POINTER(active->request, NULL);
fa545cbf 272
9db0c5ca 273 active->retire(active, rq);
fa545cbf
CW
274 }
275
9db0c5ca 276 local_irq_disable();
05235c53 277
22b7a426
CW
278 /*
279 * We only loosely track inflight requests across preemption,
280 * and so we may find ourselves attempting to retire a _completed_
281 * request that we have removed from the HW and put back on a run
282 * queue.
283 */
37fa0de3 284 remove_from_engine(rq);
52e54209 285
9db0c5ca
CW
286 spin_lock(&rq->lock);
287 i915_request_mark_complete(rq);
288 if (!i915_request_signaled(rq))
289 dma_fence_signal_locked(&rq->fence);
290 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
291 i915_request_cancel_breadcrumb(rq);
2a98f4e6 292 if (i915_request_has_waitboost(rq)) {
9db0c5ca
CW
293 GEM_BUG_ON(!atomic_read(&rq->i915->gt_pm.rps.num_waiters));
294 atomic_dec(&rq->i915->gt_pm.rps.num_waiters);
295 }
b87b6c0d
CW
296 if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
297 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
298 __notify_execute_cb(rq);
299 }
300 GEM_BUG_ON(!list_empty(&rq->execute_cb));
9db0c5ca
CW
301 spin_unlock(&rq->lock);
302
303 local_irq_enable();
52d7f16e 304
44c22f3f 305 remove_from_client(rq);
422d7df4 306 list_del(&rq->link);
9db0c5ca 307
75d0a7f3
CW
308 intel_context_exit(rq->hw_context);
309 intel_context_unpin(rq->hw_context);
310
9db0c5ca
CW
311 free_capture_list(rq);
312 i915_sched_node_fini(&rq->sched);
313 i915_request_put(rq);
314
315 return true;
05235c53
CW
316}
317
e61e0f51 318void i915_request_retire_upto(struct i915_request *rq)
05235c53 319{
d19d71fc 320 struct intel_timeline * const tl = i915_request_timeline(rq);
e61e0f51 321 struct i915_request *tmp;
05235c53 322
b300fde8 323 GEM_TRACE("%s fence %llx:%lld, current %d\n",
b887d615
CW
324 rq->engine->name,
325 rq->fence.context, rq->fence.seqno,
8892f477 326 hwsp_seqno(rq));
b887d615 327
e61e0f51 328 GEM_BUG_ON(!i915_request_completed(rq));
4ffd6e0c 329
05235c53 330 do {
e5dadff4 331 tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
9db0c5ca 332 } while (i915_request_retire(tmp) && tmp != rq);
05235c53
CW
333}
334
e8861964 335static int
f71e01a7
CW
336__i915_request_await_execution(struct i915_request *rq,
337 struct i915_request *signal,
338 void (*hook)(struct i915_request *rq,
339 struct dma_fence *signal),
340 gfp_t gfp)
e8861964
CW
341{
342 struct execute_cb *cb;
343
f71e01a7
CW
344 if (i915_request_is_active(signal)) {
345 if (hook)
346 hook(rq, &signal->fence);
e8861964 347 return 0;
f71e01a7 348 }
e8861964
CW
349
350 cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
351 if (!cb)
352 return -ENOMEM;
353
354 cb->fence = &rq->submit;
355 i915_sw_fence_await(cb->fence);
356 init_irq_work(&cb->work, irq_execute_cb);
357
f71e01a7
CW
358 if (hook) {
359 cb->hook = hook;
360 cb->signal = i915_request_get(signal);
361 cb->work.func = irq_execute_cb_hook;
362 }
363
e8861964
CW
364 spin_lock_irq(&signal->lock);
365 if (i915_request_is_active(signal)) {
f71e01a7
CW
366 if (hook) {
367 hook(rq, &signal->fence);
368 i915_request_put(signal);
369 }
e8861964
CW
370 i915_sw_fence_complete(cb->fence);
371 kmem_cache_free(global.slab_execute_cbs, cb);
372 } else {
373 list_add_tail(&cb->link, &signal->execute_cb);
374 }
375 spin_unlock_irq(&signal->lock);
376
377 return 0;
378}
379
c0bb487d 380bool __i915_request_submit(struct i915_request *request)
5590af3e 381{
73cb9701 382 struct intel_engine_cs *engine = request->engine;
c0bb487d 383 bool result = false;
5590af3e 384
422d7df4 385 GEM_TRACE("%s fence %llx:%lld, current %d\n",
e7702760 386 engine->name,
d9b13c4d 387 request->fence.context, request->fence.seqno,
8892f477 388 hwsp_seqno(request));
d9b13c4d 389
e60a870d 390 GEM_BUG_ON(!irqs_disabled());
422d7df4 391 lockdep_assert_held(&engine->active.lock);
e60a870d 392
c0bb487d
CW
393 /*
394 * With the advent of preempt-to-busy, we frequently encounter
395 * requests that we have unsubmitted from HW, but left running
396 * until the next ack and so have completed in the meantime. On
397 * resubmission of that completed request, we can skip
398 * updating the payload, and execlists can even skip submitting
399 * the request.
400 *
401 * We must remove the request from the caller's priority queue,
402 * and the caller must only call us when the request is in their
403 * priority queue, under the active.lock. This ensures that the
404 * request has *not* yet been retired and we can safely move
405 * the request into the engine->active.list where it will be
406 * dropped upon retiring. (Otherwise if resubmit a *retired*
407 * request, this would be a horrible use-after-free.)
408 */
409 if (i915_request_completed(request))
410 goto xfer;
411
d9e61b66
CW
412 if (i915_gem_context_is_banned(request->gem_context))
413 i915_request_skip(request, -EIO);
414
ca6e56f6
CW
415 /*
416 * Are we using semaphores when the gpu is already saturated?
417 *
418 * Using semaphores incurs a cost in having the GPU poll a
419 * memory location, busywaiting for it to change. The continual
420 * memory reads can have a noticeable impact on the rest of the
421 * system with the extra bus traffic, stalling the cpu as it too
422 * tries to access memory across the bus (perf stat -e bus-cycles).
423 *
424 * If we installed a semaphore on this request and we only submit
425 * the request after the signaler completed, that indicates the
426 * system is overloaded and using semaphores at this time only
427 * increases the amount of work we are doing. If so, we disable
428 * further use of semaphores until we are idle again, whence we
429 * optimistically try again.
430 */
431 if (request->sched.semaphores &&
432 i915_sw_fence_signaled(&request->semaphore))
44d89409 433 engine->saturated |= request->sched.semaphores;
ca6e56f6 434
c0bb487d
CW
435 engine->emit_fini_breadcrumb(request,
436 request->ring->vaddr + request->postfix);
b5773a36 437
c0bb487d
CW
438 trace_i915_request_execute(request);
439 engine->serial++;
440 result = true;
422d7df4 441
c0bb487d
CW
442xfer: /* We may be recursing from the signal callback of another i915 fence */
443 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
444
445 if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags))
446 list_move_tail(&request->sched.link, &engine->active.requests);
b5773a36 447
52c0fdb2 448 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
0152b3b3 449 !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
52c0fdb2
CW
450 !i915_request_enable_breadcrumb(request))
451 intel_engine_queue_breadcrumbs(engine);
b5773a36 452
e8861964
CW
453 __notify_execute_cb(request);
454
f2d13290
CW
455 spin_unlock(&request->lock);
456
c0bb487d 457 return result;
d55ac5bf
CW
458}
459
e61e0f51 460void i915_request_submit(struct i915_request *request)
d55ac5bf
CW
461{
462 struct intel_engine_cs *engine = request->engine;
463 unsigned long flags;
23902e49 464
d55ac5bf 465 /* Will be called from irq-context when using foreign fences. */
422d7df4 466 spin_lock_irqsave(&engine->active.lock, flags);
d55ac5bf 467
e61e0f51 468 __i915_request_submit(request);
d55ac5bf 469
422d7df4 470 spin_unlock_irqrestore(&engine->active.lock, flags);
d55ac5bf
CW
471}
472
e61e0f51 473void __i915_request_unsubmit(struct i915_request *request)
d55ac5bf 474{
d6a2289d 475 struct intel_engine_cs *engine = request->engine;
d55ac5bf 476
b300fde8 477 GEM_TRACE("%s fence %llx:%lld, current %d\n",
e7702760 478 engine->name,
d9b13c4d 479 request->fence.context, request->fence.seqno,
8892f477 480 hwsp_seqno(request));
d9b13c4d 481
e60a870d 482 GEM_BUG_ON(!irqs_disabled());
422d7df4 483 lockdep_assert_held(&engine->active.lock);
48bc2a4a 484
e61e0f51
CW
485 /*
486 * Only unwind in reverse order, required so that the per-context list
d6a2289d
CW
487 * is kept in seqno/ring order.
488 */
80b204bc 489
d6a2289d
CW
490 /* We may be recursing from the signal callback of another i915 fence */
491 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
b5773a36 492
d6a2289d 493 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
52c0fdb2 494 i915_request_cancel_breadcrumb(request);
b5773a36 495
52c0fdb2
CW
496 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
497 clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
b5773a36 498
d6a2289d
CW
499 spin_unlock(&request->lock);
500
dba5a7f3
CW
501 /* We've already spun, don't charge on resubmitting. */
502 if (request->sched.semaphores && i915_request_started(request)) {
503 request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE;
504 request->sched.semaphores = 0;
505 }
506
e61e0f51
CW
507 /*
508 * We don't need to wake_up any waiters on request->execute, they
d6a2289d 509 * will get woken by any other event or us re-adding this request
e61e0f51 510 * to the engine timeline (__i915_request_submit()). The waiters
d6a2289d
CW
511 * should be quite adapt at finding that the request now has a new
512 * global_seqno to the one they went to sleep on.
513 */
514}
515
e61e0f51 516void i915_request_unsubmit(struct i915_request *request)
d6a2289d
CW
517{
518 struct intel_engine_cs *engine = request->engine;
519 unsigned long flags;
520
521 /* Will be called from irq-context when using foreign fences. */
422d7df4 522 spin_lock_irqsave(&engine->active.lock, flags);
d6a2289d 523
e61e0f51 524 __i915_request_unsubmit(request);
d6a2289d 525
422d7df4 526 spin_unlock_irqrestore(&engine->active.lock, flags);
5590af3e
CW
527}
528
23902e49 529static int __i915_sw_fence_call
d55ac5bf 530submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
23902e49 531{
e61e0f51 532 struct i915_request *request =
48bc2a4a 533 container_of(fence, typeof(*request), submit);
48bc2a4a
CW
534
535 switch (state) {
536 case FENCE_COMPLETE:
e61e0f51 537 trace_i915_request_submit(request);
ef468849
CW
538
539 if (unlikely(fence->error))
540 i915_request_skip(request, fence->error);
541
af7a8ffa 542 /*
e61e0f51
CW
543 * We need to serialize use of the submit_request() callback
544 * with its hotplugging performed during an emergency
545 * i915_gem_set_wedged(). We use the RCU mechanism to mark the
546 * critical section in order to force i915_gem_set_wedged() to
547 * wait until the submit_request() is completed before
548 * proceeding.
af7a8ffa
DV
549 */
550 rcu_read_lock();
d55ac5bf 551 request->engine->submit_request(request);
af7a8ffa 552 rcu_read_unlock();
48bc2a4a
CW
553 break;
554
555 case FENCE_FREE:
e61e0f51 556 i915_request_put(request);
48bc2a4a
CW
557 break;
558 }
559
23902e49
CW
560 return NOTIFY_DONE;
561}
562
b7404c7e
CW
563static int __i915_sw_fence_call
564semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
565{
566 struct i915_request *request =
567 container_of(fence, typeof(*request), semaphore);
568
569 switch (state) {
570 case FENCE_COMPLETE:
17db337f 571 i915_schedule_bump_priority(request, I915_PRIORITY_NOSEMAPHORE);
b7404c7e
CW
572 break;
573
574 case FENCE_FREE:
575 i915_request_put(request);
576 break;
577 }
578
579 return NOTIFY_DONE;
580}
581
e5dadff4 582static void retire_requests(struct intel_timeline *tl)
d22ba0cb
CW
583{
584 struct i915_request *rq, *rn;
585
e5dadff4 586 list_for_each_entry_safe(rq, rn, &tl->requests, link)
9db0c5ca 587 if (!i915_request_retire(rq))
d22ba0cb 588 break;
d22ba0cb
CW
589}
590
591static noinline struct i915_request *
e5dadff4 592request_alloc_slow(struct intel_timeline *tl, gfp_t gfp)
d22ba0cb 593{
d22ba0cb
CW
594 struct i915_request *rq;
595
e5dadff4 596 if (list_empty(&tl->requests))
d22ba0cb
CW
597 goto out;
598
2ccdf6a1
CW
599 if (!gfpflags_allow_blocking(gfp))
600 goto out;
601
9db0c5ca 602 /* Move our oldest request to the slab-cache (if not in use!) */
e5dadff4 603 rq = list_first_entry(&tl->requests, typeof(*rq), link);
9db0c5ca
CW
604 i915_request_retire(rq);
605
606 rq = kmem_cache_alloc(global.slab_requests,
607 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
608 if (rq)
609 return rq;
610
d22ba0cb 611 /* Ratelimit ourselves to prevent oom from malicious clients */
e5dadff4 612 rq = list_last_entry(&tl->requests, typeof(*rq), link);
d22ba0cb
CW
613 cond_synchronize_rcu(rq->rcustate);
614
615 /* Retire our old requests in the hope that we free some */
e5dadff4 616 retire_requests(tl);
d22ba0cb
CW
617
618out:
2ccdf6a1 619 return kmem_cache_alloc(global.slab_requests, gfp);
d22ba0cb
CW
620}
621
e61e0f51 622struct i915_request *
2ccdf6a1 623__i915_request_create(struct intel_context *ce, gfp_t gfp)
05235c53 624{
75d0a7f3 625 struct intel_timeline *tl = ce->timeline;
ebece753
CW
626 struct i915_request *rq;
627 u32 seqno;
05235c53
CW
628 int ret;
629
2ccdf6a1 630 might_sleep_if(gfpflags_allow_blocking(gfp));
28176ef4 631
2ccdf6a1
CW
632 /* Check that the caller provided an already pinned context */
633 __intel_context_pin(ce);
9b5f4e5e 634
e61e0f51
CW
635 /*
636 * Beware: Dragons be flying overhead.
5a198b8c
CW
637 *
638 * We use RCU to look up requests in flight. The lookups may
639 * race with the request being allocated from the slab freelist.
640 * That is the request we are writing to here, may be in the process
21950ee7 641 * of being read by __i915_active_request_get_rcu(). As such,
5a198b8c
CW
642 * we have to be very careful when overwriting the contents. During
643 * the RCU lookup, we change chase the request->engine pointer,
65e4760e 644 * read the request->global_seqno and increment the reference count.
5a198b8c
CW
645 *
646 * The reference count is incremented atomically. If it is zero,
647 * the lookup knows the request is unallocated and complete. Otherwise,
648 * it is either still in use, or has been reallocated and reset
f54d1867
CW
649 * with dma_fence_init(). This increment is safe for release as we
650 * check that the request we have a reference to and matches the active
5a198b8c
CW
651 * request.
652 *
653 * Before we increment the refcount, we chase the request->engine
654 * pointer. We must not call kmem_cache_zalloc() or else we set
655 * that pointer to NULL and cause a crash during the lookup. If
656 * we see the request is completed (based on the value of the
657 * old engine and seqno), the lookup is complete and reports NULL.
658 * If we decide the request is not completed (new engine or seqno),
659 * then we grab a reference and double check that it is still the
660 * active request - which it won't be and restart the lookup.
661 *
662 * Do not use kmem_cache_zalloc() here!
663 */
32eb6bcf 664 rq = kmem_cache_alloc(global.slab_requests,
2ccdf6a1 665 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
e61e0f51 666 if (unlikely(!rq)) {
e5dadff4 667 rq = request_alloc_slow(tl, gfp);
e61e0f51 668 if (!rq) {
31c70f97
CW
669 ret = -ENOMEM;
670 goto err_unreserve;
671 }
28176ef4 672 }
05235c53 673
f0c02c1b 674 ret = intel_timeline_get_seqno(tl, rq, &seqno);
ebece753
CW
675 if (ret)
676 goto err_free;
677
2ccdf6a1 678 rq->i915 = ce->engine->i915;
1fc44d9b 679 rq->hw_context = ce;
2ccdf6a1
CW
680 rq->gem_context = ce->gem_context;
681 rq->engine = ce->engine;
1fc44d9b 682 rq->ring = ce->ring;
d19d71fc
CW
683
684 rcu_assign_pointer(rq->timeline, tl);
ebece753
CW
685 rq->hwsp_seqno = tl->hwsp_seqno;
686 rq->hwsp_cacheline = tl->hwsp_cacheline;
d19d71fc 687
ebece753 688 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
73cb9701 689
e61e0f51 690 spin_lock_init(&rq->lock);
ebece753
CW
691 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
692 tl->fence_context, seqno);
04769652 693
48bc2a4a 694 /* We bump the ref for the fence chain */
e61e0f51 695 i915_sw_fence_init(&i915_request_get(rq)->submit, submit_notify);
b7404c7e 696 i915_sw_fence_init(&i915_request_get(rq)->semaphore, semaphore_notify);
5590af3e 697
0c7112a0 698 i915_sched_node_init(&rq->sched);
52e54209 699
5a198b8c 700 /* No zalloc, must clear what we need by hand */
e61e0f51
CW
701 rq->file_priv = NULL;
702 rq->batch = NULL;
703 rq->capture_list = NULL;
2a98f4e6 704 rq->flags = 0;
78e41ddd 705 rq->execution_mask = ALL_ENGINES;
5a198b8c 706
2ccdf6a1
CW
707 INIT_LIST_HEAD(&rq->active_list);
708 INIT_LIST_HEAD(&rq->execute_cb);
709
05235c53
CW
710 /*
711 * Reserve space in the ring buffer for all the commands required to
712 * eventually emit this request. This is to guarantee that the
e61e0f51 713 * i915_request_add() call can't fail. Note that the reserve may need
05235c53
CW
714 * to be redone if the request is not actually submitted straight
715 * away, e.g. because a GPU scheduler has deferred it.
ed2922c0
CW
716 *
717 * Note that due to how we add reserved_space to intel_ring_begin()
718 * we need to double our request to ensure that if we need to wrap
719 * around inside i915_request_add() there is sufficient space at
720 * the beginning of the ring as well.
05235c53 721 */
2ccdf6a1
CW
722 rq->reserved_space =
723 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
05235c53 724
2113184c
CW
725 /*
726 * Record the position of the start of the request so that
d045446d
CW
727 * should we detect the updated seqno part-way through the
728 * GPU processing the request, we never over-estimate the
729 * position of the head.
730 */
e61e0f51 731 rq->head = rq->ring->emit;
d045446d 732
2ccdf6a1 733 ret = rq->engine->request_alloc(rq);
b1c24a61
CW
734 if (ret)
735 goto err_unwind;
2113184c 736
b3ee09a4
CW
737 rq->infix = rq->ring->emit; /* end of header; start of user payload */
738
2ccdf6a1 739 intel_context_mark_active(ce);
e61e0f51 740 return rq;
05235c53 741
b1c24a61 742err_unwind:
1fc44d9b 743 ce->ring->emit = rq->head;
b1c24a61 744
1618bdb8 745 /* Make sure we didn't add ourselves to external state before freeing */
e61e0f51 746 GEM_BUG_ON(!list_empty(&rq->active_list));
0c7112a0
CW
747 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
748 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
1618bdb8 749
ebece753 750err_free:
32eb6bcf 751 kmem_cache_free(global.slab_requests, rq);
28176ef4 752err_unreserve:
1fc44d9b 753 intel_context_unpin(ce);
8e637178 754 return ERR_PTR(ret);
05235c53
CW
755}
756
2ccdf6a1
CW
757struct i915_request *
758i915_request_create(struct intel_context *ce)
759{
760 struct i915_request *rq;
e5dadff4 761 struct intel_timeline *tl;
2ccdf6a1 762
e5dadff4
CW
763 tl = intel_context_timeline_lock(ce);
764 if (IS_ERR(tl))
765 return ERR_CAST(tl);
2ccdf6a1
CW
766
767 /* Move our oldest request to the slab-cache (if not in use!) */
e5dadff4
CW
768 rq = list_first_entry(&tl->requests, typeof(*rq), link);
769 if (!list_is_last(&rq->link, &tl->requests))
2ccdf6a1
CW
770 i915_request_retire(rq);
771
772 intel_context_enter(ce);
773 rq = __i915_request_create(ce, GFP_KERNEL);
774 intel_context_exit(ce); /* active reference transferred to request */
775 if (IS_ERR(rq))
776 goto err_unlock;
777
778 /* Check that we do not interrupt ourselves with a new request */
e5dadff4 779 rq->cookie = lockdep_pin_lock(&tl->mutex);
2ccdf6a1
CW
780
781 return rq;
782
783err_unlock:
e5dadff4 784 intel_context_timeline_unlock(tl);
2ccdf6a1
CW
785 return rq;
786}
787
0d90ccb7
CW
788static int
789i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
790{
6a79d848
CW
791 struct intel_timeline *tl;
792 struct dma_fence *fence;
793 int err;
0d90ccb7 794
6a79d848
CW
795 GEM_BUG_ON(i915_request_timeline(rq) ==
796 rcu_access_pointer(signal->timeline));
797
798 rcu_read_lock();
799 tl = rcu_dereference(signal->timeline);
800 if (i915_request_started(signal) || !kref_get_unless_zero(&tl->kref))
801 tl = NULL;
802 rcu_read_unlock();
803 if (!tl) /* already started or maybe even completed */
0d90ccb7
CW
804 return 0;
805
6a79d848
CW
806 fence = ERR_PTR(-EBUSY);
807 if (mutex_trylock(&tl->mutex)) {
808 fence = NULL;
809 if (!i915_request_started(signal) &&
810 !list_is_first(&signal->link, &tl->requests)) {
811 signal = list_prev_entry(signal, link);
812 fence = dma_fence_get(&signal->fence);
813 }
814 mutex_unlock(&tl->mutex);
815 }
816 intel_timeline_put(tl);
817 if (IS_ERR_OR_NULL(fence))
818 return PTR_ERR_OR_ZERO(fence);
819
820 err = 0;
821 if (intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
822 err = i915_sw_fence_await_dma_fence(&rq->submit,
823 fence, 0,
824 I915_FENCE_GFP);
825 dma_fence_put(fence);
826
827 return err;
0d90ccb7
CW
828}
829
ca6e56f6
CW
830static intel_engine_mask_t
831already_busywaiting(struct i915_request *rq)
832{
833 /*
834 * Polling a semaphore causes bus traffic, delaying other users of
835 * both the GPU and CPU. We want to limit the impact on others,
836 * while taking advantage of early submission to reduce GPU
837 * latency. Therefore we restrict ourselves to not using more
838 * than one semaphore from each source, and not using a semaphore
839 * if we have detected the engine is saturated (i.e. would not be
840 * submitted early and cause bus traffic reading an already passed
841 * semaphore).
842 *
843 * See the are-we-too-late? check in __i915_request_submit().
844 */
44d89409 845 return rq->sched.semaphores | rq->engine->saturated;
ca6e56f6
CW
846}
847
e8861964
CW
848static int
849emit_semaphore_wait(struct i915_request *to,
850 struct i915_request *from,
851 gfp_t gfp)
852{
c210e85b 853 const int has_token = INTEL_GEN(to->i915) >= 12;
e8861964 854 u32 hwsp_offset;
c210e85b 855 int len;
e8861964 856 u32 *cs;
e8861964 857
e8861964
CW
858 GEM_BUG_ON(INTEL_GEN(to->i915) < 8);
859
7881e605 860 /* Just emit the first semaphore we see as request space is limited. */
ca6e56f6 861 if (already_busywaiting(to) & from->engine->mask)
6a79d848 862 goto await_fence;
7881e605 863
6a79d848
CW
864 if (i915_request_await_start(to, from) < 0)
865 goto await_fence;
0d90ccb7 866
c8a0e2ae 867 /* Only submit our spinner after the signaler is running! */
6a79d848
CW
868 if (__i915_request_await_execution(to, from, NULL, gfp))
869 goto await_fence;
e8861964 870
c8a0e2ae 871 /* We need to pin the signaler's HWSP until we are finished reading. */
6a79d848
CW
872 if (intel_timeline_read_hwsp(from, to, &hwsp_offset))
873 goto await_fence;
e8861964 874
c210e85b
CW
875 len = 4;
876 if (has_token)
877 len += 2;
878
879 cs = intel_ring_begin(to, len);
e8861964
CW
880 if (IS_ERR(cs))
881 return PTR_ERR(cs);
882
883 /*
884 * Using greater-than-or-equal here means we have to worry
885 * about seqno wraparound. To side step that issue, we swap
886 * the timeline HWSP upon wrapping, so that everyone listening
887 * for the old (pre-wrap) values do not see the much smaller
888 * (post-wrap) values than they were expecting (and so wait
889 * forever).
890 */
c210e85b
CW
891 *cs++ = (MI_SEMAPHORE_WAIT |
892 MI_SEMAPHORE_GLOBAL_GTT |
893 MI_SEMAPHORE_POLL |
894 MI_SEMAPHORE_SAD_GTE_SDD) +
895 has_token;
e8861964
CW
896 *cs++ = from->fence.seqno;
897 *cs++ = hwsp_offset;
898 *cs++ = 0;
c210e85b
CW
899 if (has_token) {
900 *cs++ = 0;
901 *cs++ = MI_NOOP;
902 }
e8861964
CW
903
904 intel_ring_advance(to, cs);
7881e605
CW
905 to->sched.semaphores |= from->engine->mask;
906 to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
e8861964 907 return 0;
6a79d848
CW
908
909await_fence:
910 return i915_sw_fence_await_dma_fence(&to->submit,
911 &from->fence, 0,
912 I915_FENCE_GFP);
e8861964
CW
913}
914
a2bc4695 915static int
e61e0f51 916i915_request_await_request(struct i915_request *to, struct i915_request *from)
a2bc4695 917{
85e17f59 918 int ret;
a2bc4695
CW
919
920 GEM_BUG_ON(to == from);
ceae14bd 921 GEM_BUG_ON(to->timeline == from->timeline);
a2bc4695 922
e61e0f51 923 if (i915_request_completed(from))
ade0b0c9
CW
924 return 0;
925
52e54209 926 if (to->engine->schedule) {
32eb6bcf 927 ret = i915_sched_node_add_dependency(&to->sched, &from->sched);
52e54209
CW
928 if (ret < 0)
929 return ret;
930 }
931
73cb9701
CW
932 if (to->engine == from->engine) {
933 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
934 &from->submit,
2abe2f84 935 I915_FENCE_GFP);
e8861964
CW
936 } else if (intel_engine_has_semaphores(to->engine) &&
937 to->gem_context->sched.priority >= I915_PRIORITY_NORMAL) {
938 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
6faf5916
CW
939 } else {
940 ret = i915_sw_fence_await_dma_fence(&to->submit,
941 &from->fence, 0,
942 I915_FENCE_GFP);
a2bc4695 943 }
17db337f
CW
944 if (ret < 0)
945 return ret;
946
947 if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) {
948 ret = i915_sw_fence_await_dma_fence(&to->semaphore,
949 &from->fence, 0,
950 I915_FENCE_GFP);
951 if (ret < 0)
952 return ret;
953 }
a2bc4695 954
17db337f 955 return 0;
a2bc4695
CW
956}
957
b52992c0 958int
e61e0f51 959i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
b52992c0 960{
29ef3fa9
CW
961 struct dma_fence **child = &fence;
962 unsigned int nchild = 1;
b52992c0 963 int ret;
b52992c0 964
e61e0f51
CW
965 /*
966 * Note that if the fence-array was created in signal-on-any mode,
b52992c0
CW
967 * we should *not* decompose it into its individual fences. However,
968 * we don't currently store which mode the fence-array is operating
969 * in. Fortunately, the only user of signal-on-any is private to
970 * amdgpu and we should not see any incoming fence-array from
971 * sync-file being in signal-on-any mode.
972 */
29ef3fa9
CW
973 if (dma_fence_is_array(fence)) {
974 struct dma_fence_array *array = to_dma_fence_array(fence);
975
976 child = array->fences;
977 nchild = array->num_fences;
978 GEM_BUG_ON(!nchild);
979 }
b52992c0 980
29ef3fa9
CW
981 do {
982 fence = *child++;
983 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
984 continue;
b52992c0 985
ceae14bd
CW
986 /*
987 * Requests on the same timeline are explicitly ordered, along
e61e0f51 988 * with their dependencies, by i915_request_add() which ensures
ceae14bd
CW
989 * that requests are submitted in-order through each ring.
990 */
e61e0f51 991 if (fence->context == rq->fence.context)
ceae14bd
CW
992 continue;
993
47979480 994 /* Squash repeated waits to the same timelines */
cc337560 995 if (fence->context &&
d19d71fc
CW
996 intel_timeline_sync_is_later(i915_request_timeline(rq),
997 fence))
47979480
CW
998 continue;
999
29ef3fa9 1000 if (dma_fence_is_i915(fence))
e61e0f51 1001 ret = i915_request_await_request(rq, to_request(fence));
b52992c0 1002 else
e61e0f51 1003 ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
0f7dc620 1004 fence->context ? I915_FENCE_TIMEOUT : 0,
2abe2f84 1005 I915_FENCE_GFP);
b52992c0
CW
1006 if (ret < 0)
1007 return ret;
47979480
CW
1008
1009 /* Record the latest fence used against each timeline */
cc337560 1010 if (fence->context)
d19d71fc
CW
1011 intel_timeline_sync_set(i915_request_timeline(rq),
1012 fence);
29ef3fa9 1013 } while (--nchild);
b52992c0
CW
1014
1015 return 0;
1016}
1017
f71e01a7
CW
1018int
1019i915_request_await_execution(struct i915_request *rq,
1020 struct dma_fence *fence,
1021 void (*hook)(struct i915_request *rq,
1022 struct dma_fence *signal))
1023{
1024 struct dma_fence **child = &fence;
1025 unsigned int nchild = 1;
1026 int ret;
1027
1028 if (dma_fence_is_array(fence)) {
1029 struct dma_fence_array *array = to_dma_fence_array(fence);
1030
1031 /* XXX Error for signal-on-any fence arrays */
1032
1033 child = array->fences;
1034 nchild = array->num_fences;
1035 GEM_BUG_ON(!nchild);
1036 }
1037
1038 do {
1039 fence = *child++;
1040 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1041 continue;
1042
1043 /*
1044 * We don't squash repeated fence dependencies here as we
1045 * want to run our callback in all cases.
1046 */
1047
1048 if (dma_fence_is_i915(fence))
1049 ret = __i915_request_await_execution(rq,
1050 to_request(fence),
1051 hook,
1052 I915_FENCE_GFP);
1053 else
1054 ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
1055 I915_FENCE_TIMEOUT,
1056 GFP_KERNEL);
1057 if (ret < 0)
1058 return ret;
1059 } while (--nchild);
1060
1061 return 0;
1062}
1063
a2bc4695 1064/**
e61e0f51 1065 * i915_request_await_object - set this request to (async) wait upon a bo
a2bc4695
CW
1066 * @to: request we are wishing to use
1067 * @obj: object which may be in use on another ring.
d8802126 1068 * @write: whether the wait is on behalf of a writer
a2bc4695
CW
1069 *
1070 * This code is meant to abstract object synchronization with the GPU.
1071 * Conceptually we serialise writes between engines inside the GPU.
1072 * We only allow one engine to write into a buffer at any time, but
1073 * multiple readers. To ensure each has a coherent view of memory, we must:
1074 *
1075 * - If there is an outstanding write request to the object, the new
1076 * request must wait for it to complete (either CPU or in hw, requests
1077 * on the same ring will be naturally ordered).
1078 *
1079 * - If we are a write request (pending_write_domain is set), the new
1080 * request must wait for outstanding read requests to complete.
1081 *
1082 * Returns 0 if successful, else propagates up the lower layer error.
1083 */
1084int
e61e0f51
CW
1085i915_request_await_object(struct i915_request *to,
1086 struct drm_i915_gem_object *obj,
1087 bool write)
a2bc4695 1088{
d07f0e59
CW
1089 struct dma_fence *excl;
1090 int ret = 0;
a2bc4695
CW
1091
1092 if (write) {
d07f0e59
CW
1093 struct dma_fence **shared;
1094 unsigned int count, i;
1095
52791eee 1096 ret = dma_resv_get_fences_rcu(obj->base.resv,
d07f0e59
CW
1097 &excl, &count, &shared);
1098 if (ret)
1099 return ret;
1100
1101 for (i = 0; i < count; i++) {
e61e0f51 1102 ret = i915_request_await_dma_fence(to, shared[i]);
d07f0e59
CW
1103 if (ret)
1104 break;
1105
1106 dma_fence_put(shared[i]);
1107 }
1108
1109 for (; i < count; i++)
1110 dma_fence_put(shared[i]);
1111 kfree(shared);
a2bc4695 1112 } else {
52791eee 1113 excl = dma_resv_get_excl_rcu(obj->base.resv);
a2bc4695
CW
1114 }
1115
d07f0e59
CW
1116 if (excl) {
1117 if (ret == 0)
e61e0f51 1118 ret = i915_request_await_dma_fence(to, excl);
a2bc4695 1119
d07f0e59 1120 dma_fence_put(excl);
a2bc4695
CW
1121 }
1122
d07f0e59 1123 return ret;
a2bc4695
CW
1124}
1125
6dd7526f
CW
1126void i915_request_skip(struct i915_request *rq, int error)
1127{
1128 void *vaddr = rq->ring->vaddr;
1129 u32 head;
1130
1131 GEM_BUG_ON(!IS_ERR_VALUE((long)error));
1132 dma_fence_set_error(&rq->fence, error);
1133
ef468849
CW
1134 if (rq->infix == rq->postfix)
1135 return;
1136
6dd7526f
CW
1137 /*
1138 * As this request likely depends on state from the lost
1139 * context, clear out all the user operations leaving the
1140 * breadcrumb at the end (so we get the fence notifications).
1141 */
1142 head = rq->infix;
1143 if (rq->postfix < head) {
1144 memset(vaddr + head, 0, rq->ring->size - head);
1145 head = 0;
1146 }
1147 memset(vaddr + head, 0, rq->postfix - head);
ef468849 1148 rq->infix = rq->postfix;
6dd7526f
CW
1149}
1150
ea593dbb
CW
1151static struct i915_request *
1152__i915_request_add_to_timeline(struct i915_request *rq)
1153{
d19d71fc 1154 struct intel_timeline *timeline = i915_request_timeline(rq);
ea593dbb
CW
1155 struct i915_request *prev;
1156
1157 /*
1158 * Dependency tracking and request ordering along the timeline
1159 * is special cased so that we can eliminate redundant ordering
1160 * operations while building the request (we know that the timeline
1161 * itself is ordered, and here we guarantee it).
1162 *
1163 * As we know we will need to emit tracking along the timeline,
1164 * we embed the hooks into our request struct -- at the cost of
1165 * having to have specialised no-allocation interfaces (which will
1166 * be beneficial elsewhere).
1167 *
1168 * A second benefit to open-coding i915_request_await_request is
1169 * that we can apply a slight variant of the rules specialised
1170 * for timelines that jump between engines (such as virtual engines).
1171 * If we consider the case of virtual engine, we must emit a dma-fence
1172 * to prevent scheduling of the second request until the first is
1173 * complete (to maximise our greedy late load balancing) and this
1174 * precludes optimising to use semaphores serialisation of a single
1175 * timeline across engines.
1176 */
6c69a454
CW
1177 prev = rcu_dereference_protected(timeline->last_request.request,
1178 lockdep_is_held(&timeline->mutex));
ea593dbb
CW
1179 if (prev && !i915_request_completed(prev)) {
1180 if (is_power_of_2(prev->engine->mask | rq->engine->mask))
1181 i915_sw_fence_await_sw_fence(&rq->submit,
1182 &prev->submit,
1183 &rq->submitq);
1184 else
1185 __i915_sw_fence_await_dma_fence(&rq->submit,
1186 &prev->fence,
1187 &rq->dmaq);
1188 if (rq->engine->schedule)
1189 __i915_sched_node_add_dependency(&rq->sched,
1190 &prev->sched,
1191 &rq->dep,
1192 0);
1193 }
1194
ea593dbb 1195 list_add_tail(&rq->link, &timeline->requests);
ea593dbb 1196
2ccdf6a1
CW
1197 /*
1198 * Make sure that no request gazumped us - if it was allocated after
1199 * our i915_request_alloc() and called __i915_request_add() before
1200 * us, the timeline will hold its seqno which is later than ours.
1201 */
ea593dbb
CW
1202 GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1203 __i915_active_request_set(&timeline->last_request, rq);
1204
1205 return prev;
1206}
1207
05235c53
CW
1208/*
1209 * NB: This function is not allowed to fail. Doing so would mean the the
1210 * request is not being tracked for completion but the work itself is
1211 * going to happen on the hardware. This would be a Bad Thing(tm).
1212 */
2ccdf6a1 1213struct i915_request *__i915_request_commit(struct i915_request *rq)
05235c53 1214{
2ccdf6a1
CW
1215 struct intel_engine_cs *engine = rq->engine;
1216 struct intel_ring *ring = rq->ring;
73dec95e 1217 u32 *cs;
05235c53 1218
dd847a70 1219 GEM_TRACE("%s fence %llx:%lld\n",
2ccdf6a1 1220 engine->name, rq->fence.context, rq->fence.seqno);
c781c978 1221
05235c53
CW
1222 /*
1223 * To ensure that this call will not fail, space for its emissions
1224 * should already have been reserved in the ring buffer. Let the ring
1225 * know that it is time to use that space up.
1226 */
2ccdf6a1
CW
1227 GEM_BUG_ON(rq->reserved_space > ring->space);
1228 rq->reserved_space = 0;
e5dadff4 1229 rq->emitted_jiffies = jiffies;
05235c53 1230
8ac71d1d
CW
1231 /*
1232 * Record the position of the start of the breadcrumb so that
05235c53
CW
1233 * should we detect the updated seqno part-way through the
1234 * GPU processing the request, we never over-estimate the
d045446d 1235 * position of the ring's HEAD.
05235c53 1236 */
2ccdf6a1 1237 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
73dec95e 1238 GEM_BUG_ON(IS_ERR(cs));
2ccdf6a1 1239 rq->postfix = intel_ring_offset(rq, cs);
05235c53 1240
e5dadff4 1241 return __i915_request_add_to_timeline(rq);
a79ca656
CW
1242}
1243
1244void __i915_request_queue(struct i915_request *rq,
1245 const struct i915_sched_attr *attr)
1246{
8ac71d1d
CW
1247 /*
1248 * Let the backend know a new request has arrived that may need
0de9136d
CW
1249 * to adjust the existing execution schedule due to a high priority
1250 * request - i.e. we may want to preempt the current request in order
1251 * to run a high priority dependency chain *before* we can execute this
1252 * request.
1253 *
1254 * This is called before the request is ready to run so that we can
1255 * decide whether to preempt the entire chain so that it is ready to
1256 * run at the earliest possible convenience.
1257 */
2ccdf6a1 1258 i915_sw_fence_commit(&rq->semaphore);
a79ca656
CW
1259 if (attr && rq->engine->schedule)
1260 rq->engine->schedule(rq, attr);
2ccdf6a1 1261 i915_sw_fence_commit(&rq->submit);
2ccdf6a1
CW
1262}
1263
1264void i915_request_add(struct i915_request *rq)
1265{
a79ca656 1266 struct i915_sched_attr attr = rq->gem_context->sched;
d19d71fc 1267 struct intel_timeline * const tl = i915_request_timeline(rq);
2ccdf6a1
CW
1268 struct i915_request *prev;
1269
e5dadff4
CW
1270 lockdep_assert_held(&tl->mutex);
1271 lockdep_unpin_lock(&tl->mutex, rq->cookie);
2ccdf6a1
CW
1272
1273 trace_i915_request_add(rq);
1274
1275 prev = __i915_request_commit(rq);
1276
a79ca656
CW
1277 /*
1278 * Boost actual workloads past semaphores!
1279 *
1280 * With semaphores we spin on one engine waiting for another,
1281 * simply to reduce the latency of starting our work when
1282 * the signaler completes. However, if there is any other
1283 * work that we could be doing on this engine instead, that
1284 * is better utilisation and will reduce the overall duration
1285 * of the current work. To avoid PI boosting a semaphore
1286 * far in the distance past over useful work, we keep a history
1287 * of any semaphore use along our dependency chain.
1288 */
1289 if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
1290 attr.priority |= I915_PRIORITY_NOSEMAPHORE;
1291
1292 /*
1293 * Boost priorities to new clients (new request flows).
1294 *
1295 * Allow interactive/synchronous clients to jump ahead of
1296 * the bulk clients. (FQ_CODEL)
1297 */
1298 if (list_empty(&rq->sched.signalers_list))
1299 attr.priority |= I915_PRIORITY_WAIT;
1300
62520e33 1301 local_bh_disable();
a79ca656 1302 __i915_request_queue(rq, &attr);
62520e33 1303 local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
a79ca656 1304
c22b355f
CW
1305 /*
1306 * In typical scenarios, we do not expect the previous request on
1307 * the timeline to be still tracked by timeline->last_request if it
1308 * has been completed. If the completed request is still here, that
1309 * implies that request retirement is a long way behind submission,
1310 * suggesting that we haven't been retiring frequently enough from
1311 * the combination of retire-before-alloc, waiters and the background
1312 * retirement worker. So if the last request on this timeline was
1313 * already completed, do a catch up pass, flushing the retirement queue
1314 * up to this client. Since we have now moved the heaviest operations
1315 * during retirement onto secondary workers, such as freeing objects
1316 * or contexts, retiring a bunch of requests is mostly list management
1317 * (and cache misses), and so we should not be overly penalizing this
1318 * client by performing excess work, though we may still performing
1319 * work on behalf of others -- but instead we should benefit from
1320 * improved resource management. (Well, that's the theory at least.)
1321 */
d19d71fc
CW
1322 if (prev &&
1323 i915_request_completed(prev) &&
1324 rcu_access_pointer(prev->timeline) == tl)
e61e0f51 1325 i915_request_retire_upto(prev);
3ef71149 1326
e5dadff4 1327 mutex_unlock(&tl->mutex);
05235c53
CW
1328}
1329
1330static unsigned long local_clock_us(unsigned int *cpu)
1331{
1332 unsigned long t;
1333
e61e0f51
CW
1334 /*
1335 * Cheaply and approximately convert from nanoseconds to microseconds.
05235c53
CW
1336 * The result and subsequent calculations are also defined in the same
1337 * approximate microseconds units. The principal source of timing
1338 * error here is from the simple truncation.
1339 *
1340 * Note that local_clock() is only defined wrt to the current CPU;
1341 * the comparisons are no longer valid if we switch CPUs. Instead of
1342 * blocking preemption for the entire busywait, we can detect the CPU
1343 * switch and use that as indicator of system load and a reason to
1344 * stop busywaiting, see busywait_stop().
1345 */
1346 *cpu = get_cpu();
1347 t = local_clock() >> 10;
1348 put_cpu();
1349
1350 return t;
1351}
1352
1353static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1354{
1355 unsigned int this_cpu;
1356
1357 if (time_after(local_clock_us(&this_cpu), timeout))
1358 return true;
1359
1360 return this_cpu != cpu;
1361}
1362
52c0fdb2
CW
1363static bool __i915_spin_request(const struct i915_request * const rq,
1364 int state, unsigned long timeout_us)
05235c53 1365{
52c0fdb2 1366 unsigned int cpu;
b2f2f0fc
CW
1367
1368 /*
1369 * Only wait for the request if we know it is likely to complete.
1370 *
1371 * We don't track the timestamps around requests, nor the average
1372 * request length, so we do not have a good indicator that this
1373 * request will complete within the timeout. What we do know is the
52c0fdb2
CW
1374 * order in which requests are executed by the context and so we can
1375 * tell if the request has been started. If the request is not even
1376 * running yet, it is a fair assumption that it will not complete
1377 * within our relatively short timeout.
b2f2f0fc 1378 */
52c0fdb2 1379 if (!i915_request_is_running(rq))
b2f2f0fc
CW
1380 return false;
1381
e61e0f51
CW
1382 /*
1383 * When waiting for high frequency requests, e.g. during synchronous
05235c53
CW
1384 * rendering split between the CPU and GPU, the finite amount of time
1385 * required to set up the irq and wait upon it limits the response
1386 * rate. By busywaiting on the request completion for a short while we
1387 * can service the high frequency waits as quick as possible. However,
1388 * if it is a slow request, we want to sleep as quickly as possible.
1389 * The tradeoff between waiting and sleeping is roughly the time it
1390 * takes to sleep on a request, on the order of a microsecond.
1391 */
1392
1393 timeout_us += local_clock_us(&cpu);
1394 do {
52c0fdb2
CW
1395 if (i915_request_completed(rq))
1396 return true;
c33ed067 1397
05235c53
CW
1398 if (signal_pending_state(state, current))
1399 break;
1400
1401 if (busywait_stop(timeout_us, cpu))
1402 break;
1403
f2f09a4c 1404 cpu_relax();
05235c53
CW
1405 } while (!need_resched());
1406
1407 return false;
1408}
1409
52c0fdb2
CW
1410struct request_wait {
1411 struct dma_fence_cb cb;
1412 struct task_struct *tsk;
1413};
1414
1415static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1416{
1417 struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1418
1419 wake_up_process(wait->tsk);
1420}
1421
05235c53 1422/**
e532be89 1423 * i915_request_wait - wait until execution of request has finished
e61e0f51 1424 * @rq: the request to wait upon
ea746f36 1425 * @flags: how to wait
e95433c7
CW
1426 * @timeout: how long to wait in jiffies
1427 *
e532be89 1428 * i915_request_wait() waits for the request to be completed, for a
e95433c7
CW
1429 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1430 * unbounded wait).
05235c53 1431 *
e95433c7
CW
1432 * Returns the remaining time (in jiffies) if the request completed, which may
1433 * be zero or -ETIME if the request is unfinished after the timeout expires.
1434 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1435 * pending before the request completes.
05235c53 1436 */
e61e0f51 1437long i915_request_wait(struct i915_request *rq,
e95433c7
CW
1438 unsigned int flags,
1439 long timeout)
05235c53 1440{
ea746f36
CW
1441 const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1442 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
52c0fdb2 1443 struct request_wait wait;
05235c53
CW
1444
1445 might_sleep();
e95433c7 1446 GEM_BUG_ON(timeout < 0);
05235c53 1447
6e4e9708 1448 if (dma_fence_is_signaled(&rq->fence))
e95433c7 1449 return timeout;
05235c53 1450
e95433c7
CW
1451 if (!timeout)
1452 return -ETIME;
05235c53 1453
e61e0f51 1454 trace_i915_request_wait_begin(rq, flags);
84383d2e
CW
1455
1456 /*
1457 * We must never wait on the GPU while holding a lock as we
1458 * may need to perform a GPU reset. So while we don't need to
1459 * serialise wait/reset with an explicit lock, we do want
1460 * lockdep to detect potential dependency cycles.
1461 */
cb823ed9 1462 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
4680816b 1463
7ce99d24
CW
1464 /*
1465 * Optimistic spin before touching IRQs.
1466 *
1467 * We may use a rather large value here to offset the penalty of
1468 * switching away from the active task. Frequently, the client will
1469 * wait upon an old swapbuffer to throttle itself to remain within a
1470 * frame of the gpu. If the client is running in lockstep with the gpu,
1471 * then it should not be waiting long at all, and a sleep now will incur
1472 * extra scheduler latency in producing the next frame. To try to
1473 * avoid adding the cost of enabling/disabling the interrupt to the
1474 * short wait, we first spin to see if the request would have completed
1475 * in the time taken to setup the interrupt.
1476 *
1477 * We need upto 5us to enable the irq, and upto 20us to hide the
1478 * scheduler latency of a context switch, ignoring the secondary
1479 * impacts from a context switch such as cache eviction.
1480 *
1481 * The scheme used for low-latency IO is called "hybrid interrupt
1482 * polling". The suggestion there is to sleep until just before you
1483 * expect to be woken by the device interrupt and then poll for its
1484 * completion. That requires having a good predictor for the request
1485 * duration, which we currently lack.
1486 */
1487 if (CONFIG_DRM_I915_SPIN_REQUEST &&
6e4e9708
CW
1488 __i915_spin_request(rq, state, CONFIG_DRM_I915_SPIN_REQUEST)) {
1489 dma_fence_signal(&rq->fence);
52c0fdb2 1490 goto out;
6e4e9708 1491 }
541ca6ed 1492
62eb3c24
CW
1493 /*
1494 * This client is about to stall waiting for the GPU. In many cases
1495 * this is undesirable and limits the throughput of the system, as
1496 * many clients cannot continue processing user input/output whilst
1497 * blocked. RPS autotuning may take tens of milliseconds to respond
1498 * to the GPU load and thus incurs additional latency for the client.
1499 * We can circumvent that by promoting the GPU frequency to maximum
1500 * before we sleep. This makes the GPU throttle up much more quickly
1501 * (good for benchmarks and user experience, e.g. window animations),
1502 * but at a cost of spending more power processing the workload
1503 * (bad for battery).
1504 */
1505 if (flags & I915_WAIT_PRIORITY) {
1506 if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
1507 gen6_rps_boost(rq);
52c0fdb2 1508 i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT);
62eb3c24 1509 }
4680816b 1510
52c0fdb2
CW
1511 wait.tsk = current;
1512 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1513 goto out;
4680816b 1514
52c0fdb2
CW
1515 for (;;) {
1516 set_current_state(state);
05235c53 1517
ce94bef9
CW
1518 if (i915_request_completed(rq)) {
1519 dma_fence_signal(&rq->fence);
52c0fdb2 1520 break;
ce94bef9 1521 }
05235c53 1522
05235c53 1523 if (signal_pending_state(state, current)) {
e95433c7 1524 timeout = -ERESTARTSYS;
05235c53
CW
1525 break;
1526 }
1527
e95433c7
CW
1528 if (!timeout) {
1529 timeout = -ETIME;
05235c53
CW
1530 break;
1531 }
1532
e95433c7 1533 timeout = io_schedule_timeout(timeout);
05235c53 1534 }
a49625f9 1535 __set_current_state(TASK_RUNNING);
05235c53 1536
52c0fdb2
CW
1537 dma_fence_remove_callback(&rq->fence, &wait.cb);
1538
1539out:
cb823ed9 1540 mutex_release(&rq->engine->gt->reset.mutex.dep_map, 0, _THIS_IP_);
52c0fdb2 1541 trace_i915_request_wait_end(rq);
e95433c7 1542 return timeout;
05235c53 1543}
4b8de8e6 1544
79ffac85 1545bool i915_retire_requests(struct drm_i915_private *i915)
4b8de8e6 1546{
e5dadff4
CW
1547 struct intel_gt_timelines *timelines = &i915->gt.timelines;
1548 struct intel_timeline *tl, *tn;
6dcb85a0 1549 unsigned long flags;
e5dadff4
CW
1550 LIST_HEAD(free);
1551
6dcb85a0 1552 spin_lock_irqsave(&timelines->lock, flags);
e5dadff4
CW
1553 list_for_each_entry_safe(tl, tn, &timelines->active_list, link) {
1554 if (!mutex_trylock(&tl->mutex))
1555 continue;
4b8de8e6 1556
e5dadff4
CW
1557 intel_timeline_get(tl);
1558 GEM_BUG_ON(!tl->active_count);
1559 tl->active_count++; /* pin the list element */
6dcb85a0 1560 spin_unlock_irqrestore(&timelines->lock, flags);
4b8de8e6 1561
e5dadff4
CW
1562 retire_requests(tl);
1563
6dcb85a0 1564 spin_lock_irqsave(&timelines->lock, flags);
e5dadff4
CW
1565
1566 /* Resume iteration after dropping lock */
1567 list_safe_reset_next(tl, tn, link);
1568 if (!--tl->active_count)
1569 list_del(&tl->link);
1570
1571 mutex_unlock(&tl->mutex);
1572
1573 /* Defer the final release to after the spinlock */
1574 if (refcount_dec_and_test(&tl->kref.refcount)) {
1575 GEM_BUG_ON(tl->active_count);
1576 list_add(&tl->link, &free);
1577 }
65baf0ef 1578 }
6dcb85a0 1579 spin_unlock_irqrestore(&timelines->lock, flags);
e5dadff4
CW
1580
1581 list_for_each_entry_safe(tl, tn, &free, link)
1582 __intel_timeline_free(&tl->kref);
79ffac85 1583
e5dadff4 1584 return !list_empty(&timelines->active_list);
4b8de8e6 1585}
c835c550
CW
1586
1587#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1588#include "selftests/mock_request.c"
e61e0f51 1589#include "selftests/i915_request.c"
c835c550 1590#endif
32eb6bcf 1591
103b76ee
CW
1592static void i915_global_request_shrink(void)
1593{
1594 kmem_cache_shrink(global.slab_dependencies);
1595 kmem_cache_shrink(global.slab_execute_cbs);
1596 kmem_cache_shrink(global.slab_requests);
1597}
1598
1599static void i915_global_request_exit(void)
1600{
1601 kmem_cache_destroy(global.slab_dependencies);
1602 kmem_cache_destroy(global.slab_execute_cbs);
1603 kmem_cache_destroy(global.slab_requests);
1604}
1605
1606static struct i915_global_request global = { {
1607 .shrink = i915_global_request_shrink,
1608 .exit = i915_global_request_exit,
1609} };
1610
32eb6bcf
CW
1611int __init i915_global_request_init(void)
1612{
1613 global.slab_requests = KMEM_CACHE(i915_request,
1614 SLAB_HWCACHE_ALIGN |
1615 SLAB_RECLAIM_ACCOUNT |
1616 SLAB_TYPESAFE_BY_RCU);
1617 if (!global.slab_requests)
1618 return -ENOMEM;
1619
e8861964
CW
1620 global.slab_execute_cbs = KMEM_CACHE(execute_cb,
1621 SLAB_HWCACHE_ALIGN |
1622 SLAB_RECLAIM_ACCOUNT |
1623 SLAB_TYPESAFE_BY_RCU);
1624 if (!global.slab_execute_cbs)
1625 goto err_requests;
1626
32eb6bcf
CW
1627 global.slab_dependencies = KMEM_CACHE(i915_dependency,
1628 SLAB_HWCACHE_ALIGN |
1629 SLAB_RECLAIM_ACCOUNT);
1630 if (!global.slab_dependencies)
e8861964 1631 goto err_execute_cbs;
32eb6bcf 1632
103b76ee 1633 i915_global_register(&global.base);
32eb6bcf
CW
1634 return 0;
1635
e8861964
CW
1636err_execute_cbs:
1637 kmem_cache_destroy(global.slab_execute_cbs);
32eb6bcf
CW
1638err_requests:
1639 kmem_cache_destroy(global.slab_requests);
1640 return -ENOMEM;
1641}