drm/i915: Provide a fastpath for waiting on vma bindings
[linux-2.6-block.git] / drivers / gpu / drm / i915 / i915_request.c
CommitLineData
05235c53
CW
1/*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
b52992c0 25#include <linux/dma-fence-array.h>
3136deb7 26#include <linux/dma-fence-chain.h>
e8861964
CW
27#include <linux/irq_work.h>
28#include <linux/prefetch.h>
e6017571
IM
29#include <linux/sched.h>
30#include <linux/sched/clock.h>
f361bf4a 31#include <linux/sched/signal.h>
fa545cbf 32
10be98a7
CW
33#include "gem/i915_gem_context.h"
34#include "gt/intel_context.h"
2871ea85 35#include "gt/intel_ring.h"
3e7abf81 36#include "gt/intel_rps.h"
10be98a7 37
21950ee7 38#include "i915_active.h"
696173b0 39#include "i915_drv.h"
103b76ee 40#include "i915_globals.h"
a09d9a80 41#include "i915_trace.h"
696173b0 42#include "intel_pm.h"
05235c53 43
e8861964 44struct execute_cb {
e8861964
CW
45 struct irq_work work;
46 struct i915_sw_fence *fence;
f71e01a7
CW
47 void (*hook)(struct i915_request *rq, struct dma_fence *signal);
48 struct i915_request *signal;
e8861964
CW
49};
50
32eb6bcf 51static struct i915_global_request {
103b76ee 52 struct i915_global base;
32eb6bcf 53 struct kmem_cache *slab_requests;
e8861964 54 struct kmem_cache *slab_execute_cbs;
32eb6bcf
CW
55} global;
56
f54d1867 57static const char *i915_fence_get_driver_name(struct dma_fence *fence)
04769652 58{
5a833995 59 return dev_name(to_request(fence)->engine->i915->drm.dev);
04769652
CW
60}
61
f54d1867 62static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
04769652 63{
9f3ccd40
CW
64 const struct i915_gem_context *ctx;
65
e61e0f51
CW
66 /*
67 * The timeline struct (as part of the ppgtt underneath a context)
05506b5b
CW
68 * may be freed when the request is no longer in use by the GPU.
69 * We could extend the life of a context to beyond that of all
70 * fences, possibly keeping the hw resource around indefinitely,
71 * or we just give them a false name. Since
72 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
73 * lie seems justifiable.
74 */
75 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
76 return "signaled";
77
6a8679c0 78 ctx = i915_request_gem_context(to_request(fence));
9f3ccd40
CW
79 if (!ctx)
80 return "[" DRIVER_NAME "]";
81
82 return ctx->name;
04769652
CW
83}
84
f54d1867 85static bool i915_fence_signaled(struct dma_fence *fence)
04769652 86{
e61e0f51 87 return i915_request_completed(to_request(fence));
04769652
CW
88}
89
f54d1867 90static bool i915_fence_enable_signaling(struct dma_fence *fence)
04769652 91{
52c0fdb2 92 return i915_request_enable_breadcrumb(to_request(fence));
04769652
CW
93}
94
f54d1867 95static signed long i915_fence_wait(struct dma_fence *fence,
04769652 96 bool interruptible,
e95433c7 97 signed long timeout)
04769652 98{
62eb3c24
CW
99 return i915_request_wait(to_request(fence),
100 interruptible | I915_WAIT_PRIORITY,
101 timeout);
04769652
CW
102}
103
43acd651
CW
104struct kmem_cache *i915_request_slab_cache(void)
105{
106 return global.slab_requests;
107}
108
f54d1867 109static void i915_fence_release(struct dma_fence *fence)
04769652 110{
e61e0f51 111 struct i915_request *rq = to_request(fence);
04769652 112
e61e0f51
CW
113 /*
114 * The request is put onto a RCU freelist (i.e. the address
fc158405
CW
115 * is immediately reused), mark the fences as being freed now.
116 * Otherwise the debugobjects for the fences are only marked as
117 * freed when the slab cache itself is freed, and so we would get
118 * caught trying to reuse dead objects.
119 */
e61e0f51 120 i915_sw_fence_fini(&rq->submit);
0c441cb6 121 i915_sw_fence_fini(&rq->semaphore);
fc158405 122
32a4605b
CW
123 /*
124 * Keep one request on each engine for reserved use under mempressure
125 *
126 * We do not hold a reference to the engine here and so have to be
127 * very careful in what rq->engine we poke. The virtual engine is
128 * referenced via the rq->context and we released that ref during
129 * i915_request_retire(), ergo we must not dereference a virtual
130 * engine here. Not that we would want to, as the only consumer of
131 * the reserved engine->request_pool is the power management parking,
132 * which must-not-fail, and that is only run on the physical engines.
133 *
134 * Since the request must have been executed to be have completed,
135 * we know that it will have been processed by the HW and will
136 * not be unsubmitted again, so rq->engine and rq->execution_mask
137 * at this point is stable. rq->execution_mask will be a single
138 * bit if the last and _only_ engine it could execution on was a
139 * physical engine, if it's multiple bits then it started on and
140 * could still be on a virtual engine. Thus if the mask is not a
141 * power-of-two we assume that rq->engine may still be a virtual
142 * engine and so a dangling invalid pointer that we cannot dereference
143 *
144 * For example, consider the flow of a bonded request through a virtual
145 * engine. The request is created with a wide engine mask (all engines
146 * that we might execute on). On processing the bond, the request mask
147 * is reduced to one or more engines. If the request is subsequently
148 * bound to a single engine, it will then be constrained to only
149 * execute on that engine and never returned to the virtual engine
150 * after timeslicing away, see __unwind_incomplete_requests(). Thus we
151 * know that if the rq->execution_mask is a single bit, rq->engine
152 * can be a physical engine with the exact corresponding mask.
153 */
154 if (is_power_of_2(rq->execution_mask) &&
155 !cmpxchg(&rq->engine->request_pool, NULL, rq))
43acd651
CW
156 return;
157
32eb6bcf 158 kmem_cache_free(global.slab_requests, rq);
04769652
CW
159}
160
f54d1867 161const struct dma_fence_ops i915_fence_ops = {
04769652
CW
162 .get_driver_name = i915_fence_get_driver_name,
163 .get_timeline_name = i915_fence_get_timeline_name,
164 .enable_signaling = i915_fence_enable_signaling,
165 .signaled = i915_fence_signaled,
166 .wait = i915_fence_wait,
167 .release = i915_fence_release,
04769652
CW
168};
169
b87b6c0d
CW
170static void irq_execute_cb(struct irq_work *wrk)
171{
172 struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
173
174 i915_sw_fence_complete(cb->fence);
175 kmem_cache_free(global.slab_execute_cbs, cb);
176}
177
178static void irq_execute_cb_hook(struct irq_work *wrk)
179{
180 struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
181
182 cb->hook(container_of(cb->fence, struct i915_request, submit),
183 &cb->signal->fence);
184 i915_request_put(cb->signal);
185
186 irq_execute_cb(wrk);
187}
188
189static void __notify_execute_cb(struct i915_request *rq)
190{
fc0e1270 191 struct execute_cb *cb, *cn;
b87b6c0d
CW
192
193 lockdep_assert_held(&rq->lock);
194
98b7067a 195 GEM_BUG_ON(!i915_request_is_active(rq));
fc0e1270 196 if (llist_empty(&rq->execute_cb))
b87b6c0d
CW
197 return;
198
fc0e1270 199 llist_for_each_entry_safe(cb, cn, rq->execute_cb.first, work.llnode)
b87b6c0d
CW
200 irq_work_queue(&cb->work);
201
202 /*
203 * XXX Rollback on __i915_request_unsubmit()
204 *
205 * In the future, perhaps when we have an active time-slicing scheduler,
206 * it will be interesting to unsubmit parallel execution and remove
207 * busywaits from the GPU until their master is restarted. This is
208 * quite hairy, we have to carefully rollback the fence and do a
209 * preempt-to-idle cycle on the target engine, all the while the
210 * master execute_cb may refire.
211 */
fc0e1270 212 init_llist_head(&rq->execute_cb);
b87b6c0d
CW
213}
214
e61e0f51 215static void free_capture_list(struct i915_request *request)
b0fd47ad 216{
e61e0f51 217 struct i915_capture_list *capture;
b0fd47ad 218
67a3acaa 219 capture = fetch_and_zero(&request->capture_list);
b0fd47ad 220 while (capture) {
e61e0f51 221 struct i915_capture_list *next = capture->next;
b0fd47ad
CW
222
223 kfree(capture);
224 capture = next;
225 }
226}
227
89dd019a
CW
228static void __i915_request_fill(struct i915_request *rq, u8 val)
229{
230 void *vaddr = rq->ring->vaddr;
231 u32 head;
232
233 head = rq->infix;
234 if (rq->postfix < head) {
235 memset(vaddr + head, val, rq->ring->size - head);
236 head = 0;
237 }
238 memset(vaddr + head, val, rq->postfix - head);
239}
240
37fa0de3
CW
241static void remove_from_engine(struct i915_request *rq)
242{
243 struct intel_engine_cs *engine, *locked;
244
245 /*
246 * Virtual engines complicate acquiring the engine timeline lock,
247 * as their rq->engine pointer is not stable until under that
248 * engine lock. The simple ploy we use is to take the lock then
249 * check that the rq still belongs to the newly locked engine.
250 */
251 locked = READ_ONCE(rq->engine);
1dfffa00 252 spin_lock_irq(&locked->active.lock);
37fa0de3
CW
253 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
254 spin_unlock(&locked->active.lock);
255 spin_lock(&engine->active.lock);
256 locked = engine;
257 }
67a3acaa 258 list_del_init(&rq->sched.link);
b4a9a149
CW
259 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
260 clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
1dfffa00 261 spin_unlock_irq(&locked->active.lock);
37fa0de3
CW
262}
263
66101975 264bool i915_request_retire(struct i915_request *rq)
05235c53 265{
9db0c5ca
CW
266 if (!i915_request_completed(rq))
267 return false;
d9b13c4d 268
639f2f24 269 RQ_TRACE(rq, "\n");
4c7d62c6 270
9db0c5ca
CW
271 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
272 trace_i915_request_retire(rq);
80b204bc 273
e5dadff4
CW
274 /*
275 * We know the GPU must have read the request to have
276 * sent us the seqno + interrupt, so use the position
277 * of tail of the request to update the last known position
278 * of the GPU head.
279 *
280 * Note this requires that we are always called in request
281 * completion order.
282 */
d19d71fc
CW
283 GEM_BUG_ON(!list_is_first(&rq->link,
284 &i915_request_timeline(rq)->requests));
89dd019a
CW
285 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
286 /* Poison before we release our space in the ring */
287 __i915_request_fill(rq, POISON_FREE);
e5dadff4 288 rq->ring->head = rq->postfix;
b0fd47ad 289
22b7a426
CW
290 /*
291 * We only loosely track inflight requests across preemption,
292 * and so we may find ourselves attempting to retire a _completed_
293 * request that we have removed from the HW and put back on a run
294 * queue.
295 */
37fa0de3 296 remove_from_engine(rq);
52e54209 297
1dfffa00 298 spin_lock_irq(&rq->lock);
9db0c5ca
CW
299 i915_request_mark_complete(rq);
300 if (!i915_request_signaled(rq))
301 dma_fence_signal_locked(&rq->fence);
302 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
303 i915_request_cancel_breadcrumb(rq);
2a98f4e6 304 if (i915_request_has_waitboost(rq)) {
3e7abf81
AS
305 GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters));
306 atomic_dec(&rq->engine->gt->rps.num_waiters);
9db0c5ca 307 }
b87b6c0d
CW
308 if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
309 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
310 __notify_execute_cb(rq);
311 }
fc0e1270 312 GEM_BUG_ON(!llist_empty(&rq->execute_cb));
1dfffa00 313 spin_unlock_irq(&rq->lock);
52d7f16e 314
dff2a11b 315 __list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
9db0c5ca 316
9f3ccd40
CW
317 intel_context_exit(rq->context);
318 intel_context_unpin(rq->context);
75d0a7f3 319
9db0c5ca
CW
320 free_capture_list(rq);
321 i915_sched_node_fini(&rq->sched);
322 i915_request_put(rq);
323
324 return true;
05235c53
CW
325}
326
e61e0f51 327void i915_request_retire_upto(struct i915_request *rq)
05235c53 328{
d19d71fc 329 struct intel_timeline * const tl = i915_request_timeline(rq);
e61e0f51 330 struct i915_request *tmp;
05235c53 331
639f2f24 332 RQ_TRACE(rq, "\n");
b887d615 333
e61e0f51 334 GEM_BUG_ON(!i915_request_completed(rq));
4ffd6e0c 335
05235c53 336 do {
e5dadff4 337 tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
9db0c5ca 338 } while (i915_request_retire(tmp) && tmp != rq);
05235c53
CW
339}
340
fc0e1270
CW
341static void __llist_add(struct llist_node *node, struct llist_head *head)
342{
343 node->next = head->first;
344 head->first = node;
345}
346
b55230e5
CW
347static struct i915_request * const *
348__engine_active(struct intel_engine_cs *engine)
349{
350 return READ_ONCE(engine->execlists.active);
351}
352
353static bool __request_in_flight(const struct i915_request *signal)
354{
355 struct i915_request * const *port, *rq;
356 bool inflight = false;
357
358 if (!i915_request_is_ready(signal))
359 return false;
360
361 /*
362 * Even if we have unwound the request, it may still be on
363 * the GPU (preempt-to-busy). If that request is inside an
364 * unpreemptible critical section, it will not be removed. Some
365 * GPU functions may even be stuck waiting for the paired request
366 * (__await_execution) to be submitted and cannot be preempted
367 * until the bond is executing.
368 *
369 * As we know that there are always preemption points between
370 * requests, we know that only the currently executing request
371 * may be still active even though we have cleared the flag.
372 * However, we can't rely on our tracking of ELSP[0] to known
373 * which request is currently active and so maybe stuck, as
374 * the tracking maybe an event behind. Instead assume that
375 * if the context is still inflight, then it is still active
376 * even if the active flag has been cleared.
377 */
378 if (!intel_context_inflight(signal->context))
379 return false;
380
381 rcu_read_lock();
382 for (port = __engine_active(signal->engine); (rq = *port); port++) {
383 if (rq->context == signal->context) {
384 inflight = i915_seqno_passed(rq->fence.seqno,
385 signal->fence.seqno);
386 break;
387 }
388 }
389 rcu_read_unlock();
390
391 return inflight;
392}
393
e8861964 394static int
c81471f5
CW
395__await_execution(struct i915_request *rq,
396 struct i915_request *signal,
397 void (*hook)(struct i915_request *rq,
398 struct dma_fence *signal),
399 gfp_t gfp)
e8861964
CW
400{
401 struct execute_cb *cb;
402
f71e01a7
CW
403 if (i915_request_is_active(signal)) {
404 if (hook)
405 hook(rq, &signal->fence);
e8861964 406 return 0;
f71e01a7 407 }
e8861964
CW
408
409 cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
410 if (!cb)
411 return -ENOMEM;
412
413 cb->fence = &rq->submit;
414 i915_sw_fence_await(cb->fence);
415 init_irq_work(&cb->work, irq_execute_cb);
416
f71e01a7
CW
417 if (hook) {
418 cb->hook = hook;
419 cb->signal = i915_request_get(signal);
420 cb->work.func = irq_execute_cb_hook;
421 }
422
e8861964 423 spin_lock_irq(&signal->lock);
b55230e5 424 if (i915_request_is_active(signal) || __request_in_flight(signal)) {
f71e01a7
CW
425 if (hook) {
426 hook(rq, &signal->fence);
427 i915_request_put(signal);
428 }
e8861964
CW
429 i915_sw_fence_complete(cb->fence);
430 kmem_cache_free(global.slab_execute_cbs, cb);
431 } else {
fc0e1270 432 __llist_add(&cb->work.llnode, &signal->execute_cb);
e8861964
CW
433 }
434 spin_unlock_irq(&signal->lock);
435
436 return 0;
437}
438
36e191f0
CW
439static bool fatal_error(int error)
440{
441 switch (error) {
442 case 0: /* not an error! */
443 case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
444 case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
445 return false;
446 default:
447 return true;
448 }
449}
450
451void __i915_request_skip(struct i915_request *rq)
452{
453 GEM_BUG_ON(!fatal_error(rq->fence.error));
454
455 if (rq->infix == rq->postfix)
456 return;
457
458 /*
459 * As this request likely depends on state from the lost
460 * context, clear out all the user operations leaving the
461 * breadcrumb at the end (so we get the fence notifications).
462 */
463 __i915_request_fill(rq, 0);
464 rq->infix = rq->postfix;
465}
466
467void i915_request_set_error_once(struct i915_request *rq, int error)
468{
469 int old;
470
471 GEM_BUG_ON(!IS_ERR_VALUE((long)error));
472
473 if (i915_request_signaled(rq))
474 return;
475
476 old = READ_ONCE(rq->fence.error);
477 do {
478 if (fatal_error(old))
479 return;
480 } while (!try_cmpxchg(&rq->fence.error, &old, error));
481}
482
c0bb487d 483bool __i915_request_submit(struct i915_request *request)
5590af3e 484{
73cb9701 485 struct intel_engine_cs *engine = request->engine;
c0bb487d 486 bool result = false;
5590af3e 487
639f2f24 488 RQ_TRACE(request, "\n");
d9b13c4d 489
e60a870d 490 GEM_BUG_ON(!irqs_disabled());
422d7df4 491 lockdep_assert_held(&engine->active.lock);
e60a870d 492
c0bb487d
CW
493 /*
494 * With the advent of preempt-to-busy, we frequently encounter
495 * requests that we have unsubmitted from HW, but left running
496 * until the next ack and so have completed in the meantime. On
497 * resubmission of that completed request, we can skip
498 * updating the payload, and execlists can even skip submitting
499 * the request.
500 *
501 * We must remove the request from the caller's priority queue,
502 * and the caller must only call us when the request is in their
503 * priority queue, under the active.lock. This ensures that the
504 * request has *not* yet been retired and we can safely move
505 * the request into the engine->active.list where it will be
506 * dropped upon retiring. (Otherwise if resubmit a *retired*
507 * request, this would be a horrible use-after-free.)
508 */
509 if (i915_request_completed(request))
510 goto xfer;
511
36e191f0
CW
512 if (unlikely(intel_context_is_banned(request->context)))
513 i915_request_set_error_once(request, -EIO);
514 if (unlikely(fatal_error(request->fence.error)))
515 __i915_request_skip(request);
d9e61b66 516
ca6e56f6
CW
517 /*
518 * Are we using semaphores when the gpu is already saturated?
519 *
520 * Using semaphores incurs a cost in having the GPU poll a
521 * memory location, busywaiting for it to change. The continual
522 * memory reads can have a noticeable impact on the rest of the
523 * system with the extra bus traffic, stalling the cpu as it too
524 * tries to access memory across the bus (perf stat -e bus-cycles).
525 *
526 * If we installed a semaphore on this request and we only submit
527 * the request after the signaler completed, that indicates the
528 * system is overloaded and using semaphores at this time only
529 * increases the amount of work we are doing. If so, we disable
530 * further use of semaphores until we are idle again, whence we
531 * optimistically try again.
532 */
533 if (request->sched.semaphores &&
534 i915_sw_fence_signaled(&request->semaphore))
44d89409 535 engine->saturated |= request->sched.semaphores;
ca6e56f6 536
c0bb487d
CW
537 engine->emit_fini_breadcrumb(request,
538 request->ring->vaddr + request->postfix);
b5773a36 539
c0bb487d
CW
540 trace_i915_request_execute(request);
541 engine->serial++;
542 result = true;
422d7df4 543
1d9221e9 544xfer:
672c368f 545 if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) {
c0bb487d 546 list_move_tail(&request->sched.link, &engine->active.requests);
672c368f
CW
547 clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
548 }
b5773a36 549
1d9221e9
CW
550 /* We may be recursing from the signal callback of another i915 fence */
551 if (!i915_request_signaled(request)) {
552 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
b5773a36 553
1d9221e9
CW
554 __notify_execute_cb(request);
555 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
556 &request->fence.flags) &&
557 !i915_request_enable_breadcrumb(request))
558 intel_engine_signal_breadcrumbs(engine);
559
560 spin_unlock(&request->lock);
561 GEM_BUG_ON(!llist_empty(&request->execute_cb));
562 }
f2d13290 563
c0bb487d 564 return result;
d55ac5bf
CW
565}
566
e61e0f51 567void i915_request_submit(struct i915_request *request)
d55ac5bf
CW
568{
569 struct intel_engine_cs *engine = request->engine;
570 unsigned long flags;
23902e49 571
d55ac5bf 572 /* Will be called from irq-context when using foreign fences. */
422d7df4 573 spin_lock_irqsave(&engine->active.lock, flags);
d55ac5bf 574
e61e0f51 575 __i915_request_submit(request);
d55ac5bf 576
422d7df4 577 spin_unlock_irqrestore(&engine->active.lock, flags);
d55ac5bf
CW
578}
579
e61e0f51 580void __i915_request_unsubmit(struct i915_request *request)
d55ac5bf 581{
d6a2289d 582 struct intel_engine_cs *engine = request->engine;
d55ac5bf 583
639f2f24 584 RQ_TRACE(request, "\n");
d9b13c4d 585
e60a870d 586 GEM_BUG_ON(!irqs_disabled());
422d7df4 587 lockdep_assert_held(&engine->active.lock);
48bc2a4a 588
e61e0f51
CW
589 /*
590 * Only unwind in reverse order, required so that the per-context list
d6a2289d
CW
591 * is kept in seqno/ring order.
592 */
80b204bc 593
d6a2289d
CW
594 /* We may be recursing from the signal callback of another i915 fence */
595 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
b5773a36 596
d6a2289d 597 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
52c0fdb2 598 i915_request_cancel_breadcrumb(request);
b5773a36 599
52c0fdb2
CW
600 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
601 clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
b5773a36 602
d6a2289d
CW
603 spin_unlock(&request->lock);
604
dba5a7f3 605 /* We've already spun, don't charge on resubmitting. */
18e4af04 606 if (request->sched.semaphores && i915_request_started(request))
dba5a7f3 607 request->sched.semaphores = 0;
dba5a7f3 608
e61e0f51
CW
609 /*
610 * We don't need to wake_up any waiters on request->execute, they
d6a2289d 611 * will get woken by any other event or us re-adding this request
e61e0f51 612 * to the engine timeline (__i915_request_submit()). The waiters
d6a2289d
CW
613 * should be quite adapt at finding that the request now has a new
614 * global_seqno to the one they went to sleep on.
615 */
616}
617
e61e0f51 618void i915_request_unsubmit(struct i915_request *request)
d6a2289d
CW
619{
620 struct intel_engine_cs *engine = request->engine;
621 unsigned long flags;
622
623 /* Will be called from irq-context when using foreign fences. */
422d7df4 624 spin_lock_irqsave(&engine->active.lock, flags);
d6a2289d 625
e61e0f51 626 __i915_request_unsubmit(request);
d6a2289d 627
422d7df4 628 spin_unlock_irqrestore(&engine->active.lock, flags);
5590af3e
CW
629}
630
23902e49 631static int __i915_sw_fence_call
d55ac5bf 632submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
23902e49 633{
e61e0f51 634 struct i915_request *request =
48bc2a4a 635 container_of(fence, typeof(*request), submit);
48bc2a4a
CW
636
637 switch (state) {
638 case FENCE_COMPLETE:
e61e0f51 639 trace_i915_request_submit(request);
ef468849
CW
640
641 if (unlikely(fence->error))
36e191f0 642 i915_request_set_error_once(request, fence->error);
ef468849 643
af7a8ffa 644 /*
e61e0f51
CW
645 * We need to serialize use of the submit_request() callback
646 * with its hotplugging performed during an emergency
647 * i915_gem_set_wedged(). We use the RCU mechanism to mark the
648 * critical section in order to force i915_gem_set_wedged() to
649 * wait until the submit_request() is completed before
650 * proceeding.
af7a8ffa
DV
651 */
652 rcu_read_lock();
d55ac5bf 653 request->engine->submit_request(request);
af7a8ffa 654 rcu_read_unlock();
48bc2a4a
CW
655 break;
656
657 case FENCE_FREE:
e61e0f51 658 i915_request_put(request);
48bc2a4a
CW
659 break;
660 }
661
23902e49
CW
662 return NOTIFY_DONE;
663}
664
b7404c7e
CW
665static int __i915_sw_fence_call
666semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
667{
209df10b 668 struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
b7404c7e
CW
669
670 switch (state) {
671 case FENCE_COMPLETE:
b7404c7e
CW
672 break;
673
674 case FENCE_FREE:
209df10b 675 i915_request_put(rq);
b7404c7e
CW
676 break;
677 }
678
679 return NOTIFY_DONE;
680}
681
e5dadff4 682static void retire_requests(struct intel_timeline *tl)
d22ba0cb
CW
683{
684 struct i915_request *rq, *rn;
685
e5dadff4 686 list_for_each_entry_safe(rq, rn, &tl->requests, link)
9db0c5ca 687 if (!i915_request_retire(rq))
d22ba0cb 688 break;
d22ba0cb
CW
689}
690
691static noinline struct i915_request *
43acd651
CW
692request_alloc_slow(struct intel_timeline *tl,
693 struct i915_request **rsvd,
694 gfp_t gfp)
d22ba0cb 695{
d22ba0cb
CW
696 struct i915_request *rq;
697
43acd651
CW
698 /* If we cannot wait, dip into our reserves */
699 if (!gfpflags_allow_blocking(gfp)) {
700 rq = xchg(rsvd, NULL);
701 if (!rq) /* Use the normal failure path for one final WARN */
702 goto out;
d22ba0cb 703
43acd651
CW
704 return rq;
705 }
706
707 if (list_empty(&tl->requests))
2ccdf6a1
CW
708 goto out;
709
9db0c5ca 710 /* Move our oldest request to the slab-cache (if not in use!) */
e5dadff4 711 rq = list_first_entry(&tl->requests, typeof(*rq), link);
9db0c5ca
CW
712 i915_request_retire(rq);
713
714 rq = kmem_cache_alloc(global.slab_requests,
715 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
716 if (rq)
717 return rq;
718
d22ba0cb 719 /* Ratelimit ourselves to prevent oom from malicious clients */
e5dadff4 720 rq = list_last_entry(&tl->requests, typeof(*rq), link);
d22ba0cb
CW
721 cond_synchronize_rcu(rq->rcustate);
722
723 /* Retire our old requests in the hope that we free some */
e5dadff4 724 retire_requests(tl);
d22ba0cb
CW
725
726out:
2ccdf6a1 727 return kmem_cache_alloc(global.slab_requests, gfp);
d22ba0cb
CW
728}
729
67a3acaa
CW
730static void __i915_request_ctor(void *arg)
731{
732 struct i915_request *rq = arg;
733
734 spin_lock_init(&rq->lock);
735 i915_sched_node_init(&rq->sched);
736 i915_sw_fence_init(&rq->submit, submit_notify);
737 i915_sw_fence_init(&rq->semaphore, semaphore_notify);
738
855e39e6
CW
739 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0);
740
67a3acaa
CW
741 rq->capture_list = NULL;
742
fc0e1270 743 init_llist_head(&rq->execute_cb);
67a3acaa
CW
744}
745
e61e0f51 746struct i915_request *
2ccdf6a1 747__i915_request_create(struct intel_context *ce, gfp_t gfp)
05235c53 748{
75d0a7f3 749 struct intel_timeline *tl = ce->timeline;
ebece753
CW
750 struct i915_request *rq;
751 u32 seqno;
05235c53
CW
752 int ret;
753
2ccdf6a1 754 might_sleep_if(gfpflags_allow_blocking(gfp));
28176ef4 755
2ccdf6a1
CW
756 /* Check that the caller provided an already pinned context */
757 __intel_context_pin(ce);
9b5f4e5e 758
e61e0f51
CW
759 /*
760 * Beware: Dragons be flying overhead.
5a198b8c
CW
761 *
762 * We use RCU to look up requests in flight. The lookups may
763 * race with the request being allocated from the slab freelist.
764 * That is the request we are writing to here, may be in the process
21950ee7 765 * of being read by __i915_active_request_get_rcu(). As such,
5a198b8c
CW
766 * we have to be very careful when overwriting the contents. During
767 * the RCU lookup, we change chase the request->engine pointer,
65e4760e 768 * read the request->global_seqno and increment the reference count.
5a198b8c
CW
769 *
770 * The reference count is incremented atomically. If it is zero,
771 * the lookup knows the request is unallocated and complete. Otherwise,
772 * it is either still in use, or has been reallocated and reset
f54d1867
CW
773 * with dma_fence_init(). This increment is safe for release as we
774 * check that the request we have a reference to and matches the active
5a198b8c
CW
775 * request.
776 *
777 * Before we increment the refcount, we chase the request->engine
778 * pointer. We must not call kmem_cache_zalloc() or else we set
779 * that pointer to NULL and cause a crash during the lookup. If
780 * we see the request is completed (based on the value of the
781 * old engine and seqno), the lookup is complete and reports NULL.
782 * If we decide the request is not completed (new engine or seqno),
783 * then we grab a reference and double check that it is still the
784 * active request - which it won't be and restart the lookup.
785 *
786 * Do not use kmem_cache_zalloc() here!
787 */
32eb6bcf 788 rq = kmem_cache_alloc(global.slab_requests,
2ccdf6a1 789 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
e61e0f51 790 if (unlikely(!rq)) {
43acd651 791 rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp);
e61e0f51 792 if (!rq) {
31c70f97
CW
793 ret = -ENOMEM;
794 goto err_unreserve;
795 }
28176ef4 796 }
05235c53 797
9f3ccd40 798 rq->context = ce;
2ccdf6a1 799 rq->engine = ce->engine;
1fc44d9b 800 rq->ring = ce->ring;
89b6d183 801 rq->execution_mask = ce->engine->mask;
d19d71fc 802
855e39e6
CW
803 kref_init(&rq->fence.refcount);
804 rq->fence.flags = 0;
805 rq->fence.error = 0;
806 INIT_LIST_HEAD(&rq->fence.cb_list);
807
808 ret = intel_timeline_get_seqno(tl, rq, &seqno);
809 if (ret)
810 goto err_free;
811
812 rq->fence.context = tl->fence_context;
813 rq->fence.seqno = seqno;
814
85bedbf1
CW
815 RCU_INIT_POINTER(rq->timeline, tl);
816 RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline);
ebece753 817 rq->hwsp_seqno = tl->hwsp_seqno;
1eaa251b 818 GEM_BUG_ON(i915_request_completed(rq));
d19d71fc 819
ebece753 820 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
73cb9701 821
48bc2a4a 822 /* We bump the ref for the fence chain */
67a3acaa
CW
823 i915_sw_fence_reinit(&i915_request_get(rq)->submit);
824 i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
5590af3e 825
67a3acaa 826 i915_sched_node_reinit(&rq->sched);
52e54209 827
67a3acaa 828 /* No zalloc, everything must be cleared after use */
e61e0f51 829 rq->batch = NULL;
67a3acaa 830 GEM_BUG_ON(rq->capture_list);
fc0e1270 831 GEM_BUG_ON(!llist_empty(&rq->execute_cb));
2ccdf6a1 832
05235c53
CW
833 /*
834 * Reserve space in the ring buffer for all the commands required to
835 * eventually emit this request. This is to guarantee that the
e61e0f51 836 * i915_request_add() call can't fail. Note that the reserve may need
05235c53
CW
837 * to be redone if the request is not actually submitted straight
838 * away, e.g. because a GPU scheduler has deferred it.
ed2922c0
CW
839 *
840 * Note that due to how we add reserved_space to intel_ring_begin()
841 * we need to double our request to ensure that if we need to wrap
842 * around inside i915_request_add() there is sufficient space at
843 * the beginning of the ring as well.
05235c53 844 */
2ccdf6a1
CW
845 rq->reserved_space =
846 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
05235c53 847
2113184c
CW
848 /*
849 * Record the position of the start of the request so that
d045446d
CW
850 * should we detect the updated seqno part-way through the
851 * GPU processing the request, we never over-estimate the
852 * position of the head.
853 */
e61e0f51 854 rq->head = rq->ring->emit;
d045446d 855
2ccdf6a1 856 ret = rq->engine->request_alloc(rq);
b1c24a61
CW
857 if (ret)
858 goto err_unwind;
2113184c 859
b3ee09a4
CW
860 rq->infix = rq->ring->emit; /* end of header; start of user payload */
861
2ccdf6a1 862 intel_context_mark_active(ce);
d22d2d07
CW
863 list_add_tail_rcu(&rq->link, &tl->requests);
864
e61e0f51 865 return rq;
05235c53 866
b1c24a61 867err_unwind:
1fc44d9b 868 ce->ring->emit = rq->head;
b1c24a61 869
1618bdb8 870 /* Make sure we didn't add ourselves to external state before freeing */
0c7112a0
CW
871 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
872 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
1618bdb8 873
ebece753 874err_free:
32eb6bcf 875 kmem_cache_free(global.slab_requests, rq);
28176ef4 876err_unreserve:
1fc44d9b 877 intel_context_unpin(ce);
8e637178 878 return ERR_PTR(ret);
05235c53
CW
879}
880
2ccdf6a1
CW
881struct i915_request *
882i915_request_create(struct intel_context *ce)
883{
884 struct i915_request *rq;
e5dadff4 885 struct intel_timeline *tl;
2ccdf6a1 886
e5dadff4
CW
887 tl = intel_context_timeline_lock(ce);
888 if (IS_ERR(tl))
889 return ERR_CAST(tl);
2ccdf6a1
CW
890
891 /* Move our oldest request to the slab-cache (if not in use!) */
e5dadff4
CW
892 rq = list_first_entry(&tl->requests, typeof(*rq), link);
893 if (!list_is_last(&rq->link, &tl->requests))
2ccdf6a1
CW
894 i915_request_retire(rq);
895
896 intel_context_enter(ce);
897 rq = __i915_request_create(ce, GFP_KERNEL);
898 intel_context_exit(ce); /* active reference transferred to request */
899 if (IS_ERR(rq))
900 goto err_unlock;
901
902 /* Check that we do not interrupt ourselves with a new request */
e5dadff4 903 rq->cookie = lockdep_pin_lock(&tl->mutex);
2ccdf6a1
CW
904
905 return rq;
906
907err_unlock:
e5dadff4 908 intel_context_timeline_unlock(tl);
2ccdf6a1
CW
909 return rq;
910}
911
0d90ccb7
CW
912static int
913i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
914{
6a79d848
CW
915 struct dma_fence *fence;
916 int err;
0d90ccb7 917
ab7a6902
CW
918 if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
919 return 0;
6a79d848 920
d22d2d07
CW
921 if (i915_request_started(signal))
922 return 0;
923
9ddc8ec0 924 fence = NULL;
6a79d848 925 rcu_read_lock();
9ddc8ec0 926 spin_lock_irq(&signal->lock);
d22d2d07
CW
927 do {
928 struct list_head *pos = READ_ONCE(signal->link.prev);
929 struct i915_request *prev;
930
931 /* Confirm signal has not been retired, the link is valid */
932 if (unlikely(i915_request_started(signal)))
933 break;
934
935 /* Is signal the earliest request on its timeline? */
936 if (pos == &rcu_dereference(signal->timeline)->requests)
937 break;
0d90ccb7 938
9ddc8ec0
CW
939 /*
940 * Peek at the request before us in the timeline. That
941 * request will only be valid before it is retired, so
942 * after acquiring a reference to it, confirm that it is
943 * still part of the signaler's timeline.
944 */
d22d2d07
CW
945 prev = list_entry(pos, typeof(*prev), link);
946 if (!i915_request_get_rcu(prev))
947 break;
948
949 /* After the strong barrier, confirm prev is still attached */
950 if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
951 i915_request_put(prev);
952 break;
6a79d848 953 }
d22d2d07
CW
954
955 fence = &prev->fence;
956 } while (0);
9ddc8ec0
CW
957 spin_unlock_irq(&signal->lock);
958 rcu_read_unlock();
959 if (!fence)
960 return 0;
6a79d848
CW
961
962 err = 0;
07e9c59d 963 if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
6a79d848
CW
964 err = i915_sw_fence_await_dma_fence(&rq->submit,
965 fence, 0,
966 I915_FENCE_GFP);
967 dma_fence_put(fence);
968
969 return err;
0d90ccb7
CW
970}
971
ca6e56f6
CW
972static intel_engine_mask_t
973already_busywaiting(struct i915_request *rq)
974{
975 /*
976 * Polling a semaphore causes bus traffic, delaying other users of
977 * both the GPU and CPU. We want to limit the impact on others,
978 * while taking advantage of early submission to reduce GPU
979 * latency. Therefore we restrict ourselves to not using more
980 * than one semaphore from each source, and not using a semaphore
981 * if we have detected the engine is saturated (i.e. would not be
982 * submitted early and cause bus traffic reading an already passed
983 * semaphore).
984 *
985 * See the are-we-too-late? check in __i915_request_submit().
986 */
60900add 987 return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
ca6e56f6
CW
988}
989
e8861964 990static int
c81471f5
CW
991__emit_semaphore_wait(struct i915_request *to,
992 struct i915_request *from,
993 u32 seqno)
e8861964 994{
5a833995 995 const int has_token = INTEL_GEN(to->engine->i915) >= 12;
e8861964 996 u32 hwsp_offset;
c81471f5 997 int len, err;
e8861964 998 u32 *cs;
e8861964 999
5a833995 1000 GEM_BUG_ON(INTEL_GEN(to->engine->i915) < 8);
795d4d7f 1001 GEM_BUG_ON(i915_request_has_initial_breadcrumb(to));
e8861964 1002
c8a0e2ae 1003 /* We need to pin the signaler's HWSP until we are finished reading. */
c81471f5
CW
1004 err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
1005 if (err)
1006 return err;
e8861964 1007
c210e85b
CW
1008 len = 4;
1009 if (has_token)
1010 len += 2;
1011
1012 cs = intel_ring_begin(to, len);
e8861964
CW
1013 if (IS_ERR(cs))
1014 return PTR_ERR(cs);
1015
1016 /*
1017 * Using greater-than-or-equal here means we have to worry
1018 * about seqno wraparound. To side step that issue, we swap
1019 * the timeline HWSP upon wrapping, so that everyone listening
1020 * for the old (pre-wrap) values do not see the much smaller
1021 * (post-wrap) values than they were expecting (and so wait
1022 * forever).
1023 */
c210e85b
CW
1024 *cs++ = (MI_SEMAPHORE_WAIT |
1025 MI_SEMAPHORE_GLOBAL_GTT |
1026 MI_SEMAPHORE_POLL |
1027 MI_SEMAPHORE_SAD_GTE_SDD) +
1028 has_token;
c81471f5 1029 *cs++ = seqno;
e8861964
CW
1030 *cs++ = hwsp_offset;
1031 *cs++ = 0;
c210e85b
CW
1032 if (has_token) {
1033 *cs++ = 0;
1034 *cs++ = MI_NOOP;
1035 }
e8861964
CW
1036
1037 intel_ring_advance(to, cs);
c81471f5
CW
1038 return 0;
1039}
1040
1041static int
1042emit_semaphore_wait(struct i915_request *to,
1043 struct i915_request *from,
1044 gfp_t gfp)
1045{
326611dd 1046 const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
18e4af04 1047 struct i915_sw_fence *wait = &to->submit;
326611dd 1048
f16ccb64
CW
1049 if (!intel_context_use_semaphores(to->context))
1050 goto await_fence;
1051
795d4d7f
CW
1052 if (i915_request_has_initial_breadcrumb(to))
1053 goto await_fence;
1054
f16ccb64
CW
1055 if (!rcu_access_pointer(from->hwsp_cacheline))
1056 goto await_fence;
1057
fcae4961
CW
1058 /*
1059 * If this or its dependents are waiting on an external fence
1060 * that may fail catastrophically, then we want to avoid using
1061 * sempahores as they bypass the fence signaling metadata, and we
1062 * lose the fence->error propagation.
1063 */
1064 if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN)
1065 goto await_fence;
1066
c81471f5 1067 /* Just emit the first semaphore we see as request space is limited. */
326611dd 1068 if (already_busywaiting(to) & mask)
c81471f5
CW
1069 goto await_fence;
1070
1071 if (i915_request_await_start(to, from) < 0)
1072 goto await_fence;
1073
1074 /* Only submit our spinner after the signaler is running! */
1075 if (__await_execution(to, from, NULL, gfp))
1076 goto await_fence;
1077
1078 if (__emit_semaphore_wait(to, from, from->fence.seqno))
1079 goto await_fence;
1080
326611dd 1081 to->sched.semaphores |= mask;
18e4af04 1082 wait = &to->semaphore;
6a79d848
CW
1083
1084await_fence:
18e4af04 1085 return i915_sw_fence_await_dma_fence(wait,
6a79d848
CW
1086 &from->fence, 0,
1087 I915_FENCE_GFP);
e8861964
CW
1088}
1089
ffb0c600
CW
1090static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1091 struct dma_fence *fence)
1092{
1093 return __intel_timeline_sync_is_later(tl,
1094 fence->context,
1095 fence->seqno - 1);
1096}
1097
1098static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1099 const struct dma_fence *fence)
1100{
1101 return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1102}
1103
a2bc4695 1104static int
ffb0c600
CW
1105__i915_request_await_execution(struct i915_request *to,
1106 struct i915_request *from,
1107 void (*hook)(struct i915_request *rq,
1108 struct dma_fence *signal))
a2bc4695 1109{
ffb0c600 1110 int err;
a2bc4695 1111
ffb0c600 1112 GEM_BUG_ON(intel_context_is_barrier(from->context));
a2bc4695 1113
ffb0c600
CW
1114 /* Submit both requests at the same time */
1115 err = __await_execution(to, from, hook, I915_FENCE_GFP);
1116 if (err)
1117 return err;
1118
1119 /* Squash repeated depenendices to the same timelines */
1120 if (intel_timeline_sync_has_start(i915_request_timeline(to),
1121 &from->fence))
ade0b0c9 1122 return 0;
ffb0c600
CW
1123
1124 /*
1125 * Wait until the start of this request.
1126 *
1127 * The execution cb fires when we submit the request to HW. But in
1128 * many cases this may be long before the request itself is ready to
1129 * run (consider that we submit 2 requests for the same context, where
1130 * the request of interest is behind an indefinite spinner). So we hook
1131 * up to both to reduce our queues and keep the execution lag minimised
1132 * in the worst case, though we hope that the await_start is elided.
1133 */
1134 err = i915_request_await_start(to, from);
1135 if (err < 0)
1136 return err;
1137
1138 /*
1139 * Ensure both start together [after all semaphores in signal]
1140 *
1141 * Now that we are queued to the HW at roughly the same time (thanks
1142 * to the execute cb) and are ready to run at roughly the same time
1143 * (thanks to the await start), our signaler may still be indefinitely
1144 * delayed by waiting on a semaphore from a remote engine. If our
1145 * signaler depends on a semaphore, so indirectly do we, and we do not
1146 * want to start our payload until our signaler also starts theirs.
1147 * So we wait.
1148 *
1149 * However, there is also a second condition for which we need to wait
1150 * for the precise start of the signaler. Consider that the signaler
1151 * was submitted in a chain of requests following another context
1152 * (with just an ordinary intra-engine fence dependency between the
1153 * two). In this case the signaler is queued to HW, but not for
1154 * immediate execution, and so we must wait until it reaches the
1155 * active slot.
1156 */
1157 if (intel_engine_has_semaphores(to->engine) &&
1158 !i915_request_has_initial_breadcrumb(to)) {
1159 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1160 if (err < 0)
1161 return err;
24fe5f2a 1162 }
ade0b0c9 1163
ffb0c600 1164 /* Couple the dependency tree for PI on this exposed to->fence */
52e54209 1165 if (to->engine->schedule) {
ffb0c600 1166 err = i915_sched_node_add_dependency(&to->sched,
6b6cd2eb 1167 &from->sched,
ffb0c600
CW
1168 I915_DEPENDENCY_WEAK);
1169 if (err < 0)
1170 return err;
52e54209
CW
1171 }
1172
ffb0c600
CW
1173 return intel_timeline_sync_set_start(i915_request_timeline(to),
1174 &from->fence);
a2bc4695
CW
1175}
1176
fcae4961
CW
1177static void mark_external(struct i915_request *rq)
1178{
1179 /*
1180 * The downside of using semaphores is that we lose metadata passing
1181 * along the signaling chain. This is particularly nasty when we
1182 * need to pass along a fatal error such as EFAULT or EDEADLK. For
1183 * fatal errors we want to scrub the request before it is executed,
1184 * which means that we cannot preload the request onto HW and have
1185 * it wait upon a semaphore.
1186 */
1187 rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN;
1188}
1189
ac938052 1190static int
3136deb7 1191__i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
ac938052 1192{
fcae4961 1193 mark_external(rq);
ac938052 1194 return i915_sw_fence_await_dma_fence(&rq->submit, fence,
5a833995 1195 i915_fence_context_timeout(rq->engine->i915,
16dc224f 1196 fence->context),
ac938052
CW
1197 I915_FENCE_GFP);
1198}
1199
3136deb7
LL
1200static int
1201i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1202{
1203 struct dma_fence *iter;
1204 int err = 0;
1205
1206 if (!to_dma_fence_chain(fence))
1207 return __i915_request_await_external(rq, fence);
1208
1209 dma_fence_chain_for_each(iter, fence) {
1210 struct dma_fence_chain *chain = to_dma_fence_chain(iter);
1211
1212 if (!dma_fence_is_i915(chain->fence)) {
1213 err = __i915_request_await_external(rq, iter);
1214 break;
1215 }
1216
1217 err = i915_request_await_dma_fence(rq, chain->fence);
1218 if (err < 0)
1219 break;
1220 }
1221
1222 dma_fence_put(iter);
1223 return err;
1224}
1225
b52992c0 1226int
ffb0c600
CW
1227i915_request_await_execution(struct i915_request *rq,
1228 struct dma_fence *fence,
1229 void (*hook)(struct i915_request *rq,
1230 struct dma_fence *signal))
b52992c0 1231{
29ef3fa9
CW
1232 struct dma_fence **child = &fence;
1233 unsigned int nchild = 1;
b52992c0 1234 int ret;
b52992c0 1235
29ef3fa9
CW
1236 if (dma_fence_is_array(fence)) {
1237 struct dma_fence_array *array = to_dma_fence_array(fence);
1238
ffb0c600
CW
1239 /* XXX Error for signal-on-any fence arrays */
1240
29ef3fa9
CW
1241 child = array->fences;
1242 nchild = array->num_fences;
1243 GEM_BUG_ON(!nchild);
1244 }
b52992c0 1245
29ef3fa9
CW
1246 do {
1247 fence = *child++;
9e31c1fe
CW
1248 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1249 i915_sw_fence_set_error_once(&rq->submit, fence->error);
29ef3fa9 1250 continue;
9e31c1fe 1251 }
b52992c0 1252
e61e0f51 1253 if (fence->context == rq->fence.context)
ceae14bd
CW
1254 continue;
1255
ffb0c600
CW
1256 /*
1257 * We don't squash repeated fence dependencies here as we
1258 * want to run our callback in all cases.
1259 */
47979480 1260
29ef3fa9 1261 if (dma_fence_is_i915(fence))
ffb0c600
CW
1262 ret = __i915_request_await_execution(rq,
1263 to_request(fence),
1264 hook);
b52992c0 1265 else
ac938052 1266 ret = i915_request_await_external(rq, fence);
b52992c0
CW
1267 if (ret < 0)
1268 return ret;
29ef3fa9 1269 } while (--nchild);
b52992c0
CW
1270
1271 return 0;
1272}
1273
511b6d9a
CW
1274static int
1275await_request_submit(struct i915_request *to, struct i915_request *from)
1276{
1277 /*
1278 * If we are waiting on a virtual engine, then it may be
1279 * constrained to execute on a single engine *prior* to submission.
1280 * When it is submitted, it will be first submitted to the virtual
1281 * engine and then passed to the physical engine. We cannot allow
1282 * the waiter to be submitted immediately to the physical engine
1283 * as it may then bypass the virtual request.
1284 */
1285 if (to->engine == READ_ONCE(from->engine))
1286 return i915_sw_fence_await_sw_fence_gfp(&to->submit,
1287 &from->submit,
1288 I915_FENCE_GFP);
1289 else
1290 return __i915_request_await_execution(to, from, NULL);
1291}
1292
c81471f5 1293static int
ffb0c600 1294i915_request_await_request(struct i915_request *to, struct i915_request *from)
c81471f5 1295{
ffb0c600 1296 int ret;
f16ccb64 1297
ffb0c600
CW
1298 GEM_BUG_ON(to == from);
1299 GEM_BUG_ON(to->timeline == from->timeline);
c81471f5 1300
ffb0c600
CW
1301 if (i915_request_completed(from)) {
1302 i915_sw_fence_set_error_once(&to->submit, from->fence.error);
c81471f5 1303 return 0;
798fa870
CW
1304 }
1305
c81471f5 1306 if (to->engine->schedule) {
ffb0c600 1307 ret = i915_sched_node_add_dependency(&to->sched,
6b6cd2eb 1308 &from->sched,
ffb0c600
CW
1309 I915_DEPENDENCY_EXTERNAL);
1310 if (ret < 0)
1311 return ret;
c81471f5
CW
1312 }
1313
511b6d9a
CW
1314 if (is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask)))
1315 ret = await_request_submit(to, from);
ffb0c600
CW
1316 else
1317 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
1318 if (ret < 0)
1319 return ret;
1320
1321 return 0;
c81471f5
CW
1322}
1323
f71e01a7 1324int
ffb0c600 1325i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
f71e01a7
CW
1326{
1327 struct dma_fence **child = &fence;
1328 unsigned int nchild = 1;
1329 int ret;
1330
ffb0c600
CW
1331 /*
1332 * Note that if the fence-array was created in signal-on-any mode,
1333 * we should *not* decompose it into its individual fences. However,
1334 * we don't currently store which mode the fence-array is operating
1335 * in. Fortunately, the only user of signal-on-any is private to
1336 * amdgpu and we should not see any incoming fence-array from
1337 * sync-file being in signal-on-any mode.
1338 */
f71e01a7
CW
1339 if (dma_fence_is_array(fence)) {
1340 struct dma_fence_array *array = to_dma_fence_array(fence);
1341
f71e01a7
CW
1342 child = array->fences;
1343 nchild = array->num_fences;
1344 GEM_BUG_ON(!nchild);
1345 }
1346
1347 do {
1348 fence = *child++;
9e31c1fe
CW
1349 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1350 i915_sw_fence_set_error_once(&rq->submit, fence->error);
f71e01a7 1351 continue;
9e31c1fe 1352 }
f71e01a7 1353
ffb0c600
CW
1354 /*
1355 * Requests on the same timeline are explicitly ordered, along
1356 * with their dependencies, by i915_request_add() which ensures
1357 * that requests are submitted in-order through each ring.
1358 */
2045d666
CW
1359 if (fence->context == rq->fence.context)
1360 continue;
1361
ffb0c600
CW
1362 /* Squash repeated waits to the same timelines */
1363 if (fence->context &&
1364 intel_timeline_sync_is_later(i915_request_timeline(rq),
1365 fence))
1366 continue;
f71e01a7
CW
1367
1368 if (dma_fence_is_i915(fence))
ffb0c600 1369 ret = i915_request_await_request(rq, to_request(fence));
f71e01a7 1370 else
ac938052 1371 ret = i915_request_await_external(rq, fence);
f71e01a7
CW
1372 if (ret < 0)
1373 return ret;
ffb0c600
CW
1374
1375 /* Record the latest fence used against each timeline */
1376 if (fence->context)
1377 intel_timeline_sync_set(i915_request_timeline(rq),
1378 fence);
f71e01a7
CW
1379 } while (--nchild);
1380
1381 return 0;
1382}
1383
a2bc4695 1384/**
e61e0f51 1385 * i915_request_await_object - set this request to (async) wait upon a bo
a2bc4695
CW
1386 * @to: request we are wishing to use
1387 * @obj: object which may be in use on another ring.
d8802126 1388 * @write: whether the wait is on behalf of a writer
a2bc4695
CW
1389 *
1390 * This code is meant to abstract object synchronization with the GPU.
1391 * Conceptually we serialise writes between engines inside the GPU.
1392 * We only allow one engine to write into a buffer at any time, but
1393 * multiple readers. To ensure each has a coherent view of memory, we must:
1394 *
1395 * - If there is an outstanding write request to the object, the new
1396 * request must wait for it to complete (either CPU or in hw, requests
1397 * on the same ring will be naturally ordered).
1398 *
1399 * - If we are a write request (pending_write_domain is set), the new
1400 * request must wait for outstanding read requests to complete.
1401 *
1402 * Returns 0 if successful, else propagates up the lower layer error.
1403 */
1404int
e61e0f51
CW
1405i915_request_await_object(struct i915_request *to,
1406 struct drm_i915_gem_object *obj,
1407 bool write)
a2bc4695 1408{
d07f0e59
CW
1409 struct dma_fence *excl;
1410 int ret = 0;
a2bc4695
CW
1411
1412 if (write) {
d07f0e59
CW
1413 struct dma_fence **shared;
1414 unsigned int count, i;
1415
52791eee 1416 ret = dma_resv_get_fences_rcu(obj->base.resv,
d07f0e59
CW
1417 &excl, &count, &shared);
1418 if (ret)
1419 return ret;
1420
1421 for (i = 0; i < count; i++) {
e61e0f51 1422 ret = i915_request_await_dma_fence(to, shared[i]);
d07f0e59
CW
1423 if (ret)
1424 break;
1425
1426 dma_fence_put(shared[i]);
1427 }
1428
1429 for (; i < count; i++)
1430 dma_fence_put(shared[i]);
1431 kfree(shared);
a2bc4695 1432 } else {
52791eee 1433 excl = dma_resv_get_excl_rcu(obj->base.resv);
a2bc4695
CW
1434 }
1435
d07f0e59
CW
1436 if (excl) {
1437 if (ret == 0)
e61e0f51 1438 ret = i915_request_await_dma_fence(to, excl);
a2bc4695 1439
d07f0e59 1440 dma_fence_put(excl);
a2bc4695
CW
1441 }
1442
d07f0e59 1443 return ret;
a2bc4695
CW
1444}
1445
ea593dbb
CW
1446static struct i915_request *
1447__i915_request_add_to_timeline(struct i915_request *rq)
1448{
d19d71fc 1449 struct intel_timeline *timeline = i915_request_timeline(rq);
ea593dbb
CW
1450 struct i915_request *prev;
1451
1452 /*
1453 * Dependency tracking and request ordering along the timeline
1454 * is special cased so that we can eliminate redundant ordering
1455 * operations while building the request (we know that the timeline
1456 * itself is ordered, and here we guarantee it).
1457 *
1458 * As we know we will need to emit tracking along the timeline,
1459 * we embed the hooks into our request struct -- at the cost of
1460 * having to have specialised no-allocation interfaces (which will
1461 * be beneficial elsewhere).
1462 *
1463 * A second benefit to open-coding i915_request_await_request is
1464 * that we can apply a slight variant of the rules specialised
1465 * for timelines that jump between engines (such as virtual engines).
1466 * If we consider the case of virtual engine, we must emit a dma-fence
1467 * to prevent scheduling of the second request until the first is
1468 * complete (to maximise our greedy late load balancing) and this
1469 * precludes optimising to use semaphores serialisation of a single
1470 * timeline across engines.
1471 */
b1e3177b
CW
1472 prev = to_request(__i915_active_fence_set(&timeline->last_request,
1473 &rq->fence));
ea593dbb 1474 if (prev && !i915_request_completed(prev)) {
1eaa251b
CW
1475 /*
1476 * The requests are supposed to be kept in order. However,
1477 * we need to be wary in case the timeline->last_request
1478 * is used as a barrier for external modification to this
1479 * context.
1480 */
1481 GEM_BUG_ON(prev->context == rq->context &&
1482 i915_seqno_passed(prev->fence.seqno,
1483 rq->fence.seqno));
1484
326611dd 1485 if (is_power_of_2(READ_ONCE(prev->engine)->mask | rq->engine->mask))
ea593dbb
CW
1486 i915_sw_fence_await_sw_fence(&rq->submit,
1487 &prev->submit,
1488 &rq->submitq);
1489 else
1490 __i915_sw_fence_await_dma_fence(&rq->submit,
1491 &prev->fence,
1492 &rq->dmaq);
1493 if (rq->engine->schedule)
1494 __i915_sched_node_add_dependency(&rq->sched,
1495 &prev->sched,
1496 &rq->dep,
1497 0);
1498 }
1499
2ccdf6a1
CW
1500 /*
1501 * Make sure that no request gazumped us - if it was allocated after
1502 * our i915_request_alloc() and called __i915_request_add() before
1503 * us, the timeline will hold its seqno which is later than ours.
1504 */
ea593dbb 1505 GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
ea593dbb
CW
1506
1507 return prev;
1508}
1509
05235c53
CW
1510/*
1511 * NB: This function is not allowed to fail. Doing so would mean the the
1512 * request is not being tracked for completion but the work itself is
1513 * going to happen on the hardware. This would be a Bad Thing(tm).
1514 */
2ccdf6a1 1515struct i915_request *__i915_request_commit(struct i915_request *rq)
05235c53 1516{
2ccdf6a1
CW
1517 struct intel_engine_cs *engine = rq->engine;
1518 struct intel_ring *ring = rq->ring;
73dec95e 1519 u32 *cs;
05235c53 1520
639f2f24 1521 RQ_TRACE(rq, "\n");
c781c978 1522
05235c53
CW
1523 /*
1524 * To ensure that this call will not fail, space for its emissions
1525 * should already have been reserved in the ring buffer. Let the ring
1526 * know that it is time to use that space up.
1527 */
2ccdf6a1
CW
1528 GEM_BUG_ON(rq->reserved_space > ring->space);
1529 rq->reserved_space = 0;
e5dadff4 1530 rq->emitted_jiffies = jiffies;
05235c53 1531
8ac71d1d
CW
1532 /*
1533 * Record the position of the start of the breadcrumb so that
05235c53
CW
1534 * should we detect the updated seqno part-way through the
1535 * GPU processing the request, we never over-estimate the
d045446d 1536 * position of the ring's HEAD.
05235c53 1537 */
2ccdf6a1 1538 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
73dec95e 1539 GEM_BUG_ON(IS_ERR(cs));
2ccdf6a1 1540 rq->postfix = intel_ring_offset(rq, cs);
05235c53 1541
e5dadff4 1542 return __i915_request_add_to_timeline(rq);
a79ca656
CW
1543}
1544
1545void __i915_request_queue(struct i915_request *rq,
1546 const struct i915_sched_attr *attr)
1547{
8ac71d1d
CW
1548 /*
1549 * Let the backend know a new request has arrived that may need
0de9136d
CW
1550 * to adjust the existing execution schedule due to a high priority
1551 * request - i.e. we may want to preempt the current request in order
1552 * to run a high priority dependency chain *before* we can execute this
1553 * request.
1554 *
1555 * This is called before the request is ready to run so that we can
1556 * decide whether to preempt the entire chain so that it is ready to
1557 * run at the earliest possible convenience.
1558 */
a79ca656
CW
1559 if (attr && rq->engine->schedule)
1560 rq->engine->schedule(rq, attr);
209df10b 1561 i915_sw_fence_commit(&rq->semaphore);
2ccdf6a1 1562 i915_sw_fence_commit(&rq->submit);
2ccdf6a1
CW
1563}
1564
1565void i915_request_add(struct i915_request *rq)
1566{
d19d71fc 1567 struct intel_timeline * const tl = i915_request_timeline(rq);
e6ba7648 1568 struct i915_sched_attr attr = {};
61231f6b 1569 struct i915_gem_context *ctx;
2ccdf6a1 1570
e5dadff4
CW
1571 lockdep_assert_held(&tl->mutex);
1572 lockdep_unpin_lock(&tl->mutex, rq->cookie);
2ccdf6a1
CW
1573
1574 trace_i915_request_add(rq);
61231f6b 1575 __i915_request_commit(rq);
2ccdf6a1 1576
61231f6b
CW
1577 /* XXX placeholder for selftests */
1578 rcu_read_lock();
1579 ctx = rcu_dereference(rq->context->gem_context);
1580 if (ctx)
1581 attr = ctx->sched;
1582 rcu_read_unlock();
e6ba7648 1583
a79ca656
CW
1584 __i915_request_queue(rq, &attr);
1585
e5dadff4 1586 mutex_unlock(&tl->mutex);
05235c53
CW
1587}
1588
062444bb 1589static unsigned long local_clock_ns(unsigned int *cpu)
05235c53
CW
1590{
1591 unsigned long t;
1592
e61e0f51
CW
1593 /*
1594 * Cheaply and approximately convert from nanoseconds to microseconds.
05235c53
CW
1595 * The result and subsequent calculations are also defined in the same
1596 * approximate microseconds units. The principal source of timing
1597 * error here is from the simple truncation.
1598 *
1599 * Note that local_clock() is only defined wrt to the current CPU;
1600 * the comparisons are no longer valid if we switch CPUs. Instead of
1601 * blocking preemption for the entire busywait, we can detect the CPU
1602 * switch and use that as indicator of system load and a reason to
1603 * stop busywaiting, see busywait_stop().
1604 */
1605 *cpu = get_cpu();
062444bb 1606 t = local_clock();
05235c53
CW
1607 put_cpu();
1608
1609 return t;
1610}
1611
1612static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1613{
1614 unsigned int this_cpu;
1615
062444bb 1616 if (time_after(local_clock_ns(&this_cpu), timeout))
05235c53
CW
1617 return true;
1618
1619 return this_cpu != cpu;
1620}
1621
3f6a6f34 1622static bool __i915_spin_request(struct i915_request * const rq, int state)
05235c53 1623{
062444bb 1624 unsigned long timeout_ns;
52c0fdb2 1625 unsigned int cpu;
b2f2f0fc
CW
1626
1627 /*
1628 * Only wait for the request if we know it is likely to complete.
1629 *
1630 * We don't track the timestamps around requests, nor the average
1631 * request length, so we do not have a good indicator that this
1632 * request will complete within the timeout. What we do know is the
52c0fdb2
CW
1633 * order in which requests are executed by the context and so we can
1634 * tell if the request has been started. If the request is not even
1635 * running yet, it is a fair assumption that it will not complete
1636 * within our relatively short timeout.
b2f2f0fc 1637 */
52c0fdb2 1638 if (!i915_request_is_running(rq))
b2f2f0fc
CW
1639 return false;
1640
e61e0f51
CW
1641 /*
1642 * When waiting for high frequency requests, e.g. during synchronous
05235c53
CW
1643 * rendering split between the CPU and GPU, the finite amount of time
1644 * required to set up the irq and wait upon it limits the response
1645 * rate. By busywaiting on the request completion for a short while we
1646 * can service the high frequency waits as quick as possible. However,
1647 * if it is a slow request, we want to sleep as quickly as possible.
1648 * The tradeoff between waiting and sleeping is roughly the time it
1649 * takes to sleep on a request, on the order of a microsecond.
1650 */
1651
062444bb
CW
1652 timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
1653 timeout_ns += local_clock_ns(&cpu);
05235c53 1654 do {
3f6a6f34 1655 if (dma_fence_is_signaled(&rq->fence))
52c0fdb2 1656 return true;
c33ed067 1657
05235c53
CW
1658 if (signal_pending_state(state, current))
1659 break;
1660
062444bb 1661 if (busywait_stop(timeout_ns, cpu))
05235c53
CW
1662 break;
1663
f2f09a4c 1664 cpu_relax();
05235c53
CW
1665 } while (!need_resched());
1666
1667 return false;
1668}
1669
52c0fdb2
CW
1670struct request_wait {
1671 struct dma_fence_cb cb;
1672 struct task_struct *tsk;
1673};
1674
1675static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1676{
1677 struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1678
3f6a6f34 1679 wake_up_process(fetch_and_zero(&wait->tsk));
52c0fdb2
CW
1680}
1681
05235c53 1682/**
e532be89 1683 * i915_request_wait - wait until execution of request has finished
e61e0f51 1684 * @rq: the request to wait upon
ea746f36 1685 * @flags: how to wait
e95433c7
CW
1686 * @timeout: how long to wait in jiffies
1687 *
e532be89 1688 * i915_request_wait() waits for the request to be completed, for a
e95433c7
CW
1689 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1690 * unbounded wait).
05235c53 1691 *
e95433c7
CW
1692 * Returns the remaining time (in jiffies) if the request completed, which may
1693 * be zero or -ETIME if the request is unfinished after the timeout expires.
1694 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1695 * pending before the request completes.
05235c53 1696 */
e61e0f51 1697long i915_request_wait(struct i915_request *rq,
e95433c7
CW
1698 unsigned int flags,
1699 long timeout)
05235c53 1700{
ea746f36
CW
1701 const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1702 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
52c0fdb2 1703 struct request_wait wait;
05235c53
CW
1704
1705 might_sleep();
e95433c7 1706 GEM_BUG_ON(timeout < 0);
05235c53 1707
6e4e9708 1708 if (dma_fence_is_signaled(&rq->fence))
e95433c7 1709 return timeout;
05235c53 1710
e95433c7
CW
1711 if (!timeout)
1712 return -ETIME;
05235c53 1713
e61e0f51 1714 trace_i915_request_wait_begin(rq, flags);
84383d2e
CW
1715
1716 /*
1717 * We must never wait on the GPU while holding a lock as we
1718 * may need to perform a GPU reset. So while we don't need to
1719 * serialise wait/reset with an explicit lock, we do want
1720 * lockdep to detect potential dependency cycles.
1721 */
cb823ed9 1722 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
4680816b 1723
7ce99d24
CW
1724 /*
1725 * Optimistic spin before touching IRQs.
1726 *
1727 * We may use a rather large value here to offset the penalty of
1728 * switching away from the active task. Frequently, the client will
1729 * wait upon an old swapbuffer to throttle itself to remain within a
1730 * frame of the gpu. If the client is running in lockstep with the gpu,
1731 * then it should not be waiting long at all, and a sleep now will incur
1732 * extra scheduler latency in producing the next frame. To try to
1733 * avoid adding the cost of enabling/disabling the interrupt to the
1734 * short wait, we first spin to see if the request would have completed
1735 * in the time taken to setup the interrupt.
1736 *
1737 * We need upto 5us to enable the irq, and upto 20us to hide the
1738 * scheduler latency of a context switch, ignoring the secondary
1739 * impacts from a context switch such as cache eviction.
1740 *
1741 * The scheme used for low-latency IO is called "hybrid interrupt
1742 * polling". The suggestion there is to sleep until just before you
1743 * expect to be woken by the device interrupt and then poll for its
1744 * completion. That requires having a good predictor for the request
1745 * duration, which we currently lack.
1746 */
062444bb 1747 if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) &&
3f6a6f34 1748 __i915_spin_request(rq, state))
52c0fdb2 1749 goto out;
541ca6ed 1750
62eb3c24
CW
1751 /*
1752 * This client is about to stall waiting for the GPU. In many cases
1753 * this is undesirable and limits the throughput of the system, as
1754 * many clients cannot continue processing user input/output whilst
1755 * blocked. RPS autotuning may take tens of milliseconds to respond
1756 * to the GPU load and thus incurs additional latency for the client.
1757 * We can circumvent that by promoting the GPU frequency to maximum
1758 * before we sleep. This makes the GPU throttle up much more quickly
1759 * (good for benchmarks and user experience, e.g. window animations),
1760 * but at a cost of spending more power processing the workload
1761 * (bad for battery).
1762 */
1840d40a
CW
1763 if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq))
1764 intel_rps_boost(rq);
4680816b 1765
52c0fdb2
CW
1766 wait.tsk = current;
1767 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1768 goto out;
4680816b 1769
3adee4ac
CW
1770 /*
1771 * Flush the submission tasklet, but only if it may help this request.
1772 *
1773 * We sometimes experience some latency between the HW interrupts and
1774 * tasklet execution (mostly due to ksoftirqd latency, but it can also
1775 * be due to lazy CS events), so lets run the tasklet manually if there
1776 * is a chance it may submit this request. If the request is not ready
1777 * to run, as it is waiting for other fences to be signaled, flushing
1778 * the tasklet is busy work without any advantage for this client.
1779 *
1780 * If the HW is being lazy, this is the last chance before we go to
1781 * sleep to catch any pending events. We will check periodically in
1782 * the heartbeat to flush the submission tasklets as a last resort
1783 * for unhappy HW.
1784 */
1785 if (i915_request_is_ready(rq))
1786 intel_engine_flush_submission(rq->engine);
1787
52c0fdb2
CW
1788 for (;;) {
1789 set_current_state(state);
05235c53 1790
3f6a6f34 1791 if (dma_fence_is_signaled(&rq->fence))
52c0fdb2 1792 break;
05235c53 1793
05235c53 1794 if (signal_pending_state(state, current)) {
e95433c7 1795 timeout = -ERESTARTSYS;
05235c53
CW
1796 break;
1797 }
1798
e95433c7
CW
1799 if (!timeout) {
1800 timeout = -ETIME;
05235c53
CW
1801 break;
1802 }
1803
e95433c7 1804 timeout = io_schedule_timeout(timeout);
05235c53 1805 }
a49625f9 1806 __set_current_state(TASK_RUNNING);
05235c53 1807
3f6a6f34
CW
1808 if (READ_ONCE(wait.tsk))
1809 dma_fence_remove_callback(&rq->fence, &wait.cb);
1810 GEM_BUG_ON(!list_empty(&wait.cb.node));
52c0fdb2
CW
1811
1812out:
5facae4f 1813 mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
52c0fdb2 1814 trace_i915_request_wait_end(rq);
e95433c7 1815 return timeout;
05235c53 1816}
4b8de8e6 1817
c835c550
CW
1818#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1819#include "selftests/mock_request.c"
e61e0f51 1820#include "selftests/i915_request.c"
c835c550 1821#endif
32eb6bcf 1822
103b76ee
CW
1823static void i915_global_request_shrink(void)
1824{
103b76ee
CW
1825 kmem_cache_shrink(global.slab_execute_cbs);
1826 kmem_cache_shrink(global.slab_requests);
1827}
1828
1829static void i915_global_request_exit(void)
1830{
103b76ee
CW
1831 kmem_cache_destroy(global.slab_execute_cbs);
1832 kmem_cache_destroy(global.slab_requests);
1833}
1834
1835static struct i915_global_request global = { {
1836 .shrink = i915_global_request_shrink,
1837 .exit = i915_global_request_exit,
1838} };
1839
32eb6bcf
CW
1840int __init i915_global_request_init(void)
1841{
67a3acaa
CW
1842 global.slab_requests =
1843 kmem_cache_create("i915_request",
1844 sizeof(struct i915_request),
1845 __alignof__(struct i915_request),
1846 SLAB_HWCACHE_ALIGN |
1847 SLAB_RECLAIM_ACCOUNT |
1848 SLAB_TYPESAFE_BY_RCU,
1849 __i915_request_ctor);
32eb6bcf
CW
1850 if (!global.slab_requests)
1851 return -ENOMEM;
1852
e8861964
CW
1853 global.slab_execute_cbs = KMEM_CACHE(execute_cb,
1854 SLAB_HWCACHE_ALIGN |
1855 SLAB_RECLAIM_ACCOUNT |
1856 SLAB_TYPESAFE_BY_RCU);
1857 if (!global.slab_execute_cbs)
1858 goto err_requests;
1859
103b76ee 1860 i915_global_register(&global.base);
32eb6bcf
CW
1861 return 0;
1862
1863err_requests:
1864 kmem_cache_destroy(global.slab_requests);
1865 return -ENOMEM;
1866}